
Enabling Automatic Repair of Source Code Vulnerabilities Using
Data-Driven Methods

Anastasiia Grishina
Simula Research Laboratory

Oslo, Norway
anastasiia@simula.no

ABSTRACT
Users around the world rely on software-intensive systems in their
day-to-day activities. These systems regularly contain bugs and
security vulnerabilities. To facilitate bug fixing, data-driven models
of automatic program repair use pairs of buggy and fixed code to
learn transformations that fix errors in code. However, automatic
repair of security vulnerabilities remains under-explored. In this
work, we propose ways to improve code representations for vulner-
ability repair from three perspectives: input data type, data-driven
models, and downstream tasks. The expected results of this work
are improved code representations for automatic program repair
and, specifically, fixing security vulnerabilities.

KEYWORDS
Automatic ProgramRepair, Static Analysis, Software Security, Natu-
ral Language Processing, Graph-basedMachine Learning, ML4Code

1 INTRODUCTION
Users around the world rely on various software-intensive systems,
such as the systems that assist in healthcare and transportation.
These systems regularly contain bugs and security vulnerabilities
that can have various negative effects, from economical to life-
threatening [1, 2]. Software companies have been making a consid-
erable effort to eliminate such bugs and vulnerabilities. To support
these activities, Automatic Program Repair (APR) methods have
received increasing attention in software engineering research [3].

The rich body of literature on APR has been surveyed in various
studies [3–8]. Following the terminology of the APR surveys [3,
7], this PhD project focuses on learning-based methods of static
repair of source code vulnerabilities. In static analysis, we process
code without executing it, as opposed to dynamic analysis. When
approached with learning-based methods, APR requires training
data. We also refer to these methods as data-driven methods. Using
code organized as pairs of (buggy code; fixed code), data-driven
approaches employ deep learning techniques to predict a fix, also
referred to as a patch.

The main objective of this work is to improve automatic vulner-
ability repair in source code from the following three perspectives.

(a) Input data. Currently, code change history is the major source
of input data for training code representation models. In addition,
forum discussions are used jointly with code change history for

This is a preprint of thework published in the 44th International Conference
on Software Engineering (ICSE ’22) Doctoral Symposium, May 21–29, 2022,
Pittsburgh, PA, USA, https://doi.org/10.1145/3510454.3517063.

This version is licensed under a Creative Commons
Attribution 4.0 International (CC BY 4.0) license.

code analysis and repair [9–11]. This work will explore the effect
of integrating context from additional input modalities, such as
programming tutorials, on security-oriented APR.

(b) Models. Two characteristics of source code are used in litera-
ture: its similarity to natural languages and the formal structure of
code. In themodelling phase, this workwill focus on creating hybrid
methods based on these two approaches for code representation.

(c)Downstream tasks. To guarantee the security of given software,
one approach is to eliminate the known vulnerabilities. Instances
of security principles violation are published in Common Vulnera-
bilities and Exposures (CVE) Records.1 However, the CVE list is not
exhaustive, and not all CVEs are bugs. For example, issues, such
as storing passwords without salt or using an unreliable hashing
function, are commonly not reported as errors by compilers, but
they can compromise confidentiality and integrity of an applica-
tion. Moreover, repair of security vulnerabilities is under-explored,
compared to general bugs [8]. Therefore, we have chosen pattern
mining for CVE types and vulnerability repair as downstream tasks.

2 RELATEDWORK
Two strands of research in data-driven APR methods form the basis
for this work. They consider different approaches to code represen-
tation that are used for various downstream tasks, including code
repair. One branch focuses on similarities between natural language
and code, while the other represents code using its structure.

Allamanis et al. [4] presents the hypothesis that programming
languages are forms of natural language. Therefore, Natural Lan-
guage Processing (NLP) can be reused for code analysis tasks.
Examples of code processing models are Tufano et al. [12], Se-
quenceR [13], CodeBERT [14], Codex [15]. These models reuse
RNNs [16], transformer architectures [17] with attention [18], and
the copy mechanism [19]. Specifically, CodeBERT is a recent study
on fine-tuning the BERT model on a large varied code base to per-
form tasks related to translating from natural language to program-
ming language and the same in the reverse direction. Another study
that reused BERT is CuBERT [20]. The authors trained the BERT
model on code and fine-tuned it on code understanding and repair
tasks. A recent advancement in code representation by GitHub and
OpenAI, Codex [15] empowering Copilot, is built using the GPT-3
model. Codex translates a human language description of a function
to code performing the described task.

One of the differences between source code and natural language
is strict syntactic and logical structure of code that can be used for
code representation. Code parsed according to its syntax forms an
Abstract Syntax Tree (AST) [21]. Similarly, data flow and control
flow graphs developed for code analysis earlier also represent code

1 https://cve.mitre.org/

ar
X

iv
:2

20
2.

03
05

5v
1 

 [
cs

.S
E

] 
 7

 F
eb

 2
02

2

https://doi.org/10.1145/3510454.3517063
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://cve.mitre.org/


A. Grishina

characteristics [22, 23]. For instance, code2vec [24] uses both n-
grams (n words considered as one token) and ASTs to automatically
predict function name from its code. GraphCodeBERT [25] obtains
an AST and translates it to a data flow graph to obtain one of three
input representations of code that are tested on four downstream
tasks, including code repair. Although they have received less at-
tention than the mentioned graph types, knowledge graphs are also
used in code analysis and repair tasks [26–28].

While the aforementioned research focuses on general program
repair, we concentrate on repair of security vulnerabilities. Com-
pared to security vulnerability detection and general bug repair,
security vulnerability repair has received less attention [8, 29]. For
example, the benchmark CodeXGlue [30] has a setup for vulnerabil-
ity detection, but the repair (refinement) part contains only general
bugs following the dataset of Tufano et al. [12]. One study on vul-
nerability repair uses generative adversarial networks to generate
security vulnerability patches in C/C++ [31]. Another study focuses
on repair of vulnerabilities of code generated by Codex [32]. In this
research, we aim at improving results for vulnerability repair and
generalize to other programming languages.

3 EXPECTED CONTRIBUTIONS
The overview of this work is sketched in Figure 1. In the three
phases of the PhD project, we hypothesize that (a) using context
from additional modalities can improve APR performance; (b) when
built upon NLP-based and graph-based methods for code represen-
tation and generation, hybrid methods can capture both natural
language similarities and structural properties of code; (c) mining
patterns from code in the wild can help improve vulnerability repair
results. The overall objective is to automatically repair software
vulnerabilities in source code using data-driven methods.

Firstly, we aim to explore the impact of context from additional
modalities on code representation and bug repair compared to
the mostly exclusive use of code change history. Examples of input
modalities are texts and code snippets in tutorials, books on security
in software engineering, and forum discussions.

Secondly, we aim to analyze to what extent existing APR models
can be adapted to repair vulnerabilities. As baselines, we will use
NLP-based and graph-based methods. In this step, we will exper-
iment with building hybrid methods using baseline approaches.
To the best of our knowledge, there is no work on combination of
these methods for vulnerability repair.

Finally, we will use code representations to mine patterns of
errors and their fixes within each CVE type. The pattern mining
task is inspired by the study that categorizes common mistakes in
AI projects [11]. With patterns discovered for security vulnerability
types, we will focus on vulnerability repair in source code.

4 PLANNED EVALUATION OF RESULTS
In this project, we will reuse data gathered in CVEfixes [33]. CVE-
fixes provides both a dataset and a framework for collecting data
from GitHub, GitLab, and Bitbucket. The already extracted dataset
refers to CVE Records in the U.S. National Vulnerability Database
to classify code snippets by CVE type. In this dataset, code changes
are extracted on the file and method level. In downstream tasks,
CVE type-specific pattern mining will use vulnerable code classified

Figure 1: Organization of the work: we focus on (a) different
input modalities; (b) model types; (c) two downstream tasks.

by CVE type, while code pairs of (vulnerable code; fixed code) will
be used for training and evaluation of vulnerability repair.

The target for the modelling phase (b) is to learn vector repre-
sentations of code as sequences of tokens or as graphs, so that code
snippets of the same CVE type in the same programming language
are close to each other in the embedding space. To measure the
quality of code representations, we will use metrics for clustering
in machine learning and metrics in NLP: Silhouette Coefficient,
Normalized Mutual Information, Completeness, and V-measure for
clusters; perplexity, cosine and other similarity metrics from NLP.

Alternatively, since APR is analogical to the NLP task of neural
machine translation, it can be evaluated with the Recall-Oriented
Understudy for Gisting Evaluation (ROUGE) and Bilingual Eval-
uation Understudy (BLEU) NLP metrics [14, 34], and their exten-
sions [30, 35]. In the context of vulnerability repair, ROUGE scores
evaluate the patch based on the number of occurrences of n-grams
from the known repaired code (reference sequence) in the patch
(generated sequence). By contrast, BLEU shows n-gram precision of
the sequence generation. In detail, it is measured based on the num-
ber n-gram occurrences from the patch (generated sequence) that
are also found in the known repaired code (reference sequence).

5 CONCLUSION
In conclusion, this project focuses on automatic repair of source
code vulnerabilities. We hypothesize that repair performance can
be improved with the context extracted from different modalities in
addition towidely used code change history. Furthermore, the repair
performance can be influenced by combining models that build on
naturalness hypothesis and formal characteristics of code, such as
syntax, structure, and dependencies. We aim to test methods of
pattern mining for each vulnerability type, and its repair. Training
will be done using the CVEfixes dataset, and the evaluation step
will reuse clustering and NLP metrics. The expected results of this
work are improved code representations for APR and, specifically,
fixing security vulnerabilities.

ACKNOWLEDGMENTS
This work is supported by the Research Council of Norway through
the secureIT project (IKTPLUSS #288787).

REFERENCES
[1] B. OpenMind. The 5 Most Infamous Software Bugs in History.

https://www.bbvaopenmind.com/en/technology/innovation/the-5-
most-infamous-software-bugs-in-history/. 2015.

[2] A. Wilson, R. Schulman, K. Bankston, and T. Herr. Bugs in the Sys-
tem: A Primer on the Software Vulnerability Ecosystem and Its Policy
Implications. Tech. rep. New America, Open Technology Institute
(OTI), 2016.



Enabling Automatic Repair of Source Code Vulnerabilities Using Data-Driven Methods

[3] M. Monperrus. “Automatic Software Repair: A Bibliography.” In:
ACM Computing Surveys 51.1 (2018), pp. 1–24.

[4] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton. “A Survey of
Machine Learning for Big Code andNaturalness.” In:ACMComputing
Surveys 51.4 (2018), 81:1–81:37.

[5] Y. Liu, L. Zhang, and Z. Zhang. “A Survey of Test Based Automatic
Program Repair.” In: Journal of Software 13.8 (2018), pp. 437–452.

[6] L. Gazzola, D. Micucci, and L. Mariani. “Automatic Software Repair:
A Survey.” In: IEEE Transactions on Software Engineering 45.1 (2019),
pp. 34–67.

[7] C. L. Goues, M. Pradel, and A. Roychoudhury. “Automated Program
Repair.” In: Communications of the ACM 62.12 (2019), pp. 56–65.

[8] T. Sharma, M. Kechagia, S. Georgiou, R. Tiwari, and F. Sarro. “A
Survey on Machine Learning Techniques for Source Code Analysis.”
In: arXiv:2110.09610 [cs] (2021). arXiv: 2110.09610 [cs].

[9] X. Liu and H. Zhong. “Mining Stackoverflow for Program Repair.” In:
International Conference on Software Analysis, Evolution and Reengi-
neering (SANER). IEEE, 2018, pp. 118–129.

[10] S. Mahajan, N. Abolhassani, and M. R. Prasad. “Recommending Stack
Overflow Posts for Fixing Runtime Exceptions Using Failure Scenario
Matching.” In: Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). 2020, pp. 1052–1064. arXiv: 2009.10174.

[11] M. J. Islam, R. Pan, G. Nguyen, and H. Rajan. “Repairing Deep Neural
Networks: Fix Patterns and Challenges.” In: International Conference
on Software Engineering (ICSE). ACM, 2020, pp. 1135–1146.

[12] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and D.
Poshyvanyk. “An Empirical Study on Learning Bug-Fixing Patches
in the Wild via Neural Machine Translation.” In: ACM Transactions
on Software Engineering and Methodology 28.4 (2019), 19:1–19:29.

[13] Z. Chen, S. J. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk,
and M. Monperrus. “SEQUENCER: Sequence-to-Sequence Learning
for End-to-End Program Repair.” In: IEEE Transactions on Software
Engineering (2019).

[14] Z. Feng et al. “CodeBERT: A Pre-TrainedModel for Programming and
Natural Languages.” In: Findings of the Association for Computational
Linguistics: EMNLP 2020. 2020, pp. 1536–1547.

[15] M. Chen et al. Evaluating Large Language Models Trained on Code.
Tech. rep. arXiv: 2107.03374. CoRR e-print, 2021. arXiv: 2107.03374.

[16] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to Sequence Learning
with Neural Networks. Tech. rep. arXiv: 1409.3215. CoRR e-print, 2014.
arXiv: 1409.3215.

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “BERT: Pre-
training of Deep Bidirectional Transformers for Language Under-
standing.” In: Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies
(NAACL, Vol 1). Association for Computational Linguistics, 2019,
pp. 4171–4186.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. “Attention Is All You Need.” In: Advances
in Neural Information Processing Systems 30. Ed. by I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett. Curran Associates, Inc., 2017, pp. 5998–6008.

[19] J. Gu, Z. Lu, H. Li, and V. O. K. Li. Incorporating Copying Mechanism
in Sequence-to-Sequence Learning. Tech. rep. arXiv: 1603.06393. CoRR
e-print, 2016. arXiv: 1603.06393.

[20] A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi. Learning and
Evaluating Contextual Embedding of Source Code. Tech. rep. arXiv:
2001.00059. CoRR e-print, 2020. arXiv: 2001.00059.

[21] F. Long, P. Amidon, and M. Rinard. “Automatic Inference of Code
Transforms for Patch Generation.” In: Proceedings of the 2017 11th

Joint Meeting on Foundations of Software Engineering. ACM, 2017,
pp. 727–739.

[22] W. P. Stevens, G. J. Myers, and L. L. Constantine. “Structured Design.”
In: IBM Systems Journal 13.2 (1974), pp. 115–139.

[23] F. E. Allen. “Control Flow Analysis.” In: ACM SIGPLAN Notices 5.7
(1970), pp. 1–19.

[24] U. Alon, M. Zilberstein, O. Levy, and E. Yahav. “Code2vec: Learning
Distributed Representations of Code.” In: Principles of Programming
Languages (POPL). ACM, 2019, pp. 1–29.

[25] D. Guo et al. “GraphCodeBERT: Pre-training Code Representations
with Data Flow.” In: 9th International Conference on Learning Repre-
sentations, ICLR 2021. OpenReview.net, 2021, pp. 1–18.

[26] M. Atzeni and M. Atzori. “CodeOntology: RDF-ization of Source
Code.” In: The Semantic Web – ISWC 2017. Ed. by C. d’Amato, M.
Fernandez, V. Tamma, F. Lecue, P. Cudré-Mauroux, J. Sequeda, C.
Lange, and J. Heflin. Vol. 10588. Springer International Publishing,
2017, pp. 20–28.

[27] H. A. Nguyen, T. N. Nguyen, D. Dig, S. Nguyen, H. Tran, and M.
Hilton. “Graph-Based Mining of In-the-Wild, Fine-Grained, Seman-
tic Code Change Patterns.” In: International Conference on Software
Engineering (ICSE). 2019, pp. 819–830.

[28] A. E. A. Djebri, A. Ettorre, and J. Mortara. “Towards a Linked Open
Code.” In: The Semantic Web. Ed. by R. Verborgh, K. Hose, H. Paul-
heim, P.-A. Champin, M. Maleshkova, O. Corcho, P. Ristoski, and M.
Alam. Vol. 12731. Springer International Publishing, 2021, pp. 497–
505.

[29] Z. Shen and S. Chen. “A Survey of Automatic Software Vulnerability
Detection, Program Repair, and Defect Prediction Techniques.” In: Se-
curity and Communication Networks 2020 (2020). Ed. by L. Coppolino,
pp. 1–16.

[30] S. Lu et al. CodeXGLUE: A Machine Learning Benchmark Dataset for
Code Understanding and Generation. Tech. rep. arXiv: 2102.04664.
CoRR e-print, 2021. arXiv: 2102.04664.

[31] J. Harer, O. Ozdemir, T. Lazovich, C. Reale, R. Russell, L. Kim, and p.
chin. “Learning to Repair Software Vulnerabilities with Generative
Adversarial Networks.” In: Neural Information Processing Systems
Conference (NeurIPS). Ed. by S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett. Curran Associates,
Inc., 2018, pp. 7933–7943.

[32] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt. “Can Ope-
nAI Codex and Other Large Language Models Help Us Fix Security
Bugs?” In: arXiv:2112.02125 [cs] (2021). arXiv: 2112.02125 [cs].

[33] G. Bhandari, A. Naseer, and L. Moonen. “CVEfixes: Automated Col-
lection of Vulnerabilities and Their Fixes from Open-Source Soft-
ware.” In: International Conference on Predictive Models and Data
Analytics in Software Engineering (PROMISE). ACM, 2021, pp. 30–39.

[34] C. B. Clement, D. Drain, J. Timcheck, A. Svyatkovskiy, and N. Sun-
daresan. PyMT5: Multi-Mode Translation of Natural Language and
Python Code with Transformers. Tech. rep. arXiv: 2010.03150. CoRR
e-print, 2020. arXiv: 2010.03150.

[35] S. Ren et al. “CodeBLEU: A Method for Automatic Evaluation of
Code Synthesis.” In: arXiv:2009.10297 [cs] (2020). arXiv: 2009.10297
[cs].

https://arxiv.org/abs/2110.09610
https://arxiv.org/abs/2009.10174
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1603.06393
https://arxiv.org/abs/2001.00059
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2112.02125
https://arxiv.org/abs/2010.03150
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297

	Abstract
	1 Introduction
	2 Related Work
	3 Expected Contributions
	4 Planned Evaluation of Results
	5 Conclusion
	Acknowledgments

