
Empir Software Eng
https://doi.org/10.1007/s10664-017-9560-y

Aggregating Association Rules to Improve Change
Recommendation

Thomas Rolfsnes1 ·Leon Moonen1 ·
Stefano Di Alesio1 ·Razieh Behjati1 ·
Dave Binkley2

© Springer Science+Business Media, LLC 2017

Abstract As the complexity of software systems grows, it becomes increasingly difficult
for developers to be aware of all the dependencies that exist between artifacts (e.g., files or
methods) of a system. Change recommendation has been proposed as a technique to over-
come this problem, as it suggests to a developer relevant source-code artifacts related to her
changes. Association rule mining has shown promise in deriving such recommendations
by uncovering relevant patterns in the system’s change history. The strength of the mined
association rules is captured using a variety of interestingness measures. However, state-of-
the-art recommendation engines typically use only the rule with the highest interestingness
value when more than one rule applies. In contrast, we argue that when multiple rules apply, this
indicates collective evidence, and aggregating those rules (and their evidence) will lead to more
accurate change recommendation. To investigate this hypothesis we conduct a large empir-
ical study of 15 open source software systems and two systems from our industry partners.

Communicated by: Romain Robbes, Christian Bird, and Emily Hill

� Thomas Rolfsnes
thomgrol@simula.no

� Leon Moonen
leon.moonen@computer.org

Stefano Di Alesio
stefano@simula.no

Razieh Behjati
behjati@simula.no

Dave Binkley
binkley@cs.loyola.edu

1 Simula Research Laboratory, Oslo, Norway

2 Loyola University Maryland, Baltimore, MD, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9560-y&domain=pdf
http://orcid.org/0000-0001-5984-3924
mailto:thomgrol@simula.no
mailto:leon.moonen@computer.org
mailto:stefano@simula.no
mailto:behjati@simula.no
mailto:binkley@cs.loyola.edu

Empir Software Eng

We evaluate association rule aggregation using four variants of the change history for each
system studied, enabling us to compare two different levels of granularity in two differ-
ent scenarios. Furthermore, we study 40 interestingness measures using the rules produced
by two different mining algorithms. The results show that (1) between 13 and 90% of
change recommendations can be improved by rule aggregation, (2) rule aggregation almost
always improves change recommendation for both algorithms and all measures, and (3)
fine-grained histories benefit more from rule aggregation.

Keywords Evolutionary coupling · Targeted association rule mining · Rule aggregation ·
Interestingness aggregator · Change recommendations · Change impact analysis

1 Introduction

The evolution of a software system is accompanied by continuous growth in the number and
complexity of interactions between system artifacts. Thus, over time, it becomes increas-
ingly challenging for developers to manage the impact of changes made to the system. To
address this problem, Change Impact Analysis (CIA) has been proposed to identify soft-
ware artifacts (e.g., files, classes, and methods) affected by a given change (Canfora and
Cerulo 2005; Jashki et al. 2008; Ren et al. 2004; Zanjani et al. 2014). CIA is typically used
to derive a software change recommendation as direct feedback to a developer regarding
artifacts that may also be in need of change.

Classical CIA employs static and dynamic dependence analysis (Bohner and Arnold
1996). For example, by identifying the methods that call a changed method. However,
both static and dynamic dependence analysis are generally language specific, making
them unsuitable for heterogeneous software systems (Yazdanshenas and Moonen 2011). In
addition, because of its conservative nature static analysis is known to over-approximate
solutions (Podgurski and Clarke 1990), while dynamic analysis can involve considerable
run-time overhead (Yong and Horwitz 2002).

These limitations have led to increasing interest in alternative approaches (Bird et al.
2015). Prominent among these is the identification of dependences using evolutionary cou-
pling. Such couplings are based on how a software system changes over time, something that
is missed by static and dynamic dependence analysis. In essence, evolutionary coupling taps
into the developers’ inherent knowledge of the dependencies in the system. This co-change
knowledge can manifest itself in several ways: commits, bug-reports, context-switches in
an IDE, etc. It can thus be extracted, for example, from the project’s version control sys-
tem (Eick et al. 2001), its issue tracking database, or by instrumenting the development
environment (Robbes et al. 2008).

This paper explores the use of co-change information extracted from git repositories as the
basis for uncovering the evolutionary coupling. Doing so exploits the fact that dependent artifacts
are likely to change together. Specifically, we mine evolutionary couplings using associ-
ation rule mining (Agrawal et al. 1993), an unsupervised machine learning approach that
reveals relations among items in a data set. The relative importance of mined rules is typi-
cally captured by an interestingness measure (e.g., support or confidence), which seeks to
capture the relative utility of each mined rule (Kamber and Shinghal 1996; Tan et al. 2004;
Geng and Hamilton 2006). In scenarios where multiple rules can be applied, it is common
to consider only the single rule with the highest interestingness value (Toivonen et al. 1995).

Empir Software Eng

In contrast, we hypothesize that the aggregation of such rules can be exploited to provide
improved recommendations.

Contributions: This article builds upon our previous work with association rule aggre-
gation (Rolfsnes et al. 2016). In particular, it extends our previous work in six key respects:
(1) we significantly scale up the empirical study of association rule aggregation in the con-
text of change recommendation (2) we include a study of aggregation performance on the
level of individual software systems (3) we introduce and study a new aggregation function,
Hyper Cumulative Gain (4) we study the effect that history granularity (files, methods etc.)
has on the precision gained from rule aggregation (5) we formally prove that all studied
aggregation functions satisfy our previously proposed aggregation properties, and finally
(6) we extend our review of the related work.

Overview: The rest of this article is organized as follows: Section 2 provides background
on targeted association rule mining. Section 3 describes limitations of the current state-of-
art approaches to association rule mining. Section 4 overviews the interestingness measures
used to weigh the mined association rules. Section 5 introduces the aggregation of associa-
tion rules into hyper-rules, while Section 6 presents the aggregation functions considered in
the experiments. Section 7 describes the setup of our empirical evaluation whose results are
presented and discussed in Section 8. Section 9 discusses potential threats that could affect
the validity of our conclusions, while Section 10 presents related work. Finally, Section 11
concludes the article with final remarks and outlines future work.

2 Association Rule Mining

Agrawal et al. introduced the concept of association rule mining as the discipline aimed at
inferring relations between entities of a data set (Agrawal et al. 1993). Association rules
are implications of the form A → B, where A is referred to as the antecedent, B as the
consequent, and A and B are disjoint sets of entities. For example, consider the classic
application of analyzing shopping cart data; if multiple transactions include bread and butter
then a potential association rule is bread → butter. This rule can be read as “if you buy
bread, then you are also likely to buy butter.”

In the context of mining evolutionary coupling from historical co-change data, the enti-
ties are the files of the system1 and the sequence (history) T of transactions, is the sequence
of past commits. More specifically, a transaction T ∈ T is the set of files that were either
changed or added while addressing a given bug or feature addition, hence creating a logical
dependence between the files (Gall et al. 1998).

As originally defined (Agrawal et al. 1993), association rule mining generates rules that
express patterns in a complete data set. However, some applications can exploit a more
focused set of rules. Targeted association rule mining (Srikant et al. 1997) focuses the gen-
eration of rules to those that satisfy a given constraint, e.g., stating that the antecedent of all
mined rules has to belong to a particular set of files. Doing so reduces the number of rules
generated and thus can significantly improve the rule generation time (Srikant et al. 1997).

1Other levels of granularity are possible as our algorithms are granularity agnostic. Thus, our initial descrip-
tion at the file level is without loss of generality. Provided suitably co-change data the algorithms can relate
methods or variables just as well as files, a fact which will be exploited later on in the paper.

Empir Software Eng

When generating change recommendations, rule constraints are based on a change set:
the set of modified files since the last commit. In this case, only rules with at least one
changed artifact in the antecedent are generated. The output of a change recommendation is
the set of files that are historically changed along with the elements of the change set. For
example, given the change set {a, b, c}, a change recommendation would consist of the files
that were changed when a, b, and c were changed. The recommended files are those found
in the consequent of the mined rules, and these files are typically ranked based on the rule’s
interestingness value.

To the best of our knowledge, only a few targeted association rule mining algorithms
have been considered in the context of change recommendation: Zimmermann et al. (2005),
Ying et al. (2004), and Rolfsnes et al. (2016) (our previous work). In contrast, simple co-
change algorithms have been applied in a variety of domains (Ball et al. 1997; Beyer and
Noack 2005; Gall et al. 1998; Hassan and Holt 2004). The existing targeted association rule
mining algorithms and the simple co-change algorithms differ in terms of the subsets of
the change set used to form the rule antecedents. Consider, for example, the subsets of the
change-set C = {a, b, c, d}:

powerset (C) = {{}, (1)

{a}, {b}, {c}, {d}, (2)

{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, (3)

{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, (4)

{a, b, c, d}} (5)

of C’s subsets, both Zimmerman’s and Ying’s algorithms only consider rules based on line 5
(i.e., rules of the form {a, b, c, d} → X) because these techniques constrain the antecedent
to be equal to the change set. At the other end of the spectrum, co-change algorithms con-
sider rules from the singleton sets in line 2, such as {a} → X or {b} → X. (As a notational
convenience, singleton sets are often written without brackets as in “a → X”.) In previous
work, we introduced TARMAQ, the most versatile among these algorithms (Rolfsnes et al.
2016). TARMAQ uses the set from any one of lines 2, 3, 4, or 5. The particular line used
is dynamically chosen based on the maximal overlap with the change set (Rolfsnes et al.
2016).

In this paper we study only CO-CHANGE and TARMAQ. Zimmerman’s ROSE algorithm
is not included because its behavior is subsumed by TARMAQ (i.e., whenever ROSE is able to
make a recommendation, TARMAQ makes the same recommendation, but TARMAQ is able
to generate recommendations when ROSE is not (Rolfsnes et al. 2016)). To provide some
intuition on the behavior of CO-CHANGE and TARMAQ we provide the following example:

Example 1 (CO-CHANGE and TARMAQ) Given a query Q of changed artifacts, CO-
CHANGE and TARMAQ work as follows:

CO-CHANGE: for each artifact q ∈ Q, find the set of artifacts C not in Q that have
changed with q in the past, then for each c ∈ C create rules such that the
left hand side is equal to q, and the right hand side is equal to c.

TARMAQ: find the transactions with the largest intersection with Q, then create rules
such that the left hand size is equal to the intersection, and the right
hand side is equal to the respective difference (“leftover” artifacts of each
transaction).

Empir Software Eng

For example, assume that artifacts a, b, and f have been changed by a developer, yield-
ing the query Q = {a, b, f }, then given the following change history, CO-CHANGE and
TARMAQ will output the following rules:

ChangeHistory CO-CHANGE TARMAQ

T XIDArtif acts a → Y a, b → X

T X1{a, Y } a → X b, f → X

T X2{a, b, X} b → X

T X3{b, f,X} f → X

For CO-CHANGE, a has changed with both Y and X, resulting in the two first rules, while b

and f has changed with X, resulting in the two last rules. For TARMAQ, the largest intersec-
tions (of size two) can be found in T X2, and T X3, and the difference with each respective
intersection and transaction is X, resulting in the two rules.

3 Problem Description

In complex software systems, as well as systems with many active developers, it can be
challenging for each individual developer to be aware of all dependencies that exist in
the software. To aid a developer, a change recommendation can be made based on recent
changes. The application of association rule mining to change recommendation involves
looking for the evolutionary coupling between artifacts (files, methods, etc.) of a system.
This search considers artifacts coupled if and only if they have changed together in the past.
Furthermore, the strength of a coupling is given by an interestingness value. For example,
how frequently the rule’s artifacts change together.

In our previous work (Rolfsnes et al. 2016), which sought to find evolutionary couplings
through association rule mining of a system’s version history, we noticed that there are
often rules with different antecedents, but the same consequent. For example, consider the
following rules involving artifacts a, b, and c:

r1 = {a} → {c}
r2 = {b} → {c}

which can be interpreted as “if you change a, consider changing c,” and “if you change
b consider changing c.” Given the change set {a, b}, existing recommendations systems
will select one of the two rules, that recommend c. However, we conjecture that doing so
may be a mistake. For example, having multiple applicable rules for the same consequent
potentially provides increased evidence that the consequent is relevant. We hypothesize
that this increased evidence can be captured by the aggregation of rules into hyper-rules,
whose use will lead to more accurate recommendations. In terms of the example, we seek
to combine rules r1 and r2 into the hyper-rule r3 that captures the cumulative evidence that
c should be recommended for change when a and b are changed.

A concrete example will help illustrate our goal and also provide a better intuition into the
value of association rule aggregation. The example involves a sequence of past transactions
that each include a set of artifacts that changed together. The example also motivates the
need to aggregate the interestingness values (defined in Section 4) of the rules to produce an
interestingness value for the resulting hyper-rule. The example does this using, as a simple
interestingness value, the percentage of the transactions that give rise to the rule.

Empir Software Eng

Example 2 Consider the following (historic) sequence of transactions:

T = [{a, x}, {b, y}, {c, y}, {d, y}, {a, x}]

and the change set C = {a, b, c, d} where, based on T and C, the following rules have
been mined (the interestingness of each is given in parentheses):

a → x (40%)

b → y (20%)

c → y (20%)

d → y (20%)

In these rules all the artifacts that occur in an antecedent are part of change set C while all
artifacts that occur in a consequent are potentially impacted by the change with a certainty
reflected by the rule’s interestingness value.

Clearly, without aggregation, x is recommended above y, because it has changed two
times with an item in the change set (a), while y had changed at most once with any individ-
ual item of the change set. However, y has changed more times with at least one item of the
change set. Therefore, there is combined evidence that y should be recommended above x.

Generalizing this example, our goal is to aggregate mined association rules into hyper-
rules, which combine evidence and ultimately provide more accurate recommendations.
To this end, the remainder of this paper investigates the impact of three aggregation tech-
niques on the performance of two association rule mining algorithms using a collection of
40 interestingness-measures.

4 Interestingness Measures

The relative value of the rules mined via targeted association rule mining is given by
an interestingness measure. In Agrawal et al.’s seminal paper on association rule min-
ing (Agrawal et al. 1993), two interestingness measures were introduced, support and
confidence.

Definition 1 (Support) Given a sequence of transactions T , the support of the rule A →
B is defined as the number of transactions where the union of the antecedent and consequent
is a subset, divided by the total number of transactions. Therefore, support represents the
probability of A ∪ B being a subset in a transaction:

support (A → B)
def=

∣
∣
{

T ∈ T : {A ∪ B} ⊆ T
}∣
∣

∣
∣T

∣
∣

Intuitively, the higher the support, the more likely the rule is to hold, while rules with
low support identify weaker relations. For this reason, a minimum threshold on support is
often used to filter out uninteresting rules.

Definition 2 (Confidence) Given a sequence of transactions T , the confidence of the rule
A → B is defined as the number of transactions with the union of A and B as a subset,
divided by the number of transactions where A is a subset. Therefore, the confidence represents

Empir Software Eng

Table 1 Overview of probabilistic building blocks used to define the interestingness measures of Table 2

Probability Definition Conditional Probabilities Definition

P(A)
|{T ∈T :A⊆T }|

|T | P(A|B)
P(A,B)
P (B)

P (B)
|{T ∈T :B⊆T }|

|T | P(B|A)
P(B,A)
P (A)

P (A,B)
|{T ∈T :{A∪B}⊆T }|

|T | P(¬A|B)
P(¬A,B)

P (B)

P (¬A) 1 − P(A) P (¬B|A)
P(¬B,A)

P (A)

P (¬B) 1 − P(B) P (A|¬B)
P(A,¬B)
P (¬B)

P (¬A, ¬B) 1 − P(A) − P(B) + P(A,B) P (B|¬A)
P(B,¬A)
P (¬A)

P (¬A,B) P (B) − P(A,B) P (¬A|¬B)
P(¬A,¬B)

P (¬B)

P (A, ¬B) P (A) − P(A,B) P (¬A|¬B)
P(¬A,¬B)

P (¬B)

the conditional probability of B being a subset in a transaction, given that A is a subset of
that transaction:

confidence(A → B)
def=

∣
∣
{

T ∈ T : {A ∪ B} ⊆ T
}∣
∣

∣
∣
{

T ∈ T : A ⊆ T
}∣
∣

Since the introduction of targeted association rule mining, a large number of alternative
interestingness measures have been proposed. However, all these measures can be defined
using the same set of basic probabilistic quantities. Indeed, the interestingness measures of
a rule A → B build upon the following probabilities:

P(A): the likelihood of A changing in the history.
P(B): the likelihood of B changing in the history.

P(A, B): the likelihood of A and B changing together in the history.

As shown in Table 1, the other probabilities used in the measure definitions can be
inferred from these three. For example, support is the probability P(A, B), which is the
probability that a transaction includes both A and B. Likewise, confidence is the probability
P(B|A), which is the conditional probability that B is in a transaction given that A is in the
same transaction. Several measures also account for the non-occurrence of the antecedent
or consequent. For example, the causal support is defined as P(A, B) + P(¬A,¬B). A
complete list of the interestingness measures used in our study and their definitions is given
in Table 2.

There is one final detail related to the interestingness measures that is relevant to our
discussion: the range of a measure, and specifically its ability to measure either negative,
positive, or no correlation between a rule’s antecedent and consequent. Early measures such
as support and confidence focus on positive correlations. However, it is also possible to
consider negative correlations. These would concern rules that capture, for example, “if a

changes, then it is unlikely that you need to change b”.
The range of most measures falls into one of a few categories. Most existing measures

(e.g., support) range between 0 and 1. This [0..1] range is also the easiest to interpret as
a correlation, where 0 naturally indicates no correlation and any higher value the degree
of positive correlation. Another common range is [−1..0..1], where 0 again indicates no
correlation, but negative correlation is also possible. In addition, there also exist ranges such
as [0..1..∞), where 1 indicates no correlation and the maximum value is unbounded.

Empir Software Eng

Ta
bl
e
2

O
ve

rv
ie

w
of

th
e

40
in

te
re

st
in

gn
es

s
m

ea
su

re
s

co
ns

id
er

ed
in

ou
r

st
ud

y
(c

on
tin

ue
d

on
ne

xt
pa

ge
)

In
te

re
st

in
gn

es
s

m
ea

su
re

R
an

ge
D

ef
in

iti
on

A
dd

ed
V

al
ue

(T
an

et
al

.2
00

4)
[−

0.
5.

.0
..

1]
P

(B
|A

)
−

P
(B

)

C
au

sa
lC

on
fi

de
nc

e
(K

od
ra

to
ff

20
01

)
[0.

.1
]

1 2
∗(

P
(B

|A
)
+

P
(¬

A
|¬

B
))

C
au

sa
lS

up
po

rt
(K

od
ra

to
ff

20
01

)
[0.

.1
]

P
(A

,
B

)
+

P
(¬

A
,
¬B

)

C
ol

le
ct

iv
e

St
re

ng
th

(A
gg

ar
w

al
an

d
Y

u
19

98
)

[0.
.1

..
∞

)
P

(A
,B

)+
P

(¬
B

|¬
A

)
P

(A
)∗P

(B
)+

P
(¬

A
)∗P

(¬
B

)
∗1−

P
(A

)∗P
(B

)−
P

(¬
A

)∗P
(¬

B
)

1−
P

(A
,B

)−
P

(¬
B

|¬
A

)

C
on

fi
de

nc
e

(A
gr

aw
al

et
al

.1
99

3)
[0.

.1
]

P
(B

|A
)

C
on

vi
ct

io
n

(B
ri

n
et

al
.1

99
7)

[0.
.∞

)
P

(A
)∗P

(¬
B

)
P

(A
,¬

B
)

C
os

in
e

(T
an

et
al

.2
00

4)
[0.

.1
]

P
(A

,B
)

√ P
(A

)∗P
(B

)

C
ov

er
ag

e
(G

en
g

an
d

H
am

ilt
on

20
06

)
[0.

.1
]

P
(A

)

D
es

cr
ip

tiv
e

C
on

fi
rm

ed
C

on
fi

de
nc

e
(K

od
ra

to
ff

20
01

)
[−

1.
.0

..
1]

P
(B

|A
)
−

P
(¬

B
|A

)

D
if

fe
re

nc
e

O
f

C
on

fi
de

nc
e

(H
of

m
an

n
an

d
W

ilh
el

m
20

01
)

[−
1.

.0
..

1]
P

(B
|A

)
−

P
(B

|¬
A

)

E
xa

m
pl

e
an

d
C

ou
nt

er
ex

am
pl

e
R

at
e

(V
ai

lla
nt

et
al

.2
00

4)
(−

∞
..

0.
.1

]
(P

(A
,B

)−
P

(A
,¬

B
))

P
(A

,B
)

G
in

iI
nd

ex
(B

re
im

an
et

al
.1

98
4)

[0.
.1

]
P

(A
)
∗(

P
(B

|A
)2

+
P

(¬
B

|A
)2

)
+

P
(¬

A
)
∗(

P
(B

|¬
A

)2

+P
(¬

B
|¬

A
)2

)
−

P
(B

)2
−

P
(¬

B
)2

Im
ba

la
nc

e
R

at
io

(W
u

et
al

.2
01

0)
[0.

.1
]

|P
(A

|B
)−

P
(B

|A
)|

P
(A

|B
)+

P
(B

|A
)−

P
(A

|B
)∗P

(B
|A

)

In
te

re
st

in
gn

es
s

W
ei

gh
tin

g
D

ep
en

de
nc

y
(w

ith
pa

ra
m

et
er

s
k=

2,
m

=
2)

(G
ra

y
an

d
O

rl
ow

sk
a

19
98

)
[0.

.1
]

(
P

(B
|A

)
P

(B
)

)
(k

−1
)

∗(
P

(A
,
B

))
m

J
M

ea
su

re
(S

m
yt

h
an

d
G

oo
dm

an
19

92
)

[0.
.1

]
P

(A
,
B

)
∗l

o
g

(
P

(B
|A

)
P

(B
)

)

+
P

(A
,
¬B

)
∗l

o
g

(
P

(¬
B

|A
P

(¬
B

)

Ja
cc

ar
d

(V
an

R
ijs

be
rg

en
19

79
)

[0.
.1

]
P

(A
,B

)
(P

(A
)+

P
(B

)−
P

(A
,B

))

Empir Software Eng

Ta
bl
e
2

(c
on

tin
ue

d)

In
te

re
st

in
gn

es
s

m
ea

su
re

R
an

ge
D

ef
in

iti
on

K
ap

pa
(C

oh
en

19
60

)
[−

1.
.0

..
1]

P
(A

,B
)+

P
(¬

A
,¬

B
)−

P
(A

)∗P
(B

)−
P

(¬
A

)∗P
(¬

B
)

1−
P

(A
)∗P

(B
)−

P
(¬

A
)∗P

(¬
B

)

K
lö

sg
en

(K
lö

sg
en

19
92

)
[−

1.
.0

..
1]

√ P
(A

,
B

)
∗m

a
x
(P

(B
|A

)
−

P
(B

),
P

(A
|B

)
−

P
(A

))

K
ul

cz
yn

sk
i(

K
ul

cz
yń

sk
i1

92
8)

[0.
.1

]
P

(A
,B

)
2

∗(
1

P
(A

)
+

1
P

(B
)

)

L
ap

la
ce

C
or

re
ct

ed
C

on
fi

de
nc

e
(G

oo
d

19
66

)
[0.

.1
]

P
(A

,B
)+

1
P

(B
)+

2

L
ea

st
C

on
tr

ad
ic

tio
n

(A
zė

an
d

K
od

ra
to

ff
20

02
)

(−
∞

..
0.

.1
]

P
(A

,B
)−

P
(A

,¬
B

)
P

(B
)

L
ev

er
ag

e(
Pi

at
et

sk
y-

Sh
ap

ir
o

19
91

)
[−

1.
.0

..
1]

P
(B

|A
)
−

P
(A

)
∗P

(B
)

L
if

t(
B

ri
n

et
al

.1
99

7)
[0.

.1
..
∞

)
P

(A
,B

)
P

(A
)∗P

(B
)

L
in

ea
r

C
or

re
la

tio
n

C
oe

ff
ic

ie
nt

(P
ea

rs
on

18
96

)
[−

1.
.0

..
1]

P
(A

,B
)−

P
(A

)∗P
(B

)
√ P

(A
)∗P

(B
)∗P

(¬
A

)∗P
(¬

B
)

L
oe

vi
ng

er
(L

oe
vi

ng
er

19
47

)
[−

1.
.0

..
1]

1
−

P
(A

)∗P
(¬

B
)

P
(A

,¬
B

)

O
dd

M
ul

tip
lie

r
(V

ai
lla

nt
et

al
.2

00
4)

[0.
.∞

)
P

(A
,B

)∗P
(¬

B
)

P
(B

)∗P
(A

,¬
B

)

O
dd

s
R

at
io

(M
os

te
lle

r
19

68
)

[0.
.1

..
∞

)
P

(A
,B

)∗P
(¬

A
,¬

B
)

P
(A

,¬
B

)∗P
(¬

A
,B

)

O
ne

W
ay

Su
pp

or
t(

Y
ao

an
d

Z
ho

ng
19

99
)

[−
1.

.0
..
∞

)
P

(B
|A

)
∗l

o
g

2

(
P

(A
,B

)
P

(A
)∗P

(B
)

)

Pi
at

et
sk

y-
Sh

ap
ir

o
(P

ia
te

ts
ky

-S
ha

pi
ro

19
91

)
[−

0.
25

..
0.

.0
.2

5]
P

(A
,
B

)
−

P
(A

)
∗P

(B
)

Pr
ev

al
en

ce
(G

en
g

an
d

H
am

ilt
on

20
06

)
[0.

.1
]

P
(B

)

R
ec

al
l(

G
en

g
an

d
H

am
ilt

on
20

06
)

[0.
.1

]
P

(A
|B

)

R
el

at
iv

e
R

is
k

(G
en

g
an

d
H

am
ilt

on
20

06
)

[0.
.∞

)
P

(B
|A

)
P

(B
|¬

A
)

Se
ba

g
Sc

ho
en

au
er

(S
eb

ag
an

d
Sc

ho
en

au
er

19
88

)
[0.

.∞
)

P
(A

,B
)

P
(A

,¬
B

)

Sp
ec

if
ic

ity
(G

en
g

an
d

H
am

ilt
on

20
06

)
[0.

.1
]

P
(¬

B
|¬

A
)

Su
pp

or
t(

A
gr

aw
al

et
al

.1
99

3)
[0.

.1
]

P
(A

,
B

)

Empir Software Eng

Ta
bl
e
2

(c
on

tin
ue

d)

In
te

re
st

in
gn

es
s

m
ea

su
re

R
an

ge
D

ef
in

iti
on

Tw
o

W
ay

Su
pp

or
t(

Y
ao

an
d

Z
ho

ng
19

99
)

[−
1.

.0
..

1]
P

(A
,
B

)
∗l

o
g

2

(
P

(A
,B

)
P

(A
)∗P

(B
)

)

V
ar

yi
ng

R
at

es
L

ia
is

on
(B

er
na

rd
an

d
C

ha
rr

on
19

96
)

[−
1.

.0
..
∞

)
P

(A
,B

)
P

(A
)∗P

(B
)
−

1

Y
ul

es
Q

(Y
ul

e
19

00
)

[−
1.

.0
..

1]
od

ds
ra

tio
−1

od
ds

ra
tio

+1
Y

ul
es

Y
(Y

ul
e

19
12

)
[−

1.
.0

..
1]

√ od
ds

ra
tio

−1
√ od

ds
ra

tio
+1

Z
ha

ng
(Z

ha
ng

20
00

)
[−

1.
.0

..
1]

P
(A

,B
)−

P
(A

)∗P
(B

)
m

a
x
(P

(A
B

)∗P
(¬

B
),

P
(B

)∗P
(A

,¬
B

))

T
he

no
ta

tio
n

[m
in

..
m

id
..
m

a
x
]is

us
ed

to
pr

ov
id

e
th

e
ra

ng
e

of
ea

ch
in

te
re

st
in

gn
es

s
m

ea
su

re
,m

in
/m
ax

pr
ov

id
es

th
e

m
in

im
um

an
d

m
ax

im
um

va
lu

e
re

sp
ec

tiv
el

y,
m
id

in
di

ca
te

s
th

e
po

in
to

f
no

co
rr

el
at

io
n.

If
on

ly
[m

in
..
m

a
x
]is

us
ed

,t
he

po
in

to
f

no
co

rr
el

at
io

n
is

gi
ve

n
by

m
in

Empir Software Eng

Piatetsky and Shapiro formalize this notion using four properties that they assert all inter-
estingness measures should satisfy (Piatetsky-Shapiro 1991). The four properties use V to
denote the value produced by an interestingness measure:

No correlation: V = 0 when P(A) and P(B) are statistically independent (i.e.,
when P(A, B) = P(A) · P(B)).

Positive correlation: When P(A) and P(B) remain unchanged, but P(A, B) monoton-
ically increase, V should also monotonically increase.

Negative correlation: When P(B) and P(A, B) remain unchanged, but P(A) monoton-
ically decrease, V should also monotonically decrease.

Negative correlation: When P(A) and P(A, B) remain unchanged, but P(B) monoton-
ically decrease, V should also monotonically decrease.

Existing interestingness measures satisfy these properties to a varying degrees, especially
with respect to the way positive and negative correlation are captured (Tan et al. 2004). For
example, 23 of the 40 measures shown in Table 2, capture only positive correlations. Fur-
thermore, based on the empirical data we collected, only three of the remaining 17 measures
actually produced negative correlations in practice.2

5 Association Rule Aggregation

To assess the value of aggregating the evidence provided by a collection of conventional
association rules, we introduce the concept of a hyper-rule, which provides an effective
summary of a set of constituent rules. When forming hyper-rules, we have to answer two
questions: (1) What constitutes a hyper-rule? In other words, how do we select the rules that
form a hyper-rule? We address this question in Section 5.1. (2) How do we rank hyper-rules
within a set of rules (either conventional or hyper)? We address this question in Section 5.2.

5.1 Hyper-Rule Formation

While in general any set of rules can be aggregated to form a hyper-rule, the focus of this
paper is on the aggregation of rules that share a common consequent. These rules represent
the collective impact of a change on the respective consequent, which then naturally forms
the basis for a change recommendation.

Example 3 Consider the set R = {{a, b} → {c, f }, {a, b} → {c}, {d} → {c}}. For the pur-
pose of change recommendation, we aggregate the last two rules in set R, since they share
the same consequent. The antecedent of the resulting hyper-rule is the set of antecedents of
all the constituent rules.

Another potentially interesting application of rule aggregation is to aggregate rules with
the same antecedent. Doing so facilitates determining the overall impact of a change. As
an example, aggregating the first two rules in set R, introduced in Example 3, results in
a hyper-rule that summarizes the impact of changing a and b together. The consequent of
such a hyper-rule is the set of consequents of all the constituent rules.

2The three measures are: descriptive confirmed confidence, example and counterexample rate, and least
contradictions. Other able measures also sometimes produced negative values, although quite rarely.

Empir Software Eng

Beyond these two, other problem domains may require still other ways of selecting rules
for aggregation. In general, a hyper-rule, which intuitively summarizes a set of conventional
rules, is defined as follows:

Definition 3 (Hyper-Rule) Given a set of rules R = {A1 → C1, ..., An → Cn} we define
hyper-rule H (R) as

H (R) =
n

⋃

i=1

{Ai} ⇒
n

⋃

i=1

{Ci}

Note that the antecedent and the consequent of a hyper-rule are sets of sets of entities
rather than being sets of entities as found in conventional rules. To help distinguish hyper-
rules and conventional rules, we use a double-arrow ⇒ in a hyper-rule rather than the single
arrow → used with conventional rules.

Example 4 Given R, the set of rules introduced in Example 3, let R′ ⊂ R be the set of rules
that share the same consequent (i.e., R′ = {{a, b} → {c}, {d} → {c}}). Then the hyper-rule
generated from R′ is:

H (R′) = {{a, b}, {d}} ⇒ {{c}}

Notice that the definition for a hyper-rule concerns only the association rules and not
the originating transactions. This opens up the possibility of identifying cross transactional
patterns. In Example 4, the hyper-rule simply states that when a and b change, c changes,
and when d changes, c also changes. We do not require that all of a, b and d change together
with c in the same transaction, rather we are only concerned with combining the evidence
found in the individual association rules. Our hypothesis is that combining the evidence for
c into a single hyper-rule will better capture the collective evidence. The challenge here is
to quantify the importance of a hyper-rule, this we discuss in the next section.

5.2 Interestingness Measure Aggregation

In the same manner that an association rule has an interestingness measure a hyper-rule
has an aggregated interestingness measure, which summarizes the interestingness values
of all its constituent rules into a single value. Aggregated interestingness measures allow
ranking hyper-rules; within a set of rules that may potentially contain both hyper-rules and
conventional association rules. While an interestingness measure implies a total order over
a set of conventional rules, an aggregated interestingness measure extends that total order
to sets of rules that contain both hyper-rules and conventional association rules.

Although it is possible to define aggregated interestingness measures by extending each
interestingness measure to be applicable to hyper-rules, a more scalable approach is to pro-
vide measure-agnostic aggregators that simply aggregate a number of interestingness values
into a single value. Such aggregators should conform to a set of properties that are described
in Definition 4.

Definition 4 (Properties of a measure aggregator) Let M be an interestingness mea-
sure defined over conventional rules, and R be a set of conventional rules. Let ⊕ denote a
measure aggregator that maps H (R) and M to a single value representing the aggregated
interestingness value (i.e., ⊕(H (R),M)). Then the following properties should hold:

Empir Software Eng

1. Let r1 and r2 be two conventional rules, then

M(r1) ≥ M(r2) =⇒ ⊕(H ({r1}),M) ≥ ⊕(H ({r2}),M)

2. For each set of conventional rules R, if |R| > 1, then for each r ∈ R the following
holds:

⊕(H (R),M)

⎧

⎨

⎩

> ⊕(H (R − {r}),M) if M(r) > 0
= ⊕(H (R − {r}),M) if M(r) = 0
< ⊕(H (R − {r}),M) if M(r) < 0

The first property ensures that applying a measure aggregator, ⊕, on single rules retains
their original ordering. The second property ensures monotonicity. For example, it requires
that the aggregation function is strictly increasing when rules with positive measure values
are aggregated. Note that our theoretical framework for ranking hyper-rules is agnostic with
regards to the interestingness measure used.

6 Aggregation Functions

In this section we present three aggregation functions that satisfy the properties of Defini-
tion 4 for non-negative values.3 Thus this initial exploration of rule aggregators focus on
aggregation of positive correlation, as we assess the inclusion of negative correlation to be
a topic in it self. We briefly discuss potential strategies in Section 6.5.

The first two aggregators, Cumulative Gain (CG) and Discounted Cumulative Gain
(DCG), are adapted from well known performance measures in Information Retrieval. They
are typically used to evaluate search results by evaluating a target list against an ideal
(oracle) list (Järvelin and Kekäläinen 2002). In addition to these two, we introduce an addi-
tional aggregation function, Hyper Cumulative Gain (HCG). All aggregators are empirically
evaluated in Section 8.

6.1 Cumulative Gain

The first aggregation function, Cumulative Gain, comes from Information Retrieval
(Järvelin and Kekäläinen 2002).

Definition 5 (Cumulative Gain) Given an interestingness measure M and a set of rules
R = rules, where ∀r ∈ R : M(r) ≥ 0, the Cumulative Gain of the hyper-rule H (R) is
defined as follows:

CG
(

H (R),M
) =

n
∑

i=1

M(ri)

Example 5 (Cumulative Gain) Given the following set of rules R, and an interestingness
measure M:

R = {r1, r2, r3}
M = {(r1, 0.7), (r2, 0.3), (r3, 0.3)}

the Cumulative Gain of H (R) is computed as follows:

CG
(

H (R)
) = 0.7 + 0.3 + 0.3 = 1.3

3Formal proofs for the three aggregator functions are provided in the Appendix.

Empir Software Eng

6.2 Discounted Cumulative Gain

While similar in nature to CG, DCG adds a coefficient that reduces the impact of subse-
quent values. This enables DCG to give greater weights to those values that have the largest
impact (Järvelin and Kekäläinen 2002). Note that for DCG, internal ordering matters, in the
following definition we therefore assume that rules are sorted from high to low according
to their interestingness value.

Definition 6 (Discounted Cumulative Gain) Given an interestingness measure M and a
set of sorted rules R = rules, where ∀r ∈ R : M(r) ≥ 0, the DCG of the hyper-rule H (R)

is defined as follows:

DCG
(

H (R),M
) =

n
∑

i=1

M(ri)

log2(i + 1)

Notice that M(ri)
log2(i+1)

is monotonically decreasing because log2(i + 1) is monotonically
increasing while the rules values are decreasing. In Appendix A we provide a formal proof
that DCG satisfies the properties of Definition 4 for non-negative values of M.

Example 6 (Discounted Cumulative Gain) Consider the following set of rules R, with M
giving the corresponding interestingness values:

R = {r1, r2, r3}
M = {(r1, 0.7), (r2, 0.3), (r3, 0.3)}

DCG of H (R) for M is given by:

DCG
(

H (R),M
) = 0.7

log2(2)
+ 0.3

log2(3)
+ 0.3

log2(4)
≈ 1.04

6.3 Hyper Cumulative Gain

The last aggregator function, Hyper Cumulative Gain (HCG), incorporates two properties,
which makes it different from from CG and DCG. First, aggregation through HCG respects
the bounds of the source interestingness measure. Second, it incorporates the number of
rules that were aggregated to produce the hyper-rule. In order to achieve this, HCG outputs
a pair rather then a single value. We will talk about each element of the pair in order, and
refer to them as HCG1 and HCG2.

6.3.1 HCG1: Aggregating the Interestingness Measure Values

For any given measure M , the values that HCG1 generates are guaranteed to be within
the range of M . This is as opposed to CG and DCG that do not necessarily preserve the
original range of the respective interestingness measure. For example, the support measure
has the range [0..1]. Given two support values of 0.8 and 0.7, the CG aggregator results in
1.5, which is greater than the upper bound 1. However, HCG1 is 0.94, which is within the
range [0..1]. Consequently, compared to CG and DCG, the aggregated values produced by
HCG1 put the hyper-rules on a more level playing field with the conventional rules, which
are naturally constrained by their interestingness measure’s range.

Empir Software Eng

Apart from satisfying the range constraint, HCG1 also has a probabilistic interpretation.
From this perspective, HCG1 provides the likelihood that at least one of the rules in a hyper-
rule is relevant.

Example 7 Let C be a change-set; r1, r2, and r3 be three rules derived from C; and M be
a measure that indicates the probability that a rule is relevant to its respective change-set.
Then, the probability that at least one of r1, r2, or r3 is relevant to C is calculated using the
following formula:

M(r1) + (1 − M(r1)) ∗ M(r2) + (1 − M(r1)) ∗ (1 − M(r2)) ∗ M(r3)

= 1 − (1 − M(r1)) ∗ (1 − M(r2)) ∗ (1 − M(r3))

If a hyper-rule were composed of r1, r2, and r3, its HCG1 for measure M would be
calculated using the formula above. Generalizing this formula to an arbitrary number of
rules, HCG1 is defined as follows:

Definition 7 (HCG1) Given an interestingness measure M , with upper bound b, and a set
of rules R = rules,where ∀r ∈ R : M(r) ≥ 0, the HCG1 of H (R) for M is defined as:

HCG1(H (R),M) = M(r1) +
n

∑

i=2

⎛

⎝M(ri) ·
i−1
∏

j=1

(1 − M(rj)

b
)

⎞

⎠

which, for finite values of b, is equivalent to

HCG1(H (R),M) = b −
n

∏

i=1

(1 − M(ri)

b
)

For measures without a finite upper bound (b = ∞), the term
M(rj)

b
is defined to be zero.

In these cases, HCG1 behaves the same as CG.

6.3.2 HCG2: the Number of Rules

The second part of the HCG pair, HCG2, captures the number of rules that were used to
construct a hyper-rule. From Definition 4 we know that a rule which expresses no correlation
through its interestingness measure value should not affect the aggregated value, HCG2
satisfies this property by filtering out these rules. Following the filtering, HCG2 is simply
the cardinality of this filtered set:

Definition 8 (HCG2) Given a set of rules R = rules,HCG2 of R is defined as:

HCG2(R,M) = |{r ∈ R|M(r) > 0}|

6.3.3 HCG: Combining HCG1 and HCG2

With HCG1 and HCG2 defined, HCG can simply be expressed as their ordered pair:

Definition 9 (Hyper Cumulative Gain) Given an interestingness measure M , with upper
bound b, and a set of rules R = rules,where ∀r ∈ R : M(r) ≥ 0, the HCG of H (R) for
M is defined as:

HCG(H (R),M) = (

HCG1(H (R),M),HCG2(R,M)
)

Empir Software Eng

To enable ranking hyper-rules based on their HCG values, we define the following total
order relation over its value-count pairs.

Definition 10 (Total order relation over pairs) For the pairs (V1, c1) and (V2, c2) the total
order relation ≥ is defined as:

(V1, c1) ≥ (V2, c2) ≡ V1 > V2 ∨ (V1 = V2 ∧ c1 ≥ c2)

Note here that HCG1 takes precedence over HCG2.

Since HCG incorporates the range in its definition, we provide two examples, one for a
measure that has a finite range, and one for a measure that has an infinite range.

Example 8 (Hyper Cumulative Gain over finite range) Consider a set of rules R and an
interestingness measure M with range [0, 1]:

R = {r1, r2, r3}
M = {(r1, 0.7), (r2, 0.3), (r3, 0.3)}

The HCG of H (R) for M is given by:

HCG(H (R),M) = (1 − (1 − 0.7) ∗ (1 − 0.3) ∗ (1 − 0.3), 3) = (0.853, 3)

Example 9 (Hyper Cumulative Gain over infinite range) Consider a set of rules R and
an interestingness measure M with range [0, ∞):

R = {r1, r2, r3}
M = {(r1, 0.7), (r2, 0.3), (r3, 0.3)}

Recall that the term M(ri)
b

is defined to be zero when the upper bound, b, is infinity; thus,
HCG of H (R) for M is simply:

HCG(H (R),M) = (0.7 + 0.3 ∗ (1 − 0) + 0.3 ∗ (1 − 0)(1 − 0), 3) = (1.3, 3)

Notice that the HCG therefore is exactly equal to CG for interestingness measures with
infinite max bound.

6.4 Ensuring Additive Identity Through Centering

In Definition 4 we introduced several properties that should hold when association rules
are aggregated. One of these properties is the additive identity, which says that aggregation
with a measure having value 0 should not increase the aggregated value. However, not all
measures have 0 as their point of no correlation between the antecedent and consequent of
a rule, for these measures we must perform a simple centering to preserve semantics.

Most interestingness measures use the value 0 to indicate no correlation, one example is
the original support measure. When the support of a rule, say A → B, is equal to 0, the
artifacts a ∈ A and b ∈ B have never all changed together in a single transaction. From
the view of the support measure this is interpreted as there being no correlation between A
and B. However, interestingness measures do not strictly need to use 0 as the point of no
correlation, for the measures included in our study, collective strength, lift, and odds ratio
are defined is such a way that 1 is the point of no correlation between the antecedent and
consequent of a rule. Interestingness measures such as these must be re-centered.

Empir Software Eng

Definition 11 (Centered Interestingness Measure) An interestingness measure is cen-
tered if (1) its range contains the value 0; and (2) the value 0 indicates no correlation between
the rule and the change set.

To motivate the need for this centering, consider the following example:

Example 10 (Centering) The lift interestingness measure has a range of [0..1..∞) with 1
indicating no correlation. Consider the following set of association rules, where the lift of
each rule is also given:

{a} → {X} lift:1.5
{b} → {Y } lift:1
{c} → {Y } lift:1

Two of the rules share the same consequent and can therefore be aggregated. We do this
twice, with and without centering.

not centered centered
{{b}, {c}} → {Y } CG([1, 1]) = 2 {a} → {X} CG(0.5) = 0.5
{a} → {X} CG(1.5) = 1.5 {{b}, {c}} → {Y } CG([0, 0]) = 0

For the aggregated rule-set where lift was not centered before aggregation, the two rules
with Y as a consequent now rank higher than the X-rule, even though there was no correla-
tion between b, c, and Y . However, if we center before aggregation, the non-correlation is
preserved after aggregation.

6.5 Aggregation of Negative Values

As stated earlier, our proposed aggregators are defined under the assumption that measure
values are positive. Including negative values, correlations, in the aggregation complicates
the situation in two ways:

1. Negative values may not have the same range as positive values for the same interestingness
measure.

2. Depending on the aggregator, the order in which negative and positive values are mixed
can have significant implications.

One possible remedy for (1) may be some sort of normalization, while for (2) we envision
that negative and positive values may be aggregated separately, using the absolute value of
the negative value. However, given that our study incorporates few interestingness measures
that empirically produce negative values, we have left this exploration for future work.

7 Experiment Design

To assess the viability of association rule aggregation and especially the measurement aggre-
gation functions proposed in Section 6, we perform a large-scale empirical study. While we
believe that association rule aggregation will be useful in a variety of problem domains, our
study focuses on change recommendation. In other words, we focus on aggregating rules
that share the same consequent. This is because, as discussed in Section 5, only hyper-rules
of this form establish the basis for a change recommendation.

The evaluation investigates the performance of association rule aggregation when using
different aggregation functions, in the context of various software-systems and various

Empir Software Eng

interestingness measures. Furthermore, it investigates if and how the granularity of the
underlying change history affects the result of association rule aggregation. Two granularity
levels are considered: file level and method level. Specifically, the following questions are
investigated:

RQ1 How frequently can changerecommendation be improved by association rule aggregation?
RQ2 What is the effect of aggregating association rules for change recommendation?
RQ3 What is the effect of aggregating association rules within each studied software-system?
RQ4 How much does a change in granularity impact the precision gain from rule

aggregation?

In total, we generated approximately 21.8 million data points to answer our four research
questions. The remainder of this section will describe our study in detail. To start, Fig. 1
provides a high-level overview of the experiment design.

Generate Change Recommendations

tarmaq
baseline

rcmd

tarmaq
CG hyper

rcmd

tarmaq
DCG hyper

rcmd

tarmaq
HCG hyper

rcmd

co-change
baseline

rcmd

co-change
CG hyper

rcmd

co-change
DCG hyper

rcmd

co-change
HCG hyper

rcmd

Subject Systems

Transaction Sampling

1100 commits with at least
1000 previous commits

History Extraction History Filtering

Evaluate Change
Recommendations

For each change
recommendation, calculate the

average precision using the
expected outcome

M: method change R: residual change

P: parsable file U: unparsable file

file

(change outside all methods)

change taxonomy:
only keep transactions T, such that

Query Creation

transaction T
expected
outcome
E = T / Q

query Q

randomly split a sampled transaction T

such that

practical
scenarios

theoretical
scenarios

coarse-grained

fine-grained M and R

P

M, R and U

P and U

changes considered:

query Q

tarmaq
algorithm

co-change
algorithm

annotate with
measures

tarmaq
baseline

rcmd

aggregate measures
w. CG, DCG, HCG

tarmaq
CG hyper

rcmd

tarmaq
DCG hyper

rcmd

tarmaq
HCG hyper

rcmd

annotate with
measures

co-change
baseline

rcmd

aggregate measures
w. CG, DCG, HCG

co-change
CG hyper

rcmd

co-change
DCG hyper

rcmd

co-change
HCG hyper

rcmd

rulesrules

aggregate into
hyper rules

aggregate into
hyper rules

Fig. 1 The high level flow of our experiment design

Empir Software Eng

7.1 Subject Systems

To assess the impact of association rule aggregation under a range of conditions, we study
17 large systems with varying characteristics, such as frequency of changes, number of file
and method changes, and average number of changes per commit. Two of the systems come
from our industry partners, Cisco Norway and Kongsberg Maritime (KM). Cisco Norway is
the Norwegian division of Cisco Systems, a worldwide leader in the production of network-
ing equipment. We analyze their software product line for professional video conferencing
systems. KM is a leader in the production of systems for positioning, surveying, navigation,
and automation of merchant vessels and offshore installations. We analyze the common
software platform that KM uses across various systems in the maritime and energy domain.

The other 15 systems include the well known open-source projects shown in the first
column of Table 3. In addition to information regarding the extracted histories (discussed in
Section 7.2), the table shows that the systems vary from medium to large size, ranging up
to just over 280 000 unique files in the largest system. Finally, the lower subtable shows the
programming languages used in each system, as an indication of heterogeneity.

7.2 History Extraction

From each of the 17 subject systems, we extract four different histories based on up to the
50 000 most recent transactions (commits). This choice is motivated by our previous work
in the area of software repository mining (Moonen et al. 2016), which suggests that consid-
ering such a number of transactions does not include outdated co-change information. The
four differ in terms of granularity and parsability. Here granularity is either file level or
method level, and parsability either includes or excludes files that can be parsed into meth-
ods. Parsability is tied back to our history extractor’s use of SrcML (Collard et al. 2013),
which supports method-level parsing of C, C++, C#, and Java code. In addition to these
languages the change histories of our subject systems contain code written in a multitude of
other languages such as Python, Ruby, and JavaScript (as well as build/configuration files
in XML, etc.).

From the point of view of a developer in need of a change recommendation, the more
fine-grained the response the better. For example, it is easier to act on the recommendation
“consider changing method M”, than the recommendation “consider changing file F ”. On
the other hand, there exist evolutionary couplings between files where method-level change
information is unavailable. In such cases file-level recommendations are of more use than
no recommendations at all.

We explore the impact of granularity under two different scenarios: the practical sce-
nario and the theoretical scenario. Under the practical scenario we acknowledge that there
are many files for which we do not have method-level information and include file-level
changes in such cases. In contrast, under the theoretical scenario we study the hypothetical
situation in which we have method-level data for all changes. Because we, in fact, do not
have such information, we approximate this situation by removing from the analysis files
for which we don’t have method-level data. Thus, we extract four change histories divided
into two distinct classes, practical and theoretical. These histories are formalized as follows:

Practical Scenarios The two practical scenarios capture the reality that parsing all files
is infeasible. In this case we compare a pure file-level history, with a mixed history that
incorporates as much method-level information as possible. The two histories used for
the practical study are:

Empir Software Eng

Table 3 Characteristics of the evaluated software systems (based on our extraction of the last 50 000
transactions for each of he systems)

Software System History Unique Unique Avg. # artifacts

(in yrs) # files # artifacts in commit

CPython 12.05 7725 30090 4.52

Mozilla Gecko 1.08 86650 231850 12.28

Git 11.02 3753 17716 3.13

Apache Hadoop 6.91 24607 272902 47.79

HTTPD 19.78 10019 29216 6.99

Liferay Portal 0.87 144792 767955 29.9

Linux Kernel 0.77 26412 161022 5.5

MediaWiki 9.87 12252 12252 5.43

MySQL 10.68 42589 136925 10.66

PHP 10.82 21295 53510 6.74

Ruby on Rails 11.42 10631 10631 2.56

RavenDB 8.59 29245 47403 8.27

Subversion 14.03 6559 46136 6.36

WebKit 3.33 281898 397850 18.12

Wine 6.6 8234 126177 6.68

Cisco Norway 2.43 64974 251321 13.62

Kongsberg Maritime 15.97 35111 35111 5.08

Software System Languages used∗

CPython Python (53%), C (36%), 16 other (11%)

Mozilla Gecko C++ (37%), C (17%), JavaScript (21%), 34other (25%)

Git C (45%), shell script (35%), Perl (9%), 14 other (11%)

Apache Hadoop Java (65%), XML (31%), 10 other (4%)

HTTPD XML (56%), C (32%), Forth (8%), 19 other (4%)

Liferay Portal Java (71%), XML (23%), 12 other (4%)

Linux Kernel C (94%), 16 other (6%)

MediaWiki PHP (78%), JavaScript (17%), 11 other (5%)

MySQL C++ (57%), C (18%), JavaScript (16%),

PHP C (59%), PHP (13%), XML (8%), 24 other (20%) 24 other (9%)

Ruby on Rails Ruby (98%), 6 other (2%)

RavenDB C# (52%), JavaScript (27%), XML (16%), 12 other (5%)

Subversion C (61%), Python (19%), C++ (7%), 15 other (13%)

WebKit HTML (29%), JavaScript (30%), C++ (26%), 23 other (15%)

Wine C (97%), 16 other (3%)

Cisco Norway C++, C, C#, Python, Java, XML, other build/config

Kongsberg Maritime C++, C, XML, other build/config

∗ languages used by open source systems are from http://www.openhub.net,

percentages for the industrial systems are not disclosed

http://www.openhub.net

Empir Software Eng

practical coarse-grained: A history where each transaction includes the files changed in
the respective commit. The practical coarse-grained histories receive the least processing.
They are essentially what is returned by ‘git log‘ after filtering as described in the
next section.

practical fine-grained: A history where each parseable file of practical coarse-
grained is replaced by the changed methods of the file together with the file’s “residual,”
which is included only if there are changes to source-code outside all of the file’s methods.

Theoretical Scenarios The theoretical scenario is used to explore the question “what
would happen if all files were parseable?”. As discussed above, this theoretical ideal is
achieved by pruning the data. It considers the following histories:

theoretical fine-grained: A history that discards from practical coarse-grained all
unparseable files.

theoretical coarse-grained: A history that discards from from practical coarse-grained
all unparseable files (thus theoretical coarse-grained is theoretical fine-grained
projected back to the file level).

Table 3 reports statistics related to the extracted change histories, which illustrate the
diversity of the systems studied. For example, the transactions cover vastly different time
spans, ranging from almost 20 years in the case of HTTPD, to a little over 10 months in the
case of the Linux kernel. The table also shows the number of unique files changed in the
practical coarse-grained data set, as well as the number of unique artifacts changed in the
practical fine-grained data set.

We now provide an example of how a single commit is interpreted in the four different
histories:

Example 11 (History Parsing) Consider the following changes to the files A.c, B.cpp
and C.yaml, which were all added to the same commit. First, in the C file A.c, a line
was changed in the method m1(int p). Secondly, in the C++ file B.cpp, a line was
changed in the method m2(int p) and a public variable was changed in the parent class.
Lastly, in the configuration file C.yaml, a single line was changed.

The changes of these three files, found in the same commit, are interpreted in four different
ways to construct four different transactions. We will now list how each of the four types of
histories studied in this paper, represent the changes found in the commit. Note that changes
which occur outside of all methods are tagged as file:@residuals.

practical coarse-grained {A.c, B.cpp, C.yaml}

Empir Software Eng

Q1 Q1 Q1 Q1

Q3
Q3

Q3

Q3

p99

p99

p99

p99

1
2
5

10
30

100
300

1000

10000

Practical
coarse fine fine

T
ra

ns
ac

tio
n

si
ze

 d
is

tr
ib

ut
io

n
(lo

g1
0)

Practical Theoretical
coarse

Theoretical

Fig. 2 An overview of the overall distributions across all subject systems for each granularity. Each distri-
bution is shown annotated with the three quartiles, as well as the 99% percentile (for some distributions the
percentiles overlap, in those cases the larger percentile is on top)

All changed files found in the commit are included as is in the transaction.
practical fine-grained {A.c:m1, B.cpp:m2, B.cpp:@residuals, C.yaml}

C and C++ is supported for method level parsing, so fine-grained information is
included for those files. The yaml file is not supported and is included as is.

theoretical coarse-grained {A.c, B.cpp}
All changed files which are supported for fine-grained parsing are included.

theoretical fine-grained {A.c:m1, B.cpp:m2, B.cpp:@residuals}
Fine-grained information from the parseable files is included, the yaml file hence is

discarded.

Note that class and parameter information also is encoded on artifacts to deal with name
overloading, but this information is left out of the example above for readability.

7.3 History Filtering

One challenge faced by association rule mining is that large transactions lead to a combina-
torial explosion in number of association rules (Agrawal et al. 1993). Fortunately, as seen
in Fig. 2, which provides violin plots of transaction size for the four data sets, transaction
sizes are heavily skewed toward smaller transactions. This pattern is consistent across the
individual systems. For example, using the practical fine-grained histories Fig. 3 provides
separate violin plots for each system.

Unfortunately, as also seen in the violin plots, there exist outlier transactions containing
10 000 or more artifacts. To combat the combinatorial explosion problem raised by such
large commits, it is common to filter the history. In an attempt to reflect most change recom-
mendation scenarios, we employ a quite liberal filtering and remove only those transactions
larger than 300 artifacts. The rational behind choosing this cutoff is that for each program
at least 99% of all transactions are smaller then 300 artifacts. In most cases, the percentage
is well above 99% of the available data.

Empir Software Eng

Q1 Q1 Q1 Q1

Q1

Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1

Q3

Q3

Q3

Q3

Q3

Q3 Q3
Q3

Q3

Q3

Q3

Q3

Q3

Q3

Q3

Q3

Q3

Q2

Q2

Q2

Q2

Q2

Q2 Q2
Q2

Q2

Q2

Q2

Q2

Q2

Q2

Q2

Q2

Q2

p99

p99

p99

p99

p99

p99

p99

p99

p99

p99

p99

p99

p99

p99

p99

p99

p99

1

2

5

10

50

100

300

1000

10000

c
is
c
o

c
p
y
th

o
n

g
e
c
k
o
−
d
e
v

g
it

h
a
d
o
o
p

h
tt
p
d

k
m

lif
e
ra

y

lin
u
x

m
e
d
ia
w
ik
i

m
y
s
q
l

p
h
p

ra
ils

ra
v
e
n
d
b

s
u
b
v
e
rs

io
n

w
e
b
k
it

w
in
e

T
r
a

n
s
a

c
ti
o

n
 s

iz
e

 d
is

tr
ib

u
ti
o

n
 (

lo
g

1
0

)

Fig. 3 An overview of the distributions of transactions sizes for each subject system (practical fine-grained
history)

7.4 Transaction Sampling and Query Creation

Conceptually, a query Q represents a set of files that a developer changed since the last
synchronization with the version control system. The key idea behind our evaluation is
to generate from each sampled transaction T , a query that emulates a developer errantly
forgetting to update some subset of T . To this end, we partition each transaction T into a

non-empty query Q and a non-empty expected outcome E
def= T \ Q. In this way, we can

evaluate the ability of a recommendation tool to infer E from Q.
From each filtered history we take a representative sample of 1100 transactions,4 with

the following two constraints:

– The transaction must contain at least three artifacts. This constraint ensures that, at the
minimum, a transaction can be split into a query of at least two artifacts and an expected
outcome of at least one. Two artifacts are the minimum for there to be the possibility
that a recommendation will contain at least two rules that can be aggregated.

– The transaction must have a previous history of at least 1000 transactions. This con-
straint ensures that there is a minimum number of transactions in the training set for the
mining algorithms.

7.5 Generate Change Recommendations

All queries are executed using two different targeted association rule mining algorithms,
namely TARMAQ and CO-CHANGE (introduced in Section 2). Executing a query Q, created
from a transaction T, creates a set of association rules. The rules often differ based on the

4For a normally distributed population of 50 000, a minimum of 657 samples is required to attain 99%
confidence with a 5% confidence interval that the sampled transactions are representative of the population.
Since we do not know the distribution of transactions, we correct the sample size to the number needed for
a non-parametric test to have the same ability to reject the null hypothesis. This correction is done using
the Asymptotic Relative Efficiency (ARE). As AREs differ for various non-parametric tests, we choose the
lowest coefficient, 0.637, yielding a conservative minimum sample size of 657/0.637 = 1032 transactions.
Hence, a sample size of 1100 is more than sufficient to attain 99% confidence with a 5% confidence interval
that the samples are representative of the population.

Empir Software Eng

algorithm used. Moving from a set of rules to a change-recommendation with respect to Q,
requires giving weight to the rules such that they can be sorted. In this paper we experiment
with the 40 interestingness measures shown in Table 2.

Central to this paper, and as first envisioned in Section 3, there exists a potential to
improve the recommendation by combining the evidence captured in the individual associ-
ation rules. We explore this potential by aggregating rules that share the same consequent
into a hyper-rule, and weighing it using the measure aggregators presented in Section 6.
For any one query, we therefore create four different recommendations: the original recom-
mendation, and three recommendations produced by aggregating the rules of the original
recommendation using the aggregators CD, DCG, and HCG.

7.6 Evaluate Change Recommendations

To evaluate each recommendation we compute its average precision (AP). This value cap-
tures the precision computed at each relevant document (i.e., each expected outcome) and
thus favors recommendations where relevant documents are toward the beginning of the
list. Furthermore, we capture the performance over a set of queries (e.g., when using one
of the two rule-generation algorithms with a given interestingness measure) using the mean
average precision (MAP). Formally average precision is defined as follows:

Definition 12 (Average Precision) Given a recommendation R, and an expected outcome
E, the average precision of R is given by:

AP(R)
def=

|R|
∑

k=1

P(k) ∗ �r(k)

where P(k) is the precision calculated on the first k files in the list (i.e., the fraction of correct
files in the top k files), and �r(k) is the change in recall calculated only on the k − 1th and
kth files (i.e., how many more correct files where predicted compared to the previous rank).

Note that since we consider only rules with singleton consequents, �r(k) will always be equal
to either zero or 1/|E| (i.e., a rank either does not contain a file from the expected outcome,
or it contains exactly one file from the expected outcome). Table 4 illustrates the computation of
AP, P(k), and �r(k) given the ranked list [c, a, f, g, d] and the expected outcome {c, d, f }.
8 Results and Discussion

This section presents the results of the study described in Section 7, and is structured accord-
ing to our four research questions: We first discuss RQ1 in Section 8.1 on how often our

Table 4 Calculation of average
precision, based on ranked list
[c, a, f, g, d] and expected
outcome {c, d, f }

Rank (k) Artifact P(k) �r(k)

1 c 1/1 1/3

2 a 1/2 0

3 f 2/3 1/3

4 g 2/4 0

5 d 3/5 1/3
average precision (AP) =
1/1 ∗ 1/3 + 1/2 ∗ 0 + 2/3 ∗
1/3 + 2/4 ∗ 0 + 3/5 ∗ 1/3 ≈ 0.75

Empir Software Eng

technique for rule aggregation can be applied. This is followed by RQ2 in Section 8.2 on
how aggregation may improve change recommendation. In Section 8.3 we discuss RQ3,
which considers aggregation performance over individual software systems, and finally in
Section 8.4 we discuss RQ4, which explores the effect of artifact granularity in the context
of aggregation. The first three research questions consider patterns within a single history,
here the history is used because it captures the largest number of changed artifacts at the
finest level of granularity, making it the most useful in real world change recommenda-
tion scenarios. However, we did repeat the analysis of RQs 1 to 3 using the other histories
and found effectively the same patterns. The final research question considers all four his-
tories. It explores the relative performance of association rule aggregation as a function of
granularity and parsability.

8.1 Applicability of Hyper-Rules (RQ1)

As discussed in Section 3, a recommendation can be aggregated if there are at least two
rules which share the same consequent, in this section we investigate how often this scenario
occurs in practice.

As explained in Section 2, the two algorithms used in our study, CO-CHANGE and TAR-
MAQ, sit at opposing ends with respect to their approach to rule generation. CO-CHANGE

on the one hand, splits the input query into its individual artifacts, and generates all possible
singleton rules for each artifact. Doing so increases the odds that multiple rules will share
the same consequent. On the other hand, the antecedents found in rules mined by TARMAQ

are dynamically determined by searching for the largest subset of the query that has some
support in the history. More often than not, these subsets are close to the query, resulting in
less variation in unique antecedents, and therefore also less possibility for rules which share
the same consequent.

To analyze the effect that the choice of association rule mining algorithm has on appli-
cability of hyper-rules, we count the number of recommendations that contain aggregable
rules. The expectation here is that CO-CHANGE, by virtue of its creating the maximal
amount of rules given a query, also will produce recommendations which are frequently
aggregable. The experiment bears out this expectation. For the practical fine-grained his-
tory the recommendations generated by CO-CHANGE were aggregable 84% of the time,
while the recommendations generated by TARMAQ were aggregable only 15% of the
time.

8.2 Ability to Improve Precision (RQ2)

The results for RQ1 show that there are ample of opportunities for association rule
aggregation. RQ2 considers the impact aggregation has on the quality of the resulting
recommendation. To address RQ2, the evaluation considers three dimensions: the rule gen-
eration algorithm used (CO-CHANGE or TARMAQ), the interestingness measure used to
rank the rules, and the aggregation function used to form the hyper-rules. Hereafter we
refer to an (algorithm, measure) combination as a case. We report the result of a statis-
tical comparison of the mean average precision and two measures of effect size. To test
for statistically significant differences between original and aggregated recommendations
we use a one-tailed, paired Wilcoxon signed rank tests. For each case we compare the
recommendations without aggregation against each of the aggregated recommendations.

Empir Software Eng

The first of the two effect-size measures is the standardized effect size, which is calcu-
lated by dividing the Wilcoxon p-value’s corresponding z-statistic by the square root of the
number of observations to obtain Pearson’s r (Rosenthal 1991).

(P earson)r = z√
N

Note that r in this case is a non paramatric effect size not related to central tendencies
such as the mean which can be biased by outliers. Rather, r is here a rank correlation
which intuitively can be interpreted as the probability that an aggregated recommendation
has a higher average precision than the corresponding un-aggregated recommendation. The
second measure of effect size is the non-standardized effect size, which is defined as the
percentage change in mean average precision (CiMAP):

(%)CiMAP = MAPaggregated − MAPoriginal

MAPoriginal

∗ 100

The p-values and standardized effect sizes are shown in Fig. 4 while the non-standardized
effect sizes are shown in Fig. 6. In both figures the interestingness measures are ordered
based on the respective y-measure (r or CiMAP) for CG over CO-CHANGE recommenda-
tions, note that this choice is incidental and is done purely to ease later comparisons.

Figure 4 shows both the p-values and the corresponding effect size measured with Pear-
son’s r . The results of the Wilcoxon tests are shown using hollow circles and crosses where
a circle designates a significant result (p < 0.05) and a cross a non-significant result. To
ease the effect size interpretation, vertical black bars have been added at r = 0.1, 0.3 and
0.5, corresponding to what typically are considered small, medium, and large effects (Cohen
1992). The effect of aggregating CO-CHANGE recommendations is shown with solid lines,
while TARMAQ is shown with dotted lines. Furthermore, color is used to differentiate the
three aggregators with CG shown in red, DCG in green, and HCG in blue.

In all cases aggregation has a positive effect on the change recommendation, meaning
that the average precision of the aggregated recommendations tends to be higher than that of
their non-aggregated counterparts. This effect is significant in all but two cases: example and
counterexample rate and descriptive confirmed confidence using CO-CHANGE. In terms of
the size of the effect, aggregation of TARMAQ recommendations results in relatively stable
low to medium positive effects across most interestingness measures. In the case of CO-
CHANGE there is larger spread in effect sizes with a few measures experiencing no to low
effect, while the remaining measures are split between experiencing a low to medium or a
medium to large effect.

As an overall positive effect has been found, we now turn to a direct comparison
between the aggregators. First, observe that CG and DCG closely follow each other across
CO-CHANGE and TARMAQ and across all the measures, this indicates that their recommen-
dations tend to be quite similar. Thus in practice either one can be used, although we would
recommend CG as its aggregated values are easier to interpret.

The more interesting comparison is between CG/DCG and HCG, where HCG seems
to perform significantly better on a handful of interestingness measures. To investigate the
differences more closely we applied the Wilcoxon test to just CG and HCG. The results
are shown in Fig. 5. Here the interestingness measures have been partitioned based on their
range. Recall that HCG incorporates the range into its definition. In Fig. 5, the bottom three
partitions contain the interestingness measures with finite ranges, while the top three contain
those with infinite ranges. For the interestingness measures with finite ranges, HCG was not

Empir Software Eng

0
small effect

0.1 0.2
medium effect

0.3 0.4
large effect

0.5 0.6

descriptive confirmed confidence

example and counterexample rate

least contradiction

collective strength

sebag schoenauer

zhang

conviction

causal confidence

difference of confidence

odd multiplier

leverage

added value

kulczynski

confidence

gini index

loevinger

interestingness weighting dependency

laplace corrected confidence

kappa

jaccard

one way support

linear correlation coefficient

cosine

causal support

klosgen

odds ratio

relative risk

j measure

support

two way support

piatetsky shapiro

varying rates liaison

lift

recall

imbalance ratio

yules q

yules y

specificity

coverage

prevalence

Effect Size: r

In
te

re
st

in
gn

es
s

M
ea

su
re

s
Wilcoxon
p < 0.05

FALSE
TRUE

Aggregator
CG
DCG
HCG

Algorithm
Co−Change
TARMAQ

Fig. 4 Effect of aggregating change recommendations using various combinations of interestingness
measures, mining algorithms and aggregation functions. Effect size given by Pearson’s r

Empir Software Eng

(− ∞,∞)

[0,∞)

(− ∞,1]

[− 0.5,1]

[0,1]

[− 1,1]

[− 0.25,0.25]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

collective strength

conviction

odd multiplier

odds ratio

relative risk

sebag schoenauer

example and counterexample rate

least contradiction
added value

causal confidence

causal support

confidence

cosine

coverage

imbalance ratio

interestingness weighting dependency

j measure

jaccard

kulczynski

laplace corrected confidence

prevalence

recall

specificity

support

descriptive confirmed confidence

difference of confidence

kappa

klosgen

leverage

linear correlation coefficient

loevinger

two way support

yules q

yules y

zhang

piatetsky shapiro

Effect Size: r

In
te

re
st

in
gn

es
s

M
ea

su
re

s
Wilcoxon
p < 0.05

FALSE
TRUE

Algorithm
Co−Change
TARMAQ

Fig. 5 Positive effect of aggregating rules using the HCG aggregator compared to using the CG aggregator.
Interestingness measures are grouped based on their range

Empir Software Eng

+150% +200%

collective strength

exam
ple and counterexam

ple rate

descriptive confirm
ed confidence

least contradiction

sebag schoenauer

odd m
ultiplier

conviction

interestingness weighting dependency

gini index

zhang

causal confidence

difference of confidence

jaccard

confidence

leverage

added value

kulczynski

loevinger

kappa

one way support

linear correlation coefficient

cosine

piatetsky shapiro

j m
easure

two way support

lift

varying rates liaison

support

klosgen

prevalence

causal support

relative risk

laplace corrected confidence

odds ratio

recall

im
balance ratio

yules q

yules y

specificity

coverage

Effect Size by Change in MAP

In
te

r
e
s
ti
n
g
n
e
s
s
 M

e
a
s
u
r
e
s

Aggregator

CG

DCG

HCG

Algorithm

Co−Change

TARMAQ

 no aggregation +50% +100%

Fig. 6 Effect of aggregating change recommendations using various combinations of interestingness mea-
sures, mining algorithms and aggregation functions. Effect size given by change in mean average precision
(CiMAP)

Empir Software Eng

significantly better than CG with the exception of two cases (laplace corrected confidence
and descriptive confirmed confidence). Furthermore, for these cases the effect was small.
On the other hand, HCG is much better for interestingness measures with infinite range.
Recall that the way HCG is defined, aggregated values for CG and HCG are the same when
the range is infinite; however, HCG also incorporates a tie breaking mechanism based on
the number of rules aggregated to create a hyper-rule. Thus the only difference between
HCG and CG for the infinite range measures is this tie breaker. It is evident that tie breaking
brings a positive effect on aggregation. Given these findings we would recommend the CG
aggregator in combination with the tie breaking mechanism of HCG. In simpler terms, a
promising rule aggregator is simply one that sums the respective interestingness measure
values and breaks ties by the number of values in the sum.

8.2.1 Improvement Measured by Change in MAP

So far we have discussed the effect of aggregation in terms of a standardized measure of
effect size, however, this comes at the cost of distancing the measure from the original mea-
surement unit which is average precision. As a complementary view of the data we consider
CiMAP, which captures differences in MAP when recommendations are aggregated. The
data is shown in Fig. 6, which again has the interestingness measures sorted based on CG
performance using the CO-CHANGE recommendation.

Comparing the two, the top five measures when using the standardized measure (Fig. 4)
were prevalence, coverage, specificity, yules y and yules q. There is a large overlap with
the non-standardized measure: four of five measures are the same. The only difference
is that prevalence is ranked lower when using CiMAP. In Fig. 4 we found that coverage
experienced a medium to large effect of aggregation for TARMAQ and a large effect for CO-
CHANGE. We can now see how this effect size translates to one using average precision; the
MAP of aggregated TARMAQ recommendations improves by a factor of approximately 2.5
(a 150% increase), while the MAP of aggregated CO-CHANGE recommendations improves
by a factor of approximately 3 (a 200% increase).

8.2.2 Implications of Results

Looking beyond RQ2, our results also support several other interesting observations.
First, we found that both CO-CHANGE and TARMAQ produced recommendations which
responded well to aggregation. This should be emphasized, as the two algorithms signifi-
cantly differ in their way of rule generation; CO-CHANGE can be thought of as generating
the maximum number of rules, while TARMAQ can be thought of as generating the mini-
mum number of highly relevant rules. From this we posit that there is a high likelihood that
also other association rule mining algorithms will benefit from rule aggregation.

Turning to the three studied aggregation functions, our results can be used to select an
appropriate aggregation function given the algorithm and interestingness measures which

Table 5 The mean number of rules used to form each hyper-rule

[2,3) [3,4) [4,5) [5,6) [6,7) [7,8) [8,9) [9,10) 10+

CO-CHANGE 71.69% 11.61% 5.22% 2.65% 1.88% 1.02% 0.98% 0.72% 4.20%

TARMAQ 99.6% 0.32% 4+ = 0.08%

Empir Software Eng

one is desirable to use. However, from a practical standpoint, more often than not the differ-
ences between aggregators are minimal. As an explanation of this consider Table 5. As we
can observe, over 99% of all hyper-rules are created from two to three rules in the case of
TARMAQ, while the same number for CO-CHANGE is approximately 72%. As the aggrega-
tors of Section 6 essentially only differ in their coefficients in a sum, the more rules that are
aggregated, the larger the differences are between the aggregated values. So, as typically
only 2 or 3 rules are used to form hyper-rules, differences between the values produced by
the different aggregators are minimal. This explains why for example CG and DCG often
have the same effect on a recommendation. Looking forward, an interesting avenue might
be to consider aggregation functions that maximize the benefit when only aggregating a few
rules.

co
ve

ra
ge

pr
ev

al
en

ce
od

ds
 r

at
io

de
sc

rip
tiv

e
co

nf
irm

ed
 c

on
fid

en
ce

ex
am

pl
e

an
d

co
un

te
re

xa
m

pl
e

ra
te

od
ds

 r
at

io

co
ve

ra
ge

sp
ec

ifi
ci

ty

le
as

t c
on

tr
ad

ic
tio

n
co

nv
ic

tio
n

co
ve

ra
ge

pr
ev

al
en

ce
od

ds
 r

at
io

de
sc

rip
tiv

e
co

nf
irm

ed
 c

on
fid

en
ce

ex
am

pl
e

an
d

co
un

te
re

xa
m

pl
e

ra
te

od
ds

 r
at

io

co
ve

ra
ge

sp
ec

ifi
ci

ty

le
as

t c
on

tr
ad

ic
tio

n
co

nv
ic

tio
n

co
ve

ra
ge

pr
ev

al
en

ce
od

ds
 r

at
io

de
sc

rip
tiv

e
co

nf
irm

ed
 c

on
fid

en
ce

ex
am

pl
e

an
d

co
un

te
re

xa
m

pl
e

ra
te

od
ds

 r
at

io
co

ve
ra

ge
sp

ec
ifi

ci
ty

le
as

t c
on

tr
ad

ic
tio

n
co

nv
ic

tio
n

CG DCG HCG

C
o−

C
ha

ng
e

TA
R

M
A

Q

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

wineweb
kit

su
bv

er
sio

n
ra

ve
nd

b
ra

ils
ph

pm
ys

ql
m

ed
iaw

iki
lin

uxlife
ra

y
km

ht
tp

dha
do

op
git

ge
ck

o−
de

v
cp

yth
on

cis
co

wineweb
kit

su
bv

er
sio

n
ra

ve
nd

b
ra

ils
ph

pm
ys

ql
m

ed
iaw

iki
lin

uxlife
ra

y
km

ht
tp

dha
do

op
git

ge
ck

o−
de

v
cp

yth
on

cis
co

Effect Size: r

Fig. 7 Effect of aggregating interestingness measures across software systems. A selection of high and low
performing interestingness measures from the system-agnostic analysis are highlighted (see Fig. 4)

Empir Software Eng

8.3 System Specific Analysis (RQ3)

In prior sections we have explored overall trends which emerge when association rules are
aggregated. However, as the studied software systems (see Table 3) differ on several aspects
such as languages used, frequency/size of commits, etc., we consider the possibility that
the aggregators might exhibit system-specific differences. To investigate this potential we
analyze the effect of aggregating recommendations generated for each individual software
system using the same method (Wilcoxon and Pearson’s r) as used with the system-agnostic
analysis in RQ2. The results can be found in the six plots shown in Fig. 7, where each plot
provides the result for one combination of algorithm and aggregator. As reference points
we have highlighted a selection of interestingness measures from the system-agnostic anal-
ysis. We first consider the observed range of effect sizes for the system-specific analysis.
In our system-agnostic analysis we found that aggregation of CO-CHANGE recommenda-
tions resulted in a wide range of effect sizes from essentially no effect to a large effect. In
the system-specific analysis we find the same pattern. For TARMAQ we also see the same
effect size range. However, there clearly also exist differences between software systems.
In particular, linux and liferay experience less benifit from aggregation with CO-CHANGE

recommendations. For interestingness measures that saw very little effect in the system-
agnostic study, there also exist specific software systems where these result in medium to
large effects, one example is example and counterexample rate for hadoop. In the case of
TARMAQ, the coverage interestingness measure experiences a large effect for gecko-dev but
only a small effect with the other software systems.

We will now turn to the labeled interestingness measures of Fig. 7. We first consider the
interestingness measures that showed little effect from aggregation in the system-agnostic
study. For these interestingness measures we can observe the same pattern for the system-
specific results; for CO-CHANGE the descriptive confirmed confidence and example and
counterexample rate consistently has the least effect, while for TARMAQ the least con-
tradiction also consistently has the least effect across all systems. Furthermore, TARMAQ

with conviction, for which we previously saw a considerably larger effect using HCG com-
pared to CG/DCG, can now be connected to the specific software systems where HCG
outperforms the other aggregators (e.g., cisco, rails, git). If we turn to the interestingness
measures where aggregation had a large effect, those same measures also see the largest
effect of aggregation when observed on the software-system level (prevalence, coverage,
specificity). In addition to the extremities discussed so far, we have also highlighted odds
ratio because of its diverse results in the system-agnostic analysis. For CO-CHANGE and
CG/DCG, odds ratio saw average effect of aggregation relative to other measures, while it
had one of the largest effects for HCG. Interestingly we see the same pattern reflected in the
system-specific results of Fig. 7. A similar pattern is reflected in the results for TARMAQ.

In summary the effect of aggregation on interestingness measures to a large degree are
consistent across software systems. However, some interestingness measures are more prone
to system specific deviations and should therefore be evaluated on a case by case basis.

8.4 Effect of Granularity (RQ4)

So far we have considered histories that consist of a mix of methods and files. To gain a
deeper understanding of rule aggregation this section investigates aggregation’s behavior
across all four histories. As discussed in Section 7.2, we differentiate between theoretical
and practical histories, which can be summarized as follows:

Empir Software Eng

Table 6 Applicability for the theoretical histories

theoretical coarse-grained theoretical fine-grained

CO-CHANGE 90% 80%

TARMAQ 14% 13%

Theoretical histories where only parseable artifacts are considered.
Practical histories where all available artifacts are considered.

The next two subsections present results for these two classes of histories.

8.4.1 Theoretical Histories

For the theoretical histories, all artifacts that could not be parsed have been removed. We
can therefore focus purely on the effect of granularity without the blurring effect caused
when histories share unparseable files. To begin with, Table 6 shows the percentage of rec-
ommendations that were aggregable given histories containing only file level changes, and
then separately only method changes. While there is little change for TARMAQ, there is
nearly a ten percent increase in applicability for CO-CHANGE when moving from the theo-
retical fine-grained history to the theoretical coarse-grained history. At first, this may seem
paradoxical, as the number of artifacts increases with finer granularity; however, the oppor-
tunities for aggregation may indeed decrease with finer granularity. To see this, consider
the visualization shown in Fig. 8. Here, the association rules at the method level have dif-
ferent consequents, while if we lift the rules to the file level, the consequent now becomes
shared. Thus, the rules at the method level are non-aggregable (by virtue of having different
consequents), while the rules on the file level are aggregable. The converse can not happen
however; if two file-level rules are non-aggregable, then all the corresponding method-level
rules will be non-aggregable.

While there are more opportunities for aggregation at the file level, both levels provide
ample of opportunity; thus we turn to RQ2, and consider the impact of aggregation using the
recommendation based on the non-aggregated rules as a baseline. This involves three steps:

– Starting with the theoretical coarse-grained history, for each combination of algorithm,
aggregator, and measure, calculate CiMAP (see Section 8.2)

– Also calculate CiMAP for the theoretical fine-grained history.

methods method-level rule file-level rulefiles

Non-aggregable on method level Non-aggregable on file level
aggregable on file level non-aggregable on method level

Fig. 8 Effect of changing granularity level on whether association rules are aggregable or not

Empir Software Eng

CG

Co-Change

DCG HCG

CG

TARMAQ

DCG HCG

0

50

100

0

50

100

coarse baseline

D
el

ta
 C

iM
A

P
 (

pe
rc

en
ta

ge
 p

oi
nt

s)

Fig. 9 Change in the effect of aggregation when moving from theoretical coarse-grained to theoretical
fine-grained histories

– Finally, compute the difference between theoretical coarse-grained CiMAP and theo-
retical fine-grained CiMAP.

Say that for an interestingness measure, aggregation with the coarse data improved the
recommendation by 50% (CiMAP), for that same measure with the fine-grained data, the
recommendation improved by 60%. The delta CiMAP, given in percentage points, is then
60% − 50% = 10 percentage points.

The results are shown in Fig. 9. In the plot, the theoretical coarse-grained history forms
the baseline at 0% and the data-set has been split into six sub-plots one for each pairing of
algorithm and aggregator. In a sub-plot, each circle gives the result for a single interesting-
ness measure. If a circle lies above the line at y = 0, aggregation achieved a higher CiMAP

CG

Co-Change

DCG HCG

CG

TARMAQ

DCG HCG

-25

0

25

50

-25

0

25

50

coarse baseline

D
el

ta
 C

iM
A

P
 (

pe
rc

en
ta

ge
 p

oi
nt

s)

Fig. 10 Change in the effect of aggregation when moving from practical coarse-grained to practical fine-
grained granular histories

Empir Software Eng

with the theoretical fine-grained history than with the theoretical coarse-grained history. If
the circle lies below the line the converse is true. Note that the scatter-plot nature of Fig. 9
(and Fig. 10) is intentional; the focus here is not on individual interestingness measures but
rather on overall trends that emerge when granularity is altered.

Lastly, we performed a Wilcoxon test for each algorithm+measure+aggregator to test for
differences in CiMAP of the two granularities. The result are captured by either hollow or
filled circles in Fig. 9, where a hollow circle indicates that there was a significant difference.
Note that the location of the circle on the y-axis reflects the mean, while the Wilcoxon
test compares the distribution of the underlying values, as such it is possible for a circle
whose mean is near zero to still show a significant difference. Overall, Fig. 9 shows that
granularity has a stronger effect on the recommendations generated by CO-CHANGE than
those generated by TARMAQ: the mean improvement for the theoretical fine-grained over
the theoretical coarse-grained histories is 18.1 percentage points for CO-CHANGE and 7.5
percentage points for TARMAQ. To conclude, the positive effect of aggregation is almost
universally more pronounced when using the finer-grained histories.

8.4.2 Practical Histories

In the previous section, only files that could be parsed were considered. However, in prac-
tice, transactions often include files that cannot be parsed for various reasons. Examples of
unparseable files include configuration files, binary files, documentation, or simply those
of unsupported programming languages. Being able to recommend these types of files is
a key advantage of evolutionary coupling when compared to approaches that use static or
dynamic source-code analysis. Thus this section repeats the analysis of the previous section
and also compares results from the theoretical versus practical histories.

To begin with, Table 7 presents aggregation’s applicability for CO-CHANGE and TAR-
MAQ. Overall the values are slightly higher than those of Table 6. In addition, the differences
between the fine and coarse grained histories are clearly muted when compared to those seen
using the theoretical histories. Thus the data shows the expected damping of the differences
caused by the shared unparseable files.

Finally, we consider precision breakdown shown in Fig. 10, which parallels that shown in
Fig. 9. Compared to the theoretical histories, there is less difference between the granularity
levels (note the difference in the scale used on the y-axis). Thus while granularity again has
a stronger effect on the recommendations generated by CO-CHANGE than those generated
by TARMAQ. The effect is not as large: the mean improvement for the practical fine-grained
over the practical coarse-grained histories is 9.5 percentage points for CO-CHANGE and
6.5 percentage points for TARMAQ. The damping effect is also evident in that the Wilcoxon
tests find fewer significant differences.

To conclude, aggregation provides less improvement on the practical histories compared
to the theoretical histories. Still, the trend for both CO-CHANGE and TARMAQ mirror the
theoretical histories: change recommendation based on fine-grained histories benefits more
from aggregation than that based on the coarse-grained histories.

Table 7 The percentage of
recommendations which were
aggregable given histories
containing only a mix of method
and file changes, or only file
changes

practical coarse-grained practical fine-grained

CO-CHANGE 89% 84%

TARMAQ 15% 15%

Empir Software Eng

Table 8 Execution time for rule aggregation in the context of our experiment

algorithm minimum q1 median mean q3 maximum

1 Co-Change 0.00596 0.56860 2.83200 25.9400 13.1300 8185.0

2 TARMAQ 0.00572 0.03004 0.09465 0.4525 0.3395 499.7

8.5 Addendum I: Time Complexity

In our experimental design, rule aggregation is implemented as a post-processing step which
is not optimal with respect to execution time. In production the generation of hyper-rules
would be incorporated into an existing rule mining algorithm. Given our non-optimal setup
we still found aggregation to have low overhead. In Table 8, we have summarized the
observed execution times for the rule aggregation step,

the numbers are given in milliseconds. The median execution time for CO-CHANGE

was 2.83 ms, while the median for TARMAQ was 0.09 ms. Aggregation over CO-CHANGE

recommendations naturally see higher execution times compared to TARMAQ as the algo-
rithm tends to generate more rules. However, only 0.001% of aggregations took more than
1 second.

8.6 Addendum II: Absolute Performance

In earlier sections, we have shown that rule aggregation significantly improves the average
precision across all interestingness measures. In doing so we have only considered the rela-
tive difference between aggregated and non-aggregated recommendations. However, it may
also be of interest to see the absolute, non-relative, performance of aggregated recommen-
dations. We provide this data in Fig. 11 using the MAP. Here the interestingness measures
are ordered based on non-aggregated MAP (e.g., non-aggregated difference of confidence
achieved the highest MAP for the CO-CHANGE algorithm).

As seen in the figure, the aggregated recommendations always achieve a higher MAP
score compared to non-aggregated recommendations.5 In particular, the highest achieving
interestingness measures are further improved through aggregation; referring back to Fig. 4,
difference of confidence for CO-CHANGE obtained a significant effect size of r = 0.2,
while for TARMAQ, gini index obtained a significant effect size of r = 0.25. Perhaps of
more interest, a large number of aggregated interestingness measures achieve higher MAP
than the single non-aggregated interestingness measure with highest MAP.

9 Threats to Validity

Problem Domain used in Evaluation: We evaluated hyper-rules in the context of change
recommendations. However, the different interestingness measures studied might not fit
well into all problem domains (Tan et al. 2004). Still, since we evaluated hyper-rules by
looking at the difference in precision compared to not using hyper-rules, rather than looking
at the actual precision, we believe that the effect of the problem domain is minimized.

5Exceptions are the descriptive confirmed confidence and example and counterexample rate, where aggrega-
tion was also found to have a non-significant effect in Fig. 4.

Empir Software Eng

Co−Change TARMAQ

0
.0

0
.1

0
.2

0
.3

0
.0

0
.1

0
.2

0
.3

zhang

yules y

yules q

varying rates liaison

tw
o w

ay support

support

specificity

sebag schoenauer

relative risk

recall

prevalence

piatetsky shapiro

one w
ay support

odds ratio

odd m
ultiplier

loevinger

linear correlation coefficient

lift

leverage

least contradiction

laplace corrected confidence

kulczynski

klosgen

kappa

jaccard

j m
easure

interestingness w
eighting dependency

im
balance ratio

gini index

exam
ple and counterexam

ple rate

difference of confidence

descriptive confirm
ed confidence

coverage

cosine

conviction

confidence

collective strength

causal support

causal confidence

added value

MAP

In
te

r
e
s
ti
n
g
n
e
s
s
 M

e
a
s
u
r
e
s

Aggregator None CG DCG HCG

Fig. 11 MAP of both aggregated and non-aggregated recommendations across different interestingness
measures and mining algorithms

Empir Software Eng

Aggregation of only Positive Measures: As discussed in Section 4, interestingness mea-
sures typically capture either only positive, or both positive and negative correlations
between the antecedent and consequent of a rule. In our evaluation however, we only con-
sider positive correlations. While the exact interpretation of negative correlation may differ
from measure to measure, the overall interpretation in the context of change recommenda-
tions would be: “if this artifact is changed, what artifacts are typically not changed?”, while
we are more interested in the question: “if this artifact is changed, what other artifacts are
also typically changed?”. Moreover, existing targeted association rule mining algorithms
show a clear bias toward mining only positive rules (typically based on artifacts that have
changed together in the past). Thus the interestingness measures that have the ability to
measure both negative and positive correlations will be heavily skewed toward the posi-
tive correlations. Looking forward however, we plan to explore possible beneficial ways of
handling the aggregation of both positive and negative correlation.

Implementation: We implemented and thoroughly tested all algorithms, aggregators and
interestingness measures studied in this paper in Ruby. However, we can not guarantee the
absence of implementation errors which may have affected our evaluation.

Variation in software systems: We evaluated hyper-rules on two industrial systems and
15 large open source systems. These systems vary considerably in size and frequency of
transactions (commits), which should provide an accurate picture of the performance of
hyper-rules in various contexts. However, despite our careful choice, we are likely not to
have captured all variations.

Commits as basis for evolutionary coupling: The evaluation in this paper is grounded in
predictions based on the analysis of patterns found in the change histories. The transactions
that make up the change histories are however not in any way guaranteed to be “correct” or
“complete”, in the sense that they represent a coherent unit of work. Non-related files may
be present in the transactions, and related files may be missing from the transactions. How-
ever, the included software-systems in our evaluation all (except KM) use Git for version
control. As Git provides developers with tools for history-rewriting, we do believe that this
might cause more coherent transactions.

10 Related Work

We distinguish related work on aggregating association rules, clustering and pruning asso-
ciation rules, and on comparing interestingness measures. Furthermore, we specifically
discuss the relation between hyper-rules, and the more familiar techniques of closed and
maximal rule mining.

Aggregating Association Rules: To the best of our knowledge, no other work has investi-
gated the aggregation of association rules with the goal of combining all available evidence
provided by individual association rules for a specific interestingness measure. However,
the existing work explores independent and complimentary techniques. Lucia et al. (2014)
and Wang et al. (2011) aggregate (“fuse”) different association measures in the context of
fault localization using program traces. This work is complementary to ours as the challenge
here is to find optimal combinations of different measures, compared to our work which
seeks to find optimal combinations of association rules for a single measure. Thus a process
which incorporates both approaches could first do rule aggregation, followed by aggregat-
ing the various measures calculated. Jorge and Azevedo use a post bagging technique where
multiple bags (sampled subsets) are created from the original set of association rules. Each
bag then votes for the most relevant artifact (Jorge and Azevedo 2005). As association rules

Empir Software Eng

which share a consequent are still discarded within each bag, we believe the rule aggrega-
tion technique presented in this paper can be used to improve the contribution of each bag
in the ensemble.

Also related, Massoud et al. address the challenge of mining multi-dimensional associ-
ation rules that aim to combine and relate association rules generated from two or more
different sets of transactions (Messaoud et al. 2006). They do not aggregate rules that
combine evidence for the same conclusion but aim to create aggregate rules that span the
dimensions of all transactions.

Clustering and Pruning Association Rules: Several authors investigate methods to dis-
cover the most informative or useful rules in a large collection of mined association rules,
for example by clustering rules that convey redundant information, or by pruning non-
interesting rules. Thus, while our method aims to aggregate rules to combine all existing
evidence, this work tries to keep (or only generate) the “most important” rules. Toivonen
et al. present association rule covers as a method to reduce the number of redundant rules
(Toivonen et al. 1995). Their method first groups rules which shared the same consequent,
and then filters this set by considering the size of the antecedent in combination with the
interestingness measures of the rules. No association rules or interestingness measures are
aggregated. Kannan and Bhaskaran build upon Toivonen et al.’s work, and instead consider
only rules with high interestingness values when generating clusters of rules sharing the
same consequent (Kannan and Bhaskaran 2009). In particular, they conclude that extracting
clusters from the half of rules with highest interestingness value yields a minimal loss of
information. Zaki introduces the closed frequent itemset as an alternative association rule
mining technique that only generate non-redundant association rules (Zaki 2000). The num-
ber of redundant rules produced by the new approach is dramatically smaller than the rule
set from the traditional approach but this is achieved at generation time, i.e., no association
rules or interestingness measures are aggregated. Baralis et al. investigate an association
rule mining technique that combines schema constraints (i.e., rule constraints) and rule tax-
onomies to filter out redundant rules (Baralis et al. 2012). As with Zaki’s approach, this is
achieved at generation time, and no association rules or interestingness measures are aggre-
gated. Liu et al. introduce direction setting rules as a method of summarizing the set of
rules for a human user (Liu et al. 1999). Essentially, direction setting rules are simple rules
which capture part of the same relationships also captured in larger rules, i.e., they are more
concise.

Selecting and Comparing Interestingness Measures: Tan et al. presents a technique,
which given a set of desired properties, can be used to select an appropriate interestingness
measure for that context (Tan et al. 2004). In this paper, we have not distinguished between
interestingness measures in that regard, as such we went for completeness rather than strictly
limiting the set of measures to those appropriate for change recommendation. We attempted
to control for the potential domain mismatch by only considering the relative improvement
between the original and aggregated recommendations. Closely related to Tan et al., Geng
and Hamilton survey a range of interestingness measures and discuss properties such as
surprisingness and conciseness (Geng and Hamilton 2006). In a complementary paper, Vail-
lant et al. clusters interestingness measures based on empirical performance, rather than
theoretical properties (Vaillant et al. 2004). Mcgarry surveys a range of interestingness mea-
sures, not only relating to association rules, but patterns for knowledge discovery in general
(McGarry 2005). Of particular relevance here is his discussion of understandability of pat-
terns, for example, the support measure is objectively easier to understand for an end-user
compared to the collective strength. When hyper-rules are constructed, we also increase
complexity, and perhaps lower understandability of patterns in the change recommendation.

Empir Software Eng

As the understanding of patterns is subjective, future work may want to qualitatively study
how hyper-rules are interpreted and understood by end-users. Le and Lo evaluate 38 inter-
estingness measures in the context of specification mining, typically; “if File.close has been
called, File.open must have been called earlier” (Le and Lo 2015). We believe that such
temporal, sequence rules, also can benefit from association rule aggregation. In particular,
association rule aggregation should be applicable when multiple sequences overlap at at
least one point.

Relation to closed and maximal rules: As the number of association rules often grows
unwieldy in conventional association rule mining, techniques such as closed and maximal
rule mining has been proposed. Both techniques can be used to effectively reduce the num-
ber of generated rules, while still being left with the most relevant. A closed rule is a rule for
which no superseding rules have the same support (Zaki and Hsiao 1999), while a maximal
rule is a rule for which there are no superseding rules that are frequent (Bayardo 1998; Lin
and Kedem 1998). In relating closed and maximal rules to hyper-rules, it is most accurate
to think about techniques to identify closed and maximal rules as rule mining algorithms, in
the same manner that CO-CHANGE and TARMAQ are rule mining algorithms. In this paper
we have considered CO-CHANGE and TARMAQ as they are targeted association rule min-
ing algorithms, which fit the problem domain of change recommendation. In doing so, we
explored hyper-rules which aggregate rules with the same consequent, as previously stated,
hyper-rules could also be formed based on other selection criteria. Association rule aggrega-
tion is agnostic to the origin of the generated rules, it is up to the user to define rule clusters
which could benefit from aggregation. We therefore strongly believe that there is potential
for association rule aggregation over closed or maximal rules. Not only could this further
reduce the number of rules, but also improve relevance of the resulting rule set.

11 Concluding Remarks

Association rules capture knowledge found in the relationships between artifacts. In this
paper we present a technique for rule aggregation. The resulting hyper-rules combine
knowledge from sets of conventional association rules in a beneficial way. This paper
extends and complements our initial work on this topic, which introduced the notion of
hyper-rules (Rolfsnes et al. 2016); however, this paper is self contained and makes the fol-
lowing contributions: (1) We identify an opportunity, missed by traditional recommendation
systems, to increase accuracy using the evidence of multiple applicable rules in support of a
particular conclusion. (2) We provide a theoretical foundation for rule aggregation through
the concept of hyper-rules. (3) We present three aggregation strategies for forming hyper-
rules, where two are adapted from Information Retrieval and one is introduced in this paper.
(4) We provide formal proofs that all studied aggregators satisfy the set of desirable prop-
erties given in Definition 4 for non-negative values. (5) We perform a large empirical study
where hyper-rules are evaluated in the context of change recommendation. We include sys-
tems from our two industry partners, Cisco and Kongsberg Maritime, as well as 15 open
source systems. Furthermore, for each system, four different histories are studied. The his-
tories vary in terms of their granularity (file level versus method level) and parsability.
Our findings are as follows: (RQ1) We find that, depending on the underlying history and
rule mining algorithm, between approximately 13% and 90% of the generated change rec-
ommendations are candidates for association rule aggregation. (RQ2) Of the 40 studied
interestingness measures, we find that rule aggregation significantly improves the preci-
sion of change recommendation for all but two interestingness measures when used with

Empir Software Eng

CO-CHANGE and for all measures when used with TARMAQ. (RQ3) We find that aggre-
gation performance varies across software-systems, but the effect is consistently positive.
(RQ4) In our study of history granularity, we find that typically, finer grained histories ben-
efit more from rule aggregation than the coarse histories. Furthermore, histories where all
artifacts are parseable, also see more benefit from rule aggregation than histories that con-
tain a mix of parseable and unparseable artifacts. We conjecture that this is the case because
those histories only contain source-code artifacts, which are more likely to show relevant
co-change patterns.

Directions for Future Work: In the future we would like to address the following. (1)
Generally, different association rules may be generated from the same transactions. When
aggregating such rules it might be beneficial to account for these overlaps. (2) While we
found that the studied aggregators did not benefit from negative correlations, we plan to
explore alternative aggregation possibilities in the future. (3) We also plan to consider how
the tie-breaking mechanism used by HCG can be used to create more effective variants of
other aggregation functions. (4) The experiments studied the effect of aggregation using all
the rules generated by CO-CHANGE and TARMAQ. A natural extension would be to explore
interestingness constraints. For example, the use of a minimum support value to produce
frequent hyper-rules, where only frequent rules are aggregated. (5) We would like to inves-
tigate the effect of rule aggregation on other transaction definitions, e.g., sliding windows.
(6) We also plan to investigate the behavior of hyper-rules when using other association
rule mining algorithms from the change-recommendation domain. (7) This will be compli-
mented by the exploration of uses for hyper-rules in other domains. (8) Finally, with regards
to weighting hyper-rules, rather than calculating aggregated measures, we conjecture that
new interestingness measures can be defined directly in terms of the hyper-rules.

Acknowledgements This work is supported by the Research Council of Norway through the EvolveIT
project (#221751/F20) and the Certus SFI (#203461/030). Dr. Binkley is supported by NSF grant IIA-
1360707 and a J. William Fulbright award.

Appendix

A Proofs

Within this section we formally prove that DCG and HCG satisfies the properties of Defini-
tion 4. As expressed earlier, we have limited our study of aggregation functions to positive
values. We leave out the proof for CG as it is simply the algebraic sum and therefore
naturally satisfies all properties of Definition 4.

A.1 Proof for Discounted Cumulative Gain

Theorem 1 DCG (Definition 6) satisfies the properties in Definition 4 for non-negative
values of an interestingness measure M.

Proof Let M be an interestingness measure, R be a set of rules with non-negative interest-
ingness values, and V = [v1, . . . , vn] be an ordered list of interestingness values of rules in
R for measure M , such that ∀i < j . vi ≥ vj . Let r be an arbitrary rule in R, and R′ be equal
to R \ {r}. Then, there exists a vk ∈ V such that M(r) = vk . We define U = [u1, . . . , un−1]

Empir Software Eng

as the ordered list of interestingness values of rules in R′ for measure M . U is equal to V

except that vk is removed from it, and we have ∀i < j . ui ≥ uj . Then:

∀1 ≤ i < k.vi = ui (6)

∀k < i ≤ n.vi = ui−1 (7)

The first property in Definition 4, which concerns Rs of size one, is trivial. To prove that
the second property in Definition 4 holds for DCG, we compute the difference between the
DCG of R and the DCG of R′ and show that for vk > 0, this difference is positive, and
for vk = 0, this difference is equal to zero. Let DCG(R, M) and DCG(R′, M) denote the
DCGs of R and R′ for the interestingness measure M , respectively.

DCG(R, M) − DCG(R′,M) =
n

∑

i=1

vi

log2(i + 1)
−

n−1
∑

i=1

ui

log2(i + 1)

=
k−1
∑

i=1

vi − vi

log2(i + 1)

+
n

∑

i=k

vi

log2(i + 1)
−

n−1
∑

i=k

ui

log2(i + 1)

Eq6,7=
n−1
∑

i=k

vi − vi+1

log2(i + 1)
+ vn

log2(n + 1)
(8)

Note that both terms in the last line are always non-negative. Now, we consider two cases
based on the value of vk:

vk > 0 – Since vk > 0, the two terms in (8) cannot be zero simultaneously. Because this
requires vn = 0, and at the same time ∀i ≥ k, vi = vi+1. The latter implies vn = vk >

0, which contradicts with the former. Therefore, in this case, there is always at least one
positive term in (8). Thus:

DCG(R, M) − DCG(R′,M) > 0 (9)

This proves that the second property in Definition 4 holds when M(r) = vk is positive.
vk = 0 – In this case DCG(R, M) − DCG(R′, M) = 0. This follows from the original

assumption that the rules in V are ordered according to their absolute values. Therefore, in
(8) all vis are equal to zero.

A.2 Proof for Hyper Cumulative Gain

We now prove that HCG satisfies the monotonicity properties of Definition 4 for non-
negative values of an interestingness measure M. We start by introducing a new operator,
and two lemmas that are used in the proof.

Definition 13 (Correlative sum) Let a1 and a2 be real numbers. For any nonzero real
number b, we define the operator Sb as

a1Sba2 = a1 + b − a1

b
· a2.

Lemma 1 (Properties of correlative sum) For any nonzero real number b, the correlative
sum Sb is commutative, and associative.

Empir Software Eng

Proof Sb is commutative:

a1Sba2 = a1 + b − a1

b
· a2

= a1b + a2b − a1a2

b

= a2 + b − a2

b
· a1

= a2Sba1

Sb is associative:

(a1Sba2)Sba3 = a1 + b − a1

b
· a2 + b − (a1 + b−a1

b
· a2)

b
· a3

= a1b + a2b − a1a2

b
+ b − (

a1b+a2b−a1a2
b

)

b
· a3

= a1b + a2b − a1a2

b
+ b2 − (a1b + a2b − a1a2)

b2
· a3

= a1b
2 + a2b

2 − a1a2b + a3b
2 − a1a3b − a2a3b + a1a2a3

b2

= a1 + b − a1

b
· a2b + a3b − a2a3

b

= a1 + b − a1

b
· (a2 + b − a2

b
· a3)

= a1Sb(a2Sba3)

An important implication of this lemma is that Sb can be applied to a sequence of
numbers independent from the ordering of the elements in the sequence.

Lemma 2 For any nonzero real number b, let L = {l1, l2, ..., ln} be a sequence of real
numbers. Let Sb(L) denote l1Sbl2 · · · ln−1Sbln. Then

Sb(L) = l1 +
n

∑

i=2

⎛

⎝li ·
i−1
∏

j=1

(1 − lj

b
)

⎞

⎠ (10)

and for any given real number l, we have:

Sb(L ∪ {l}) = Sb(L) + l ·
∏

lj ∈L

(1 − lj

b
). (11)

Proof The proof for both parts is straightforward after expanding the polynomials.

An implication of (11) is that, for any sequence of real numbers L = {l1, l2, ..., ln}, and
any arbitrary real number l in L, we have:

Sb(L) − Sb(L \ {l}) = l ·
∏

lj ∈L\{l}
(1 − lj

b
) (12)

Theorem 2 HCG (Definition 9) satisfies the properties of Definition 4 for non-negative
values of an interestingness measure M.

Empir Software Eng

Proof Let M be a normalized interestingness measure with upper bound b ∈ R \ {0},
R = rules be a set of rules, and LM = 〈M(r1), · · ·M(rn)〉 be the sequence of non-negative
interestingness values for the rules in R. HCG of H (R) for M defined in Definition 9 can
be rewritten as follows:

HCG(H (R),M) = (Sb(LM),m) (13)

where m is given by
m = |{r ∈ R|M(r) > 0}|

The first property in Definition 4, which concerns Rs of size one, is again trivial. Let r be
an arbitrary rule in R, and l denote M(r). To prove that the second property in Definition 4
holds for HCG, we compare the HCGs of R and R \ {r}, and consider three cases based on
the value of M(r):

M(r) > 0 – In this case, we need to show that the HCG of R is greater than the HCG of
R \ {r}.

HCG(H (R), M) > HCG(H (R \ {r}),M)
Eq13≡ (Sb(LM), m) > (Sb(LM \ {l}),m − 1)

Def 10≡ Sb(LM) ≥ Sb(LM \ {l}) (14)

To show that inequality (14) holds we show that Sb(LM) − Sb(LM \ {l}) is non-negative,
which, according to (11), is equivalent to showing that

l ·
∏

lj ∈LM\{l}
(1 − lj

b
) ≥ 0

This inequality holds because l = M(r) > 0, and for all lj ∈ LM \ {l} the term 1 − lj
b

is
non-negative (because lj is at most b). Since m > m − 1, inequality (14) holds, completing
the case for M(r) > 0.

M(r) = 0 – In this case, we have to show that the HCGs of R and R \ {r} are equal.

HCG(H (R),M) = HCG(H (R \ {r}),M)≡Eq13 (Sb(LM),m) = (Sb(LM \ {l}),m)

To do so, we have to show that Sb(LM) = Sb(LM \ {l}). This is proven by forming Sb(L)−
Sb(LM \{l}), and replacing l with zero in the right-hand side of (11). Therefore, completing
the proof.

So far, we have proven that HCG satisfies the properties in Definition 4 for interest-
ingness measures that have a finite upper bound. If the upper bound of an interestingness
measures is infinity, then like CG, HCG becomes the sum of interestingness values of all
rules in R. Therefore, it satisfies all the properties in Definition 4.

References

Aggarwal CC, Yu PS (1998) A new framework for itemset generation. In: ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), 2. ACM, pp 18–24.
https://doi.org/10.1145/275487.275490

Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large
databases. In: ACM SIGMOD International Conference on Management of Data. ACM, pp 207–216.
https://doi.org/10.1145/170035.170072

Azė J, Kodratoff Y (2002) Evaluation de la résistance au bruit de quelques mesures d’extraction de règles
d’association. In: Extraction et gestion des connaissances (EGC), vol 1. Hermes Science Publications,
pp 143–154

https://doi.org/10.1145/275487.275490
https://doi.org/10.1145/170035.170072

Empir Software Eng

Ball T, Kim J, Siy HP (1997) If your version control system could talk. In: Workshop on Process Modelling
and Empirical Studies of Software Engineering, ICSE. 10.1.1.48.910

Baralis E, Cagliero L, Cerquitelli T, Garza P (2012) Generalized association rule mining with constraints.
Inf Sci 194:68–84. https://doi.org/10.1016/j.ins.2011.05.016

Bayardo RJ (1998) Efficiently mining long patterns from databases. ACM SIGMOD Record 27(2):85–93.
https://doi.org/10.1145/276305.276313

Bernard JM, Charron C (1996) Bayesian implicative analysis, a method for the study of oriented dependen-
cies. Mathématiques. Informatique et Sci Humaines 135:5–18

Beyer D, Noack A (2005) Clustering software artifacts based on frequent common changes.
In: International Workshop on Program Comprehension (IWPC). IEEE, pp 259–268.
https://doi.org/10.1109/WPC.2005.12

Bird C, Menzies T, Zimmermann T (2015) Past, present, and future of analyzing software data. In: The Art and
Science of Analyzing Software Data, pp 1–13. https://doi.org/10.1016/B978-0-12-411519-4.00001-X

Bohner S, Arnold R (1996) Software change impact analysis. IEEE, CA, USA
Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and Regression Trees, vol. 19
Brin S, Motwani R, Ullman JD, Tsur S (1997) Dynamic itemset counting and implication rules for market

basket data. In: ACM SIGMOD International Conference on Management of Data (SIGMOD), vol 26.
ACM, pp 255–264. https://doi.org/10.1145/253260.253325

Canfora G, Cerulo L (2005) Impact analysis by mining software and change request repos-
itories. In: International Software Metrics Symposium (METRICS). IEEE, pp 29–37x.
https://doi.org/10.1109/METRICS.2005.28

Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46.
https://doi.org/10.1177/001316446002000104

Cohen J (1992) A power primer. Psychol Bull 112(1):155–159. https://doi.org/10.1037/0033-2909.112.1.155
Collard ML, Decker MJ, Maletic JI (2013) srcML: an infrastructure for the exploration, analysis, and manip-

ulation of source code: a tool demonstration. In: IEEE International conference on software maintenance
(ICSM). IEEE, pp 516–519. https://doi.org/10.1109/ICSM.2013.85

Eick S, Graves TL, Karr A, Marron J, Mockus A (2001) Does code decay? Assessing the evidence from
change management data. IEEE Trans Softw Eng 27(1):1–12. 10.1109/32.895984

Gall H, Hajek K, Jazayeri M (1998) Detection of logical coupling based on product release his-
tory. In: IEEE International conference on software maintenance (ICSM). IEEE, pp 190–198.
https://doi.org/10.1109/ICSM.1998.738508

Geng L, Hamilton HJ (2006) Interestingness measures for data mining. ACM Computing Surveys 38(3).
https://doi.org/10.1145/1132960.1132963

Good IJ (1966) The estimation of probabilities: an essay on modern Bayesian methods. MIT Press
Gray B, Orlowska ME (1998) CCAIIA: Clustering categorical attributes into interesting asso-

ciation rules. In: Lecture Notes in Computer Science (LNCS), vol 1394, pp 132–143.
https://doi.org/10.1007/3-540-64383-4 12

Hassan AE, Holt R (2004) Predicting change propagation in software systems. In: IEEE International confer-
ence on software maintenance (ICSM). IEEE, pp 284–293. https://doi.org/10.1109/ICSM.2004.1357812

Hofmann H, Wilhelm A (2001) Visual comparison of association rules. Comput Stat 16(3):399–415.
https://doi.org/10.1007/s001800100075

Järvelin K, Kekäläinen J (2002) Cumulated gain-based evaluation of IR techniques. ACM Trans Inf Syst
20(4):422–446. https://doi.org/10.1145/582415.582418

Jashki MA, Zafarani R, Bagheri E (2008) Towards a more efficient static software change impact anal-
ysis method. In: ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTE). ACM, pp 84–90. https://doi.org/10.1145/1512475.1512493

Jorge AM, Azevedo PJ (2005) An experiment with association rules and classification: post-bagging and
conviction. In: Hoffmann A, Motoda H, Scheffer T (eds) Proceedings of the 8th International Conference
on Discovery Science DS 2005, Lecture Notes in Computer Science, vol 3735. Springer, Berlin, pp 137–
149. https://doi.org/10.1007/11563983 13

Kamber M, Shinghal R (1996) Evaluating the interestingness of characteristic rules. In: SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD), pp 263–266

Kannan S, Bhaskaran R (2009) Association rule pruning based on interestingness measures with clustering.
J Comput Sci 6(1):35–43

Klösgen W (1992) Problems for knowledge discovery in databases and their treatment in the statistics
interpreter explora. Int J Intell Syst 7(7):649–673. https://doi.org/10.1002/int.4550070707

Kodratoff Y (2001) Comparing machine learning and knowledge discovery in databases: an application to
knowledge discovery in texts. In: Machine Learning and Its Applications, LNAI 2049, chap. 1. Springer,
pp 1–21. https://doi.org/10.1007/3-540-44673-7 1

https://doi.org/10.1016/j.ins.2011.05.016
https://doi.org/10.1145/276305.276313
https://doi.org/10.1109/WPC.2005.12
https://doi.org/10.1016/B978-0-12-411519-4.00001-X
https://doi.org/10.1145/253260.253325
https://doi.org/10.1109/METRICS.2005.28
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1037/0033-2909.112.1.155
https://doi.org/10.1109/ICSM.2013.85
https://doi.org/10.1109/ICSM.1998.738508
https://doi.org/10.1145/1132960.1132963
https://doi.org/10.1007/3-540-64383-4_12
https://doi.org/10.1109/ICSM.2004.1357812
https://doi.org/10.1007/s001800100075
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/1512475.1512493
https://doi.org/10.1007/11563983_13
https://doi.org/10.1002/int.4550070707
https://doi.org/10.1007/3-540-44673-7_1

Empir Software Eng

Kulczyński S (1928) Die Pflanzenassoziationen der Pieninen Imprimerie de l’université
Le TDB, Lo D (2015) Beyond support and confidence: exploring interestingness measures for rule-based

specification mining. In: International Conference on Software Analysis, Evolution, and Reengineering
(SANER). IEEE, pp 331–340. https://doi.org/10.1109/SANER.2015.7081843

Lin DI, Kedem ZM (1998) Pincer-search: a new algorithm for discovering the maximum frequent set.
pp 103–119. https://doi.org/10.1007/BFb0100980

Liu B, Hsu W, Ma Y (1999) Pruning and summarizing the discovered associations. In: SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD). ACM, pp 125–134.
https://doi.org/10.1145/312129.312216

Loevinger J (1947) A systematic approach to the construction and evaluation of tests of ability, vol 61.
https://doi.org/10.1037/h0093565

Lucia, Lo D, Xia X (2014) Fusion fault localizers. In: Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering - ASE ’14. ACM Press, New York, pp 127-138.
https://doi.org/10.1145/2642937.2642983

McGarry K (2005) A survey of interestingness measures for knowledge discovery. Knowl Eng Rev
20(01):39. https://doi.org/10.1017/S0269888905000408

Messaoud RB, Rabaséda SL, Boussaid O, Missaoui R (2006) Enhanced mining of association rules from
data cubes. In: International Workshop on Data Warehousing and OLAP (DOLAP). ACM, p 11.
https://doi.org/10.1145/1183512.1183517

Moonen L, Di Alesio S, Rolfsnes T, Binkley DW (2016) Exploring the effects of history length and age on
mining software change impact. In: IEEE International Working Conference on Source Code Analysis
and Manipulation (SCAM), pp 207–216. https://doi.org/10.1109/SCAM.2016.9

Mosteller F (1968) Association and estimation in contingency tables. J Am Stat Assoc 63(321):1–28.
https://doi.org/10.1080/01621459.1968.11009219

Pearson K (1896) Mathematical contributions to the theory of evolution. III. Regression, Heredity, and Pan-
mixia. Philosophical Transactions of the Royal Society A: Mathematical. Phys Eng Sci 187:253–318.
https://doi.org/10.1098/rsta.1896.0007

Piatetsky-Shapiro G (1991) Discovery, analysis, and presentation of strong rules. Knowledge discovery in
databases pp 229—-238

Podgurski A, Clarke L (1990) A formal model of program dependences and its implications
for software testing, debugging, and maintenance. IEEE Trans Softw Eng 16(9):965–979.
https://doi.org/10.1109/32.58784

Ren X, Shah F, Tip F, Ryder BG, Chesley O (2004) Chianti: a tool for change impact analysis of java
programs. In: ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pp 432–448. https://doi.org/10.1145/1035292.1029012

Robbes R, Pollet D, Lanza M (2008) Logical coupling based on Fine-Grained change infor-
mation. In: Working Conference on Reverse Engineering (WCRE). IEEE, pp 42–46.
https://doi.org/10.1109/WCRE.2008.47

Rolfsnes T, Di Alesio S, Behjati R, Moonen L, Binkley DW (2016) Generalizing the analysis of evolution-
ary coupling for software change impact analysis. In: International Conference on Software Analysis,
Evolution, and Reengineering (SANER). IEEE, pp 201–212. https://doi.org/10.1109/SANER.2016.101

Rolfsnes T, Moonen L, Di Alesio S, Behjati R, Binkley DW (2016) Improving change recommendation using
aggregated association rules. In: International Conference on Mining Software Repositories (MSR).
ACM, pp 73–84. https://doi.org/10.1145/2901739.2901756

Rosenthal R (1991) Meta-analytic procedures for social research. SAGE
Sebag M, Schoenauer M (1988) Generation of rules with certainty and confidence factors from incom-

plete and incoherent learning bases. In: Proceedings of the european knowledge acquisition workshop
(EKAW), p 28

Wang S, Lo D, Jiang L, Lucia, Lau HC (2011) Search-based fault localization. In: 2011 26Th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2011). IEEE, pp 556–559.
https://doi.org/10.1109/ASE.2011.6100124

Smyth P, Goodman R (1992) An information theoretic approach to rule induction from databases. IEEE
Trans Knowl Data Eng 4(4):301–316. https://doi.org/10.1109/69.149926

Srikant R, Vu Q, Agrawal R (1997) Mining association rules with item constraints. In: International
Conference on Knowledge Discovery and Data Mining (KDD). AASI, pp 67–73

Tan PN, Kumar V, Srivastava J (2004) Selecting the right objective measure for association analysis. Inf Syst
29(4):293–313. https://doi.org/10.1016/S0306-4379(03)00072-3

Toivonen H, Klemettinen M, Ronkainen P, Hätönen K, Mannila H (1995) Pruning and grouping discov-
ered association rules. In: Workshop on Statistics, Machine Learning, and Knowledge Discovery in
Databases, pp 47–52

https://doi.org/10.1109/SANER.2015.7081843
https://doi.org/10.1007/BFb0100980
https://doi.org/10.1145/312129.312216
https://doi.org/10.1037/h0093565
https://doi.org/10.1145/2642937.2642983
https://doi.org/10.1017/S0269888905000408
https://doi.org/10.1145/1183512.1183517
https://doi.org/10.1109/SCAM.2016.9
https://doi.org/10.1080/01621459.1968.11009219
https://doi.org/10.1098/rsta.1896.0007
https://doi.org/10.1109/32.58784
https://doi.org/10.1145/1035292.1029012
https://doi.org/10.1109/WCRE.2008.47
https://doi.org/10.1109/SANER.2016.101
https://doi.org/10.1145/2901739.2901756
https://doi.org/10.1109/ASE.2011.6100124
https://doi.org/10.1109/69.149926
https://doi.org/10.1016/S0306-4379(03)00072-3

Empir Software Eng

Vaillant B, Lenca P, Lallich S (2004) A Clustering of Interestingness Measures. In: Lecture Notes in Artificial
Intelligence (LNAI), vol 3245, pp 290–297. https://doi.org/10.1007/978-3-540-30214-8 23

Van Rijsbergen CJ (1979) Information retrieval. Butterworth-Heinemann
Wu T, Chen Y, Han J (2010) Re-examination of interestingness measures in pattern mining: a unified

framework. Data Min Knowl Disc 21(3):371–397. https://doi.org/10.1007/s10618-009-0161-2
Yao YY, Zhong N (1999) An analysis of quantitative measures associated with rules. In: Method-

ologies for Knowledge Discovery and Data Mining (LNCS 1574). Springer, pp 479–488.
https://doi.org/10.1007/3-540-48912-6 64

Yazdanshenas AR, Moonen L (2011) Crossing the boundaries while analyzing heterogeneous component-
based software systems. In: IEEE International conference on software maintenance (ICSM). IEEE,
pp 193–202. https://doi.org/10.1109/ICSM.2011.6080786

Ying ATT, Murphy G, Ng RT, Chu-Carroll M (2004) Predicting source code changes by mining change
history. IEEE Trans Softw Eng 30(9):574–586. https://doi.org/10.1109/TSE.2004.52

Yong SH, Horwitz S (2002) Reducing the overhead of dynamic analysis. Electron Notes Theor Comput Sci
70(4):158–178. https://doi.org/10.1016/S1571-0661(04)80583-8

Yule GU (1900) On the association of attributes in statistics. Philos Trans R Soc Lond 194:257–319
Yule GU (1912) On the methods of measuring association between two attributes. J R Stat Soc LXXV:579–

652. https://doi.org/10.2307/2340126
Zaki MJ (2000) Generating non-redundant association rules SIGKDD International Conference on Knowl-

edge Discovery and Data Mining (KDD). ACM, pp 34–43. https://doi.org/10.1145/347090.347101
Zaki MJ, Hsiao CJ (1999) CHARM: an efficient algorithm for closed association rule mining. In: 2nd SIAM

International Conference on Data Mining, pp 457–473. https://doi.org/10.1137/1.9781611972726.27
Zanjani MB, Swartzendruber G, Kagdi H (2014) Impact analysis of change requests on source code based on

interaction and commit histories. In: International Working Conference on Mining Software Repositories
(MSR), pp 162–171. https://doi.org/10.1145/2597073.2597096

Zhang T (2000) Association rules. In: Knowledge Discovery and Data Mining. Current Issues and New
Applications, c, pp 245–256. https://doi.org/10.1007/3-540-45571-X 31

Zimmermann T, Zeller A, Weissgerber P, Diehl S (2005) Mining version histories to guide software changes.
IEEE Trans Softw Eng 31(6):429–445. https://doi.org/10.1109/TSE.2005.72

Thomas Rolfsnes Dr. Rolfsnes recently received his PhD (Informatics, Sept. 2017) from the University of
Oslo. During his PhD he has been employed by the Simula Research Laboratory where his supervisor, Leon
Moonen, is a chief research scientist. His research has focused on improving change-recommendation sys-
tems for developers, in particular, recommendations based on patterns found in change-histories from sources
such as Git. His efforts resulted in the thesis titled “Improving History-Based Change Recommendation Sys-
tems for Software Evolution”. He has publised his work in conferences such as SANER, SCAM, MSR and
ASE, and was invited for two EMSE special issues.

https://doi.org/10.1007/978-3-540-30214-8_23
https://doi.org/10.1007/s10618-009-0161-2
https://doi.org/10.1007/3-540-48912-6_64
https://doi.org/10.1109/ICSM.2011.6080786
https://doi.org/10.1109/TSE.2004.52
https://doi.org/10.1016/S1571-0661(04)80583-8
https://doi.org/10.2307/2340126
https://doi.org/10.1145/347090.347101
https://doi.org/10.1137/1.9781611972726.27
https://doi.org/10.1145/2597073.2597096
https://doi.org/10.1007/3-540-45571-X_31
https://doi.org/10.1109/TSE.2005.72

Empir Software Eng

LeonMoonen is chief research scientist in the Software Engineering department at Simula Research Labora-
tory, Norway. His research aims at data-driven techniques and tools to support the understanding, assessment
and evolution of large industrial software systems. Current projects include recommendation systems for
smarter evolution and testing of software-intensive systems, anti-fragile and high integrity software engi-
neering, and software analytics for continuous software quality and maintainability assessments. Dr Moonen
received his MSc (cum laude, Computer Science, 1996) and PhD (Computer Science, 2002) from the Uni-
versity of Amsterdam. He is a member of ACM, IEEE Computer Society, EAPLS and the ERCIM Working
Group on Software Evolution.

Stefano Di Alesio is a Chief Expert in the Transaction Monitoring Development department in Nordea Bank
AB. He received his Ph.D. (Informatics, March 2015) from the University of Luxembourg. His interests
revolve around leveraging machine learning and statistical analysis in order to provide quantitative insights
that support business-critical decisions. While carrying out his research, Dr. Di Alesio explored the areas
of model-driven, search-based, and reverse software engineering. He has published papers on these topics
on widely recognized conferences and journals, including MODELS, ISSRE, ACM TOSEM, SANER and
ASE. Dr. Di Alesio has also been a reviewer of several acknowledged software engineering journals, such as
RESS, SoSyM, and EMSE.

Empir Software Eng

Razieh Behjati Dr. Behjati is a senior test automation engineer. She received her PhD from University of
Oslo, and Simula Research Laboratory in 2012. Since 2009 she has been involved in various industrial and
research projects related to testing, verification and validation of embedded software systems and software
product families. Her research is focused on studying the application of logic and constraint programming as
well as machine learning techniques in automated software testing.

Dave Binkley Dr. Binkley is a Professor of Computer Science at Loyola University Maryland where he has
worked since earning his doctorate from the University of Wisconsin in 1991. He has been a visiting faculty
researcher at the National Institute of Standards and Technology (NIST), worked with Grammatech Inc. on
CodeSurfer development, and was a member of the Crest Centre at Kings’ College London. Dr. Binkley’s
current research, partially funded by NSF, focuses on change recommendation and observational program
analysis. He recently completed a sabbatical year working under Fulbright award with the researchers at
Simula Research, Oslo Norway.

	Aggregating Association Rules to Improve Change Recommendation
	Abstract
	Introduction
	Association Rule Mining
	Problem Description
	Interestingness Measures
	Association Rule Aggregation
	Hyper-Rule Formation
	Interestingness Measure Aggregation

	Aggregation Functions
	Cumulative Gain
	Discounted Cumulative Gain
	Hyper Cumulative Gain
	HCG1: Aggregating the Interestingness Measure Values
	HCG2: the Number of Rules
	HCG: Combining HCG1 and HCG2

	Ensuring Additive Identity Through Centering
	Aggregation of Negative Values

	Experiment Design
	Subject Systems
	History Extraction
	History Filtering
	Transaction Sampling and Query Creation
	Generate Change Recommendations
	Evaluate Change Recommendations

	Results and Discussion
	Applicability of Hyper-Rules (RQ1)
	Ability to Improve Precision (RQ2)
	Improvement Measured by Change in MAP
	Implications of Results

	System Specific Analysis (RQ3)
	Effect of Granularity (RQ4)
	Theoretical Histories
	Practical Histories

	Addendum I: Time Complexity
	Addendum II: Absolute Performance

	Threats to Validity
	Related Work
	Concluding Remarks
	Acknowledgements
	Appendix:
	A Proofs
	A.1 Proof for Discounted Cumulative Gain
	A.2 Proof for Hyper Cumulative Gain
	References

