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Abstract
The Stochastic Point Location (SPL) problem Oommen is a fundamental learning problem that has recently found a lot of
research attention. SPL can be summarized as searching for an unknown point in an interval under faulty feedback. The
search is performed via a Learning Mechanism (LM) (algorithm) that interacts with a stochastic Environment which in
turn informs it about the direction of the search. Since the Environment is stochastic, the guidance for directions could be
faulty. The first solution to the SPL problem, which was pioneered two decades ago by Oommen, relies on discretizing the
search interval and performing a controlled random walk on it. The state of the random walk at each step is considered to
be the estimation of the point location. The convergence of the latter simplistic estimation strategy is proved for an infinite
resolution, i.e., infinite memory. However, this strategy yields rather poor accuracy for low discretization resolutions. In
this paper, we present two major contributions to the SPL problem. First, we demonstrate that the estimation of the point
location can significantly be improved by resorting to the concept of mutual probability flux between neighboring states
along the line. Second, we are able to accurately track the position of the optimal point and simultaneously show a method by
which we can estimate the error probability characterizing the Environment. Interestingly, learning this error probability of
the Environment takes place in tandem with the unknown location estimation. We present and analyze several experiments
discussing the weaknesses and strengths of the different methods.

Keywords Stochastic Point Location (SPL) · Mutual probability flux · Flux-based Estimation Solution (FES) · Last
Transition-based Estimation Solution (LTES) · Stochastic Learning Weak Estimation (SLWE) · Estimating environment
effectiveness

1 Introduction

Stochastic Point Location (SPL) is a fundamental
optimization problem that was pioneered by Oommen
[20] and ever since has received increasing research
interest [11, 28]. A Learning Mechanism (LM) attempts
to locate a unique point λ∗ in an interval while the
only assistance comes from the information provided by
a random Environment (E) which informs it, possibly
erroneously, whether the location is to the left or to the
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right of the point. The probability of receiving the correct
response from Environment is basically fixed and unknown.
The SPL problem, which was addressed by Oommen and
a few others [11, 13, 20–22, 28], is indeed a general
optimization framework where a large class of optimization
problems could be modeled as an instantiation of it, see [31]
for a survey of all the reported solutions to the SPL.

The assumption that the parameter or point location
in the SPL setting does not change over time is not the
case in many real-life dynamic systems such as web-based
applications [10]. Indeed, the probability of receiving the
correct response from Environment might be unknown and
even non-stationary. Sliding window [12] is a traditional
strategy for estimation in non-stationary Environments.
However, choosing the appropriate window size would be
crucial. When the window size is too small, the estimation
will be poor. Contrarily, if the window size is rather large,
the estimation accuracy will be degraded.

It is worth mentioning that Continuous Point Location
with Adaptive Tertiary Search (CPL-ATS) strategy [23] is
another method of solving SPL which systematically and
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recursively searches for sub-intervals that λ∗ is guaranteed
to reside in, with an arbitrarily high probability. A series
of guessing which starts with the mid-point of the given
interval estimates the point location and repeats until the
requested resolution is achieved. The given interval is
partitioned into three sub-intervals where three LA work
in parallel in each sub-interval and at least one of them
will be eliminated from further search. So, it is crucial
in CPL-ATS to construct the partition and elimination
process. This method is further developed into the CPL
with Adaptive d-ary Search (CPL-AdS) Strategy [24] where
the current interval is partitioned into d sub-intervals,
instead of three. A larger d results in faster convergence,
as a consequence the decision table of elimination process
becomes more complicated. An extension of the CPL-
AdS scheme, which could also operate in non-stationary
environments, is presented in [11]. The decision formula
is proposed to modify the decision table in [24] to resolve
certain issues of original CPL-AdS scheme.

In [35] an SPL algorithm based on Optimal Computing
Budget Allocation (OCBA), named as SPL-OCBA, is
proposed. SPL-OCBA employs OCBA and the historical
sample information to find the location of a target point.
Zhang et al. [33] integrated SPL with Particle Swarm
Optimization (PSO)- which is a popular swarm intelligence
algorithm- in a noisy Environment, in order to alleviate
the impacts of noise on the evaluation of true fitness and
increase the convergence speed.

In order to fasten the SPL scheme, the work reported
in [26] proposes to use the last two transitions of the SPL
to decide whether to increase or decrease the step size.
Intuitively, two suggestions from the Environment in a row
for going left or right will increase the step size. On the
other hand, the step size is decreased whenever the SPL
oscillates between two sates; this might be an indication that
the optimal point is located between those two states.

In [7], SPL is modified in accordance with the classical
Random Walk-based Triple level Algorithm (RWTA),
where Environment provides three kinds of responses, i.e,
right, left or unmoved.

A generalization of the hierarchical SPL scheme [28] to
the case of deceptive Environment was proposed in [34]. In
order to deal with the deceptive nature of the Environment
and still be able to estimate the optimal location, the original
tree structure found in [28] was extended by a symmetric
tree rooted at the root node and it was shown that the
SPL will converge to a leaf node in that symmetric tree in
case the Environment is deceptive, while it will converge
to the leaf node in the original tree if the Environment is
informative i.e., not deceptive.

There is a wide range of scientific and real-life problems
that can be modeled as the instances of SPL problem,
such as adaptive data encoding, web-based applications, etc.

[10]. In [6], Granmo and Oommen presented an approach
for solving resources allocation problems under noisy
Environment using a learning machine that is basically
an SPL. The basic SPL version is used to determine
the probability of polling a resource among two possible
resources at each time instant. The scheme was also
generalized to handle the case of more than one material
using an hierarchical structure. The paradigm has been
applied to determining the optimal polling frequencies of a
web-page and to solving sampling estimation problems with
constraints [5].

In [30], it is proposed to apply the SPL paradigm to solve
the stochastic root finding problem which is a well-known
stochastic optimization problem. The classical solution to
solve this problem is based on stochastic approximation.
Yazidi and Oommen show that it is possible to model
the problem as variant of the SPL with adaptive d-ary
search.

Recently, Yazidi et al. [29] showed that quantiles can
be estimated using an SPL type search. The scheme has
computational advantages as it uses discretized memory
and it is able to adapt to dynamic environments. Another
recent application of the SPL [23] is estimating the
optimal parameters of Distance Estimation Functions
(DEF). Distance Estimation (DE) [9] is a classical problem
where the aim is to estimate an accurate value for the
real (road) distance between two points which is typically
tackled by utilizing parametric functions called Distance
Estimation Functions. The authors use the Adaptive Tertiary
Search strategy [23], to calculate the best parameters for
the DEF. The proposed method uses the current estimate
of the distances, the feedback from the Environment, and
the set of known distances, to determine the unknown
parameters of the DEF. It is suggested that SPL is a better
way to determine DEF parameters rather than the traditional
Goodness of-Fit (GoF) based paradigm [9].

Furthermore, SPL can also be used to find the appropriate
dose in clinical practices and experiments [15].

A possible interesting application, which we focus on in
our ongoing research, is to determine the difficulty level
of a cognitive training method by SPL. One of the key
challenges, faced by many learning methods, is to find the
cognitive level of a participant in order of designing suitable
level of training. To the best of our knowledge, in most
legacy methods, alternating between different training levels
and scenarios is simply done by increasing the difficulty
if the task is managed, once or over a set of repeated
iterations, or by decreasing/fixing the difficulty level if
the task is not managed. This problem could be modeled
by SPL with certain conditions, such as non-stationary
point location, since the manageable difficulty level will
change as time goes for trained participant, and unknown
certainty/probability of the results. Because there are many
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factors that might affect the response to a training test that
are not related to the real ability of the participant. For
instance, Titrated delayed matching-to-sample (TDMTS)
method, which is used by behaviour analysts, could easily
be modeled as a SPL problem. TDMTS can be used to
study important variables for analyzing short-term memory
problems [1].

Spaced Retrieval Training (SRT) [16] is also a method of
learning and retaining target information by recalling that
information over increasingly longer intervals; a method
which is especially used for people with dementia [2]. For
progressive diseases like dementia, it is so important to
estimate the ability level, i.e. point location in SPL, as
quickly as possible, since the ability will rapidly change
during time, affected by training, disease, and patient’s
condition.

This paper is partially based on our previous work
published in [18]. In [18], we show that the SPL problem
can be solved by introducing two key multinomially
distributed random variables and tracking them using
the Stochastic Learning Weak Estimator (SLWE) method.
SLWE [25] figures among the most prominent estimators
for non-stationary distributions. We proposed to integrate
the SLWE as the inherent part of a more sophisticated and
accurate solution for the SPL. The recursive updated form
of the SLWE makes it a viable strategy in our problem since
the tracked distribution in the case of SLWE is updated
incrementally. Therefore, our strategy for estimation of
point location revolves around tracking the distribution
at each time step and estimating the point based upon
it. We applied different statistical operators: maximum,
expectation, and median on the estimated probability
vectors to obtain our estimates. The results indicate that, the
estimates obtained from these methods are smoother than
those obtained from legacy SPL solutions and can track
the changes more efficiently. The results, also, confirm that
using the concept of mutual probability flux between states,
according to which transitions are considered as the events
of multinomially distributed random variable, is a superior
alternative to [20]. We name the contribution as Flux-based
Estimation Solution (FES). In the simulation part of initial
work reported [18], Environment effectiveness fixed to p =
0.7 and the resolution fixed to N = 16. It was shown there
that the estimated error reduced up to 75%. In the current
paper, we do not fix the resolution and consider the case
where we can tune the resolution. A new contribution in this
paper is to introduce the Last Transition-based Estimation
Solution (LTES). This estimator is much simpler than FES
and in the case that we have no constraint on the resolution,
LTES could estimate the point location equally well with
FES.

The Environment effectiveness, i.e. probability of correct
answer, is unknown and might vary over time. As the second

contribution of this paper, we estimate the probability in
tandem with the unknown location estimation.

The remainder of this paper is organized as follows. In
Section 2, the SPL problem is defined formally. Section 3
is devoted to presenting our solution for both estimating
the point location as well as the Environment effectiveness
probability. In this perspective, Section 3.1 introduces the
concept of mutual probability flux which is formally proved
to be a stronger method compared with the last visited
state of the Markov Chain. In Section 3.2, we introduce
our estimation approach reckoned as Flux-based Estimation
Solution (FES) that is based on a subtle usage of the
concept of flux probability. We show that the LTES is a
special case of the FES method, and a comparison between
the LTES with the FES method is provided at the end of
this part. Section 3.3 deals with the related fundamental
problem of estimation of the Environment effectiveness. To
evaluate the behavior of estimators, extensive simulation
results based on synthetic data are presented and discussed
in Section 4. Experiments based on real-life data related to
online tracking of topics are presented in Section 5. Finally,
we drew final conclusions in Section 6.

2 Stochastic point location problem
in a dynamic setting

This problem considers that the learning mechanism (LM)
moves within [0, 1] interval and attempts to locate a
point (0 ≤ λ∗(n) ≤ 1) that may change over time
n. The Environment E is considered to be informative;
LM receives the right direction to the point location with
probability p∗(n) > 0.5. This probability of receiving
a correct response, which reflects the “effectiveness” of
the Environment, is unknown by LM and assumed to be
varying.

As aforementioned, we intend to track λ∗(n) in an
efficient manner. We follow the model presented in [20] and
discretize the interval and perform a controlled randomwalk
on it, characterized by λ(n). More precisely, we subdivide
the unit interval into N + 1 discrete points

{0, 1/N , 2/N , · · · , (N − 1)/N , 1},

where N is called the resolution of the learning scheme. Let
λ(n) be the current location at time step n:

– If E suggests increasing λ(n):
λ(n + 1) = min(λ(n) + 1/N , 1)

– If E suggests decreasing λ(n):
λ(n + 1) = max(0, λ(n) − 1/N )

Hereafter, the binary function E(n, i) stands for the
Environment answer at step n and location λ(n) = i/N ,
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where E(n, i) = 1 refers to the Environment suggestion to
increase λ(n) and E(n, i) = 0 refers to the Environment
suggestion to decrease λ(n). Let Z be an integer value
between 0 and N − 1, based on above rules, if Z/N ≤
λ∗(n) < (Z + 1)/N at time n we have:

Pr(E(n, i) = 1) = p∗(n) i f 0 ≤ i ≤ Z

= q∗(n) i f Z < i ≤ N

Pr(E(n, i) = 0) = q∗(n) i f 0 ≤ i ≤ Z

= p∗(n) i f Z < i ≤ N (1)

Where q∗(n) = 1 − p∗(n).
Based on the results presented in [20], in the stationary

case in which λ∗(n) = λ∗, this random walk will converge
into a value arbitrarily close to λ∗, when N → ∞ & n →
∞. However, the above asymptotic results are not valid for
the non-stationary SPL. In practice, we might experience
some constraints, both on time n ≤ T and on the resolution
N ≤ R. Throughout the rest of this paper, we pursue better
estimates for λ∗(n) than λ(n).

3 Estimation strategies

In this section, we first show the superiority of the Last
Transition-based Estimation Solution (LTES) over the last
location estimate. Then, a multinomially distributed random
variable is considered. We track its probability distribution
with SLWE method [25] and estimate the λ∗(n) from
the estimated distributions. Then, we explain how we can
estimate the probability p∗(n) using the estimation of λ∗(n).

In [18], we showed that tracking probability distribution
for different state transitions, instead of the point locations,
yields a better performance. The reason is that the
estimation by Markov chain will have many transitions
around the true and unknown λ∗(n). In the following, we
prove that using the concept of mutual probability flux is
a stronger tool for solving the SPL problem than using the
current point location. In the proof, we consider the static
case, i.e. λ∗(n) = λ∗.

3.1 Superior accuracy with the concept of mutual
probability flux

For simplicity, let xi = i/N for i = 0, 1, . . . , N . So,
the Markov chain states will be the possible value of
xi for 0 ≤ i ≤ N which belongs to the set of
values {0, 1/N , 2/N , · · · , 1}. Let πi be the stationary (or
equilibrium) probability of the chain being in state xi . Then,

the equilibrium probability distribution vector will be � =
[π0, π1, · · · , πN ]T .

We know that the Markov chain is an instantiation of the
birth-death process.1 It is also known that, such a process
is a time reversible Markov chain, i.e. satisfies the detailed
balance equation:

πi Mi, j = π j M j,i for all i �= j

where Mi, j ’s are transition probabilities. For a complete
overview about time reversibility, we refer the reader to an
excellent book by Kelly [14]. The following simple proof
shows time reversibility of our Markov chain.

If |i − j | > 1 for 0 ≤ i, j ≤ N , i.e. xi and x j are
not adjacent, then the detailed balance equation is obviously
true. For a given i , we can divide the states into two parts,
L = {xk |k ≤ i} and R = {xk |k > i}. Since the Markov
chain is a birth-death chain, the only passage between the
two parts is the transition xi to xi+1 or xi+1 to xi . The flow
from L to R is πi Mi,i+1 and from R to L is πi+1Mi+1,i .
Since � is stationary, the total flow must be 0, which
concludes what is desired:

πi Mi,i+1 = πi+1Mi+1,i . (2)

Let x+
i denotes the event according to which the Markov

chain makes a transition from xi to xi+1 or from xi+1 to xi .
The informed reader would observe the latter event can be
related to the concept of flux probability [19, Chapter 8.4].
In fact, in the literature, the flux probability between two
neighboring states xi and xi+1 is given by Mi,i+1πi which
represents the absolute probability of observing a transition
from xi to xi+1. We can see that the probability of x+

i
can be described as the sum of two flux probabilities;
namely the flux probability corresponding to transiting from
xi to xi+1, and the flux probability of transiting in the
opposite direction from state xi+1 to xi . In other words, the
probability of the event x+

i , which is shown by π+
i , equals

to the following sum

π+
i = Mi,i+1πi + Mi+1,iπi+1. (3)

We call this quantity as mutual probability flux between
states xi and xi+1. In the light of this explanation, we call
�+ = [π+

0 , π+
1 , · · · , π+

N−1]T the mutual flux probability
vector between two neighboring states.

Now we intend to investigate the relation between � and
�+. Let xZ ≤ λ∗ < xZ+1 and e = p

q > 1.2 As a result

1Since the only possible transitions are moving one state to the left or
right.
2Suppose the Environment is stationary; λ∗(n) = λ∗, p∗(n) = p >

0.5, and q∗(n) = q = 1 − p.
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of (2) and referring to relations in (1), the following balance
equations hold.

πi = e.πi−1 whenever i ≤ Z (4)

In the case i ≤ Z we have Mi,i+1 = p and Mi+1,i = q .

πi = πi−1

e
whenever i > Z + 1 (5)

In the case i > Z + 1 we have Mi,i+1 = q and Mi+1,i = p.
Finally, since we have MZ ,Z+1 = p and MZ+1,Z = p:

πZ+1 = πZ (6)

These relations show that values are increasing from π0 to
πZ and decreasing from πZ+1 to πN ; and therefore, πZ and
πZ+1 take the maximum value.

Let λtr(n) be the mean of last two states, i.e. λtr(n) =
λ(n−1)+λ(n)

2 . In this case, π+
i would be the stationary prob-

ability of λtr(n) chain being in transition x+
i . We can easily

see that the probabilities of �+ = [π+
0 , π+

1 , · · · , π+
N−1]T

are larger for indexes around the λ∗.
Whenever i < Z , using (3), we have

π+
i = pπi + (1 − p)πi+1 = p

q

p
πi+1 + qπi+1.

and therefore

π+
i = 2qπi+1 whenever i < Z . (7)

In the case i = Z we have:

π+
Z = pπZ + pπZ+1 = 2pπZ , (8)

and finally whenever i > Z

π+
i = qπi + pπi+1 = qπi + p

q

p
πi ,

π+
i = 2qπi whenever i > Z . (9)

Up to this point, we have showed the relation between �

and �+. Now, to show the convergence of �+, we just need
to prove π+

Z is greater than π+
i for i �= Z (i.e. i < Z and

i > Z ).

Case 1: i < Z Based on (4), (5), and (6), we know that
πZ > πi for i < Z . We also know that 2q < 1, when
p > 1/2; and therefore, 2qπi < πZ . However, we showed
that 2qπi = π+

i , and as a result:

π+
i = 2qπi+1 < πZ < 2pπZ = π+

Z

Case 2: i > Z Again, we observe that πZ > πi for i > Z .
So, we have

π+
i = 2qπi < πi < πZ < 2pπZ = π+

Z .

Thus, we have proved that π+
i < π+

Z for i �= Z , which
means that, the transition has higher probabilities at π+

Z and
lower values at other locations.

Since π+
Z is greater than πZ , we expect that the λtr(n)

estimator, or LTES, performs better than λ(n). This can be
investigated by comparing the expected estimation error of
SPL and LTES. Let ESPL be the expected estimation error
for SPL and let ELTES be the expected estimation error for
the LTES. For the sake of simplicity, we suppose that λ∗ is
in the middle of the interval [Z/N , (Z+1)/N ]which means
λ∗ = Z+(Z+1)

2N .

ESPL =
∑

i

πi | λ∗ − xi |

=
∑

i

πi | Z + (Z + 1)

2N
− i

N
|

=
∑

i �=Z

πi | Z + (Z + 1)

2N
− i

N
|

+πZ | Z + (Z + 1)

2N
− Z

N
|

(10)

On the other hand for the LTES we have

ELTES =
∑

i

π+
i | λ∗ − x+

i |

=
∑

i

π+
i | Z + (Z + 1)

2N
− i + (i + 1)

2N
|

=
∑

i �=Z

π+
i | Z + (Z + 1)

2N
− i + (i + 1)

N
|

+π+
Z | Z + (Z + 1)

2N
− Z + (Z + 1)

2N
|

=
∑

i �=Z

2qπi | Z + (Z + 1)

2N
− i + (i + 1)

2N
| (11)

As for large N , 2i+1
2N ≈ i

N , we can write

ELTES =
∑

i �=Z

2qπi | Z + (Z + 1)

2N
− i

N
| .

From the above equations we get:

ESPL >
∑

i �=Z

πi | Z + (Z + 1)

2N
− i

N
|

> 2q

⎛

⎝
∑

i �=Z

πi | Z + (Z + 1)

2N
− i

N
|
⎞

⎠

= ELTES (12)
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The last inequality is due to the fact that 2q < 1.
Therefore we conclude that the expected estimation error

for LTES is smaller than SPL for large enough N . The
results in Section 4 confirm the discussion above.

3.2 Flux-based estimation solution (FES)

Let X+(n) denote a multinomially distributed variable over
the possible transitions x+

i , i = 0, . . . , N − 1; where the
concrete realization of X+(n) at time step n is λtr(n). Please
note that the distribution of X+(n) can be explained using
the mutual flux probability vector �+(n). The portion of
transitions defined as P(X+(n) = x+

i ) = π+
i (n), i =

0, . . . , N − 1.
The SLWE method estimates the probabilities

�+(n) = [π+
0 (n), π+

1 (n), . . . , π+
N−1(n)]T

by maintaining a running estimate S(n) = [s0(n), s1
(n), · · · , sN−1(n)]T of �+(n) where si (n) is the estimate
of π+

i (n) at time n. The updating rule is (the rules for other
values of s j (n), j �= i , are similar):

si (n + 1) ← αsi (n) + (1 − α) when λtr(n) = x+
i

← αsi (n) when λtr(n) �= x+
i (13)

0 < α < 1 is a user-defined parameter for updating the
probability distribution. The intuition behind the updating
rule is that if λtr(n) �= x+

i we should decrease our estimate
si (n) which is given by the second part of the updating
rule. Similarly, if λtr(n) = x+

i we should increase our
estimate which is given by the first part of the updating
rule.

It is worth mentioning that in [25], X (n) = X ,
i.e. it is not modeled as a function of time and as a
result �(n) = [π0, π1, · · · , πN ]T is time-invariant. The
theorems and results are also proven in the asymptotic case
when n → ∞ which is in contradiction with the non-
stationary assumption for Environment. It is discussed that
in practice the convergence takes place after a relatively
small value of n. For instance, if the Environment switches
its multinomial probability vector after 50 steps, the SLWE
could track this change. However, we prefer to use the
notation in a way that the point location, and thereafter,
the multinomially probability vector is clearly shown to
be non-stationary. SLWE converges weakly, independently
of α value, however the rate of convergence is a function
of α. Based on previous section where we showed πi <

πZ , i �= Z , and as S(n) converges to �+(n), we are able to
estimate the point location, λ∗(n), by finding the maximum
probability, i.e.

z = argmaxi (si (n))

λmax(n) = x+
z (14)

Note that the maximum value refers to a pair that the LM
transits to the most. For non-unique z, the last visited pair
with the max probability value is chosen (see Algorithm 1).

As n → ∞, and for appropriate choices of α → 1;
S(n) → �+(n). Thus, (14) reduces to z = Z , as we know
that π+

Z is the largest component in the vector �+(n). Then,
the error will be ≈ 0 as time goes to infinity.

As a side remark, if α ≤ 0.5 and λtr(n) = x+
i , then

si (n) ≥ 0.5 for event x+
i . In other words, λmax(n) = λtr(n)

if α ≤ 0.5. Because of this, we set α > 0.5 in our
simulations to avoid repeating the same estimation.

3.2.1 LTES as a special case of FES

The informed reader would remark that the FES scheme
needs to keep track of the maximum component of the
mutual flux probability vector. For each component, the
middle point of the corresponding pair of states is used as
an estimate of the point location. A special case of the FES
method is to operate without memory, and in this case, the
maximum component of the mutual flux probability vector
will simply correspond to the middle point of the last visited
pair of states. This is also true regarding Algorithm 1, where
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we see that if we replace α by 0, then FES reduces to the
LTES algorithm.

A potential strength of LTES (λtr) is that we only need
to tune the parameter, namely N , while the FES estimator
(λmax ) contains two parameters N and α. However, both
parameters are related to how rapidly the estimator adjusts
to changes in the Environment. This suggests that if
we are able to tune over N , the LTES approach and
Oommen’s method could perform equally well as the more
sophisticated algorithm with weak estimation.

In the following, we show how to estimate the p∗(n)

using λtr and weak estimators. The Oommen estimate i.e.
λ(n) can not be a basis for estimation of p∗(n). The reason
is that we increase or decrease the probability by comparing
the estimation of point location λ̂(n) and Environment
suggestion E(n, i) at point λ(n). In Oommen’s method
since λ̂(n) = λ(n) the probability estimation always would
be 0.5.

3.3 Estimation of environment effectiveness
probability

To estimate p∗(n) based on the estimation of λ∗(n), we use
simple binomial weak estimator. Let λ̂(n) be the estimation
of λ∗(n). We adjust over γ which is the parameter for
binomial weak estimator (see Algorithm 2). Since the
probability assumed to change over [0.5, 1], the initial guess
of the probability is set to p̂(0) = 0.75.

– If (λ(n) < λ̂(n) and E(n, i) = 1) OR (λ(n) > λ̂(n)

and E(n, i) = 0):

p̂(n) = 1 − γ (1 − p̂(n − 1))

– Else if (λ(n) < λ̂(n) and E(n, i) = 0) or (λ(n) > λ̂(n)

and E(n, i) = 1):

p̂(n) = max(0.5, γ p̂(n − 1)) (15)

– Else if (λ(n) = λ̂(n)):

p̂(n) = p̂(n − 1)

Basically, the probability p̂(n) increases by a multiplica-
tive parameter γ if the Environment direction E(n, i) agrees
with the estimation of point location, λ̂(n), and vice versa;
the opposite probability (1 − p̂(n)) increases by a mul-
tiplicative factor γ if they disagree. Since we know that
p∗(n) change over [0.5, 1], we restrict our estimations to
this domain by setting the lower bound 0.5 in (15).

4 Experimental results

In this section, we resort to simulation experiments to
evaluate the performance of the estimators suggested in
this paper. As mentioned before, both λ∗(n) and p∗(n),
which are not known by LM, could be either constant
or dynamic. In this regard, there are many possibilities
to define the Environment in which two general types
of Environments are considered. Those Environments can
show the characteristics of estimators in the best manner.

– Both λ∗(n) and p∗(n) change after a fixed amount
of time. So their values are fixed for a while until a
sharp change happens. We use the sample abbreviation
SWITCH-1000-10000 for this type, which means λ∗(n)

changes after 1000 steps and p∗(n) changes after 10000
steps. The next value of λ∗(n) is randomly chosen from
[0, 1], and for p∗(n) the random value is chosen from
[0.5, 1].

– Both λ∗(n) and p∗(n) vary gradually as continuous
functions of time. We consider the changes as sine
functions. A sample abbreviation for this type would
be SINE-1080-10080, which means that λ∗(n) has a
period of 1080 and p∗(n) has a period of 10080. More
precisely, λ∗(n) = 0.5 + 0.5 sin((n/540)π) where the
sine argument changes by π/180 radians every 3 steps.
Therefore, period equals 3 · 360 = 1080. Moreover,
p∗(n) = 0.75 + 0.25 sin((n/5040)π) where the sine
argument changes by π/180 radians every 28 steps; so
the period equals 28 · 360 = 10080.

The key aspects of presented estimators can be discussed
through eight cases that highlight the salient features of our
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Fig. 1 SWITCH-1000-1000. In
each of the three sub-figures,
one of the max, med, and exp
along with the Oommen’s
method λ(n) and the transition
λtr are depicted

scheme. For the sake of clarity, these cases are classified
into seven headings which are introduced briefly in the
following.

The first Section 4.1 presents the initial settings when
both λ∗(n) and p∗(n) change moderately. Cases SWITCH-
1000-1000 and SINE-1080-1080 are presented in this part
in Figs. 1 and 2 respectively. Next, in Section 4.2 the
effect of faster changes in λ∗(n) and p∗(n) are addressed
through cases SWITCH-100-100 (Fig. 3) and SINE-360-
360 (Fig. 4). In the third Section 4.3 the effect of changing

rate of p∗(n) on estimating λ∗(n) in SWITCH dynamic
is examined. To do so, the changes of λ∗(n) are fixed
on 1000, and two alternative cases SWITCH-1000-100
(Fig. 5) and SWITCH-1000-10000 (Fig. 6) are compared
with SWITCH-1000-1000 (Fig.1). Additionally, in Fig. 7
a trace plot for tracking λ∗(n) via LTES (λtr) is presented
and the behavior of the estimator is discussed through
three cases SWITCH-1000-100, SWITCH-1000-1000, and
SWITCH-1000-10000. Table 1 summarizes the choices of
tuning parameters resulting into the minimum error for λtr

Fig. 2 SINE-1080-1080. In
each of the three sub-figures,
one of the max, med, and exp
along with the Oommen’s
method λ(n) and the transition
λtr are depicted
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Fig. 3 SWITCH-100-100. In
each of the three sub-figures,
one of the max, med, and exp
along with the Oommen’s
method λ(n) and the transition
λtr are depicted

and λmax to the SWITCH cases. The fourth Section 4.4
focuses on the SINE dynamic and presents the results for
the effect of changing rate of p∗(n) on estimating λ∗(n).
Similarly, the periods of sine function at λ∗(n) are fixed
on 1080, and two alternative cases SINE-1080-360 (Fig. 8)
and SINE-1080-10080 (Fig. 9) are compared with SINE-
1080-1080 (Fig. 2). Table 2 summarizes the same data as
Table 1 for SINE cases. Fifth Section 4.5 is devoted to study

the effect of relation between λ∗(n) and p∗(n) dynamics on
the estimators. Figure 10 depicts tracking λ∗(n) throughout
the two scenarios SINE-1080-1080 and SINE-1080-1080-
Shift where the second scenario has a shift in the phase
of λ∗(n). The differences in the tracking performance are
discussed in detail. Table 3 is assisting the discussion in
this section. Estimation of Environment effectiveness is
addressed in the last two sections. In Section 4.6, Figs. 11

Fig. 4 SINE-360-360. In each
of the three sub-figures, one of
the max, med, and exp along
with the Oommen’s method
λ(n) and the transition λtr are
depicted
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Fig. 5 SWITCH-1000-100. In
each of the three sub-figures,
one of the max, med, and exp
along with the Oommen’s
method λ(n) and the transition
λtr are depicted

and 12 present the estimation error for various SWITCH
and SINE cases respectively. Moreover, Table 4 summarizes
the choices of tuning parameters resulting into the minimum
error while Environment effectiveness is estimated. In order
to compare the effect of tuning parameters, in Table 4, the
estimation error for p∗(n) with N = 5 and α = 0.9 is
reported as well. Finally, Section 4.7 analyses the results
of estimation of Environment effectiveness for the tracking
process depicted in Figs. 13 and 14.

It is worth mentioning that there are two main other
approaches to solve the SPL problem which we do not
compare with here. The first approach was pioneered by
Yazidi et al. [28] and is based on arranging the search space
into a tree structure. The second main approach is the CPL-
ATS strategy [23, 24] and is based on diving the search

interval into d sub-intervals and then recursively eliminating
at least one sub-interval, thus shrinking the search space. We
did not compare with these methods because in contrast to
our solution and to Oommen’s original SPL solution [20],
much more queries are required per iteration. In fact, when
it comes to the hierarchical solution [28], three queries are
required in the case of a binary tree structure while the
CPL-ATS strategy requires as many queries as the number
d of sub-interval. Therefore, it would be inappropriate to
compare against our method and Oommen’s original SPL
which use only one query per iteration. Furthermore, the
CPL-ATS strategy suffers from the fact that is not suitable
for dynamic Environment as it eliminates irreversibly parts
of the search space at each epoch. Before proceeding to
the experimental results, it is necessary to clarify some

Fig. 6 SWITCH-1000-10000.
In each of the three sub-figures,
one of the max, med, and exp
along with the Oommen’s
method λ(n) and the transition
λtr are depicted
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Fig. 7 a shows how λtr tracks
λ∗(n) in case SWITCH-1000-
100. b and c show the same for
SWITCH-1000-1000 and
SWITCH-1000-10000
respectively. In all cases, a slice
of Environment from n = 60000
to n = 90000 are represented

general issues regarding the reported data and figures.
First, some figures shows the estimation error for a variety
of tuning parameters N and α. Below, we refer to this
as “error plots”. In all experiments we have considered
α ∈ [0.6, 0.7, 0.8, 0.9, 0.95, 0.99], however, in the sake of
clarity, we only depict α ∈ [0.6, 0.9, 0.95] cases in the error
plots.

Along with λmax(n) estimation, λmed(n) and λexp(n)

estimations are presented in [18] respectively as the median
and expectation of probability vector. Formally, λmed(n) and
λexp(n) are defined by

– the expected value of the X+(n) at step n

λexp(n) =
N−1∑

i=0

x+
i si (n), (16)

– the median of the X+(n) at step n:

λmed(n) = x+
z where z is the index satisfying:

z∑

i=0

si (n) ≥ 0.5 and
N−1∑

i=z

si (n) ≥ 0.5. (17)

Intuitively, it makes sense to estimate λ∗(n) by the most
visited transition which is given by λmax(n). However, if the
system varies rapidly, the probability vector estimate S(n)

will be quite poor. In such a case, taking the expectation
might be a more robust alternative, as given by λexp(n).

Although the main proposal of this paper is λtr(n) and
λmax(n), in order of comparison, we include error plots for
λ(n), λmed(n) and λexp(n).

The presented plots in Section 4.5, show estimation error
of p∗(n) as a function of tuning parameter γ . Since the main
objective of this paper is to track λ∗(n), and there are many

Table 1 Summary of the choices of tuning parameters resulting into minimum error for λtr and λmax in SWITCH experiments. The smallest error
value in each experiment is represented in bold font

SWITCH-

Estimator
1000–1000 100–100 1000–100 1000–10000

N Error N Error N Error N Error

Oommen(λ(n)) 65 0.06315 25 0.1069 90 0.03797 80 0.05027

LTES(λtr) 50 0.06135 20 0.10258 80 0.03671 65 0.04879

FES(λmax) α = 0.6 50 0.06098 20 0.1021 80 0.03646 65 0.04843

α = 0.7 50 0.06069 20 0.10253 80 0.03628 65 0.04806

α = 0.8 50 0.06 20 0.10349 80 0.03586 65 0.047312

α = 0.9 50 0.05914 20 0.10916 75 0.03539 65 0.04589

α = 0.95 50 0.05928 15 0.1233 75 0.0355 50 0.04521

α = 0.99 35 0.07094 10 0.20845 40 0.0406 45 0.06035
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Fig. 8 SINE-1080-360. In each
of the three sub-figures, one of
the max, med, and exp along
with the Oommen’s method
λ(n) and the transition λtr are
depicted

parameters in estimation of p∗(n), we restrict the plots to the
best choices of N in λtr, and (N and α) in λmax. However,
we added minimum estimation error for p∗(n) when N = 5
and α = 0.9 to discuss the effect of resolution on estimation
of p∗(n).

To measure the estimation error in the estimation of
λ∗(n) and p∗(n), the Mean Absolute Error (MAE) will be
used. For λ∗(n) this becomes

MAEλ = 1

T

T∑

n=1

| λ̂(n) − λ∗(n) | (18)

where T is the total number of time steps and λ̂(n) is the
estimate at time step n. Similarly, for p∗(n) this becomes

MAEp = 1

T

T∑

n=1

| p̂(n) − p∗(n) | (19)

where p̂(n) is the estimate at time step n.
Finally, to remove any Monte Carlo error in the results,

we ran a total of 100 experiments of length T = 105 for all
cases.

Fig. 9 SINE-1080-10080. In
each of the three sub-figures,
one of the max, med, and exp
along with the Oommen’s
method λ(n) and the transition
λtr are depicted
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Table 2 Summary of the choices of tuning parameters resulting in minimum error for λtr and λmax in SINE Experiments. The smallest error value
in each experiment is represented in bold font

E–NIS

Estimator
1080–1080 360–360 1080–360 1080–10080

N Error N Error N Error N Error

Oommen(λ(n)) 80 0.04791 35 0.08634 65 0.05502 40 0.09244

LTES(λtr) 80 0.04682 35 0.08425 60 0.05363 40 0.08952

FES(λmax) α = 0.6 80 0.0471 35 0.08533 60 0.05377 40 0.08937

α = 0.7 80 0.04749 35 0.08659 60 0.05398 40 0.08935

α = 0.8 75 0.0485 35 0.08965 60 0.0548 35 0.08959

α = 0.9 75 0.05106 35 0.09706 60 0.05733 35 0.09085

α = 0.95 75 0.05578 35 0.11246 55 0.06228 30 0.09474

α = 0.99 65 0.111 20 0.31157 30 0.12002 25 0.14673

4.1 Moderate changes of both λ∗(n) and p∗(n)

In this section both λ∗(n) and p∗(n) change moderately.
Figure 1 shows the estimation error as a function of
resolution for some choices of α. At any resolution, λtr has
lower estimation error than λ(n) and indeed, all the cases
λmax, λmed, and λexp perform more efficiently than λ(n) for,
at least, a specific choice of α.

We also note that, the higher resolution will not result in
a smaller error in all the cases. For instance, for λ(n), the
estimation error increases after resolution N = 65 in which
there is a minimum of errors. As it is represented in Table 1,
the minimum error for λ(n) equals e = 0.063149 when
N = 65. We reach error e = 0.061353 for λtr at resolution
N = 50. The best error for λmax is e = 0.059138 when
N = 50 and α = 0.9. The minimum error over all scenarios
is e = 0.058559 which is achieved by λmed estimator when
N = 50 and α = 0.95.

Figure 2 shows the estimation error as a function of
resolution for some choices of α for SINE-1080-1080. All
the curves have an optimum resolution point in which any
higher resolution cause higher estimation error. In the SINE-
1080-1080 case, λmax and λtr are best satisfying estimators.
λtr with minimum error e = 0.04682 at N = 80, slightly
outperforms λmax with minimum error e = 0.047095 at
(N = 80, and α = 0.6).

4.2 Fast changes of both λ∗(n) and p∗(n)

Here the effect of faster changes in λ∗(n) and p∗(n) are
addressed through cases SWITCH-100-100 and SINE-360-
360.

Figure 3 is devoted to SWITCH-100-100 that both λ∗(n)

and p∗(n) randomly switch to a new value in their domain.
As expected, comparing the error with the SWITCH-1000-
1000 case, the estimation errors are higher. From Table 1
we see that the minimum error for the estimators λ(n), λtr,

and λmax are e = 0.1069, e = 0.10258, and e = 0.1021
respectively. The minimum error in case SWITCH-100-100
equals to e = 0.1021 and is achieved by λmax when N = 20
and α = 0.6

As expected, we see that faster changing Environment
could be tracked more accurately with smaller values of
resolution and α. For instance, compare resolution N = 20
in this case, for λmax, to N = 50 in case SWITCH-1000-
1000. The same comparison between α = 0.9 and 0.6 shows
that to track faster changing Environment we must rely on
less on memory.

In Fig. 3, we observe that the best choice of α is
dependent on the resolution; for example, if N = 5, the
λmax, λmed, and λexp with α = 0.95 and α = 0.9 are superior
to the choices with α = 0.6. However N = 15, α = 0.6
would be a more desirable option.

Regarding fast changes, Fig. 4 is devoted to SINE-360-
360 in which both λ∗(n) and p∗(n) change continuously
as a sine function with period 360 degree. The minimum
error in this case equals e = 0.08425 that is achieved by
λtr at N = 35. Again, the simpler estimator λtr outperforms
λmax with minimum error e = 0.085329 when (N =
35 and α = 0.6). Note that, the λmax estimator is more
efficient than λ(n) that has minimum error e = 0.08634
when N = 35. In comparison with SINE-1080-1080, the
estimated error is higher and the best resolution is much
smaller in case SINE-360-360. Compare the best resolution
N = 35 to the case SINE-1080-1080 which equals to
N = 80. Notice that α values closer to 1, produce weaker
estimations.

4.3 Effect of changing rate of p∗(n) on estimation
of λ∗(n) in SWITCH cases

In this section the effect of changing rate of p∗(n)

on estimating λ∗(n) in SWITCH dynamic is examined.
Two alternative cases SWITCH-1000-100 (Fig. 5) and
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SWITCH-1000-10000 (Fig. 6) are compared to SWITCH-
1000-1000 (Fig.1). In Fig. 7 a trace plot for tracking λ∗(n)

through LTES (λtr) is presented and the behavior of the
estimator is discussed. Additionally, Table 1 summarizes the
choices of tuning parameters resulting into the minimum
error for λtr and λmax to the SWITCH cases.

From Fig. 5 and Table 1, we observe that estimators
perform better in SWITCH-1000-100 in comparison with
SWITCH-1000-1000. For instance, compare the minimum
error of estimator λtr in case SWITCH-1000-100 which is
e = 0.03671 for N = 80 with e = 0.06135 for N = 50 in
case SWITCH-1000-1000.

The minimum error in various settings is e = 0.03538
which is achieved by λmed estimator when N = 75 and
α = 0.9.

Figure 6 presents the case SWITCH-1000-10000 where
p∗(n) changes ten times slower than SWITCH-1000-1000.
It is observable that estimators show a better performance in
case SWITCH-1000-10000 compared with SWITCH-1000-
1000. As presented in Table 1 we see that the minimum
error for the estimators λ(n), λtr, and λmax are e = 0.05027,
e = 0.048795, and e = 0.04521 respectively. The best
estimator is λmax when α = 0.95 and N = 50.

In summary, the results, as shown in Figs. 5, 6, and
Table 1, indicate that when the Environment effective-
ness changes fast, the minimum estimation error will be
smaller. Compare minimum errors e = 0.03539 to e =
0.05914 and e = 0.04521 for cases SWITCH-1000-100,
SWITCH-1000-1000, and SWITCH-1000-10000 respec-
tively. However, the error in SWITCH-1000-10000 when
p∗(n) changes very slow is better than moderate changes in
SWITCH-1000-1000. This result is somewhat counterintu-
itive. In order to understand it, we compare the trace plots of
SWITCH-1000-100, SWITCH-1000-1000, and SWITCH-
1000-10000 together in Fig. 7.

Figure 7 shows tracking λ∗(n) under optimal choices
of parameters for λtr in order to study the impact of
Environment effectiveness on estimation of λ∗(n). For
the sake of simplicity, suppose there is a same chain
λ∗(n) in all the cases. Consider λ∗(n) along with three
Environment effectiveness chains p∗

f (n), p∗
m(n), and p∗

s (n),
for SWITCH-1000-100 (fast changes), SWITCH-1000-
1000 (moderate changes), and SWITCH-1000-10000 (slow
changes) respectively, in which their average value are
approximately the same i.e.

1

T

T∑

t=1

p∗
f (n) ≈ 1

T

T∑

t=1

p∗
m(n) ≈ 1

T

T∑

t=1

p∗
s (n).

Consider SWITCH-1000-10000 with p∗
s (n) and let the

estimation of λ∗(n) be λ̂(n); suppose the following three
scenarios:

1. The Environment effectiveness is close to 1, see n =
60000 to n = 70000 in Fig. 7c. λ∗(n) is easily tracked
in this segment and the estimation λ̂(n) is satisfactory.

2. The Environment effectiveness is slightly distant from
1, but it is informative, see n = 70000 to n = 80000
in Fig. 7c where p∗

s (n) value is close to 0.8. Because
the information from Environment is somewhat faulty,
tracking the point location in this segment is more
difficult, but still satisfactory.

3. The Environment effectiveness has a value close to 0.5,
see n = 80000 to n = 90000 in Fig. 7c. The estimation
λ̂(n) is unsatisfactory and it is almost a random chain
with a lot of fluctuations. The reason is that estimator
does not receive new information from Environment
and after a short time λ̂(n) will deviate from λ∗(n).

In summary, we keep the well estimation in the first
segment, the estimation performance is reduced in the
second segment, but still satisfactory. Within the third
segment, possibility of error is rather high, and λ̂(n)

fluctuates at a distant point from λ∗(n). For p∗
s (n) segments

like the last one is discouraging, since we remain in an
unsatisfactory situation for a long period of time.

Alternatively, consider the Environment effectiveness
p∗
f (n), Fig. 7a. It is possible to detect segments like the

above three segments but with a much shorter length. So,
the behavior of λ̂(n) in each of them is not long lasting.
Faster changes make the behavior of estimators more like
the second segment, with fluctuations around λ∗(n).

In Fig. 7b; i.e. SWITCH-1000-1000 case, the error is
the highest among the three cases. In this case, p∗

m(n) and
λ∗(n) are changing at the same time. So, the changes of
p∗
m(n) has no positive effect on estimation of λ∗(n). The

best resolution in this case equals N = 50, which suggests
more changes than SWITCH-1000-10000 with N = 65 and
SWITCH-1000-100 with N = 80. This smaller resolution,
produces a higher error. To investigate the negative effect
of the simultaneous changes more, we run the SWITCH-
1000-1000 case where there is a 500 steps delay between
λ∗(n) and p∗

m(n) changes. That reduces the minimum error
to e = 0.05144 for N = 65, and approves the negative
effect of simultaneous changes in SWITCH cases.

The main observations in Fig. 7 are:

– Tracking λ∗(n) is heavily affected by Environment
effectiveness. In Fig. 7c, there are no fluctuations when
p∗
s (n) ≈ 1, however, when p∗

s (n) ≈ 0.8, the estimator
fluctuates more around the optimal λ∗(n), and then
when p∗

s (n) is slightly larger than 0.5 the fluctuations
are much more bigger.

– Faster changes in Environment effectiveness leads to
better estimations of λ∗(n). Note that, the rate of
changes must be regulated in a way that λ̂(n) can
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Fig. 10 SINE-1080-1080. a and
b subfigures show how the
estimation tracks λ∗(n) when
the argument of sine function is
the same by λtr and λmax ,
respectively. The c and d
sub-figures show the same when
the argument of sine function
differ by π/2

converge to λ∗(n) when Environment effectiveness is
close to 1.

– When λ∗(n) and p∗(n) changes together, it is much
harder to track λ∗(n).

– Since the average values of Environment effectiveness
in three cases are supposed to be the same, and the most
estimation error is produced in the third segment, there
is a better performance in case p∗

f (n) in total.

From Table 1, we observe that the best estimations
belong to the case SWITCH-1000-100 and estimator λmax.

4.4 Effect of changing rate of p∗(n) on estimation
of λ∗(n) in SINE cases

This section focuses on the SINE dynamic and presents the
results for the effect of changing rate of p∗(n) on estimating
λ∗(n). Two alternative cases SINE-1080-360 (Fig. 8) and
SINE-1080-10080 (Fig. 9) are compared with SINE-1080-
1080 (Fig. 2), and Table 2 summarizes the same data as
Table 1 for SINE cases.

As reported in Table 2, the best estimation error for
case SINE-1080-360 (Fig. 8) is achieved through λtr at
N = 60 which equals to e = 0.05363; compare to the

best estimation error for SINE-1080-1080 that equals e =
0.04682. In contrast to the SWITCH case, we see that faster
changes of probability does not result in smaller estimation
errors. We later explain that along with the rate of changes,
another factor which plays a role is the phase of changes.
In SINE-1080-1080 both λ∗(n) and p∗(n) are in phase
but in SINE-1080-360 they have different periods and can
not be in phase. The effect of this will be addressed in
Section 4.5 in details. The final case, SINE-1080-10080 in
Fig. 9, provides a more clear insight.

In SINE-1080-10080, the changes are asymmetric and
the Environment effectiveness varies slower. The minimum
estimation error equals e = 0.08935 and occurs for λmax

at (N = 40, α = 0.7). In this case, we observe that λmax

estimator slightly outperforms λtr. The minimum error for
λtr is e = 0.08952 at N = 40. Moreover, λexp results
the best minimum error, e = 0.08835 when N = 35 and
α = 0.6

By comparing SINE-1080-10080 with SINE-1080-1080
and SINE-1080-360, we observe that its estimation error is
the weakest.

If only SINE-1080-360 and SINE-1080-10080 are
compared with together, we detect a better estimation at

Table 3 Summary of SINE-1080-1080 alternatives

n range θ range λ∗(n) range p∗
1(n) range p∗

2(n) range

n1 − n2 (2kπ + π/4) − (2kπ + 3π/4) [0.85, 1] [0.93, 1] [0.57, 0.93]
n2 − n3 (2kπ + 3π/4) − (2kπ + 5π/4) [0.15, 0.85] [0.57, 0.93] [0.93, 1]
n3 − n4 (2kπ + 5π/4) − (2kπ + 7π/4) [0, 0.15] [0.5, 0.57] [0.57, 0.93]
n4 − n5 (2kπ + 7π/4) − (2(k + 1)π + π/4) [0.15, 0.85] [0.57, 0.93] [0.5, 0.57]
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Fig. 11 Estimation of p∗(n)

with binomial weak estimation
via two alternative choices of
λ∗(n) estimations (λmax and λtr)
for SWITCH-1000-1000 a,
SWITCH-100-100 b,
SWITCH-1000-100 c, and
SWITCH-1000-10000 d

faster changing Environment effectiveness. While SINE-
1080-1080 is not following this hypothesis. In contrast
to SWITCH cases, where moderate changes of p∗(n)

in SWITCH-1000-1000 show the weakest performance,
moderate changes of p∗(n) in SINE-1080-1080 show the
best results. This suggests that another factor affects the
estimation. Later in Section 4.5, Fig. 10, we explain it
through the assessment of two different trace plots for
SINE-1080-1080 case.

We have collected the best parameter values and resulted
minimum errors of λ(n), λtr, and λmax in Table 2. The
best estimations belong to the case SINE-1080-1080. Here,
LTES estimator (λtr) is the best estimator.

4.5 The relation between λ∗(n) and p∗(n) changes
and the estimation performance

To study the effect of the relation between λ∗(n) and
p∗(n) dynamics on the estimators, we consider the case
SINE-1080-1080 that both λ∗(n) and p∗(n) are changing
according a sine curve. So, we re-run the SINE-1080-
1080 case when the arguments of sine functions for λ∗(n)

and p∗(n) differ by π/2. More formally, what we have
reported on Fig. 2 and on the top of Fig. 10 is λ∗(n) =
0.5 + 0.5 sin( π

3·180 ) and p∗(n) = 0.75 + 0.25 sin( π
3·180 ).

In the second run, λ∗(n) argument is added by π/2, so
λ∗(n) = 0.5 + 0.5 sin( π

3·180 + π/2) (Fig. 10c and d).

Fig. 12 Estimation of p∗(n)

with binomial weak estimation
via two alternative choices of
λ∗(n) estimations (λmax and λtr)
for SINE-1080-1080 a, SINE-
360-360 b, SINE-1080-360 c,
and SINE-1080-10080 d
Environments
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Table 4 Summary of tuning parameters resulting into minimum error, along with the parameters N = 5 and α = 0.9 for ptr and pmax. The lowest
error value among ptr and pmax for each case is represented in bold font

Estimator

Case
λtr λmax

N γ Error N α γ Error

SWITCH-1000-1000 50 0.97 0.08406 50 0.9 0.99 0.0524

SWITCH-1000-1000 5 0.98 0.06812 5 0.9 0.99 0.04199

SWITCH-100-100 20 0.92 0.10819 20 0.6 0.92 0.10819

SWITCH-100-100 5 0.94 0.08967 5 0.9 0.95 0.07445

SWITCH-1000-100 80 0.94 0.10135 75 0.9 0.94 0.08126

SWITCH-1000-100 5 0.94 0.08697 5 0.9 0.95 0.07086

SWITCH-1000-10000 65 0.95 0.10736 50 0.95 0.999 0.04036

SWITCH-1000-10000 5 0.999 0.08444 5 0.9 0.999 0.0399

SINE-1080-1080 80 0.94 0.11103 80 0.6 0.94 0.11103

SINE-1080-1080 5 0.97 0.06308 5 0.9 0.97 0.05056

SINE-360-360 35 0.92 0.125 35 0.6 0.92 0.125

SINE-360-360 5 0.94 0.077 5 0.9 0.94 0.07433

SINE-1080-360 60 0.94 0.11201 60 0.6 0.94 0.11201

SINE-1080-360 5 0.94 0.07282 5 0.9 0.94 0.06873

SINE-1080-10080 40 0.99 0.08299 40 0.7 0.99 0.08299

SINE-1080-10080 5 0.99 0.04871 5 0.9 0.99 0.0345

SINE-1080-1080-Shift 25 0.97 0.07681 20 0.8 0.97 0.762

SINE-1080-1080-Shift 5 0.97 0.0586 5 0.9 0.97 0.05437

Hereafter, we call it SINE-1080-1080-Shift. We observe
significant differences between tracking λ∗(n) throughout
the two scenarios SINE-1080-1080 (Fig. 10a and b) and
SINE-1080-1080-Shift (Fig. 10c and d). The estimators
λtr and λmax track λ∗(n) more accurately in SINE-1080-
1080 than SINE-1080-1080-Shift. Moreover, the minimum
estimation error for λtr in SINE-1080-1080-Shift is e =
0.10504, while it equals to e = 0.04682 for λtr in SINE-
1080-1080. Similarly, the minimum estimation error for
λmax in SINE-1080-1080-Shift is e = 0.10382. Compare it
to e = 0.0471 for λmax in SINE-1080-1080. We explain it
by analyzing Fig. 10. In general, when λ∗(n) value is close
to 0 or 1, the effect of wrong guidance from Environment is
reduced. The reason is that λ(n) cannot pass the boundaries.

Let λ∗(n) = 0.5 + 0.5 sin(θ), so we have p∗
1(n) =

0.75+0.25 sin(θ) for SINE-1080-1080 and p∗
2(n) = 0.75+

0.25 sin(θ − π/2) for SINE-1080-1080-Shift.
Let us take the case SINE-1080-1080 where p∗(n) and

λ∗(n) are in phase, i.e. p∗(n) = p∗
1(n) . Interestingly, the

valley of p∗
1(n) corresponds to the valley of λ∗(n). Since

p∗
1(n) has a valley around 0.5, then the tracking of λ∗(n)

will be handicapped during that period but this will not
affect much the accuracy as λ∗(n) is also experiencing a
valley and the changes are slow over that valley. However,
in case SINE-1080-1080-Shift where p∗

2(n) and λ∗(n) are
out of phase, a valley of p∗

2(n) coincides with a change of

λ∗(n) from its lowest value to its biggest value. Then, during
that valley of p∗

2(n), λ∗(n) tracking gets handicapped and
the error is big due to the scheme not being able to track
the true underlying λ∗(n) that changes dramatically from its
min to its max. To be more precise, let

θ1 = 2kπ + π/4, θ2 = 2kπ + 3π/4, θ3 = 2kπ + 5π/4,
θ4 = 2kπ + 7π/4, and θ5 = 2(k + 1)π + π/4 where k is a
positive integer. This way we divide a period of 1080 steps
to four equal parts each with 270 steps. For the above values,
λ∗(n1) up to λ∗(n2) is situated in the range [0.85, 1]; i.e. in
270 successive steps the point location is placed within this
range. However, for the next 270 steps, i.e. from λ∗(n2) to
λ∗(n3), the values locate in range [0.15, 0.85]. We observe
that the rate of changes is not uniform. Similarly, λ∗(n3) to
λ∗(n4) is placed in the range [0, 0.15] and λ∗(n4) to λ∗(n5)
is situated in the range [0.15, 0.85].

Similar to the discussions we had about SWITCH cases,
we have

1

T

T∑

t=1

p∗
1(n) ≈ 1

T

T∑

t=1

p∗
2(n).

This time p∗
1(n) and p∗

2(n) are exactly the same, but their
relation to λ∗(n) makes them different.
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In range n1 to n2, where λ∗(n) is located in [0.85, 1],
p∗
1(n1) to p∗

1(n2) is situated in the range [0.93, 1]. In range
n2 to n3, where λ∗(n) is located in [0.15, 0.85], p∗

1(n2) to
p∗
1(n3) is situated in the range [0.57, 0.93]. Moreover, in the

range n3 to n4, where λ∗(n) is located in [0, 0.15], p∗
1(n3) to

p∗
1(n4) is placed in the range [0.5, 0.57]. Finally, for range

n4 to n5, where λ∗(n) is located in [0.15, 0.85], p∗
1(n4) to

p∗
1(n5) is situated in the range [0.57, 0.93].
The intervals for values of p∗

2(n) are achieved through
shifting p∗

1(n) values. When λ∗(n) is in range [0.85, 1] it
takes values in [0.57, 0.93], and when λ∗(n) is in range
[0.15, 0.85] it takes values in [0.93, 1]. When λ∗(n) is
placed in range [0, 0.15] it takes values in [0.57, 0.93], and
when λ∗(n) is placed in range [0.15, 0.85] it takes values in
[0.5, 0.57]. See Table 3 for a summary:

A comparison of the two Environments reveals why
estimation of SINE-1080-1080 (p∗

1(n)) outperforms SINE-
1080-1080-Shift (p∗

2(n)):

– In range n1 − n2, since p∗
1(n) values are higher, we will

have more promising estimations. Note that p∗
2(n) is in

range [0.57, 0.93], λ∗(n) is close to 1, when it reaches
its peak, hence its value changes slowly. That is to say
in this period, estimations in SINE-1080-1080-Shift are
satisfactory. See, for instance, around n = 24500 in
Fig. 10c and d.

– In range n2 − n3, the changes in λ∗(n) are fast.
Estimation in SINE-1080-1080 case is more difficult
than SINE-1080-1080-Shift, because p∗

1(n) is in range
[0.57, 0.93] and p∗

2(n) is in range [0.93, 1].
– In range n3 − n4, the changes in λ∗(n) are not fast and

the value is close to the boundary. p∗
1(n) is in range

[0.5, 0.57] while the information from Environment is
almost random. However, since λ∗(n) is in a peak, its
value is close to boundary and does not change fast,
as we explained before, the most fluctuations will be
nearby the true λ∗(n); see around n = 21000 in Fig. 10a
and b. Tracking λ∗(n) changes in SINE-1080-1080-
Shift case is more accurate than in SINE-1080-1080
case.

– In range n4−n5, the changes in λ∗(n) are fast. Tracking
λ∗(n) in SINE-1080-1080 Environment, similar to the
range n2 − n3, is acceptable to some extent. However,
tracking the point location in SINE-1080-1080-Shift
Environment is almost impossible. As can be seen in
Fig. 10c and d around n = 22500, the combination
of fast changes of λ∗(n) and distance from boundaries,
cause huge deviation. Such periods result in higher
estimation error in SINE-1080-1080-Shift Environment
than SINE-1080-1080.

Therefore, both the rate of changes in Environment
effectiveness and its relationship to the point location might
affect the estimations.

4.6 Estimation of environment effectiveness: p∗(n)

In Figs. 11 and 12 the estimation error for various SWITCH
and SINE cases are presented respectively. Moreover,
Table 4 summarizes the choices of tuning parameters
resulting into the minimum error while Environment
effectiveness is estimated.

In order to depict the estimation performance of p∗(n),
we restrict the results to estimation based on two cases
λmax and λtr, for these are the main contribution in this
paper which perform the best. Moreover, we consider the
best parameters of these two estimators based on results of
previous error plots. The tuning parameters resulted to the
best minimum error reported in Table 4. We will consider
and discuss the results for N = 5 and α = 0.9 in Table 4
later. In the following we will compare the results from
best λ∗(n) estimations. The best minimum error in case
SWITCH-1000-1000 is achieved for p̂max when (N =
50, α = 0.9 and γ = 0.99) equals to e = 0.0524. The error
for alternative method, i.e. p̂tr equals to e = 0.08406 when
(N = 50, and γ = 0.97), see Table 4.

The best minimum error in case SWITCH-100-100 is
simultaneously achieved for p̂max and p̂tr at value e =
0.10819 with parameters (N = 20, α = 0.6, and γ =
0.92). In comparison with SWITCH-1000-1000, it is
weaker than the previous case in which Environment
changes more slowly.

In case SWITCH-1000-100, the best minimum error is
obtained through p̂max when (N = 75, α = 0.9 and γ =
0.94), that equals to e = 0.08126. Error for p̂tr
equals to e = 0.10135 in the case (N = 80, and
γ = 0.94).

Finally, the case SWITCH-1000-10000 where the mini-
mum error for p̂max when (N = 50, α = 0.95 and γ =
0.999) equals to e = 0.04036. The error for alternative
method p̂tr equals to e = 0.10736 in case that (N =
65, and γ = 0.95).

Overall, it seems like λmax performs a little better than
λtr. However, a significant disadvantage of λmax compared
with λtr is that the tracking of λ∗(n) requires tuning of two
parameters compared to only one for λtr. For dynamically
changing environments it is usually hard enough to tune one
parameter.

In case SINE-1080-1080 illustrated in Fig. 12a, we
choose N = 80 for λtr and (N = 80, α = 0.6) for λmax

as the best parameters. As reported in Table 4, the best
estimation error for both p̂max and p̂tr occurs at γ = 0.94
and equals e = 0.11103.

Similarly, we observe that both estimators are equally
well for cases SINE-360-360, SINE-1080-360, and SINE-
1080-10080; where the best estimation error equals to e =
0.125, e = 0.11201, and e = 0.08299 respectively, see
Table 4 for more details.
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Even though the estimation error for point location
in case SINE-1080-10080 is weaker than all the cases
SINE-1080-1080, SINE-360-360, and SINE-1080-360, its
estimated probability is preferred; because slower changes
can be tracked more easily.

In SINE cases, apart from the case SINE-1080-10080
and SINE-1080-1080-Shift, the estimation error is poor, i.e.
optimal error is greater than 0.1 in both p̂tr and p̂max. In
Figs. 11, 12 and Table 4, we see that in some cases p̂tr and
p̂max perform equally well, even though the estimators λtr
and λmax results are different. The reason is in estimation
of Environment effectiveness, the important data is whether
the suggested direction by Environment agrees with the
estimation or not. In other words the distance between
estimation and the point location is not important, and the
crucial issue is that both point location and its estimation,
are at the same side- left or right- of the query location. So
we can have exactly the same results even if the estimated
point is not the same in two estimators.

A natural question that might arise is that whether the
best parameters for estimation of λ∗(n) are the best for
estimating p∗(n) or not. A simple simulation, where we set
N = 5 and α = 0.9, provides a negative answer to this
question. These parameters result into a smaller estimation
error for all the cases compare to the best parameters.
Moreover, the p̂max estimations are all better than p̂tr. For
instance, in case SWITCH-1000-1000 the estimation error
for p̂tr drops from e = 0.08406 for N = 50, to e = 0.06812
for N = 5. For p̂max, error drops from e = 0.0524 to e =
0.04199 for the same resolutions. Similarly, for SINE-1080-
1080, please compare the error e = 0.11103 for N = 80
and α = 0.6 to e = 0.06308 and e = 0.05056 for p̂tr and
p̂max respectively, when N = 5 and α = 0.9; see Table 4.
We try to justify the reason behind this in the following.

Recall (4), (5), and (6) where we have:

πi = e.πi−1 whenever i ≤ Z ,

πZ+1 = πZ , and

πi = πi−1

e
whenever i > Z + 1,

where e = p
q . To find a relation between resolution and π+

Z
we have:

1 =
N−1∑

i=0

π+
i

=
Z−1∑

i=0

π+
i +

N−1∑

i=Z+1

π+
i + π+

Z (20)

By substituting the relations (7), (8), and (9):

= 2q

⎛

⎝
Z−1∑

i=1

πi +
N−1∑

i=Z+1

πi

⎞

⎠ + 2p(πZ )

= 2qπZ

⎛

⎝
Z−1∑

i=1

(
1

e

)i

+
N−1∑

i=Z+1

(
1

e

)i−Z
⎞

⎠ + 2p(πZ ) (21)

By removing q and simplification:

= 2pπZ

[
1 + 1

e2

(
Z−2∑

i=0

(
1

e

)i

+
N−2∑

i=Z

(
1

e

)i−Z
)]

. So

πZ = 1

2p

[
1 + 1

e2

(∑Z−2
i=0

(
1
e

)i + ∑N−2
i=Z

(
1
e

)i−Z
)] (22)

The above equation implies that for a static environment
the larger N , the smaller πZ . Since for the estimation of
p∗(n) the accuracy of point location is not important, a
smaller resolution will increase the probability to be at the
correct pair, i.e. Z/N ≤ λ∗(n) < (Z + 1)/N . Based
on this argument, we can formally prove that a smaller
resolution gives a better estimation of p∗(n) while a larger
resolution yields a better estimation of λ∗(n). Based on
the above theoretical result that is in accordance with our
experimental results, we therefore suggest to run the SPL in
parallel using two different resolutions: a smaller resolution
for better estimation of p∗(n) and a larger resolution for
better estimation of λ∗(n).

4.7 Environment effectiveness tracking

The results of estimation of Environment effectiveness
through tracking curves, which are depicted in Figs. 13 and
14, are analyzed in this section.

Figure 13 compares tracking p∗(n) for two cases
SWITCH-1000-100 (a-b) and SWITCH-1000-10000 (c-d)
based on estimations λmax and λtr. We observe that p̂tr
fluctuation is higher than p̂max. Indeed, p̂max documents a
little better peak performance (as the trace plots show), but
at the price of requiring tuning of an additional parameter in
λmax.

Moreover, as we see more clear at SWITCH-1000-10000
case, whenever probability is closer to 1, any change in
λ∗(n) intensely affects the p∗(n) estimators. So we detect
sharper changes in p∗(n) estimators within the range of
n = 60000 to n = 70000. Then, there is a middle range
probability around 0.8 from n = 70000 to n = 80000.
In this range estimators fluctuate more but change less
shapely. Interestingly, within the range of n = 80000 to
n = 90000 there are fewer fluctuations. The reason is that
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Fig. 13 Comparison of how the
estimators track p∗(n) with
different dynamics. The
sub-figures a and b show how
λ∗(n) is tracked by λtr and λmax
respectively in case
SWITCH-1000-100.
Sub-figures c and d track λ∗(n)

by λtr and λmax respectively, in
case SWITCH-1000-10000. In
SWITCH-1000-100 cases a slice
of Environment from n = 60000
to n = 62000 are represented.
The represented slice for
SWITCH-1000-100 is
n = 60000 to n = 90000

the Environment provides almost random directions and
the changes of λ∗(n) are not followed by the estimators
efficiently. Since λ∗(n) estimation is the basis for p∗(n)

estimation, the changes in λ∗(n) could not affect p∗(n)

estimations. Therefore, there are no sharp changes when
p∗(n) is close to 0.5.

Even though the estimation error for point location in
case SWITCH-1000-10000 is weaker than SWITCH-1000-
100, its estimated probability is preferred; because slower
changes can be tracked more easily.

Figure 14 compares tracking p∗
1(n) with p∗

2(n) for
SINE-1080-1080 and SINE-1080-1080-Shift, based on
two estimations λmax and λtr. An interesting observation

regarding the Fig. 14 is the different behavior of estimations
near value 1. The estimation for p∗

1(n) is more accurate
comparing to p∗

2(n), which can be explained due to the
value of λ∗(n). The tracking is promoted by the fact that
in SINE-1080-1080 (Fig. 14a and b), λ∗(n) is both close
to 1 and changes more slowly. However, the tracking is
weakened in SINE-1080-1080-Shift due to λ∗(n) changes
faster in the middle ranges. Through comparing the two
results, it can be seen that although the estimation of
λ∗(n) is weaker in SINE-1080-1080-Shift, the proposed
estimators for p∗(n) in SINE-1080-1080-Shift are more
precise. Compare the minimum error e = 0.07681 in
SINE-1080-1080-Shift to e = 0.11103 in SINE-1080-1080.

Fig. 14 SINE-1080-1080.
Comparison of how the
estimations track p∗(n), when
λ∗(n) and p∗(n) are either
in-phase a–b, or out of phase
c–d

2718



On solving the SPL problem using the concept of probability flux

Fig. 15 Trace plot for FES
(Max) and LTES (Tr) for
tracking the probability of the
current topic be News in topic
tracking experiment with
keyword list approach. The
black curve show the offline
estimate

5 Real-Life experiment

In this Section, we show how our proposed algorithms can
be used for topic tracking in a stream of text by enhancing
an existing estimator proposed in the literature [32]. Online
tracking of topics in a stream of text, such as news/social
media feeds, has been addressed in several research [3, 8,
25].

Consider News and Entertainment (including sports)
as the two topics of interest. The aim is to model
this problem such that the point location would be the
probability of current topic being News. This quantity has
the characteristics of point location (λ∗(n)). Additionally,
we need some guidance from Environment to be able to
run the proposed algorithms. As we will explain in the
following, we can consider x(n) ∈ {0, 1} to be a stream

of zero and ones, where zero stands for Entertainment and
one stands for News. So, x(n) is a Binomial variable and
λ∗(n)- i.e. probability that the current topic is News- is the
Bernoulli parameter for each trial.

In [32], the Stochastic Search on the Line-based
Discretized weak Estimator (SSLDE) is used to estimate
the parameters of a distribution, when these parameters
change with time. Note that in the distribution parameter
estimation problem, the Environment is rather artificial
and is constructed to suggest whether to increase or
decrease the current estimate. We follow the same method
as the SSLDE for the online tracking problem and
create an artificial Environment that guides us to the point
location.

Recall that for resolution N , we have λ(n) ∈
{0, 1/N , 2/N , · · · , i/N , · · · , (N−1)/N , 1}. The estimator

Fig. 16 Evaluation of FES
(Max) and LTES (Tr) for
tracking the News in feed
experiment in machine learning
approach. The black curve show
the offline estimate
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is assigned initially the value λ(0) = �N/2�
N . The updating

rules for SSLDE [32] depends on whether the current
estimate is greater or less than N/2. Suppose that λ(n) = i

N
and, as mentioned above, let x(n) be the Binomial variable
that takes zero or one at time n.

1. Case 1: [i ≥ (N/2)]:
– If x(n) = 1 and rand() ≤ N

2·i :

E(n, i) = 1 → λ(n + 1) = min((i + 1), N )

N
– Else:

E(n, i) = 0 → λ(n + 1) = i − 1

N

2. Case 2: [i < (N/2)]:
– If x(n) = 0 and rand() ≤ N

2(N−i) :

E(n, i) = 0 → λ(n + 1) = max((i − 1), 0)

N
– Else:

E(n, i) = 1 → λ(n + 1) = i + 1

N

where 0 ≤ rand() ≤ 1 is a uniform random number
generator. Now, we are able to track the probability of the
current topic be News by using the above suggestions by
Environment.

5.1 Tracking problem

As mentioned above, News and Entertainment are the
two topics we consider in this experiment. To generate
the text feed, a large set of related articles are collected
from the popular Norwegian newspaper site vg.no. The
articles are shuffled randomly with the assumption that the
algorithm is unaware of when transitions between News and
Entertainment take place. In the same line as in [8], based
on the stream of text, two methods are used for generating
binary observations namely the keyword-list approach and
the Machine learning approach.

– Keyword lists. A keyword list is a set of words for each
topic, here News and Entertainment. For generation
of the keyword lists, the popular Pointwise Mutual
Information criterion [17] is used. We assume that one
word at time is received from the News feed and the
task is to track the probability of the current topic of the
text stream is News. The best possible estimate based on
the keyword list approach is to compute the portion of
keywords in each article that are News keywords. This
approach is called offline approach. The performance of
our algorithm can be compared to this offline approach
and see how close our online estimates are to the
optimal offline approach.

Figure 15 shows the tracking of the probability that
the current topic is News for FES (Max) and LTES (Tr)
for the first 15000 words. The total number of keywords
in the experiment was 800400, while there was not a
fixed period for changing between topics. We see that
our algorithms are able to track changes in the News
stream well. For instance, look at period n = 5000
to n = 11000. A difference between these real data
from the simulations in Section 4 is that here the rate
of changes is not fixed. As we see in Fig. 15 the offline
estimate changes rapidly in some periods (for n = 2000
to n = 5000) and does not change for a long period
(n = 5000 to n = 11000). Since in average the data
has long fixed periods, the best achieved resolution is
N = 185, which is better for the long periods.

It is worth mentioning that this tracking data can
be used as a classifier. Consider what we really want
to understand from the data is that if the current feed
belongs to the News or Entertainment. Indeed, the
required answer is if the probability of the current topic
be News is greater than 0.5 or not. Interestingly, for
classification application, the best resolution is much
smaller, i.e N = 45. The reason is that for classification,
the flexibility is much more important compared to
accuracy.

– Machine Learning. The most used approach to
automatically classify text into different classes like
topics or sentiment is to train a machine learner. The
process starts by dividing the training text stream in
batches of 20 words, each within one of the News
or Entertainment topics. In the machine learning
approach, the documents (batches) were represented
by word frequencies in a bag of word matrix. These
batches are used to train a machine learning model. For
this experiment multinomial ridge regression [4] is used
through the glmnet package in R [27]. For the testing
part, the single words of the text stream were collected
into batches of 20 words. Each batch in this phase were
classified into one of the News or Entertainment topics
using the trained multinomial regression model. The
probabilities of the current topic were updated in the
same manner as for the keyword list approach.

Figure 16 shows the tracking of the probabilities for the
different topics for the machine learning approach. The total
number of batches was 189141 which we depict the tracking
in the first 5000 batches. Data changes faster in the ML
approach and therefore the best resolution is much smaller;
N = 35. We see that the fluctuations are greater than Fig. 15
because of this smaller resolution, but in turn, it is more
adaptable with fast changes. Similar to the keyword list,
if we use the algorithms for classification, the resolution
will be even smaller; i.e. N = 11. So, being aware of that
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there might be different best parameters in the estimation
for different applications is an important point.

6 Conclusion

A wide range of real-life problems can be modeled as a SPL
problem, especially when the Environment is considered to
be non-stationary. The random walk method, that Oommen
presented for solving the SPL problem, is known to
converge into a value arbitrarily close to the point location,
when both resolution and time tend to infinity. Oommen’s
method simply discretizes the interval and performs a
controlled random walk on it. This paper is an extention
of the preliminary work presented [18] where we propose
a new method to estimate the point location in the SPL
problem domain. In the current paper, we have introduced
the mutual probability flux concept and have proved that
Flux-based Estimation Solution (FES) and Last Transition-
based Estimation Solution (LTES), as a special case, always
outperform Oommen’s method. Moreover, we present a
method to estimate Environment effectiveness, p∗(n). This
simple method could track the probability of receiving
correct response from the Environment in tandem with the
unknown location estimation.

Apart from theoretical proofs several experiments are
presented in order to understand the characteristics of
each method. We argued that λtr, proposed in this paper,
is equally simple but with better estimation performance
than Oommen’s method. λmax, λexp and λmed show better
estimation performance than λtr in low resolutions, but this
comes at the price of tuning one additional parameter. This
suggests that if we have no constraint on N , i.e. λ∗(n)

represents a continuous quantity, we can tune just with N
and estimate with LTES. But in the case where freely tuning
over N is not possible, tuning with α and using one of λmax,
λexp, and λmed could provide more accurate estimations.

As experiments show, the tracking of λ∗(n) performs
better when p∗(n) value is close to 1. The estimation
performance of λ∗(n) drops drastically when p∗(n) is close
to 0.5. This is as expected, since in case p∗(n) = 1, our
estimation procedure will be correct, i.e. λ̂(n) switches back
and forth around the true λ∗(n). In contradiction, in the case
p∗(n) is close to 0.5, we have more faulty feedback, and so
an unsatisfactory estimation of λ∗(n).

Based on the results, we have also discussed when λ∗(n)

value is close to 0 or 1, the effect of faulty guidance
from Environment will be reduced to some extent and
the estimation is slightly better. Moreover, if p∗(n) takes
the same value in average, faster changes of p∗(n) are
preferable; with the condition that changes in p∗(n) are
slow enough that estimator could converge into λ∗(n) when
p∗(n) is reaching to 1. In this case, faster changes interrupt

a long lasting weak estimation and bring the estimator back
into a more accurate value. However, if p∗(n) and λ∗(n)

changes simultaneously, the positive effect of faster changes
of p∗(n) is lost. We have also discussed that, not only the
rate of changes, but also the relation between λ∗(n) and
p∗(n) affects the estimation error where p∗(n) represents
reliability of the feedback from Environment. A satisfactory
estimation of p∗(n) informs us to what extent we can trust
the feedback and subsequently the estimations we have built
upon that.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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