Rouwendal van Schijndel et al. Simulation Vignette Generation from Answer Set Specifications

Simulation Vignhette Generation from
Answer Set Specifications

Dashley K. Rouwendal van Schijndel
University of Oslo, Department of Technology Systems
d.k.rouwendal @its.uio.no

Jo E. Hannay Audun Stolpe

Norwegian Computing Center, Department University of Oslo, Department of
of Applied Research in Information Technology Systems; Norwegian Computing
Technology Center, Department of Applied Research in
jo.hannay @nr.no Information Technology

audun.stolpe @nr.no

ABSTRACT

We investigate an approach that allows exercise managers to design simulations with an explicit focus on building
skills, rather than having to focus on all the objects and interactions that a simulation must have. Exercise
managers may design exercises at various levels of abstraction and always independently of how those sessions are
implemented in simulations, while simulation components that implement the design are assembled and to some
extent, automatically, behind the scenes. We outline (1) how Answer Set Programming can assist exercise managers
in exercise planning and (2) how automated stage and content generation may be used to invoke appropriate
simulation components to realize the design. For deliberate and recurrent training of decision-making skills, stages
and content must vary to avoid familiarity (testing effects). We conclude by distilling a main research hypothesis
that stipulates how (1) and (2) represent two modes of automated reasoning (so-called deductive versus abductive)
and how that distinction clarifies the planning task.

Keywords

Exercise Management, Answer Set Programming, Mixed Reality Simulations, Vignette Generation.

INTRODUCTION

Simulation-based crisis response and management training has challenges concerning structured planning, execution
and analysis (Hannay and Kikke 2019). Consequently, organizations often have low awareness levels of the
effectiveness of training and of what exactly has been trained (Grunnan and Fridheim 2017; Pollestad and Steinnes
2012; Skarpaas and Kristiansen 2010). There are technological challenges in achieving the necessary interoprability
between systems for delivering the training system (Durlach 2018; Tolk 2012; Edgren 2012).

Therefore, work is being conducted on an exercise management architecture (Figure 1).

The architecture consists of four components:
1. A front-end exercise management system (a web application for easy access on portable devices), where an

exercise manager can
* declare training objectives,
* select which essential skills to be trained to reach those objectives,
* design events to stimulate development of those essential skills,
¢ design corresponding metrics for measuring essential skill performance in the events and
* compose series of events (vignettes; see below), from the events.

The design of events and composition to vignettes in a graphical work space.

WiP Paper — Al Systems for Crisis and Risks
Proceedings of the 17th ISCRAM Conference — Blacksburg, VA, USA May 2020
Amanda Lee Hughes, Fiona McNeill and Christopher Zobel, eds. 110

Rouwendal van Schijndel et al. Simulation Vignette Generation from Answer Set Specifications

objectives, essential skills, events, metrics to simulations

Exercise Management System

* Declare training objectives
» Select essential skills to be trained to reach

Mixed Reality Simulations

objectives
* Design suitable events to stimulate Stage and Content .
U implements
essential skills . . Generator .
Planning Assistant * events and vignettes

* Design performance metrics for essential
skills enerates code
. > suggests and P 9
» Compose vignettes from events structures from plans

* data capture for event
responses on essential

validates exercise . skills
to be interpreted by .
. : . . plans } .) « data capture for metrics
Visualize information from simulations for simulation engines according to trainin
+ Before Action Review cording fo raiing
objectives

* During Action Review

+ After Action Review

+ Pretest and posttest training effect
measurement

event reports, metric data from simulations

Figure 1. Exercise Management and Simulations (ExManSim) architecture

2. A back-end planning assistant based on Answer Set Programming (see below), which suggests and validates
events and vignettes to ensure that the exercise manager composes events in a logically consistent manner in
line with the essential skills to be trained.

3. A back-end stage and content generator that translates answer set programs to code structures to be interpreted
by simulation engines, so that the exercise manager’s design changes are reflected instantly in the simulations.

4. A suite of mixed reality simulation components that implement the designed vignettes, together with
associated measurement of skill performance metrics.

This design promotes the idea of composing exercise and training vignettes from a selection of events that are
designed to stimulate essential skills.

The front-end allows exercise management to visualize information for use in before-, during- and after-action
reviews; in which exercise managers may assess and evaluate a training session at critical moments for validation of
the consistency and coherency between objectives, skills, events and metrics, based on actual trainee performance.
This gives explicit support to (Salas et al. 2009). Pretest and posttest effect measurements allow essential skill
performance measurements in controlled simulations before and after training exercises.

The purpose of these functions is to support deliberate practice (Ericsson 2006b); a framework that addresses the
short-comings of “learning on the job”, by a strong focus on difficult aspects, immediate and tailored feedback (by a
coach or computer-adaptive system), followed by tailored re-trials integrated into the larger sequence of tasks.

The mixed-reality simulations are an appropriate mix of real and synthetic actors, objects and events are composed
in a shared reality. This gives the opportunity to use existing systems and equipment together with virtual elements
in an optimized learning arena. Training’s can be located at their normal work places. The collected metrics
and other data will be utilized to analyse learning performance and to improve practices and procedures once in
operational use.

Once a vignette has been composed in the front-end, the simulations for running the vignette must be composed
quickly and accurately. Today, it typically takes months or even years to develop simulations; see e.g., (Edgren
2012). This is a serious disabler for generating simulations that match differing training objectives and skills
to be stimulated through appropriate events in a flexible manner. Initiatives on Modelling and Simulation as a
Service (MSaaS) work toward creating simulations for operations and training readily and rapidly (Hannay and
van den Berg 2017; van den Berg et al. 2017; Asprusten and Hannay 2018) from simulation services. The service

WiP Paper — Al Systems for Crisis and Risks
Proceedings of the 17th ISCRAM Conference — Blacksburg, VA, USA May 2020
Amanda Lee Hughes, Fiona McNeill and Christopher Zobel, eds. 111

Rouwendal van Schijndel et al. Simulation Vignette Generation from Answer Set Specifications

concept embodies reusability by standardized common functionality, and composability through loose coupling and
standardized service descriptions.

VIGNETTES AS SERVICES

The concept of MSaaS embodies several principles for how simulations can be constructed readily and rapidly
for the task. The main focus is on offering simulation functionality in terms of shared reusable services with
standardized interfaces which all systems in a distributed simulation agree to use. This also enables “fair fight”
across systems, so users experience more or less the same things. Vegetation that offers cover for a vehicle in one
simulation system must be represented and rendered in the other simulation system, effects of devices should be
equal in all systems, etc.

So, while the focus of MSaaS so far is on extracting common general functionality, we shall focus on composing
simulations from events and vignettes as services, rather than on simulation functionality as services. A vignette is

a reusable temporally ordered set of events and behaviors for a specific set of entities (Simulation
Interoperability Standards Organization 2018).

Offering events as services requires automation of the simulation building process. The aim is to find a method that
takes a machine-readable specification and semi-automatically

e generates an appropriate stage; , an empty simulation environment which can be populated on the fly with
content (objects and their relationships),

* populate the stage with content so that simulation-based training as specified in the exercise management
front-end can be realized.

Stages must be designed to accommodate all content that vignettes must hold toward training the desired skills.

ESSENTIAL SKILLS

The present focus for ExXManSim is on training decision making skills. There are several essential skills underlying
decision making that arise from the fields of judgment and decision making (Gigerenzer and Todd 1999; Kahneman
and Frederick 2004) and forecasting (Armstrong 2001). Here, we will focus on situation awareness (SA) (Endsley
2000), because it has particular relevance to crisis management; e.g., (Steen-Tveit and Jaziar 2019), and because it
is readily defined in terms of the elements of simulations. SA is divided into three levels:

SA1: an actor is aware of the position of all relevant entities (things and people) in the situation
SA2: an actor is aware of the the relevant relationships between the entities

SA3: an actor is aware of the possible future configurations of the entities and relationships; thus understands
how entities and relationships can evolve.

Example: bin fire in airplane hangar. Consider a simple training vignette “bin fire in airplane hangar”, where
the objective is to train employees appropriate decision making during a fire.

In the front-end, an exercise manager decides to train SA1 by specifying that the vignette should include the
following entities: oil-drenched paper in a bin, an initial fire, one fire extinguisher that is appropriate for the type of
fire, one fire extinguisher that is unsuitable for the type of fire, an aircraft in the immediate vicinity of the bin an
alarm button and implicit fire fighting resources. The mode of visibility can also be specified; for example, for added
difficulty, the fire extinguishers should be located behind a cubicle not in direct line of sight from where the bin is.

For SA2, the exercise manager might specify relevant relationships between these entities as follows: initial fire
can ignite oil-drenched paper, appropriate fire extinguisher can put out fire in oil-drenched paper, unsuitable fire
extinguisher cannot put out fire in oil-drenched paper, and alarm button will call fire fighting resources.

For SA3, the exercise manager might specify the future relationship, fire in oil-drenched paper can spread to aircraft.

Possible events are then defined based on relationships: The relationship between initial fire and oil-drenched
paper gives rise to the event fire in oil-drenched paper. The relationship between CO?-based extinguisher and
oil-drenched paper gives rise to the event fire gets extinguished. The relationship between water-based extinguisher
and oil-drenched paper gives rise to the event fire does not get extinguished. The relationship between fire in
oil-drenched paper and aircraft gives rise to aircraft catches fire, etc.

WiP Paper — Al Systems for Crisis and Risks
Proceedings of the 17th ISCRAM Conference — Blacksburg, VA, USA May 2020
Amanda Lee Hughes, Fiona McNeill and Christopher Zobel, eds. 112

Rouwendal van Schijndel et al. Simulation Vignette Generation from Answer Set Specifications

The simulation would start with the event fire in oil-drenched paper. Performance on SA1 can be measured
for example, by monitoring a trainee’s time spent on detecting the fire and on moving towards where the fire
extinguishers are situated. Performance on SA2 might be measured by monitoring whether the trainee chooses
the appropriate fire extinguisher. If the trainee does not act correctly, the event fire does not get extinguished is
simulated and a secondary fire event aircraft catches fire occurs. Performance on SA3 might be measured by
recording whether the trainee presses the alarm button if the initial fire is not put out, thus realizing that the fire will
spread to the aircraft and further resources are needed.

d

When generating the simulation for this simple vignette, the stage might be a large single room, with angles to place
objects out of sight. The entities must then be placed according to specification and other constraints, such that the
relationships are implemented and the events are enabled.

LEVELS OF ABSTRACTION FOR PLANNING

It is possible to plan a training session or exercise at various levels of abstraction. An exercise manager could be a
person with a more general focus on employee health and safety, and with little domain specialized knowledge such
as for fire fighting. Such a person might want to plan a training session or an exercise at the level of object types
instead of specific objects.

Example: fire in indoor industrial space. The training vignette “bin fire in airplane hangar” can be abstracted
to “fire in indoor industrial space” formulated as follows: To train SA1, primary flammable material, an fire starter,
one means of extinguishing fire that is appropriate for the type of fire, one means of extinguishing fire that is
unsuitable for the type of fire, a secondary flammable material to which a the initial fire may spread, a means to call
for professional help and implicit fire fighting resources. The means of extinguishing fire should not be located in
direct line of sight from where the primary flammable material is.

For SA2, the exercise manager might specify relevant relationships between these entities as follows: fire starter
can ignite initial flammable material, appropriate means of extinguishing fire can put out fire in initial flammable
material, unsuitable means of extinguishing fire cannot put out fire in initial flammable material, and means to call
for professional help will call fire fighting resources.

For SA3, the exercise manager might specify the following future relationship: fire in initial flammable material can
spread to secondary flammable material.

O

The above formulation of “fire in indoor industrial space” allows an exercise manager to focus on the salient
relationships that give rise to events, irrespective of concrete items present in the event.

The abstract formulation can be instantiated to several concrete vignettes; for example to “bin fire in airplane hangar”
but also to a vignette where, say, a fuel puddle or a water boiler catches fire initially and where a secondary fire in a
fuel tank or a ventilation unit might ignite if the initial fire is not handled appropriately.

Levels of abstraction allow various level of exercise planning. Perhaps, a governmental exercise manager, in charge
of overseeing national crisis training standards, designs exercises at the abstract level as templates to be refined by
domain experts in various sectors. Also, various levels of abstraction enable efficient tool design and representation.
Indeed, the vignettes we are discussing can be abstracted further. We said above that relationships between objects
give rise to events which can be composed into vignettes. It is possible to declare abstract vignettes purely at the
level of events, abstracting away from objects and relationships.

Example: crisis with two dependent events. An abstract training vignette “crisis with two dependent events”
can be formulated as follows: The exercise manager might decide to train SA1, SA2 and SA3 by specifying that the
vignette should include: An initial event with a hazard that can trigger an initial crisis targeted to train SA1 and
SA2, with an intended means to handle the crisis and a non-functional means to handle the crisis, and a secondary
event with a hazard that can trigger an secondary crisis targeted to train SA3, with an intended means to handle the
crisis and a non-functional means to handle the crisis.

O

The abstract “crisis with two dependent events” vignette instantiates to more concrete vignettes in the examples
above. It also instantiates to vignettes that are different from the “fire in indoor industrial space’:

WiP Paper — Al Systems for Crisis and Risks
Proceedings of the 17th ISCRAM Conference — Blacksburg, VA, USA May 2020
Amanda Lee Hughes, Fiona McNeill and Christopher Zobel, eds. 113

Rouwendal van Schijndel et al. Simulation Vignette Generation from Answer Set Specifications

crisis with two dependent events

/\

fire in indoor handling of pressurized substance in
industrial space indoor industrial space
bin fire fuel puddle water boiler

Lo . . . pressure tank in factory
in airplane hangar in garage in office space

Figure 2. Levels of abstraction for vignettes

Example: handling of pressurized substance in indoor industrial space. The abstract training vignette “crisis
with two dependent events” can be instantiated to “handling of pressurized substance in indoor industrial space’
vignette, which can be further instantiated to a “handling of pressure tank in factory”, where the initial event is
the unintended build up of pressure in a tank, which has to be handled by opening a valve with a non-functional
alternative of cutting the power to the tank, and where the secondary event is a tank rupture with ensuing dispersion
of harmful material.

O

>

Fig. 2 shows the levels of abstractions in the examples. To summarize, think of a use case where an exercise manager
at a National Disaster Training Center (NDTC) designs an abstract exercise template consisting of a “crisis with
two dependent events”. Then, handing this template over to a National Fire Training Center, a template “fire in
indoor industrial space” is designed by the exercise manager there. The NDTC hands over its abstract template
to a “Hazardous Materials Safety Agency”. There, the NDTC’s template is refined to a “handling of pressurized
substance in indoor industrial space” template. Then, for different industries and organizations, a fire exercise
manager consultant designs concrete vignettes (the lowest level in Figure 2. One for “bin fire in airplane hangar”,
one for “fuel puddle in garage”, etc. Likewise, a pressurized material exercise manager consultant designs concrete
vignettes for different organizations; here the “pressure tank in factory”.

PLANNING ASSISTANT
The planning assistant (see Figure 1) gives automated support to exercise managers’ planning activities.

The principal idea behind the planning assistant is that the problem of vignette composition can be seen as
the combinatorial problem of finding configurations of objects satisfying certain causal constraints. The causal
constraints describes interactions between the objects as well as the effects of actions; in other words the relationships
between objects and the events that those relationship give rise to, as described in the examples above. The causal
constraints then support the evolution of logically coherent plays exercising particular essential skills, such as
situation awareness.

Now, if we also have a computable description of the causal constraints any vignette can be viewed as a dynamic
system whose states are changed by events unfolding and trainee actions. The problem of generating vignettes
then becomes the algorithmic problem of deriving possible lines of development based on the ability to predict the
effects of different sequences of events and actions.

We need to distinguish between those plays in which events are handled successfully and not; success being
determined by a fairly general criterion so as not to exclude plausible lines of development. For instance, preventing
a fire from arising will count as a successful handling of an event, but so will putting the fire out, or pressing the
alarm button when things really get out of hand. These plays will be scored differently according to the training
objective and level of skill displayed by the trainee.

Purely unsuccessful developments consists of the plays in which the trainee’s pursuits are futile; say the trainee
searches for an extinguisher but never finds one, or pulls the plug of a pressure tank instead of opening the valve.
All courses of action in this latter group will be scored at zero.

From an algorithmic point of view, therefore, the computation of coherent vignettes boils down to the generation of
models that instantiate the causal effects of events and actions, and to deciding whether a sequence of such models
belongs to the successful or unsuccessful group of plays.

Answer Set Programming (ASP) (Lifschitz 2008), is a declarative knowledge representation language that fits this
bill nicely. It is a rule-based language that has its roots in deductive databases, logic programming, and automated

WiP Paper — Al Systems for Crisis and Risks
Proceedings of the 17th ISCRAM Conference — Blacksburg, VA, USA May 2020
Amanda Lee Hughes, Fiona McNeill and Christopher Zobel, eds. 114

Rouwendal van Schijndel et al. Simulation Vignette Generation from Answer Set Specifications

reasoning. ASP is oriented toward difficult (primarily NP-hard) search problems, which means that it follows a
generate-and-test paradigm for finding solutions to computational problems: the algorithm selects or guesses a set
of facts that may or may not hold in a satisfying model and uses the constraints expressed in the ASP program to
prune the search space. Writing an answer set program involves identifying objects and simple facts, and codifying
the relationship between them in the form of deductive rules. These rules are passed on to an answer set solver
that generates models satisfying the constraints expressed by the rules. What we are proposing is that a simulation
vignette can be seen as a coherently related sequence of such models or as an initial model that develops over time.

Using ASP for generating vignettes involves three things: first the vignette type must be represented as a dynamic
domain, that is, as a temporal domain in which states evolve into other states over time. Secondly, one must have a
causal theory that distinguishes valid state transitions (applying an extinguisher puts out the fire) from invalid ones
(applying an extinguisher opens the door). Thirdly, one needs a planner that, given a dynamic domain, a causal
theory and a success criterion, is able to derive all sequences of models representing successful courses of action.
We describe each of these components in more detail below:

A dynamic domain is essentially a logical theory that is temporalized; a prerequisite for events-based simulations.
This means, that all state-action-state transitions that can be deduced from the rules of an ASP program are indexed
with respect to points in time. This is usually implemented by using a simple counter to keep track of time, and by
adding an explicit temporal parameter to predicates and rules.

A causal theory consists of a general and a domain-specific part. The domain-specific part encodes the interaction
between objects according to their relationships. It thus consists of causal rules such as “CO?-based extinguisher
can put out fire in oil-drenched paper”. The general part of the causal theory consists of axioms characterizing the
notion of causality as such. In other words, it is concerned with solving two well-known problems of symbolic Al:
the first is the representation of default rules, also known as exception-allowing rules (Reiter 1980). Default rules
are rules that capture the #ypical behaviour of objects and the typical effects of events, while allowing exceptions
that render a particular rule inapplicable. An example of a default rule would be that oil-drenched paper typically
burns when lit, with an exception that water-drenched such paper does not. Essentially, default rules allows one to
reason about causality in a manner that adapts to changing circumstances. The second problem is the notorious
frame problem (Shoham 1987). It concerns inertia, the general tendency for things to stay as they were unless acted
upon. For instances, a socket, once unplugged stays unplugged. As inertia is a general characteristic of any physical
domain, the causal theory includes general axioms that by default propagate the truth of facts through time.

The planner. In classical planning (Russell and Norvig 2010), a goal is a set of facts that characterize a stipulated
optimal state of affairs. A goal state is any state that satisfies the goal. A plan is a sequence of events that steps
through time in singleton increments taking the system from an initial state to a state satisfying the goal. A solution
to a classical planning problem is a sequence of events that links the initial state to some goal state.

These areas are well researched and understood, and there are standard ways in ASP of representing and reasoning
about them. In order to apply this to the automatic generation of vignettes all that needs to be done, in principle,
is to identify coherent plays with solutions to planning problems. What we are proposing is essentially to treat
vignette generation as a classical planning problem based on a dynamic domain expressed in terms of a causal
description of actions and objects. This is the simple picture that emerges in the limiting case where there is only
one type of vignette.

However, as explained in the previous section, we aim to support exercise planning at various levels of abstraction.
Recapitulating briefly, a governmental exercise manager, in charge of overseeing national crisis training standards,
may for instance wish to design exercises at the abstract level as templates to be refined by domain experts in
various sectors and at various work places. Levels of abstraction are meant to facilitate efficient tool design and
representation, and to enable exercise managers to plan a training session or an exercise at the level of object classes,
as well as at the level of particular objects.

(1)

Referring back to Figure 2, the exercise management tool may offer a generic “crisis with two dependent events
vignette template, which may be refined to a “fire in industrial space” vignette template that, depending on user
supplied constraints, may be refined into to various combinations of primary causes of fire (such as oil-drenched
paper and water boilers), countermeasures (such as extinguishers, buttons and sprinklers), secondary fire hazards
(air craft, fuel tank, ventilation unit) and so on.

WiP Paper — Al Systems for Crisis and Risks
Proceedings of the 17th ISCRAM Conference — Blacksburg, VA, USA May 2020
Amanda Lee Hughes, Fiona McNeill and Christopher Zobel, eds. 115

Rouwendal van Schijndel et al. Simulation Vignette Generation from Answer Set Specifications

The goal is to have the ASP engine support the instantiation procedure by coming up with vignettes, indicating
possible developments of the initial situation that maximizes training value according to different objectives and
metrics. Therefore, it is necessary to extend the ASP plan generation procedure described above to a more generic
one capable of supporting automatic vignette generation based on templates.

To do this, we add an ontology (Gruber 1993) to the three aforementioned ASP components. An ontology is here
understood as set of shared concepts for a domain that encodes their properties and the relations between them.
Ontologies for the crisis response domain have been elaborated earlier; see e.g., (De Nicola et al. 2019; Steel et al.
2008; Bénaben et al. 2008). Our intent is not to develop a new ontology, but to demonstrate how ontologies provide
the necessary shared machine-readable vocabulary for the ExManSim architecture.

The ontology will classify objects into classes (causes of fire, countermeasures, etc). The causal theory will then
have to be modified so that it is expressed in terms of these classes, in addition to in terms of particular objects.
Thus, the rules “initial fire can ignite oil-drenched paper” and “short circuit can ignite water boiler” there is a single
generic rule saying “fire starter can ignite initial flammable material”. Or even more abstractly for the uppermost
level of Figure 2: “hazard can trigger initial crisis”.

In the causal theory objects and relationships will constitute a causal equivalence class at various levels of
abstraction, which, pertaining to the example at hand, means that, in successful plays, intended means to handle the
crisis will all quench an initial crisis if applied at a sufficiently early (possibly variable) point in time.

STAGE AND CONTENT GENERATOR

The stage and content generator (see Figure 1) generates a stage and fills it with objects and relationships (content)
at varying degrees of abstraction. It generates code structures according to ASP specifications at various levels of
abstraction. The uppermost level of Figure 2 corresponds to an (almost) empty stage, while the lower levels add
objects and relationships at successively more specific detail.

Recurrent training is necessary for learning, but for training decision making, environmental familiarity needs to be
invariant to the training goals to avoid testing effects (Shadish et al. 2002). The stage and content generator must,
with each training iteration, create a stage in which vignettes, objects and stage layout can be altered significantly,
so that trainees cannot depend on their previous environmental knowledge.

The challenge is that the dynamically created stages and content must be generated rapidly, and optimally during
training, to optimize motivation, recall and learning (Ericsson 2006a; Shadrick and Lussier 2009).

The stage and content generator will therefore support rapid generation of successive stages and content, at different
levels of abstraction, by implementing optimization methods for automated generation of the next stage.

The stage and content generator will translate the causal theory derived by ASP into code structures using the
ontology, so that the vignette objects will have the specified functionality. For this, code generation uses parent
classes and inheritance, detailing each lower level of abstraction. Code generation will be recursive, where each
reduction of abstraction translates more detail from the causal theory. The generated code is then translated into a
format to be interpreted by a game engine to implement the simulation.

Generating the stage and content — the highest level of abstraction

At the highest level of abstraction of Figure 2, the abstract objects of a stage will not have any visual information.
Instead, the information available will be formalized so that in lower levels of abstraction there can be more complex
feature descriptions for object placement within the stage.

A feature description “assigns quantitative attributes to the detected features” (Gonzalez and Woods 2018). Feature
descriptions are the rules by which the optimization algorithm abides when generating a stage and the metric by
which the optimization assesses its performance. As an example, if a vignette object has a feature description that
specifies close proximity to a wall, the closer a proposed stage solution places the object to a wall, the better the
solution is considered. The optimization algorithm for stage creation will use all defined feature descriptions.

At this level of abstraction, there will be a list of feature descriptions describing the most basic of stage requirements.
The generated code will be an abstract parent class which simply describes a class with two events and functional
stubs for an initial crisis, a secondary crisis and intended means and non-functional means to handle the crises.

WiP Paper — Al Systems for Crisis and Risks
Proceedings of the 17th ISCRAM Conference — Blacksburg, VA, USA May 2020
Amanda Lee Hughes, Fiona McNeill and Christopher Zobel, eds. 116

Rouwendal van Schijndel et al. Simulation Vignette Generation from Answer Set Specifications

Generating the stage and content — the middle levels of abstraction

Referring to Figure 2’s middle level of abstraction, “fire in indoor industrial space” and “handling of pressurized
substance in indoor industrial space” have clearer definitions.

The detailing to “industrial space” allows the stage generator to create layout optimization solutions based on more
detailed feature descriptors available for an industrial space according to the ontology. Relevant feature descriptors
may include: indoor space, number of rooms, exit points, number of objects etc.

Now the first stage layout optimization attempts can be made. The stage generator would at this point use placeholder
objects for representation. As an example, a stage solution of an industrial space may be generated that has two
rooms. One of the feature descriptions defined for the placement of two objects describes a minimal distance
between the two, and that they may not be in line of sight of each other. The optimized solution should propose
placing the objects in separate rooms from. This would conform to the available feature descriptors. At this stage
placeholders would be used for visual representation.

Creating a library of objects with feature descriptors for each possible object is laborious. Therefore, we aim
to develop methods, where exercise managers can create custom stage layout templates using a level editor with
drag-and-drop mechanics. When the desired template is created, the user can select objects, walls and rooms and
choose relationships as feature descriptions. An exercise manager could drag an object into their custom template
stage near a wall and select as a feature description, ’distance to the nearest wall’. This object receive this feature
description. When a stage gets generated, it will attempt to place this object near a wall to adhere by the feature
description. The idea is that an exercise manager can create a completed template that conforms to their expectations
of an area in real life and then select specifically what feature descriptors the objects in the stage should have. When
the stage is generated it should have a degree of variation in its proposed solution each time, while adhering to a set
of defined rules that allow for a realistic layout. This also allows the system to use an exercises manager’s domain
specific knowledge in stage generation.

The code generation to translate the now more detailed ontology and causal theory to classes and functionality can
be expanded. The code generator can create a new child class which inherits from the previously defined crisis
parent class , into “fire in indoor space” and “pressurized substance in indoor space”. The ontology now describes
two objects, which can be created from an abstract parent class which holds basic object information. The causal
theory at this stage has defined the functions of both objects: being on fire and pressure accumulation with potential
explosion. Variables and functions that cover this functionality can be placed within newly defined object child
classes. The new crisis child class can create and hold objects from the two newly defined child object classes. This
is illustrated simplistically in Figure 3.

Generating the stage and content — the lowest level of abstraction

The lowest tier of Figure 2 shows concrete stage descriptions: “fuel puddle in garage” and “pressure tank in factory”.
The stage description is now clearly defined: an airplane hangar, office, garage, etc. It may be that the previously
defined stage layout solutions fit perfectly with the new layout feature descriptors. If it does not, it is necessary for
the the stage and content generator to start proposing new layout solutions more. As an example, if a previous
proposed solution of the industrial space at a higher level of abstraction consisted of one large room, this may
conform to the features descriptions required of an airplane hangar, garage or factory. The previous solution can be

Crisis parent class ‘ Object parent class ‘

=

flammable object class pressure parent class
_ | function: setOnFire(); function: alterPressure()
Crisis child class - vl 1 _~7 |varables: coordinates function: explosion()
- variables: coordinates

object flammable object &7 | - -
object: pressurized object (- —f-—=-=~" """~

Figure 3. Code generation in mid level of abstraction

WiP Paper — Al Systems for Crisis and Risks
Proceedings of the 17th ISCRAM Conference — Blacksburg, VA, USA May 2020
Amanda Lee Hughes, Fiona McNeill and Christopher Zobel, eds. 117

Rouwendal van Schijndel et al.

Crisis parent class

Simulation Vignette Generation from Answer Set Specifications

| Object parent class |

.

flammable object class

pressure parent class

function: setonFire();
variables: coordinates

function: alterPressure()
function: explosian()
variables: coordinates

bin object class

Fuel puddle class

pressure tank class

variable: 3dviodel
variable: physicsMadel
variable: fireModel

variable: 3dviodel
variable: physicsMadel
variable: fireModel

varable: 3dviodel
variable: physicsMadel
varable: explosionAnimation

-

Crisis child class - W[1

- -

object: binObject 4 Joe=-"
object: PressureTank £\~~~

Figure 4. Code generation in lowest level of abstraction

immediately utilized. If the new requirement is that of an office space, however, the proposed room layout may not
conform to the desired feature descriptions, as an office space may require many small rooms instead of one large
one. The stage generation software would calculate and propose a new layout solution.

Similar adaptations would occur with objects: In the industrial space solutions, the placement of a large industrial
object near the center of the large room, appropriate for a hangar, garage or factory, may have to be altered for an
office space. The objects that do not adhere to the desired feature descriptions for type, size and relative placement,
would have to be moved or replaced and new layout solutions would have to be generated.

The vignettes are also more clearly defined. Previously vignette placeholder objects were assigned possible locations
in the training stage. If the required feature descriptions for these specified vignettes no longer conform to their
placements in the previously proposed solutions, the stage and content generator will be required to calculate new
placement solutions within the stage.

The code generation for the ontology and the causal theory can then proceed to its most detailed form. The
flammable and pressurized object are now determined (bin, fuel puddle, water boiler, pressure tank). A final child
class can be created where functionality can be expanded to fit the latest causal theory, and models can be chosen
which are used to represent the objects in the simulation. The objects used in the crises child class can then be
replaced with the more detailed child object classes. This new class structure that the code generator will make is
illustrated simplistically in Figure 4.

With the feature descriptors now defined at the lowest level of abstraction, the stage and content generator can aim
to create a finalized solution. This supplies trainees with a stage that includes a realistic training space, placement
of objects and vignettes whose features and behavior are defined by the generated code. The generated code is
automatically put into a script for use within the game engine which creates the simulation.

HYPOTHESES FOR FUTURE WORK

We are now ready to state the main research hypothesis for the next stage of this work, which pertains to the
planning-to-simulation direction of the ExManSim architecture (left-to-right arrow in Figure 1):

The steps from planning to simulation through the planning assistant and the stage and content
generator can be automated by reasoning in various ways over a computable representation of the
salient causal relations between objects in the training domain.

WiP Paper — Al Systems for Crisis and Risks
Proceedings of the 17th ISCRAM Conference — Blacksburg, VA, USA May 2020

Amanda Lee Hughes, Fiona McNeill and Christopher Zobel, eds. 118

Rouwendal van Schijndel et al. Simulation Vignette Generation from Answer Set Specifications

More specifically, the planning assistant and the stage and content generator correspond to two different reasoning
tasks supported by an answer set representation of a causal theory of the training domain. This idea is illustrated in
Figure 5, which is adapted from (Shanahan 1999).

The two reasoning tasks can be broadly categorised into deductive tasks and abductive tasks. In a deductive task,
“what happens when” and “what actions do” are given, and the task is then to determine “what’s true when”.
Deductive tasks include temporal projection or prediction (Shanahan 1999, p. 2). In a nutshell, this mode of
reasoning takes a set of rules that express the causal effects of actions together with a specification of which actions
are performed when and derives a complete description of the state of the domain after those actions are performed.

In an abductive task, in contrast, “what actions do” and “what’s true when” are supplied, and the task is to determine
“what happens when”. In other words, a sequence of actions is sought that leads to a given outcome. Abductive
reasoning includes explanation, diagnosis, and planning (Shanahan 1999). It is a matter of taking the causal rules
together with a specification of what is true when in order to come up with a sequence of actions that explain the
evolution of those facts.

Both of these problems are well-studied, also in the context of ASP; see e.g. (Gelfond and Kahl 2014). We add the
observation that the proposed planning assistant can be understood as an abductive reasoning component whereas
the stage and content generator can be understood as a deductive one. The planning assistant suggests and validates
events and vignettes to ensure that the exercise manager designs events in a logically consistent manner in line
with the essential skills to be trained. Similarly, the stage and content generator translates answer set programs to
code structures to be interpreted by simulation engines, so that the exercise manager’s design changes are reflected
instantly in the simulations; which is a deduction problem.

This framework is theoretically simple and appealing but needs to be generalized if it is to cater for a large enough
variety of training domains and avoid the familiarity effects associated with repetitive training. We proposed that a
sufficient measure of variety and freedom of choice can be implemented by way of an ontology. The ontology
lifts the causal theory from objects to classes so that the causal rules are formulated with respect to, not primarily
particular objects, but rather sets of causally equivalent ones.

o TS mmm—sm---——s N Ve ~
’ N .
! What happens when | —p ASP Program: (
- causal theory l
- ontologies —H What's true when

1
I
I
1
I
Deduction: ctage and ! I
I
I
1
1

-—.——.—.—.—.—.—./.

1

1

1

1

1

i .
1 content generation
1

1

1

1

1

1

\

Figure 5. Illustration of the research hypothesis

FINAL REMARKS

Answering calls for tool support for deliberate practice in simulation-based training, we argue that a service concept
based on skill-targeted events, rather than on objects and their interactions, will allow for the rapid composition of
training vignettes.

We are using Answer Set Programming to create logical structures for rapid vignette generation, at various levels of
abstraction. Thus, abstract vignettes can be used as the bases to generate successively more concrete and detailed
vignettes, reflecting exercise managers’ various levels of planning. Corresponding code will be generated that
translates the Answer Set Programming specifications to classes and functions to be interpreted by simulation
engines. This allows exercise planning and re-planning and also gives tool support for varying training vignettes to
counteract familiarity effects during recurrent training. Automated generation will rely on optimisation algorithms
that use quantitative descriptions of objects and their relation to the stage.

Our aim is to develop an exercise management system that addresses current shortcomings in simulation-based
training, in line with what we have described in this article. This system is under incremental development, and
small pieces of integral functionality will be released to a reference group consisting of crisis response professionals
for concept validation, refinement and adjustment.

WiP Paper — Al Systems for Crisis and Risks
Proceedings of the 17th ISCRAM Conference — Blacksburg, VA, USA May 2020
Amanda Lee Hughes, Fiona McNeill and Christopher Zobel, eds. 119

Rouwendal van Schijndel et al. Simulation Vignette Generation from Answer Set Specifications

Acknowledgements

This research is funded by the Research Council of Norway under project no. 282081 “MixStrEx”. The authors are
grateful to the anonymous reviewers.

REFERENCES

Armstrong, J. S., ed. (2001). Principles of Forecasting: A Handbook for Researchers and Practitioners. Kluwer
Academic Publishers.

Asprusten, M. and Hannay, J. E. (2018). “Simulation-Supported Wargaming using M&S as a Service (MSaaS)”.
In: Proc. NATO Modelling and Simulation Group Symp. on Multi-National Pooling and Sharing of Simulation
Resources under the M&S as a Service Paradigm (STO-MP-MSG-159).

Bénaben, F., Hanachi, C., Lauras, M., Couget, P., and Chapurlat, V. (2008). “A metamodel and its ontology to guide
crisis characterization and its collaborative management”. In: Proc. 5th Int’l Conf. Information Systems for Crisis
Response and Management (ISCRAM), pp. 189—-196.

De Nicola, A., Melchiori, M., and Villani, M. L. (2019). “Creative design of emergency management scenarios
driven by semantics: An application to smart cities”. In: Information Systems 81, pp. 21-48.

Durlach, P. J. (2018). “Can we talk? Semantic Interoperability and the Synthetic Training Environment”. In: Proc.
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006. National Training and
Simulation Association.

Edgren, M. G. (2012). “Cloud-Enabled Modular Services: A Framework for Cost-Effective Collaboration”.
In: Proc. NATO Modelling and Simulation Group Symp. on Transforming Defence through Modelling and
Simulation—Opportunities and Challenges (STO-MP-MSG-094).

Endsley, M. R. (2000). “Theoretical Underpinnings of Situation Awareness: A Critical Review”. In: Situation
awareness analysis and measurement. Ed. by M. R. Endsley and D. J. Garland. Lawrence Erlbaum Associates
Publishers, pp. 13-32.

Ericsson, K. A. (2006a). “An Introduction to Cambridge Handbook of Expertise and Expert Performance: Its
Development, Organization, and Content”. In: The Cambridge Handbook of Expertise and Expert Performance.
Ed. by K. A. Ericsson, N. Charness, P. J. Feltovich, and R. R. Hoffman. Cambridge Univ. Press. Chap. 1, pp. 3-20.

Ericsson, K. A. (2006b). “The Influence of Experience and Deliberate Practice on the Development of Superior
Expert Performance”. In: The Cambridge Handbook of Expertise and Expert Performance. Ed. by K. A. Ericsson,
N. Charness, P. J. Feltovich, and R. R. Hoffman. Cambridge Univ. Press. Chap. 38, pp. 683-703.

Gelfond, M. and Kahl, Y. (2014). Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The
Answer-Set Programming Approach. Cambridge University Press.

Gigerenzer, G. and Todd, P. M., eds. (1999). Simple Heuristics that Make Us Smart. Oxford University Press.
Chap. 4, pp. 75-95.

Gonzalez and Woods (Jan. 2018). Digital Image Processing. Fourth Edition. Pearson, pp. 811-812.

Gruber, T. R. (1993). “A translation approach to portable ontology specifications”. In: Knowledge Acquisition 5.2,
pp. 199-220.

Grunnan, T. and Fridheim, H. (2017). “Planning and conducting crisis management exercises for decision-making:
the do’s and don’ts”. In: EURO Journal on Decision Processes 5, pp. 79-95.

Hannay, J. E. and Kikke, Y. (2019). “Structured crisis training with mixed reality simulations”. In: Proc. 16th Int’l
Conf. Information Systems for Crisis Response and Management (ISCRAM), pp. 1310-1319.

Hannay, J. E. and van den Berg, T. W. (2017). “The NATO MSG-136 Reference Architecture for M&S as a Service”.
In: Proc. NATO Modelling and Simulation Group Symp. on M&S Technologies and Standards for Enabling
Alliance Interoperability and Pervasive M&S Applications (STO-MP-MSG-149).

Kahneman, D. and Frederick, S. (2004). “A Model of Heuristic Judgment”. In: The Cambridge Handbook of
Thinking and Reasoning. Ed. by K. J. Holyoak and R. G. Morrison. Cambridge Univ. Press, pp. 267-294.

Lifschitz, V. (2008). “What is Answer Set Programming?” In: Proc. 23rd National Conference on Artificial
Intelligence (AAAI'08) — Volume 3. AAAI Press, pp. 1594-1597.

Pollestad, B. and Steinnes, T. (2012). “@velse gjgr mester?” MA thesis. University of Stavanger, Dept. of Media and
Social Sciences.

WiP Paper — Al Systems for Crisis and Risks
Proceedings of the 17th ISCRAM Conference — Blacksburg, VA, USA May 2020
Amanda Lee Hughes, Fiona McNeill and Christopher Zobel, eds. 120

Rouwendal van Schijndel et al. Simulation Vignette Generation from Answer Set Specifications

Reiter, R. (1980). “A logic for default reasoning”. In: Artificial Intelligence 13.1, pp. 81-132.

Russell, S. and Norvig, P. (2010). Artificial Intelligence: A Modern Approach. Third. Series in Artificial Intelligence.
Prentice Hall.

Salas, E., Wildman, J. L., and Piccolo, R. F. (2009). “Using Simulation-Based Training to Enhance Management
Education”. In: Academy of Management Learning & Education.

Shadish, W. R., Cook, T. D., and Campbell, D. T. (2002). Experimental and Quasi-Experimental Designs for
Generalized Causal Inference. Houghton Mifflin.

Shadrick, S. B. and Lussier, J. W. (2009). “Training Complex Cognitive Skills: A Theme-based Approach to the
Development of Battlefield Skills”. In: Development of Professional Expertise. Ed. by K. A. Ericsson. Cambridge
University Press. Chap. 13, pp. 286-311.

Shanahan, M. (1999). “The Event Calculus Explained”. In: Artificial Intelligence Today: Recent Trends and
Developments. Ed. by M. J. Wooldridge and M. Veloso. Springer, pp. 409-430.

Shoham, Y. (1987). “What is the frame problem?” In: The Frame Problem in Artificial Intelligence. Ed. by F. M.
Brown. Morgan Kaufmann, pp. 5-21.

Simulation Interoperability Standards Organization (2018). SISO-GUIDE-006-2018 — Guideline on Scenario
Development for Simulation Environments.

Skarpaas, I. and Kristiansen, S. T. (2010). Simulatortrening for ny praksis: Hvordan simulatortrening kan brukes til
d utvikle Heerens operative evne. Tech. rep. Work Research Institute.

Steel, J., Iannella, R., and Lam, H.-P. (2008). “Using ontologies for decision support in resource messaging”. In:
Proc. 5th Int’l Conf. Information Systems for Crisis Response and Management (ISCRAM), pp. 189-196.

Steen-Tveit, K. and Jaziar, R. (2019). “Analysis of Common Operational Picture and Situational Awareness during
Multiple Emergency Response Scenarios”. In: Proc. 16th Int’l Conf. Information Systems for Crisis Response
and Management (ISCRAM).

Tolk, A. (2012). “Integration of M&S Solutions into the Operational Environment”. In: Engineering Principles of
Combat Modeling and Distributed Simulation. Ed. by A. Tolk. Wiley. Chap. 15, pp. 295-327.

van den Berg, T. W., Huiskamp, W., Siegfried, R., Lloyd, J., Grom, A., and Phillips, R. (2017). “Modelling and
Simulation as a Service: Rapid deployment of interoperable and credible simulation environments — an overview
of NATO MSG-136”. In: Proc. 2017 Fall Simulation Innovation Workshop. 17TF-SIW-018.

WiP Paper — Al Systems for Crisis and Risks
Proceedings of the 17th ISCRAM Conference — Blacksburg, VA, USA May 2020
Amanda Lee Hughes, Fiona McNeill and Christopher Zobel, eds. 121

	Abstract
	Keywords

	Introduction
	Vignettes as services
	Essential Skills
	Levels of Abstraction for Planning
	Planning Assistant
	Stage and content generator
	Generating the stage and content – the highest level of abstraction
	Generating the stage and content – the middle levels of abstraction
	Generating the stage and content – the lowest level of abstraction

	Hypotheses for future work
	Final remarks
	Acknowledgements

	References

