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Abstract—6G is envisioned to be characterized by ubiqui-
tous connectivity, extremely low latency, and enhanced edge
intelligence. However, enriching 6G with these features requires
addressing new, unique and complex challenges specifically at
the edge of the network. In this paper, we propose a wireless
digital twin edge network model by integrating digital twin
with edge networks to enable new functionalities such as hyper-
connected experience and low-latency edge computing. To ef-
ficiently construct and maintain digital twins in the wireless
digital twin network, we formulate the edge association problem
with respect to the dynamic network states and varying network
topology. Furthermore, according to the different running stages,
we decompose the problem into two sub-problems, including
digital twin placement and digital twin migration. Moreover, we
develop a Deep Reinforcement Learning (DRL) based algorithm
to find the optimal solution to the digital twin placement problem,
and then use transfer learning to solve the digital twin migration
problem. Numerical results show that the proposed scheme
provides reduced system cost and enhanced convergence rate
for dynamic network states.

Index Terms—Digital twin, Wireless network, Edge association,
Deep reinforcement learning, Transfer learning

I. INTRODUCTION

With the rapid development of wireless technologies such
as the Internet of Things (IoT) and widely deployed fifth-
generation (5G) networks, the envisioning and planning for
sixth-generation mobile networks (6G) [1] has already begun.
It is believed that 6G will provide extremely high data rates,
low latency, and improved edge intelligence [2], [3]. Accord-
ing to the 6G white paper released by Samsung, 6G is expected
to bring the next hyper-connected experience to every corner
of our life [4]. Also, the vision of China Mobile Research
Institute for 6G is to realize ubiquitous intelligence and to
fully connect all things on the basis of 5G and other techniques
such as artificial intelligence [5].

To meet these requirements, the quality of services and
experience of applications in 6G networks need to be signifi-
cantly enhanced. However, hundreds of billions of end devices
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will be connected to the 6G network, and a huge amount of
data will be generated from these devices. The massive amount
of data requires tremendous computation and communication
resources to be provided by edge servers. Thus the huge gap
between users’ requirements and what the edge servers can
provide, is a major challenge for 6G systems in providing
high-quality services for emerging and new applications.

Digital twin emerges as a promising technology to bridge
the connection gap between physical spaces and digital sys-
tems [6]. The digital replicas of physical entities such as
devices, machines, and physical objects are constructed at the
server based on historical data and real-time running status.
Digital twin enables close monitoring, real-time interaction,
and reliable communication between the digital space and
the physical systems, which can in turn optimize the running
of the physical systems. With these advanced capabilities,
digital twin is believed to be one of the most important
enabling technologies for 6G. Several works have explored
utilizing digital twins to enhance the performance of wire-
less communications, for applications such as computation
offloading, content caching, and resource sharing [7]–[9]. In
[7], the authors proposed a distributed framework based on
federated learning and digital twin to execute edge computing
in industrial IoT. In [8], the authors proposed to construct
digital twins in edge networks by applying blockchain and
federated learning. In [9], the computation offloading problem
in digital twin edge networks was formulated and the optimal
offloading policy was obtained based on deep reinforcement
learning.

Although several applications have been preliminarily ex-
plored, the huge number of connected devices and the hetero-
geneous network structure is still a challenge for the applica-
tion of digital twin in 6G networks. With delay requirements
much stricter than in 5G, achieving the required level of com-
putation and communication latency is one of the biggest chal-
lenges for 6G applications. In addition, more heterogeneous
networks with dynamic network states lead bring in additional
dimensions and thus require finding solutions to even more
complex resource optimization problems. Further investigation
and more focused research in applying digital twin in edge
networks is therefore of utmost importance to alleviate the
huge gap between high service quality requirements and the
limited edge resources.

The integration of digital twin with Mobile Edge Computing
(MEC) [10] opens up new possibilities for mitigating the
resource limitation issues in applying digital twins in 6G
networks. MEC- one of the key enabling technologies for
6G, can considerably reduce the system latency by executing
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computation at the edge of the network. MEC has been
widely investigated for accomplishing edge intelligence tasks
such as computation offloading, content caching, and data
sharing. In [11], the authors proposed an edge intelligence
scheme in the Industrial Internet of Things (IIoT) framework
based on MEC techniques. In [12], the authors proposed a
Deep Reinforcement Learning (DRL) based intelligent content
caching scheme for an edge computing framework.

In the convergence of digital twins and edge computing, the
placement and maintenance of digital twins in edge networks
is a fundamental problem that needs to be further investigated.
The dynamic network states such as the channel states and
available computation resources may hinder the digital twins
from improving the instant application performance. In this
context, the mapping relations between end devices and dig-
ital twins in the edge server should be carefully designed.
Moreover, the mobility of end users makes it less practical
for a digital twin server to keep real-time interaction with
the mobile users that can affect provisioning of continuous
services to the users. To cope with these issues, in this paper,
we first propose a digital twin empowered edge network
model by incorporating digital twin into MEC systems. Then,
we formulate a new edge association problem by placing
digital twins in the dynamic network and migrating digital
twins of mobile end users between edge servers. Finally, we
find the solution to the formulated edge association problem
by leveraging DRL for digital twin placement and transfer
learning for digital twin migration. The main contributions of
this paper are summarized as follows.

• We design a wireless digital twin network model for
6G networks, exploiting digital twins to mitigate the
unreliable and long-distance communication between end
users and edge servers.

• We formulate the edge association problem for placing
and migrating digital twins of users in the edge servers
according to the dynamic network states and mobile
end users, to reduce the average system latency and to
improve user utility in the digital twin empowered edge
network.

• We develop a deep reinforcement learning based algo-
rithm to find the optimal solution to the formulated
problem, by jointly considering the digital twin placement
strategy and corresponding system latency. In addition,
we propose the digital twin migration method based on
transfer learning to deal with the mobility of users.

The rest of this paper is organized as follows. We review
the related work in Section II. In Section III, we present
the digital twin empowered edge network model. In Section
IV, we formulate a new edge association problem for digital
twin placement and migration, to minimize the average system
latency while also addressing the mobility of end users. In
Section V, we design a deep reinforcement learning based
algorithm for digital twin placement and a transfer learning
based algorithm for digital twin migration. Numerical results
are presented in Section VI. Finally, Section VII concludes the
paper.

II. RELATED WORK

While 5G is still in the process of wide scale deployment,
we observe significant work [13]–[15] on 6G vision and huge
research interest in solving technological challenges that can
enable the 6G paradigm. In [1], the authors suggested that
human-centric mobile communications would be one of the
most important characteristics of 6G networks, together with
high security, secrecy, and privacy. Wireless communications
in 6G can also be improved through machine learning tech-
niques. In [16], the authors provided an overview of how
machine learning will impact wireless communications in 6G,
including how to solve problems in the wireless domain and
how to optimize the wireless networks. Although still in its
early stage, it is generally believed that 6G networks will
be featured with extremely low latency, highly intelligent
connectivity, and enhanced security.

MEC plays an important role in providing latency-sensitive
services for wireless communications by executing computa-
tion and storage tasks at the edge. The application of MEC in
achieving edge intelligence has been widely studied. A series
of emerging technologies such as blockchain [11], [17], [18]
and deep reinforcement learning [12] have also been exploited
in MEC systems for optimal network resource allocation. In
[18], the authors proposed a blockchain empowered federated
learning scheme for data sharing in vehicular networks. The
proposed scheme adopted permissioned blockchain at the
aggregation server to distribute and store model parameters
generated in the federated learning process. In [19], the au-
thors studied the joint task offloading and resource allocation
problem, to maximize the task offloading gain for users.
Convex and quasi-convex optimization techniques are used to
solve the problem to reduce their task completion time and
energy consumption. However, in the era of 6G, the pressing
demand for reduced latency, improved intelligence, increased
connections raise new challenges for MEC systems.

To fulfill the requirements of 6G communications, deep
reinforcement learning [20] and digital twin [21], [22] will
be two promising enabling technologies for MEC systems.
DRL has been investigated comprehensively for edge network
optimization, in areas of content caching, computation offload-
ing, and resource allocation. For example, in edge caching,
the authors in [23] formulated a constrained minimization
of the aggregate cost problem considering the time-varying
fetching and caching costs. Since the caching decisions in
one slot will affect the available content in the next slots, the
authors proposed to use deep Q-learning to find optimal fetch-
cache decisions. In [24], the authors proposed to use deep Q-
learning to maximize the utility function to achieve optimal
transmit power scheduling. While DRL has been widely used
in network optimization for MEC systems, the huge gap of
running states between physical entities and MEC servers
still exists, which may be a potential hindrance for real time
optimization of the dynamic edge network.

The emergence of digital twin opens up new possibilities
for applying MEC systems in 6G networks with respect to
the performance requirements for wireless communication in
6G networks. As the replica of physical systems, digital twin
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bridges the gap between physical systems and digital spaces
[6], [25]. As one of the most critical enabling technologies
for 6G communications, digital twin has been studied in
several advanced works for improving the performance of
MEC systems in edge networks [26]–[28]. In [26], the authors
used digital twin to capture the dynamic network states and
used the Unmanned Aerial Vehicle (UAV) driven federated
learning for air-ground networks. In [27], the authors proposed
the model of digital twin edge networks, and developed a
communication-efficient federated learning for improving the
running efficiency of their proposed model. Furthermore, due
to the lack of mutual trust between IoT devices, the authors in
[29] further integrated blockchain with digital twins to enhance
system security and user privacy.

We note that some works have explored the use of digital
twin as a key enabling paradigm for improving the perfor-
mance of MEC systems. However, few works can be found
focusing on the construction and maintenance mechanism of
digital twins in edge networks. How to ensure continuous
interactions between digital twins and end users considering
the mobility of end users and the dynamic network states,
remains a largely unexplored problem, and thus requires
in-depth investigation. Motivated by such considerations, to
address this gap, in this paper, we propose a wireless digital
twin network framework, and formulate the edge association
problem considering the placement and migration of digital
twins. We then design the DRL and transfer learning based
algorithms to find the optimal solution to the edge association
problem in order to meet the latency requirements of 6G
networks.

III. SYSTEM MODEL

In this section, we first introduce the architecture of our
wireless digital twin network model. Then we further provide
the details of the system model, and formulate the digital twin
edge association problem, respectively.

A. Digital Twin Empowered Network Model

We consider a digital twin empowered edge network as
shown in Fig. 1. There are three layers in our wireless digital
twin network system: radio access layer (i.e., end layer),
digital twin layer (i.e., edge layer), and cloud layer. The radio
access layer consists of entities such as mobile devices and
vehicles that have limited computing and storage resources.
Through wireless communications, these entities connect to
the base stations and request for services provided by network
operators. In the digital twin layer, some base stations are
equipped with MEC servers to execute computation tasks,
while other base stations provide wireless communication
services to end users. The digital twins of physical entities
are modeled and maintained by the MEC servers. Since the
number of entities in the physical layer is much larger than
the number of MEC servers in the digital twin layer, an
MEC server may maintain multiple digital twins of physical
entities. In the cloud layer, cloud servers are equipped with a
large amount of computing and storage resources. Tasks that

are computation-sensitive or require global analysis can be
executed in the cloud layer.

Since digital twins reproduce the running of physical enti-
ties, maintaining the digital twins of massive devices consumes
a large number of resources including computing resources,
communication resources, and storage resources. To relive the
resource limitation in the edge layer, we model digital twins
as of two types: device digital twin and service digital twin.
The device digital twin is a full replica of physical devices that
includes the information of hardware configuration, historical
running data, and real-time states. For user ui, its device digital
twin can be expressed as

DT f (ui) = Θ(Di, Si(t),Mi,∆Si(t+ 1)), (1)

where Di is the historical data of user device i such as
the configuration data and historical running data. Si(t) rep-
resents the running state of device i that consists of r1
dimensions, and varies with time, which can be denoted as
S(t) = {s1i (t), s2i (t), ..., s

r1
i (t)}. Mi is the set of behav-

ior model of ui that consists of r2 behavior dimensions,
Mi = {m1

i ,m
2
i , ...,m

r2
i }. ∆Si(t + 1) is the state update of

Si(t) in time slot t+ 1. Taking meteorological IoT device as
an example, S(t) can be temperature, humidity, wind speed
location and so on. The behavior models Mi may consist of
the variation models of the temperature, humidity, and wind
speed. In this paper, we mainly focus on the scenarios of
device digital twins to conduct our study.

Different from device digital twins, the service digital twin
is a lightweight digital replica constructed by extracting the
running states of several devices towards a specific application.
Similar to Eq. (1), the service digital twin can be expressed
as

DT (ui, ζ) = Θ(Di(ζ), Sζi (t),Mζ
i ,∆S

ζ
i (t+ 1)), (2)

where ζ is the target service. Di(ζ), Sζi (t),Mζ
i , and ∆Sζi (t+

1) are corresponding terms related to the target service ζ. For
example, vehicles driving in the same region can be modeled
into a specific service digital twin for supporting autonomous
driving on a particular stretch of the road. In such a case,
the service digital twin for autonomous driving only collects
driving information of these vehicles and analyzes their driving
behavior to guide the moving vehicles. Depending on the
required scale, service digital twins can be constructed in the
edge server or the cloud server.

B. Communication and Computation Model

As shown in Fig. 3, the communication between end
users and edge servers contains the uplink communication
for transmitting data from user devices to edge servers and
the downlink communication for sending back results from
edge servers to user devices. Note that the size of results
returning to users is much smaller than the updated data,
we only consider the uplink communication latency in our
communication model [30]. The maximum achievable uplink
data rij between user i and base station j is given as:

rij = Wlog(1 +
pijhij
WN0

), (3)
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Fig. 1: The architecture of wireless digital twin networks

where hij denotes the channel power gain of user i, pij denotes
the corresponding transmission power for user i, N0 is the
noise power spectral density, and W is the channel bandwidth.
The transmission latency for uploading Di from user i to base
station j can be expressed as

T comij =
Di

rij
. (4)

The wired transmission latency between base stations is
highly correlated to the transmission distance. Let φ be the
latency required for transmitting one unit data in each unit
distance. Then the wired transmission latency can be written
as

T comj1j2 = φ ·Dj · d(j1, j2), (5)

where Dj is the size of transmitted data, and d(j1, j2) is the
distance between base station j1 and j2.

Denote the total computation resource of edge server j
as Fj . The computation resources of edge server j may be
allocated to multiple user devices for maintaining their digital
twins in server j. Let fij denote the computation resource
assigned to the digital twin of user i. Then the time to execute
tasks from user i can be expressed as

T cmpij =
Di

fij
, (6)

where Di is the size of computation task from user i,∑N
i=1 xijfij ≤ Fj , and xij = 1 if fij > 0. Otherwise,

xij = 0.

C. System Latency Model

The latency of maintaining a digital twin mainly consists
of two parts: the construction delay and the synchronization
delay. Fig. 2 shows the complete process to construct a
digital twin of user ui. At the beginning, the running data

𝑢"

𝐷𝑇%

𝐷𝑇&

Digital twin computation

1 2

3

5 4

Fig. 2: The process of constructing a digital twin

Di of ui is transmitted to its nearby base station through
wireless communication. Then its nearby base station transmits
the running data Di to the digital twin server DT1 that is
responsible for constructing and maintaining the digital twin
of ui, through wired communication. The digital twin server
DTi runs the computation to process and analyze the received
data, and build a digital twin model for user ui, as given by
Eq. (1). During the digital twin computation process, artificial
intelligence related algorithms are used for extracting the data
features and training the digital twin model. Finally, the results
of the digital twin model are transmitted back to user ui
through wired and wireless communications. The feedback
results provide ui with insights for improving its service
quality or running efficiency for specific applications. The
system latency consists of the following items.

1) Wireless data transmission: In the construction phase of
DT (ui), the historical running data of user i requires to
be transmitted to its digital twin server through its nearby
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base station. Let Di denote the size of historical data
to be transmitted, the wireless communication latency
T comij from user i to its base station j can be calculated
according to Eq. (4).

2) Wired data transmission: The wired transmission time
from the nearby base station of ui to its digital twin server
k is

T comjk = φ ·Di · d(j, k). (7)

Thus the total communication time for transmitting his-
torical data of ui to its digital twin server is

T comik = T comij + T comjk . (8)

3) Digital twin data computation: The computation time at
digital twin server k is

T cmpik =
Di

fij
. (9)

The total latency for constructing the digital twin of user i
is

T iniik = T comik + T comjk + T cmpik . (10)

The digital twin of user i, that is DT (ui), is constructed in
its digital twin server DTk. Then, DT (ui) requires to interact
with ui constantly to keep consistent with the running states
of ui. Denote the size of updated data as ∆Di, the latency for
one update can be given as

Tupdik =
∆Di

rij
+ φ ·∆Di · d(j, k) +

∆Di

fij
. (11)

The synchronization latency in one unit time slot can be
written as

T synik =
1

∆t
Tupdik , (12)

where ∆t denotes the time gap between every two updates.

D. Adaptive Edge Association

Due to intensive resource consumption for maintaining
digital twins, constructing digital twins in each MEC server
can incur a considerable increase in transmission load, com-
putation overhead, and energy consumption. To address this
issue, in our digital twin networks, instead of maintaining
digital twins in every base station, we select a subset of base
stations as the digital twin servers to maintain the digital
twins with reduced time cost and energy consumption. In our
network model, user device ui ∈ U belongs to base station bj ,
where bj ∈ B. The digital twin of user ui, denoted as DT (ui),
is constructed in the digital twin server sk, where sk ∈ S.

Two fundamental problems require to be addressed in our
digital twin empowered networks. The first one is digital twin
placement. For constructing digital twins in our system, in the
digital twin placement phase, we select the optimized subset
of base stations as digital twin servers, that is, S ⊂ B. Fig.
2 depicts the digital twin placement in the edge network.
Two servers DT1 and DT2 are selected as the digital twin
servers to construct and maintain the digital twins of user
devices. The digital twin servers also cooperate with each other
through the cloud server. The second issue is the migration
of digital twins. The mobility of devices including mobile

devices and vehicles raises new challenges to the construction
and maintenance of digital twins in edge networks, and may
thus hinder efficient and effective service provisioning from
edge servers to user devices. Fig. 3 depicts the migration
process in our digital twin networks. At first, digital twin
server DT1 maintains the digital twin of user u at location A.
However, when user u moves to location B and location C,
maintaining DT (u) will increase the communication resource
and interaction latency due to the long transmission distance.
In such a case, DT2 should take over user u for maintaining its
digital twin DT (u). DT (uA) should be migrated from DT1
to DT2 for continuously maintaining DT (u) and providing
further services to user u.

Thus, to cope with the dynamic network and to provide real-
time high-quality service to users, the digital twins need to be
incorporated into the edge network in two phases: placement
and migration. In the placement phase, digital twin servers
are selected from the base stations to construct and maintain
digital twins of end users. In the migration phase, the digital
twins of users are migrated between digital twin servers for
reducing transmission overhead and communication latency.

The main notations used in this paper are summarized in
Table II.

TABLE I: Summary of main notations

ui The i-th user
U The set of users
DT (ui) The digital twin server of user ui
Si(t) The running states of user ui at time slot t
r1 The running state dimension of digital twins
r2 The behavior dimension of digital twins
Mi The behavior model of ui
∆Si(t) The update states of user ui at time slot t
Di The running data set of user ui
bj The j-th base station
B The set of base stations
W The bandwidth of the transmission channel
rij The achievable data rate between ui and bj
pi The transmission power of ui
T com
ij The time cost for communication between ui and bj
T com
j1j2

The transmission time cost between bj1 and bj2
T cmp
ij The computation time of tasks from ui in server j
G(·) The network model
A The association matrix
pl The digital twin placement strategies
S(t) The DRL state at time slot t
A(t) The DRL action at time slot t
R(t) The DRL reward at time slot t

IV. DIGITAL TWIN EDGE ASSOCIATION: PROBLEM
FORMULATION

In this section, we formulate the digital twin edge associ-
ation problem incorporating the system cost for digital twin
construction and maintenance. The placement of digital twins
should carefully consider the latency performance and energy
consumption of the system. The edge association in our system
model is an adaptive process that changes with the dynamic
network states such as the varying channel states and network
topology. The overall system latency function can be written
as

Tsys =
1

N

N∑
i=1

M∑
j=1

(T iniik + ηT synik ), (13)
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Fig. 3: The digital twin migration process in edge association

where η is the weighting coefficient. The objective of the
edge association problem is to minimize the average system
latency, and to provide service for each user ui within its delay
requirement, given as

minTsys (14)
s.t. tui ≤ τui ,∀i ∈ N , (15)

where tui is the service interaction latency between end users
and their corresponding digital twins as in Eq. (10), τui is the
latency constraint of user ui.

According to the running phases of digital twins, the digital
twin edge association consists of two sub-problems, that is, the
digital twin placement problem and the digital twin migration
problem. The digital twin placement is the first step for digital
twin construction. The goal of the placement problem is to find
the optimal position to locate digital twin servers and to decide
the association strategies between servers and end users, based
on the instant system states. In the second phase, the digital
twin migration problem is to adjust the placement positions
and the association relations of digital twins, to adapt to the
dynamic network states. In this phase, the digital twins of
end users need to be migrated between digital twin servers to
ensure low-latency interactions with moving end users.

A. Digital Twin Placement Problem

We use G(U,B,DT,E) to describe our digital twin em-
powered network, where U is the set of end users, B is the
set of base stations, DT is the set of digital twin servers,
and E is the set of physical links between base stations. The
capacity of digital twin server DTk, that is, Nk, denotes the
maximum number of digital twins DTk can maintain.

We use weight matrix A = [aik] to represent the association
relations between the user devices and the digital twin servers,
where aik = 1 if the digital twin of user i is maintained by

digital twin server k. Otherwise, aik = 0. For example, in Fig
2, since the digital twin of ui is maintained by DT1, thus we
have ai1 = 1, and ai2 = 0. The association matrix takes the
form 

a11 a12 a1k ... a1M
a21 a22 a2k ... a2M
a21 a22 a2k ... a2M
. . . ... .
. . . ... .
. . . ... .

aN1 aN2 aNk ... aNM


We use p to denote the placement policy of digital twin

servers, which is given by

pl = {lock|k ∈ [1,M ]}, (16)

where lock denotes the location of digital twin server DTk,
and M is the number of base stations in the network.

The average latency is a crucial index to quantify the
placement policy of the digital twin servers, which illustrates
the running efficiency of the digital twin empowered network.
The average placement latency can be written as

T (pl, A) =
1

MN

∑
i∈N,j∈M

Tpl(ui, DTj)aij , (17)

where Tpl(ui, DTj) denotes the time cost between user i
and digital twin server DTj under placement policy pl, and
aij ∈ A. From Eq. (17) we can see that the average latency
is determined by the digital twin server placement policy and
the association relations between user devices and the digital
twin servers.

The objective of the digital twin placement problem is to
find the solution with placement locations and association
relations that minimize the average latency. The association
relations have a direct effect on the latency performance, which
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can also determine the digital twin placement locations. Thus
we formulate the optimization problem as

P1 : min
pl,a∈A

T (pl, A) (18)

s.t.
∑
j∈M

aij = 1,∀i ∈ N , (18a)∑
i∈N

aij ≤ Nj ,∀j ∈M, (18b)

N∑
i=1

xijfij ≤ Fj , (18c)

Tui(t) ≤ τui , (18d)
aij ∈ {0, 1},∀i ∈ N ,∀j ∈M. (18e)

Constraint (18a) ensures that the digital twin of a user device
can only be maintained by one digital twin server. Constraint
(18b) indicates that the number of digital twins a server
maintains, cannot exceed its capacity. Constraint (18d) ensures
that the consumed computation resource does not exceed its
total computation capability. Constraint (18d) indicates that the
interaction time between user ui and its corresponding digital
twin should not exceed the delay requirement of ui, that is, τui .
Constraint (18e) denotes that aij is a boolean variable, which
only has two states, 0 and 1. Problem (18) is a combinational
problem. Since there are several products of variables in the
objective function, and the time cost of each BS is also affected
by the resource states of other BSs, problem (18) can not be
solved in polynomial time.

B. Digital Twin Migration Problem

In the digital twin placement, the average latency is an
important index for quantifying the running efficiency of the
system. Different from the placement phase, the migration
phase aims at dealing with the dynamic network states in
consideration of the mobility of users. The objective of digital
twin migration is to improve the service quality and experience
for users. Thus, instead of focusing on the global system
performance, we define the utility of users U(t) to quantify
the effect of digital twin migration at time slot t, based on the
latency and the energy cost for ui. The energy cost for ui to
synchronize its running data to the digital twin is

Eui(t) = pui(t) · T comui . (19)

Thus, the utility of user ui can be expressed as

Ui(t) = βeτui−Tui (t) − (1− β)Eui(t), (20)

where τui is the delay requirement of ui, Tui(t) is the real
interaction time cost of ui, and β ∈ (0, 1) is the weight factor.
Ui(t) is negatively correlated to the latency of user ui, i.e.,
Tui(t).

The objective of digital migration is to maximize the utility
function given by Eq. (20) by migrating digital twins between
servers, which can be formulated as

P2 : max
a∈A

Ui(t) (21)

s.t.
∑
i∈N

aij ≤ Nj ,∀j ∈M, (21a)∑
j∈M

aij = 1,∀i ∈ N , (18b)

Tui(t) ≤ τui , (21c)

where a ∈ A denotes the migration policy that changes the
association correlations between user devices and digital twin
servers. Constraint (21a) and (21b) ensure that the digital twin
of a user device can only be associated to one digital twin
server, while one digital twin server can maintain multiple
digital twins. Constraint (21c) denotes that the latency for
ui should not exceed its delay requirement to guarantee the
service quality.

V. DRL FOR DIGITAL TWIN PLACEMENT AND TRANSFER
LEARNING FOR DIGITAL TWIN MIGRATION

Actor Network

Actor Network

Digital Twin Empowered Network Environment

Critic Network

StateAction

Reward

Reward

ActionState

Fig. 4: The process of proposed DRL method

A. Reinforcement Learning Empowered Digital Twin Place-
ment

We formulate the optimization problem as an MDP M =
{S(t),A(t),R,S(t + 1) }, where S(t) is the current system
state, A(t) is the action adopted at time slot t, R is the
reward function, and S(t + 1) is the next state. We consider
that the network states including available computing and
communication resources follow the Markov property. We
define the set of system states S, action set A, and the reward
function R in our wireless digital edge network model as
follows.
• System State: The system state in our proposed scheme

consists of the physical states of end users ςi, the place-
ment of digital twin servers plj , and the association
relations lij . The physical states of users contain the
distances between users and servers dij , the data of user i
to be transmitted Di, and the available data rate between
users and servers rij . We denote the system state as

S(t) = {ςi(t), pl0i (t), l0ij(t)}. (22)
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• Agent Action: The agents are base stations equipped
with MEC servers in our system. Each agent selects its
action aj(t) including digital twin placement policy and
association strategy. The action of digital twin placement
is expressed as {0, 1} that denotes whether the server
acts as the digital twin server. The association strategy of
server j is denoted as {lj1, lj2, ..., ljn}, where lji = 1 if
end user ui is associated to server j. Otherwise, lji = 0.
The action space of multiple agents can be written as

A(t) = {ai|aij = (pli, lij),∀i ∈ N ,∀j ∈M}. (23)

• Reward Function: The reward function should be care-
fully designed to let each agent make the optimal deci-
sion for edge association. The goal of each agent is to
minimize the average latency and deployment cost for
maintaining digital twins within its coverage. The reward
function mainly contains two parts: the latency reward
RL and the cost function RC . The latency reward is

RL = −T (p,A). (24)

The cost for digital twin server placement is

RC = ϕ ·m+ Ecom(u), (25)

where ϕ is the unit cost factor for placing a digital twin
server, m is the number of digital twins, and Ecom(u) is
the energy cost for users to transmit their data calculated
according to Eq. (19). The total reward can be written as

Rt = α ·RL − β ·RC , (26)

where α, β are the weight factors for the latency and cost
reward, respectively.

We propose to use deep reinforcement learning to search
for the best digital twin placement strategy. Fig. 4 shows
the running mechanism of our proposed DRL-based method.
There are mainly two components in our proposed scheme,
that is, the actor network (deterministic policy network) and
the critic network (Q network). Each agent has its own actor
network to make association decision with users under its
coverage. The goal of training is to maximize the expectation
of the cumulative discounted reward, which is written as

R =

T∑
t=1

γt−1Rt, (27)

where γ ∈ (0, 1] is the reward discount factor. We use π =
[π1, π2, ..., πn] to denote the policies of the n agents, whose
parameters are denoted as θ = [θ1, θ2, ..., θn]. Thus we have
the policy gradient for agent i as

∇θiJ(πi) = E{θi},a∼D[∇θiπ(ai|oi)·
∇aiQπi ({θi}, a1, ..., an)|ai=πi(oi)],

(28)

where {θi} is the observation of agent i, that is, the state of
each agent. In our scheme, since the placement of digital twin
requires global coordination, we consider that all the agents
share the same system state through information exchange
between servers. For agent i, it determines its action ai
through its actor DNN π(st|θπ), denoted as

ai(t) = πi(st|θπi) + N, (29)

where N is the random noise for generating a new action. The
actor DNN is trained as

θπ = θπ+απ·E[∇aiQ(st,a1, ...,ai|θQ)|ai=π(st|θπ)·∇θππ(st)],
(30)

where απ is the learning rate of the actor DNN.
The critic DNN of agent i is trained as

θQi = θQi+αQi ·E[2(yt−Q(st,ai|θQi))·∇Q(st,a1, ...,ai)],
(31)

where αQi is the learning rate, yt is the target value,
(a1, ...,ai) is the actions of the agents in our system.

The proposed deep reinforcement learning based digital
twin placement algorithm is summarized as Algorithm 1. At
the beginning, all the actor network and critic network are
initialized randomly as the initial training parameters. Then the
replay memory is initialized for storing the experiencal sam-
ples in the training process. In each episode, the agent selects
its action towards its current observation state, and obtains the
reward for its current action. Then the new observation of the
system state is obtained. The experience tuple (st, ai, rt, st+1)
is then stored to the replay buffer. Finally, the agents train their
critic network and actor network by sampling records from the
replay buffer.

Algorithm 1 Deep reinforcement learning based digital twin
placement algorithm

Input: The user set U , the base station set B
Output: The digital twin server placement strategy Π

1: for each agent i ≤M do
2: Randomly initialize critic network and actor network
3: Initialize replay memory
4: end for
5: for episode e ≤ E do
6: Initialize network environment setup
7: for each time slot t do
8: for each agent i ≤M do
9: Observe current system state s and execute action

ai according to Eq. (29);
10: Obtain reward Ri(t) according to Eq. (26), and

get a new state observation st+1 based on actions
(a1,a2, ...,an)

11: Store (st,ai(t), Ri(t), st+1) to replay memory
12: end for
13: end for
14: for agent i ≤M do
15: Update actor network and critic network according

to Eq. (30) and Eq. (31)
16: Update target network of agent i
17: end for
18: Generate the digital twin placement strategy towards

current system state s, that is,

Π(t) =M(s, t)

19: end for
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B. Transfer Learning Empowered Digital Twin Migration
In the migration phase, we focus on migrating the digital

twin of a user device from the source server to the target
server. The migration of digital twins can continuously provide
users with high-quality services. Since training a complete
reinforcement learning model can consume a huge amount
of resources and can incur long latency, we propose to use
transfer learning for digital twin migration between servers.
In the digital twin migration process, we aim at constructing
the digital twin model of a user device instantly in the target
server by leveraging transfer learning to reuse the obtained
knowledge in the source digital twin server, as denoted in
Fig. 5. For user ui ∈ U moving from location A to location B
and location C, the transfer learning empowered digital twin
migration processes are as follows.

Action
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Actor_P

...

Value

...

Critic_P

...

Action

...

...

Actor_P

...

Value

...

Critic_P

...

Action
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Actor_P
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Value

...

Critic_P

...

Digital Twin Empowered Network Environment

A B C

𝛉a 𝛉𝒃 𝛉𝒄Transfer Transfer

Fig. 5: The process of transfer learning for digital twin
migration

1) Target server selection: We first select the target server
according to the current distance and communication
channel state, that is, select the server for user ui with
the minimal time delay given by Eq. (11).

2) Model parameter aggregation: The reinforcement learn-
ing model learned at server DTA contains the running
knowledge of user ui. Thus we transfer the parameters
of the trained DRL network model, denoted as θAui , to
the target server. The new model at the target server is
calculated as

θui =
∑

pj∈Trui

wpjθ
pj
ui , (32)

where pj is the location point in the trajectory of user
ui. For example, pj = {A,B,C} in the example case.
wpj is the weighting coefficient and

∑
pj
wpj = 1. Then

we obtain the initial model θui for user ui in the target
server.

3) Experience samples update: The experience samples in-
cluding states, actions, and rewards related to user ui,
are also transmitted from the source server to the target
server. Thus we have the new action and state space

(At,St) = (At−1,St−1) ∪ (As,Ss), (33)

where (As,Ss) is the experienced states and actions of
the source model.

4) Train the new model: Finally, we use the samples (At,St)
to train the new model θui , and obtain the migrated model
as

θui(t)← θui(t− 1) + ρ · θsrcui , (34)

where θsrcui is the source model, and ρ is the weight factor.
The complete process of our proposed transfer learning

empowered digital migration algorithm is summarized in Al-
gorithm 2.

Algorithm 2 Transfer learning empowered digital twin migra-
tion algorithm

Input: The trained source digital twin model θsrcu

Output: The target digital twin model θu(t)
1: for each user ui ∈ U do
2: Select the target server for constructing new digital twin

models
3: Transmit θsrcui to the target server
4: Initialize the target model with θsrcui
5: for each time slot t do
6: Merge the experience sample space according to Eq.

(33), and get St → At
7: Train the target model based on the merged samples
8: Obtain the target digital twin model θui(t)← θsrcui
9: end for

10: end for
11: Obtain the target digital twin model set θu(t) =
{θui(t)|ui ∈ U}

Specifically, in the target server selection phase, the goal
is to select a target digital twin server that has minimal
interaction latency and maximum utility Ui with user ui. The
interaction latency Tint can be obtained according to Eq.
(10). The detailed target server selection algorithm is listed
in Algorithm 3.

Algorithm 3 Target digital twin server selection algorithm

Input: The set of digital twin server DT s, source digital twin
server (DT (ui, src))

Output: The target digital twin server DT (ui, tar)
1: Initialize the target server set TS = ∅, calculate current

interaction time cost Tint(ui, ini) and Ui(ini)
2: for each digital twin server DTj ∈ DT s∧DTj /∈ TS do
3: Calculate the time cost between ui and DTj ,

Tint(ui, DTj), further obtain Ui(DTj)
4: if Ui(DTj) ≥ Ui(ini) then
5: DT (ui, tar) = DT (ui, j)
6: else
7: Keep current DT (ui, tar)
8: end if
9: Add DTj to TS

10: end for
11: Obtain the target digital twin server DT (ui, tar)

VI. NUMERICAL RESULTS

We consider a network topology with one MBS as the
cloud server, M base stations, and N end users, as shown
in Fig. 6. The users and BSs are randomly distributed in
an area of 1500m × 1500m. The locations of the users
and BSs, the available computing resources, and the channel
states vary with time in our simulation system. The maximum
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TABLE II: Simulation Parameters

Parameter Setting Value
Transmission channel bandwidth W 20 MHz
User device transmit power pi 0.2 W
CPU frequency of edge server Fj [8,24] GHz
Noise power function N0 -174 dBm/Hz
User number N {100, 80}
Base station number M {10, 5}
Training iterations 5000
Discounting factor γ 0.7
Batch size 32
Learning rate of actor network 0.001

transmission power of the user device is set to 200 mW. The
CPU computation capacity is randomly derived from the range
[8, 24] GHz. The training iterations of our proposed method
is set to 5000. The discounting factor γ in our DRL based
algorithm is set to 0.7. In our actor network, the batch size is
set to 32, and the learning rate is set to 0.001. The detailed
simulation parameters are shown in Table II.
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Fig. 6: Illustration of the simulation network

Fig. 7 shows the cumulative system costs of our proposed
algorithm for edge association with different numbers of BSs
and users. The proposed algorithm is executed and trained
in 5000 rounds. As can be seen from Fig. 7, our proposed
algorithm achieves good convergence performance in 5000
iterations. By comparing the performance of different numbers
of BSs and users, we can see that the number of users has
notable affection on the system cost. When the number of
BSs M is set to 5, the system cost of N = 100 is much larger
than that of N = 80. That is because the increased users
make the limited resources much more scarce in our proposed
wireless digital twin networks. The converged results show
that the cumulative system cost increases with the number of
users and the number of BSs. While the number of users has
a greater effect on the system cost than the number of BSs.

Fig. 8 depicts the optimization process of our proposed
adaptive edge association method in 25 steps, with different
numbers of users and BSs. The system cost is minimized
to a quite small value in 10 steps, which shows the good
convergence of our proposed algorithm. From the decreasing
system cost, we can see that our proposed scheme converges
fast and reaches the convergence points in a few steps.
Moreover, from the sub-figure, we can see that the increase in
the number of users has a greater impact on the system cost
compared to increase in the number of BSs. The trend further

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of iterations

60

80

100

120

140

160

180

C
u
m

u
la

ti
v
e
 s

y
s
te

m
 c

o
s
t

M=10, N=100

M=10, N=80

M=5, N=100

M=5, N=80

Fig. 7: The cumulative system cost

confirms our observation in Fig. 7. Moreover, by comparing
the performance of different number of BSs, we can draw the
following insight: the fewer BSs, the higher the system cost.
For example, when we take N = 80 and M = 5, the system
cost is much larger than when N = 80 and M = 10. Similarly,
when we take N = 100 and M = 5, the system cost is also
always larger than that of N = 100 and M = 10. The reason
is that with decrease in the number of BS, the users have
fewer available resources to access, which inevitably increases
the system cost for completing data transmission and edge
computing.
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Fig. 8: The optimization process of the edge association cost

We further compare our proposed method with two bench-
mark methods in the association. The comparison results are
shown in Fig. 9. In the nearest association method, the users
always select the close servers as the digital twin servers to
construct and maintain their digital twins. While in the random
association method, the digital twin servers are placed and as-
sociated randomly in the network. From Fig. 9 we can clearly
see that the proposed method achieves a significant reduction
in total time cost compared to the benchmark methods. Our
proposed method can search for the optimal edge association
strategies according to the instant system states based on our
trained actor-critic networks towards different network states.

Fig. 10 illustrates the total time cost (in seconds) of training
our DRL based model with different numbers of BSs and
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users. The training iteration ranges from 1 to 5000. From
the four experimental sets in Fig. 10 we can see that it costs
thousands of seconds for training our proposed models. The
experimental set with 80 users and 5 BSs consumes the least
time for training compared with other experimental sets, while
the experimental set with 100 users and 10 BSs consumes the
most time. Taking iteration 5000 as an example, when the
number of users N is set to 100, the running time with 10
BSs increases by 95% compared to the case when M = 5.
While the number of users is 80, the increase is by 57%.
Similarly, when the number of BSs M = 10, the running time
for the case N = 100 increases by 25% compared to when
N = 80. While M = 5, the increased rate is 22%. From the
above observations, we can conclude that the increase of BS
consumes more training time than the increase of users. The
reason is that the number of BSs has a significant impact on
the complexity of the edge association problem, including the
digital twin server selection and the user association, while
the number of users only affects the complexity of association
strategies in our proposed wireless digital twin networks. The
results in Fig. 10 illustrate that our proposed scheme can be
trained quickly towards dynamic network states. It can be also
inferred that the optimal decision can be made by our proposed
scheme within a few milliseconds.
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VII. CONCLUSION

In this paper, we proposed a new digital twin empowered
network model for 6G. We first presented the digital twin em-
powered system model for 6G networks including end users,
BSs, and cloud servers. We formulated the edge association
problem consisting of digital twin placement and digital twin
migration for reducing system latency and for increasing utility
for the users. To improve the efficiency of the proposed scheme
with limited resources, we derived an optimal solution to the
edge association problem by exploiting deep reinforcement
learning and transfer learning. Numerical results for various
network states demonstrated that the proposed scheme effec-
tively reduces the average system latency and improves the
convergence rate.
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