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Abstract—A long-standing open challenge for automated pro-
gram repair is the overfitting problem, which is caused by having
insufficient or incomplete specifications to validate whether a
generated patch is correct or not. Most available repair systems
rely on weak specifications (i.e., specifications that are synthesized
from test cases) which limits the quality of generated repairs. To
strengthen specifications and improve the quality of repairs, we
propose to closer integrate static bug detection techniques with
automated program repair. The integration combines automated
program repair with static analysis techniques in such a way
that bug detection patterns can be synthesized into specifications
that the repair system can use. We explore the feasibility of such
integration using two types of bugs: arithmetic bugs, such as
integer overflow, and logical bugs, such as termination bugs. As
part of our analysis, we make several observations that help to
improve patch generation for these classes of bugs. Moreover,
these observations assist with narrowing down the candidate
patch search space, and inferring an effective search order.

Index Terms—automated program repair, bug detection, static
analysis, integer overflow, non-termination, conditional mutation.

I. INTRODUCTION

Automated program repair (APR) is an emerging research

area that seeks to rectify bugs in programs by automatically

generating patches that modify the source code [1]. Automated

repair of bugs can significantly reduce the manual debugging

effort, which is a very time-consuming and expensive activity

in the software development process. APR generally consists

of four main steps: fault identification, fault localization, patch

generation, and patch validation. In this paper, we focus

mainly on patch validation, in which the generated patch is

extensively evaluated to ensure that the bug is resolved, and

that the patch does not introduce any unwanted behavior.

APR needs a specification of correct program behavior to

determine if a generated patch fixes the bug. In the absence

of having complete specifications for the programs they try

to repair, existing APR approaches often resolve to using test

cases as oracles for determining if a patched program exhibits

the desired (“correct”) behavior. However, this means that

generated repairs can only be considered as good as the test-

suite itself: one cannot be sure that the bug has been fixed for

all possible inputs, and not just for the particular test cases.

The result is a long-standing open challenge for APR,

known as patch overfitting. Patch overfitting is a condition
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where the patched program may pass the tests in the given test-

suite, while it is failing for tests outside the test-suite. Since

these patches are obtained by automated repair systems that

rely on weak or incomplete specifications, there is no guaran-

tee that the patches are general enough to address all possible

inputs correctly. Several solutions have been developed to

alleviate the overfitting problem, such as symbolic specifi-

cation inference [2, 3], machine learning-based prioritization

of patches [4], fuzzing-based test-suite augmentation [5], and

concolic path exploration [6]. These solutions rely mainly on

test cases and do not guarantee the general correctness of the

patches. They have in common that they do not solve the

overfitting problem, but aim to limit its impact.

In search of alternative sources for specifications of correct

behavior, we have identified static bug detection (also referred

to as automated software inspection [7]), as a promising source

for synthesizing accurate specifications that APR can use.

Countless static analysis techniques have been developed to

identify a wide variety of bugs, such as division by zero,

integer overflow, and out-of-bounds access. It is common for

these techniques to employ formalized detection rules and

patterns that capture the conditions under which certain types

of bugs occur. We argue that many of these bug detection

patterns can be reformulated as specifications of correct be-

havior. Exploiting this knowledge in APR can further alleviate,

or even resolve, the overfitting problem, improve the quality

of repairs, and decrease the time spent searching for patches.

Contributions: We propose an approach to address the

overfitting problem of APR by using knowledge contained in

static bug detection tools to enhance existing specifications.

The approach synthesizes precise specifications for recurring

classes of bugs from the static analysis patterns and rules

that are used to detect those bugs. Moreover, it considers

new classes of bugs whose fixes require the satisfaction of

composite specifications. We demonstrate the feasibility of the

proposed approach using two classes of program bugs: (1)

arithmetic bugs such as integer overflow, and (2) logical bugs

such as termination bugs. We consider these bugs due to their

widespread occurrence, and because solid static analysis tools

are available for their detection and analysis.

The remainder of the paper discusses the integration of

static bug detection and APR at an abstract level in Section II,

followed by two motivating examples in Sections III and IV.

Section V sketches an initial prototype, we discuss related
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work in Section VI, and we conclude in Section VII.

II. INTEGRATING STATIC BUG DETECTION AND REPAIR

Bug detection is the natural step preceding (and succeeding)

program repair. In today’s APR approaches, bug detection is

mainly done through testing, i.e., dynamic program analysis,

which leads to the challenges of using incomplete specifi-

cations and patch overfitting discussed before. On the other

hand, the literature on static program analysis for bug detection

is rich and mature [8–10]. Many of these techniques build

on automatically evaluated bug detection patterns and rules

that describe the general conditions under which the bugs

can occur, providing a systematic way to their detection. We

observe that many of these patterns can be captured using

temporal logic or automata theory that can be interpreted as

formal specifications of correct program behavior.

Therefore, one can take advantage of existing bug detection

techniques to formulate accurate correctness specifications for

recurring classes of bugs. We argue that combining static bug

detection with APR is both possible and beneficial, as it will

improve the overall reliability of the automated repair process.

The integration can be achieved formally by defining APR as

the process that generates the minimal patch which makes the

program pass the given bug detection patterns.

We foresee several benefits that can be gained from inte-

grating static bug detection with APR. First, the integration

will improve the reliability of repair systems by synthesizing

accurate correctness specifications that do not solely rely on

test cases, but augment them with bug detection rules inferred

using formal analysis techniques. Second, by identifying the

class of the bug through the application of bug detection tools,

one can guide the repair engine to use specific program editing

operators or specific repair strategies that have shown to be

more promising for the particular class of the detected bug.

This will considerably reduce the size of the patch space and

the time required to generate repairs. The integration of APR

and static bug detection techniques can be performed in a

variety of ways. We describe two possibilities for integration:

1) direct integration by directly and repeatedly invoking the

bug detection tool through the repair engine;

2) indirect integration by extracting, collecting, and formal-

izing detection patterns for the bug being repaired.

The key advantage of the direct integration approach is that

it does not require a heavy implementation effort, and hence

the integration may be performed in a straightforward manner.

However, the approach has several drawbacks: (a) the tool

needs to be invoked for each candidate repair. This is a

significant drawback, in particular if the size of the patch

space is large: repeated calls of the detection tool would

degrade the performance of the repair system and introduce

considerable run-time overhead; (b) every time the tool is

invoked, it may generate information about all detected bugs

in the program, which the user needs to examine to extract the

part that is relevant to the bug being repaired; (c) bug detection

tools are typically designed to support specific programming

languages, which imposes limitations on the applicability; and

last but not least, (d) static analysis tools are known to suffer

from false positives. These originate from the approximations

that are needed because run-time values may be unknown at

analysis time. With direct integration, these false positives will

propagate into the automated repair process.

The indirect integration approach aims to collect and reuse

bug detection patterns from bug detection tools. Manually

deriving bug patterns from different tools is a tedious and time-

consuming task. It is therefore desirable to develop techniques

that can extract (a.k.a., mine) detection patterns from the tools,

and reformulate them as correctness specifications in a format

that is acceptable by the repair tool. This is a challenging

open problem to address in general. However, bug detection

tools increasingly do not hard-code their detection rules, but

make them configurable and customizable through pattern- and

query-languages. As a result, it is possible to mine those rules

automatically on a tool-by-tool basis. Key advantages of the

indirect integration approach are as follows: (a) correctness of

patches is automatically guaranteed provided that the devel-

oped patterns are correct; (b) the effort is reusable, as formal

rules can be developed once and reused in the future; and (c)

the approach does not suffer from false positives since we build

on the bug detection rules, not on the static approximation of

program values at run-time.

In the following two sections, we consider two example

classes of bugs and show how direct and indirect integration

can be applied to improve the overall quality of the repair

process by synthesizing accurate specifications.

III. FIRST MOTIVATING EXAMPLE: ARITHMETIC BUGS

Arithmetic calculations affect a wide variety of software

applications, including safety-critical systems such as control

systems for vehicles, medical equipment, and industrial plants.

In this section, we study arithmetic bugs, in particular integer

overflow and integer underflow, and show how one can extract

and formulate detection rules for this class of bugs.

A. Arithmetic Bugs (Integer Overflow)

We discuss two classes of arithmetic bugs, namely integer

overflow (IO) and integer underflow (IU). Integer overflow is

a common bug that occurs when the computation of an arith-

metic operation, such as multiplication or addition, exceeds

the maximum size of the integer type used to store it. An

IO condition may give results leading to unintended behavior

that can compromise a program’s security. To address this type

of bugs, we can follow an indirect integration approach and

extract relevant rules for the detection of IO bugs from the

static analysis tool IntRepair [11].

Let x and y be integer variables, and INTMAX be the positive

upper bound that the variables can store, and INTMIN be the

negative lower bound that the variables can store. The first

rule considers an arithmetic expression that adds two integer

variables:

isOverflow(x + y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

IO, if (x > 0 ∧ y > INTMAX − x)

IU, if (x < 0 ∧ y < INTMIN − x)

false, otherwise.



The second rule considers subtraction of two numbers:

isOverflow(x − y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

IO, if (x > 0 ∧ y < x − INTMAX)

IU, if (x < 0 ∧ y < INTMIN − x)

false, otherwise.

The third rule considers multiplication of two numbers:

isOverflow(x ∗ y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

IO, if (x > 0 ∧ y > INTMAX/x)

IU, if (x < 0 ∧ y < INTMIN/x)

false, otherwise.

It is easy to see that the extracted rules are sound, given the

semantics of the basic arithmetic operators {+,−,∗}. Note

that the rules are written in such a way that the conditions

concern the individual variables, not the combined expression,

to ensure that the preconditions of computing the expression

are checked. Moreover, the rules can be easily extended to

expressions with a larger number of operands and operators,

so that they can be applied to detect IO/IU bugs in more

complex arithmetic expressions. For example, to check flow

in the expression e = (a + b − c), we need to apply the two

rules, isOverflow(x + y) and isOverflow(x − y). These rules

will check the sub-expressions {a + b, b − c, a + b − c}.

B. Correctness Specifications for Repairing IO/IU Bugs

A fundamental challenge in APR comes from missing com-

plete specifications of the intended program behavior. Since

a complete specifications of correct behavior is usually not

available, existing program repair techniques rely mainly on

test cases. However, in the case of arithmetic expressions, the

limited domain allows for synthesis of a complete specification

by examining the semantics of the expression.

Let isOverflow(e) be a bug detection rule that checks

whether the expression e can lead to integer overflow or

underflow. Let also split(e) be a function that splits the

expression e into its basic sub-expressions while taking into

account the order at which sub-expressions are executed. The

function split(e) uses basic arithmetic operators and left and

right parenthesis as splitting delimiters when decomposing

expressions into simpler ones. For example, let e = (a+ b∗c).
Then split(e) = {b∗ c, a+d}, where d = (b∗ c) and hence, we

need to apply the rules isOverflow(a+d) and isOverflow(b∗c)
to check whether the expression e is a bug-free expression.

A valid patch for an IO/IU buggy expression e needs to

satisfy a composite correctness property: (i) under all possible

valuations of variables in e, none of them will store a value

greater than the maximal allowed value, and (ii) the semantics

of e are preserved in the patch after being mutated. This can

be captured in a correctness specification as follows:

SpecIO = ∀es∈split(e′)(isOverflow(es) = false) ∧ e′ ≡ e (1)

where e′ represents a mutated version of e. The splitting of the

expression e′ into its basic expressions is necessary to ensure

that fixing a bug in some parts of the expression does not

introduce new bugs in other parts of the expression. Note that

we do not consider IO bugs as semantic bugs but rather as

memory allocation bugs or formulation bugs, so that feasible

patches can be generated by simply reformulating or rewriting

the expression. From specification SpecIO, it follows that the

mutation function that generates candidate repairs e′ for e,

needs to meet the following requirement:

validity(e′) =
⎧⎪⎪
⎨
⎪⎪⎩

valid if e′ ≡ e

invalid otherwise
(2)

One can employ contemporary SMT solvers to check the

equivalence of two arithmetic expressions ei and ej . This can

be performed by checking the satisfiability of a formula of

the form ϕ = (ei ≠ ej). If there exists an assignment to

the variables of ei and ej that make ϕ satisfiable, then the

two expressions are not semantically equivalent. On the other

hand, if the formula ϕ is unsatisfiable, then ei and ej are

semantically equivalent. Of course, the completeness of this

validation approach for IO bugs is relative to the completeness

of the SMT solver that is employed to check the equivalence.

C. Repair Procedure for IO/IU Bugs

We discuss two possible ways to repair the class of IO bugs.

First, certain IO bugs may be repaired by rewriting the buggy

arithmetic expression in such a way that its sub-expressions

no longer cause an integer overflow. Rewriting rules that

transform arithmetic expressions into semantically equivalent

expressions can be extremely useful for dealing with IO bugs.

For example, consider the arithmetic expression e = (a+b−c),
with a, b, c > 0. Since addition and subtraction have the same

precedence and are left-associative, the following mutations

for the expression e can fix an IO bug in a + b via rewriting

mutants(e) = {(a − c + b), (b − c + a)}, as long as certain

constraints on the values of a, b, and c are true.

Second, the IO bug may be repaired by using a variable

widening technique. The technique converts a variable from

one data type into another data type that accepts a broader

range of values. However, care needs to be taken that such

repairs do not violate the semantics of the original program.

It is not enough to just widen the type of the variable that

triggered the overflow. To ensure the overall correctness of

the patched program and to avoid introducing new bugs to the

program, we may need to widen all dependent variables in

the program, i.e., all variables that are defined using widened

variables. Consider the statements si ∶ e = a + b − c and

sj ∶ d = e ∗ f − g. It is easy to see that the variable d is a

dependent variable whose value depends directly on the values

of e, f , and g. Hence, if we widen the variable e, we may

need to widen the variable d as well, due to the dependency

relationship between the two variables. To determine whether

or not the variable d needs to be widened, we check the state-

ment sj against the developed IO detection rules while taking

the new datatype of variable e into account. The validation

process of variable widening as a strategy to patch IO bugs is

more complex than one might anticipate: it requires examining

not only the buggy expression but also all other expressions

to which the widened variables contribute. Moreover, another

source of potential bugs that needs examination are (external)



library functions that consume variables which were widened

as part of the repair, as they may be incompatible with the

widened datatype.

With these caveats in mind, it is possible to develop

a search-based repair approach that only considers feasible

patches for IO bugs cf. Eq. 2. The candidate patches then need

to be checked against the correctness specification SpecIO. This

approach does not rely on test cases for validating generated

repairs, but on formal IO/IU bug detection rules instead.

IV. SECOND MOTIVATING EXAMPLE: TERMINATION BUGS

Proving termination of programs is a challenging and impor-

tant problem, where even partial solutions can significantly

improve software reliability and programmer productivity. A

huge body of work has been published on proving termination

of programs based on a variety of techniques, such as ab-

stract interpretation [12–14], bounds analysis [15, 16], ranking

functions [17, 18], recurrence sets [19, 20], and transition

invariants [21, 22]. The most popular technique to prove

termination is through the synthesis of a ranking function, a

mapping from the state space to a well-founded domain, whose

value monotonically decreases as the computation progresses.

We will refer to the class of logical bugs in programs that lead

to non-terminating loops as termination bugs and analyze the

conditions under which they can be automatically repaired.

A. Termination Bugs

Termination bugs have received relatively little attention in the

APR literature. Repairing termination bugs can be non-trivial

for several reasons. First, program termination is undecidable

in general. Second, fixing termination bugs requires not only

ensuring termination of the program under repair, but also

preserving the intended semantics of the program.

Another key challenge when dealing with termination bugs

is the difficulty of proving the presence of these classes of

bugs using test cases. It is not self-evident how long one

would need to run the program to prove non-termination. As

a result, current repair approaches that rely on test suites

cannot validate generated patches for detected termination

bugs, since the size of the program input space can be

extremely large or even infinite. However, it is possible to

compute the expected upper bound for termination of a given

loop program, i.e., a program containing a loop, based on

an analysis that takes into account the structure of the loop

program and the architecture of the computer that executes the

program. Termination provers can be employed to assist with

this computationally complex task and prove non-termination

in an automated manner.

Before proceeding further, let us formally introduce some

basic notions that we use throughout the paper, namely the

notion of halting statements, termination bugs, and the termi-

nation repair problem.

Definition 1: Halting statement. We refer to a reachable

statement s in a program P as a halting statement, iff s meets

one of the following conditions:

1) s is a special type statement whose execution causes

termination, such as a RETURN statement, and s is not

part of a function that is called by another function;

2) s is the final statement of P , or the final statement of a

function that is not called by another function.

Definition 2: Termination bug. Let P be a program con-

taining a set of halting statements H ⊆ P at which the program

terminates (cf. Definition 1). We say that program P contains

a termination bug iff there exists a set of inputs i that prevent

P from reaching any of the halting statements H , regardless

of how long the program is running.

Definition 3: Termination repair. Let I be the set of

possible inputs to a buggy non-terminating (NT) program P .

Let ϕ be a property that captures the intended semantics of P .

Then termination repair aims to synthesize a new program P ′

that is (semantically) similar to the original buggy program P

such that for each set of inputs i ∈ I the program P ′ reaches

some halting statement s ∈ H , and run(P ′, i) ⊧ ϕ (i.e., the

result of P ′ on input i satisfies the property ϕ).

One key issue that distinguishes termination bugs from

other classes of bugs is that fixing termination bugs requires

the program to satisfy a composite property: a termination

property and a functional property. That is, to fix a termina-

tion bug, one needs to ensure termination for each possible

input (termination property) while preserving the semantics

of the program (functional property). This further increases

the complexity of the repair problem of termination bugs.

There are several benefits of using termination provers in

the process of repairing termination bugs. First, termination

provers can be used to prove the presence of termination bugs

formally. Second, they can be used to check the soundness

of generated patches in an automated way. This helps to

avoid the construction of complex proofs and the exhaustive

exploration of the input space of the patched program. Third,

termination provers can provide information that can be used

to automatically find counterexamples, which in turn can be

used to guide the repair algorithm to generate valid repairs.

B. Correctness Specifications for Repairing NT Loops

There are many different ways to solve termination of a

given non-terminating (NT) loop program P , for example, by

mutating the termination expression C(P ) of the loop P , or by

mutating the set of expressions E that affect the termination

expression C(P ). However, some mutations of C(P ) or E

may fix the termination bug, but break the intended semantics

of the loop. To satisfy the functional property, it is, therefore,

necessary to fix termination while preserving the semantics of

the loop. This composite requirement can be synthesized in a

two-part specification as follows:

SpecTerm = (P
′
⊧ ϕterm ∧ P

′
⊧ ϕP

sem)

where P ′ represents a mutated version of the non-terminating

loop program P , ϕterm represents a property that ensures

termination of P ′, and ϕP
sem is a property that captures the

intended semantics of P , which is then checked against P ′.

The termination property ϕterm can be synthesized from the



termination patterns that are used by the termination tools like

AProVE [23] and 2LS [24] for the loop P ′, or by simply

running the termination provers directly against the mutated

loop P ′ to check termination. The functional property ϕP
sem

can be synthesized in a variety of ways. One way would be

to use previously known passing or successful test cases to

check whether the semantics of the program are preserved

after deploying the patch.

Satisfaction of the complete specification SpecTerm ensures

that the termination bug is fixed and that the semantics of the

loop are preserved. Consider, for example, a loop program

that aims to sort an array in ascending order. Then the

property ϕP
sem checks whether the array is sorted correctly after

termination, while the property ϕterm checks whether the loop

will terminate after a finite number of iterations.

Next, we need to define the process of validating gener-

ated patches for termination bugs. Observe that due to the

computational expense of employing termination provers, it is

highly desirable to implement a 2-step process for validating

potential patches for termination bugs. In the first step, we

prune the set of candidate patches using any available test

cases to reject invalid patches for the program under repair, and

in the second step, we formally check the validity of generated

plausible patches by running termination provers. This 2-step

approach helps to considerably reduce the overhead introduced

by running termination provers. The passing test cases Tp are

used to model the expected correct behavior of the program.

Definition 4: Validity of Patches for Termination Bugs.

Let P be a buggy non-terminating loop program and T =
(Tp ∪ Tf) be a test-suite that consists of the set of pass-

ing test cases Tp and the set of failing test cases Tf . Let

P ′ be a candidate patched version of P and A be a ter-

mination prover that returns one of the following answers

{terminating,non-terminating,unknown}. We say that the pro-

gram P ′ is a valid patched version of the non-terminating

program P iff all of the following conditions hold:

1) all failing test cases in Tf pass in P ′,

2) none of the passing test cases in Tp fail in P ′,

3) the termination prover A returns “terminating” when

analyzing termination of the loop program P ′.

As mentioned earlier, the effectiveness of search-based

“generate-and-validate” repair approaches can be disputed,

because they typically cannot provide patch correctness guar-

antees. However, as we see here, the integrating of these tech-

niques with solid bug detection techniques can significantly

improve the effectiveness of the combined approach. AProVE

and 2LS are among the most reliable termination analysis

tools. They take a program as input and return one of three

answers: terminating (TR), non-terminating (NT), or unknown

( UN). In general, when the prover returns a definite answer

for a given program (i.e., answer ∈ {TR,NT}), the answer is

with high confidence a valid answer.

AProVE is a system for automated termination and com-

plexity proofs of term rewriting systems. 2LS is a CPROVER-

based framework that reduces program analysis problems

expressed in second-order logic, such as invariant or ranking

function inference, to synthesis problems over templates. In

the 5th Competition on Software Verification (SV-COMP’16),

AProVE was the strongest tool for the termination category,

while 2LS has been shown to be a powerful tool for proving

termination for larger programs with thousands of lines of

code [24]. We use test cases together with termination provers

to check the validity of generated patches as follows:

validity(p) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

valid, if (∀t∈T (p ⊢ t) ∧A(p) = TR)

plausible, if ((∀t∈T (p ⊢ t) ∧A(p) = UN)

invalid, if ((∃t∈T (p ⊬ t) ∨A(p) = NT)

where T is the set of available test cases (both passing and

failing tests), p ⊢ t indicates that the examined patch p runs

successfully against the test t, and A is a termination prover.

C. Monotonicity of Loop Programs

We now turn to discuss the class of monotonic statements [25,

26] that is often encountered in loop programs. The mono-

tonicity of a statement is defined with respect to a specific

loop surrounding the statement. Consider while loop P and a

statement s ∶ x = e inside the loop. Further, consider a single

execution of the loop, which involves n iterations through the

loop. Let ℓ1, ℓ2, ..., ℓn denote the n consecutive iterations of

the loop, and x1, x2, .., xm denote the values assigned to x

during these iterations, where m ≤ n, because statement s may

not be executed during every iteration if there are conditional

branches inside the loop.

Definition 5: Monotonic Loop Statements. A statement

s ∶ x = e is considered to be monotonic w.r.t. loop P iff the

sequence of values assigned to variable x during successive

executions of s forms an increasing or decreasing sequence

of values ( i.e. xi < xi+1 or xi > xi+1). A statement s is con-

sidered to be regular monotonic iff the sequence x1, x2, .., xm

is an arithmetic progression or geometric progression; it is

considered to be irregular monotonic otherwise.

The monotonicity of a statement s ∶ x = e w.r.t. loop

P can be determined using various approaches. Spezialetti

and Gupta present a sophisticated static analysis technique

to determine loop monotonic variables [26]. Alternatively,

one can verify whether the given loop program meets the

monotonicity property by executing the program P against

the available test cases, and checking whether the values

assigned to the control variables follow a monotonic function

cf. Definition 5. The key challenge is then to synthesize

monotonic update expressions for control variables that ensure

proper termination of the buggy loop program under repair.

We show in Section V how one can exploit the monotonicity

property to guide the repair algorithm toward feasible patches.

D. Repair Procedure for Termination Bugs

The most straightforward approach to search-based program

repair uses random mutation of expressions and program

statements to generate candidate patches. Observe that the

search space for potential patches in this approach can be

extremely large, even for programs whose source code size

is small, as each statement in the program can be mutated



using different mutation operators, such as insert, delete, and

replace, and with different parameters. As a result, the number

of potential mutants grows exponentially w.r.t. the number of

lines in the code and measures need to be taken to ensure the

efficiency and performance while examining candidate patches

in the generated search space.

However, instead of randomly mutating statements of a

given buggy non-termination loop program P , one can direct

or guide the genetic repair algorithm to focus on the set

of (feasible) statements whose mutation may lead to valid

repairs for termination bugs. The set of feasible statements

for mutation would be the set of statements that directly or

indirectly affect the evaluation of the termination condition of

the given buggy program.

Program slicing is a viable technique to restrict the focus of

the repair task to specific parts of a program [27]. It has been

applied successfully in software engineering tasks, including

debugging, testing, program restructuring, and downsizing. We

apply program slicing in APR so that statements that are not

relevant to the detected bugs may be skipped when searching

for repairs. Among the various existing slicing algorithms, we

choose a generalized slicing paradigm, called “conditioned”

slicing [28]. It is a generalization of static slicing and dy-

namic slicing. A conditioned slice is constructed for a slicing

criterion that includes the condition which causes the program

to misbehave. To compute the set of feasible statements for

mutation, we need first to compute the set of control variables

that affect the termination of P (i.e., the set of variables whose

values determine the end of the loop).

Definition 6: Loop Control Variables. Let P be a loop

program and X be the set of variables of P . Let also C(P )
be the termination expression of P (i.e., a logical expression

whose evaluation determines whether or not the loop P will

iterate). We refer to x ∈ X as a control variable of P iff the

value of x affects the truth value of C(P ).
With these elements in place, we can formulate an algorithm

for generating valid repairs for non-terminating loop programs.

Let Pmin be a minimized loop program of a given buggy

non-terminating loop program P that contains only the set of

statements that affect the termination of P . Pmin, is constructed

from P by applying a slicing algorithm in which the set of

control variables are used as slicing points. By mutating the

statements of Pmin, we construct a search space of patches for

the detected termination bug (a.k.a. “patch space”). A reliable

termination prover A together with the available test cases T

are used to validate generated patches cf. Definition 4. The

key algorithmic steps to generate a valid repair for P can then

be summarized as follows:

1) Compute the set of control variables of the loop P .

2) Construct a minimized loop program P ′ from P by

using control variables of P as slicing criteria.

3) If P ′ meets the monotonicity property, then construct

the candidate patch space S by monotonic mutation of

update expressions of control variables. Otherwise, use

a genetic repair approach similar to GenProg.

4) Select a patch p from the constructed patch space S.

5) Use a termination prover together with available test

cases to check the validity of p.

6) If p is a valid patch or the allocated time budget is

expired, then return. Otherwise, go to step 4.

The first three steps of the algorithm can be performed by

employing static analysis techniques together with slicing

techniques. The goal of these steps is to reduce the search

space of feasible patches, in which a correct repair can be

found faster. The algorithm terminates if either the allocated

time budget is expired or a valid patch is found. Observe that

the soundness of generated patches for termination bugs will

be relative to the soundness of the termination prover that

is employed. Moreover, note that mutation of the termination

expressions and update expressions of the control variables for

a loop program P does not only affect the termination of P ,

but likely also affects the functionality of P .

V. INITIAL PROTOTYPE AND ANALYSIS

In our initial prototype, we focus mainly on the repair of ter-

mination bugs, as this class of bugs has received significantly

less attention in the APR literature.1 As far as we know, there

is no available dataset for termination bugs in loop programs.

To extract some useful information about common syntactic

shapes of both the update expressions of control variables

and termination expressions of successfully terminating loop

programs, we perform an initial analysis on the available loop

programs in the following two datasets.

1) The SNU real-time benchmark suite containing small C

programs for worst-case execution time analysis.2

2) The Power-Stone benchmark suite as an example set of

C programs for embedded systems [29].

These datasets have been constructed to compare the efficiency

and reliability of different available termination provers. Ana-

lyzing the two datasets with the termination provers AProVE

and 2LS allows us to make the following key observations:

● The tool 2LS was able to prove termination by returning

definite answers for almost 80% of the examined loop

programs, while AProVE was able to prove termination

for only 37% of the programs. However, there were

few cases (around 3% of the examined programs) where

AProVE was able to prove termination while 2LS not.

The two tools together were able to prove the termination

of around 84% of the examined programs. Termination

provers return “unknown” when they are unable to prove

termination of the program. This often occurs due to the

high complexity of the loop program under analysis.

● We did not identify any cases in which the two tools

returned contradicting answers for the same loop program

(i.e., where one tool answered “terminating” and the

other answered “non-terminating”). This increases our

confidence about the soundness of implemented theories

in both tools.

1 Note that the discussion in Section V-B includes the repair of IO bugs.
2 Available at www.cprover.org/goto-cc/examples/snu.html

www.cprover.org/goto-cc/examples/snu.html


● The initial exploration shows that the termination provers

AProVE and 2LS are able to verify termination of

programs using very little computational time (a few

seconds). We also observe that it is more convenient to

use the termination provers directly, without extracting

termination rules for the loop program under repair.

The question is then which tool to use for integration when

fixing termination bugs: 2LS or AProVE? The analysis con-

ducted on the two datasets showed that 2LS was able to

prove termination for a larger number of loop programs than

AProVE. However, this observation may vary depending on

the complexity of the program under analysis. It is more

beneficial to consider both tools when validating generated

patches for termination bugs. That is, we may run both tools

in parallel against the examined loop program. To reduce the

amount of overhead introduced by the tools, one may choose

to run the tools only against plausibly generated patches (i.e.,

patches that successfully passed available test cases).

A. Monotonicity Property in Practice

For this analysis, we consider the subset of successfully

terminating loop programs in the two datasets, as verified by

termination provers. We study the syntactic shapes of both the

termination condition and the update expressions of control

variables for each loop program. The goal is to infer common

patterns that can be used to guide the repair engine to generate

valid patches for termination bugs.

Our analysis shows that the SNU suite contains 107 loop

programs, and 105 of them have monotonic behavior. We also

observe that the update expressions for 63 loop programs in

SNU are simple monotonic expressions (i.e., u(x) = x op b,

where op ∈ {+,−,∗,÷} and b is a constant). The Power-Stone

benchmark suite contains 112 loop programs, of which 110

have monotonic behavior. This implies that 98% of the loop

programs in both suites are monotonic programs.

We classify the variables in termination expression C(P )
based on their boundedness into variables that are bounded

from below and variables that are bounded from above:

Definition 7: Bounded Control Variables. Let P be a loop

program and X be the set of control variables of P and C(P )
be the termination expression of the loop P . We say that a

variable xi ∈ X is bounded from below in C(P ) if it has the

form (xi ∼i ci), where ∼i∈ {>,≥} and ci is called the lower

bound of xi. On the other hand, we say that a variable xj ∈X
is bounded from above in C(P ) if it has the form (xj ∼j cj),
where ∼j∈ {<,≤} and cj is called the upper bound of xj .

Moreover, we classify the update expressions for con-

trol variables into monotonically increasing expressions and

monotonically decreasing expressions cf. Definition 5. Such

classification of control variables in termination conditions and

update expressions is crucial, as it determines the feasible

direction of mutation of logical expressions and arithmetic

expressions of the loop program under repair.

Observe that for the feasibility of generated patches for

termination bugs, the termination expression C(P ) needs to be

mutated while considering the syntactic shape of the update

expression u(xi) ∣ xi ∈X and vice versa. This is necessary in

order to detect early infeasible candidate patches. In fact, the

shape of the expression C(P ) imposes some restrictions on

the mutation function that is used for the update expressions

of control variables of the loop program under repair. This

leads to the notion of conditional mutation of expressions.

Definition 8: Conditional Mutation of Expressions. Con-

ditional mutation is an operation where the mutation of some

expression ei in a program P depends on the syntactic shape

of a related expression ej . For a loop program P with a set

of control variables X , the mutation of C(P ) depends on the

syntactic shape of u(xi) and vice versa.

Note that both expressions C(P ) and u(xi) affect termina-

tion of the loop P and that the syntactic shape of u(xi) affects

the evaluation of C(P ) between the successive iterations of

the loop. To spend the available time budget in a more

efficient manner, conditional mutations play a crucial role,

as they allow detecting and skipping infeasible patches even

before constructing and validating them. To develop a better

understanding of conditional mutation, let us consider the

following example:

Example 1: Consider a loop program P with a single control

variable x. Let C(P ) = (x ∼ c) and u(x) = (x op b), where

op is an arithmetic operator and ∼ is a comparison operator. It

is easy to see that the mutation of the operator op will affect

the evaluation of C(P ) and hence the mutation choices of op

should be made while taking into account the operator ∼. For

instance, for the case where ∼= ‘ <′ and b > 0 the mutations

of operator op should not consider the two operators {−,÷}
because x is bounded from above in C(P ), and mutating

op with −, or ÷ would lead to a monotonically decreasing

expression, which would lead to invalid patches.

Let monotoneMutate(e) be a mutation function that takes

some monotone expression e and produces another new

monotone expression e′. We assume that the function

monotoneMutate(e) implements some static analysis tech-

niques to check the monotonicity of expressions, similar to

those implemented by Spezialetti and Gupta [26]. Analysis of

successfully terminating programs in the two datasets yields a

number of useful conditional mutation rules:

● If the condition C(P ) or some sub-condition in C(P )
has the form (x ∼ c) where ∼∈ {>,≥}, then the update

expression e = u(x) needs to be mutated by the function

monotoneMutate(e) such that the resultant expression

u′(x) is a monotonically decreasing expression.

● If the condition C(P ) or some sub-condition in C(P )
has the form (x ∼ c) where ∼∈ {<,≤}, then the update

expression e = u(x) needs to be mutated by the function

monotoneMutate(e) such that the resultant expression

u′(x) is a monotonically increasing expression.

● If u(x) has the form (x op b) where op ∈ {+,∗} and

b > 0 and x ∈ R+, then mutate ∼ in the expression (x ∼ c)
using the set of operators {>,≥,=}. On the other hand,

if op ∈ {−,÷} and b > 0 and x ∈ R+ then mutate ∼ in

(x ∼ c) using the set of operators {<,≤,=}.



One can develop several similar conditional mutation rules by

exploiting the monotonicity property of loop programs and

the boundedness direction of control variables in termination

conditions. Note that the same expression e can be mutated

to be monotonically increasing or monotonically decreasing

expression, depending on how we mutate the ingredients of

the expression. It is easy to see that by following the above

conditional mutation rules when mutating non-terminating

loops (whenever applicable), we guarantee that there will be

an iteration at which the termination condition of the loop will

be evaluated to false and the loop terminates.

B. Reliability of Repair Approaches

To verify the reliability of existing test-based repair approaches

in generating valid patches for IO bugs and termination bugs,

we consider several datasets that have been used by the tools

GenProg and SCRepair. The datasets contain a considerable

number of programs that suffer from IO bugs and termination

bugs. The dataset used by the SCRepair tool contains three

programs with 12 IO bugs. The datasets used by GenProg,

namely the MANYBUGS and INTROCLASS benchmarks, con-

tain in total 1,183 different bugs or defects associated with

test cases, spread over 15 C programs.

It has been claimed that GenProg can repair many kinds of

defects, including non-terminating loops and integer overflows,

based on the observation that the tool can generate plausible

patches for most of these classes of bugs. However, the

validation process is performed using weak specifications for

both IO bugs and termination bugs, due to the assumption

that accurate, complete specifications are typically unavailable.

In fact, one can synthesize accurate specifications for these

particular classes of bugs by taking advantage of available

reliable bug detection tools, as demonstrated in this paper.

We examine the set of plausible patches generated by

GenProg and SCRepair for the available buggy IO programs

and non-terminating loop programs, while considering the

correctness properties introduced in this work to verify their

soundness. The analysis shows that none of the plausibly

generated patches for both IO bugs and termination bugs were

correct. That is, none of the generated patches for IO bugs

meets specification SpecIO (i.e., the correctness specification

for IO bugs), and none of the generated patches for buggy non-

terminating loops successfully passes the validation process

performed by the termination provers. We also observe that

the repair tools do not consider a composite correctness

property when validating generated patches for termination

bugs (i.e., non-terminating loops). This raises questions about

the reliability of test-based repair approaches that do not use

special mutation functions that take the semantics of the bug

being repaired into account.

Note that we do not consider a patch that fixes an IO bug

valid if the patch breaks the intended semantics of the original

buggy arithmetic expression. Similarly, we do not consider a

patch that ensures termination of a given non-terminating loop

program valid if the patch breaks the intended semantics of

the loop program.

To improve the reliability of APR, innovative approaches

are required for both the patch generation and patch valida-

tion steps. Search-based repair approaches can be promising

candidates, provided that the buggy program is mutated using

special mutation functions that take the semantics of the bug

into account, and provided that patch validation is performed

using accurate specifications that are synthesized from the

knowledge contained in static bug detection rules.

VI. RELATED WORK

We distinguish the following categories of related work:

Automated Program Repair: We limit ourselves to offline,

source-based, automated program repair approaches [1]. These

can be separated into two classes: search-based approaches and

semantic-based approaches. Search-based approaches such as

Genprog [30], Astor [31], and SCRepair [32] predominantly

use failing test cases to identify bugs, and then apply mutations

to the source code until the program passes all failing test

cases. These approaches do not provide patch correctness

guarantees beyond the fact that the provided test cases now

pass. Furthermore, these approaches require executing the

buggy program, first to find the bug in the program, and

then to generate and validate candidate repairs. Semantic-

based approaches like SemFix [2], Nopol [33], DirectFix [34],

SPR [35], Angelix [3], and JFIX [36] infer repair constraints

for the buggy program via symbolic execution of the given

tests. The completeness of inferred repair constraints relies on

the size and quality of the available test-suite.

Detecting IO bugs: There have been a number of approaches

developed to detect integer overflow at the source code level.

These approaches can be classified into two categories: (a)

instrumenting the source code with run-time integer overflow

check [37–39], and (b) using static analysis to detect integer

overflow [40–42]. Of these, the work of Coker and Hafiz [40]

comes closest to the work presented here, by introducing a

set of refactoring and rewrite rules to apply in an IDE to fix

overflows in C programs. However, unlike the work presented

in this paper, they do not propose any way to automatically

generate fixes and verify them.

Evaluating Overfitting in APR: A number of studies have

evaluated overfitting in APR, and the overall outcome of

these studies is that the accuracy of test-based repairs is too

low [43, 44]. A study conducted by Qi et al. [43] shows that

GenProg [30], one of the most well-known program repair

techniques, produced plausible patches for 55 different defects,

but only two were correct, giving a precision of 4%. Yang

et al. [45] propose a technique to improve evaluation of the

correctness of generated plausible patches by extending the

number of test cases in a test suite using the fuzzer American

Fuzzy Lop (AFL). Their study identified 321 overfitted patches

out of 427 examined plausible patches generated by GenProg,

Kali [43], and SPR [46].

Le et al. [47] examine different ways to measure overfitting

in dynamic APR approaches, using independent tests and

manual inspection of patches. They conclude that neither

human judgment nor independent testing can truly determine



overfitting. Ye et al. [48] evaluated five repair systems based

on the QuixBugs benchmark [49] consisting of 40 small-

sized Java buggy programs. Their results show that 64 patches

were generated for 15 individual programs. They evaluated

the correctness of the patches by generating more tests using

EvoSuite [50], as well as via manual analysis. Their analysis

shows that 33 out of 64 generated patches were overfitting.

The above-described evaluation studies relied mainly on in-

complete or insufficient specifications, and hence they may not

discover all existing overfitted patches. Instead of evaluating

plausible patches by increasing the number of tests in the

test suite or by manual inspection of the code, it is highly

desirable to synthesize complete and accurate specifications

for recurring classes of bugs by utilizing knowledge contained

in static bug detection tools as we have done in this work.

Alternative Specification Sources for APR: Several attempts

have been made to use other sources of information than

test suites to formulate correctness specifications for APR.

Examples include pre- and post-conditions, abstract behavioral

models specified by the user, and the application of static

analysis tools as oracles [1, §3.1-3.4]. Of these, the application

of static analysis tools as oracles comes closest to the work

proposed here, but as discussed in Section II, such a direct inte-

gration has a number of disadvantages. Note that none of these

approaches use the actual static detection patterns/rules as

the source for formulating accurate specifications. There also

exists a few examples of using information from debugging

to aid APR: Facebook’s APR tool SapFix takes information

generated during the bug detection process and applies various

techniques, including a template-based one, specific to a given

bug, to fix the program. However, our approach is different

in that we add accurate specifications to APR to check for

overfitting patches. Moreover, it considers new classes of bugs

whose fixing requires the satisfaction of composite properties.

VII. CONCLUDING REMARKS

A. Contributions and Key Findings

In this paper, we study the feasibility of integrating static bug

detection and automated program repair so that repairs may be

generated in a faster and more reliable manner. The feasibility

is examined for two classes of bugs: arithmetic bugs, such as

IO bugs, and logical bugs, such as termination bugs. Fixing IO

bugs has been studied before, but with weaker specifications

(mainly specifications that are synthesized based on test cases),

which may not guarantee the correctness of generated patches.

Termination bugs have not been studied in great detail in the

prior literature. To our knowledge, this is the first work that

synthesizes complete specifications for these classes of bugs.

The key findings of this work can be summarized as follows:

● General-purpose APR tools treat different classes of bugs

in the same manner: the repair algorithms implemented

by these tools do not take the specific characteristics of

the bug being repaired into account. Experiments with

GenProg and SCRepair on IO and termination bugs show

that none of the plausible patches generated by these

tools are correct. Integration of static bug detection in

the repair process helps to reduce the search space and

improve the reliability of APR.

● Pattern-based formal specifications are more reliable as

the oracle for correct behavior than test-based specifica-

tions. The key distinguishing feature is that pattern-based

specifications are more general and therefore provide

broader coverage of programs that can be repaired.

● Patch validation of IO bugs is more complex than one

might initially anticipate. In fact, the complexity of

the validation process varies depending on the patching

technique that is applied. If expression rewriting rules

are used to generate patch candidates, these need to be

validated using a composite correctness property that

checks absence of overflows and preserving the original

semantics (cf. SpecIO in Eq. 1). On the other hand, if

variable widening is used to generate patch candidates,

then all dependent variables in the program need to

be widened as well, and validation needs to check all

arithmetic expressions to which the widened variables

contribute. Such a complex patch validation process is

required to ensure that no new bugs are introduced when

widening some variables in the program under repair.

● Special mutation functions should be synthesized for

different classes of bugs, depending on the semantics

of the bugs. For example, for IO/IU bugs, the mutation

function should be designed in a way such that the gener-

ated expression is semantically equivalent to the original

buggy expression. For termination bugs, it is desirable to

generate monotonic expressions for update expressions

of the control variables, and the mutation should take the

syntactic shape of the termination expression into account

(i.e., using conditional mutation).

B. Directions for Future Work

In this initial exploration, we focus mainly on the problem

of patch validation rather than patch generation in APR. To

complete the line of research initiated here, we identify the

following directions for future work.

First and foremost, additional case studies need to be

performed to analyze and demonstrate the feasibility and

limitations of the proposed approach on a wider range of bugs.

Next, a (semi-)automated mining technique needs to be

devised that can derive bug detection patterns for various

classes of bugs from a selection of reliable static analysis tools.

Our initial focus will be on mining patterns from static analysis

tools with configurable and customizable bug detection rules.

Subsequently, novel patch generation procedures need to be

implemented for arithmetic bugs and termination bugs that ex-

ploit the mined detection patterns as correctness specifications

to reduce the search space and increase reliability.

Finally, the efficacy of the proposed approach needs to be

evaluated. To this end, comprehensive datasets need to be

constructed and curated, in particular for loop programs with

termination bugs where the existing datasets were made for a

different purpose and may be suboptimal for evaluating APR.
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