
A Systematic Review of Model-Driven Security

Phu H. Nguyen, Jacques Klein, and Yves Le Traon
Interdisciplinary Centre for Security, Reliability and Trust (SnT)

University of Luxembourg
4 rue Alphonse Weicker, L-2721 Luxembourg

Email: {phuhong.nguyen, jacques.klein, yves.letraon}@uni.lu

Max E. Kramer
Software Design and Quality Group
Karlsruhe Institute of Technology

Am Fasanengarten 5, D-76131 Karlsruhe, Germany
Email: max.e.kramer@kit.edu

Abstract—To face continuously growing security threats and
requirements, sound methodologies for constructing secure
systems are required. In this context, Model-Driven Security
(MDS) has emerged since more than a decade ago as a
specialized Model-Driven Engineering approach for supporting
the development of secure systems. MDS aims at improving
the productivity of the development process and quality of the
resulting secure systems, with models as the main artifact.

This paper presents how we systematically examined existing
published work in MDS and its results. The systematic review
process, which is based on a formally designed review protocol,
allowed us to identify, classify, and evaluate different MDS
approaches. To be more specific, from thousands of relevant
papers found, a final set of the most relevant MDS publications
has been identified, strictly selected, and reviewed. We present a
taxonomy for MDS, which is used to synthesize data in order to
classify and evaluate the selected MDS approaches. The results
draw a wide picture of existing MDS research showing the
current status of the key aspects in MDS as well as the identified
most relevant MDS approaches. We discuss the main limitations
of the existing MDS approaches and suggest some potential
research directions based on these insights.

Keywords-systematic review; survey; model-driven security;
model-driven; security; model; model transformations;

I. INTRODUCTION

The further the digital age progresses, the more significant
role that security engineering would play, i.e. to protect the
increasing amount of sensitive/important information being
used and stored in electronic format. While security threats
are becoming more dangerous, varied, and evolving, security
requirements must be changed accordingly, and thus often
getting more complex. In fact, taking into account security
concerns while developing (already complex) systems makes
the development process more stressful, error-prone and dif-
ficult. Security requirements are often tangled between func-
tional requirements. Therefore, it is hard to integrate them
properly into the traditional software development process.
However, they are rarely taken into account at early stages
of the development process [16]. Even though the com-
plexity of systems (especially including security concerns)
that has to be produced and maintained is continuously
increasing, economic pressure reduces the development time
and increases the frequency of demanded modifications. As
a consequence, many security weaknesses, which have been

exploited in practice, already made the headlines of the
newspapers. The lack of efficiency of traditional methods
for constructing secure systems are evident. All these issues
urge for more timely, innovative, and sound methodologies
for better supporting the development and maintenance of
reliable secure systems.

Model-Driven Security (MDS) has emerged over more
than a decade ago as a specialized Model-Driven Engi-
neering (MDE) approach for supporting the development
of secure systems. MDE has been considered by some
researchers as a solution to the handling of complex and
evolving software systems [10]. MDE leverages models and
transformations as main artifacts at every development stage.
By modeling the desired system and manipulating models,
the level of abstraction is higher than code that brings
several significant benefits, especially w.r.t. security engi-
neering. Firstly, security concerns are considered (modeled,
manipulated) together with the business logic from the very
beginning and throughout the MDS development lifecycle.
In this way, security requirements are considered early
and implemented more properly in the resulting complete
secure system implementation. Secondly, reasoning about
the desired systems at the model level enables the application
of formal methods such as model checking and model-
based analysis to verifying security properties. Moreover,
using models at a higher-level than the final target plat-
form and independently from business functionality enables
platform independence as well as cross-platform interop-
erability. Thirdly, MDS is productive, and less error-prone
by leveraging on MDE automation provided by automated
model-to-model transformations (MMTS) and model-to-text
transformations (MTTs, code generation).

For more than a decade since MDS first appeared, there
has been a considerable number of research papers published
in this area. The main goal of this review is to examine
existing literature work in MDS in a systematic way, classify
and compare different approaches, underscore open issues,
and suggest some potential research directions. The main
contributions of this paper are: 1) identifying so far con-
siderable main approaches in MDS; 2) revealing the current
status of the key aspects in MDS like its application domains,
its addressed security concerns, etc.; and 3) pointing out the

main limitations of current MDS approaches, and suggesting
some potential MDS research directions.

The remainder of this paper is structured as follows. The
objective of this systematic review, its research questions,
review protocol, search strategy, and selection process are
described in Section II. The evaluation criteria used to eval-
uate selected approaches are presented in Section III. Section
IV discusses the detailed results after synthesizing data
extracted from the selected approaches. Possible limitations
to the validity of the review are pointed out in Section V. A
comparison of our work with related work is given in Section
VI. Section VII concludes the paper by summarizing the
results, highlighting open issues, and giving some thoughts
of future work.

II. OUR SYSTEMATIC REVIEW METHOD

A systematic literature review (SLR) differentiates itself
from traditional reviews by following a well-defined method
to systematically identify, examine, synthesize, evaluate, and
compare all available literature work relevant to a specific
research topic [27]. Three main phases of a SLR process
with their associated stages are briefly recalled from [27] as
follows. In the description of each phase, we refer to the
section in where we show how the stages of that phase have
been actually planned and conducted in our review process.
i) Planning the review: Identification of the need for a review
(presented in Section I); Commissioning a review (optional,
skipped); Specifying the research question(s) (Section II-A);
Developing a review protocol and evaluating it (Section
II-B).
ii) Conducting the review: Identification of as many relevant
publications as possible (Section II-C); Selection of primary
studies and Study quality assessment (Section II-D1); Data
extraction and monitoring (Section III); Data synthesis (the
results of this review is presented and discussed in Section
IV).
iii) Reporting the review in a technical report/publication.

A. Research Questions

This SLR aims to answer the following research questions:
RQ1: How are the existing MDS approaches supporting

the development of secure systems?
This question is further divided into the following sub-

questions:
RQ1.1: What kinds of security mechanisms/concerns are
addressed by these MDS approaches?
RQ1.2 : How do the MDS approaches specify/model security
requirements together with functional requirements? Is there
any tool that supports the modeling process?
RQ1.3 : How model-to-model transformations (MMTS) are
leveraged and which MMT engines are used? Is there any
tool support for the transformation process?
RQ1.4 : How model-to-text transformations (MTTs) are
leveraged to generate code, including complete, configured

security infrastructures? Which tools are used for the code
and/or security infrastructures generation process?
RQ1.5 : Have any case studies been performed to evaluate
the approaches? If yes, what results have been obtained?
What other evaluation methods (other than case studies) have
been applied to evaluate these approaches?
RQ1.6 : Which application domains have been addressed in
MDS approaches?

RQ2 : What are the current limitations of the existing
MDS approach?

RQ3 : What are the open issues to be further investi-
gated?

After having the research questions, the most suitable
search strategy can then be employed to identify relevant
studies and extract the data required to answer the questions
[14]. All the research questions and its next steps for
conducting the full review are defined clearly in our review
protocol.

B. Review Protocol
One of the most important aspects for the success of a SLR

is its well-designed review protocol. The review protocol
serves as a concrete and formal scheme for conducting the
SLR. By being well-designed and predefined, the review
protocol ensures to reduce the possibility of reviewers’ bias.

Our review protocol has been formally defined and some
key parts of it (e.g. the search string) were piloted for several
times before included in the final protocol. The protocol was
initiated by one author and reviewed by the other authors.
We strictly followed the protocol while conducting the real
review. Most of the contents of our review protocol have
been partially presented in Sections I, II, and III.

C. Search Strategy
In this section, we present the search strategy that we

applied to search for relevant MDS papers.
1) Identification of a Search String : Based on the

research questions (Sect. II-A), we identified the search
terms that can be used to form the search string, e.g.
model-driven, model-based, security, etc. In fact, we divided
our search terms into these categories: MDE (model-driven,
model-based, model*), modeling (specify*, design*), trans-
formations (transform, transformation, “code generation”)
and security.

To form the search string, we used a disjunction of the
keywords of each term group and then used the conjunction
of all the groups of terms. In order to make sure that our
set of selected papers includes all papers that are referred
to and relevant for this review, we had to refine our search
string for several times. To be more specific, the search string
is formulated as follows (but needs to be adapted for each
search engine):
(“model-driven” OR “model based” OR MDA OR MDE
OR model* OR UML) AND (specify* OR design*) AND (
transform* OR “code generation”) AND security

2) Online Databases for Scientific Literature: We per-
formed automatic search within five electronic databases
(range of publication year: 2000-2012): IEEE Xplore1, ACM
Digital Library2, Web of Knowledge (ISI)3, ScienceDirect
(Elsevier)4, and SpringerLink (MetaPress)5, using the search
string we described earlier. Each time, the search string may
need to be modified to fit the format requirements of the
electronic database before applying it.

D. Inclusion (Exclusion) Criteria and Selection Process

1) Inclusion (Exclusion) Criteria: MDS approaches for
developing secure system vary a great deal as different secu-
rity concerns are dealt with, and/or different models/model-
driven techniques are leveraged. Therefore, it is absolutely
necessary that we define thorough inclusion/exclusion crite-
ria to select the primary studies that can answer our research
questions. The following inclusion/exclusion criteria are
used:
1. Papers not written in English are excluded. In fact, this
criteria was already embedded in our search process where
papers not written in English are filtered out.
2. Short papers, i.e. papers with less than 5 pages in IEEE
(double-column) format or less than 7 pages in LNCS
(single-column) format are excluded.
3. Papers irrelevant to MDE are excluded. For example,
the papers addressing security problems without using MDE
techniques are excluded.
4. Papers proposing model-driven approaches without deal-
ing with any security concerns are excluded. For example,
model-driven approaches for performance analysis are ex-
cluded.
5. When a single approach is presented in more than one
paper describing different parts of the approach, we include
all these papers, but still consider them as a single approach.
6. Papers with insufficient technical information regarding
their approaches are excluded. For example, the papers that
do not provide a detailed description on secure models,
intermediate models (if any), blurry security notion, and
transformation/composition techniques, are considered in-
complete and are excluded.
7. Only papers using MDE with a “generative” perspective
are selected, i.e. papers in which models are central artifacts
through out the development. Papers using model-based
techniques for only verifying/analyzing security mechanisms
without a view for implementation code are excluded.

2) Primary Studies Selection Procedures: Table I shows
the statistic of our selection process that is explained as
follows. The papers found from each repository were divided
among reviewers according to the repositories. For each

1http://ieeexplore.ieee.org/Xplore/home.jsp
2http://dl.acm.org/
3http://apps.webofknowledge.com
4http://www.sciencedirect.com/
5http://link.springer.com/

Table I
SUMMARY OF SEARCH RESULTS AND THE SELECTION PROCESS

Source IEEE ACM ISI SD SL Total

Search results 2997 1506 3299 828 2003 10633
After reviewing
titles/keywords

109 90 91 24 81 395

After reading abstracts 78 44 35 19 61 237
After skimming/scanning 31 21 17 15 20 104

After removing duplicates 93
Finally selected 80

paper, we first read the paper’s title, keywords, and the
venue where the paper was published to see whether it is
relevant to our research topic. If the title and keywords of
the paper could not help us to decide to include or exclude
it, we further checked the paper’s abstract. If the abstract
of the paper could not help us to make a decision, we
further skimming (and scanning if necessary) the paper’s
full text. Once each reviewer had done selecting candidate
papers from his repositories, all the candidate papers from
different repositories were merged to remove duplicates. We
kept track of this merging process to see which duplicates
found. Those duplicated papers were included in the final set
of selected papers for sure. For the other candidate papers,
each was discussed by at least two reviewers. For some
“border-line” papers that were not easy to decide by two
reviewers, they are checked by all reviewers. We maintained
a list candidate papers that are rejected, with reasons for the
rejection, after discussion among reviewers.

III. EVALUATION CRITERIA & DATA EXTRACTION
STRATEGY

In this section, we describe a set of key aspects of MDS
that forms a so-called evaluation taxonomy of MDS. We
derived our evaluation taxonomy from our research ques-
tions, and also based on the synthesis of evaluation criteria
described in [25] and the evaluation taxonomy proposed in
[24]. This taxonomy makes it easier to classify and compare
different MDS approaches.

Our taxonomy of MDS classifies different dimensions
that one has to take into account while leveraging MDE
techniques for developing secure systems. The elements of
our taxonomy are described as follows. For each element,
the data extraction strategy is discussed to show how we
extracted data from the primary studies in order to answer
our research questions.

Security concerns/mechanisms: In this dimension, we
classify primary studies according to the security con-
cerns/mechanisms that the MDS approaches are dealing
with. Range of security concerns is broad, e.g. authorization,
authenticity, availability, confidentiality, integrity, etc. We
will count the number of papers addressing each security
concern. So, it is possible to identify whether any specific

security topic areas that addressed by a relatively large
number of MDS approaches.

Modeling approaches: Security concerns can be modeled
separately or not from the business logic. In this work, we
are interested in finding how the current approaches model
security concerns that can be eventually enforced into the
system. Primary studies can be classified by the paradigms
of modeling, i.e. Aspect-Oriented Modeling (AOM) or non-
AOM. In AOM approaches, security concerns are modeled
in separate aspect models to be eventually woven (inte-
grated) into the primary model(s). Vice versa, in non-
AOM approaches, security concerns are not modeled as
aspects. That means security concerns can be modeled
together with business logic in every place where they
are needed. But, we also classify as non-AOM approaches
where security concerns modeled separately (separation of
concerns) from the business logic that can be integrated
later into the system. For example, a non-AOM approach
could (separately) specify an access control policy using
a Domain-Specific Language (DSL)6, and then transform
and/or generate XACML7 standard file for enforcing the
access control policy. In other words, we would like to know
relatively the percentage of non-AOM approaches compared
to the percentage of “full” AOM/Aspect-Oriented Software
Development (AOSD) approaches where security concerns
are really modeled as AOM aspects. Furthermore, approaches
are also classified by the modeling languages, e.g. UML
diagrams, UML profiles, or some kinds of DSLs, used to
model security concerns and business logic. The outcome
models are classified as of type standard or non-standard,
and structural, behavioral, functional or other types. The
granularity levels of outcome models are also reviewed.

Model-to-model transformations (MMTS) & tools:
MMTS can take part in the key steps of the development
process, e.g. for composing security models into business
models and/or transforming platform-independent models
(PIMs) to platform-specific models (PSMs). We will extract
data w.r.t. MMTS in order to answer the following ques-
tions: How well-defined are the MMTS rules? How MMTS
are implemented? Using which MMT engines (e.g. ATL8,
QVT9, KERMETA10, Graph-based MMTS, etc.)? Is there
any tool support for the transformation process? What is
the automation level of MMTS: automatic (if entire process
of creating the target model can be done automatically),
semi-automatic, and manual. Some information about the
classification of MMTS should also be extracted to see if it
supports well for the security mechanisms? E.g., endogenous
MMTS or exogenous MMTS used?

6http://martinfowler.com/books/dsl.html
7eXtensible Access Control Markup Language, a XML-based declarative

access control policy language
8http://www.eclipse.org/atl/
9http://projects.eclipse.org/projects/modeling.mmt
10www.kermeta.org

Model-to-text transformations (MTTs, code and/or
security infrastructure generation) & tools: MDE also
supports the development of secure systems by automatically
generating code, including (half) complete, configured secu-
rity infrastructures. Data should be extracted to see the main
purposes of using code generation techniques. Whether the
whole system including security infrastructure are generated
or just the security configuration, or just the skeleton of
the system? Which tools are used for the code generation
process?

Application domains: Approaches are also classified
on the target application domains of the secure systems.
Examples of application domains are information systems,
Web applications, e-commerce systems, secure smart-card
systems, embedded systems, distributed systems, etc.

Evaluation methods: To point out the limitations of each
approach, we check again how the approach has been eval-
uated. How many case studies have been performed? What
results have been obtained? What other evaluation methods
(other than case studies) have been applied to evaluate these
approaches? This can be answered by extracting data from
the validation section of each paper.

To make the data extraction consistent among the review-
ers, we all tried to extract the relevant data from a small set
of prospective primary papers. We then discussed to ensure
a common understanding of all the extracted data items and
refined the data extraction procedure. Excel files were used
for storing the extracted data while a tool called Mendeley11

was used in reviewing and controlling the selected papers.
The final set of primary studies (selected papers) was
divided among reviewers. Each reviewer examined again
the allocated papers and enriched the Excel files to ensure
detailed data according to the taxonomy has been extracted
from the selected papers. The data extraction forms of each
reviewer were read and discussed by two other reviewers.
All ambiguities were clarified by discussion among the
reviewers.

In order to answer the last two research questions, we
reviewed the range of security topics, the scope of MDS
research work and the quality of MDS research results to
determine whether there are any observable limitations and
open issues.

IV. RESULTS

By extracting and synthesizing data according to the eval-
uation criteria presented in Section III, the research questions
we raised from the beginning of this paper (in Section II)
can now be answered. This section discusses the results after
synthesizing data extracted from the final set of selected
papers and provides different views on the results. Fig. 1
visualizes key results for a representative set of evaluation
criteria. Table II shows absolute and relative values for all
evaluation criteria, e.g. number of papers/criterion.

11http://www.mendeley.com/

Figure 1. Results for a representative set of evaluation criteria

Authorization
42%

Authenticity
12%

Availability
10%

Integrity
9%

Confidentiality
27%

a) Security concerns addressed by MDS

non-AOM
87%

AOM
13%

b) Aspect-Oriented Modeling vs. non-AOM

Only Security Infra
52%

Both generated
48%

c) Code or Security Infrastructures generated?

Exogenous
80%

Endogenous
20%

d) Transformations level

Manual
7%Semi-Auto

10%

Automatic
83%

e) Transformations Automation

Others
27%

Distributed System/SOA
33%

Smart cards/embe…
9%

Data warehouses
15%

IS/e-comme…
16%

f) Application Domains of MDS

A. Results per Evaluation Criterion

Security concerns/mechanisms: Our SLR shows that
authorization, especially access control (AC), is the security
concern that is most addressed by MDS approaches with
42%. The second security concern in terms of attention is
confidentiality (secrecy), with 27 %. Other security concerns,
like integrity, availability, and authentication are, however,
only rarely considered with about 10% for each concern.
Fig. 1a shows these results in a pie chart. These first results
are very interesting. Indeed, an open question is “why in
MDS authorization and confidentiality got more attention?”.
A possible answer could be that MDS is a relatively young
research area. It may also be that researchers that mainly
work with MDE techniques first address authorization (e.g.
AC) because it is closer to application logic and func-
tional requirements than other security concerns. Given the
background of the authors of the most renowned MDS
approaches, it might be that we need more interest in
MDE from the security engineering communities in order
to see more MDS approaches dealing with security concerns
like integrity, availability, and authentication. Therefore, we
suggest that more effort should be put into communicating
MDE techniques as well as MDS approaches. In this way,
more research initiatives can focus on dealing with security
concerns like integrity, availability, and authentication.

Modeling approaches: 13% of the papers discuss ap-
proaches that are based on AOM (Fig. 1b) so that security
concerns are specified as aspects and eventually woven
into primary models. Even though the remaining 87% are
not really aspect-oriented, most of them still follow the
separation of concerns principle and really separate security
concerns from the main business logic. In most of the
cases, security concerns were specified separately from the
business logic in PIMs and transformed into PSMs that
can be refined into security infrastructures (e.g. XACML)
integrated with the systems.

Table II shows that 79% of the reviewed papers used stan-
dard UML models and defined DSLs for security concerns
using the profile and stereotype mechanism of the UML.
21% used other DSLs (e.g. [36]). Thus, it can be seen that
defining DSLs is very popular to leverage MDE techniques
for secure systems development. In other words, DSL plays
a key role in MDS.

Security concerns are often modeled and analyzed with a
DSL that is concern-specific. But, only a few of the 80 final
papers have well-defined semantics for their languages so
that these languages can be used for formal analysis. Only
papers related to the UMLSEC approach (see Section IV-B)
provide a formal basis for security analyses. This shows
that further efforts are required to mature security-specific

modeling languages to foster analyses. Moreover, very few
approaches propose to deal with multiple security concerns
together like [37]. Most of them are specific to address only
one security concern solely.

Model-to-model transformations (MMTS) & tools: Ta-
ble II shows that 55% of the papers clearly mentioned MMTS
while 31% did not use transformations, for example, because
of a manual integration of security. Within the 55% of papers
that described MMTS, 80% of them are exogenous transfor-
mations and most of these were used to transform PIMs
to PSMs (Fig. 1d). Security concerns were modeled using
DSLs for each concern to obtain PIMs that were transformed
into PSMs, which can be refined into code. 83% of the
MMTS described in the papers are automatic, 10% are semi-
automatic (interactive) and only 7% are manual (Fig. 1e).
Having automated MMTS is one of the key success factors
of MDE [19] so this may also be the case for MDS. Within
the papers that clearly describe MMTS, 25% of them also
describe their implementation using standard transformation
languages like ATL and QVT. 75% of the papers only
describe the transformation rules without implementation
details, or use other transformation languages like graph-
based transformations or some specific compilers.

Model-to-text transformations (MTTs) & tools: Table
II shows that 60% of the papers describe MTTs or the
generation of code or security infrastructures. 40% of the
papers did not describe MTTs in details. Some mainly
used models for verifying or analyzing implemented secure
systems, e.g. UMLSEC where code/security infrastructure
generation is only mentioned in future work. Comparing the
purposes of MTTs, we can see in Fig. 1c that there are more
approaches (52%) that only generate security infrastructure,
such as XACML or security aspects code, than approaches
that generate both code and security infrastructure (48%). A
reason might be that some enforcement frameworks for au-
thorization are platform-independent (e.g. using XACML)
and those approaches only focus on generating XACML.
Another reason could be that only few approaches support
forward or even round-trip engineering for the whole de-
velopment cycle of secure systems so that both functional
code and security infrastructure can be derived. The results
in Table II also shows that even if well-known MTT engines
like XPAND were used in 40% of the papers that mentioned
MTT, there are still many cases (60%) where other engines
(e.g. Java-based tools, parsers, etc.) are used. A reason for
that could be that many “ad-hoc” tools are preferred because
of their specific support for a specific security domain. PO-
LARIS [29], for example, performs policy automata analysis
and compilation. It includes a graphical interface for editing
the automata, an analysis engine that checks for policy
conflicts, and a code-generator that creates Java Card applets
that implement the policy automata.

Application domains: Fig. 1f shows that the main appli-
cation domains that have been secured by MDS approaches

Table II
RESULTS CLASSIFIED BY THE EVALUATION CRITERIA

Evaluation criteria # papers %

Security concerns

Confidentiality 30 27
Integrity 10 9
Availability 11 10
Authenticity 13 12
Authorization 47 42

Aspect-Oriented
Modeling/AOSD

Yes 10 13
No 70 87

Standard models Yes(UML/UML profiles) 63 79
Other DSLs 17 21

Type of models Structural 53 61
Behavioral 26 30
Others 8 9

Transformations used
Yes 44 55
No 26 32
Unknown 10 13

Transformations level Endogenous 10 20
Exogenous 39 80

Transformations
automation

Automatic 24 83
Semi-automatic 3 10
Manual 2 7

Standard
Transformations

ATL/QVT 20 25
Others/not mentioned 60 75

Code generation
mentioned

Yes 48 60
No 32 40

Code + Security
Infrastructures

Yes 23 48
Only Security Infrastructure 25 52

Code generation tools Xpand/oAW 14 40
Others 21 60

Application
Domains

IS/e-commerce 13 16
Data warehouses 12 15
Smart cards/ embedded systems 7 9
Distributed Systems/SOA 26 33
Others 22 27

Type of validation Case studies 53 66
Others/not provided 27 34

are distributed systems or SOA (33%), information systems
or e-commerce (13%), and data warehouses (12%). The
remaining papers do not clearly state a domain or claim to
be generically applicable for different application domains,
e.g. [37], [26].

Evaluation methods: Most of the papers (66%) describe
case studies mainly to illustrate the approaches. There are
very few papers that provide an in-depth evaluation like
[15], [41], and [9]. Therefore, we suggest that more effort
should be put in evaluating MDS approaches, for example
with empirical studies or benchmarks.

B. Primary MDS Approaches

Altogether, the results show that there are currently several
MDS approaches that have been used and discussed in multi-

ple publications. As we cannot discuss all MDS approaches
of the 80 papers in detail we identified those approaches
with the most publications. For the rest of this paper we
will call an MDS approach a primary approach if there are
at least 5 primary papers in our final set that discuss this
approach. The primary MDS approaches are summarized as
follows.

SECUREUML (e.g. [28], [6], [7], [8], [13]) is the ap-
proach aims at bridging the gap between security mod-
eling languages and design modeling languages. The au-
thors propose a UML-based language (UML profiles) with
different dialects, which forms modeling languages (such
as SECUREUML+COMPONENTUML) for designing secure
systems. Their work mainly focuses on access control con-
straints based on RBAC in design models. Based on this
approach, Clavel et al. show and discuss their practical
experience of applying SECUREUML in [15]. The main
limitations of SECUREUML are its sole focus on access
control and its lack of support for formal analysis.

UMLSEC (e.g. [23], [22], [17], [18], [21]) is another
well-known UML-based approach in MDS proposed by
Juerjens et al. Security requirements, threat scenarios, se-
curity concepts, security mechanisms, security primitives
can be modeled by using security-related stereotypes (UML
profiles), tags, and security constraints. Thus, it is possible
to formally analyze UMLSEC diagrams against security
requirements w.r.t. their dynamic behaviors. Not like SE-
CUREUML only focusing on authorization (e.g. access con-
trol), UMLSEC addresses multiple security concerns such
as confidentiality, integrity, etc. But UMLSEC lacks support
for improving productivity of the development process in
terms of automated model transformations. Even having
a view from models to code but the lack of automated
transformation(s) from models to implementation code is a
big miss in UMLSEC. So far, its application domains are for
developing secure information systems and secure embedded
systems.

SECTET (e.g. [3], [4], [2], [12], [1]) is the work by
Alam et al. that firstly aimed at securing web services
by leveraging the Object Constraint Language (OCL) for
specifying RBAC. Based on that, a complete configured
security infrastructure (XACML policy files) is generated.
Later on, the authors proposed a specification language
namely SECTET-PL (OCL-based) which is part of the
SECTET framework for model-driven security for B2B
workflows. SECTET-PL is also used for modeling restricted
(RBAC-based) delegation in Service Oriented Architecture.
MMT and MTT are both carried out in a complete model-
driven framework. SECTET mainly addresses RBAC as
its security concern and focuses on generating security
infrastructure (XACML), not all the source code.

SECUREMDD (e.g. [35], [31], [32], [33], [34]) is pro-
posed for facilitating the development of smart card applica-
tions based on UML models. In SECUREMDD, UML class

diagrams are used for modeling static aspects while UML
sequence and activity diagrams are used for modeling dy-
namic aspects of a system. From platform-independent UML
models (PIMs) of a system, its formal abstract state machine
(ASM) specification and Java Card code are generated. The
generated abstract state machine specification is used for
formally proving the correctness of the generated code w.r.t.
the security properties of the system. The main limitations
of SECUREMDD are its specific application domain and the
lack of analysis for consistency between the UML models
and the ASM model.

Secure data warehouses (DWs) are the motivation for
the work of Villarroel, Soler et al. (e.g. [42], [39], [40], [38],
[11]). Their approach also uses UML profiles for modeling
security enriched PIMs as inputs for a model-driven frame-
work to create secure DW solutions. Secure PIMs can be
transformed to secure PSMs by a set of formally defined
QVT rules. These PSMs can then be used for generating
code with security properties. More recently, the above
mentioned techniques for secure DW development are also
leveraged in a reverse engineering style to modernize legacy
DWs. One of the main limitations is that this approach is
very specific for developing secure DWs.

C. Result Summary and Discussion

The results suggest that more research work should fo-
cus on particular security concerns like integrity, availabil-
ity, and authentication. There are considerable less papers
tackling these security concerns than papers dealing with
authorization and confidentiality. Very few selected papers
propose a full AOM approach in which security concerns are
specified as aspects and eventually woven into the primary
models. However, many approaches still use separation-
of-concerns methodology to specify security concerns sep-
arately from business logic and then enforced into the
system at code level, e.g. security enforcement via generated
XACML. It also can be seen from the results that UML are
used popularly in MDS because of its standard and also UML
profiles can be used to define DSLs for specifying security
concerns. DSLs are necessary in MDS because the security
concerns/mechanisms are often specific. Thus DSLs which
are not UML profiles are also recommended, especially DSLs
that can deal with multiple security concerns in the same
system. An important remark is that more work should be
done to have (DSLs) models with well-defined semantics of
various security concerns. These models must be extensively,
formally defined in order to enable the integration with
automated analysis tools (based on well-established formal
methods) and/or program synthesis tools. On the other hand,
a tool chain (based on MMTS and MTTs) to derive from
models to implementation code is also an important piece
of future work.

MMTS and MTTs are widely used in MDS in order to
improve the productivity of the development process. Most

of the MMTS in the selected studies are exogenous used for
transforming PIMs to PSMs. The main reason is that there are
many approaches (dealing with access control) generating
only security infrastructure. Access control models (PIMs)
often used to generate XACML configuration files (PSMs)
for enforcing security policy. Another reason could be the
lack of all-round approaches for the whole development
cycle of secure systems which in the end lead to automatic
generation of both code and security infrastructure. An
all-round approach could follow AOM paradigm to fully
leverage the automation of MMTS and MTTs for composing,
transforming and generating both code and security infras-
tructure. Last but not least, there is a lack of empirical
studies for MDS approaches. More empirical studies should
be conducted to fully evaluate MDS approaches.

V. THREATS TO VALIDITY

There are several threats to validity that may affect the
results of this review. In order to maximize the relevant
articles returned by the search engines, we kept the search
string not too specific but still reflecting what we wanted to
search for. Moreover, the search string was used for search-
ing not only in the titles, abstracts but also in the full text
of an article. Only the search engine of Web of Knowledge
(ISI) does not provide the option for searching on full text.
This limitation could affect the search results returned by
ISI. To make our review more complete, we should have
also conducted the manual search on relevant journals and
proceedings of relevant conferences. Even though this step
would lead to most of the papers that already found in the
automatic search. To minimize the possibility of missing
relevant papers, we kept our search string generic so that
we cover as many relevant papers as possible (more than 10
thousands relevant papers found). Another possible threat
is that we did not extensively search for books related to
MDS. However, we did include the option to also search
for book chapters while performing automatic search. In
fact, we found out some book chapters from Springer Link
repository that even got into our final selected papers for
data extraction, e.g. [30], [22].

VI. RELATED WORK

There are some related surveys in MDS, and only one
systematic review [20] in this research area. In [24], the
authors present a survey on MDS. They propose an eval-
uation based on the work of Khwaja and Urban [25]. The
study revealed that approaches that analyze implementations
of modeled systems are still missing. Due to the fact that
implementations are not generated automatically from for-
mal specifications, verification of running code is reasonable.
The main drawback of [24] is that it is not a systematic
review. As a result, there are some well-known approaches
that are missing in [24], such as SECUREUML [7].

In [5], Basin et al. went through a “Decade of Model-
Driven Security" by presenting a survey focusing on their
specific MDS approach called SECUREUML. The authors
claim that MDS has enormous potential, mainly because
Security-Design Models provide a clear, declarative, high-
level language for specifying security details. The potential
is even more, when the security models rely on a well-
defined semantics. The main drawback of [5] is that it only
considers the work around SECUREUML.

[20] is closer to our paper. It is also a systematic review on
MDS. The authors propose three research questions with the
goal to determine if the current MDS approaches focus on
code generation and/or having empirical studies. The study
shows that there is a need for more empirical studies on MDS
(none exists), and that standardization is key to achieve the
objectives of MDD/MDA (which are increased portability
and interoperability). However, [20] presents several draw-
backs and differences from our paper. First, concerning the
systematic review protocol, no evaluation criteria and data
extraction strategy are given. Moreover, exclusion criteria
are very specific to the research questions. Consequently,
the authors exclude papers which do not support automatic
code generation, e.g. UMLSEC papers. Finally, the authors
exclude AOM approaches, because they consider that AOM
does not consider security aspects as specific aspects (i.e.
different from other aspects).

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a systematic literature review
on model-driven approaches for developing secure systems.
We described a rigorous review protocol as well as a search
strategy providing an exhaustive list of relevant papers on
MDS. We have picked out a final set of 80 papers from
10633 relevant papers after an extensive (5-step) selection
and review process. From the final papers we extracted
and summarized the data in order to answer our research
questions.

Our results show that most approaches focus on au-
thorization and confidentiality while only few publications
address further security concerns like integrity, availability,
and authentication. Most of the approaches try to separate
security concerns from core business logic, but only a
few weave security aspects into primary models. The UML
profile mechanism is often used for the definition of security-
oriented DSLs. This may also be one of the reasons why
most security modeling languages lack a thorough semantic
foundation, which is need not only for automated formal
analyses. The reviewed papers provide only incomplete
MDE tool-chains as we did not identify an integrated ap-
proach for the generation of functional code and security in-
frastructures. Most approaches discuss illustrative examples
but lack in-depth evaluations, for example using common
benchmarks or empirical studies. Altogether, our literature
review shows that many MDS approaches are successful

for specific, isolated security concerns, but lack formality,
automation, process-integration and evaluation.

To make our review more systematic and complete, we
will manually search in journals and conference proceedings
for MDS papers. The journals and conferences will be
chosen based on relevance and impact in terms of the high
impact index12 and conferences rankings. Cross references
and the latest publications from the main authors will be
checked manually. To this end we will perform an additional
backward search on the references in the identified papers in
order to identify thematically related topics and publications.
Finally, we will adapt our future search strategy according
to the “Snowballing search strategy” [43].

ACKNOWLEDGMENT

This work is supported by the Fonds National de la
Recherche (FNR), Luxembourg, under the MITER project
C10/IS/783852.

REFERENCES

[1] B. Agreiter and R. Breu. “Model-Driven Configu-
ration of SELinux Policies”. In: On the Move to
Meaningful Internet Systems: OTM 2009. Vol. 5871.
Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2009, pp. 887–904.

[2] M. Alam, J.-P. Seifert, and X. Zhang. “A Model-
Driven Framework for Trusted Computing Based Sys-
tems”. In: Enterprise Distributed Object Computing
Conference, 2007. EDOC 2007. 11th IEEE Interna-
tional. 2007, pp. 75–75.

[3] M. Alam, R. Breu, and M. Breu. “Model driven
security for Web services (MDS4WS)”. In: Multitopic
Conference, 2004. Proceedings of INMIC 2004. 8th
International. 2004, pp. 498–505.

[4] R. Alam MAlam2006eu and M. Hafner. “Modeling
permissions in a (U/X)ML world”. In: Availability,
Reliability and Security, 2006. ARES 2006. The First
International Conference on. 2006, pages.

[5] D. Basin, M. Clavel, and M. Egea. “A decade of
model-driven security”. In: Proceedings of the 16th
ACM symposium on Access control models and tech-
nologies. SACMAT ’11. ACM, 2011, pp. 1–10.

[6] D. Basin, J. Doser, and T. Lodderstedt. “Model driven
security for process-oriented systems”. In: Proceed-
ings of the eighth ACM symposium on Access control
models and technologies. SACMAT ’03. ACM, 2003,
pp. 100–109.

[7] D. Basin, J. Doser, and T. Lodderstedt. “Model driven
security: From UML models to access control infras-
tructures”. In: ACM Trans. Softw. Eng. Methodol. 15.1
(Jan. 2006), pp. 39–91.

12Journal Citation Reports 2011

[8] D. Basin et al. “A Metamodel-Based Approach
for Analyzing Security-Design Models”. In: Model
Driven Engineering Languages and Systems.
Vol. 4735. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2007, pp. 420–435.

[9] B. Best, J. Jürjens, and B. Nuseibeh. “Model-Based
Security Engineering of Distributed Information Sys-
tems Using UMLsec”. In: 29th International Con-
ference on Software Engineering, 2007. ICSE 2007.
2007, pp. 581–590.

[10] J. Bezivin. “Model Driven Engineering: An Emerging
Technical Space”. In: GTTSE, pp.36-64 (2006).

[11] C. Blanco et al. “Applying an MDA-Based Approach
to Consider Security Rules in the Development of
Secure DWs”. In: International Conference on Avail-
ability, Reliability and Security, 2009. ARES ’09.
2009, pp. 528–533.

[12] R. Breu et al. “Model-Driven Security Engineering of
Service Oriented Systems”. English. In: Information
Systems and e-Business Technologies. Vol. 5. Lecture
Notes in Business Information Processing. Springer
Berlin Heidelberg, 2008, pp. 59–71.

[13] A. Brucker, J. Doser, and B. Wolff. “A Model Trans-
formation Semantics and Analysis Methodology for
SecureUML”. In: Model Driven Engineering Lan-
guages and Systems. Vol. 4199. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2006,
pp. 306–320.

[14] K.-Y. Cai and D. Card. “An analysis of research
topics in software engineering - 2006”. In: Journal
of Systems and Software 81.6 (2008). Agile Product
Line Engineering, pp. 1051–1058.

[15] M. Clavel et al. “Model-Driven Security in Practice:
An Industrial Experience”. In: Model Driven Archi-
tecture – Foundations and Applications. Vol. 5095.
Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2008, pp. 326–337.

[16] L. Cysneiros and J. Sampaio do Prado Leite. “Non-
functional requirements: from elicitation to modelling
languages”. In: Proceedings of the 24th International
Conference on Software Engineering, 2002. ICSE
2002. 2002, pp. 699–700.

[17] D. Hatebur et al. “Systematic Development of
UMLsec Design Models Based on Security Require-
ments”. In: Fundamental Approaches to Software
Engineering. Vol. 6603. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2011, pp. 232–
246.

[18] S. Houmb and J. Jürjens. “Developing secure net-
worked Web-based systems using model-based risk
assessment and UMLsec”. In: Tenth Asia-Pacific Soft-
ware Engineering Conference, 2003. 2003, pp. 488–
497.

[19] J. Hutchinson et al. “Empirical assessment of MDE
in industry”. In: Proceedings of the 33rd Interna-
tional Conference on Software Engineering. ICSE
’11. ACM, 2011, pp. 471–480.

[20] J. Jensen and M. G. Jaatun. “Security in Model Driven
Development: A Survey”. In: Proceedings of the
2011 Sixth International Conference on Availability,
Reliability and Security. ARES ’11. IEEE Computer
Society, 2011, pp. 704–709.

[21] J. Jürjens. “Model-based security engineering for
real”. In: FM 2006: Formal Methods (2006), pp. 600–
606.

[22] J. Jürjens. “Model-based security engineering with
UML”. In: Foundations of Security Analysis and
Design III (2005), pp. 42–77.

[23] J. Jürjens. “UMLsec: Extending UML for secure
systems development”. In: «UML»2002 – The Unified
Modeling Language (2002).

[24] K. Kasal, J. Heurix, and T. Neubauer. “Model-Driven
Development Meets Security: An Evaluation of Cur-
rent Approaches”. In: Proceedings of the 2011 44th
Hawaii International Conference on System Sciences.
HICSS ’11. IEEE Computer Society, 2011, pp. 1–9.

[25] A. A. Khwaja and J. E. Urban. “A Synthesis of
Evaluation Criteria for Software Specifications and
Specification Techniques”. In: International Journal
of Software Engineering and Knowledge Engineer-
ing 12.05 (2002), pp. 581–599. eprint: http : / /
www . worldscientific . com / doi / pdf / 10 . 1142 /
S0218194002001062.

[26] D.-K. Kim and P. Gokhale. “A Pattern-Based Tech-
nique for Developing UML Models of Access Control
Systems”. In: Computer Software and Applications
Conference, 2006. COMPSAC ’06. 30th Annual In-
ternational. Vol. 1. 2006, pp. 317–324.

[27] B. Kitchenham. “Guidelines for performing system-
atic literature reviews in software engineering”. In:
EBSE Technical Report (2007).

[28] T. Lodderstedt, D. Basin, and J. Doser. “SecureUML:
A UML-Based Modeling Language for Model-Driven
Security”. English. In: «UML»2002 – The Unified
Modeling Language. Vol. 2460. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2002,
pp. 426–441.

[29] M. McDougall, R. Alur, and C. Gunter. “A model-
based approach to integrating security policies for
embedded devices”. In: Proceedings of the fourth
ACM international conference on Embedded software
- EMSOFT ’04 (2004), p. 211.

[30] “Modeling Security Critical SOA Applications”. En-
glish. In: Security Engineering for Service-Oriented
Architectures. Springer Berlin Heidelberg, 2009,
pp. 93–119.

[31] N. Moebius, K. Stenzel, and W. Reif. “Generating
formal specifications for security-critical applications
- A model-driven approach”. In: Software Engineering
for Secure Systems, 2009. SESS ’09. ICSE Workshop
on. 2009, pp. 68–74.

[32] N. Moebius and K. Stenzel. “Model-Driven Code
Generation for Secure Smart Card Applications”. In:
The 20th Australian Software Engineering Conference
(2009), pp. 44–53.

[33] N. Moebius, K. Stenzel, and W. Reif. “Formal Ver-
ification of Application-Specific Security Properties
in a Model-Driven Approach Example : A Copycard
Application”. In: (2010), pp. 166–181.

[34] N. Moebius et al. “Incremental Development of
large, secure Smart Card Applications”. In: md-
sec2012.pst.ifi.lmu.de (2012), pp. 1–6.

[35] N. Moebius et al. “SecureMDD: A Model-Driven
Development Method for Secure Smart Card Ap-
plications”. In: Availability, Reliability and Security,
2009. ARES ’09. International Conference on. 2009,
pp. 841–846.

[36] B. Morin et al. “Security-driven model-based dynamic
adaptation”. In: Proceedings of the IEEE/ACM inter-
national conference on Automated software engineer-
ing. ASE ’10. ACM, 2010, pp. 205–214.

[37] P. Sánchez et al. “Model-driven development for early
aspects”. In: Information and Software Technology
52.3 (2010), pp. 249–273.

[38] E. Soler et al. “Designing Secure Data Warehouses
by Using MDA and QVT”. In: J. UCS 15.8 (2009),
pp. 1607–1641.

[39] E. Soler et al. “A Framework for the Development of
Secure Data Warehouses based on MDA and QVT”.
In: The Second International Conference on Availabil-
ity, Reliability and Security, 2007. ARES 2007. 2007,
pp. 294–300.

[40] E. Soler et al. “A set of QVT relations to transform
PIM to PSM in the Design of Secure Data Ware-
houses”. In: The Second International Conference
on Availability, Reliability and Security, 2007. ARES
2007. 2007, pp. 644–654.

[41] E. Soler et al. “Application of QVT for the Develop-
ment of Secure Data Warehouses: A case study”. In:
The Second International Conference on Availability,
Reliability and Security, 2007. ARES 2007. 2007,
pp. 829–836.

[42] R. Villarroel et al. “Using UML Packages for De-
signing Secure Data Warehouses”. In: Computational
Science and Its Applications - ICCSA 2006. Vol. 3982.
Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2006, pp. 1024–1034.

[43] C. Wohlin and R. Prikladnicki. “Systematic literature
reviews in software engineering”. In: Information and
Software Technology 55.6 (2013), pp. 919–920.

