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Abstract—Deep learning in gastrointestinal endoscopy can
assist to improve clinical performance and be helpful to assess
lesions more accurately. To this extent, semantic segmentation
methods that can perform automated real-time delineation of a
region-of-interest, e.g., boundary identification of cancer or pre-
cancerous lesions, can benefit both diagnosis and interventions.
However, accurate and real-time segmentation of endoscopic im-
ages is extremely challenging due to its high operator dependence
and high-definition image quality. To utilize automated methods
in clinical settings, it is crucial to design lightweight models
with low latency such that they can be integrated with low-end
endoscope hardware devices. In this work, we propose NanoNet,
a novel architecture for the segmentation of video capsule
endoscopy and colonoscopy images. Our proposed architecture
allows real-time performance and has higher segmentation accu-
racy compared to other more complex ones. We use video capsule
endoscopy and standard colonoscopy datasets with polyps, and a
dataset consisting of endoscopy biopsies and surgical instruments,
to evaluate the effectiveness of our approach. Our experiments
demonstrate the increased performance of our architecture in
terms of a trade-off between model complexity, speed, model
parameters, and metric performances. Moreover, the resulting
models´ size is relatively tiny, with only nearly 36,000 parameters
compared to traditional deep learning approaches having millions
of parameters.

Index Terms—Video capsule endoscopy, colonoscopy, deep
learning, segmentation, tool segmentation

I. INTRODUCTION

Gastrointestinal (GI) endoscopy is a widely used technique

to diagnose and treat anomalies in the upper (esophagus,

stomach, and duodenum) and the lower (large bowel and

anus) GI tract. Among the other GI tract organs, colorectal

cancer (CRC) has the highest cancer incidences and mortality

rate [1]. There are several CRC screening options. Theses are

usually divided into two categories, namely, invasive (visual

examination-based test) and non-invasive based tests (stool,

blood, and radiological test). Colonoscopy, the gold standard

for examining the large bowel (colon and rectum), is an

invasive examination used to detect, observe, and remove ab-

normalities (such as polyps). It detects colorectal cancer with

both high sensitivity and specificity. Sigmoidscopy is another

invasive test. Computed Tomography(CT) Colonoscopy, Fecal

Occult Blood Test (FOBT) Fecal Immunochemical Test (FIT),
and Video Capsule Endoscopy (VCE) are non-invasive tests.

VCE is a technology for capturing the video inside the GI

tract. It has evolved as an important tool for detecting small

bowel diseases [2].

Deep Learning (DL) methods have made a significant break-

through in several medical domain such as lung cancer detec-

tion [3], diabetic retinopathy progression [4], and obstructive

hypertrophic cardiomyopathy detection [5]. It has provided

new opportunities to solve challenges such as bleeding, light

over/underexposure, smoke, and reflections [6]. However, DL

normally needs a large annotated dataset for the implemen-

tation of methods. It is difficult to obtain a labeled medical

dataset. First, it needs collaborations with the hospitals. For

data collection, the doctors require approval from various

authorities and patient consent. They need to set protocols

for the collection, and the collected data must be anonymized

and cleaned with the help of data engineers. Domain experts

must label raw data, and after labeling, the annotations must be

done depending upon the need of the task. The whole process

requires an significant amount of expert time and is costly.

Additionally, it is an operator-dependent process. The quality

of the data labeling and annotation depends on the expertise

of the clinicians. Therefore, it is challenging to curate a larger

dataset.

One way of solving the dataset issue is to create synthetic

images using Genearative Adversarial Network (GAN) [7].

However, generated synthetic images may not always capture

all the properties and characteristics of real endoscopic im-

ages. Consequently, the model may only learn to predict the

properties from the synthetic images and may not perform

well on a real endoscopic dataset. Another solution could

be domain adaptation from a similar endoscopic dataset.

However, we lack large publicly available labeled endoscopic

datasets. Thus, a viable and compelling approach to solve the

semantic segmentation task is to reuse ImageNet pre-trained

encoders in the segmentation model [8]. The predicted masks

from the algorithm can provide reliable information to the

endoscopic model.
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A lightweight Convolutional Neural Network (CNN) model

can be essential for the development of real-time and efficient

semantic segmentation methods. Usually, lightweight models

are computationally efficient and require less memory. A

smaller number of parameters makes the network less redun-

dant. Lightweight CNN models are mainly being deployed

in mobile applications [9]. A lightweight model can play a

crucial role from a system perspective with a limited resource

constraint for real-time prediction in clinics. Consequently,

we propose a novel architecture, NanoNet, optimized for

faster inference and high accuracy. An extremely lightweight

model with very few trainable parameters, faster inference, and

higher performance would require less memory footprint to be

incorporated with any devices. Therefore, we put forward this

approach to address the challenges in endoscopy.

The main contributions of this work include the following:

1) We proposed a novel architecture, named NanoNet, to

segment video capsule endoscopy and colonoscopy im-

ages in real-time with high accuracy. The proposed archi-

tecture is very lightweight, and the model size is smaller,

requiring less computational cost.

2) VCE datasets are difficult to obtain with pixel-wise

annotations. In this context, we have annotated 55 polyps

from the “polyp” class of the Kvasir-Capsule dataset with

the help of an expert gastroenterologist. We have made

this dataset public and provided the benchmark.

3) NanoNet achieves promising performance on the

KvasirCapsule-SEG, Kvasir-SEG [10], 2020 Medico au-

tomatic polyp segmentation challenge [11], 2020 Endo-

Tect challenge [12], and Kvasir-Instrument [13] datasets.

All experiments conform with state-of-the-art (SOTA) in

terms of parameter uses (size), speed, computation, and

performance metrics.

4) The model can be integrated with mobile and embedded

devices because of fewer parameters used in the network.

II. RELATED WORK

A. Semantic segmentation of endoscopic images

Semantic segmentation of endoscopic images has been a

well-established topic in medical image segmentation. Earlier

work mostly relied on the handcrafted descriptors for feature

learning [14], [15]. The handcrafted features such as color,

shape, texture, and edges were extracted and fed to the Ma-

chine Learning (ML) classifier, which separates lesions from

the background. However, the traditional ML methods based

on handcrafted features suffer from low performance [16]. The

recent works on polyp segmentation using both video capsule

endoscopy and colonoscopy mostly relied on Deep Neural

Network (DNN) [17]–[23].

With the DNN methods, there is progress in the performance

for segmenting endoscopic images (for example, polyps).

However, the network architectures are often complex and

requires high-end GPUs for training, and is computationally

expensive [24], [25]. Additionally, real-time lesion segmenta-

tion has often been ignored. Although there is some recent

initiation for the real-time detection of endoscopic images,

they have mostly used private datasets [26]–[28] for the

experimentation. It is difficult to compare the new methods

on these datasets and extend the benchmark. Therefore, there

is a need for a benchmark on publicly available datasets

to minimize the research gap towards building a clinically

relevant model.

B. Lightweight model

There are few works in the literature that have proposed

lightweight models for image segmentation. Ni et al. [29]

presented a novel bilinear attention network-based approach

with an adaptive receptive field for the segmentation of

surgical instruments. Wang et al. [30] proposed a lightweight

encoder-decoder network (LEDNet), an encoder-decoder

network that uses ResNet50 in the encoder block and

attention pyramidal network in the decoder block. Beheshti

et al. [31] proposed SqueezeNet. The architecture of the

SqueezeNet is inspired by UNet [32]. The proposed model

obtained a 12× reduction in model size and showed efficient

performance in multiplication accumulation (mac) and

memory uses.

From the above-related work, we identify a need for a real-

time polyp segmentation method. A real-time polyp segmenta-

tion method can be achieved by building a lightweight network

architecture by designing an efficient network with blocks that

require fewer parameters. A lower number of network param-

eters will reduce the network complexity, leading to real-time

or faster inference. In this respect, we propose NanoNet, which

uses a lightweight pre-trained network MobileNetV2 [33],

and simple convolutional blocks such as residual block and

squeeze and excite block.

III. NETWORK ARCHITECTURE

The architecture of NanoNet follows an encoder-decoder

approach as shown in Figure 1. As depicted in Figure 1, the

network architecture uses a pre-trained model as an encoder,

followed by the three decoder blocks. Using pre-trained Ima-

geNet [34] models for transfer learning has become the best

choice for many CNN architectures [8], [25]. It helps the

model converge much faster and achieves high performance

compared to the non-pre-trained model. The proposed archi-

tecture uses a MobileNetV2 [33] model pre-trained on the

ImageNet [34] dataset as the encoder. The decoder is built

using a modified version of the residual block, which was

initially introduced by He et al. [35]. The encoder is used to

capture the required contextual information from the input,

whereas the decoder is used to generate the final output by

using the contextual information extracted by the encoder.

A. MobileNetV2

The MobileNetV2 [33] is an architecture that is primarily

designed for mobile and embedded devices. The architecture

performed well on a variety of different datasets while main-

taining high accuracy, despite having fewer parameters. The

architecture of MobileNetV2 is based on the architecture of

MobileNetV1, which uses depth-wise separable convolutions
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Fig. 1: Overview of the proposed NanoNet architecture

as the main building block. A depth-wise separable convolu-

tion consists of depth-wise convolution followed by a point-

wise convolution. The MobileNetV2 introduces two main

ideas: inverted residual block and linear bottleneck block [33].

The inverted residual block is based on the bottleneck

residual block as described in the [35], which consists of

three standard convolutions, which are 1 × 1, 3 × 3, and

1 × 1. Every convolution layer is followed by a Rectified

Linear Unit (ReLU) non-linearity. In the first 1 × 1 standard

convolution, the number of feature channels are reduced, and

in the last 1 × 1 standard convolution, the number of feature

channels are expanded. After that, an element-wise addition

with the identity mapping is performed. The inverted residual

block also has three convolution layers: a 1 × 1 standard

convolution, a 3 × 3 depth-wise convolution, and a 1 × 1
standard convolution. Every convolution has a ReLU activation

function. Here, the exact opposite of the bottleneck residual

block is performed. The first 1 × 1 standard convolution

expands the number of feature channels, and the last 1 × 1
standard convolution reduces the number of feature channels.

Due to this opposite functionality, it is referred to as an

inverted residual block. The linear bottleneck block is the

same as the inverted residual block, except the last 1 × 1
standard convolution has a linear activation before an element-

wise addition is performed with the identity mapping.

B. Modified Residual Block

The original residual block uses two 3 × 3 standard con-

volutions, where the first convolution is followed by a batch-

normalization and a ReLU activation function. After that, the

second convolution is followed only by a batch-normalization.

An element-wise addition is performed between the output of

the batch-normalization and the identity mapping, followed by

another ReLU activation function. An identity mapping con-

sists of a 1×1 standard convolution and a batch-normalization

over the original input.

We have modified the residual block for our network. The

modified residual block starts with a 1×1 convolution followed

by a 3 × 3 convolution. In both of these convolutions, we

reduce the number of filters by 1
4 , which are then followed by

the batch normalization and the ReLU activation function. We

have a 3× 3 convolution with batch normalization. Now, we

perform an element-wise addition with the identity mapping.

Finally, we apply a ReLU activation function followed by

the squeeze and excitation block. The squeeze and excitation

block improves the quality of feature maps by increasing their

sensitivity towards essential features.

C. The NanoNet architecture

Figure 1 shows the block diagram of the NanoNet archi-

tecture. The NanoNet architecture starts with a pre-trained

MobileNetV2 as an encoder followed by a decoder. There

is a modified residual block between the encoder and the

decoder, which acts like a bridge that connects the encoder

and the decoder. In the first step, we feed the image data into

the pre-trained encoder. The pre-trained encoder starts with a

standard convolution with 32 feature channels, followed by the

bottleneck layer with ReLU6 as the activation function. All the

convolution operations use a standard 3 × 3 kernel size. The

entire encoder network progressively downsamples the feature

maps by using strided convolution and slowly increases the

number of feature channels alternatively.

The output from the pre-trained encoder passes through the

modified residual block, which is fed to the decoder. Every

step in the decoder uses a bilinear upsampling to increase the

spatial dimension (height and width) of the input feature maps.

After that, it is concatenated with the appropriate feature maps

from the pre-trained encoder using the skip connections. These

skip connections pass information that may be lost sometimes

between the layers and are used to improve the quality of

the feature maps. These concatenated feature maps are passed

through the modified residual block, which further increases

the generalization capacity of the decoder. After the feature

maps pass through all the three decoder block, the output of

the last decoder block is fed to a 1 × 1 convolution with a

number of classes as the feature channels. This is followed by
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TABLE I: Publicly available endoscopic datasets used in our experiments

Dataset No. of Images Imaging Type Availability

KvasirCapsule-SEG 55 Video capsule endoscopy https://www.dropbox.com/sh/hr46vieykbmvmkk/
AAAs V8ECG0wq51Fpw3rYU 5a?dl=0

Kvasir-SEG [10] 1000 Colonoscopy https://datasets.simula.no/kvasir-seg/
2020 Medico automatic polyp segmen-
tation challenge [11]

160� Colonoscopy https://multimediaeval.github.io/editions/2020/tasks/
medico/

Endotect Challenge Dataset [12] 200� Colonoscopy https://endotect.com/
Kvasir-Instrument [36] 590 Colonoscopy https://datasets.simula.no/kvasir-instrument/
�test images

Fig. 2: Polyps and corresponding masks from KvasirCapsule-

SEG

the sigmoid activation if it is a binary segmentation task, else

we use the softmax activation function.

We have demonstrated three different NanoNet architec-

tures: NanoNet-A, NanoNet-B, and NanoNet-C. Each archi-

tecture consists of different feature channels in its decoder

block. NanoNet-A consists of 32, 64 and 128 feature channels.

In NanoNet-B, the number of feature channels is reduced to

32, 64, and 96. In NanoNet-C, these feature channels are

further reduced to 16, 24, and 32. The reduction in the number

of feature channels leads to less trainable parameters, which

simplifies the model complexity leading to a light-weight

network.

IV. EXPERIMENTAL SETUP

In this section, we will describe the dataset, evaluation met-

rics, implementation details, and data augmentation techniques

used.

A. Datasets

To address the polyp segmentation problem from video

capsule endoscopy images, we have selected the polyp class

from labelled images folder of the Kvasir-Capsule dataset [37]

and annotated it with the help of an expert gastroenterologist.

The Kvasir-Capsule is an open-access dataset that contains 13

classes of labelled anomalies and findings. It only includes 55

polyp frames out of 44,228 medically verified video capsule

frames present in the Kvasir-Capsule. We have annotated the

polyp class of Kvasir-Capsule and generated corresponding

ground truth masks. Examples of polyps and their correspond-

ing masks from KvasirCapsule-SEG can be found in Figure 2.

Furthermore, we also provide bounding box information to be

used for video capsule endoscopy detection and localization

tasks. The Kvasir-Capsule can be downloaded from here 1 and

KvasirCapsule-SEG can be downloaded from here 2.

Table I shows the detailed information about the open

imaging dataset used in our experiments. Each of the datasets

presented in Table I also has the corresponding ground truth.

The link for each of the datasets is provided in the table.

The standard setting for the “Medico automatic polyp seg-

mentation challenge” and “Endotect challenge” is that they

use the Kvasir-SEG for training. The challenge organizers

have provided unseen 160 images in the “Medico automatic

polyp segmentation challenge” and released 200 images in

the “Endotect challenge” to test the participant’s approaches.

For the Kvasir-instrument dataset, we experimented with the

official split provided by the organizers. The detail explanation

of these datasets and the baseline results can be found in [10]–

[13].

B. Evaluation metrics

For the evaluation of our model, we have chosen standard

computer vision metrics such as Dice Coefficient (DSC), mean

Intersection over Union (mIoU), Precision, Recall, Specificity,

Accuracy, and Frame-per-second (FPS). More explanation of

these metrics can be found in [10]–[13].

C. Implementation details

We have implemented the NanoNet using Keras3 with

TensorFlow [40] as backend. The experiments were run on

the Experimental Infrastructure for Exploration of Exascale

Computing (eX3), NVIDIA DGX-2 machine. The code im-

plementation of NanoNet can be found here4. As the model

has very few low trainable parameters, we have set a batch size

of 16. We have resized the dataset images to 256×256 pixels

for better utilization of the GPU, and it also helps to reduce

the training time. The model is trained on 200 epochs with the

Nadam optimizer [41] and dice coefficient as the loss function.

The learning rate for the optimizer is set to 1e−4. We prefer to

choose a low learning rate to update the parameters slowly and

carefully. The learning rate is reduced by a factor of 0.1 when

the validation loss does not decrease in 10 consecutive epochs.

It helps to improve model performance. Additionally, we have

used an early stopping mechanism to prevent over-fitting.

1https://osf.io/dv2ag/
2https://www.dropbox.com/sh/hr46vieykbmvmkk/AAAs

V8ECG0wq51Fpw3rYU 5a?dl=0
3https://keras.io/
4https://github.com/DebeshJha/NanoNet
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TABLE II: Performance evaluation of the proposed networks and recent SOTA methods on KvasirCapsule-SEG

Method Parameters DSC mIoU Recall Precision F2 Accuracy FPS
ResUNet (GRSL’18) [38] 8,227,393 0.9532 0.9137 0.9785 0.9325 0.9677 0.9386 17.96
ResUNet++ (ISM’19) [24] 4,070,385 0.9499 0.9087 0.9762 0.9296 0.9648 0.9334 15.39
NanoNet-A (Ours) 235,425 0.9493 0.9059 0.9693 0.9325 0.9609 0.9351 28.35
NanoNet-B (Ours) 132,049 0.9474 0.9028 0.9682 0.9308 0.9593 0.9324 27.39
NanoNet-C (Ours) 36,561 0.9465 0.9021 0.9754 0.9238 0.9629 0.9297 29.48

TABLE III: Performance evaluation of the proposed networks and recent SOTA methods on Kvasir-SEG [10]

Method Parameters DSC mIoU Recall Precision F2 Accuracy FPS
ResUNet (GRSL’18) [38] 8,227,393 0.7203 0.6106 0.7602 0.7624 0.7327 0.9251 17.72
ResUNet++ (ISM’19) [24] 4,070,385 0.7310 0.6363 0.7925 0.7932 0.7478 0.9223 19.79
NanoNet-A (Ours) 235,425 0.8227 0.7282 0.8588 0.8367 0.8354 0.9456 26.13
NanoNet-B (Ours) 132,049 0.7860 0.6799 0.8392 0.8004 0.8067 0.9365 29.73
NanoNet-C (Ours) 36,561 0.7494 0.6360 0.8081 0.7738 0.7719 0.9290 32.17

TABLE IV: Performance evaluation of the proposed networks and recent SOTA methods on the Medico 2020 dataset [11]

Method Parameters DSC mIoU Recall Precision F2 Accuracy FPS
ResUNet (GRSL’18) [38] 8,227,393 0.6846 0.5599 0.7235 0.7236 0.6961 0.9231 18.54
ResUNet++ (ISM’19) [24] 4,070,385 0.6925 0.5849 0.8249 0.6840 0.7434 0.8995 19.47
NanoNet-A (Ours) 235,425 0.7364 0.6319 0.8566 0.7310 0.7804 0.9166 28.07
NanoNet-B (Ours) 132,049 0.7378 0.6247 0.8283 0.7373 0.7685 0.9223 29.04
NanoNet-C (Ours) 36,651 0.7070 0.5866 0.8095 0.7089 0.7432 0.9148 32.66

TABLE V: Performance evaluation of the proposed networks and recent SOTA methods on the Endotect 2020 dataset [12]

Method Parameters DSC mIoU Recall Precision F2 Accuracy FPS
ResUNet (GRSL’18) [39] 8,227,393 0.6640 0.5408 0.7510 0.6841 0.6943 0.9075 26.55
ResUNet++ (ISM’19) [24] 4,070,385 0.6940 0.5838 0.8797 0.6591 0.7597 0.8841 18.58
NanoNet-A (Ours) 235,425 0.7508 0.6466 0.8238 0.7744 0.7773 0.9255 27.19
NanoNet-B (Ours) 132,049 0.7362 0.6238 0.8109 0.7532 0.7646 0.9252 29.91
NanoNet-C (Ours) 36,651 0.7001 0.5792 0.8000 0.7159 0.7380 0.9091 32.98

TABLE VI: Performance evaluation of the proposed networks and recent SOTA methods on Kvasir-Instrument [13]

Method Parameters DSC mIoU Recall Precision F2 Accuracy FPS
UNet (Baseline) [39] - 0.9158 0.8578 0.9487 0.8998 0.9320 0.9864 20.46
DoubleUNet (Baseline) [25] - 0.9038 0.8430 0.9275 0.8966 0.9147 0.9838 10.00
ResUNet++ (ISM’19) [24] 4,070,385 0.9140 0.8635 0.9103 0.9348 0.9140 0.9866 17.87
NanoNet-A (Ours) 235,425 0.9251 0.8768 0.9142 0.9540 0.9251 0.9887 28.00
NanoNet-B (Ours) 132,049 0.9284 0.8790 0.9205 0.9482 0.9284 0.9875 29.82
NanoNet-C (Ours) 36,561 0.9139 0.8600 0.9037 0.9452 0.9139 0.9863 32.18

D. Data augmentation

We use data-augmentation on the training set to increase

diversity and to improve the generalization of our model. Data

augmentation techniques such as random cropping, random

rotation, horizontal flipping, vertical flipping, grid distortion,

and many more are used. We have used an offline data

augmentation technique. The validation and testing set is not

augmented and is directly resized into 256× 256.

V. RESULT AND DISCUSSION

In this section, we provide the experimental results for

the segmentation task of the endoscopic image dataset. For

the evaluation, we have used performance metrics such as

DSC and mIoU, and FPS as the main evaluation metrics. We

also calculate recall, precision, F2, and overall accuracy to

support a complete set of metrics. Table II, Table III, Table IV,

Table V, and Table VI show the results of the NanoNet

model experiments using different parameters. The results are

compared with the recent SOTA computer vision methods.

The quantitative results in these tables show that NanoNet

consistently outperforms or performs nearly equal to its com-

petitors in terms of performance. The quantitative results also

show that NanoNet can produce real-time segmentation (i.e.,

produces at least close to 30 FPS for each dataset present in

the Tables). This is one of the major contributions of the work.

The other strength of the work lies in the parameter use. From

Table II, we can observe that the best performing NanoNet

(i.e., NanoNet-A) uses nearly 35 times less parameters as

ResUNet [38]. Similarly, NanoNet-C uses 225 times less

parameters as compared to that of ResUNet and also produces

better DSC, mIoU and FPS with the Kvasir-SEG.

The qualitative results are displayed in Figure 3. The first,

second, and third columns show the image, ground truth,

and prediction masks, respectively. Similarly, the name of the

dataset is provided on the left side. One example image for

each dataset is shown. The qualitative results with diversified

classes of medical datasets show that NanoNet can produce

accurate segmentation results with different types of lesions
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Fig. 3: Qualitative results of NanoNet-A on five different

datasets

(polyps) and therapeutic tools. The example images and the

prediction also show that NanoNet produces good segmenta-

tion masks for large, medium, and small polyps (see Figure 3).

From the qualitative results, we can derive and conclude that

NanoNet produces good results with small-sized polyps but

produces over-segmentation for the large-sized lesions upon

detail dissection. For future work, one could create a specific

dataset consisting of a set of small and large-sized polyps to

explore this further.

From both evaluation metrics and qualitative results, the

improvement is remarkable. Thus, the proposed NanoNet

architecture is simple, compact, and provides a robust solution

for real-time applications, as it produces satisfactory perfor-

mance despite having fewer parameters.

VI. CONCLUSION

In this paper, we proposed a novel lightweight architecture

for real-time video capsule endoscopy and colonoscopy image

segmentation. The proposed NanoNet architecture utilizes a

pre-trained MobileNetV2 model and a modified residual block.

The depthwise separable convolution is the main building

block of the network and allows the model to achieve high

performance with minuscule trainable parameters. The exper-

imental results on varied endoscopy datasets demonstrate the

strength of our model compared to state-of-the-art models

with respect to their speed and performance. The presented

model has the potential to enable easier roll out of deep

learning models in clinical systems due to fewer parameters,

competitive accuracy, and low-latency. In addition, the model

does not require any sort of initialization, post-processing, or

temporal regularization, considered as another strength of this

work. In the future, we will design an encoder lighter than the

currently used pre-trained MobilNetV2. Moreover, we aspire

to utilize the currently built segmentation module in the clinic

and study the efficacy of our designed model.
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