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Executive summary 
This white paper on AI and ML as enablers of beyond 5G (B5G) networks is based on contributions from 

5G PPP projects that research, implement and validate 5G and B5G network systems. 

The white paper introduces the main relevant mechanisms in Artificial Intelligence (AI) and Machine 

Learning (ML), currently investigated and exploited for 5G and B5G networks. A family of neural 

networks is presented which are, generally speaking, non-linear statistical data modelling and decision-

making tools. They are typically used to model complex relationships between input and output 

parameters of a system or to find patterns in data. Feed-forward neural networks, deep neural networks, 

recurrent neural networks, and convolutional neural networks belong to this family. Reinforcement 

learning is concerned about how intelligent agents must take actions in order to maximize a collective 

reward, e.g., to improve a property of the system. Deep reinforcement learning combines deep neural 

networks and has the benefit that is can operate on non-structured data. Hybrid solutions are presented 

such as combined analytical and machine learning modelling as well as expert knowledge aided machine 

learning. Finally, other specific methods are presented, such as generative adversarial networks and 

unsupervised learning and clustering.  

In the sequel the white paper elaborates on use case and optimisation problems that are being tackled with 

AI/ML, partitioned in three major areas namely, i) Network Planning, ii) Network Diagnostics/Insights, 

and iii) Network Optimisation and Control. In Network Planning, attention is given to AI/ML assisted 

approaches to guide planning solutions. As B5G networks become increasingly complex and multi-

dimensional, parallel layers of connectivity are considered a trend towards disaggregated deployments in 

which a base station is distributed over a set of separate physical network elements which ends up in the 

growing number of services and network slices that need to be operated. This climbing complexity renders 

traditional approaches in network planning obsolete and calls for their replacement with automated 

methods that can use AI/ML to guide planning decisions. In this respect two solutions are discussed, first 

the network element placement problem is introduced which aims at improvements in the identification of 

optimum constellation of base stations each located to provide best network performance taking into 

account various parameters, e.g. coverage, user equipment (UE) density and mobility patterns (estimates), 

required hardware and cabling, and overall cost. The second problem considered in this regard is the 

dimensioning considerations for C-RAN clusters, in which employing ML-based algorithms to provide 

optimal allocation of baseband unit (BBU) functions (to the appropriate servers hosted by the central unit 

(CU)) to provide the expected gains is addressed.  

In Network Diagnostics, attention is given to the tools that can autonomously inspect the network state 

and trigger alarms when necessary. The contributions are divided into network characteristics forecasts 

solutions, precise user localizations methods, and security incident identification and forecast. The 

application of AI/ML methods in high-resolution synthesising and efficient forecasting of mobile traffic; 

QoE inference and QoS improvement by forecasting techniques; service level agreement (SLA) prediction 

in multi-tenant environments; and complex event recognition and forecasting are among network 

characteristics forecasts methods discussed. On high-precision user localization, AI-assisted sensor fusion 

and line-of-sight (LoS)/non-line-of-sight (NLoS) discrimination, and 5G localization based on soft 

information and sequential autoencoding are introduced. And finally, on forecasting security incidents, 

after a short introduction on modern attacks in mobile networks, ML-based network traffic inspection and 

real-time detection of distributed denial-of-service (DDoS) attacks are briefly examined.  

In regard to the Network Optimisation and Control, attention is given to the different network segments, 

including radio access, transport/fronthaul (FH)/backhaul (BH), virtualisation infrastructure, end-to-end 
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(E2E) network slicing, security, and application functions. Among application of AI/ML in radio access, 

the slicing in multi-tenant networks, radio resource provisioning and traffic steering, user association, 

demand-driven power allocation, joint MAC scheduling (across several gNBs), and propagation channel 

estimation and modelling are discussed. Moreover, these solutions are categorised (based on the 

application time-scale) into real-time, near-real-time, and non-real-time groups. On transport and FH/BH 

networks, AI/ML algorithms on triggering path computations, traffic management (using programmable 

switches), dynamic load balancing, efficient per-flow scheduling, and optimal FH/BH functional splitting 

are introduced. Moreover, federated learning across MEC and NFV orchestrators, resource allocation for 

service function chaining, and dynamic resource allocation in NFV infrastructure are among introduced 

AI/ML applications for virtualisation infrastructure. In the context of E2E slicing, several applications 

such as automated E2E service assurance, resource reservation (proactively in E2E slice) and resource 

allocation (jointly with slice-based demand prediction), slice isolation, and slice optimisation are 

presented. In regard to the network security, the application of AI/ML techniques in responding to the 

attack incidents are discussed for two cases, i.e. in moving target defence for network slice protection, and 

in self-protection against app-layer DDoS attacks. And finally, on the AI/ML applications in optimisation 

of application functions, the dash prefetching optimization and Q-learning applications in federated 

scenarios are presented.  

The white paper continues with the discussions on the application of AI/ML in the 5G and B5G network 

architectures. In this context the AI/ML based solutions pertaining to autonomous slice management, 

control and orchestration, cross-layer optimisation framework, anomaly detection, and management 

analytics, as well as aspects in AI/ML-as-a-service in network management and orchestration, and 

enablement of ML for the verticals' domain are presented. This is followed by topics on management of 

ML models and functions, namely the ML model lifecycle management, e.g., training, monitoring, 

evaluation, configuration and interface management of ML models.  

Furthermore, the white paper investigates the standardisation activities on the enablement of AI/ML in 

networks, including the definition of network data analytics function (NDAF) by 3GPP, the definition of 

an architecture that helps address challenges in network automation and optimization using AI and the 

categories of use cases where AI may benefit network operation and management by ETSI ENI, and 

finally the O-RAN definition of non-real-time and near-real-time RAN controllers to support ML-based 

management and intelligent RAN optimisation.  

Additionally, the white paper identifies the challenges in view of privacy and trust in AI/ML-based 

networks and potential solutions by introducing privacy preserving mechanisms and the zero-trust 

management approach are introduced. The availability of reliable data-sets as a crucial prerequisite to 

efficiency of AI/ML algorithms is discussed and the white paper concludes with a brief overview of 

AI/ML-based KPI validation and system troubleshooting. 

In summary the findings of this white paper conclude with the identification of several areas (research and 

development work) for further attention in order to enhance future network return-on-investment (ROI): 

(a) building standardized interfaces to access relevant and actionable data,  

(b) exploring ways of using AI to optimize customer experience,   

(c) running early trials with new customer segments to identify AI opportunities,  

(d) examining use of AI and automation for network operations, including planning and optimization,  

(e) ensuring early adoption of new solutions for AI and automation to facilitate introduction of new 

use cases, and  

(f) establish/launch an open repository for network data-sets that can be used for training and 

benchmarking algorithms by all.   
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1 Introduction 

The fast adoption of 5G technology is promising a staggering number of new devices. For example the 

Cisco Annual Internet Report (2018-2023) [69] forecasts that “Machine-to-Machine (M2M) connections 

will grow 2.4-fold, from 6.1 billion in 2018 to 14.7 billion by 2023. There will be 1.8 M2M connections 

for each member of the global population by 2023”. The exponential growth in connected devices along 

with the introduction of 5G technology is expected to cause a challenge for the efficient and reliable 

network resource allocation. Moreover, the massive deployment of Internet of Things and connected 

devices to the Internet may cause a serious risk to the network security if they are not handled properly. 

During the 5G era, network operators will have a chance to dynamically create and deploy different use 

cases or services such as massive Internet of Things (mIoT), massive Machine Type Communication 

(mMTC), Ultra-Reliable Low Latency Communication (URLLC), and enhanced Mobile Broadband 

(eMBB). This will be achieved via the concurrent support of several different logical networks (i.e., 

“network slices”) that will operate on top of the same physical infrastructure and will be fine-tuned to 

serve different requirements for different vertical sectors.  

To tackle this level of flexibility and network complexity, service providers should come up with solutions 

to ensure the security, reliability and allocation of the necessary resources to their customers in a dynamic 

robust and trustworthy way. The use of Artificial Intelligence (AI) and Machine Learning (ML) as a key 

enabler for future networks has been recognized at European [9] and global level [206]. 

The identified challenges and corresponding opportunities given by AI/ML will affect different network 

aspects, layers, and functions and even create new requirements for the architecture of future mobile 

networks.  

Despite the hype of the previous few years, the adoption of AI/ML methods in cellular networks is still at 

its early stages. A lot of work is still needed to identify the most suitable solutions for the dynamic 

network management and control via AI/ML mechanisms. Ongoing research activities need to take into 

consideration diverse aspects, such as the availability and usability of data sets needed for specification 

and testing of AI/ML solutions, regulatory aspects and practical implementation issues. 

The aim of this white paper is twofold. Firstly it discusses at a high-level the potential applications of AI 

and ML mechanisms in 5G as well as Beyond 5G (B5G) and 6G networks. Secondly it presents in detail, 

how EU funded research projects, operating in the context of the 5G PPP Programme, have specified, 

developed, and tested specific AI/ML solutions. 

This white paper is structured as follows. Section 2 provides an overview of AI/ML methods for network 

optimization, including the main principles of different approaches. Section 3 deals with optimization 

issues and use cases presenting specific solutions designed by 5G PPP projects, such as network planning 

(e.g., optimizing the placement of network objects), network diagnostics and forecasting of events 

including security incidents, optimization and control schemes for the different network domains as well 

as for end-to-end solutions including both computational and network resources. Finally, Section 4 

discusses several architectural aspects starting from a brief overview of current activities in multiple 

standardization organizations and provides more detailed information about technical approaches, which 

are currently under investigation by 5G PPP projects. 
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2 AI/ML methods for network optimization – an 

overview 

The recent paradigm shift that characterized mobile and fixed networks architectures allowed to evolve 

traditionally centralized and dedicated architectures into a common pool of resources, which can be 

dynamically orchestrated and tailored to service-specific requirements, e.g. in terms of communication 

latency and bandwidth. In this context, Artificial Intelligence (AI) is quickly becoming a key-feature in 

both network management and operational aspects of mobile networks. The wide availability of 

monitoring and operational data coming from heterogeneous networking domains allows gathering 

substantive insights on real-time networking processes. Decisions that previously took slow human 

interactions, based on traditional network characterization and optimization methods, can now be 

autonomously performed by Machine Learning (ML) algorithms with a holistic view of the network, 

enabling software components to directly contribute into decision-making activities related with the 

mobile network resource management. This not only improves the overall operational efficiency of the 

infrastructure, but also has significant impact into the reduction of management and energy related costs.  

Despite the general applicability of ML-based solutions, their practical application often relies on the 

possibility to access real-time data to perform analytics and diagnostics. Most of the solutions available 

nowadays derive from the combination of few well-known frameworks. Therefore in the following, we 

will provide an overview of the existing and emerging ML frameworks as enablers for the adoption of 

Machine Learning solutions into the network management operations
1
, as follows: 

 Neural Networks 

o Feed-forward neural networks 

o Deep neural networks 

o Recurrent neural networks 

o Convolutional neural networks 

 Reinforcement Learning 

o Basics/overview 

o Deep Reinforcement Learning 

 Hybrid Solutions 

o Combined analytical and Machine Learning modelling 

o Expert knowledge aided Machine Learning 

 Further Specific Methods 

o Generative adversarial networks 

o Kalman type filtering – and it relation to AI 

o Unsupervised learning and clustering 

The latest ML developments assumes different neural network topologies distributed over multiple 

(hidden) layers. As topologies become more complex, deep-learning model benefits for training purposes 

from the adoption of Graphics Processing Units (GPUs) or programmable integrated circuits (FPGA) over 

common Central Processing Units (CPUs), mainly thanks to parallel computing platforms optimized for 

such intensive applications, e.g. the Nvidia CUDA package [119].  

                                                      

1 Goal of this section is to present an overview on AI/ML methods in consideration by the networking community to be used for 

communications network design, planning, and optimization. It is not intended to provide yet another classification of the 
methods and/or to include/exclude any of the existing AI/ML approaches. 
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General machine learning tasks can be easily performed exploiting python programming language and its 

Scikit-learn library, which provides a wide selection of machine learning algorithms for classification, 

regression, clustering, dimensionality reduction, but lacks of methods to develop deep or reinforcement 

learning tasks. However, the majority of current applications require more advanced multi-layered ML-

based models combining the best characteristics of each singular framework. 

2.1 Neural networks 

2.1.1 Feed-forward neural networks 

Feed forward neural networks (FFNN), are a type of artificial neural networks and as so, the goal of 

FFNN is function approximation, i.e., to approximate function 𝑦 = 𝑓∗(𝑥) in the best possible manner. To 

this end, FFNNs define a mapping 𝜃 and try to learn the best value of 𝜃 such that 𝑓(𝑥; 𝜃) ≈ 𝑓∗(𝑥). The 

label feed forward comes from the fact that information flow is unidirectional in a forward manner, 

starting from the input data 𝑥, going through the possible inner nodes, until reaching 𝑦 =  𝑓(𝑥; 𝜃), such 

that the connections of its distinct nodes do not form a cycle. 

Here, the term “networks” is used because the FFNNs are being compost of many different functions that 

are concatenated in chain. For example, 𝑓(𝑥) = 𝑓2(𝑓1(𝑥))  means that the entry values 𝑥, are first 

propagated through the first layer 𝑓1(𝑥), and their outputs are processed by the second layer 𝑓2(𝑥′) to 

obtain an approximation of 𝑓∗(𝑥). The operations performed at each of the layers are usually defined by a 

weighted combination of each layer input units followed by a non-linear activation function. The typical 

activation functions are sigmoid functions, hyperbolic tangent, ReLU, etc. 

Finally, FFNNs are also called neural as they are inspired from neuro-science, as each unit resembles a 

neuron as it can receive inputs from any other previous layer unit and it computes its own activation value 

that triggers and a stimulus into the network. 

The learning of FFNNs is like any machine learning algorithm in the sense that a loss function given its 

parameters weights is computed, 𝐽(𝜃), and gradient decent is used to update the parameters and reduce the 

loss function. There are several types of loss functions, but the most utilized are the mean square error, the 

Huber Loss, Cross-entropy, the Kullback-Liebler Divergence, etc. [138].  

The update of the parameters based on the obtained loss it is called the backward pass, and starts from the 

outer layer of the FFNN, which computes the loss, and it back propagates to the different layers of the 

neural network. Backpropagation updates the network parameters in an efficient manner by computing the 

loss function with respect to each weight using the chain rule, computing the gradient layer per layer, 

going backward from the last layer to avoid redundant calculations of intermediate terms. 

In contrast with traditional regression methods, FFNNs reduce the need of expensive hand-crafted feature 

engineering as can automatically extract high-level features through layers of different depths. 

Furthermore, FFNN benefits from large amount of data, which is generally the case of mobile networks, 

as networks generates tremendous amounts of data and this data can be gathered from very distinct 

network scenarios, which helps to improve generalization.  

On the other hand, as most machine learning techniques, FFNNs are perceived as black boxes due to their 

low interpretability. Furthermore, FFNNs are computationally demanding as tend to require very large 

networks (millions of parameters), which translates into high number of matrix operations that must be 

performed in both the forward and backward passes. Thus, these might not be a good approach for 

solution embedded onto mobile devices, where energy and computing power constraints have to be 

considered. 
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2.1.2 Deep neural networks 

Artificial neural networks are computing systems inspired by animal brains and are based on a set of 

nodes, called artificial neurons that are interconnected by weighted unions, emulating brain synapses. In 

this sense, electrical signals are replaced by real numbers whose value is computed by a non-linear 

function as the sum of its inputs, and then this number is transmitted to the following neurons. To form a 

neural network, these nodes or neurons are grouped into sets called layers, so that the signal (real 

numbers) travels from one layer to another following a directed graph. 

Thus, a neural network has 3 types of layers: input layer, where the data instances are received; hidden 

layers, through which the signal travels, undergoing modifications based on the weights of the connections 

and neurons; and output layer, which returns the result of the processing performed by the network. In this 

sense, a deep neural network (DNN) can be defined as a neural network that has more than one hidden 

layer [63].  

DNNs are capable of modelling complex non-linear relationships by using data they receive as input, 

concretely for training. During this training process, connection and neuron weights are updated according 

to some pre-defined learning rules, usually doing backpropagation by calculating a cost function based on 

the error value regarding the expected model output. After this training, the DNN model is able to perform 

predictions in new unseen data using the intrinsic relationships learned during the training. 

 

Figure 2-1 Scheme of a deep neural network with 2 hidden layers [297].  

The most common architecture for DNNs is feed-forward, in which the information flows from the input 

layer to the output layer without internal loops. However, there are other types of architectures such as 

recurrent neural networks (RNNs), where the information propagates forward but also backwards to 

model time patterns, or deep belief networks (DBNs), which include bidirectional connections in some 

layers. Besides, depending on how the layers and neurons are structured, there are different types of 

networks such as multilayer perceptron (MLP), autoencoders, convolutional neural networks (CNNs), etc. 

DNNs application for communication and networking optimization has increased in the last few years and 

will be even more extensive in the future [296]. Some areas where DNNs have settled state-of-the-art 

performance include power control and management in cellular and Ultra Dense networks [296], 

automatic computation offloading and edge caching [171], user location estimation, security incident 

forecasting, and intrusion detection. Furthermore, DNNs are also applied at the physical layer [253] for 

novel tasks such as spectrum analysis, radio virtualization and optimization, blockage prediction or beam 

alignment. 

This wide application in network scenarios is motivated by the flexibility of DNN methods, which allows 

them to be adapted to practically any network scenario where data and metrics can be collected. In 
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addition, the evaluation of new data using the generated models is fast, which makes it possible to deploy 

these solutions online and directly on the network elements. 

The next subsections provide a deeper view in the main DNN architectures and methods, their properties, 

advantages, disadvantages, and their main applicability in network optimization problems. 

2.1.3 Recurrent neural networks 

Recurrent neural network (RNN) is basically a type of ANNs that is very effective in dealing with time-

series data. It has a distinctive architecture that allows neuron connections from a neuron in one layer to 

neurons in previous layers, i.e., feedback from pervious layer(s). This seemingly simple change from 

typical ANNs, e.g., DNNs, enables the output of a neural network to depend on the current input as well 

as the historical input. This makes it very powerful in capturing dynamic temporal correlations such as 

those faced in mobility prediction and speech recognition. The combination of various activation functions 

and connection methods for the neurons define a set of RNN architectures such as echo state networks 

(ESNs), long short-term memories (LSTMs), and gated recurrent units (GRUs)
2
. 

In general, the most commonly used algorithm for training RNNs is the backpropagation through time 

algorithm [223]. However, RNNs require more time to train compared to traditional ANNs, since each 

value of the activation function depends on the series data recorded in RNNs (due to the feedback between 

layers). To reduce the training complexity of RNNs, ESN is developed in a way that it needs only to train 

the output weight matrix. Due to the ESNs’ appealing properties such as the capability of capturing 

temporal correlation and training simplicity, they have been widely applied for various tasks such as 

supervised learning, RL, classification, and regression.  

We are convinced that the most promising applications of ESNs for future networks will include content 

caching and DRL-based network optimization. In principle, ESNs can be used to predict the content 

request preference of network users based on their historical data. Since the users’ behaviour data such as 

content request is temporally-correlated, an ESN-based model can quickly learn user request distributions 

and thereby predicting the future content demand. For this application, the input of an ESN model might 

include user’s contextual information such as gender, occupation, age, and device type, whereas the output 

would be the prediction of a user’s content request. ESNs can also be leveraged to empower the 

reinforcement learning (RL) framework with the capability of capturing temporal correlations inherent in 

sequential data. It is worth mentioning that RL is a very powerful technique that is commonly used in 

network optimization applications such as proactive resource allocation, e.g., see [67]. 

Among all types of RNN models, LSTM stands out as an ideal candidate for a wide range of applications 

concentrating on network traffic forecasting, prediction, and recommendation [299]. At the time of this 

writing, LSTM is the most widely adopted model for traffic forecasting, making it the de-facto tool for 

this kind of applications. Moreover, forecasted information pertinent to traffic and cloud price can be 

further leveraged for proactive network optimization, e.g., in advance allocation of resources such as 

computing, memory, bandwidth, etc. In detail, tradition RNN models generally experience a vanishing 

gradient problem which impedes learning of long data sequences. This is because when the gradient 

becomes smaller, the RNN parameter updates become intangible, which hinders the learning process. To 

overcome this issue, LSTM models have a gated structure composed of three gates, namely, forget gate, 

                                                      
2 GRU use less training parameters and therefore use less memory, execute faster and train faster than LSTM's whereas LSTM is 

more accurate on dataset using longer sequence. In short, if sequence is large or accuracy is very critical, LSTM is the solution 
whereas for less memory consumption and faster operation GRU is better to use. 
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input gate, and output gate. These three gates solve the vanishing gradient problem of RNNs by 

collectively controlling which information in the cell state to forget, given new information entered the 

network, and which information to be mapped to the network output.  

2.1.4 Convolutional neural networks 

Generic Convolutional Neural Networks (CNNs) [164] are a specialized kind of deep learning structure 

that can infer local patterns in the feature space of a matrix input.  

In particular, two-dimensional CNNs (2D-CNNs) have been extensively utilized in image processing, 

where they can complete complex tasks on pixel matrices such as face recognition or image quality 

assessment [274]. Each neuron or filter process completely the input but piece by piece instead of in a 

one-shot manner. The size of the piece is given by the kernel size. 

3D-CNNs extend 2D-CNNs to the case where the features to be learned are spatiotemporal in nature, 

which adds the time dimension to the problem and transforms the input into a 3D-tensor. Since mobile 

network traffic exhibits correlated patterns in both space and time, due to the intrinsic human nature of 

network utilization, the usage of 3D-CNN can be used to infer patterns from a matrix of network demands 

time series, which have a spatial components (base stations are geographically located on a 2D plane, and 

a temporal one. An example of such solution is described in section 3.3.4. 

Having discussed the concept behind CNNs and RNNs, we now shed light on an extension model that is 

yielded by combining RNN and CNN models together, namely, spatio-temporal network model [304]. It is 

now clear that time-series data such as the traffic of a network base station experiences temporal 

correlation. In addition to this temporal correlation, spatial correlation might be encountered between 

network nodes, e.g., base stations that are deployed in similar environments. For example, base station 

deployed in train stations in a city might have both temporally and spatially correlated traffics. To jointly 

capture such spatio-temporal correlations for applications such as prediction and traffic forecasting, 

convolutional-LSTM models based on CNNs (spatial correlation) and LSTM (temporal correlation) can 

be leveraged.  

2.2 Reinforcement learning 

Reinforcement learning is a class of solution methods, where solutions are learned through trial-and-error, 

i.e., an agent learns to perform actions in an environment by interacting with it and receiving feedback 

regarding the performed actions. In contrast with many forms of machine learning, the learner is not told 

which actions to take, but instead, must discover which actions yield the most reward by trying them out 

(unsupervised learning). The goal of the agent is to maximize its cumulative reward, also referred to as 

expected return. Different reinforcement learning methods yield distinct behaviours for the agent to 

achieve their goal. This type of solutions has drawn the attention to mobile network researches due to its 

proven efficacy to address complex multi-domain problems yielding close to optimal results.  

Most reinforcement learning problems can be formulated as Markov Decision Process (MDP), where at 

each interaction with the environment an agent observes a state s(t) ∈ S (which might be partially 

observable 𝑜), where S is the state space and selects an action 𝑎(𝑡) ∈ 𝐴 , where A is the set of all possible 

actions. Action a(t) in state s(t) receives a certain reward 𝑟(𝑡) ∈ 𝑅, where R: S × A → R denotes the reward 

function, and the environment transition to a new state s(t+1) ∈ S with probability p(s’ | s, a) ∈ P, where P|: 

S×A×S → [0,1] is a probability kernel. At each interaction, the agent maps the observed state s(t) to a 

probability distribution over the actions set 𝐴, this mapping is referred to as policy, and it is denoted by π. 

The probability of selecting action a(t) in state s(t) is given by 𝜋(𝑎(𝑡)|𝑠(𝑡)). The goal of the agent is to 
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determine the optimal policy π* ∈ Π that maximizes the obtained reward overall admissible policies, 

which is called expected return. The state-value function 𝑉𝜋(𝑠) for policy 𝜋 is defined as the expected 

return that the agent would accumulate after being at the state 𝑠 and following policy 𝜋 afterwards. 

Similarly, the action-value function 𝑄𝜋(𝑠, 𝑎) for policy 𝜋 is defined as the expected return the agent 

would accumulate starting at state 𝑠, taking action 𝑎, and following policy 𝜋 afterwards. 

The fact that most mobile network problems (such as resource allocation, slice management, etc.) can be 

formulated as MDPs makes this type of solutions a powerful tool to explore. 

We proceed to provide an overview of the landscape of methods used to maximize the expected return. 

The first classification that one encounters when learning about RL methods are the Model-Based and 

Model-Free taxonomy. 

 Model-Based algorithms, aim to learn a model of the environment i.e., learn the transition 

probabilities 𝑝(𝑠(𝑡+1), 𝑟𝑡  |𝑠(𝑡), 𝑎(𝑡)) which results in an estimated MDP model. Once the agent 

has adequately modeled the environment, it can use a planning algorithm given its learned model 

of the environment to find a policy that maximizes the expected return. Among the most popular 

algorithms in this category we highlight the well-known work of AlphaGO [269].  

 Model-Free algorithms do not intend to learn a model of the environment but to learn either the 

state-value or action-value functions, from which a policy may be derived, or the policy itself, 

using a policy search method that directly searches over the policy space to maximize the 

expected return.  

The model-based algorithms have found limited application to the mobile communication problems as 

network deployments tend to be too complex to model, and thus, finding these transitions probabilities and 

planning ahead seems, as of now, unfeasible. However, the model-free class of solutions have found 

widespread application and most of the solutions that leverage RL in communication networks belong to 

this category [297]. More details of the methods for model-free RL are provided. This category can further 

be broken down into: 

 Value-based Methods. In this family of methods, an estimate of the expected return for each of the 

action-state value function 𝑄𝜋(𝑠, 𝑎) is tracked and a policy is selected based on these estimates, 

e.g., an 𝜀-greedy policy might be selected where with probability 𝜀 (0 ≤  𝜀 ≤ 1) an action is 

chosen at random and with probability 1 − 𝜀 the action with the highest 𝑄𝜋(𝑠, 𝑎) is chosen. 

Typically, an objective function is to be optimized by means of Bellman equations. Among the 

value-base methods, the most well-known are Q-learning and SARSA [273]. 

These types of algorithm have been proven to work very well on mobile network domains that are 

limited to discrete action selection. For example, binary cell on-off decision algorithms have been 

proposed using Q-learning. The aim is to achieve interference mitigation of same-frequency cells 

by selecting which co-existing cells are turned off and on such that interference is minimized. 

Further applications can be found on mobile edge computing, where the binary decision of 

offloading a task to the edge or executing on the device has to be made. 

 Policy optimization. Methods in this family present a parameterized policy 𝜋𝜃(𝑎|𝑠) and they 

optimize the parameters 𝜃 by directly applying gradient ascent on a performance objective 

function (𝜋𝜃) . The most prominent methods in this category are vanilla policy gradient and PPO 

[273]. 

 Actor-critic methods [273]. The actor critic method is a combination of the previous methods as it 

learns both, the action-value functions, and a policy. In this method there are two sets of 

parameters, 𝜃1 and 𝜃2, parameterizing the actor and the critic respectively. The actor represents a 
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parameterization of the policy and the critic parameters are used to estimate the action-value pairs. 

To train the parameters, the actor selects the actions given the state and these actions are then fed 

to the critic, which evaluates these actions and update its action-values estimates accordingly. 

Then, this evaluation is passed back to the actor, who updates the policy parameters in the 

direction suggested by critic.  

These methods are very powerful tools, suitable for complex environment settings like resource 

allocation and orchestration, VNF deployments, etc. The Model-free approaches approach has a 

complete exploration of the environment, however, for this reason, when applied to complex 

systems like 5G networks, the learning phase can be very inefficient, requiring a considerable 

amount of time before reaching optimality. Novel ML techniques such as Deep Q-learning (DRL), 

which approximate the Q-values with Deep Neural Networks (DNN), can overcome this issue and 

enable a complete exploration minimizing the approximation loss of DNN. 

2.2.1 Deep reinforcement learning 

Traditional Reinforcement Learning methods struggle to address real-world problems due to their high 

complexity. In these problems, high-dimensional state spaces need to be managed to obtain a model that 

can generalize past experiences to new states. Deep Reinforcement Learning (DRL) aims to solve this 

problem by employing NNs as function approximators to reduce the complexity of classical RL methods. 

In [197] authors introduce deep Q-learning network (DQN), where a DNN is used as a function 

approximator for action selection on a discrete action space, based on Q-learning. Given a state, Q-

learning updates the action-value estimate with the immediate reward plus a weighted version of the 

highest Q-estimate for the next state. Using a combination of 3 convolutional layers (for computer vision) 

and two fully connected layers (Q-learning part), they obtain human-level results for a wide range of Atari 

games.  

To overcome the limitation of discrete action selection, in [281] the idea of DQN is extended to 

continuous action spaces using the deterministic policy gradient (DPG) theorem, in particular the deep-

DPG (DDPG) method. DDPG extends the use of DNN to the actor-critic method leveraging off-policy 

learning, where a deterministic policy is learned using a combination of replay buffer and target networks 

to ensure stability and a zero-mean Gaussian noise is added to the actions for action space exploration.  

The fact that mobile networking problems can be formulated as MDPs, where reinforcement learning can 

be used to obtain optimal solutions, has drawn the attention of  the network research community in both, 

academia and industry, to investigate and apply DRL solutions.  Most notable applications can be found in 

the use of DRL for base station on- off switching strategies [250], optimal routing [248], and adaptive 

VNF MANO [136]. Not surprisingly, traditional RL had not been applied to communication networks 

until now, as most of these problems involve high-dimensional inputs, which limits the applicability of 

traditional reinforcement learning algorithms. The inclusion of DNNs techniques improve the ability of 

traditional RL algorithms to handle high dimensionality, in scenarios previously considered intractable. 

DRL is thus a promising field of study to address network management and control problems under 

complex, changeable, and heterogeneous mobile environments. DQN have found wide application in 

communication networks, from mobile edge computing [293], to network slicing [60] to name a few.  

The main drawback of this type of solutions is the high number of environment interactions. In order to 

explore all possible actions and its possible outcomes, a lot of trajectories (state, action, reward, and 

transition states tuples) have to be gathered from the environment, which is a big price to pay when 

models are to be deployed in a production environment. To overcome this type of limitation, realistic 
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environments simulating close to reality networks can be employed to train and test different algorithms’ 

performance. 

2.3 Hybrid solutions 

2.3.1 Combined analytical and ML models 

5G and beyond mobile networks, have the ambition to achieve zero-touch network and service 

management, i.e., the full automation of the system. One of the critical ingredients to cost-effectively 

realizing such a scenario is to devise trusty and smart mechanisms to efficiently handle the involved 

management operations such as instantiation and auto-scaling of network services or flow scheduling 

(e.g., traffic steering, packet replication, and resource reservation). Ultimately, those operations require the 

translation of end-to-end Quality of Service specifications into specific actions such as reserving or 

releasing a certain amount of resources, choosing the concrete physical machines to embed the virtualized 

services, or allocating an explicit path for a stream. 

Traditionally, analytical performance modelling has been used extensively to assist network planning, 

management, control, and maintenance. Briefly, analytical performance modelling consists of deriving a 

set of equations relating the performance metrics of interest (e.g., end-to-end delay, jitter, packet loss 

probability, and reliability) with some features of the network (e.g., topology, nodes hardware features, 

physical distances between nodes and available resources) and traffic demands (e.g., packet arrival rate, 

degree of autocorrelation, and coefficients of variation) either theoretically or empirically. If required, the 

derived models might be reversed, for instance, by integrating them in the formulation of an optimization 

problem targeted to make a given decision. Nonetheless, this approach has the following three drawbacks: 

 Generally, it requires high domain knowledge to address the problem. 

 The derivation of an accurate model for some scenarios might be complicated or even impossible. 

Please consider, for example, feedback and lossy networks with stochastic service processes and 

self-similar and long-range dependent arrival processes. 

 Finding a solution for the resulting optimization problem might be computationally complex or 

even intractable. By way of illustration, most of the decision versions of the resource allocation 

problems are NP-Complete. 

Furthermore, the increasing complexity of the upcoming mobile networks, which combine a myriad of 

different technologies, each one offering significant flexibility within a large space of possible 

configurations, will intensify the problems referred to above, making the analytical model-based 

approaches impractical. 

As mentioned in the previous subsections, ML has been enshrined as a useful approach to tackle future 5G 

and beyond networks' complexity. However, ML raises new concerns over the system stability, 

performance guarantees assurance, the amount of data required to produce a ready-to-use solution, and 

data availability. 

Using ML and analytical model approaches in synergy might alleviate their shortcomings and fit the 

decision-making problems' necessities in many scenarios, as supported by previous works [32], [134]. The 

authors in [32] propose to harness the existing accurate analytical models for assisting the training of ML 

models intended to make optimal decisions. More precisely, analytical models serve to simulate the 

behaviour of the network with great agility. In this way, measurement campaigns might be avoided, 

speeding up the training process [32]. Simultaneously, the ML model enables to configure networks in 

real-time with near-optimal performance. As stated in [32], some works have reported and highlighted a 
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drastic reduction in the amount of data required to train the ML-based models by employing that hybrid 

approach even when the available analytical model is not accurate. 

 

Figure 2-2 Analytical models to assist Reinforcement Learning 

The authors in [134] identify further advantages of the combined use of ML and analytical models. They 

consider the reinforcement learning framework to illustrate them, as shown in Figure 2-2, though the same 

advantages can be extrapolated to other ML techniques. First, some performance metrics are difficult or 

unfeasible to measure directly from the network, like the worst-case delay. Then, analytical models can be 

used to estimate those unavailable data. This approach might be useful, for instance, to provide some 

inputs to the RL Agent as depicted in Figure 2-2, or to compute relevant features for supervised ML. 

Second, as ML models are not 100% accurate, they might issue unfeasible decisions, i.e., decisions that do 

not fulfil the optimization problem's constraint. If the network is configured according to such a decision, 

undesired behaviour, such as SLA violation, might occur. We can leverage analytical models for such a 

feasibility check in this vein, thus making the solution fully reliable. Then, it is assured that only valid 

configurations of the network will be applied. Last, analytical models might be used to assess the degree 

of optimality of the ML model's action to compute an RL agent's reward. 

2.3.2 Expert knowledge aided ML 

Every aspect of past and present wireless communication networks is regulated by mathematical models, 

which are either derived from theoretical considerations, or from field measurement campaigns. 

Mathematical models are used for initial network planning and deployment, for network resource 

management, as well as for network maintenance and control. However, any model is always 

characterized by an inherent trade-off between accuracy and tractability. Very complex scenarios like 

those of future wireless networks are unlikely to admit a mathematical description that is at the same time 

accurate and tractable. In other words, we are rapidly reaching the point at which the quality and 

heterogeneity of the services we demand of communication systems will exceed the capabilities and 

applicability of present modelling and design approaches. 

A recent trend in deep learning complements purely data-driven approaches with prior information based 

on expert knowledge. Traditional deep learning methods acquire a large amount of empirical data and 

employ it to perform optimization. However, the application of deep learning to communication network 

design and optimization offers more possibilities than such a purely data-driven approach. Although 

mathematical models for communication network optimization may be simplified and inaccurate, they are 

very often available, which is not the case for other fields such as image classification and speech 
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recognition. This a priori expert knowledge, acquired over decades of intense research, should not be 

dismissed and ignored.  

In several prior works, machine learning has been employed under simplified settings while adoption 

aspects also lack due attention [63]. In this direction, we try to address some of these shortcomings within 

the B5G network management landscape. System modelling problems, joint UE-AP association and 

resource allocation strategies, as well the user mobility for proactive hand-over and continuous adjustment 

are only some of the problems that are addressed. Our goal is to explore and apply AI techniques for 

automated decision making, their potential when used in synergies or in liaison to attack the problem at 

hand in the most befitting manner. This includes constraint solving optimizations, machine learning (ML), 

but also conventional and state of the art in AI to examine the unique capabilities these approaches 

deliver.  Next, we present the indicative example of system modelling, joint user association and resource 

allocation in sub-THz and THz wireless systems as well as the need of providing novel AI-based mobility 

management solutions.   

System modelling: In [32] and [33], the authors report two main cases in which expert knowledge and 

data-driven based design may nicely complement each other: (i) in the presence of a model deficiency, 

data-driven method may be used to refine approximate models; and (ii) in the presence of an algorithmic 

deficiency, AI-based methods may be trained by using data from sufficiently accurate models. It is shown 

in [32] and [33] that the two case studies can be merged by leveraging the tools of transfer learning and 

deep unfolding. 

User association and resource allocation in sub-THz and THz wireless systems: The ultra-wideband 

extremely directional nature of the sub-THz and THz links in combination with the non-uniform user 

equipment (UE) spatial distribution may lead to inefficient user association, when the classical minimum-

distance criterion is employed. Networks operating in such frequencies can be considered noise- and 

blockage-limited, due to the fact that high path and penetration losses attenuate the interference [18], [17], 

[90]. Hence, user association metrics designed for interference limited homogenous systems are not well 

suited to sub-THz and THz networks [20]. As a result, user association should be designed to meet the 

dominant requirements of throughput and guarantee low blockage probability. Additionally, user 

orientation has an important impact on the performance of THz links [16], [89], [15], [19]. As a 

consequence, users may not be associated with the geographically closest access point (AP), since a better 

directional link may exist for a farther away one. Furthermore, the network needs to predict users and 

blockers movements in order to proactively hand-over the UE to another AP. From the technical point of 

view, to deal with the aforementioned requirements two type of mechanisms need to be devices, namely 

joint user association and resource allocation and proactive hand-over. 

Scanning the open technical literature, several joint user association and resource allocation policies can 

be identified [306], [161], [222]. In particular, in [306], the authors reported an online deep reinforcement 

learning (DRL) based algorithm for heterogeneous networks, where multiple parallel deep neural 

networks (DNNs) generate user association solutions and shared memory is used to tore the best 

association scheme. Similarly, in [161], the authors presented a federate learning approach to jointly 

minimize the latency and the effect of loss in the model accuracy due to channel uncertainties. Finally, in 

[222], a deep deterministic policy gradient based algorithm was employed to solve the joint user 

association and resource management problem in mobile edge computing. All the aforementioned 

approached come as a solution of optimization problems and, for the sake of simplicity, they neglect the 

impact of dynamic blockage due to moving obstacles as well as the influence of beam orientation errors, 

due to end-users movement.  
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To counterbalance this, we employ artificial intelligent (AI)-based approaches that return the outage 

probabilities between each one the UEs and the APs, due to UE or blocker movement. Based on these 

probabilities as well as the UE data-rate demands, we formulate a joint user association and resource 

allocation problem that maximizes the networks throughput, while low outage probability. In more detail, 

we model several representative and demanding user association scenarios and generate datasets - upon 

which optimizations are performed to find the best UE-AP association-allocation solutions. These 

solutions respect the hard and soft constraints in dense and sparse network topologies as foreseen by 

domain experts for B5G networks. Constraints consider UE and AP locations, the required and available 

bandwidths to be allocated in respect of requested data rates, where the aggregate data-rate or throughput 

needs to be maximized. To address some gaps in the current literature, we pay due diligence to blockade 

schemes that limit UEs in establishing Line of Sight (LoS) links with APs due to their location (polar 

coordinates). These schemes include: i) full blockades where the UE’s association space is reduced to 

unblocked APs and their resource capacities, ii) static blockades, where the UE’s LoS is hindered by fixed 

physical blockades and iii) partial blockades, which account for cases where an LoS may be partially 

possible and depending on signal properties, UEs may still be associated to APs if required QoS 

thresholds may be met. The inability to find effective LoS-aware user-association and allocations serves as 

a pathway to non LoS solutions, which are mentioned in section 3.2.2.4. 

In recent works, such as [14] and [137], some hybrid approaches where model-based and data-driven 

concepts are used together are seen. Considering the potential of such approaches, we devise a roadmap, 

where at the first stage, we devise experiments to frame and solve above mentioned resource allocation 

problems using metaheuristic constraint solving methods and move on to bridge this heuristic approach to 

predictive and prescriptive analytics. Early results from our analysis reveal the combinatorial hardness of 

these problems, where the large state spaces range up to 10
29025

 or higher, and the challenge to discover 

effective assignments is limited not just by the used hardware but also the features of the used technology. 

For instance, in the heuristics domain, solving multi-constraint problems having less than a 2% required-

to-available resource ratios, the hard and soft constraints need to be implemented using delta-score 

calculation (e.g. by incorporating a rule engine as we do) to speed up calculation speed by only calculating 

changed variables and thus exploring more of the state space in the same time period. The discovered 

optimization solutions (assignments) are used to complete the dataset i.e. the assignments for a given 

network topology lead to the identification of labels (attributes to predict), which allow to apply 

supervised machine learning approaches. It is to be noted that identification of labels is one of the most 

important steps in predictive modelling. In the mentioned problems, training data can be prepared in a 

couple of ways, which determines the choice of predictor to either: i) an ensemble of single-label predictor 

models, which is the widespread approach, or ii) a multi-label predictor model, which considers label 

chaining (hierarchy of correlation among individual label predictions). 

Mobility management in sub-THz and THz wireless systems: After associating UEs to APs, uninterrupted 

connectivity needs to be guaranteed. However, as also noted earlier, the network is continuously 

undergoing change, hence the network management should be adaptive as well. This is where the 

conventional heuristic based exploration of state space needs to be extended to simulate UE mobility in 

online manner. The area of online optimizations is not exhaustively researched in prior art and there is 

ample room for advancements. The UE mobility partially modifies the network topology in real-time as 

the polar coordinates of UEs change, which also changes blockades faced with respect to APs. Thus, the 

online aspects of optimizations are also being investigated by considering discrete event simulation 

techniques that can be tweaked to simulate different scenarios. To deliver un-interrupted service to the UE 

despite various rates of mobility, the joint association-allocation solution scheme must recover from its 

infeasible state to the new feasible state for the updated topology. As presented earlier, one direction of 
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work looks at the mobility prediction and pro-active hand-over, so controls are in place to prevent 

spontaneous overload and service interruption.  

Another direction being investigated is the liaison of real-time optimization in which the heuristic 

approach continues to stabilize association-allocation infeasibility in real time, while in parallel, the ML 

model already trained for the offline case can be continuously updated to learn the newly discovered 

feasibility patterns in real time. This scheme also provides for better comparison of the two approaches. 

The new incoming (and previously unseen) data introduces variation in the already seen data. This 

variation reflects a new snapshot of the network, for which the predictive models may not be able to 

predict accurately if the distributions are not close enough to the mean values seen in the training data. In 

real time deployments, autonomous systems often run into such risks, where locally sensed data that may 

contain potential outliers, may affect the global pattern learned by the model - if not proportionally 

treated. Hybrid approach (liaison of heuristic and predictive analytics) provides a safer fall-back if model 

update requires time and inspection. It also provides a qualitative and quantitative schematic to test the 

limits of the used technology which are important concerns for operationalisation. This includes functional 

properties (i.e. correctness, which can be measured as a solver-specific heuristically-discovered solution’s 

score or a predictive model’s accuracy or another performance metric) and non-functional properties (i.e. 

response time of the heuristic to restore the system from infeasible to feasible state, or the update or 

retraining time of the predictive model and its inference/scoring time). 

There is an increased focus on the application of various artificial neural network architectures (ANNs) in 

the network management literature. Within the field of Deep Learning, various ANNs have been shown to 

deliver promising results [63]. One such approach is Deep Unfolding, which is reported in recent art, 

where Recurrent Neural Network or Deep Transfer Learning models are trained on solutions discovered 

by greedy or approximate algorithms in a time-demanding fashion [88], [32]. In the joint association-

allocation problems presented here, we foresee the application of Deep Transfer Learning among others, 

where hidden layer(s) can be trained on combinatorically-explored solution data discovered by the 

heuristic algorithms and offloading the discovery of irregularities and non-linear relationships in data to 

the model training phase. The objective is to reduce the combinatorial problem to a predictive problem, 

which are not just efficient in instant predictions for association and allocation, but also allows for a 

framework level approach to continuously update and improve the model to the point that the network 

management can be performed autonomously by the machine. This work opens further avenues, which 

Ariadne would aim to address in its roadmap. One such promising direction is the use of Reinforcement 

Learning, which does bring several presented concepts into a unified scheme, with the differentiator being 

the use of stochastic models as well borrowing from the paradigm of agent-oriented programming. 

Another approach that we examine is the development of proactive hand-over mechanisms need to be 

utilized. An important amount of research effort was put in this are in the last couple of years. In more 

detail, in [283], the authors presented a centralized reinforcement learning (RL) method to maximize long-

term utilities in millimetre wave (mmWave) networks. Similarly, in [131], a Bayesian regression based 

policy was introduced for low-frequency high-speed railway systems. Meanwhile, in [92], a machine 

learning (ML) based proactive, handover algorithm that employed multiple metrics to predict the future 

state of the network and optimize the load in order to ensure preservation of the quality of service (QoS) 

and experience (QoE) was proposed, whereas, in [260], linear regression, long-short term memory, and 

recursive neural networks methodologies were examined as possible approaches for network load 

prediction and a proactive hand-over policy was presented. Finally, in [301], the authors presented a deep 

reinforcement learning (DRL)-based hand-over management algorithm to address the large-scale load 

balancing problem for ultra-dense networks. Despite the importance of UE orientation and blockage 

probability in sub-THz and THz networks, to the best of our knowledge, there exist no contribution that 
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present a generalized hand-over mechanism. Motivated by this, we are going to analyze the mobility 

management problem and present ML-based solutions.  

2.4 Promising ML techniques for networking problems 

2.4.1 Generative adversarial networks 

Generative adversarial networks (GANs) [312] are deep learning models whose main objective is to 

generate realistic new data samples with the same properties that the training data. These models use two 

neural networks in a combined way, one called generator and another called discriminator. 

In a summarized way, the generator network is in charge of creating new data, also known as "fake 

samples", whose features have a distribution similar to the training data, while the discriminator network 

is in charge of differentiating the data generated by the generator from the real samples. When training 

begins, the generator produces obviously fake data, and the discriminator quickly learns to tell that it's 

fake, but the data generated then is perfectioned to fool the discriminator. In this sense, both networks 

"indirectly" train each other, so when the generator improves the quality of the output samples, the 

discriminator improves its capacity to differentiate real and fake samples, and vice versa. 

The main advantage of these models lies in their ability to generate data with a quality, at a realistic level, 

much higher than other generative models such as Variational Autoencoders. In addition, the discriminator 

network can be used directly as a classifier of false and real data. Besides, these networks can handle high 

dimensional spaces in a much more efficient way than other methods such as Boltzmann machines. 

However, as drawbacks, training this type of model is often complex because of instability in the 

combined network training process, and it requires a high number of computational resources. In addition, 

false patterns can be generated when working when discrete data, such as text. 

 

Figure 2-3 GAN topology scheme  

These models have been applied for network optimization from several perspectives, being its 

applicability highly relevant in 5G self-organizing networks [128]. These modern networks require 

exhaustive labelled data to train the models in charge of automatic network management. However, low 

data comes already labelled from direct network monitoring, and the labelling process can be highly 

expensive and slow. In this context, realistic synthetic data generated using GANs is very relevant, as it 

can help to solve the previous issue, increasing the amount of data available at a low cost. 

In this sense, GANs allow inferring fine-grained mobile traffic maps from coarse-grained, which are 

collected by traffic monitoring probes. As the traffic monitoring probes cannot be placed in every network 

point, the data that are gathered for traffic maps are not enough for the purpose of training a complex 

neural network. The presence of fine-grained mobile traffic maps allows the prediction of anomalous 

events in mobile traffic, such as network congestion, burst prediction [284] or traffic pattern recognition 
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[172]. This allows the fast response of MNOs in order to enable early countermeasures, such as the 

reallocation of UEs in different cells, improving resource usage and planning.  

Besides, QoS management has also been improved by GANs [294] enhancing the prediction of metrics 

such as delay, packet loss, jitter, etc. GANs have been applied not only in traffic-related scenarios but in 

other key aspects in 5G networks, such as call frequency and duration forecasting [128]. In the physical 

layer, Massive MIMO antennas management has been also improved using these models for channel state 

information generation. Similarly, cell coverage planning and performance optimization has been also 

enhanced using GAN models [186]. 

2.4.2 AI-enabled network tomography 

Network tomography (NT) has been proposed as a methodology for the efficient inference of network 

performance characteristics based on measurements realized at a subset of accessible network elements. It 

can be broadly classified into the following three categories [323]: 1) link-level NT; that regards the 

estimation of per link QoS parameters (e.g., loss rates, delays, jitter) based on end-to-end path 

measurements, 2) path-level NT; that concerns the estimation of the origin-destination traffic intensity 

matrix based on link-level measurements, and 3) topology inference; for reconstructing an unknown 

network topology. Compared to conventional monitoring techniques involving direct measurement of all 

objects of interest, NT alleviates the need for special-purpose cooperation of all devices and reduces the 

measurement traffic overhead. 

NT belongs to the class of statistical inverse problems and can be formulated as a system of linear 

equations, Y = AX, where Y is the vector of observed measurements, A is the routing or measurement 

matrix representing the network topology, and X is the vector of unknown performance parameters. The 

goal is to estimate the unobserved vector Χ given the aforementioned linear model and the known vector 

of measurements Υ. From the perspective of linear algebra, X is uniquely identifiable if and only if the 

number of equations equals the number of the vector’s components (unknown variables). However, Α is 

usually an ill-posed matrix (i.e., the linear system of equations is under-determined) and, hence, non-

invertible. Lately, the potential of enhancing NT with AI/ML has been suggested for relaxing the 

assumptions and the statistical modelling techniques typically employed for overcoming the ill-posed 

feature of NT and exploiting the bulk of measurement volumes available in the current and future network 

infrastructures. 

In greater detail, an AI-based approach of solving the inverse problem at hand could employ deep neural 

networks (DNNs) for minimizing the 𝐿2 error norm ‖X − 𝑔𝜑(Y)‖
2
, where 𝑔𝜑(∙) is a suitable function 

that assumes the role of Α
-1

 (which cannot be precisely modelled mathematically) and is designed to 

correspond to a DNN with parameters φ that are learned from large data sets containing pairs of examples 

(Y, X). Such a learning procedure leads to a direct mapping of Y to X and shifts the computational burden 

to the learning phase, since providing an estimation of X for a given Y is represented by a feed-forward 

network 𝑔𝜑(∙), thus, it is computationally efficient. In other words, the choice of a specific neural network 

architecture 𝑔𝜑(∙) indicates the set of functional relationships that must be learned by training the DNNs 

in a supervised fashion over data sets containing a great number of pairs (Y, X). Given the formulation of 

the inverse problem as a regression problem, the MSE cost function can be employed and the parameters 

φ of the model can be iteratively updated by an optimization algorithm (e.g., stochastic gradient descent). 

After the optimal parameters are obtained, X can be estimated from the observed Y by using the trained 

network: X̂ = 𝑔𝜑(Y). 
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An example of employing a deep learning-based NT method for inferring a traffic matrix from the 

available link counts and routing information is presented in [208], [209]. The authors use a deep belief 

network (DBN) architecture in order to learn the properties of the ill-posed inverse system. Assuming a 

network with N nodes and L links, the proposed deep architecture is trained using prior measurements of 

link counts (L-by-T̃ matrix Ỹ, with T̃ timeslots) as input and the corresponding TM (N
2
-by-T̃ matrix X̃ , 

with T̃ timeslots - row j corresponds to the time series of origin-destination pair j) as output to extract the 

mapping from Ỹ to X̃. It should be noted that, in this formulation, routing matrix A has dimensions L-by-

N
2
. Then, the traffic matrix X can be estimated by the trained model using the corresponding Y as input 

data. Simulation results show an estimation error improvement ratio of at least 23.4% compared to other 

conventional NT approaches. Another method based on a back-propagation neural network (BPNN) that 

accepts the vector of link loads as input and estimates the origin-destination flows in an output vector is 

described in [141]. More recent works have attempted to extend the input of the employed neural 

networks (BPNN [315], or convolutional neural network [93]) by including routing information, either 

implicitly in the form of the Moore-Penrose pseudoinverse of the routing matrix [315], or explicitly using 

graph embedding [93]. 

2.4.3 Kalman type filtering 

The Kalman filter (KF) presented in 1960 [149] is a recursive solution that efficiently and robustly 

estimates the state and error covariance of a discrete time-controlled process [288], [289]. The KF is 

robust, given its ability to provide reasonable estimations of past, present, and future states with noisy, 

indirect or altogether missing measurement data. Generally, the KF considers weightings of measurement 

uncertainties to determine an optimal state output and its error covariance. Additionally, the KF lends 

itself to data fusion between two or more measurement sources, adjusting their influence on the result 

through weighting their individual error covariance. Adaptive filtering techniques can be introduced to 

improve adaption under various sensors and scenarios. The filter assumes that all distributions are zero 

mean Gaussian distributed and the system to be estimated is linear, which is often not the case. However, 

the filter generally provides satisfactory results regardless. Common variations of the KF, namely the 

Extended KF (EKF) and Unscented KF (UKF) provide solutions to overcome the linear assumption. 

Technical explanations are available in [288], [224].  

Kalman filters are commonly used for localization, tracking and navigation due to efficiency, robustness 

and real time processing. Common applications include GPS systems [116], robot positioning [57] and 

computer vision object tracking [157]. These applications require the ability to quickly combine together 

complementary noisy data sources from various sensors to provide an improved and controlled response. 

Even during the loss of sensor data, the KF is capable of estimating the required states completely from 

the prediction step alone.  

Kalman filtering resembles a rudimentary form of Machine Learning (ML), in that it applies new data and 

weightings to increase its accuracy over time, without being programmed to do so. Much in the same way 

labelled training data may be applied to a ML algorithm; a system model must be provided to a KF to 

provide the basis of the prediction. Nevertheless, while Kalman filtering shares similarities to specific ML 

models, there may be various differences in structure, applications and the type of data. Critically Kalman 

filtering is state-based or time-based and does not identify patterns or features within data, making it 

unsuitable for a variety of use cases. However, where appropriate, a KF is considerably less complicated, 

computationally less intensive and for these reasons, faster. Kalman filtering can be used in conjunction 

with or in place of more complicated ML techniques [21] to reduce runtime or produce a more general 

output.  
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Figure 2-4 Kalman Filter tracking user plot 

Figure 2-4 illustrates a top down 2D view of a Kalman filter used to perform data fusion from two 

independent localization techniques in order to track a virtual reality user in 3D space. The localization 

techniques are modelled on mmWave TDOA and VLC RSS from the Internet of Radio Light (IoRL) 

project. The mmWave estimates are shown in red, VLC estimates in green and the ground truth in black. 

The output of the KF, shown by the blue, is evidently steadier and more accurate than the two noisy 

estimates independently. 

2.4.4 Federated learning 

Federated learning is a recent addition to the distributed ML approaches, which aims at training a machine 

learning or deep learning algorithm across multiple local datasets, contained in decentralized edge devices 

or servers holding local data samples, without exchanging their data — thus addressing critical issues such 

as data privacy, data security, and data access rights to heterogeneous data. The Federated learning 

approach is in contrast to traditional centralized learning techniques where all data samples are forwarded 

to a centralized server and to classical distributed machine learning techniques, which assume that the 

local data samples are identically distributed and have the same size. The general design of federated 

learning involves training local models on local data samples and exchanging parameters (e.g., weights in 

a DNN) among those local models to generate a global model. Federated learning algorithms can use a 

centralized server that orchestrates the various steps of the algorithm and serves as a reference clock, or 

they may be peer-to-peer, where no centralized server exists. The federated learning process is divided 

into multiple rounds, each consisting of four steps: 

 Step 1: Local training - all local servers compute training gradients or parameters and send locally 

trained model parameters to the central server. 

 Step 2: Model aggregating - the central server performs secure aggregation of the uploaded 

parameters from 'n' local servers without learning any local information. 

 Step 3: Parameter broadcasting - the central server broadcasts the aggregated parameters to the 'n' 

local servers. 

 Step 4: Model updating - all local servers update their respective models with the received 

aggregated parameters and examine updated models' performance. After several local training and 
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update exchanges between the central server and its associated local servers, it is possible to 

achieve a global optimal learning model. 

Training ML model at the network edge ensures network scalability by distributing the processing from 

centralized architectures of the Mobile Core/Cloud to the edge located closer to the user. This allows 

faster response to user requests since computations, data aggregation, and analytics are handled within 

user proximity. Moreover, it provides latency improvements for real-time applications as ML models are 

executed near the user. Many 5G applications are characterized by latency stringency and demand; 

therefore, the latency induced by communicating and executing ML models in the Mobile Core/Cloud 

may violate these requirements; hence, the edge is preferable for Mobile Network Operators (MNOs).   

Federated learning also has some drawbacks, such as heterogeneity of distributed devices, biased datasets, 

security issues, and coordination of many devices during training, which is highly expensive in terms of 

communication resources. Regarding its further applicability in future networks, including 5G, the main 

point in favor of federated learning is the massive number of devices that will be deployed. Thus, 

combining these devices' data and computing capabilities enables AI in new networking areas. In this 

context, mobile edge network is a perfect scenario where FL capabilities can gain value [171]. 

Cyberattack detection [34], [316], base station association [66], [118], and VNF autoscaling [140] are 

examples of application areas where the advantages of the federated learning approach can be utilized. 

2.4.5 Unsupervised learning and clustering methods 

Apart from supervised learning, which is a machine learning task of analysing a training dataset and 

produces an inferred function that can be exploited for mapping new and unseen instances, another 

valuable type of algorithm is the unsupervised learning.  

Unsupervised learning and specifically clustering algorithms are considered as one of the key solutions in 

order to improve the performance of 5G and beyond networks [199]. In particular, clustering algorithms 

discover previously undetected patterns in raw data with no pre-existing knowledge and with a minimum 

of human supervision and divide them in different groups that share common characteristics. More 

precisely, the clustering algorithms select the relevant attributes for the data analysis to identify the 

different point of interests and understand the groups of observations. Since the data variables usually vary 

in range, they need to be standardized prior to clustering. Some clustering algorithms such as K-means 

and Hierarchical Agglomerative Clustering use Euclidean distance to group the similar data. As a 

consequence different ranges can cause some problems on the final results and avoid having a variable 

that dominates the overall solution due to the magnitude. Furthermore, determining the optimal number of 

clusters in a data set is a fundamental issue, which usually requires the developer to specify the number of 

clusters k to be generated. Once the value of k is known, the clustering can be performed. Once clusters 

are identified and in order to extract knowledge from the clustered data, the description of the clusters in 

terms of the variables used for clustering should be analysed. This process of applying context to the 

extracted clusters is termed ‘profiling’. Most well-known clustering algorithms are considered the K-

Means, Mean-Shift Clustering, Fuzzy C-Means, Hierarchical Clustering, Density-Based Spatial Clustering 

etc.  

Typical examples of 5G-related problems, that could be efficiently addressed using clustering algorithms, 

are considered the profiling extraction for smart resource orchestration [225], anomaly detection [263], 

optimization issues in real-world complex network topologies [28] etc. In all those different 5G-related 

problems there is a lack of prior knowledge in proportion to what should be discovered since the extracted 

profiles or the types of anomalies that should be detected are not proactively known and this is a 
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fundamental issue that is tackled by Clustering Algorithms for the all the aforementioned explained 

reasons.  

One example of the use of unsupervised learning in 5G network is to minimize the latency in 

communications by employing a novel fuzzy clustering algorithm. The network model is a fog model 

which consists of a data plane and a control plane. Within the data plane, the fog computing achieves key 

objectives by using novel methods such as dense geographical distribution, local resource pooling, latency 

reduction and backbone bandwidth savings to improve the Quality of Service (QoS). While in the control 

plane, interference mitigation between multiple devices is coordinated within the fog network. The fog 

networks are comprised of high power node (HPN) and low power node (LPN). 

Figure shows the performance comparison of two methods, the Voronoi tessellation model and a novel 

fuzzy clustering model. The figure compares the Latency of the proposed algorithm compared to the 

Voronoi model as a function of bandwidth for K = 8. The proposed model 1 ms latency requirement of 5G 

applications at 1 GHz bandwidth at 5dB [94].  

 

Figure 2-5 Performance example of unsupervised learning - Voronoi tessellation vs. a novel fuzzy 

clustering model 
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3 AI/ML for 5G and beyond: use cases 

As mentioned in the previous section, AI and ML solutions can be applied in several network domains. In 

this section we provide a compilation of solutions that are designed, implemented, and tested in the 

context of 5G PPP projects. More specifically, the following sections describe AI/ML applications to: 

 Network Planning: Encompassing mechanisms that can guide the planning and dimensioning 

decisions taken prior to network deployment. 

 Network Diagnostics and Insights: Including mechanisms used to obtain insights that help 

operators run the network in a better way (e.g., data traffic forecasts, prediction of failure events 

etc).  

 Network Optimization and Control: Characterised by mechanisms that use AI/ML techniques 

to dynamically reconfigure the network at different time scales. The solutions included in this 

category are further classified according to their network operational domain, i.e., RAN, transport 

or compute. 

3.1 Network planning 

5G, beyond 5G (B5G), and 6G networks will become increasingly complex due to their multi-RAT 

nature, where parallel layers of connectivity are considered a trend towards disaggregated deployments in 

which a base station is distributed over a set of separate physical network elements, and the growing 

number of services and network slices that need to be operated. This growing complexity renders 

traditional approaches in network planning obsolete, and calls for new automated methods that can use 

AI/ML to guide planning decisions. 

Table 3-1 describes the two network planning use cases that will be described in this section, while 

providing the interested reader with additional resources related to each use case developed in the 

corresponding 5GPPP projects. 

Table 3-1 Network Planning Use cases 

Use Case 5GPPP Project Additional references 

Network element placement problem ARIADNE [33], [222] 

Application of ML to dimensioning C-RAN clusters 5G-COMPLETE [232], [233] 

3.1.1 Network element placement problem 

Future networks will get increasingly complicated due to densification and employment of heterogeneous 

radio technologies. This leads to large numbers of network elements that make the network deployment 

very difficult [32]. Regardless of computer aided cellular network design tools, such as 3D-map-based ray 

tracing tools and field-measurement-based coverage maps, one of the well-recognized problems for radio 

network design is the network element placement problem [221]. To establish a network of radio 

transceivers, i.e., base stations or access points (AP) in an area, the network operator needs to identify 

sites (locations) that would provide the best service in that area. This task is currently approached in a 

largely manual manner that is highly dependent on a technician’s knowledge and experience, and also 

requires measurements or estimates regarding the density of user equipment (UE), mobility patterns, 

demand build-up over time and service coverage, considering that AP(s) are placed in certain locations. 
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These are network design aspects where ML and AI are seen as potential aids for providing the best 

possible solutions towards maximum coverage with minimum hardware. 

A UE is considered covered if it can connect and receive signals from any AP in a fixed constellation of 

APs. The identification of the most suitable constellation (i.e., a subset of locations for APs) is a very 

challenging combinatorial optimization problem where UE-to-AP allocation constraints are to be 

respected using a minimum number of APs so that AP-related costs (capital, operational, environmental) 

can be reduced while coverage for UEs is maximized. A feasible solution may also need to respect further 

resource allocation, scheduling or business constraints. In the literature, this problem is generalized as the 

location or placement optimization problem, which is a form of set cover optimization problem and is 

proven non-deterministic polynomial-time (NP)-hard [106], [190]. 

5G and B5G systems will heavily rely on higher frequencies and densification of the base stations/APs in 

order to: 1) manage the increased path loss; and 2) increase the single link data rate as well as drastically 

increase the sum data-rate of the network. Dense network deployment makes the network design more 

complicated as the range of a single base station is limited. This is where AI and ML can step in to 

optimize the network element locations and density given a specific propagation environment. 

In B5G, we can easily expect thousands of UEs and thousands of APs (including base stations, relay 

nodes, reconfigurable intelligent surfaces and street-level transceivers) to be placed within a square 

kilometre area, especially in urban dwellings. Here, AI techniques can play an effective role. Data that is 

representative of B5G scenarios can be generated by domain experts, to represent network topology 

comprising of a set of all possible AP locations and a set of UEs. The solution to this problem identifies 

the near-optimal AP constellation and assignments of UEs to unique APs that result in the best area 

coverage or network throughput. The placement problem has been faced in other fields as well. In [40], 

placement problem in chip design is solved by using Reinforcement Learning (RL), while also 

highlighting challenges posed by RL related to brittleness of gradient updates and the costliness of 

evaluating rewards. The work also recognizes and cites prior art that used analytical approaches, genetic 

and hill-climbing methods, integer-linear programming and other heuristics to solve the placement 

problem. 

One particularly important aspect of the dense B5G systems is to manage the cost of the network. As the 

high frequency systems require vastly more base stations to provide the coverage, also the system 

becomes more expensive. Albeit the cost for a single small-cell base-station will be cheaper than a full-

scale base station site, the total cost of the network, including the hardware, building the infrastructure, 

and possible rents for the base station sites, can be very high [184]. On top of this come maintenance and 

electricity costs, leading to high demand for energy efficiency to keep down the costs [210]. These are all 

facts that also call for high level of optimization in the numbers and locations of the network elements to 

minimize costs and maximize the network coverage and achievable network throughput. 

In the absence of upfront available data, optimization simulations provide a sound mechanism to frame 

and examine these problems. Some aspects of the network element placement problem can also be 

individually modelled using ML if past data from similar areas is available. For instance, UE mobility 

patterns and demand build-up over time can be forecasted using time series analysis. Predictions from 

these individual models can also be fed as input constraints, to transform the optimizations into predictive 

optimizations. 

In the light of above, ML and AI play an important role in the future network design. However, there are 

aspects that still require human intervention. It often happens that the desired base station location is not 

available due to various reasons, such as lack of electricity or property/land owner refusing to give space 
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for the equipment, among other possible reasons. Thus, the optimal network may not be possible, but ML 

techniques can be utilized to take into account limitations or revised network designs and adapt a 

suboptimal solution that maximizes QoS criteria for any propagation environment. 

3.1.2 Dimensioning considerations for C-RAN clusters 

In C-RAN environments, it is very important to identify optimal allocation of BBU functions to the 

appropriate servers hosted by the CU, as it is expected to give significant efficiency gains (such as power 

consumption). Currently, this is performed without taking into consideration the details and specificities of 

the individual processing functions that BBUs entail. Given that the operation of future C-RAN networks 

will be supported by virtualized BBU that will operate in a combination of general and specific purpose 

servers, it is necessary to analyse the specificities and characteristics of the individual processing functions 

forming the BBU service chain. For example, as discussed in [279] the processing time and CPU 

utilization of the BBU increase with the channel resources and the Modulation and Coding Scheme (MCS) 

index. As MCS increases CPU utilization may exceed 80%. Therefore, accurate knowledge of the 

processing requirements and their evolution over time may significantly assist system operators to design 

efficient resource-provisioning and allocation scheme in C-RAN environments.  

Towards this direction, purposely developed NN models can be used to estimate the BBU processing 

requirement of individual LTE PHY under various wireless access requirements and traffic load scenarios. 

Typical examples of NN models that can predict (a) the appropriate PHY layer parameters (i.e., MCS, 

PRBs, CQI, etc.) and (b) the associate processing requirements of each individual BBU function (i.e. 

FDMA demodulation, sub-carrier demapper, equalizer and transform decoder, etc.), include the LSTM 

and MLP NN models. 

An example of an MLP-based model that has been developed for the estimation of the percentage of user 

connections employing a specific modulation format is shown in Figure 3-1. The objective of the MLP 

model is to predict the modulation scheme distribution of QPSK, accepting as input the PUSCH SINR 

measurements in a specific time period.  

 

Figure 3-1 MLP-NN model which has been developed to predict the modulation using as input 

PUSCH SINR 
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The same procedure can be applied for other parameters affecting the processing requirements of the BBU 

[202], enabling advance allocation of BBU functions to the appropriate servers hosted by the CU, giving 

significant efficiency gains.  

3.2 Network diagnostics and insights 

Traditionally, operators have relied on expert knowledge to identify problems on a running mobile 

network. However, the growing complexity of 5G and B5G mobile networks calls for new tools that can 

autonomously inspect the network state and trigger alarms when necessary. In this chapter we discuss 5G 

PPP contributions in forecasting and diagnosing techniques in three specific domains: 

 AI/ML techniques to forecast network characteristics and events, such as predicting traffic 

demands or inferring SLA violations. 

 AI/ML for high precision user localization, where user location is a critical network insight in 

several vertical domains. 

 AI/ML techniques that can be used to identify and forecast security incidents. 

3.2.1 Forecasting network characteristics and events 

In this section we discuss the application of AI/ML techniques to forecasting network characteristics and 

events, including forecasting of traffic distributions in time and space, and forecasting of QoE levels or 

SLA violations. 

Table 3-2 summarizes six use cases in this domain that will be presented in this section, while providing 

the interested reader with additional resources developed in the corresponding 5G PPP projects. 

Table 3-2 Use cases for forecasting network characteristics and events 

Use Case 5GPPP Project Additional references 

Synthetising high resolution mobile traffic 5GZORRO [330], [331] 

Efficient mobile traffic forecasting 5GZORRO [330], [332] 

Improving QoS with Forecasting Techniques 5GROWTH [337], [338], [339] 

QoE Inference 5GVINNI [146] 

SLA prediction in multi-tenant environments 5G-CLARITY [325], [326] 

Complex event recognition (CER) & Forecasting ARIADNE [242] 

3.2.1.1 Synthesising high resolution mobile traffic 

Traffic needs in 5G cellular networks vary in each area and time period based on the total demand in terms 

of users and applications as well as the number of users covered by each mobile cell. Hence, obtaining the 

needs in terms of bandwidth and taking appropriate response actions to high demands, such as reallocating 

users to other cells, is quite challenging. The main reasons for this are: 1) the absence of sufficient traffic 

data, and 2) accuracy in positioning of the users. On top of that, the cost of obtaining fine-grained mobile 

traffic is high as it requires reports from Mobile Network Operators (MNOs), substantial storage 

capabilities, and intensive off-line post-processing. In order to simplify the analysis process, MNOs make 
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simple assumptions about the distribution of data traffic across cells. For instance, it is frequently assumed 

that users and the traffic are uniformly distributed irrespective of the geographical layout of coverage 

areas. Unfortunately, such approximations are usually highly inaccurate as traffic volumes exhibit 

considerable disparities between proximate locations. In this section we propose a technique to precisely 

infer narrowly localized traffic consumption from coarse-grained data recorded by a limited number of 

monitoring probes (thus reducing deployment costs) that have arbitrary granularity. This is presented in 

Figure 3-2. 

 

Figure 3-2 From coarse network measurements to high resolution synthetic mobile data traffic [311] 

From Figure 3-2 it becomes clear that mobile traffic patterns have spatio-temporal correlation [310] and, 

as well, can be represented as tensors that highly resemble images (cross-spatial relations) or videos 

(cross-temporal relations). Moreover, it becomes apparent that a similar problem exists in the image 

processing field, where images with small number of pixels are enhanced to high-resolution. There, a 

super-resolution imaging approach mitigates the multiplicity of solutions by constraining the solution 

space through prior information. This inspires us to employ image processing techniques to learn end-to-

end relations between low- and high-resolution mobile traffic snapshots. The ML technique that is 

employed for obtaining high resolution synthetic mobile data traffic is the Generative Adversarial 

Networks described in Section 2.4.1. Concerning the deployment, a possible solution would be to consider 

these techniques at a MEC location which are close to the UE and collect mobile traffic for each cell. This 

would allow reducing the complexity of the ML models, distributing the processing and providing 

performance improvements, since only the fine-grained mobile traffic measurements will be 

communicated to the 5GC in the Cloud. At the same time fine-grained mobile traffic would allow more 

intelligent resource management for MNOs and would also mitigate traffic congestion in popular hot 

spots. 

3.2.1.2 Efficient mobile traffic forecasting  

Network slices are formed using resources and services that are offered by Service Providers (SPs). 

Moreover, each SP has to provide continuous guarantee that specific Service Level Agreements (SLAs) 

are met towards the consumers and when degradation in performance is spotted then respective actions are 

taken to restore the provided services. Providing such guarantees is quite challenging as it requires the 

deployment of monitoring interfaces for each service to gather accurate and real-time measurements. 

Then, the gathered measurements are compared against thresholds derived from the SLAs. Thus, a current 

challenge for SPs is the automated provision of these interfaces that will allow the real-time detection and 
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response to abnormal service operation. This will ensure reliability for the operation of the network slices 

as well as the associated applications. 

Our work based on [282] allows deploying automatically monitoring interfaces for accurately measuring 

services, including the mobile traffic distribution. These interfaces are deployed upon the provision of a 

network slice and are applicable at different levels including, a) the cloud/core infrastructure, b) the 

mobile edge, as well as c) at the User Equipment (UE) level. As an outcome, the monitoring interfaces are 

1) collecting measurements and comparing them against thresholds derived from the SLAs, and 2) 

forecasting potential events and anomalies in the monitored services to allow the prevision of counter 

measures that would prevent them from happening. However, even if sufficient data are available, 

forecasting mobile traffic events has a lot of uncertainty, as the further ahead we forecast, the more 

uncertain we are.  

There is growing evidence that important spatio-temporal correlations exist between traffic patterns [310]. 

These correlations along with contextual information about network bandwidth data are needed to be kept 

in the memory of the ML model that is used for forecasting. For this reason, we propose the use of 

dedicated ML techniques, such as the LSTMs mentioned in Section 2.1.3. 

The reason for choosing LSTMs is that they are capable of learning long-term dependencies in 

comparison to standard RNNs. LSTMs can be used to predict network bandwidth fluctuations as well as 

anomalies before their actual occurrence. These scenarios are comprised of a single series of observations 

and a model is required to learn from the series of past observations to predict the next value in the 

sequence. Nevertheless, when applying standard LSTMs in these scenarios a challenge that is faced is that 

the sequence of contextual information to be stored is large, requiring substantial memory and 

computation time for training purposes. Hence, although proven powerful when working with sequential 

information, this model is highly complex and frequently turns over-fitted. A possible solution to this 

challenge is to replace the inner connections with convolution operations as shown in Figure 3-3. 

 

Figure 3-3 Encoder/Decoder architecture used for mobile traffic forecasting [310]  

The presented solution reduces significantly the amount of contextual information that should be stored in 

the forecasting model based on mobile traffic events and enhances the model’s ability to handle the 

important spatio-temporal information. Additionally, long-term trends present in sequences of data points 
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can be captured, which makes them particularly well-suited for making inferences about mobile data 

traffic since it exhibits important spatio-temporal correlations [310]. 

3.2.1.3 Improving QoS with forecasting techniques  

Novel 5G use cases typically have strict network requirements (e.g., availability or minimum guaranteed 

bandwidth). Meeting such requirements is not only a matter of using powerful and recent hardware, but a 

proper mapping between users’ demand and associated resources. However, user demands might vary as a 

function of time. As an example, the reader can picture a collision avoidance service with MEC servers 

co-located with radio base stations along a highway. During rush hours the V2N services are very likely to 

foresee bursts of demand that cannot be accommodated by the turned-on MEC servers along the highway. 

In this case, a typical approach to dimension resources is to allocate them based on the peak demand. 

However, such approach might conduct to high inefficiencies, especially if demand variations are high 

and resources are shared by many services. Forecasting arises as a candidate solution to predict how 

demand will evolve over time, allowing better and more efficient resource sharing and utilization and, 

thus, avoiding or minimizing SLA violation by the offered services. For example, auto-scaling, self-

healing, and self-reconfiguration mechanisms can be pre-emptively triggered to mitigate the effects that 

such events could have in the offered services and, in the worst-case scenario, to avoid their downtime. 

Thus, and at a higher-level, such mechanisms can be leveraged to minimize any violation on agreed SLAs. 

Forecasting can be implemented based on several algorithms: 1) on classical time series techniques such 

as Error, Trend, Seasonality forecast (ETS), Auto Regressive Integrated Moving Average (ARIMA), and 

Exponential Smoothing are the most popular and effective time series predictors; and 2) on AI/ML 

techniques such as LSTM, 3D-CNNs, and GRUs. Classical time series techniques are fast to train and 

forecast, however they are neither very accurate nor flexible to adapt to complex data. In contrary, AI/ML-

based techniques (e.g., LSTM) can forecast accurately but they require long training. Therefore, selecting 

the forecasting technique based on the dataset and available resources is crucial. 

For example, Figure 3-4 shows how LSTM forecasting technique can be applied to forecast the 

computational resources of a V2N service. [241] reports the, so called, Enhanced Vehicular Service 

(EVS), that is a service that deploys sensoring and video streaming and processing facilities in the edge. It 

reports not only the required physical resources to deploy an EVS service, but as well the flow of cars 

used to perform their evaluations. The purpose of the traffic flow forecasting is to know whether a 

deployed V2N has enough resources to meet the E2E delay in an interval of up to 1 hour in the future. 

Thus, a V2N service can scale accordingly if the 5G network infrastructure receives as input the 

forecasting information. To relate the number of required resources with the E2E, an M/M/C queuing 

model is utilized [81]. 

Three different scaling strategies are considered: (i) max.scaling (over-provisioning): this strategy 

assumes that the V2N service is deployed with “c” instances capable of meeting the average E2E delay 

during peak hours of traffic; (ii) avg. scaling: the network dimensions the V2N service so that the “c” 

instances meet latency restrictions considering an average flow of vehicles; (iii) n-min. scaling: based on 

the n-minutes ahead forecasting, the service is scaled to satisfy the peak of traffic forecasted for the next 

“n” minutes. In this latter case LSTM is utilised to perform traffic flow prediction. 

LSTM is a special form of RNN that can learn long-term dependencies based on the information 

remembered in previous steps of the learning process. More details about memory blocks, and the 

multiplication gates are described in the Section 2.1.3. 
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Figure 3-4 LSTM online training and forecasting of Neural Network structure 

Figure 3-4 shows how the weights of LSTM are updated in this example: (i) LSTM learns the neuron’s 

weights by running the back-propagation-through-time [298]; (ii) upon each traffic flow forecast, the 

parameters (e.g., avg. speed) are updated by using an online training window (i.e., the online window 

incorporates the latest observed features (e.g., avg. speed), and discards the oldest features). 

Figure 3-5 (a) shows how the V2N scales the above mentioned strategies. Results show that the n-min 

scaling is able to reduce the E2E violations, which is the average number of time the E2E delay 

requirement is violated. The average scaling strategy has more violations during the time period 12:00 to 

13:00 and the end of the day (i.e., 16:00 to 20:00). Figure 3-5 (b) further confirms that even with different 

n-min. scaling is able to reduce violations and Figure 3-5 (c) additionally, and compared to the avg. 

scaling strategy, n-min. scaling results in the lowest investment increase among the analysed use cases. 

 

Figure 3-5 Remote driving scaling on (a) service E2E delay; (b) delay violations; (c) savings 
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3.2.1.4 Quality of experience inference 

In a 5G network with NFV and SDN, the physical resources are virtualized and shared across multiple 

network slices and then customers. As 5G is shifted from network-centric to customer-centric and 

ultimately aims at assuring QoE, effective infrastructure management should involve QoE and the 

customers/end-users’ perspective. Considering that 5G is provisioning network slicing services to multiple 

vertical industries simultaneously whose QoE is characterized in different ways, different mappings from 

their QoE to network QoS and then to infrastructure behaviours are required. AI/ML technologies are a 

powerful tool to: 1) analyse the complex relationship between QoS and QoE for various customers and 

end users; 2) predict the behaviour of customers and end users such that service providers and network 

operators will be aware of potential QoE degradation; 3) recommend optimal solutions for networks to 

adapt their operations and take proactive actions to assure QoE timely and accurately.  

Traditional QoE-QoS mapping models are based on regression models with the objective of finding an 

explicit relationship between human customer experience and network QoS, and building a mathematical 

model to control the network QoS for improving the QoE. With the increasing complexity and number of 

network QoS features, as well as the inclusion of significant context data, more ML mechanisms are used 

to develop implicit QoE-QoS relationship aiming to identify the key influence factors, e.g., decision trees, 

recurrent neural network, SVM, Bayesian networks [300]. An outcome of the established QoE-QoS 

mapping (or QoE-infrastructure KPI mapping) is to predict QoE from network measurements. It is a 

popular area where general supervised ML classification methods are applied to, such as Naïve Bayesian, 

SVM, kNN, decision tree, random forest and neural networks. Nowadays with the introduction of NFV 

and virtualization and abstraction, more variables and features are hidden in the mapping models, which 

thus obscure the relationship and influence the prediction accuracy. More advanced ML methods are 

expected to deal with the highly complex and diverse datasets involved in the mapping from vertical QoE 

to infrastructure KPIs (e.g., with multiple levels of mapping: vertical QoE  application QoE  

application KQIs  E2E network service QoS  network domain service QoS  NF KPIs  

Infrastructure KPIs), as shown in Figure 3-6 with network slicing.  

The linear regression QoS-QoE analysis aims to find an explicit mathematical relationship between QoS 

and QoE metrics. It is based on curve fitting and mainly applied to the QoS-QoE pairs having quasi-linear 

relationship. However, the practical QoS-QoE relationship is varying with contexts (e.g., environment, 

demographic, social status, culture background, etc.), which are not dealt with by the regression models. 

Decision Tree based models are proposed to interpret the non-linear relationship between QoS and QoE 

metrics, with consideration of the impact of the external context factors. More importantly, they can 

handle a large number of QoS metrics simultaneously while the regression models usually are suitable for 

a small number of QoS metrics. Notice that Decision Tree models only deal with discrete-value QoS 

metrics, which are not realistic as many network QoS metrics are continuous. Both regression and 

decision trees can predict QoE but with different granularity. Regression models are able to predict fine-

grained QoE whereas decision trees only predict QoE as a range rather than a score [303].  

Another direction in the QoE inference is to reduce the number of QoS metrics used to model QoE factors. 

Principal Component Analysis (PCA) is a typical method to remove the redundancy in the QoS metrics 

and identify the most influential factors that can be used in regression models to derive an explicit 

relationship between QoE and the most influential QoS metrics [163]. A similar approach is 

multidimensional scaling (MDS) that transforms the data into distances between points representing 

perceptual events in the feature space.  

The QoS-QoE mapping is too complex to be solved by a single ML model. Usually, different ML methods 

are selected to model QoE of different services and applications. For example, support vector machines 
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(SVM) for web service QoE, recurrent neural network (RNN) for audio and video services, and decision 

trees for Internet video, and Bayesian network for VoIP applications.  

Integrating the QoE prediction model into the network management system is a prerequisite to realize 

QoE-driven network service optimization. The integrated management system can estimate the QoE based 

on network monitoring data and reconfigure networks to assure a QoE score predefined in SLA. Some 

work has been done to integrate QoE ML models with 5G networks, e.g., SDN in [187]. In [187], after 

evaluating several deep learning (DL) models, the ML QoE predictor for multimedia services is designed 

to consists of a DL classifier based on a combination of a convolutional neural network (CNN) and a RNN 

with a final Gaussian process (GP) classifier based on Laplace approximation (Figure 3-7). It not only 

produces a QoE score but also detects and isolates seven common anomalies that lead to the QoE score. 

The combination of DL and GP classifier generates the optimal performance. As shown in Figure 3-7, a 

sequence of two CNN layers extracts new features from 2-D time series of samples and adds these new 

features to create a new dimension. Then two LSTM layers are inserted to process the flattened time 

sequence information, creating a final embedding of the data into a 1-D vector, delivered to a fully 

connected final network for generating the expected prediction (Model 2 or Model 3 in Figure 3-7).  

 

Figure 3-6: Multi-layer QoS-QoE mapping in network slicing [146] 
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Figure 3-7: Architecture for the best DL network to predict QoE and classify anomalies in [187] 

3.2.1.5 SLA prediction with echo state networks  

5G network has been designed in a way that efficiently operates multiple virtual sub-networks that sit on 

the same physical infrastructure and use network slicing approaches to support new services such as ultra-

reliable low-latency communication (URLLC), enhanced positioning, massive machine type 

communication (mMTC), etc. The network slicing approach has also opened various opportunities for 

MNOs as well as infrastructure owners. One of the disruptive opportunities of the network slicing 

approach is the “neutral host networks” where an infrastructure owner deploys and manages the network 

and accommodates MNOs for a specific time/event/service based on some SLAs. As the network 

infrastructure has limited physical resources, the infrastructure owner (neutral host) should carefully 

allocate its resources to the MNOs (tenants) to satisfy SLAs. As various service types can be requested by 

different tenants at the same time, dynamic network characteristics such as user demand, traffic types, 

spatial load distribution to access nodes and mobility patterns should be forecasted in order to predict 

possible SLA violations or success rates. A probability margin for possible SLA violations or success 

rates could then be used by MNO or the infrastructure provider to decide whether to initiate the 

services/slices or not. At this point, AI/ML intervention is needed to forecast the trend of the network 

traffic and its spatial distribution and predict the possible SLA violation/success rate. The predicted SLA 

violation/success rate can be used either for a zero-touch network optimization approach that can 

automatically initiate other AI/ML models for network control functions (where the high-level description 

of echo state network (ESN) is depicted in Figure 3-8 [175]) or by MNO/infrastructure providers to 

interact with the network directly in order to prevent any SLA violations. The further details on the system 

architecture will be provided in the following section. 

 

Figure 3-8 A high-level representation of an echo state networks (ESN) architecture 
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3.2.1.6 Complex event recognition and forecasting 

The emergence of 5G networks promises increased throughput, speed, energy efficiency and service 

reliability in telecommunication applications. A trade-off is that the complexity of such networks may 

quickly become a bottleneck in analysing their behaviour, troubleshooting suboptimal functionality and 

optimizing their performance. Due to the temporal/dynamic nature of 5G applications, which makes them 

event-based to a large extent, the ability to timely detect, or even forecast events of special significance for 

the “life” of such networks is of utmost importance for dealing with their complexity in a principled 

manner and extracting valuable insights on their behaviour. Monitoring and reasoning with such events 

and their spatio-temporal patterns, related e.g. to network resource management and connectivity, network 

congestion, suboptimal operation or failure, to name but a few, may greatly facilitate decision making and 

foster proactivity towards the optimization of the network’s performance. 

To address such issues complex event recognition (CER) & forecasting techniques can be utilised. CER 

systems [73], [111], [39] are concerned with detecting event occurrences of interest in heterogeneous, 

correlated, high volume/velocity streaming input, e.g. data generated by monitoring the evolution of a 

large mobile network in time. The target events that are to be detected are often called complex events, 

and are defined as spatio-temporal combinations of input time-stamped pieces of information (often called 

simple events) in predefined patterns. The detected complex events may be utilized by decision makers 

(either human, or algorithmic), in order to take appropriate actions towards e.g. preventing undesired 

situations, optimizing aspects of the network’s performance and so on. 

CER applications face several challenges, all of which are present in the telecommunications domain. The 

massive data volumes of 5G applications call for scalable event processing methodologies that allow for 

high input event throughput and low latency in delivering the recognition results. Dealing with the 

ubiquitous noise in the data collected/generated as a network functions requires noise and uncertainty-

resilient event pattern matching techniques. Also, the dynamic nature of the domain calls for adaptive 

CER strategies, capable of utilizing machine learning tools to update the knowledge base of complex 

event patterns to reflect change in the characteristics of the input data, or even discover novel patterns 

from scratch. Finally, Valuable existing expert knowledge about the domain may greatly facilitate learning 

& reasoning for CER if taken into account. This calls for expressive, yet highly efficient form an 

operational perspective, event pattern specification languages that allow to easily encode domain 

principles into usable background knowledge for reasoning & learning.  

These challenges are being addressed by building on CER approaches based on computational logic as a 

unifying representation language for input events, complex event patterns (represented by temporal logical 

rules) and background knowledge. This approach is supported by a highly efficient temporal reasoning 

engine [44], optimized towards the needs of high-throughput CER applications and capable of scaling up 

to very large data volumes and high velocity data streams. Uncertainty handling and machine 

learning/revising complex event patterns [152], [151] are supported via Statistical Relational AI 

techniques that combine logic with probability and machine learning [252].  

An event pattern can either be fully matched against the streaming data, in which case events are detected, 

or partially matched, which allows for future occurrences of events to be forecast with various degrees of 

certainty. The latter usually stems from stochastic models of future behaviour, embedded into the event 

processing loop, which project into the future the sequence of events that resulted to a partial event pattern 

match, to estimate the likelihood of a full match, i.e. the actual occurrence of a particular complex event. 

Complex Event Forecasting (CEF) takes CER one step forward from and may be a key enabler of 

proactive decision-making in complex networks.  
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Notably, there is a conceptual difference between forecasting and prediction, as the latter term is 

understood in machine learning, where the goal is to “predict'” the output of a function on previously 

unseen input data, even if there is no temporal dimension. In CEF time is a crucial component and the goal 

is to predict the future output of some function or the occurrence of an event. Time-series forecasting is an 

example of the former case and is a field with a significant history of contributions. However, its methods 

cannot be directly transferred to CEF, since it handles streams of (mostly) real-valued variables and deals 

with relatively simple patterns. On the contrary, in CEF we are also interested in categorical values, 

related through complex patterns and involving multiple variables, and the goal is to forecast the 

occurrence of any type of situation that may be defined as an event (e.g. a network congestion event). 

CEF is supported in [242] by an approach based on Pattern Markov Chains [38]. Complex event patterns 

are represented by automata structures defining relations between input events. During an initial training 

period the system consumes a portion of the input stream and encodes regularities therein in event 

occurrences related to the complex event pattern of interest. Subsequently, as new events arrive, the CEF 

system is able to output future time intervals (and associated probability values) in which the pattern is 

likely to be fully matched, given the events that have been observed so far.  As more events are consumed, 

the system revises its forecasts to reflect possible changes in the state of the pattern. Essentially, the 

aforementioned initial training period learns a probabilistic model for the complex event pattern, with 

which forecasts with guaranteed precision may be produced, in the form of intervals within which a full 

match is expected. 

3.2.2 Estimating user locations  

Accurate user positioning is of paramount importance for industry verticals such as Industry 4.0, where 

real-time monitoring of assets and robots is critical to the overall business efficiency. User positioning is 

already included in 5G standards, where it targets meter level accuracies, still far from the cm-level 

accuracies required in some domains. User positioning is a problem well-suited for the application of 

AI/ML techniques that can fuse positioning data from different technologies, or aid in determining the 

line-of-sight path in a multi-path propagation environment. 

Table 3-3 summarizes three applications of AI/ML to positioning use cases described in this section, while 

providing the interested reader with additional resources developed in the corresponding 5GPPP projects. 

Table 3-3 Use cases for estimating user location 

Use Case 5GPPP Project Additional references 

AI assisted sensor fusion 5GSOLUTIONS [319] 

5G Localization based on Soft Information LOCUS [22], [259] 

5G Localization based on Sequential Autoencoding LOCUS [340] 

ML assisted LoS/NLoS discrimination 5G-CLARITY [325], [326] 

3.2.2.1 AI assisted sensor fusion 

5G technology promises to achieve unprecedented positioning precision thanks to the favourable radio 

attributes that allow to reach sub 1-meter accuracy. In fact, the use of centimetre and millimetre bands 

(cmWave and mmWave) where ample spectrum is available makes it possible for technologies such as 

Ultra-Wideband (UWB) to be leveraged yielding excellent positioning performance. Such Radio Access 
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Technology (RAT) based positioning can avail of several techniques to accurately determine the position 

of a User Equipment (UE). The following is a non-exhaustive list of these techniques [3]: 

 Enhanced Cell ID (E-CID) like techniques 

 Received reference signal power-based techniques 

 Carrier-phase based techniques 

 Angle based techniques such as Angle of Departure and Arrival (AoD/AoA) 

 Timing based techniques such as Time Difference of Arrival (TDoA) and Round Trip Time 

(RTT) 

A combination of part/all the above techniques applied at higher frequency radios has the potential to 

tremendously improve the accuracy of positioning. However, there are still some limitations in terms of 

the applicability of such solutions in some specific scenarios. In fact, higher frequency bands suffer from 

steep performance degradation in low SNR scenarios compared to lower frequency bands. A low SNR can 

be caused by a multitude of factors such as high noise levels, interference levels, or absence of a Line of 

Sight (LoS) as shortwave radio signals lack the ability to penetrate solid obstacles such as cars, walls and 

furniture. In other words, RAT-only dependent solutions may not reach the desired results in scenarios 

like indoor and dense urban areas. This is why other positioning techniques can be seen as an alternative, 

which combine RAT dependent with AI assisted positioning. Such hybrid solutions [302] have the 

potential to bridge the gap and enable accurate 5G positioning where RAT-only solutions would be short 

of meeting the sub-meter accuracy requirements.  

One such solution relies on multimodal data to track the movement of UEs using motion sensors, like the 

accelerometer and the gyroscope, then map it to the RAT based localization as well as the map 

information, in order to narrow down the range of possible locations. This data can further be augmented 

by the trajectory information (speed and direction) of the moving UE which can be inferred from the 

motion information. For example, a UE that is moving in a corridor is restricted by the buildings around it. 

Motion information can indicate that the UE is moving in a given direction, which narrows down the 

possible position of the UE with regards to the radius obtained using RAT-only information, as shown in 

Figure 3-9.  

 

Figure 3-9 illustration of range reduction of the localization combining RAT-based positioning, map 

and UE’s motion information 
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A ML model can be developed to take as an input the radio parameters, the RAT-only based positioning, 

the map information, as well as the motion information of the UE. The model can be trained to output a 

more accurate localization than the one calculated using the RAT-only methods.  

Solutions such as the one described above have obvious benefits as they can only improve the accuracy of 

the 5G-based positioning. However, the presented solution only works in scenarios where the UE is in 

motion and the benefit may be voided in situations where the UE being tracked is stationary. To tackle 

this, another solution that stands out is video-based positioning where RAT dependent positioning is 

assisted by high quality video footage. This is enabled using object recognition and detection with CNNs. 

In this approach, Perspective-n-Point (PnP) technique [167] can be used to project objects detected in 2D 

images using a set of n 3D points in space. This allows objects to be positioned relative to other points in 

the space. In case of 5G positioning, the RAT based position is augmented by the relative location of the 

UE to other points in the room. This allows for more precise location information to be extracted. Here 

also, AI is used to cross check and reduce the range of the possible locations provided by the RAT 

dependent calculation, which can only improve the accuracy. 

Another option is to use 5G radio attributes to extend the scope of positioning beyond UEs and connected 

objects. Device-free localization is a technique than can be explored in 5G in which backscattered radio 

signals can be used for passive tracking of objects. The above AI-based solutions can also benefit device-

free localization as these can be combined with any RAT dependent positioning solution.  

To conclude, 5G-based positioning is a great example of where injecting AI can only yield in a positive 

sum as new context information is leveraged to increase the positioning accuracy. Data fusion techniques 

are investigated to showcase the added value of such hybrid techniques in scenarios when 5G RAT-based 

localisation alone may fall short of achieving the required positioning accuracy [240]. 

3.2.2.2 5G localization based on soft information  

Conventional 5G localization relies on single-value estimates (SVEs) based on 3GPP defined signal 

features such as uplink (UL) time difference of arrival (TDoA), downlink (DL) TDoA, received signal 

strength indicator (RSSI), angle of arrival (AoA), or angle of departure (AoD), which serve as inputs to a 

localization algorithm for position inference. This type of localization suffers in harsh wireless 

environments, where multipath, shadowing, and NLOS conditions impair significantly the measurements 

and the quality of such estimates. 

In [22], Soft Information is proposed as a basis for positioning to overcome the limitations of SVE-based 

localization, and to leverage radio information available in different radio channels. The Soft Information 

(SI) encapsulates all the information available from measurements and contextual data at the UE at a 

given position. Such information could be sensing measurements (e.g., using radio signals), digital map, 

UE profile, etc. from which generative models for the likelihood of location-related features given 

measurements are learned from the environment. 

In [258], using unsupervised ML techniques, statistical characterizations of the relationship between 

measurements and ranges, namely soft range information, is obtained from range-related measurements 

and then those statistical characterizations are used to determine the UE positions.  

SI is composed of soft feature information (i.e., the ensemble of positional information associated with 

measurements) and of soft context information (i.e., the ensemble of environmental information associated 

with contextual data), and it can be determined by a two-phase algorithm summarized below: 
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 off-line phase where the approximate of the generative model is learned in a Bayesian setting 

based on a joint distribution function from measurements, positional features, and context data; 

and,  

 on-line phase where the soft feature information and soft context information for each new 

measurement are determined based on the generative model learned in the previous phase. 

Figure 3-10 shows the ECDF of the horizontal localization error for Indoor Open Office (IOO) scenario 

with Positioning Reference Signal (PRS) bandwidth of 100 MHz bandwidth at 4 GHz, where the blue dots 

represent a set of results presented in [3] under similar simulation settings, dashed red line represents 

results obtained using SVE-based localization algorithms, and solid green line represents the results 

obtained with SI-based localization algorithms. It can be observed that SI-based approach provides a 

noticeable performance improvement compared to the SVE-based approach, especially in the tail of the 

ECDF curve. At the 90-th percentile, SI-based localization shows approximatively 3 m of horizontal 

localization error and an improvement of 6 m compared to SVE-based localization.  

Performance of SI based positioning can be enhanced by further fusion of more measurements, and 

support for more bands, which is a natural integration in such a framework. 

 

Figure 3-10 ECDF for the horizontal localization error: IOO scenario with PRS bandwidth of 50 

MHz at 2.5 GHz 

3.2.2.3 5G localization based on sequential auto-encoding 

The work presented here investigates fingerprinting for positioning, it is motivated by similar concerns as 

Section 3.2.2.2, regarding harsh radio environments that hinder the availability of high-quality 

measurements relied upon by GNSS and single-value estimation based positioning techniques. The work 

in the section has the following aspects: 

 Leverages temporal and sequential aspects of RF signals in fingerprint generation. 

 Leverages standardised measurements, and existing or practical and easy to support mechanism to 

make signal properties available for fingerprinting. 

 Provides a flexible positioning solution that can complement other existing solutions, and 

opportunistically leverage them. 
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The approach followed is to train a sequential autoencoder model capable of estimating position from 

signal measurements (RSRP and RSRQ). The autoencoder learns to generate a lower dimensional 

representation of sequence of input signal measurements, then estimate UE position based on the 

generated representation. In this sense, the trained model, when deployed, will be able to map signals 

RSRP and RSRQ values to a latent representation (fingerprint) then use the latter for position prediction. 

The model we built is recurrent neural network (RNN) autoencoder-based. The autoencoder is composed 

of and encoder and decoder, that consist of layers of stacked RNN units. In the forward pass of the 

training process, the encoder receives the input data in the form of fixed length ordered sequences of 

measurements, and outputs a fixed size vector that ultimately will converge to be a “good” latent 

representation (fingerprint). The decoder receives context information from the last layer of the encoder, 

and ultimately learns to reconstruct the coordinates corresponding to the input sequence. 

Results obtained from simulating 150 UEs performing indoor mobility according to the Waypoint 

Random Mobility Model, under the coverage of 14 FemtoCells, yield a mean positioning error of ~2 

meters and less than 3 meters for 86% of position estimates using our model. 

Sequential autoencoding can be fine-tuned for better performance by searching the parameter space of the 

encoder-decoder networks (Length of input sequences, depth/width of the model, learning rate…etc). The 

effect of initial position labelling needs to be assessed with regards to the accuracy provided by available 

techniques, in addition to the effect of measurements noise and UE capabilities. This observation will 

form the basis for further investigation of this work. 

3.2.2.4 ML assisted LoS/NLoS discrimination 

Non-Line-of-Sight (NLoS) identification is key for precise location estimation in time-based localization 

algorithms. In particular, NLoS links introduce a positive bias when estimating the position of a user. 

Therefore, identifying whether a communication link between an AP and a user is NLoS or LoS is of 

crucial importance if the user is to be positioned with high accuracy. Following the identification, the 

detrimental effect of NLoS links need to be mitigated to achieve accurate positioning. 

Among all the existing NLoS identification and mitigation algorithms, ML-based approaches have drawn 

a major attention thanks to their superb performance and low complexity. As a successful candidate, 

Support Vector Machine (SVM) [305], or its variants such as Least Square SVM (LS-SVM) or Relevance 

Vector Machine (RVM), has been proven to outperform others [307], [277]. In particular, SVM separates 

the classes (in this case only two, namely LoS or NLoS) by a gap whose width is as large as possible. For 

the input data, which requires non-linear separation, one can employ kernels, enabling the transformation 

of the input data to higher dimensional feature spaces where a linear separation is possible. 

Mathematically, SVM for data classification can be described by  

c(x) = sgn[w
T
 φ(x) + b], 

where c(x) calculates the class (1 or -1) given the feature vector x, φ(x) is the non-linear transformation, 

and sgn[.] denotes the a function whose value is 1 for x>0 , -1 for x<0, and 0 for x=0. Vector parameters w 

and b are the parameters to be learned from the training data. For the above-mentioned function we extract 

the feature vector x from Received Signal Strength (RSS) measurements, which can be measured almost 

in all APs or, alternatively, from the Channel Impulse Response (CIR), which is featured in most of the 

new AP devices. Typical features are energy of the received signal, Maximum amplitude of the received 

signal, Mean excess delay, RMS delay spread, and Kurtosis [257]. 

Having the status of the communication link identified (NLoS or LoS), one can rely on SVM regression to 

mitigate its negative impact. The regression function is obtained by  
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d(x) = w
T
 φ(x) + b, 

where d(x) denotes the distance corresponding to the communication link. In fact, in the regression we are 

trying to find the function which maps the feature vector x to the AP-user distance d. 

The main difference between the variants of SVM is how one solves the optimization problem for 

obtaining the parameters w and b or, alternatively, the learning process. For example, apart from the 

slightly different objective function, SVM requires solving a quadratic programming problem while for 

LS-SVM a linear system is solved. RVM, on the other hand, employs a Bayesian learning process to 

obtain the abovementioned parameters, albeit with far less number of (relevance) vectors [182].  

3.2.3 Forecasting security incidents  

Future networks are incorporating new technologies, such as SDN and NFV, which however give raise to 

new security threats, requiring new security solutions. In this sense, the use of ML and DL techniques is 

gaining more importance in the last years within cybersecurity research. Modern attacks [168], [51], [35] 

being addressed in this direction are: 

 Device-centred attacks. These attacks vary depending on the purpose or objective of the attacker. 

We have identification attacks, whose objective is to discover device hardware and software 

characteristics to gain information from the network environment, or uniquely identify each one 

of the present devices, highly affecting network privacy. There are also Bidding down attacks, 

which degrade performance of a device by degrading it to older networks such as 2G or 3G. 

Besides, some attacks are centred on Battery draining, targeting resource constrained IoT devices 

with the objective of making them inoperative. 

 Base station attacks. In this category, attacks affect to the network access points, preventing 

service to users or enabling more advanced attacks. Examples of this type of attacks include 

bandwidth spoofing attack, where fake APs use the same frequencies and identifiers that a 

legitimate one to perform Man-in-the-middle and Eavesdropping, or Denial of Service (DoS) 

performed using mobile botnets or jamming techniques. 

 Attacks on multi-tenant network slices. In contrast to previous generations, 5G networks 

include multi-tenant networks addressed through network slicing. These network slices present a 

new attack vector to perform network attacks. DDoS flooding attacks in this scenario can cause 

service disruption in the entire slice, affecting even to slice-shared physical link and core network 

components, impacting the proper performance of other slices. DDoS attacks are already common 

in current networks but attacks directly related to slice management have also emerged, such as 

Slice-initiated attacks, which focus on the modification of the VNF/slice configuration to exhaust 

hardware resources, or side channel attacks, which focus on data leakage by performing 

information gathering from other slices running in shared hardware. 

 Vulnerabilities in Firmware, Software and Protocols. The explosion in the number of services 

offered brings with it an exponential increase in the software protocols to be developed. Thus, the 

detection of vulnerabilities and their correction before they are exploited is a key aspect of the 

networks of the future. In this area, one of the key points is the maintenance of service security 

over time, not leaving vulnerable versions operational. 

 Traditional network attacks. Network attacks common in earlier networks are still present in 

modern networks, and are even enhanced by the increased number of devices and improved 

network performance. Then, the methods for detecting and mitigating common network attacks, 

such as massive horizontal and vertical port scanning, botnets, service DoS/DDoS or 

ransomware, need to be improved according to the evolution of the attacks themselves. 
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The 5GPPP community is investigating how AI/ML techniques can be used to detect some of the previous 

attacks. Table 3-4 summarizes a set of security forecasting use cases discussed in this section, while 

providing the interested reader with additional resources developed in the corresponding 5GPPP projects. 

Table 3-4 Use cases for security forecasting 

Use Case 5GPPP Project Additional references 

Network Traffic Inspection 5GZORRO [185], [330] 

Real-time detection of DDoS attacks INSPIRE-5GPLUS [341] 

3.2.3.1 Network traffic inspection 

Based on the monitoring of the entire network, different ML/DL models could be created for each 

category or type of attack to be detected and mitigated [54]. Some proposals, like [207], suggest the 

application of Deep Reinforcement techniques to improve network security and forecast possible issues. 

Enabled by the flexibility of this approach, as the objective function can be personalized for different 

environments, these techniques are being applied to cover host- and network-based intrusion detection, 

jamming detection, spoofing detection, malware detection, or SDN security, among others. 

For network traffic inspection, a common approach is to process traffic as a temporal series [185], either 

applying window-based statistics to generate vectors used as input in traditional methods such as MLPs, 

or directly applying RNNs or one-dimensional CNNs as they are the most common techniques for time 

series processing. These solutions are usually applied for port scanning, botnet, and DoS/DDoS detection 

and mitigation both using supervised and unsupervised approaches. Moreover, Federated Learning is also 

employed for similar purposes in 5G networks [174], but moving the data processing into the edge of the 

network. 

Clustering techniques are usually leveraged for security incident forecasting. In this sense, clustering is 

applied for network activity monitoring, grouping similar usual behaviours together. Besides, it can also 

be used for threat comparison and analysis. 

Note that these examples are just some of the applications found on the literature for security incidents 

detection and forecasting, as ML/DL techniques can be applied in very variated perspectives according to 

the objective to cover. 

3.2.3.2 Real-time detection of DDoS attacks 

This section describes an AI-based anomaly detection system for real-time detection of different kinds of 

DDoS attacks, perpetrated not only over network-level 5G traffic, but also sophisticated DoS attacks (such 

as slow DoS attacks done over application-level encrypted traffic) which are difficult to be identified. This 

system is being defined and implemented in [244], and can monitor in real time the network traffic, 

analysing, processing and aggregating packets into conversation flows, getting valuable features and 

statistics that are dynamically analysed in streaming for AI-based anomaly detection.  

The system is being designed in a modular way to effectively differentiate the functionalities that are 

present on it. Firstly, we will dispose a monitoring module that will be in charge of monitoring network 

traffic, extracting the relevant information from each intercepted packet and arranging this information to 

the second module, that will group the raw packets into conversations. We consider two different packets 

to belong to the same conversation if the source and destination IP address pair, as well as the ports, are 

identical. From each conversation, this second module must be able to calculate a set of representative 
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features. Once the traffic has been grouped into conversations and a list of features for each conversation 

has been generated, the third and final module will be responsible for detecting the attack using AI 

techniques. This module is the most important part of the system, as it is responsible for obtaining the 

conclusion of whether the traffic captured for a conversation, based on the metrics obtained, is an attack or 

not. The design of each one of the proposed modules will be made so that most of the execution time is 

spent in the last module, related to the attack detection itself. The first two modules will be designed to be 

as efficient as possible, making use of streaming-processing techniques and programming languages 

suitable for this. 

The AI-based system runs in a fully distributed way to achieve scalable and efficient detection, and might 

combine different AI techniques, such as clustering analysis for anomalous detection along with deep 

learning techniques, in order to increase detection accuracy in those cases where clustering obtains 

ambiguous probabilities. These proposed models are previously trained using genuine traffic, which will 

later allow the system to detect anomalous patterns that will identify as attacks. The design and 

deployment of our system allows both monitoring and final detection of the attack to be done in real-time. 

The monitoring module is constantly analysing the network traffic, and the detection module will be able, 

once the conclusion has been reached as to whether the traffic belonging to a conversation is an attack, to 

carry out mitigation actions in order to dissipate the attack, without having to stop the system, which will 

continue to analyse the new traffic in order to carry out the same procedure. 

3.3 Network optimization and control 

The application of AI/ML techniques to network optimization and control is the ultimate goal behind the 

introduction of AI/ML in networking, where AI/ML functions act on the network, rather than only 

assisting in network planning or in forecasting events.  

AI/ML based network optimization and control is the most challenging application of AI/ML in mobile 

network and is therefore widely investigated within the 5GPPP community. In this section, we introduce 

AI/ML use cases for network optimization and control classified according to the network domain where 

they apply, namely: i) RAN, ii) Transport, iii) NFV infrastructures, iv) E2E network slices, v) Security, 

and vi) the Application Function domain. 

3.3.1 Radio access network 

We start discussing the application of AI/ML in the Radio Access Network (RAN) domain. To classify the 

proposals produced by the 5GPPP community in this domain we take as reference the AI/ML control 

loops introduced by the O-RAN alliance, which are described in detail in section 4.3.3. These control 

loops are: 

 non real-time: AI/ML techniques act on the network on time scales above 0.5 second. 

 near real-time: AI/ML techniques act on the network on time scales between 10 ms and 500 ms. 

 real-time: AI/ML techniques act on the network on time scales below 10 ms. 

3.3.1.1 Non real-time use cases (>0.5 sec) 

Non real-time use cases consider the application of AI/ML techniques closer to the management plane. 

These techniques can be readily applied to 5G networks where programmability is enabled by SDN and 

NFV.   

Table 3-5 summarizes three RAN non real-time use cases presented in this section, while providing the 

interested reader with additional resources developed in the corresponding 5GPPP projects. 
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Table 3-5 Use cases for non-real-time RAN aspects 

Use Case 5GPPP Project Additional references 

RAN slicing in multi-tenant networks 5G-CLARITY [325], [326] 

Radio Resource Provisioning in multi-technology RAN 5G-CLARITY [327], [326] 

RL-empowered User Association 5G-HEART [181], [324] 

3.3.1.1.1 RAN slicing in multi-tenant networks 

A multi-tenancy scenario is the one with high density of people in which multiple operators offer their 

services on the top of the same physical infrastructure sharing the radio resources (e.g., stadiums, 

museums, shopping malls, etc.). People moving along the venue requesting some kind of service such as 

eMBB mostly characterizes these network scenarios. The infrastructure sharing can be possible with the 

Multi-Operator Core Network (MOCN) solution, where an operator owing the next-generation RAN (NG-

RAN) can offer it to other operators in order to deploy their services. Such operators will play the role of 

tenants. Network slicing can also be used to provision different virtual networks (or slices) per tenant with 

different characteristics using the same physical infrastructure. 

RAN slicing in multi-tenant networks is one of the proposed ML algorithms, which focuses on the multi-

tenancy scenario [230]. This algorithm considers a private venue owner of a NG-RAN infrastructure 

composed of N cells. The physical infrastructure is shared among different tenants, each of them provided 

with a RAN Slice Instance (RSI). The different tenants can be, for instance, different Mobile Network 

Operators (MNOs) that provide service to their own users through the private network following a neutral 

host model. The considered problem consists in determining how the available capacity is distributed 

among the different RAN slices in the different cells. The capacity share of tenant k at time step t is 

defined as αt(k)=[αt (k,1),…, αt(k,n), …, αt(k,N)], where each component αt(k,n) is the resource quota 

assigned to tenant k in cell n given by the proportion of the total physical resources NT(n) in the cell 

provided to the tenant during time step t. Given the dynamics of the traffic, a smart capacity sharing 

strategy will be proposed, which will dynamically determine the resource quota allocated to each RAN 

slice in each cell and configure the network accordingly. The objectives of the capacity sharing approach 

are the achievement of an efficient utilization of the available resources and the fulfilment of the SLA 

established between the private venue network owner and each tenant. With the focus on dealing with the 

complexity of the computation of the capacity share of each tenant at every time step in a multi-cell 

scenario, the solution is designed as a multi-agent reinforcement learning (MARL) where each RL agent is 

associated to a tenant that learns the policy π(k) to tune the capacity share dynamically by interacting with 

the environment. Due to the necessity of the continuous learning from the environment and the expected 

large state and actions spaces, each agent derives its policy according to a DQN (Deep Q-Network) based 

algorithm as the RL method, which is able to combine RL with a class of artificial neural network known 

as DNNs. DQN algorithm follows Bellman´s equation, as indicated below: 

Q(s,a) = E [r + γmax
 a'

 Q(s′, a′)|s, a] 

At each time step t, each agent obtains the state st(k) from the environment and, based on the policy π(k), 

triggers an action at(k) to tune αt(k). Moreover, a reward signal rt(k) that reflects the obtained performance 

after the last action at-1(k) is provided to the k-th agent. The definition of these parameters are as follows: 
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 The state of tenant k at time t is denoted as st(k) = [st (k,1),…, st(k,n), …, st(k,N)], where element 

st(k,n) corresponds to cell n and is defined by the triple <ρt(k,n), αt(k,n), αava,t(n)>, where ρt(k,n) is 

the fraction of physical resources used for data traffic by tenant k in cell n in time t and αava,t(n) is 

the available capacity share in the cell not assigned to any tenant. 

 The action at(k) = [at(k,1),…, at(k,n), …, at(k,N)] for all the cells composed of the cell-specific 

actions at(k,n), defined as the increase in capacity share αt(k,n) of tenant k to be applied in the 

following time step in cell n. This increase is defined in discrete steps of size Δ, so that the action 

can take three different values at(k,n)ϵ{Δ,0,-Δ}. 

 The reward rt(k) considers the weighted product of the SLA satisfaction factor of tenant k, the 

summation of the SLA satisfaction factors of the other tenants and the capacity utilization factor 

of tenant k, that is: 

rt(k)=·γ
SLA

(k)φ1 · (
1

K-1
∑ γ

SLA
(k')

K

k'=1
k'≠k

)

φ2

·γ
ut

(k)
φ3 , 

Where γSLA(k) is the ratio between the provided and the requested capacity (representing the SLA 

satisfaction factor of tenant k, γut(k) represents the capacity utilization factor and φx are the weights of each 

component. 

Although the triggering of actions by each DQN agent is performed independently of others, the different 

DQN agents operate in a coordinated manner. It means that a collaborative reward is selected since the 

reward definition for tenant k considers the SLA satisfaction factor of both tenant k and the other tenants 

in the system in order to avoid selfish actions that would negatively affect the other tenants. 

3.3.1.1.2 Radio resource provisioning in a multi-technology RAN 

Motivation: Industrial scenarios, where only one operator usually prevails. In contrast to multi-tenancy 

scenarios, most devices of an industrial network take a fixed position in production tapes and a limited 

number of Automated Guided Vehicles (AGVs) move around the premises. The traffic of industrial 

applications is stringent in terms of latency, so that, services in industrial scenarios are more related with 

different types of ultra-reliable and low-latency communications. 

On the other hand, Radio resource provisioning in a multi-technology RAN ML algorithm is an industrial 

scenario-centric problem that tries to solve the resource provisioning issue in this kind of private network. 

This network can be considered as a Standalone Non-Public Network (SNPN) managed by a unique 

private network operator that separates his offered services into several network slices. These network 

slices need to be provisioned with enough radio resources in order to preserve the service quality offered 

by the slices. However, radio resource provisioning becomes a complex task, especially in the considered 

scenario in which the radio access network is composed of non-3GPP access technologies (e.g., Wi-Fi) in 

addition to pure 3GPP ones (5G/LTE).  

Mobile networks as such, and particularly the emergent 5G networks and all the use cases they bring 

forward, are rather complex systems to model. These novel systems comprising a great variety of network 

states and parameters to be configured are difficult to be optimized by traditional analytical modelling due 

to the lack of accurate mathematical models to address the problem, or because there is no sufficient 

domain knowledge, or professionals with vast experience are needed, driving up the network operational 

costs. Typically, the use of rule-based controllers alleviates this problem by enabling the description of 

expert knowledge in terms of basic rules that are applied to the network. In this regard, the controllers’ 

configuration can be enhanced with the use of ML techniques. Furthermore, in order to make the radio 

resource provisioning problem more efficient, observations from the environment and the ability to react 
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according to the environment changes are required. So that, controllers need to get adapted to the network 

dynamicity. Therefore, all the reasons above lead to use ML as the most suitable technique to address this 

problem. 

Specifically, this algorithm tries to address the radio resource provisioning problem where network 

dynamics occur at a non-real time scale and require a periodical re-distribution of the available resources 

among the network slices. To carry out the network adaptation, the intended algorithm shall follow a 

closed loop automation strategy, comprising a continuous process that monitors, measures and evaluates 

network traffic, and then automatically acts to optimize the resource provisioning. From a design point of 

view, the closed loop automated slice provisioning can be seen as a controller that distributes the resources 

and traffic loads as a function of the current traffic demands and SLAs.  

The controller’s design (e.g. required inputs) depends on the performance requirements of the slices in the 

industrial environments. In addition, its configuration (e.g. rules) can be adjusted by an optimizer 

responsible for driving its operation according to the operator’s high-level goals. Consequently, the 

algorithm will follow an optimizer/controller approach, where the optimization framework can be based 

on Deep Reinforcement Learning (DRL) in order to face the complexity of high-dimensional state and 

action spaces. Training in reinforcement learning involves an agent interacting with its environment. 

Particularly, the solution will be based in a multi-agent distributed approach, in which one agent will be 

deployed per cell and per slice. As well as the algorithm described above, due to the huge space of 

possible network configurations, the agents of this approach are also based on DQN algorithm, that 

combines Q-Learning with DNNs. DNNs are great non-linear function approximators, so that, they are 

used in DRL to approximate the Q-function. The connections among the layers of neurons that conform 

the neural network are configured with weights. As depicted in Figure 3-11, a multi-technology radio 

access network represents the environment. The agent state shall be defined with some performance 

indicators such as the slice throughput, the cell resource allocation, the slice resource quota and other 

indicators that are slice-specific (e.g. delay for URLLC slices). The action triggered by the agent will be 

the modification of the slice resource quota, which could be to increase, decrease or maintain the quota of 

allocated resources. 
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Figure 3-11 Radio resource provisioning using Reinforcement Learning  

3.3.1.1.3 RL-empowered user association 

Scrutinizing intelligent resource management methods to optimally control the available radio resources 

among the different network slices, is yet insufficient by itself to reassure the desired QoS that each 

network slice should provide to its serving vertical applications. In this respect, utilizing in an optimal 

manner the physical radio resources that pertain to a specific network slice, which can be either dedicated 

or shared with other network slices, can further ameliorate the provided QoS to the end-user devices. 

Given the heterogeneity of the underlying physical radio access/backhaul network with respect to the 

deployed base stations (e.g. picocells, femtocells, unmanned aerial vehicles), the mobility of the end-user 

devices, the uncertainties of the wireless links and the ever changing locally perceived interference, ML 

techniques can be used to adapt the respective physical resources in accordance with the network’s 

dynamicity, targeting some QoS metric. 

The aim of this section is to present a potential application of RL, capitalizing on the theory of learning 

automata, towards a resource conscious end-user device scheduling to the available base stations, and 

thus, the available frequency resources. Considering a heterogeneous and densely deployed radio access 

network, a real-time scheduling algorithm executed explicitly and in a distributed manner by the end-user 

devices that act as ‘stochastic learning automata’, is introduced in [181]. As illustrated in Figure 3-12, the 

devices can self-adapt and learn the most beneficial base station association, by observing the reward fed 

back from the communication’s environment, i.e., the respectively communicating base station. At each 

iteration of the algorithm, the automata iteratively update the probability of communicating with a certain 

base station (i.e., action probability), based on the commonly used update rule referred to as linear reward-

inaction LR-I, targeting to maximize their offered reward. The higher the cumulative action probability 
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regarding a base station, the more frequently the specific association is chosen by the automaton at the 

successive iterations. The convergence of the algorithm is met whenever the total end-user devices’ action 

probability for at least one base station reaches 1. Considering the modelling of the offered reward, this 

can, in turn, be properly designed to capture different QoS metrics, such as the communication delay, the 

interference induced to the remainder of the network, the achieved end-user device’s data rate, as well as 

the congestion and the available frequency resources of each base station. 

The learning approach introduced in [181], can be further extended to account for the capacity-limited 

wireless backhaul that interconnects the small cells (e.g. picocells, femtocells, unmanned aerial vehicles) 

with the core network, which greatly impacts the overall provided QoS. Indeed, several recent research 

works, i.e. [162], [25], advocate the importance of backhaul-aware resource management, though without 

investigating the potential benefit that ML can yield to the resource optimization procedure. In this 

context, novel end-to-end physical resource optimization mechanisms can be devised empowered by RL, 

enabling the self-adaptation of the end-user devices under the uncertainties of both the radio access and 

backhaul parts of the network. 

 

Figure 3-12: Stochastic learning automata algorithm for distributed end-user device-to-base station 

scheduling. 

3.3.1.2 Near real-time use cases (10 ms – 0.5 sec) 

O-RAN defines the near real-time control loop as affecting control functions that operate in a time scale 

between 10 ms and 0.5 seconds. These functions are deployed in an O-RAN architecture as xApps 

connected to the near real-time RAN Intelligent Controller (RIC). Like O-RAN, 5GPPP is also working 

on developing AI/ML use cases that can work on these timescales. 

Table 3-6 describes two RAN near real-time related use cases presented in this section, while providing 

the interested reader with additional resources developed in the corresponding 5GPPP projects. 
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Table 3-6 Use case for near-real time RAN aspects 

Use Case 5GPPP Project Additional 

references 

Near-real-time traffic steering on eAT3S 5G-CLARITY [327], [342] 

Demand-Driven Power Allocation in 5G-enabled Wireless 

Networks 

AFFORDABLE5G [318] 

3.3.1.2.1 Near-real-time traffic steering on eAT3S 

The considered ML model for near-real-time (near-RT) traffic steering on deployed 3GPP (5G) and non-

3GPP (Wi-Fi and LiFi) networks can be employed by utilizing the O-RAN reference architecture and 

interfaces [217]. For an ML-based near-RT traffic steering application, O-RAN E2 interface can be used 

to collect telemetry and push control actions. In the considered problem, the ML model firstly estimates 

UE mobility pattern as well as RSSI, link blockage events and predicted throughput. It can be considered 

as a model-based system that utilizes, 1) random mobility models, technology-specific channel models; 

and 2) telemetry data on UE connected cell ID and/or AP SSID, received signal strength (RSS) and 

downlink packet drop rate. Then, the ML model determines an optimal ATSSS rule (N4 rule) regarding 

the weights of an MPTCP scheduler that resides in user plane function (UPF) and allocates traffic onto 

available networks/paths. For the UE mobility estimation and traffic routing, a single deep reinforcement 

learning (DRL) agent is used along with a hybrid model-based and model-free system as shown in Figure 

3-13. The model-free DRL system uses rewards and states from the provided ATSSS rule. The reward 

function can be the average goodput from all MPTCP sub-flows, and the states can represent round trip 

time (RTT), congestion window size, the number of active MPTCP sub-flows and the predicted metric 

from the model-based predictor. 

 

 

(a) (b) 

Figure 3-13 (a) An illustration of a new position vector, (b) a hybrid model-free and model-based 

DRL system 

3.3.1.2.2 Demand-driven power allocation in 5G-enabled wireless networks 

Given the large number of mobile users and/or densely-deployed network elements in 5G networks, 

overall interference defines an upper-bound in the network performance. In such complex environments, 
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the optimal resource allocation inevitably becomes a non-convex problem, enforcing the idea of finding 

sub-optimal solutions [193], [159].  

The main drawback of traditional methods for solving radio resource management (RRM) problems is the 

excessive computational cost, as well as the inability to generalize their solutions, thus becoming 

infeasible for large-scale cellular systems [159]. Coverage and Capacity Optimization (CCO) problem 

emerges when a considerable increase in network demands results into limited network capacity, thus 

degrading the available bandwidth per user. The increased network densification raises in turn significant 

challenges in the design and implementation of interference mitigation techniques, in order to ensure 

sufficient Quality of Service (QoS) to mobile users. Among a variety of CCO algorithms, power allocation 

has attracted scientific interest in the context of 5G design and deployment. Several power configuration 

algorithms have been proposed to optimize the network capacity, eliminate inter-cell interferences and 

regulate the coverage area of the network cells [159], [205], [308]. In this section, a Demand-Driven 

Power Allocation (DDPA) algorithm is formulated and implemented on realistic network configurations, 

aiming at the fulfillment of the user-specific requested throughput [23]. 

Network model: A network area accommodating 𝑀 RUs is considered. Each RU has a total number of 𝐹 

resource blocks (RBs) that may be grouped in 𝑁 channels. It is assumed that the 𝐹 RBs are equally 

divided among the 𝑁 channels, which in turn exhibit the same bandwidth 𝐵. Moreover, the m
th
 RU 

transmits over each channel 𝑛 with a specified power level 𝑃𝑚,𝑛, which is selected from a set of available 

𝐿 power levels. Finally, a maximum total power constraint is considered for each RU. Each user 𝑢 located 

inside the network area may be associated with one channel 𝑛 of a particular RU 𝑚. This user requests a 

service 𝑠 from a set of available service classes 𝑆. Thus, a demand vector 𝐷𝑢 is introduced to designate the 

requested service class of user 𝑢, expressed in terms of throughput. 

 
 

Figure 3-14 Neural network employed for training (left) and process of the DQL algorithm for 

DDPA (right). 

DDPA problem with DRL: The target of the DDPA modelling methodology is to adjust the power vectors 

of the 𝑀 RUs to maximize the throughput of each individual user according to the requested QoS class. In 

the presented DRL framework (see Figure 3-14), a central network entity observes the telecommunication 

environment and assigns power levels to all the channels of the RUs in the network area in order to 

minimize the difference between the allocated and the requested throughput. The DDPA training unfolds 

moving from an exclusively explorative to an explicitly exploitative phase (ε-greedy policy). The DRL 

descriptors are defined as: 
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State space: The environment state is efficiently described via three-fold information, namely the user-

specific (i) Channel Quality Indicator (CQI) [99], (ii) the serving RU number and (iii) the allocated 

channel ID. For the association, the maximum throughput criterion is employed. 

Action space: At a given time 𝑡, the agents assign a specific power level to the channels of each RU, i.e. 

𝐴𝑡 = [(𝑃1,1, … , 𝑃1,𝑁), … , (𝑃𝑀,1, … , 𝑃𝑀,𝑁)]. 

Reward system: Once the agent performs an action, a new network system state is triggered, leading to 

different CQIs and association configuration. The main goal of the rewarding function is to uniformly 

increase the allocated sum-rate among the individual users. Specifically, the agent receives either (i) a 

positive reward equal to the difference between the current and the previous sum-rate in case of sum-rate 

increase, (ii) a high-valued positive reward equal to the total requested throughput if the demands of all 

users are totally fulfilled or (iii) a zero value when the current action does not increase the sum-rate with 

respect to its previous value. 

Sample results: The performance of the DDPA algorithm is evaluated by monitoring the training process 

using various hyper-parameters in the neural network configuration. Figure 3-15 depicts the accumulated 

reward for different number of hidden layers in the Q- and target Q-networks. In Figure 3-16, the 

performance of the DDPA algorithm is evaluated for several simulation scenarios (with varying demand 

vectors of users), including increasing user demands. The algorithm performance (ratio of fulfilled users) 

is verified by conducting Monte-Carlo simulations for different user positioning realizations within the 

network area. For comparison purposes, Figure 3-16 also depicts the performance metric resulted from 

two baseline methods, namely the Weighted Minimum Mean Square Error (WMMSE) algorithm and a 

fixed power allocation policy (Average Power), according to which each RU/channel transmits with the 

average/median power level as a reasonable trade-off between the achieved coverage and the potential 

interferences. 

 

Figure 3-15 Learning curve for different 

number of hidden layers 

 

Figure 3-16 Comparison among methods: DDPA 

performance against WMMSE and Average 

methods for five different simulation scenarios (up) 

and total allocated throughput for the three 

methods (down). 
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3.3.1.3 Real-time uses cases (<10 ms) 

Real-time use cases refer to applications of AI/ML techniques operating at control loops below 10 ms. 

Given the considered timescale the natural placement of these AI/ML techniques is the PHY or the MAC 

of the base station. 

Table 3-7 includes three RAN real-time related use cases described in this section, while providing the 

interested reader with additional resources developed in the corresponding 5GPPP projects. 

Table 3-7 Use cases for real time RAN aspects 

Use Case 5GPPP 

Project 

Additional 

references 

AI/ML for joint MAC scheduling across gNBs LOCUS [340] 

AI/ML for Channel Modelling ARIADNE [242] 

Prescriptive Analytics and Channel Estimation to optimize 

Reconfigurable Intelligent Surfaces (RIS) 

ARIADNE [242] 

3.3.1.3.1 AI/ML for joint MAC scheduling across gNBs 

There is a trend to reuse of spectrum over short distances as densification squeezes ever more cells into a 

given unit area and beamforming narrows the radial extent of each unit of coverage. The result is that 

interference becomes more challenging to manage. Failure to deal with inter-cell and inter-beam 

interference impacts capacity, shrinks cells and risks impairing the ability to meet challenging QoS 

targets. 

There are various strategies to mitigate this. Interference coordination aims to minimize or avoid situations 

where a gNB schedules a transmission for a UE on PRBs which coincide with the PRBs that a nearby 

gNB schedules a transmission for another UE with overlapping beams such that the transmission for one 

of the UEs becomes a significant interference for the other UE. Collaborative transmission is another 

recourse where the gNBs work together to provide wanted transmissions rather than interference to the 

same UE and effectively become a distributed MIMO panel, although the aggressive timing coordination 

required for phases to be synchronized means that this is substantially harder to implement than 

interference coordination. 

For every sub-frame, a gNB must decide on which beams and which PRBs it will schedule traffic for each 

UE. Different choices will have different implications for interference and thus QoS and capacity. But the 

resulting impact will depend on the corresponding choices of other nearby gNBs. How much interference 

will be experienced by each UE across a localized cluster of gNBs will be a result of the decisions made 

by each gNB of what PRBs each UE to be scheduled should be allocated. In an ideal world the gNBs 

would be equipped collectively to make an optimal decision. Being fully equipped would mean having 

perfect instantaneous knowledge of various quantities and states including what is awaiting scheduling for 

each UE, the latency tolerance of each of these quantities, the cost in terms of interference of scheduling 

any UE on one gNB to the same PRBs as another UE on a nearby gNB, and the cost in terms of lost 

service and revenue opportunity when scheduling is prevented. This is a lot to ask as it requires detailed 

knowledge of the channels between every gNB and every UE. But, more than this, these quantities and 

states are constantly changing and as the information ages it becomes less useful for making optimal 

decisions. There are mechanisms in wireless communications standards for exchange of information 
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between nodes that supports this type of collaborative transmission. However, the time to communicate 

along with the need to constrain the size of data means that each node can only have incomplete 

information that is at least a little out of date. This is at odds with the need for each node to make 

immediate decisions on what to schedule in which PRBs and on what beam for every sub-frame. 

AI and ML can help us here. For example, a model can learn to estimate the quantities and states upon 

which the ability to make optimal decisions depends. An ML model for the channels between each gNB 

and each UE would mean that the gNB could make more accurate decisions about the degree to which the 

UE in its current location and serving beam should be considered resilient to interference from a nearby 

gNB and its potentially overlapping beams and which UEs are conversely considered as located towards 

the “cell edge”. A specific mechanism to achieve this channel estimation is to rely on measurements of 

estimates of the user location, covered elsewhere in this paper. A model such as a convolutional neural 

network could be trained to learn the channel from each beam to each location. Additional features used as 

input to such a model might include the type of UE or its antenna system for example. This model could 

then be used to infer the channels from nearby gNBs and thus assign the UE accordingly. 

This model-based channel estimation can be complemented by longer term agreements between the gNBs 

about which PRBs are reserved for each gNB to allocate to its cell edge UEs and which beams should be 

considered overlapping. AI can in turn enhance these longer-term decisions, specifically how many and 

which specific PRBs to reserve in each group and how the nature of such reservation varies depending on 

the degree to which neighbouring beams overlap so that the changing distribution of UEs and their 

communication needs are satisfied. 

ML can also be employed to make probabilistic predictions about the communication needs and channel 

conditions of UEs in the near future, either directly or as a result of interim predictions such as location 

dynamics. If the channels or buffer states are estimated in advance, then more time is available for 

communication of the information and collective agreement between the gNBs of a more optimal 

allocation of UEs to PRBs, for example by allowing more putative PRB allocations to be considered. As 

the ML becomes more effective and able to predict further into the immediate future, so more optimal 

configurations can be found. Additionally, the expected traffic profile and its priority can be taken into 

account to allow subscriber SLA and operator KPI such as churn reduction and revenue to be targeted. 

One way to achieve this is to use autoencoding and generative models [50], [229], [265] to lower the 

dimensionality of the features that can influence buffer state. 

More advanced AI methods can ultimately play a role here. The gNBs collaboratively choosing PRBs and 

beams for scheduling could be regarded as a cooperative game. Reinforcement learning approaches, such 

as based on multi-armed-bandit, are receiving much attention currently and have been shown to be able to 

yield promising results [309], [165]. The application to the cooperative game of collaborative scheduling 

is an interesting field for further research. 

Thus, with application of AI and ML to the problem of collaborative scheduling, will come the ability to 

reliably meet the targets for more low latency services whilst also leaving larger volumes of capacity 

available for services with less stringent QoS needs. 

3.3.1.3.2 AI/ML for channel modelling 

With an increased number of antennas, wide bandwidth, mobility, uncertain channel models, high speed 

and special processing requirements, characterising new features of wireless channels for future 

communications becomes increasingly difficult and not suitable for traditional methods especially with 

much more potential AI applications [43], [143]. The idea of showing methods based on data does not 

substitute but adds to traditional methodologies based on a statistical model [32]. ML has been used to 
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build path loss models to solve the issue of the complexity and time usage of the channels, as opposed to 

the conventional approach [36]. ML can also be utilized for channel features predictions, channel impulse 

response (CIR) modelling, multipath component clustering and channel parameter estimation [36]. In 

addition, ML can solve (but its applications are not limited to) the problems of large- and small-scale 

fading [37]. A useful ML algorithm for wireless communication that is aimed at the modelling and 

estimation of a channel is the SVM algorithm that can help predict path loss, make the process simpler and 

the results more accurate than the classical forecasting. Clustering is another key non-supervised training 

method used in the selection of multifaceted components, which have similar behaviours. It can enhance 

the processes of time variable channel model accuracy [37]. However, ML methodologies may take time 

to develop due to the complexity for aspects that influence channel modelling, including atmospheric 

effects and beam directionality [278]. 

The application of ML to improve the modelling and estimation of channels has its own challenges in 

over-fitting and under-fitting with a large amount of data, which in turn may lead to wrong estimates. The 

problems associated with blockage are most seen in ML techniques applied to the mmWave. This enables 

successful deep learning (DL) based predictive methods to become recognized widely because new 

communication features, such as complex scenarios with unknown channel models, high-speed and 

accurate processing can be well addressed [278], [266]. 

Overall, the DL has been reported to deliver a higher level of precision compared to decoding complexity 

and better efficiency. The channel estimation uses a DL algorithm, and with the aid of deep image 

processing techniques, super-resolution images and pilot position repair, unknown channel response 

values can be predicted with a minimum mean-square error (MMSE) [270]. Based on the well-known 

CNN of three-dimensional MIMO channels, prediction of the channel statistical characteristics can be 

defined. In addition the channel parameters used for the development of measuring data, including 

amplitude, delay, azimuth angle of departure (AAoD), elevation angle of departure (EAoD), azimuth 

angle of arrival (AoA), and elevation angle of arrival (EAoA) are generated by means of the wireless 

Insite program of radio tracing software that is used to training CNN [49]. Although, we discussed the 

useful DL approach for WLAN communication to model the channel and estimate the channel, it could 

take time to develop due to the difficulty of other channel modelling scenarios including fading, 

atmospheric effects, beam direction and a MIMO. The implementation of effective DL methods can 

therefore reduce complexity and increase accuracy than regular channel modelling.  

3.3.1.3.3 Prescriptive analytics and channel estimation to optimize reconfigurable 

intelligent surfaces (RIS) 

In this sub-section, we briefly share a novel application of prescriptive analytics, i.e. a short real-time 

optimization run that is devised on top of a predictive model of Reconfigurable Intelligent Surfaces (RIS), 

to assist in forming a beam in a spatial context. Here, an RIS refers to a reflector that has meta-surface 

unit(s) that may either stay passive or activated with an attached microcontroller. This prescriptive role of 

AI and ML in dynamic beamforming is being explored in [242]. Ongoing work seems to suggest that it 

may be possible to frame a predictive model of an RIS, that predicts the reflected angles or signal 

properties at receiver, where the input feature set includes an incident beam’s angle among others. 

Installing such a function at the transmitter AP, gives an AP the ability to discover possible beams to reach 

a UE whose location is assumed to be known, but with whom, a direct Line of Sight (LoS) is blocked. The 

proposed function may consist of constraints: 1) that bind or limit value ranges on input and output 

attributes – based on, e.g. what incident or reflected angles are physically possible in the particular 

context; and 2) imposing goals to minimize or maximize some attributes, including the predicted value 

(e.g. confidence for a class of interest, regression value or error measures). The prescriptive optimization 
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run can thus be framed to enquire a prescription, i.e. the optimization prescribes input attribute values, 

which maximized the objective function composed of constraints. This specific application of prescriptive 

analytics is known as recipe generation. 

With constraints injected in a short (milli-second range) optimization run, contextualized beams may be 

formed between the AP and the UE in Non-Line of Sight (NLoS) scenarios by making use of RIS-based 

predictions. This suggested scheme respects the limitations of current situation faced by the AP in terms of 

the feasibility of incident angles required to be projected on RIS to reach the UE with desired reflected 

angles and signal strength. This prescriptive use of AI and ML arguably also assists in deciding when to 

relinquish attempts for contextual beamforming using a particular RIS and quickly resort or delegate to 

other means of establishing connectivity. 

Efficient yet accurate RIS channel estimation methods play a pivotal role in the joint design of active and 

passive beamforming, which in turns affects the achievable data rate during the sequel data transmission 

phase. Luckily, in most scenarios, especially at mmWave and THz bands, the wireless channels have the 

inherent property of being sparse, resulting from the poor scattering propagation environment. That is, the 

channel coefficient matrix is rank-deficient. Therefore, the channel estimation can be formulated as sparse 

signal recovery problems and be well addressed by off-the-grid compressive sensing algorithms. Relying 

on the estimates, either in the form of estimated channel parameters (i.e., angular parameters and path 

gains) or cascaded channel, RIS phase control matrix, base station beam former, UE combiner can be co-

designed by resorting to convex optimization tools.  

Moreover, the rough location information on the UE and environment objects, offered by existing 

localization systems, will further accelerate the channel estimation process and improve the RIS design 

and training beams used at the base station and UE. With the aid of compressive sending based channel 

estimation, higher resolution of parameter estimation is achieved, which in turn enhances the co-design of 

base station beam former, UE combiner, and the RIS phase control matrix.  

However, challenges arise when the number of RIS elements goes extremely large and mutual coupling 

effect exists among the elements. The conventional model-based approach then faces difficulties in terms 

of the computational complexity, imprecise and even unknown channel models, etc. To address these 

issues, data-driven AI approaches have to be considered for directly mapping the received signals to the 

joint active and passive beam formers. The performance of such approaches will be affected by the 

available data volume, and their extendibility to new scenarios can be achieved by fine-tuning the 

parameters of the already trained AI models. 

3.3.2 Transport networks, fronthaul and backhaul 

The transport network domain has been subject of intense research during the 5G development phase, 

where the functional split adopted in the 5G RAN architecture directly impacted the capacities that need to 

be provided by the transport network. This work gave raise to differentiated transport network services 

such as the backhaul, the fronthaul or the midhaul. Optimizing the transport network is critical in 5G and 

beyond 5G networks, and thus AI/ML also finds a natural application in this network segment. 

Table 3-8 describes five transport network related AI/ML use cases presented in this section, while 

providing the interested reader with additional resources developed in the corresponding 5GPPP projects. 
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Table 3-8 Use cases for transport network related aspects 

Use Case 5GPPP Project Additional 

references 

Triggering path computation based on AI/ML inputs 5GROWTH [59] 

ML-based Traffic management using programmable 

switches 

5GROWTH [60], [116] 

Dynamic Load Balancing TERAWAY [328], [329] 

Efficient per flow scheduling in programmable transport 

networks 

5G-COMPLETE [232], [233] 

Determine optimal FH/BH functional split 5G-COMPLETE [27], [30] 

3.3.2.1 Triggering path computation based on AI/ML inputs 

Traditional classification algorithms are used to protect services from possible failures and enhance the 

(transport) network stability using support vector machines [287], or to extract the common patterns from 

features such as message template sequence, frequency, seasonality and surge for predicting network 

switch failures using machine learning methods in [313]. One step further, more accurate results in using 

deep learning algorithms to detect network anomalies more specifically leveraging the feedforward neural 

network (FNN) and convolutional neural network (CNN) models [317], or to choose the best path 

combination for packet forwarding in switches using CNNs [188]. 

On the other hand, reinforcement learning algorithms can be exploited to detect radio link failures or 

degradations as in [150]. Additionally, such algorithms are adopted to choose the most stable path to 

increase resiliency to link failures in [212], to enhance the service restoration time via actor-critic-based 

service restoration (A2CSR) in [314], or to group network metrics into profiles required when handling 

network anomalies [267]. 

The decisions made by the AI/ML applications in detecting anomalies, forecasting traffic variations, etc., 

become the triggering event of subsequent actions tackled by the network operation functions (e.g., 

network orchestrator and controllers). Such actions aim at preserving the requirements (e.g., maximum 

tolerated delay, bandwidth, etc.) of the existing network connections as well as attaining the most efficient 

use of the resources. In such context, candidate actions conducted by the network management 

encompasses restoration, resource re-allocation and entirely/partly re-optimization. In all of them, a key 

functionality in the network management is the path computation. The path computation may operate as 

an on-line process (i.e., upon request) where, relying on an updated view of the network resources, it seeks 

for the network resources enabling to restore/re-allocate a connection (or bulk of connections) affected by 

a network failure or performance degradation (e.g., node and/or link down, increase of packet losses, etc.). 

Additionally, the path computation can also operate offline. That is, the path computation process is 

triggered, for instance, periodically or after several connections have been set up and released. The 

objective of such an offline path computation is to attain a more efficient use of the network resources that 

may entail recalculating and re-allocating the existing network connections. Regardless of the targeted 

action, the network operations handled at the orchestrator/controller needs to ensure that the connectivity 

service downtime is minimized. This is particularly relevant when re-allocating and re-optimizing network 
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connections. In this regard, the network orchestrator/controller could consider strategies such as make-

before-break (i.e., programming new computed resources prior to disconnect the old ones for a given 

connection).  

3.3.2.2 ML-based traffic management using programmable switches 

The use of ML-based frameworks is currently heavily investigated for optimizing the operation of 5G 

systems, in many cases focusing on traffic management at the data plane. For example, as different types 

of traffic flows have different levels of latency requirements, authors in [104] advocate for the use of an 

ML-based framework for semi-persistent elasticity- and latency-aware scheduling, i.e. an intelligent 

control plane that could prioritize, and schedule elastic traffic flows based on their requirements. In 

particular, ML can extract specific flow characteristics and the associated latency requirements and feed 

this information to schedulers. In another example [112], congestion prediction for elastic traffic, by 

means of Explicit Congestion Notification (ECN) feedback can be used to auto-tune parameters of active 

queue management mechanisms employed at the data plane.  

At the same time, data plane programmability implies the switch capability to expose the packet 

processing logic to the control plane to support systematic, fast and comprehensive reconfiguration. An 

intelligent control plane, complemented by programmable data planes can promote zero-touch 

configuration and management and reprogramming of network operations, enabling self-

optimization/management as envisioned in beyond 5G systems. In this direction ML-based network 

optimization over programmable data planes is being promoted by [238]. 

In particular,  5Growth  adopts a P4-programmable transport data plane in the solution proposed in [115], 

enhancing programmability and isolation while it supports customization of selected queue management 

functions (e.g., Active Queue Management) [59]. Exploiting such capabilities and flexibility provided by 

data plane programmability, intelligent decision making can be applied at the control plane to enforce 1) 

performance isolation per network slice; and 2) application aware slice customization. To that end the 

project updated its orchestration and management plane to enable the enforcement of such QoS policies 

for all slices over the shared infrastructure [239]. Going one step further the project envisions a data-

driven control plane, that autonomously can group slices and configure their priorities based on their 

requirements and the total link utilization and customize their scheduling and congestion control 

techniques on a per slice basis. 

3.3.2.3 Dynamic load balancing 

Optimizing the usage of network resources using ‘dynamic load balancing’ is far better than static round 

robin routing algorithm. However, dynamic load balancing is a mechanism that takes statistical parameters 

from each network device and evaluates the network traffic to modify the flow accordingly. The drawback 

in large networks is the performance cost, i.e. the overhead for collecting statistics from each device in the 

network and computing the best route. Moreover, dynamic load balancing needs high computing power to 

calculate the best path. Therefore, AI/ML is used to optimize the usage of resources given the complexity 

of the network and traffic growth. 

The ‘mobile backhaul orchestrator’ is a prototype of control logic which make use of the SDN and ML 

technologies to:  

 Measure and evaluate the existing network resources in each slice. 

 Provide resources dynamically to new slices with relatively short lifespan with phases of setup, 

use and decommissioning. 
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 Resource reallocation from an existing slice to another existing slice or newly created slice 

without disturbing or with minimum disturbance to the operation of other slices.  

Mobile backhaul orchestrator is used to create and manage network slices based on SDN and ML logic to 

utilize available resources on each slice efficiently. The design includes the modules depicted in the 

Figure 3-17. ML/AI engine will apply different algorithms to estimate optimal routes and guide the 

controller to decide which path to take to deliver packets with minimum delay. In this case we validate the 

network optimizer using ML techniques to evaluate and predict the congestion level of a link.  

We chose ‘supervised learning’. The idea behind supervised learning is that, for some inputs, we want to 

have certain value as an output. The ML algorithms run based on the inputs until getting output values 

close enough to the target value. We use artificial neural network (ANN) to perform the tests. ANN is a 

network made of multiple neurons, where each neuron is a building block which takes one or more inputs 

and passes through some mathematical functions, in our case sigmoid function to produce an output. A 

sigmoid function is used to unbind the input from output. For implementing the neural network (NN), we 

use a powerful python library called NumPy. An NN has three layers: 1) the input layer; 2) the hidden 

layer; and 3) the output layer. We use three attributes, i.e. bandwidth, packet loss and hop count as input. 

The hidden layer is a layer between the input and output layers. There could be a single, or multiple 

hidden layers. For simplicity we use a single hidden layer (Figure 3-18). 

 

Figure 3-17 Mobile backhaul orchestration modules 

 

Figure 3-18: Single hidden layer NN 

Initially each input is multiplied with some random number called weight (w) and are summed up and 

passed through an activation function to generate a neuron in the hidden layer. The generated hidden layer 
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is now an input to the output layer or to another hidden layer and passes through an activation function 

and finally gets the output. The process of getting an output value from a given input is called the Feed 

Forward (FF) process. However, the output might not meet or close enough to the expected output, hence 

we perform the same process but backwards to find and replace the random weights with some reasonable 

values using partial derivatives and this process is called Backward Propagation (BP). Once we find new 

weights, we perform the same Feed Forward (FF) process to find the final output. In this case we might 

perform multiple FF and BP processes until we get the desired output before going to testing. The output 

value from the network features (inputs) is somewhere between 0 and 1. Value close enough to zero 

means the link in question is less congested and value close. The Network monitoring engine generates 

traffic statistics which describes the status of the ports of each switch. 

About 1500 sample data was collected for one and half hours. Probably we could have done better data 

collection for better results but we needed better device. From the data collected 30% of it is used for 

training and the rest 60% of the data for testing. 

3.3.2.4 AI-based flow management in 5G systems 

5G networks are expected to operate in a highly heterogeneous environment supporting a diverse set of 

applications with different bandwidth, latency, mobility and reliability requirements [30]. To address these 

requirements and support the dynamic traffic patterns generated by different services, the transport nodes 

interfacing 5G RAN/CORE elements and other network technologies should be able to multiplex traffic 

flows from the RAN and optimize their resources. Optimization involves mapping the flows into separated 

traffic groups according to their transport KPI requirements when QoS is used for network slicing 

purposes.  

Depending on the operator’s needs, allocation of network resources (e.g., bandwidth) to slices, can be 

performed either in a deterministic manner (i.e. allocation of a specific wavelength(s) or timeslot(s) that 

can be multiplexed in the frequency or time domain over a link) or statistical (i.e. logical multiplexing of 

VLAN connections over a physical channel). In this section, the concept of deterministic slicing is 

investigated where optical transport network resources (wavelengths, timeslots) are allocated to the 

appropriate slice leveraging the latest advances in optical transmission and switching technologies [200].  

In this environment, a challenging problem that needs to be addressed is associated with the identification 

of the optimal routing, wavelength assignment and scheduling strategies. Traditionally, the wavelength 

resource assignment and scheduling problem is solved using a variety of techniques spanning from Integer 

linear programming [74] to heuristic algorithms [117], [100]. These algorithms assign to the end users’ 

appropriate wavelengths and timeslots to support their requirements. 

Based on the observations above, we adopt a novel approach to solve the problem of allocating network 

resources to slices by combining both AI-based and traditional optimization techniques. While ML models 

scale well with the amount of data available, it has been shown that they are not as effective when applied 

to constraint modelling and planning. On the other hand, ILP schemes have been designed to handle 

constraints and preferences but do not scale well.  

To solve this problem a hybrid scheme based on ML and ILPs is proposed. We initially estimate the total 

volume of demands that need to be scheduled within a specific time frame using an ML model. The output 

of this model is provided as input to a linear programming model that solves the relaxed Routing and 

Wavelength Assignment (RWA) sub-problem. Once solved, the optimal scheduling strategies are 

determined using a specially developed NN model. To achieve this, we first evaluate the performance of 

various scheduling heuristics under different network settings and traffic conditions. The performance of 

these algorithms is examined against a utility function capturing optical network resource efficiency and 
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computational complexity. We have observed that under scarcity of optical network resources (i.e., high 

traffic loading scenarios) heuristics that allocate demands to the smallest available block (such as Best Fit) 

are more efficient. However, these gains come at the expense of increased computational cost. On the 

other hand, under low loading conditions less efficient schemes with very low complexity (such as Fit 

First) are preferable. Based on this analysis, the regions where each scheme provides the optimal 

performance can been determined. 

In the second phase, a scheduler based on a Multilayer Perceptron (MLP)-based neural network is used. 

The MLP periodically decides on the most efficient resource allocation strategies (i.e., selection of the 

appropriate heuristic to be onboarded in the transport network (TN) edge node) taking into consideration 

the availability of resources, the type and characteristics of services and the loading conditions. Once the 

MLP has been executed it is able to identify the appropriate timeslot allocation strategy. The timeslot 

allocation policy scheme is continuously evaluated and if an alternative option has been recommended by 

the MLP, it is onboarded at the edge node. 

The selection of the optimal scheduler to be onboarded at the edge node is treated as a classification task. 

Extensive simulations have been carried out to create the appropriate training dataset for the MLP NN. 

The architecture of the MLP-based scheduler is presented in Figure 3-19. 

 

Figure 3-19 Flowchart of the MLP-based scheduler 

In Figure 3-20, the MLP is compared against two conventional schedulers (i.e. the first fit and the best fit) 

in terms of weighted average utility. We note that by employing the MLP-based scheduler the average 

utility is increased for every combination of network parameter compared with the case when either the 

best fit or the first fit are employed.  

 

Figure 3-20 Weighted utility for the best fit, first fit and MLP-based scheduler for {10, 20, 30, 40} 

users and {4, 8} wavelengths  
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Once the MLP has been executed, it is able to identify the appropriate allocation strategy or scaling policy 

for the network. The resource allocation policy scheme is continuously evaluated and if an alternative 

option has been recommended by the MLP, it is on-boarded at the edge nodes. 

Apart from edge transport nodes, the UPF has also a key role in the management of traffic flows as it acts 

as a termination point for several interfaces and protocol stacks including N3 (GTP-U) tunnels from the 

RAN, N9 for the interconnection of a chain of UPFs as well as N6 for interconnecting the system with an 

external data network. This introduces scalability issues due to the large number of packet detection rules 

required to support the relevant policies (i.e., end to end services) subject to limited network resources 

(e.g., memory in UPF-compliant network interfaces). To address this, [231] proposes the use of ML 

techniques aiming to compress the number of rules by taking into account the spatio-temporal correlation 

of mobile network traffic. The new compressed rules are then ported to the programmable optical 

transport edge nodes, which can be extended to process packets at line rate, adopting P4 implementations. 

To facilitate this, clustering schemes can be used taking advantage of the inherent correlation that exists 

between input traffic statistics, 5G topology and flow allocation decisions. From the implementation 

perspective this can be accomplished if the UPF can support complex forwarding and routing decisions. 

This can be achieved in practice by extending the optical transport with P4 capabilities that will allow 

dynamic allocation and configuration of resources as well as mixing of flows without affecting QoS. The 

P4 capable edge nodes are able to perform protocol adaptations (read the necessary filed in the GTP-U, 

decapsulate the payload, perform necessary classification, encapsulate the payload to the appropriate 

VXLAN and forward it to the appropriate port) at line rate. 

With VxLAN, it is possible to aggregate an arbitrary number of flows by encapsulating them into a 

VxLAN tunnel, distinguished by a specific “virtual network indicator” (VNI). This way, we can create an 

overlay logical network that can be used to transfer transparently a set of flows with common 

characteristics or requirements. Through this approach the number of rules that are required to handle each 

flow separately can be reduced. A graphical representation of the overall process is shown in Figure 3-21 

where a set of incoming flows can be classified using the developed machine learning model. Once 

classified, traffic management policies can be applied on the clustered flows to reduce the number of 

match action rules and, therefore, the size of the optimization problem. 

 

Figure 3-21 Monitoring, classification and tagging of network flows 
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3.3.2.5 Determining optimal functional split according to fronthaul/backhaul 

capacity 

To successfully deploy 5G services there is a need for scalable control plane solutions able to manage and 

optimize the operation of a large number of highly heterogeneous network and compute elements, taking 

decisions related to: 1) optimal embedding of service requests and creation of service chains over the 

converged network resources [24], [12]; 2) optimal infrastructure slicing across heterogeneous network 

domains [31]; 3) optimal sharing of common resources in support of Information and Communication 

Technology (ICT) and vertical industry services [177]; and 4) optimal fronthaul deployment strategies 

including optimal placing of central units with respect to remote units, functional split selection etc. [101], 

[276]. These problems are traditionally solved by a centralized controller considering in many cases 

multiple objectives and constraints (ranging from Capital and Operational Expenditure minimization, 

energy consumption, latency, resource availability, etc.), adopting a variety of mathematical modelling 

frameworks based on integer linear [183] and non-linear [30] programming (ILP, NLP), stochastic linear 

and nonlinear programming formulations [178]. Although these schemes can be effectively used to 

identify the optimal operational points of the whole system, their increased computational complexity and 

slow convergence time makes them unsuitable for real time network deployments.  

To cope with the increasing computational complexity inherent in these models, less computationally 

intensive online tools based on neural networks (NN) can be adopted. More specifically, offline 

optimization models coupled with history measurements from operational networks can be used to create 

a set containing the optimal design policies for converged 5G network environments [178]. Multilayer 

Perceptron (MLP)-based NN can then use the output of the ILP as a training set. Once NNs have been 

trained, they can be used by the centralized controller for real time optimal decision making. A typical 

example includes allocation of resources to support fronthaul and backhaul services over a converged high 

capacity and flexibility optical transport network environment. To solve the problem of optimizing 

fronthaul services, the NN model can be used to identify, in real time, the optimal functional split for each 

RU, the MEC facilities where the baseband unit can be hosted as well as the transport network resources 

for the interconnection of the remote antennas with the MEC server.  
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Figure 3-22 a) Construction of the training set b) NN model-based LSTM and MLP for the 

optimization of the 5G network in the upcoming time instants. 

A high-level view of this process is shown in Figure 3-22 a) for a specific case where the MLP NN is used 

to identify the optimal split per RU. To achieve this, a training set combining data from history traffic 
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statistics as well as data extracted from the offline – Integer Linear Programming (ILP) based -

optimization framework is considered.  

The identification of optimal MLP-NN architecture is also a critical point to be addressed. To tackle this 

challenge an algorithmic approach has been developed that can identify an MLP network that maps any 

input 𝑥 to the corresponding output 𝑦. Output 𝑦 is obtained from the solution of the corresponding ILP 

formulation, while 𝑥 represents the set of history observations. As an example, consider the scenario for 

which we apply to the MLP a training set that comprises a set of pairs (𝑥, 𝑦), where 𝑥 represents the traffic 

statistics for a particular RU at a given point in time, while 𝑦 represents the functional split. The optimal 

functional split per RU over time can be obtained through the solution of the ILP model. This training set 

is given as input to the MLP neural network in order to learn how to map each input 𝑥 to the 

corresponding output 𝑦. Once the system is trained, MLP can predict the functional split given any new 

data without solving the corresponding ILP. The parameters of the MLP model (batch size, number of 

hidden layers etc) can be derived applying simple heuristics that can maximize the prediction accuracy.  

Once the model is trained, the MLP-NN model is combined with a LSTM NN model used for traffic 

forecasting. This aims at identifying the optimal operating conditions for the 5G infrastructure in the 

upcoming time periods.   

The performance of the proposed NN scheme is compared to the ILP based optimization approach in 

terms of total network power consumption. It is observed in Figure 3-23 that the power consumption over 

time for both schemes takes very close values, indicating the effectiveness of the proposed NN scheme to 

identify the optimal operational strategies of every network element. This clearly shows that online 

optimal service provisioning can be achieved taking a low complexity approach adopting ML techniques 

that can be trained to take very close to optimal decisions in real time. In this context, the training process 

plays a key role and can be performed taking advantage of the optimal decisions provided through offline 

tools based on ILP. 

 

Figure 3-23: Total Power consumption when applying the ILP and the proposed NN scheme  

3.3.3 NFV infrastructures 

A key design principle for 5G, which will continue to guide the design of future generations, has been the 

adoption of softwarization techniques that have proven extremely efficient in the IT domain. Network 

Function Virtualization (NFV) is the embodiment of this design principle, which has resulted in the 

definition of a management framework that Mobile Network Operators (MNOs) can use to deploy 

network services as a set of concatenated virtualized network functions, instantiated over a general-

purpose compute infrastructure. Optimizing the compute NFV infrastructure (NFVI) it is therefore key to 

the operation of future networks, and a natural application domain for AI/ML techniques that can be used 

to decide how common hardware resources can be allocated across a varying set of virtualised network 

functions. 
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Table 3-9 summarizes three NFV related AI/ML use cases discussed in this section, while providing the 

interested reader with additional resources developed in the corresponding 5GPPP projects. 

Table 3-9 Use cases for virtual network infrastructure related aspects 

Use Case 5GPPP Project Additional references 

Federated Learning across MEC and NFV orchestrators 5GZORRO [333], [334] 

Resource allocation for Service Function Chaining 5G-CLARITY [325] 

Dynamic Resource Allocation in NFV infrastructures 5G-VINNI [136] 

3.3.3.1 Federated learning across MEC and NFV orchestrators  

In this section we describe the techniques for automated resource and service management using 

Federated Learning (FL) models (Section 2.4.4). In the edge computing research direction, the network 

slices are extended by edge resources and services, such as the MEC platform, the MEC applications, the 

User Plane Function (UPF), the Radio Access Network (RAN) or even Cloud-native compute, network or 

storage functions. As these resources lie closer to the user than the NFV MANO, a scheme that is 

currently followed is the presence of a dedicated management entity on the edge for the resource lifecycle 

management, which includes instantiation, decommissioning and other functionalities. Such entity is 

called Edge Orchestration Platform (EOP) and provides distributed processing and storage capabilities 

that reduce the network management complexity. EOP is also able to interact with the NFV MANO, as 

depicted in Figure 3-24.  

The interaction is enabled by FL models that are trained and executed on the edge level. Furthermore, the 

objective of using the FL models is to improve the efficiency and provide a high-level of network 

automation. The reasoning behind the choice of FL models as a ML technique lies in the presence of 

multiple edge Points-of-Presence (PoP) in different distributed locations that reside closer to the user than 

the NFV MANO. Concretely, the FL models provide 1) data processing and caching in each edge PoP as 

well as 2) automation in the formation and management of network slices. In this latter case, the EOP 

receives configuration instructions from the NFV MANO for slice instantiation or extension on the edge 

level.  

In terms of employed ML techniques, the FL models are initially based on offline learning using 

unsupervised techniques, as data clustering, to identify the types of edge resources in each edge PoP. 

Upon the completion of offline training, additional supervised training techniques are used to translate 

high-level intents from NFV MANO into concrete instructions on how to instantiate and connect edge 

resources in each edge PoP. This is based on Natural Language Processing (NLP) that is performed by the 

EOP. Overall, the procedure that is followed is divided into three individual steps.  
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Figure 3-24 - Automated interaction between Edge and NFV MANO through FL models  

Initially intent-based policies are specified, which provide high-level abstractions of edge resources and 

services by service consumers. Intents aid in hiding complexity, technology- and vendor-specific details. 

As a second step, appropriate APIs on the edge are used to receive these intents and then 1) translate 

abstractions of resources and services coming from the NFV MANO into edge instructions or 

configurations as well as 2) respond to requests and provide relevant information. To this end, the ETSI 

MEC ISG has provided an initial set of API’s
3
 to facilitate this interaction. The APIs are registered and 

discovered over the Mp1 reference point defined in ETSI MEC architecture [96]. 

The third step concerns the training of the FL models. In this scenario, each EOP performs first the offline 

FL model training using local data about the different resource and service types responding to the intents 

that originate from the NFV MANO. Then, during the offline training phase, data clustering techniques 

are employed to categorize edge resources based on specific features, such as their aforementioned type 

(i.e. MEC platform, MEC applications, UPF, RAN) as well as generic features as their location (i.e. 

longitude, latitude). Finally NLP techniques are used by the EOP that is associated to each edge PoP, in 

order to translate the intents from the NFV MANO into the involved resource clusters. Then, the 

associated resources are instantiated and connected using virtual links based on the intent translation. 

A next step to provide further interoperability concerns the inclusion of these functionalities into a 

dedicated micro-service for each EOP. Such service would allow an even more efficient EOP response to 

resource/service discovery queries about each edge PoP service-layer and/or resource-layer status 

(available services/resources, active and historical service bindings).  

3.3.3.2 Resource allocation for Service Function Chaining 

One of the main tasks needed by the Service Function Chain (SFC) use is how the orchestrator can 

efficiently allocate network resources, the decision on the amount of computing resources to assign a 

VNF. The other is the placement of this VNF. 

The resource allocation and placement of VNFs are two problems addressed widely in the related 

literature [26], [133]. The application of ML to solve these tasks is proved to be feasible in some 

scenarios. Even though it may provide suboptimal solutions, authors in [285] identify the use of ML to 

provide initial solutions for heuristics algorithms. 

                                                      
3 https://forge.etsi.org/rep/mec 
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However, these ML-based proposals focus on individual tasks. There are few studies on coordinating the 

different management tasks by using ML [262], [261], which in most cases concentrate on guaranteeing 

the delay budget of the SFCs. Furthermore, there exist applications and services which rely on other 

performance indicators. Thus, further research effort is needed to design ML strategies which take into 

account additional QoS parameters such as energy consumption, reliability or jitter. 

Related to the application of ML to aforementioned problems, authors in [262] identify the following 

challenges to apply ML for solving resource allocation problems in NFV: 

 To increase the accuracy of the solutions provided by ML, since they may not be optimal. 

 To reduce the training time of the ML models. 

 To apply new ML techniques which don’t rely on Deep Reinforcement Learning. 

In addition to the VNF resource allocation and scaling tasks, the mobility of users may imply for certain 

services collocated at the edge of the network to migrate towards another MEC infrastructure. This may 

involve the reallocation of computation and network resources, and the transfer of one or various VNFs’ 

states. In order to avoid the service interruption or degrading the QoE experienced by the user, the 

network could use ML to predict the trajectory of the user or even the future resource demand [160]. This 

way, the network could identify the most suitable MEC which guarantees the service level required. 

Moreover, from previous migration episodes, the network could calculate when the migration process 

should start, so both the resource reallocation and state transfer durations don’t impact on the user. 

3.3.3.3 Dynamic resource allocation in NFV infrastructures 

With network virtualization, network functions can be deployed over commercial off-the-shelf computers 

such as industrial data centres or in cloud as a service infrastructure. Furthermore, network slicing 

promises to provision resources to diversified services with distinct requirements over one heterogeneous 

infrastructure. These new technologies motivate for a solution to the management and orchestration of the 

underlying physical network resources. NFV MANO focuses on the specific management and 

orchestration of virtualization tasks, necessary to provide a network service and to meet the service level 

agreement. NFV MANO is in charge of providing the functionality required for the provisioning of VNFs, 

and the related operations, such as the configuration of the VNFs and the infrastructure these VNFs run 

on. It includes the orchestration and management of physical and software resources that support the 

virtualized infrastructure, and the life-cycle management of VNFs.  

Traditionally, one of the most popular ways to address resource provisioning is threshold-based reactive 

approaches, where resources are added or removed if the network's conditions reach a certain predefined-

thresholds. Although this idea provides a simple and scalable solution to dynamic resource allocation, 

threshold-based criteria tend to over-provision and under-utilize network equipment, leading to high costs 

for the infrastructure provider or the infrastructure tenant, and make the management of dynamic traffic 

and deployment of new types of services difficult as network traffic models must be elaborated 

beforehand. This may limit the reaction to current deployment on adapting to new situations, not seen 

before by the hand-crafted models. This approach is the default solution implemented in most of current 

networks and on NFV software tools like open-source MANO (OSM). 

To overcome these limitations, ML approaches can be leveraged to provide either assistance to the 

traditional threshold-based solutions or to directly achieve a zero-touch network, i.e., a network that 

autonomously provide/remove resources to its VNFs and scales the services up and down accordingly. 

ML solutions that fall into the first class are generally based on event forecasting, and employ techniques 

like time-series analysis, data classification or data clustering. These techniques are used to assess the 

current network situation and understand where the network is heading to. An example of this type of 



5G PPP Technology Board  AI/ML for Networks 

 71  

solutions can be found in [256], where decision trees are used to classify cloud centre resource demand, 

and a one-to-one hardcoded mapping between the different categories and the resources needed is used to 

automatically scale instances. DNN classification is used in [259] to classify the network traffic and 

predict whether the different types of traffic are going to increase/decrease in the future. Each class is then 

mapped to a concrete number of VNFs that must be instantiated to be able to cope with the expected 

traffic load. Authors use historical labelled traffic data to train the proposed algorithm, which makes this 

solution less resilient to new traffic features. Based in these solutions, we see how these approaches are 

reactive in nature, i.e., prior assumptions (traffic mapping to resources) have to be made and the network 

reacts unequivocally based on these assumptions.  

Under the second category fall the ML solutions that learn to autonomously scale up-down and instantiate 

new VNFs instances (vertical and horizontal scaling). Given the complex nature of self-governing 

networks, most of the works that fall in this category use deep reinforcement learning to obtain a reliable 

solution. For example, in [292], a DRL solution based on DDQN is presented for multi-tenant cross-slice 

resource orchestration, where a discrete number of communication and computation resources have to be 

allocated to different slice tenants. Another example is [136], where a novel DRL algorithm is presented 

for MANO. In this work, the authors study how an agent placed at the central unit can learn to scale 

vertically (add processing power and storage), horizontally (instantiate new VNFs), or to offload (send the 

VNFs to other cloud) based on the system state. The proposed solution show great improvement over 

state-of-the-art approaches. This type of solution is proactive as they do not consider any heuristic in order 

to take actions. 

3.3.4 End-to-end slicing 

Network slicing allows network infrastructure to be divided into different logical networks devoted to 

customized services and applications. In essence, network slicing is a key enabler of future cellular 

networks. By running fully or partially isolated logical networks on the same physical infrastructure, a 

substantial resource multiplexing gain can be attained. It is clear thus, that smart techniques are required to 

optimize the underlying RAN, transport and compute infrastructure. The application of AI/ML techniques, 

with their innate ability to predict and forecast events or demand, to build management functions for end-

to-end network slices is a very active field of research. 

Table 3-10 describes six network slicing related AI/ML use cases discussed in this section, while 

providing the interested reader with additional resources developed in the corresponding 5GPPP projects. 

Table 3-10 Use cases for E2E network slicing related aspects 

Use Case 5GPPP Project Additional references 

Automated end-to-end service assurance 5GVINNI [320], [321] 

Proactive resource reservation in e2e slicing 5GSOLUTIONS [322] 

Joint slice admission control and resource allocation MONB5G [102], [103] 

Joint slice-based demand prediction and resource allocation 5G-TOURS [76], [77] 

AI assisted slice isolation 5GZORRO [330], [335] 

AI/ML-based Decision Making for Slice Optimisation 5GENESIS [235], [236] 
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3.3.4.1 Automated end-to-end service assurance 

Service assurance is a key element to be autonomized in 5G. Due to the high complexity and diversity of 

the network elements and services to be managed and operated, service assurance automation becomes 

critical and mandatory rather than optional or preferred in 5G networks. Closed-loop control is one pillar 

of the autonomous management that has been applied and successfully verified in many industries over a 

century. It uses feedback to monitor and regulate itself to achieve a specific target. Applying closed-loop 

control to telecommunications was mainly focused on individual network elements or protocols (e.g., self-

healing in BGP, self-configuration in TCP congestion control, or self-optimization in radio resource 

management). It is challenging to apply closed-loop control to autonomize end-to-end service 

management in mobile networks. Standardization bodies like ETSI ZSM have proposed a service-based 

zero-touch network service management and operation architecture and consider closed-loop as a 

powerful candidate for zero-touch automation.  

Most closed-loop models consist of four stages: Monitor, Analyse, Plan, and Execute. ML and AI, as one 

key enabler for closed-loop control, play an important role in stages like monitoring, analysing, and 

planning. Various AI/ML models and algorithms are developed to solve service-assurance problems at 

different closed-loop stages, especially in analysing and planning, such as conventional anomaly 

detection, root cause analysis, and prediction. In addition, a close relationship exists between monitoring 

and analysing, whose integration is highly beneficial. In [195], different levels of monitoring-analysing 

cooperation were reviewed. AI/ML mechanisms like ‘feature selection’ via principal component analysis 

(PCA) [290], decision tree, random forest and deep learning help to decide in the monitoring policy what 

features are monitored and thus to reduce the monitoring cost. Similarly, ‘flow selection’ empowered by 

network tomography, maximum likelihood estimation and Bayesian inference optimizes the number of 

monitored traffic flows that can infer the entire network in the E2E service monitoring. Network-

tomography-based inference methods, as described in section 2.4.2, are also valuable to optimize probe 

deployments as it is unrealistic to deploy monitoring probes everywhere in the network. In addition, 

correlation analysis is important in the NFV and network slicing environment with a high level of resource 

sharing, which not only complicates the data analytics but also introduces complex correlation 

relationships into the collected data sets. Correlation analysis is beneficial for improving service assurance 

performance or reducing the monitoring cost. However, correlation analysis is under-developed and needs 

more attention. 

Within the context of 3GPP a communication service can be composed of multiple slices (3GPP TS28.530 

[6]) and multiple communication service instances (3GPP TR 28.800 [1]). The former can be defined as a 

multi-slice communication service whereas the latter can be defined as a multi-service communication 

service. In general, the SLA of a multi-slice communication service (as well as multi-service 

communication service) describes the overall service level objectives of the composed slices or services. 

Each network slice instance (as well as communication service instance) will have its specific Quality of 

Service (QoS) and Quality of Experience (QoE) requirements. If the same Network Slice (instance) is 

shared across multiple communication services, which is also a feature defined by 3GPP, the 

corresponding management data and SLA objectives of the shared Network Slice for each communication 

service needs to be fetched correctly and assured. To manage the end-to-end Network Slicing, 3GPP 

defines the management functions (CSMF, NSMF, NSSMF) which, however, do not fully support the 

end-to-end assurance of multi-slice, multi-service communication service management.  

To assure the end-to-end multi-slice communication service (as well as multi-service communication 

service), management data and analytics data play a critical role. In general, a cross-slice and cross-service 

communication service management requires the management data (e.g., performance management (PM) 



5G PPP Technology Board  AI/ML for Networks 

 73  

and fault management (FM) defined in 3GPP) for QoS management and Analytics data (e.g., NWDAF 

3GPP TS 23.288 [4] and MDAS 3GPP TS 28.533 [7]) for QoE management of each composed slice or 

service of a communication service. If the end-to-end communication service (i.e., any composed Network 

Slice instance or communication service) does not meet the QoS/QoE requirements during the E2E SLA 

assurance of the service, a modification of the service on one or more Network Slice or communication 

instances should be triggered. AI/ML techniques can be used for this purpose. A Network Slice instance 

modification includes a network slice subnet instance and a network function modification. The 

modification or reconfiguration may include the scaling in/out of the resource utilization of a Network 

Slice Instance, or the migration of a composed network slice instance.  

3.3.4.2 Proactive resource reservation in E2E slicing 

Nowadays, resource assignment to VNFs is a reactive process based on hysteresis thresholding policies. 

However, such policies inefficiently over-provision network resources and might under-utilize available 

resources. This hence necessitates the need for proactive, data-driven solutions that can provide cost-

efficient network resource utilization. This would be likely achieved by anticipating future capacity needs 

and timely allocating resources based on the time-varying demands. In this regard, we here envisage a 

data analytics-driven approach that can leverage tools from AI and machine learning for anticipatory 

allocation of resources in cognitive mobile networks. This envisioned approach is indeed driven by the 

recent advance of machine learning solutions, and the availability of big data for training. The ultimate 

goal is leveraging historical networks and users’ information to provide operators and service providers 

(SPs) with adequate knowledge about the capacity needed to accommodate future demands per network 

slice and proactively allocate resources in response to this anticipatory information.  

We now discuss the key pillars and aspects to be factored in towards AI-driven slice/VNF resource 

management and allocation. First, we refer to the main elements that need to be forecasted in order to 

enable proactive resource allocation. For example, in addition to traffic forecasting, it is of utmost 

importance to account for the cloud price variation. It is worth noting that the target of SPs is to purchase 

cloud resources to provide NFV services to customers while minimizing the expense of NFV providers. 

Moreover, in practice, different types of resource reservation might undergo different charging policies. 

On-demand reservation, for instance, can be performed at a fixed cost in accordance with abrupt changes 

to the traffic demand, while spot virtual machine (VM) prices are susceptible to price variations with time. 

Such cloud price variations might affect the overall process of capacity estimation and cost minimization, 

and thus should be factored in and forecasted. As detailed in Section 2.1.3, traffic demands as well as 

cloud price variation can be efficiently predicted using tools from ML such as recurrent neural networks 

(RNNs), particularly, using long short term memory (LSTM) [299].  

Second, the architecture of the cellular networks and location of datacentres hosting VNFs would also 

play a vital role in the resource assignment and reservation. For instance, overprovisioning resources in 

core datacentres is relatively cheap, while service level agreement (SLA) violation might affect a large 

user population, and hence, this is more expensive at the network core. In contrast, violations of SLAs at 

edge datacentres will impact a limited number of subscribers in smaller areas and are thus less costly. 

Meanwhile, deploying resources in the proximity of the radio access at the network edge is typically 

expensive. Therefore, accounting for this inherent trade-off between SLA violations and cost of 

overprovisioning and relating it to the network level, i.e., core versus edge, are of paramount importance 

when estimating required capacity.  

Finally, we comment on two potential approaches that could be adopted to address the proactive resource 

reservation problem, specifically, one stage and two stage approaches. For the former, a learning 

algorithm can be adopted to directly return a forecast of the capacity required to accommodate the future 
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demands for services associated to specific network slices. For instance, a data analytics tool named 

DeepCog was proposed in [77] for the cognitive management of resources in 5G systems. DeepCog could 

forecast the capacity needed to accommodate future traffic demands within individual network slices 

while accounting for the operator’s desired balance between resource overprovisioning and service request 

violations (i.e., allocating less resources than required). Based on real-world measurements, the use of 

deep learning techniques for resource orchestration such as DeepCog allowed for substantial reduction of 

operating expenses with respect to resource allocation solutions based on legacy mobile traffic predictors. 

In contrast, for the two-stage approach, the traffic forecasting is first performed then followed by the 

capacity estimation process. As an example, the authors in [68] addressed the issue of resource 

provisioning for end-to-end dynamic slicing based on datasets stemming from a live cellular network 

endowed with traffic probes. In their approach, they first introduced slices’ traffics predictor based on a 

gated recurrent unit (GRU). They then built joint multi-slice deep neural networks and trained them to 

estimate the required resources based on the traffic per slice, while not violating the rate-based SLA and 

resource bounds-based SLA. Such different one and two stage approaches might achieve different, 

possibly comparable, levels of performance and undergo different complexity of implementations.  

3.3.4.3 Continuous multi-objective reinforcement learning for joint slice 

admission control and resource allocation 

To enable zero-touch end-to-end network slicing, a closed-loop modular architecture can be designed, 

wherein a deep reinforcement learning (DRL) agent over all technological domains (e.g., RAN, cloud, 

edge, core) performs end-to-end slice joint admission control and resource allocation/reconfiguration in 

either pseudo real-time or non-real-time granularities. As shown in Figure 3-25, the DRL controller is fed 

by key performance indicators (KPIs) measurement data that could stem either from a simulated 

environment or a live network. 

 

Figure 3-25 Slice-level admission control and resource allocation loop per domain 

Moreover, given that both the measured KPIs and the requested actions are usually continuous (i.e., with 

non-discrete values), the adoption of continuous deep reinforcement learning (DRL) algorithms is needed. 

This family of control schemes encompasses several variants, such as Deep Deterministic Policy Gradient 

(DDPG) and Twin Delayed DDPG (TD3). Each of which presents a different architecture in terms of actor 

and critic deep neural networks (DNNs), and as shown in Figure 3-26, are combining both Q-value and 

policy-based learnings since there is an infinite number of actions and/or states to estimate the values for 

in the continuous case and hence value-based approaches are way too expensive computationally, which is 

referred to as the curse of dimensionality. 
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Figure 3-26 Model-free reinforcement learning 

Environment 

The OpenAI Gym-based environment interacts with the simulated or live networks to either get the 

necessary measurement data to form the state space, or to enforce the action into them. Typically, the 

environment is including the following components: 

 State space: Upon receiving the KPI data at a certain step, OpenAI Gym interface formats them 

as a multi-dimensional bounded box to create a standardized state space that might encompass 

several slice-level metrics such as the number of new users, active users, computing resources 

allocated to each VNF, latency, energy consumption, number of VNF instantiations. 

 Action space: On the other hand, the action space generally performs vertical up/down scaling of 

resources, i.e., increasing or decreasing the allocated resources to each slice in terms of e.g., VNF 

CPU and physical resource blocks (PRBs), as well as admits or rejects users within a slice 

according to the available resources. In this respect, at each step, the OpenAI Gym interface takes 

the DRL action as input and provides the next state observations, the action reward, and a done 

when the episode has been successful. Note that vertical scaling is generally limited by the 

amount of free computing resources available on the physical server hosting the virtual machine.  

It is noteworthy that in a live network implementation, some APIs are required to either enforce the action 

sent by OpenAI Gym module into the network physical and virtual network functions or to read KPIs 

from them. 

 Reward: This function should be defined carefully in the OpenAI Gym interface to guide the 

DRL agent towards maximizing slice admission rate and resource utilization while minimizing the 

total network cost, namely, CPU consumption, latency, energy consumption and SLA violations. 

In this intent, the reward is multi-objective, and can be defined as a weighted linear combination 

of the costs to be maximized (e.g., admission rate) and the inverse of those to be minimized (e.g. 

1/energy, 1/VNF instantiation cost, 1/SLA violations). By tweaking the weights, the agent is 

guided to optimizing the costs that are prioritized by the slice tenant and/or the infrastructure 

operator. 

DRL Control 

The slice-level admission and resource control are based on continuous DRL algorithms where the main 

ones are summarized in the sequel and depicted in Figure 3-27. 
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Figure 3-27 DPPG and TD3 diagrams 

 DDPG [275] is a model-free actor-critic algorithm, combining policy gradient with deep Q-

network (DQN). Indeed, DQN stabilizes the learning of Q-function by both sampling experiences 

form a replay buffer and freezing the target network (the network that estimates the Q-values is 

updated after several steps). The original DQN works in discrete space, and DDPG extends it to 

continuous space with the actor-critic framework while learning a deterministic policy. Instead of 

freezing target network---which delays the training---DDPG does soft updates on the neural 

networks’ weights of both actor and critic via an autoregressive model that combines the old and 

new parameters in a smoother way. 

 TD3 [102], [107] introduces two changes into DDPG to sidestep the overestimation of the value 

function: (i) Clipped Double Q-learning: In Double Q-Learning, the action selection and Q-

value estimation are performed by two networks separately. However, vanilla double Q-learning 

is sometimes ineffective if the target and current networks are too similar, e.g. with a slow-

changing policy in an actor-critic framework. The Clipped Double Q-learning instead uses the 

minimum estimation among Q1 and Q2 on one hand and Q’1 and Q’2 on the on the hand, and 

leads thereby to a preference for states with low-variance value estimates, i.e., to safer policy 

updates with stable learning targets. (ii) Delayed update of Target and Policy Networks: TD3 

updates the policy network at a lower frequency than the Q-function. This idea is similar to DQN; 

and (iii) Target Policy Smoothing: TD3 introduces a smoothing regularization on the value 

function by adding clipped random noises to the selected action and averaging over mini-batches. 

3.3.4.4 Joint slice based demand prediction and resource allocation 

Once network services are associated with a slice from the service layer and the orchestration, slices must 

be allocated sufficient resources. Due to the prevailing softwarization of mobile networks, such resources 

are mainly of computational nature. This holds both at the RAN where they map to, e.g. CPU time for 

containers running baseband units (BBU) in Cloud Radio Access Network (C-RAN) datacentres, and in 

the Core Network (CN) where, e.g., virtual machines run softwarized 5G Core (5GC) entities in 

datacentres. In this case, ensuring strong KPI guarantees often requires that computational resources are 

exclusively allocated to specific slices, and cannot be shared with others [145]. The dynamic allocation of 

network resources to the different admitted slices is, in fact, a chief management task in network slicing. 

In this context, the network operator needs to decide the amount of resources that should be dedicated to 

the different slices in advance, so as to ensure that the available capacity is used in the most efficient way 

possible and thus minimise operating expenses (OPEX). The key trade-off is between: 

 Under-provisioning: if the operator allocates less capacity than that required to accommodate the 

demand, it incurs into violations of the SLA established with the tenant; 

https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html#ddpg
https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning.html#dqn
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 Over-dimensioning: excess resources assigned to a slice imply a cost in terms of unnecessarily 

allocated resources that go unused. 

Finding the correct operational point requires (i) predicting the future demand in each slice [63], and (ii) 

deciding what amount of resources is needed to serve such demand. These two problems are complex per-

se. Forecasting future demands at service level requires designing dedicated, accurate predictors. On the 

other hand, allocating resources in a way that under-provisioning and over-dimensioning are poised to 

minimise the OPEX of the operator requires estimating the expected (negative and positive) error of the 

prediction. Moreover, addressing (i) and (ii) above as separate problems, risks to lead to largely 

suboptimal solutions, since legacy predictors do not provide reliable information about the expected error 

they will incur. 

While the complexity of the complete solution may be daunting with traditional techniques, AI can be 

leveraged to address both aspects at once, by solving a capacity forecast problem. This can be realised by 

training a typical Convolutional Neural Network (CNN) architecture for time series prediction with a 

dedicated loss function that, instead of simply minimising the error, accounts for the respective costs of 

SLA violations and capacity over-provisioning, as done by the DeepCog algorithm [77]. 

 

Figure 3-28 The DeepCog Neural Network Structure 

Deepcog addresses the problem of optimizing the utilization of resources across network slices: 

measurement-driven studies show that, already under today’s traffic demands, ensuring resource isolation 

among slices risks to yield unbearable costs for operators, as granting resources to slices under mildly 

efficient allocation strategies may require a six-fold increase of available capacity [72].  

The core of the Deepcog algorithm is the loss function that translates the forecast load level into a 

feedback signal that proactively steers the network configuration to optimal levels. This loss function [76] 

is driven by the monetary value resulting from capacity allocation decisions: (i) the unnecessary provision 

of resources has a cost that proportionally increases with the amount of their unused quota, while (ii) 

negative errors (i.e., resources are not enough at a given point in time) have to yield a high economic 

penalty, irrespective of the error magnitude, to model an SLA violation. This effect is depicted in Figure 

3-29 (left), where the Deepcog's loss function is represented as a function of the SLA violation cost βs and 

the costs resulting from the capacity overprovisioning γj. 
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Figure 3-29 DeepCog cost function (left) and Overall result assessment (right) 

The same Figure 3-29 shows the overall cost obtained by orchestrating slices with Deepcog for real-life 

measurements data as a function of α=βs/γj. Costs are expressed as the extra cost incurred (in %) over an 

oracle that can perfectly predict future demand. We observe that Deepcog is very effective, as the extra 

cost over the oracle is only around 20%. Furthermore, Deepcog is able to reduce the number of SLA 

violations as the relative cost of SLA violations (i.e., α) increases. 

3.3.4.5 AI assisted slice isolation  

Slice isolation here refers to the ability of including shared resources and services inside network slices 

that are associated with different application domains. Isolation can be applied in different parts of the 

network, such as the Cloud/Core, the transport network, the Radio Access Network (RAN) as well as at 

the UE level. For example, when focusing on the Cloud/Core, three isolation options are available, 

namely: 1) the fully shared, which is equivalent to the best-effort mode, 2) the partially shared, where 

most of NFs are shared and a few NFs independently deployed, and 3) the fully independent mode, where 

all NFs independently deployed. This is illustrated in the following Figure 3-30. 

 

Figure 3-30 - Resource isolation mechanisms for a network slice 

A challenge to be solved is how to provide automated mechanisms for deploying network slices with 

isolation options. These mechanisms can be implemented within components that can interact with 

different NFV MANO and edge PoPs. An example component is the Slice Orchestrator (i.e. manager) 

illustrated in Figure 3-31, which enables the (virtualized) network elements and functions to be easily 

logically segmented, configured and reused in isolation from one another. The Slice Orchestrator has 

interfaces for: 

1. Checking the ownership and other requirements of a slice 

2. Finding an optimal placement of all the resources involved in a network service 

3. Setting up the slice components in the infrastructure through a VIM technology-independent 

module 
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Figure 3-31 Slice Orchestrator interfaces for resource isolation 

The Slice Orchestrator achieves complete isolation between resources as it interacts with the NFVI 

domain, where it creates a new tenant for every new slice to be deployed. Resource isolation can be 

further automated using ML techniques, such as deep neural networks that are described in Section 2.1.2.  

Specifically, deep neural networks are used to predict the load of the network as well as of the individual 

resources belonging to each network slice based on previous information of incoming utilization and 

connections. This allows setting realistic thresholds for each network slice, such that there is no overlap in 

the employed resources or the network bandwidth. Prediction is based on three phases, including a 

profiling phase, a forward analysis phase, and a backward analysis phase. In the profiling phase, all 

network slice instances in the training dataset are fed into the model, each instance has a set of slice 

measurements and thresholds at each neuron. The thresholds of each neuron for all input network slices 

are logged, which is the output of the profiling phase. Then, in the forward analysis phase, the utilization 

and connection measurements for the resources of each network slice are fed into the model. Finally, in 

the backward analysis phase, we start from the output neurons defined and iteratively compute the 

resource contributions from the preceding synapses and neurons. The synapses and neurons with larger 

contributions belong to the network slices that are most prominent to exceed the allocated slice thresholds 

and need to be extended in order to guarantee resource isolation.  

3.3.4.6 AI/ML-based decision making for slice optimisation 

Network slices, in which services are offered to the users and verticals, are deployed and managed 

involving heterogeneous resources in the infrastructure. Hardware components (servers, sensors, antennas, 

UEs) are decoupled from software (SDN, virtualization,…) to maximize the use of resources in the 

infrastructure, which needs to be tightly evaluated and anticipated in order to have the overview and 

overall control of the network. The involvement of AI/ML techniques is a key enabler to comply with the 

SLA expectations and avoid system failures. The QoE is assessed from the end-user perspective, directly 

bounded to the QoS that the network is providing in the infrastructure. Network Services play a vital role 

to offer critical information of the usage and performance in the virtualized infrastructure, in that sense the 

service needs to provide the needed measurements that are ingested into a common database to analyse 

and evaluate the status and performance behaviour of the infrastructure. Analytics evaluation modules, 

based on the data sources retrieved from the service, can structure the metrics into relevant information to 
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identify and improve the performance of the network and prevent errors. ML techniques, through 

forecasting events and obtaining knowledge of the behaviour, provide a predictive approach to achieve 

optimal slice decision to control network resource management and network functions involved in the 

service provision. Therefore, ML techniques offer additional support enabling the system to explore (big) 

data and deduce knowledge, this model-centric approach hides complexity in the network and simplifies 

and automate daily operations. 

Analytics or ML models can also be used for optimising slices at runtime. There are several scenarios that 

can be addressed by runtime optimisations, including re-starting services that have unexpectedly stopped 

running, updating the slice placement when existing nodes/links in use become overloaded or when some 

of the nodes are under security threats. One way to achieve this is through the implementation of a Slice 

Optimisation Module, co-located with a Slice Manager as depicted in Figure 3-32. The Slice Optimisation 

module is based on a policy engine connected to an Analytics/ML model. A potential policy engine is 

APEX [42], which was also released open source as part of ONAP, but can be used independently from 

ONAP. APEX provides a strong tool for automated decision making, being able to handle adaptive 

policies, i.e., policies that can modify their behaviour based on system and network conditions, including 

decision making at run time rather than using pre-defined static policies. In the slicing optimization 

scenario described above, APEX accepts input events and requests from a Slice Monitoring component, 

routes the input to the appropriate policies, computes the policy results and generates response actions 

towards the Slice Manager to adjust the slice resources accordingly. 

 

Figure 3-32. Example of using ML with a policy engine for slice optimisation 

The Slice Monitoring & Analytics Module can include an ML model that predicts e.g., availability of 

infrastructure resources. ML methods offering time series prediction include ARIMA or LSTM, whose 

prediction result can be used for pro-active slice management at runtime. ML can also be combined within 

the APEX policy engine for deciding between the different available policy tasks – here a classification 

engine, or a Reinforcement Learning algorithm could be used to decide on the weights between the 

different policy tasks, etc. 

The optimization of the resources thanks to the AI/ML techniques enables a better usage of the resources 

in the infrastructure. Models trained in the APEX system can be enhanced with the historical information 

that is stored in the dataset, gathered by the Monitoring tool (both infrastructure and performance) to 

enlarge the knowledge of the automated the decision-making tool. 
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3.3.5 Security 

As discussed in Section 3.2.3 AI/ML techniques are already being applied to the detection of security 

incidents. Researchers though are investigating how to bring AI/ML techniques one step further, by not 

limiting their application to the detection phase, but also enabling these techniques to respond to the attack 

by acting on the network. 

Table 3-11 includes two network security related use cases presented in this section, while providing the 

interested reader with additional resources developed in the corresponding 5GPPP projects. 

Table 3-11 Use cases for network security related aspects  

Use Case 5GPPP Project Additional references 

Moving Target Defence for Network Slice Protection INSPIRE-5GPLUS [243] 

Robust Self-Protection Against App-Layer DDoS Attacks INSPIRE-5GPLUS [56], [55] 

3.3.5.1 Moving target defence for network slice protection 

Classic static security approaches, such as firewalls, security protocols, authentication and encryption are 

necessary for the hardening and the safety of an ICT system, but they are not sufficient, as it is known that 

there is nothing such as a perfect and safe system. Malicious actors will eventually find vulnerabilities and 

exploits. As the attack surface greatly increased in 5G systems, securing the different verticals and the 

whole infrastructure becomes more challenging. Moving Target Defence (MTD) is a novel dynamic 

security approach performed on 5G verticals and slices, enabled by the virtualization of networks and 

network functions (SDN and NFV). MTD allows reducing the surface attack by dynamically changing 

different elements of the network, like its topology, the address space layout, IPs and port numbers, 

proxies, virtual machines and the instruction set.  This capability makes the attacker’s task more difficult, 

as when he tries to perform reconnaissance and fingerprinting to find a vulnerability, the MTD will change 

the properties of the 5G network slice resources, making the intelligence data gathered by the attacker 

obsolete. Apart from preventing attacks proactively, an MTD based approach can also act to mitigate one 

in an adaptive and efficient manner.  

In our solution, the MTD framework shown in Figure 3-33 uses two components:  

 MTD controller, MOTDEC, which is responsible for enforcing MTD actions  

 An ML-driven Optimizer for Security Functions, namely OptSFC, that provides MTD strategies 

to maximize its attack prevention/mitigation, to minimize computational costs, and keep under 

control the QoS of the network services, keeping them under the requirements of the Security 

Service Level Agreement (SSLA).  
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Figure 3-33. MTD for network slice protection 

In other words, the MTD requires a cognitive system that dynamically determines what to move, where to 

move and how to move, based on the received input and on the action costs, in order to facilitate an 

optimal mitigation action. AI/ML techniques enable MTD to be trained on how to evaluate the cost of 

different security actions based on the actual state of the network and on the gravity of the threat (both of 

which are modeled and quantified during the learning process). For this purpose, OptSFC will model the 

state of the network using an incomplete information Markov game, as the defender does not know 

directly what the attacker is doing, but can perceive it through the network changes or the notification of a 

security agent. To this end, OptSFC is fed with real-time monitoring data provided from the NFV 

management and orchestration, as well as threat intelligence and anomaly detection alerts coming from 

security agents as shown in Figure 3-33. The Markov Decision Process (MDP) built will then be used for 

the training of a Reinforcement Learning (Deep Q-Learning DQL) agent, integrated in OptSFC and 

providing an MTD policy to the enforcer, MOTDEC. Therefore, to direct the MTD towards the optimal 

solution, our security approach relies on the usage of AI/ML, which allows the system to continuously 

learn and optimize its actions. 

3.3.5.2 Robust self-protection against app-layer DDoS attacks 

The expected high bandwidth of 5G and the envisioned massive number of connected devices will open 

the door to increased and sophisticated attacks, such as application-layer DDoS attacks. Application-layer 

DDoS attacks are complex to detect and mitigate due to their stealthy nature and their ability to mimic 

genuine behaviour. To tackle this issue, a robust application-layer DDoS self-protection framework that 

empowers a fully autonomous detection and mitigation of the application-layer DDoS attacks leveraging 

on Deep Learning (DL) and SDN enablers can be used. The DL models have been proven vulnerable to 

adversarial attacks [54], which aim to fool the DL model into taking wrong decision. To overcome this 

issue, the DL-based application-layer DDoS detection model is made robust to adversarial examples.  

Figure 3-34 depicts the basic architectural components of the proposed solution to mitigate the 

application-layer DDoS attacks in a fully autonomous way. The “App-Layer DDoS Protection” 

component is in charge of detecting the malicious activity and issuing the security policy in case the attack 

is detected. It consists of four main modules: the “Network Flow Collector”, the “Features Extractor”, the 

“Detector” and the “Security Orchestration Plane”. The Network Flow Collector permanently collects 

network flows via port mirroring. To limit the impact of mirroring on the net- work performance, only 

traffic flowing from/to the monitored asset (e.g., Web server) is mirrored. The collected traffic is 

periodically exported to Features Extractor to retrieve flow’s features relevant to application-layer DDoS 

attack detection. Once extracted, the network flow features are passed to the Detector for uncovering 
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suspicious behavior. The detection is performed by DL model built using Multi-Layer Perceptron (MLP) 

algorithm. The proposed model consists of 1 input layer, 2 hidden layers with 64 neurons each, and a two-

class softmax output layer. The model’s input is the flow features received from the Extractor, while its 

output is the traffic class; that is, DDoS traffic or legitimate traffic. If a malicious traffic pattern is 

identified, the Detector issues a security policy (e.g., flow dropping or steering) to the Security 

Orchestration Plane. Upon receiving the security policy, the Security Orchestration Plane converts the 

policy into a flow command and sends it to the SDN controller. Based on the received flow command, a 

flow rule is pushed by the SDN controller to the corresponding virtual Switch (vSwitch) to fulfil the 

defined security policy.  

 

Figure 3-34. The Robust App-Layer DDOS Self-Protection Framework’s High- Level Architecture 

The framework’s robustness stems from its ability to mitigate adversarially-generated App-layer DDoS 

attack flows; that is attack flows generated in a way to evade detection by a ML-based detector. To this 

end, the adversarial training defence [55] is adopted to make the MLP model robust to white-box evasion 

attacks. In adversarial training, the MLP model is explicitly trained on adversarial examples in order to 

learn how to resist them. The white-box attack Fast Gradient Sign Method (FGSM) [129] is considered for 

the purpose of this work. FGSM generates adversarial examples by performing a one-step gradient update 

in the direction of the gradient’s sign of the loss function relative to the input. The input is than altered by 

adding a perturbation that can be expressed as: 𝜂 = 𝜖. 𝑠𝑖𝑔𝑛(∇𝑥𝐽(𝜃, 𝑥, 𝑦)), where x is a sample (i.e., 

network flow), y is label of x, 𝐽(𝜃, 𝑥, 𝑦) is the loss function used to generate the adversarial example and 𝜖 

is the perturbation magnitude [55]. 

The devised framework is implemented and deployed on an experimental testbed [56]. The performance 

results show the effectiveness of the proposed framework in protecting against application-layer DDoS 

attacks even in presence of adversarial attacks. 

3.3.6 Application functions 

The integration of the application domain and the mobile network domain has become a critical aspect in 

5G networks, which target the adoption of this technology in vertical domains like automotive or 

manufacturing. Supporting verticals over 5G networks has been one of the key areas of interest of the 

5GPPP community [10]. In this section we provide example about how AI/ML techniques can be applied 

to support application functions in 5G networks. 

App-Layer DDoS Protection

Security 

Orchestration 
Plane

Security 

PolicyConfig
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Table 3-12 describes two application function related AI/ML use cases presented in this section, while 

providing the interested reader with additional resources developed in the corresponding 5GPPP projects. 

Table 3-12 Use cases for application function related aspects 

Use Case 5GPPP Project Additional references 

Dash prefetching optimization 5GZORRO [169], [336]  

Q-Learning application to federated scenarios 5GROWTH [29], [42] 

3.3.6.1 Dash prefetching optimization 

Video content is the dominant traffic on the Internet due to content popularity and the high bitrate required 

compared to other mobile applications. Cisco anticipates that video content will constitute more than half 

of the traffic crossing mobile networks by 2022 [62]. With the ongoing deployment of 5G networks, the 

expectation for high-quality 4K/8K video streaming over mobile networks has also raised. The emerging 

MEC technology allows MNOs to provide services at the edge of the network. Considering the scarcity of 

physical resources at the edge and high storage demand of video content, effective management of video 

traffic at the edge by MNOs will become increasingly critical to satisfying end-users with the promised 

QoE as they stream higher volumes at higher bitrates. 

Currently, dynamic adaptive streaming over HTTP (DASH) [198] is the dominant video delivery standard 

and has been adopted by most content providers like YouTube and Netflix [52]. Videos in DASH are split 

into equally sized segments available at multiple video bitrates. The dynamic nature of mobile networks 

necessitates adjusting video bitrate based on the network and playback buffer's status. The process of 

requesting a video segment is performed by the adaptive bitrate (ABR) algorithm, which utilizes 

monitoring data and adjusts the next segment request's bitrate to maintain the highest achievable QoE for 

the users. 

Caching video content closer to the users, at the mobile edge nodes, yields benefits both for the users and 

the MNOs. It decreases users' content access delay, improving their QoE while also mitigating the load on 

the backhaul link for the MNOs. Nevertheless, the mobile edge nodes' limited capacity calls for intelligent 

decisions on what content to cache and where to cache it to improve QoE while also efficiently using the 

network resources. Despite the notable advantages of in-network caching, it cannot be a practical solution 

for DASH video streaming in the context of mobile networks. First, the number of users served from a 

gNB is usually relatively small, and since segments are downloaded in sequence, caching a segment might 

not be re-used by many of the users served from the same gNB. Therefore, it is likely to see a low cache 

hit ratio for most of the cached segments. Second, caching proves its usefulness when the cached segment 

is used more than once. In other words, in any case, the first user that requests a segment will be served 

from the main video server, and the user will experience a poor QoE. 

Therefore, novel solutions must address this issue of pre-fetching video segments to the edge before the 

segment is requested. Content pre-fetching is a technique to anticipate the requests and move the contents 

close to the end-user based on the predictions, aiming to reduce the time for delivering the content to the 

user and avoid excessive backhaul bandwidth utilization. Pre-fetching requires being performed 

intelligently to avoid excessive pre-fetching of video contents that are less probable to be requested by the 

users, resulting in extra storage and bandwidth utilization [169]. In this regard, prediction, anticipatory 

pre-fetching, and caching of video segments of the right bitrate during streaming at the mobile edge nodes 

play a pivotal role in MEC-enabled DASH video streaming. MEC's services (e.g., RNIS) can be greatly 
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used by the system to make proper predictions. Moreover, novel techniques are required to efficiently 

employ the knowledge produced by predicting user behavior to pre-fetch the contents. 

Performing predictions in radio access networks (RANs) is especially challenging due to frequent changes 

in physical channel conditions and the availability of different radio access technologies. Employing ML 

to predict specific metrics (e.g., channel throughput) for RAN has gained importance in the past years. 

Within the context of DASH, the state-of-the-art ML works have mainly focused on bandwidth estimation 

at the client, which constitutes an input to most ABR algorithms as well as predicting several parameters 

that the ABR algorithm uses for requesting future segments (e.g., client bandwidth, buffer, and bitrate of 

previously requested segments). Supervised learning algorithms such as random forest, extreme gradient 

boosting, support vector machine, and neural networks are examples of ML algorithms that have been 

extensively applied to this problem. 

3.3.6.2 Q-Learning application to federated scenarios 

The 5G networks require the concept of federation to orchestrate network services across multiple 

administrative domains. In such context, the consumer domain, which is the domain managing the whole 

orchestration process, needs to deploy part of the service to an external provider domain. For each 

requested service from the vertical users, the consumer domain needs to decide how to deploy the service. 

There are three deployment options: (i) to instantiate locally, (ii) federate or (iii) reject a vertical request. 

For each decision generated, the goal is to satisfy the vertical requirements and maximize the profit of the 

consumer domain.  

Greedy heuristics strategies [29] show that the decision can affect the profit outcome. Applying a 

reinforcement learning strategy, such as Q-learning, can generate more profitable deployment decisions in 

a federated ecosystem.  

 

Figure 3-35 A Q-learning decision scenario to maximize operator's revenue 

The work in [41] depicts the scenario of Figure 3-35, where a Q-learning agent is applied to generate 

decisions in the consumer domain. The idea in [41] is to train the Q-table agent through trial and error (of 

the deployment options: local, federated, reject), and to learn to generate more profitable decisions. For 

that, the agent is endorsed for every positive decision and penalized for every wrong decision (e.g., 

deploying locally a service that exceeds the local capacity). The results of the Q-learning cumulative profit 

are compared against a greedy, non-federating approaches and the optimal revenue for a given set of 

vertical requests. Although the results show near optimal profitable income, the future application of deep 

learning approach should increase the revenue performance. 
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4 Architectural aspects 

This section discusses the impact of AI/ML in network architectures. It presents specific architectural 

solutions introduced in 5G PPP projects, and discusses the requirements for ML model lifecycle and 

interface management. The chapter includes a reference to global activities, either in the context of 

standardization organizations or open-source initiatives. It discusses trust in AI/ML-based networks and 

provides a brief overview of AI/ML-based KPI validation and system troubleshooting. 

4.1 Application of AI/ML in a network architecture: 5G PPP 

solutions 

This section provides several 5G PPP solutions that requiring the deployment of dedicated frameworks for 

the support of AI/ML solutions. These solutions require appropriate modifications in the overall 

architecture. As there are global activities that also provide their approaches for introducing AI/ML in the 

networks, the last subsections maps the 5G PPP solutions to the global activities. 

4.1.1 AI-based autonomous slice management, control and 

orchestration 

AI based 5G autonomous network slice management, control and orchestration is achieved through an 

innovative architecture based on an enhanced Monitor-Analyse-Plan-Execute-Knowledge (MAPE-K) 

loop, as shown in Figure 4-1 [247]. Firstly, the Monitoring Sub-plane gathers concerned metrics and other 

contextual information such as metadata from the infrastructure especially the underlying 4G/5G network 

data and control planes regarding network and cloud resources, user traffic flows and network topology. 

These monitoring data are fed into a Data Lake in the Information Sub-plane, and the Data Lake processes 

the data through aggregation and Big Data analytics. Then the analytic outputs are sent to the Cognition 

Sub-plane, where further AI/ML-based analyses are conducted with further aggregation from other 

sources especially feedback from vertical end users including User Equipment and subjective quality 

evaluation of their services via the One-Stop API (OSA) and Plug & Play Control. The outcomes are 

employed to either update existing policies/rules or create new ones regarding network management, 

control and orchestration tasks, with a focus on network slicing, by the Policy Framework. These policies 

are then implemented by the Orchestration Sub-plane, which orchestrates the required actions based on the 

policies and the required resources for such actions. The orchestration is performed both vertically across 

resources, slices and services and horizontally across various Network Service Provider (NSP) domains 

involved in delivering the services. Quality of Experience (QoE) and FCAPS management is also in place 

in this sub-plane to ensure the performance of the system. The actions orchestrated are executed through 

the Control Plane, which is an overlay plane on top of 4G/5G and beyond network infrastructures 

comprising data and control planes in themselves. The Control Plane consists of a set of adapters and 

controllers specific to each network segment within each domain, covering RAN, MEC, backhaul, data 

plane programmability (DPP) for all the links between segments, and wired area network for inter-domain 

slicing-friendly communication. These adapters and controllers ensure the actions are executed in the right 

segment and in a technology-agnostic manner to be applicable over heterogeneous underlying network 

infrastructure technologies. After the execution of the actions, the monitoring process regarding the new 

network and service status continues the next-round loop and closes this loop. Through the above closed-

loop operations, autonomous network management, control and orchestration are achieved. Based on the 

above architecture and procedures, two ITU-T Draft Recommendations have been created. One 

recommendation [83] focuses on ML-based network slice management and orchestration across multiple 

NSP domains. The other one [84] emphasises the schemes to allow vertical users to influence the run-time 
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optimisation of their network slices. ML algorithms for this purpose can be on boarded on demand at 

runtime through the P&P control framework developed and demonstrated in [245].  

 

Figure 4-1: Overall architecture for AI based autonomous management, control and orchestration 

4.1.2 AI/ML-based scaling operations in a network service 

orchestration platform 

The autonomous assurance of service level agreements (SLA) is the next big challenge in 5G networks to 

foster the advantages introduced by NFV/SDN paradigms to automate the network management. For that, 

management and Orchestration (MANO) platforms can rely on AI/ML techniques to automate the 

triggering of network service scaling operations aimed to re-establish the requested SLA. The E2E vertical 

service platform designed and developed in [238], based on the ETSI NFV architecture and specifications, 

integrates such techniques also following some of the architectural concepts proposed by O-RAN, still 

under definition. According to such principles, the architecture in [238] defines the AIML platform 

(AIMLP) to perform model training [58], while other building blocks, like its Service Orchestrator (SO) or 

its Resource Layer (RL), oversee the inference task.  

To carry on their AI/ML activities, the AIMLP, the SO or the RL rely on i) the available Vertical Oriented 

monitoring system (VoMS), which is the component in the architecture in charge of collecting monitoring 

data from deployed network services and NFVI; and ii) the integrated data engineering pipeline in charge 

of ingest, process and analyse the data. The data engineering pipeline included in the platform relies on 

well-known open-source tools, namely, i) Apache Kafka to ingest the data used to perform AI/ML 

decisions, ii) Apache Spark to generate models from training data and to perform inference, and iii) 

Apache LIVY as a REST-API to interact with Apache Spark to submit/terminate the different training or 

inference jobs. The fact of using such open-source tools provides the platform with reliability and the 

access to a great variety of AI/ML techniques.  

Though the framework can handle any AIML-based problem, in the case of AIML-based scaling 

operations, the SO, in charge of the lifecycle management of network services, has been evolved to 

coordinate the process thanks to the existence of a new proposed information element extending the ETSI 

NFV-IFA 014 NSD template. This new IE expresses the need of interaction with the AIMLP to configure 

AI/ML-based decisions for a given MANO problem (in this case “scaling”) and specifies the metrics out 

of the ones already defined for this kind of network service in the NSD field “monitored Info” required by 
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this AI/ML problem to perform its decisions. Based on some contextual information (e.g., initial 

instantiation level) and the required monitoring information, the SO launches an inference job which will 

decide the best instantiation level in the current network conditions, triggering the scaling operation if the 

decided instantiation level does not coincide with the current instantiation level. 

A complete description of the architectural evolution of the SO and its operational workflow to support 

the scaling-based operation is presented in [132]. This architectural evolution shows the required 

interaction with the AIMLP to obtain the corresponding model and the inference file and the inclusion of 

the open-source tools to run the inference process triggering the possible scaling operation. Additionally, 

[132] presents an experimental evaluation of the additional operations required to configure the AI/ML-

based scaling process during different instants of the network service lifecycle management, namely 

instantiation, run-time, and termination. This evaluation shows that AI/ML-related service handling 

operations (1-2 s.) are well below instantiation/termination procedures (80/60 s., respectively). 

Furthermore, online classification, which in this evaluation is performed with a random forest classifier, 

can be performed in the order of hundreds of milliseconds (600 ms). Currently, the most time-consuming 

operations are the ones involving interaction with the Apache Kafka open-source tool to publish/consume 

the data. This work sets the foundations for further study on the use of different AI/ML techniques to 

derive models for the scaling problem in a real experimental system and see, for instance, its impact in the 

inference time.  

In terms of AI algorithms, more advanced AI/ML techniques can be explored to make smarter scaling 

decision to handle the traffic dynamicity and resource utilization. On the one hand, under-provision of the 

necessary computing and network resources will cause a network inability to support the incoming traffic 

loads and will thereby affect service performance; on the other hand, resource over provisioning can result 

in idle VM instances and therefore an avoidable cost for the network operator. Taking this fact into 

consideration -and since service workload is constantly changing-, achieving automatic up- or down-

scaling to respond to the dynamic service requests is challenging. To this end, a proactive Machine 

Learning (ML) classifier and especially a Multilayer Perceptron (MLP) is proposed in order to proactively 

make scaling decisions based on (near) real-time network traffic statistics. The VNF auto-scaling problem 

is a supervised ML classification problem since in order to train the MLP model, a dataset including 

seasonal/spatial behaviour of network traffic load as features as well as previous VNF scaling decisions is 

used to generate scaling decisions ahead of time. Those features include traffic measured at time τ, traffic 

change in a period of time, average number of user connected in each cell in a period of time, etc. The 

classification output is the number of VNF instances required to accommodate future traffic loads without 

violating QoS requirements and deploying unnecessary VNF instances saving significant costs for the 

network owners as well as leasers. 

In addition to the problem of inefficient resource utilization and traffic dynamicity, network performance 

may be significantly impaired when several independent management functions take actions on shared 

computing or network resources to optimize individual objectives. For example, to efficiently provision 

resources (CPU/memory), uncoordinated auto-scaling actions of concurrently operating management 

loops result in conflict events when resources are constrained, thereby leading to SLA violations and 

worse, suboptimal network performance. While a centralized auto-scaling algorithm would ideally not 

result in conflicting actions, a central orchestrator would be inefficient in detecting and resolving such 

conflicts during run-time when management loops need to operate in the order of milliseconds or less. 

Therefore, a decentralized solution framework is proposed that encourages management functions to take 

mutually cooperative actions optimizing performance from a network-wide view. To address these 

challenges, Multi-Agent Reinforcement Learning (MARL) [53], a sub-branch of RL is proposed in which 

several agents learn from their interactions with the environment. Here the management functions are 
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modelled as agents. Although usual drawbacks for such an approach such as the curse of dimensionality 

and non-stationarity of the environment persists, smart techniques to include only relevant information 

about neighbouring agents, such as in [142] reduce the state space and learning within the multi-agent 

environment. By allowing the agents to learn the dynamics of the environment during the exploration 

phase, they achieve conflict avoidance behaviour, thereby reaching close to optimal performance. 

4.1.3 AI/ML as a service in network management and orchestration  

An AIML as a Service (AIMLaaS) platform has been designed that allows exploiting AI/ML models for 

the various decision points embedded in a 5G management and orchestration stack [238]. Examples of 

relevant decisions that would benefit from the AIMLaaS platform include network slice arbitration in the 

Vertical Slicer component, NFV network service deployment and federated provider selection in the 

Service Orchestrator component, path re-computation at the Resource Layer component, as well as any 

SLA management-related algorithm at any of the above layers (e.g., to decide on NFV network service 

scaling). 

The models can be uploaded to the AIMLaaS platform by any authorized external user. Such models can 

be already trained and inserted simply along the necessary file to then perform inference, or to-be-trained 

models. In the latter case, the user can provide a suitable data set to be exploited for the training phase. In 

both cases, the user can specify (i) the scope of the model, i.e., the type of decision to be used for, such as 

service scaling or service arbitration, and (ii) the type of service the model/dataset should be used for, such 

as digital twin or video provisioning. When the external user uploads to the platform a to-be-trained 

model, it is the platform itself that takes care of the training and records the corresponding timestamp and, 

potentially, a validity time lapse. If no dataset is uploaded along with the to-be-trained model or whenever 

appropriate, the AIMLaaS platform can exploit the data collected through the monitoring platform about 

network/computing resource utilization or performance, or vertical service target KPIs. The configuration 

of the monitoring platform to gather the monitored data, its aggregation (e.g., through Kafka), and their 

feeding as input for real-time model execution in the corresponding building block also need to be 

properly set up. 

Models stored in the AIMLaaS platform can be accessed by an architecture entity through a REST 

interface, by expressing the aforementioned scope and type of service. In this sense, an efficient 

interaction for model discovery, selection, and delivery must be defined. Furthermore, it is envisioned that 

an accuracy performance, and when training is executed, latency performance should be derived and 

provided by the AIMLaaS platform to the entity requesting a suitable model. Interestingly, a publish-

subscribe paradigm could be also be implemented, in order for other entities to receive up-to-date models 

by the AIMLaaS platform. 

The AIMLaaS platform is being integrated in the regular project’s service lifecycle management 

workflows, including its interaction with the monitoring platform [238]. In this way, the MANO stack, the 

AIMLaaS platform and the data engineering pipeline are being integrated towards automated and efficient 

network management. 

4.1.4 Architecture aspects to enable ML in the verticals' domain 

Although 5G networks can equip their network operations and management with internal AI functions, it 

is unavoidable to allow external parties for offering AI applications and services to empower the analytics 

capability of the network for two reasons. First, it is costly and resource-consuming to run powerful and 

advanced AI/ML algorithms inside the network, especially when the AI-driven management services are 

not always required by customers. Second, it is hardly possible to include all AI-driven services required 
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by each customer inside the network, especially when the customers’ requirements are highly dynamic. 

Therefore, it is more realistic to expose certain network data and management services to vertical 

customers and applications. Doing so could achieve better customer-oriented service performance. 

However, it also brings a challenge on network stability as sometimes the customer’s intervention may 

cause confusion, conflicts or even failures. One practical and effective way is to expose network 

monitoring functionality and allow customers to run their own advanced AI/ML mechanisms to solve 

certain performance optimization problems. The produced recommendations can be considered by 

network operators. In [194], four exposure levels are considered, from the infrastructure and NF level to 

the NS and E2E service level. Lower levels of monitoring exposure (Level 1 and 2) offer limited datasets 

and abstract knowledge about the network conditions, which is mainly suitable for reactive analytics such 

as logistic regression. As a consequence, external AI is expected to be more proactive and advanced, e.g., 

deep reinforcement learning or long-short term memory cells neural nets (LSTMs). Higher levels of 

Monitoring exposure (Level 4 and 3) allow external parties for deeper network management and provide 

more detailed knowledge about the network conditions, including infrastructure and elements, which 

encourage proactive analytics built-in inside the network. Then external AI could run relatively simpler 

reactive analytics to complement the internal AI inside the network. In a word, external AI functions are 

complementary to the network built-in AI. With an increase in the exposure level, the analysis complexity 

is shifted from the customer’s side to the network’s side. Proper design and analysis is needed to allocate 

the AI responsibility between network operators and customers. In addition, Intelligence is needed to 

mediate and evaluate the recommendations from multiple customers towards the same network operations 

or network elements and make the best decisions [194].  

4.1.5 Cross-layer optimization framework using ML 

In this section, a framework for Autonomic Network Management (ANM) and network reconfiguration 

combining Software Defined Networks (SDN) with Software Defined Radio (SDR) via Network Function 

Virtualization (NFV) enabled Virtual Utility Functions (VUFs) is introduced [272]. The objectives of the 

proposed Autonomic Network Management Optimization in SDR environments (ANMO-SDR) 

architecture, include reconfiguration flexibility, efficient use of the bandwidth, as well as, efficient and 

transparent Device-to-Device (D2D) communications, without interrupting the primary network operation. 

The framework exhibits the Monitor-Analyse-Plan-Execute (MAPE) closed-loop function, implementing 

cognition through a learning model, in which past interactions with the environment guide current and 

future interactions, resulting in intelligent enhancements [271]. The proposed framework focuses on the 

three lower layers of the protocol stack, namely the Physical, Medium Access Control and Network 

layers, which are extended to include a vertical cross-layer interconnection. The entire stack is realized 

individually in each Mobile Node (MN) [148]. Specifically, the physical layer is enhanced with SDR 

features such as spectrum sensing. 

The main functionalities are implemented in a cross-layer Resource Channel Allocation (RCA) 

mechanism for Cognitive Radio Networks (CRNs) that combines a Markov Random Field formulation 

with Gibbs sampling and allows the distributed and efficient operation of each secondary user. According 

to this, each MN seeks to “minimize its energy” by minimizing the cumulative neighbourhood energy 

function comprised of the sum of its singleton and pairwise doubleton potentials [148]. The state of each 

device depends only on the states and the information of its neighbours. Gibbs sampling can be applied by 

each device individually, reaching global optima through local sampling. Cumulatively, this distributed 

sampling converges to global optimizers of the system. Localized interference information is incorporated 

into the RCA mechanism via the inclusion of the cost vector in the second order potential function, which 

is constructed and maintained by a reinforcement learning algorithm, i.e., by adding a predetermined 
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penalty (award) after every unsuccessful (collision-free) transmission to the respective channel 

component. 

The cross-layer functionality related with the involved entities and the respective Autonomic Control 

Loop (ACL) are presented in Figure 4-2. Complying with the SDN concept, the proposed framework 

allows the decoupling of the control and data plane, where the latter implements only the data forwarding 

related operations and does not perform any type of control. As far as non-control functionalities are 

concerned, the three layers remain essentially unaltered compared to the traditional protocol stack. 

Specifically, the data plane of each MN is responsible for providing the ambient information of each 

individual layer to build self- and environment-awareness, through the information collection component. 

This cross-layer information from the data plane includes information about the gains of the wireless 

channels, the interference among the communication links and various network parameters such as queue 

lengths or the number of active traffic flows. 

 

Figure 4-2: NMO-SDR cross-layer functionality [272] 

Contrary to the data plane, the control plane is responsible for the decision making component, performing 

the RCA. The control plane utilizes the information collected by the information collection component 

and then decides the execution of the respective action, implemented by the execution component, 

returning feedback to the three layers (i.e., transmission channels, power level, etc.). In particular, the 

control plane of each MN, through the SDN controller interface, interacts with the control plane of the 

SDN controller by exchanging signalling messages. Accordingly, the SDN controller is responsible to 

arrange virtual resources to compute the Virtual Utility Function (VUF) related with the selection of the 

most efficient channel allocation, as requested by each MN. 

Subsequently, the VM, dedicated to each MN, sends through the SDN-controller the relevant computation 

instance of the VUF to the requesting MN, enabling it to assign available channels according to its desired 

operational requirements. The chosen channel by each secondary user is communicated to the 

neighbouring secondary users, which update their status and sequentially proceed to the VUF 

computation, as a recurring process. The decision making is further enhanced by the SDN controller, 
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which enforces global policies (i.e., “globally minimize collisions”, or enforcing a faster “best effort” 

channel allocation) regarding resource allocation for all three layers. 

The reinforcement learning algorithm is designed with the purpose of increasing the spectrum utilization 

by minimizing the number of non-assigned available channels at each secondary user. To quantify the 

desire for increased bandwidth and fulfilled QoS requirements that drives each node to demand more radio 

resources (channels), a sigmoid utility function is employed, which depending on the parametrization can 

be used for different services with diverse objectives, based on the policies of the SDN controller. The 

potential function of doubleton cliques expresses the energy cost inflicted by the interaction of 

competitive secondary users and seeks for a joint optimization of physical-MAC layer operation. Through 

the assignment of orthogonal vectors between competitive users, collision-free secondary transmissions 

are guaranteed and channel congestion is avoided. Thus, the achieved spectrum utilization addresses the 

primary goal of CRNs (i.e., increase of spectrum utilization without interfering primary users. 

Additionally, the approach promotes the fair allocation of resources, since no particular node is constantly 

assigned more channels in comparison to the others.  

4.1.6 Third party ML analytics for network operation optimization  

This contribution targets one of the challenges in the deployment of end-to-end services and applications: 

the lack of visibility between the network’s domain and the domain of the vertical service. As a 

consequence, the relationship between network KPIs collected from the networks and the application KPIs 

measured by customers is not known and the impact on each other cannot be easily formulated. As such, 

the customer might see effects of network events that it is not aware of, and the network might become 

over-/under-loaded without knowledge of changes in the service. The idea is to run third party ML 

analytics to optimize service performance and potentially network operations. Once vertical use case 

services are deployed and activated, a set of network KPIs are collected and sent to an ML engine, 

together with network operation metadata (e.g., slice status, etc.) [240]. In addition, the customers 

themselves can measure the KPIs of their applications, which will also be sent to the ML engine. Using 

the ML solution for correlation, the customers aim to learn the relationship between these two seemingly 

different sets of KPIs and also enable predictive optimization of network and service performance. 

The learnings on the correlation enable customers to gain a better understanding of how their applications 

perform under certain network conditions. As a result, customers’ analytics can provide alarms, 

predictions, and/or recommendations to network operators once certain performance issues are detected 

from their side. In this way, network operations will be adjusted based on requests from customers, which 

makes the network operations more customer-oriented or QoE-driven. The following ML-based analytic 

solutions are envisioned [240]: 

 Correlation and Clustering: One way to find the relationship between KPIs is to detect 

similarities between KPI trends based on their behaviour over time. This can potentially be used 

for root cause analysis and determining whether a change in a KPI causes a performance issue in 

another. Further, by finding groups of KPIs that have similar temporal behaviour, monitoring can 

be scaled down to single KPIs from a group of strongly correlated KPIs rather than continuously 

monitoring all KPIs. Some of the methods to find similarities between time series include 

correlation (Pearson’s, Kendall’s, etc.) and Dynamic Time Warping. Once correlations between 

KPIs are calculated, they can be used to cluster KPIs that share similar behaviour over time using 

algorithms such as Hierarchical or Graph clustering. It is important to note that correlations, while 

indicating similarities between time series, do not necessarily indicate a causation and that needs 

to be further investigated by the application owners. 
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 Anomaly Detection: KPIs collected from different domains can sometimes suffer deviations from 

expected values that can indicate issues in the network and/or a drop in performance in the 

vertical service. Anomaly detection of time series enables the system to determine when 

monitored KPIs are out of expected range by a comparison to their historical values. Some of the 

methods used for anomaly detection include Median Absolute Deviation (MAD), Auto-

Regressive Integrated Moving Average (ARIMA) and recurrent neural networks such as Long 

Short-Term Memory (LSTM). 

 Prediction: Since KPIs from different domains can have a direct impact on each other, this 

relationship can be used to predict future values of KPIs based on historical values of other 

monitored KPIs. Further, prediction can also be used in automation, e.g. a predicted out of bounds 

value in the next interval could trigger a pro-active, corrective action. The ML algorithms used for 

prediction of time series data vary from classic algorithms such as decision trees and random 

forests to newer approaches based on artificial neural networks (ANNs) such as Multi-Layer 

Perceptions (MLPs) and Convolutional Neural Networks (CNNs). 

4.1.7 AI-based anomaly detection for 5G and beyond networks 

This section analyses and identifies new requirements, features, enablers and adaptations needed to 

integrate AI-based anomaly detection systems on multi-tenant and multi-domain 5G networks. Current 

AI-based solutions for cyberattacks detection such as [211], are not yet fully adapted to work with 5G 

traffic, in particular requirements raising from envisioned real-life 5G networks: 1) The AI-based anomaly 

detection system should support handling multitenant and multi-domain network traffic, so that the 

network can be exploited concurrently by different kind of verticals. 2) Scalability, as the AI-based 

system should be able to handle millions of data coming from different devices, and network elements, 

thereby supporting mMTC scenarios on real-life scenarios such as ambient monitoring in smart-

agriculture. 3) The AI-based system should be able to consider the real-time data-path analysis under very 

demanding network conditions rising from different 5G services requirements, eMBB services for 

broadband-communications e.g. video surveillance in smart-cities, URLLC services with low-latency 

requirements, e.g. Robot control in industrial automation. 4) The AI system should be self-adaptable with 

reinforcement capabilities to consider dynamically additional features in the analysis. 5) The AI system 

should be supporting efficiently the management and control of heterogeneous network traffic. 6) Flexible 

and adaptive management of the AI system itself. 7) Interoperability in the AI management with 

common data-models with different kind of features, datasets, attacks/threats and heterogeneous kinds of 

network traffic. 8) Fully distributed, the AI system should be run in a fully distributed way and should 

consider the privacy-preserving issues in federated learning, where different verticals and operators might 

collaborate to come up with enhanced and scalable detection AI systems and models. 

To cope with those requirements, a novel AI-based virtual network functions and associated monitoring 

agents can be automatically orchestrated, delivered and enforced on demand as virtual network functions, 

to perform deep packet inspection on real time on the data path identifying flows and meaningful features 

and then, detect, in a distributed way, anomalies on the 5G network traffic that might occur at any network 

segment of the multi-tenant, multi-domain 5G-IoT networks. 

The system should be endowed with a monitoring and deep packet inspection module that will work 

exclusively with 5G multi-tenant traffic. Due to the inclusion of new protocols to make the network 

virtualization in tenants possible, as well as to continue guaranteeing user mobility, 5G multi-tenant 

packets will appear encapsulated with protocols such as GTP and VXLAN, so our module must be able to 

parse packets with this structure and extract metadata correctly. This parsing will be done at a very low 

level by handling manually defined data structures and offsets, in order to obtain quite competent 
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performance in execution times, which is necessary for the rest of the system since where more time must 

be spent is in the rest of the modules, as we described before. 

The system being designed and developed in [244] will be deployed mostly between the edge and the core 

of a 5G network, so that early detection of the attack is guaranteed. On the other hand, it will be able to 

carry out mitigation actions once an attack has been detected, communicating with the Management 

Framework and making use of SDN techniques to include new security policies in the network such as 

filtering, redirection to honey-nets, and so on. 

On the other hand, we will also make use of Federated Learning techniques to perform the training phase 

of the proposed AI models, so that we can access more realistic data, and generally private, present only in 

devices at the edge of the network, increasing the total effectiveness of the whole system. In our proposed 

federated scheme, several clients that are part of the federated training network, will be able to send and 

receive data from other 5G clients in order to perform a more effective and less costly training process, 

and to do so we will guarantee both the anonymity and the privacy of the data shared with SMC and 

Differential Privacy techniques, among others.  

In a separate project effort and due to the heterogeneity of the supported services, an anomaly detection 

module is being developed, which will be capable of analysing aggregated and fine-grained data such as 

resource-level data (e.g., computing and storage resource utilization, RAN measurements etc.), flow-level 

data, service KPIs and infrastructure KPIs as well as traffic patterns and mobility patterns (if available), in 

order to identify network anomalies and their root cause [238]. This project investigates the anomaly 

detection problem within the following data analytics types:  

 Descriptive analytics to answer “What is happening or happened in network infrastructure?” for 

detecting the anomaly.  

 Diagnostic analytics to answer “Why did it happen or is happening in network infrastructure?” to 

detect root causes of the anomaly.  

 Predictive analytics to answer “What is likely to happen in network infrastructure?” to predict 

future anomalous behaviour based on previously detected anomalies. 

 Prescriptive analytics to answer “What do I need to do in network infrastructure?” to take 

mitigation action against the root cause of the anomaly to enable fast recovery. 

 

The platform in [238] is expected to manage and orchestrate multiple services simultaneously. For better 

management of services, the performance of those services should be monitored by means of probes. 

Those probes are put into user endpoints to continuously monitor the performance status of infrastructure. 

However, this observation is limited only to the performance of the service and does not contain adequate 

information regarding the root cause of the problems on the service. In this way, it is impossible to 

determine the effect of a problem caused by the provider network on the service. Once the problem has 

been detected by means of probes, mobile network operators can perform root cause analysis by manually 

operating fault management processes. From the perspective of the service providers or verticals, running 

each separate service as planned is critical for the correctness and robustness of the provided services over 

the network infrastructure. The aim of the anomaly detection and root cause analysis is to move towards 

an automated fault diagnosis tool. This module first identifies the anomalies in the infrastructure and later 

detects the root cause of the problems. Different states can be used to quantify and represent service 

quality levels based on observed cumulative KPI values. The states are classified as follows: 
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 Best: The provided services conditions and all related KPI values are as they should be.  

 Good: The provided services conditions are changed with respect to the original best setting due 

to node failure, link failure or incorrect configuration of routing, and minority of the related KPI 

values are not within the expected range.  

 Fair: The provided services conditions are changed due to faulty nodes, faulty link or bandwidth 

saturation, and majority of the related KPI values are not within the expected range.  

 Bad: There is a faulty network element particularly at the service endpoint in the underlying 

network topology, and most of the related KPI values are out of the required range. 

 

Transition from one state to another one can take place depending on variations of KPI values.  

Anomaly detection and root cause analysis module in the platform aims to identify first the state of the 

network and later go one more level deep and identify the root cause of being in that state based on the 

observed KPI values and the help of the recent AI/ML algorithms [238]. To create a training dataset and 

corresponding model using supervised AI/ML algorithms, a controlled simulator/emulator environment 

can also be utilized. In this environment, some perturbations on link, node failures, traffic level saturation, 

congestion, etc. can be created and the effect of each perturbation on relevant KPI values over the whole 

network can be monitored, labelled and stored to be used for training purposes. After training a supervised 

model using the training dataset, inferences on the root causes of the problems can be performed using the 

real-network measurements in the environment. Note that this dataset and model building approach can be 

beneficial for testing complex topologies that are otherwise hard to be created in real-world environments, 

e.g. topologies that cover large areas (e.g. a city or country). 

4.1.8 Management analytics function  

The Management Data Analytics Service (MDAS) [78] follows similar principles to collect, process, 

analyse and provide useful information to network components as ETSI ENI (c.f., 4.3.2). The MDAS is 

responsible for all network slices instances, sub-instances and network functions hosted within a network 

infrastructure. This involves the centralized collection of network data for subsequent publishing to other 

network management and orchestration modules. In the proposed framework, this service is used to 

collect mobile data traffic loads generated in the radio access domain by the individual slices. In 

particular, the MDAS comprises the load level at both NF and network slice levels, provided as a periodic 

notification and expressed either in absolute terms or relative to the provisioned capacity. As a result, the 

MDAS allows building historical databases of the network demands for each base station and slice. 

In general, MDAS can process and analyse network data detect specific events and even make predictions 

about network performance. Network data may include performance measurements, traces, Radio Link 

Failure (RLF) reports, RRC Connection Establishment Failure (RCEF) reports, QoE reports, alarms, 

configuration data, and various other network analytical data. MDAS provides analytics reports that may 

include recommended actions [2], that can be enforced at core network level. Finally, MDAS can be 

exposed, via an Exposure Governance Management Function (EGMF), to external consumers (i.e., other 

network functions) that may subscribe to customized analytics reports. 
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Figure 4-3: The MDAS main functions 

4.2 Management of ML models / functions  

The need for a coherent approach to management of ML models is recognized by standardization bodies. 

ITU-T Y.3172 [130] REQ-ML-MNG-004 states that “The ML architecture is required to support an 

orchestration functionality to manage all the ML functionalities in the network”. According to REQ-ML-

MNG-004, ML model management includes (i) training, (ii) monitoring, (iii) evaluation, (iv) 

performance-based selection and (v) reconfiguration/updating of the ML models.  

Machine learning is used on many levels of the telecom network stack, as demonstrated by the plethora of 

examples in this white paper. This begs the questions of management and governance of these models. An 

AI engine (a term coined in [230]) has been proposed by various projects to provide a central point where 

ML functions are hosted and managed. This could be one central engine or several isolated or connected 

engines per network layer.  

4.2.1 ML model lifecycle management 

ITU-T Y.3172 defines a Machine Learning Function Orchestrator (MLFO) as an entity to support 

management and orchestration of ML functions in networks. The MLFO is a logical entity that monitors, 

selects, controls and chains together ML functions based on specified ML Intents or network conditions. 

The specification defines ML Intent as a declarative description that specifies an ML application. While 

an MLFO function ideally manages the ML models in an autonomous way, a complete automation of ML 

model lifecycle management is not yet state of the art. 

The following sections discuss the different stages of ML model lifecycle management. 

4.2.1.1 ML model training 

ITU-T Y.3172 REQ-ML-MNG-004 recognises that there are various ways to perform ML model training 

(including distributed training), as there are various types of network sources, which generate various 

types of data. The source of data can be a great concern for ML model training: Is the data available from 

life networks or can simulated data be used to train the model? How reliable is the collected data, or how 

accurate is the simulated data? Section 3.2 goes into detail about data considerations, but for the 

perspective of managing ML models, it is important to know what data a model was trained on to better 

manage the model lifecycle. 

Another aspect to training ML models is where the training takes place. ML models can be trained on 

premise in the network, on premise close to the data source (e.g. data lake), off-premise in the ML 

development lab or off-premise in the cloud. Each of the options implies different trade-offs in scalability, 

security, model accuracy and data access. For example, an ML model that is trained on premise on live 

network data will be most accurate and up to date but will likely take more time to train due to lower 
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computational resources (compared to cloud) and may cause undesired network disruptions, depending on 

the type of ML model training
4
. On the other hand, ML models can be trained fast and safely in the cloud, 

but for that the network data needs to be taken from the network into the cloud. This can cause data 

protection issues, which in turn can lead to data cleansing/anonymization and therefore a reduction in 

accuracy for the ML model. The best way to train the ML models has to be determined following a careful 

use case analysis and prioritisation of the different trade-offs. 

4.2.1.2 On-boarding/deployment of ML models 

ML models that completed training need to be deployed into the network to start their dedicated tasks of 

inference, prediction or control. ITU-T Y.3172 REQ-ML-MNG-004 states that ML models should be 

selected for deployment according to their performance that has been determined in advance. However, 

depending on how and where the model was trained, issues may arise with regards to unsafe network 

states in cases where an ML model behaves differently than expected. These differences can be due to 

inaccurate data or changed network conditions. Models that were trained outside the network and are to be 

deployed in the network will have to be scrutinised for that reason before they are allowed to interact with 

a live network. When an ML model fails to provide the desired behaviour, it needs to be reconfigured (e.g. 

trained on different data). ML deployment management should involve the definition of responsibilities (i) 

to ensure that the model shows the desired behaviour, and if that is not the case, (ii) to handle the 

reconfiguration. This is related to trust and accountability for AI/ML (Section 4.4). 

4.2.1.3 Monitoring, evaluation and reconfiguration of ML models 

A crucial part of ML model lifecycle management is to ensure that a deployed model behaves as desired 

throughout their lifetime. Even perfect models are likely to degrade eventually due to changes in the 

environment. This includes loss of accuracy because the data distribution changes (data drift) or the 

meaning of the data itself changes (concept drift). Therefore, ML models must be continuously monitored. 

This is also captured by ITU-T Rec. Y.3172 [130], where monitoring includes evaluation of the output of 

the ML model itself but also of the effect on the network, as measured in network KPIs. 

Another aspect to evaluating ML models is defined in ETSI GS ENI 002 OR.1 [97]. The use of AI/ML for 

intelligent network operation and management shall “minimize the Total Cost of Ownership (TCO), 

including OPEX (Operating Expenses) and CAPEX (Capital Expenses) of the network infrastructure”. 

This represents an evaluation of the whole ML approach from a business value perspective, as opposed to 

the correct working of the technology. The AI/ML hype often ignores the former, with a focus on the 

latter. 

When the performance of an ML model (e.g. measured as prediction error rate or business impact) 

deteriorates, the model must be reconfigured. This includes updating by replacing a model with a different 

or more up-to-date one, or removal of an obsolete model. Moreover, [130] requires that ML models 

should be updated without impact to the network. This also requires continuous monitoring and 

evaluation, as well as safe transition methods (such as A/B testing or similar techniques) to ensure that the 

new model does not cause greater harm than the old one. 

4.2.2 ML model interface management 

In order for deployed ML models to perform their tasks, they need access to data from the network (model 

input) as well as access to network components that the model is supposed to act on (model output). This 

                                                      
4 For example, training a reinforcement learning model involves interaction with the environment/network. 
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is not only another angle to the trust and accountability issue that is relevant for the on-boarding and 

indeed the whole lifecycle of an ML model, but there is also the point of practicality to achieve efficient 

and secure ML model I/O. Some AI/ML solutions may include a unified location for data collection, such 

as a data warehouse or a data lake, which simplifies the data access for ML models. In a similar fashion, a 

unified access point can provide simplified but also efficient and secure access for the deployed ML 

models to the network functions. 

An AI engine and an intent engine are proposed to address some of the aspect of ML model management 

[230]. The AI engine is a central host and management platform for the ML models and the Intent engine 

is a means for platform users, ML models and network to communicate with each other. An example use 

case for this setup has an ML model in the AI engine analyse network slicing telemetry in order to (re-

)configure slice resources through the Slice Manager. The Intent engine serves as a single point of contact 

to handle the ML model lifecycle (deployment, execution, update, removal), as well as the access to 

telemetry data, ML function (slice resource prediction) and network function (Slice Manager).  

4.3 Standardisation toward enabling AI/ML in networks 

4.3.1 3GPP network data analytics function 

3GPP has defined NWDAF (Network Data Analytics Function) as part of the Service Based Architecture 

(SBA) specified in [5]. This logical 5G network function is managed by the 5G operator and it is defined 

to be capable to collect and process network data from multiple sources and to deliver analytical results to 

consuming Network or Application Functions responsible for the automated management of different 

aspects of the 5G network. More specifically, NWDAF collects data from various 5G network functions, 

such as the Authentication Server Function (AUSF), the Network Exposure Function (NEF), the Unified 

Data Management (UDM), the NF Repository Function (NRF),the Policy Control Function (PCF), the 

Session Management Function (SMF), the Access and Mobility management Function (AMF), etc. Via 

the respective service interfaces and it can provide analytics services [4] to network functions and 

application functions (AF) as shown in Figure 4-4. NWDAF can also collect information from the 

Operations Administration and Management (OAM) system, such as NG RAN and 5G core performance 

measurements and 5G end-to-end KPIs [4]. 

 

Figure 4-4 3GPP’s Network Data Analytics Function 
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The analytics services offered by the NWDAF can be either statistical information of the past events, or 

predictive information, related to a set of potential events briefly summarized in Table 4-1.  

Table 4-1 Observed events in NWDAF and potential consumers of analytics 

Observed events Potential consumers 

Network Slice load level information PCF, NSSF 

Service experience / QoE PCF, OAM 

Network Function load AMF (SMF load), SMF (UPF load), OAM 

Network performance PCF, NEF, AF, OAM 

Abnormal/Expected UE behaviour PCF, AMF, SMF, NEF, AF, OAM 

UE mobility AMF, SMF, NEF, UDM, AF, OAM 

UE communication pattern AMF, SMF, NEF, UDM, AF, OAM 

User data congestion NEF, AF 

QoS sustainability PCF, NEF, AF 

The NWDAF function can be implemented as a combination of both centralized and distributed elements, 

in which the different instances may specialize on different types of analytics workloads and handle the 

entire service more efficiently (c.f., [122]). For example, edge NWDAFs could run real-time analytics and 

specifically inference tasks at the edges of the 5G network, whilst centralized analytics can cover tasks 

that are more computationally intensive (e.g., data aggregation, post-processing, Machine Learning etc.)  

The internal specification of NWDAF is out of the scope of 3GPP work, neither reference 

implementations exist or are in progress at SDOs and industrial associations. It can be easily assumed that 

several of the solutions described in this white paper implement NWDAF functionalities for 5G networks, 

covering different use cases scenarios and target optimizations. In fact, it is for the 5G operator (through 

the OAM module) to decide which data to use to populate the information base and models of the 

NWDAF and how to make use of the data analytics outputs to improve the network performance. Multiple 

options are possible in that respect. For example: 

 The Policy Control Function (PCF) could use analytics inputs to (re-)configure policies for 

assignment of network resources and/or traffic steering 

 The Network Slice Selection Function (NSSF) could optimize Network Slice selection 

 The Access and Mobility Management Function (AMF) could improve SMF selection, 

monitoring of UE behaviour, adjustment of UE mobility 

 The Session Management Function (SMF) could improve UPF selection, monitoring of UE 

behaviour, adjustment of UE communication related network parameters  

 The Network Exposure Function (NEF) could optimize forwarding of NWDA information to the 

AFs 

 The Application Function (AF) could adjust service applications 

 The OAM could optimize operation and management actions 

As mentioned throughout this white paper, the functionality of the NWDAF is of great importance to the 

optimization of the control and management functions and the overall performance of the network.  

Three major aspects are key to the realization of NWDAF solutions:  
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 Identification of input data sources, to be collected at various ends of the 5G network for the 

different service elements (e.g. network slices, network services, network functions, 

infrastructure, RAN, etc.) and representative metrics (e.g. logs, %load, position, %availability, 

%airtime, peak users, etc.). These data require filtering, aggregation and subsequent ingestion into 

logically centralized data reservoirs where model training can be executed. 

 Selection of the Machine Learning model, which can best fit the target intelligent optimization 

target and data characteristics and behaviour (e.g. RL, DRL, RNN, game theory. etc.) 

 Definition of the expected outputs from analytics, which consist in triggering some imperative 

(re-)actions on the 5G Network Functions consuming analytics output (e.g. PCF, NSSF, etc.) to 

implement the planned optimization.  

Several solutions in literature point towards such a direction [255], [260]. Through network exposure 

functionalities, the analytics produced by NWDAF can be consumed by several elements in the network 

architecture, being one of them the management functions, as described in Section 3.2.3. 

4.3.2 ETSI ENI architecture and use case categories  

ETSI experiential networked intelligence (ETSI ENI) is an industry standard group (ISG) focusing on 

improving the operator experience, adding closed-loop AI mechanisms based on context-aware, metadata-

driven policies to more quickly recognize and incorporate new and changed knowledge, and hence, make 

actionable decisions [121]. In viewing of no efficient and extensible standards-based mechanism to 

provide contextually-aware services (e.g., services that adapt to changes in user needs, business goals, or 

environmental conditions), ENI launched its activities in 2018, aiming to addressing the following 

challenges in network operation and management envisaged for 5G networks and beyond. The associated 

challenges may be stated as [95] automating the manual human operation and determining services to be 

offered and their associated SLAs, as a function of changing contexts. Such challenges are addressed, 

from the standard point of view, by defining an architecture framework that provides the mechanisms to 

observe and learn from operator’s experience and to optimize the network operation and management over 

time. ISG ENI has identified five categories of use cases where AI may benefit network operation and 

management, summarized in Table 4-2 [95]. 

Table 4-2 ETSI ENI Use Cases  

Category 

1 - 

Infrastructure 

Management  

Use Case #1-1: 

Policy-driven 

IDC Traffic 

Steering 

Use Case #1-2: 

Handling of 

Peak Planned 

Occurrences  

Use Case #1-3: 

DC Energy 

Saving using AI 

  

2 - Network 

Operations 

Use Case #2-1: 

Policy-driven IP 

Managed 

Networks 

Use Case #2-2: 

Radio Coverage 

and Capacity 

Optimization 

Use Case #2-3: 

Intelligent 

Software 

Rollouts 

Use Case#2-4: 

Intelligent 

Fronthaul 

Management and 

Orchestration 

Use Case #2-5: 

Elastic Resource 

Management and 

Orchestration 

Use Case #2-6: 

Application 

Characteristic 

based Network 

Use Case #2-7: 

AI enabled 

network traffic 

classification 

Use Case #2-8: 

Automatic 

service and 

resource design 

Use Case #2-9: 

Intelligent time 

synchronization 

of network 
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ENI has defined an architecture [98] that helps address challenges in network automation and optimization 

using AI. It is expected to enable the assisted system to perform more accurate and efficient decision 

making. ENI has specified functional blocks and reference points for providing a model-based, policy-

driven, context-aware system that provide recommendations and/or commands to assisted systems. This 

communication may be done directly or indirectly via a designated entity acting on the behalf of the so-

called assisted system. A designated entity may be an NMS, an EMS, a controller or in principle any 

current or future management and orchestration system.  

A network has different domains (e.g. RAN/Fixed Access, Transport, and Core). Each domain has its 

specific functions and services, as well as specific APIs. In a case where the ENI System helps with a 

localized network function in a specific domain (e.g. optimizing resource allocation at the RAN/Fixed 

Access), the ENI System may interact with the interfaces of the Assisted Systems of that domain and may 

collect data from that domain only. In the more likely case, where the ENI System helps with a cross-

domain function (e.g. end-to-end network service assurance) the ENI System may interact with multiple 

domains of the network. 

Studies in 5G PPP projects in the area of ML/AI networks are well aligned with the current and future 

work of ENI. For example in [11], AI based service assurance has been investigated, where the work on 

AI-based multi-domain service orchestration has been carried out.  

4.3.3 O-RAN non-real-time and near-real-time RAN controllers  

In relation to O-RAN, the use of the non-real-time RAN intelligent controller (non-RT RIC) is designed to 

support intelligent RAN optimization by providing policy-based guidance, ML model management and 

enrichment information to the near-real-time RAN intelligent controller (near-RT RIC) function so that 

the RAN can optimise, e.g., RRM under certain conditions. It can also perform intelligent radio resource 

management function in non-real-time interval (i.e., greater than 1 second). The non-RT RIC (i.e., 10 ms 

to 1 sec.) can use data analytics and AI/ML training/inference to determine the RAN optimization actions 

Operation framework for 

cloud service 

3 - Service 

Orchestration 

and 

Management 

Use Case #3-1: 

Context-Aware 

VoLTE Service 

Experience 

Optimization 

Use Case #3-2: 

Intelligent 

Network Slicing 

Management 

Use Case #3-3: 

Intelligent 

Carrier-Managed 

SD-WAN 

Use Case #3-4: 

Intelligent 

caching based on 

prediction of 

content 

popularity 

 

4 - Assurance  Use Case #4-1: 

Network Fault 

Identification 

and Prediction 

Use Case #4-2: 

Assurance of 

Service 

Requirements  

Use Case #4-3: 

Network fault 

root-cause 

analysis and 

intelligent 

recovery 

  

5 - Network 

Security 

Use Case #5-1: 

Policy-based 

network slicing 

for IoT security 

Use Case #5-2: 

Limiting profit 

in cyber-attacks 
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for which it can leverage Service Management and Orchestration (SMO) services such as data collection 

and provisioning services of the O-RAN nodes.  

O-RAN, in pursuit of an open and intelligent RAN, has defined AI-powered hierarchical controller 

structure along with improved open interfaces between decoupled RAN components so that what used to 

be closed RAN data can be accessed by not only vendors but also operators and 3rd parties to develop 

innovative RAN applications. In the O-RAN architecture [218], the hierarchically structured intelligent 

controllers (non-RT RIC and near-RT RIC) enable control and optimization of RAN components and 

resources using AI/ML models. According to the specification of O-RAN, RIC supports the entire AI/ML 

workflow, including measurement data collection, data processing, and training/inference/update of the 

AI/ML models. 

The non-RT RIC embedded in the SMO layer is the intelligent management centre that fulfils non-real-

time control. O-RAN specification defines an interface (i.e., A1) to connect non-RT RIC in the SMO with 

the near-RT RIC elements. The RAN data can then be acquired and consumed by the non-RT RIC via the 

A1 Interface. The non-RT RIC also supports information enrichment that may come from external data 

sources or be extracted with AI approaches from the historical RAN data. The AI/ML models learned in 

the non-RT RIC can be used by the SMO to analyse RAN and generate optimization operations for 

improvement of the E2E user service experience and the network performance. In addition, the non-RT 

RIC also provides model-training for the near-RT RIC [219]. The non-RT RIC is closely related to the 

MDAF module mentioned earlier (c.f., Section 4.3.1) as the key function is to enable intelligent network 

management. Thus, it could be viewed as an MDAF instance with management data analytic service. 

The near-RT RIC located in the radio side enables fine-grained data collection and near real time RAN 

control over the E2 interface. The near-RT RIC provides embedded intelligence, as well as a platform for 

on-boarding of third-party control-applications. The near-RT RIC can leverage data about the near real-

time state of the underlying network via the Radio-Network Information Base (R-NIB). Since training of 

AI/ML models could be time consuming due to complexity and size of the data, it is often moved to the 

non-RT RIC, and the learned models are conveyed to the near-RT RIC via the A1 interface. The near-RT 

RIC is thus able to perform inference efficiently to achieve network analytics and optimization with a 

tighter timing requirement. 

4.4 Trust in AI/ML-based networks 

4.4.1 Privacy concerns 

Privacy concerns are a traditional topic that is under continuous research due to the emergence of new 

telecommunication networks, technologies, services and methods. To address these concerns, ML and DL 

techniques have been a recurrent theme in recent years. 5G and beyond 5G networks are considered a 

novel environment where offered services will handle paramount information about users. Many of these 

services will utilize ML/DL algorithms to process and analyse user’s data in order to provide more 

suitable services. In this sense, recent studies demonstrated that ML/DL techniques can reveal private 

personal information and compromise user’s privacy [153], therefore, service providers must clarify to 

user how their data will be used, where they will be stored, and what purpose of their use is.  

As aforementioned, ML/DL techniques are continuously handling user’s data, and consequently, another 

concern about the processing of data by ML/DL techniques appears in the technique of data 

anonymization. Some techniques of anonymizing data utilize private details elimination or replacement 

them with random values, which is inadequate and it can compromise data privacy since that information 

could be recovered by an adversary obtaining auxiliary information about the individuals represented in 
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the dataset [110]. These anonymizing techniques are classified as non-cryptographic solutions and they 

contain differential privacy approaches [268]. In contrast, ML/DL can also incorporate cryptographic 

means such as [227] multiparty computation, homomorphic encryption, and zero-knowledge argument 

schemes, which enable models to learn while preserving the privacy of information. The most well-known 

distributed approach is Federated Learning [189], where learning is distributed to multiple places in order 

to enhance efficiency, security, and privacy. 

Over and above previous attacks, other conventional attacks again privacy in machine learning and deep 

learning approaches are property inference attacks and model inversion and attribute inference attacks. 

First and foremost, property inference attacks intend to deduce patterns of information from the objective 

model such as the memorization attacks which attempt to detect sensible sequences from the training data 

of the objective model [64]. These attacks are broadly carried out on neural networks [109] and hidden 

Markov models [45], and they could be mitigated using differential privacy techniques (such as gradient 

perturbation) or a secure multi-party computation. Secondly, model inversion and attribute inference 

attacks are focused on inferring sensitive attributes of data instance from a publicly-released model [291]. 

In order to cover these attacks, techniques such as information-theoretic privacy or homomorphic 

encryption could be utilized. In the end, there is a set of prevalent privacy-preserving mechanisms (see 

Figure 4-5) which can be applied depending on the phase where it is necessary to provide that extra level 

of privacy. 

 

Figure 4-5 Categorization of privacy-preserving schemes for ML and DL [196]. 

4.4.2 Trustworthy AI/ML 

A general topic that is currently not solidly addressed is how we can construct trustworthy AI/ML-based 

systems before they are incorporated in future networks. Towards this direction three research avenues are 

important to consider: (i) resilient machine learning, (ii) explainable artificial intelligence and (iii) human 

in the loop (HITL).  

Resilient ML – ML algorithms and in particular deep neural networks (DNNs) have been found 

vulnerable to adversarial attacks, malicious and well-designed examples than can fool a model with little 

perturbations added to the input and that cannot be detected by human experts [204]. Therefore, the 

adversarial attacks could mislead the ML-based systems and cause harmful situations in security-critical 
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areas of the network [201]. When protecting a ML model against adversarial attacks, a recently introduced 

“no free lunch” theorem establishes a trade-off between accuracy and robustness [226]. Although 

perfectly effective defences against adversarial traffic are yet to be proposed, one of the most successful 

verification processes to date is adversarial training [129]. Two recently released open source libraries 

called Cleverhans [203] and Foolbox [135] allow testing ML components against attacks by means of 

adversarial training. These libraries contain reference implementations of several attack and defence 

procedures to be used to test ML models against standardized, state-of-the-art attacks and defences. 

Further work is needed to develop new resilient ML-based components enhancing the Cleverhans and 

Foolbox libraries for designing robust ML and DL models that can defend themselves against malicious 

adversarial examples. Possible defence techniques include input transformation, gradient masking and 

denoising, and verification ensembles against attacks such as adversarial perturbations, out of distribution 

black box attacks and white box attacks 

Explainable AI – Explainability of AI is critical in a wide range of mission-critical services and safety-

critical task management. Due to the complex nature of DNNs, it is difficult to interpret AI outputs for a 

human operator when consulted to oversee a decision. Performance versus explainability trade-offs appear 

and therefore, for critical operations, easily interpretable simpler linear models or decision trees are often 

preferred over complex models that provide higher accuracy. There is growing research in the field of 

explainability of deep networks in order to safely introduce them into critical operations [114] and thus 

several models of explainability have been proposed. Reducing data and DNNs models by applying the 

recently appeared Automatic ML techniques [295] is also a research trend that is gaining momentum. 

Another approach is to extract information from learned models and present the underlying reasoning to a 

human operator in an easy to understand format using natural language interpretations, visualizations of 

learned representations or models, and comparison to similar cases. At the moment, a wide range of 

machine and deep learning models contributing to different network OAM tasks are not well understood. 

The need for increased explainability to enable trust is crucial for the applicability of AI in network OAM. 

Human in the Loop (HITL) – Accuracy assessment of AI predictions is critical to evaluate whether an 

AI module is working as intended by its design. Modern AI algorithms provide prediction accuracies by 

infusing uncertainty into the predictions and evaluation metrics. A prominent approach is to use Bayesian 

Deep Learning (BDL) algorithms [108], which outputs distributions rather than point estimates to provide 

uncertainty estimations (confidence intervals, credible intervals). On the other hand, an alternative 

approach is to use Bayesian Neural Networks (BNN) as a decoupled stage to map uncalibrated, raw DNN 

outputs into ones that can be reliably interpreted as probabilities. Once the accuracy is determined, critical 

decision making can be handled through human-assisted mechanisms, in areas related to lack of previous 

data to provide sufficient training, as well as in the cases of rare events that require some form of human 

intervention. Traditional approaches mainly consider HITL mechanisms during the training phase in the 

absence of labelled data, but without intention of avoiding actions that can be detrimental to the 

application performance [251]. Further research is needed on the issues of preventing detrimental actions, 

while quality of the decision making is also improved alongside [75].  

4.4.3 Zero trust management 

Trust is a subjective and abstract concept that is commonly familiarized with computer science area for 

ages. Nevertheless, the emergence of 5G telecommunication network along with the growth of 

interconnected devices has created vulnerable fronts against various security threads. Zero-trust is a 

security concept centred on the idea that entities should not automatically trust anything inside or outside 

their perimeters, instead, they must verify anything and everything trying to connect to their systems 

before granting service access. 
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In 2010, the analyst firm, Forrester Research [154], presented the first zero-trust network management 

approach. The fundamental pillar of this approach was simple and straightforward, “never trust, always 

verify”. Nonetheless, the zero-trust concept has adapted to the requirements and changes in networks, 

thence the concept currently covers paramount principles such as entities and devices access control, 

continuous network access control, data control, visibility and analysis, workloads, and so on [166]. 

Recently, National Institute of Standards and Technology (NIST) has published a proposal of zero-trust 

architecture which considers the most essential requirements of 5G networks [254]. According to NIST’s 

recommendations, zero-trust architecture should be primarily focused on data and service protection, but it 

may also be extended to assets and subjects. In addition, a zero-trust approach should involve continuous 

analysing and evaluating of the risks of the assets, as well as presenting protection to mitigate those risks. 

Such architecture encompasses fundamentals such as identity, credentials, access management, operations, 

endpoints, hosting environments, and infrastructure interconnections. Therefore, this architecture could be 

summarized as an end-to-end approach to ensure the security of data and resources. 

Through zero-trust network management, it is possible to decrease security risk and attack surface at inter/ 

intra-domain level, even though no trust relationship is ever granted implicitly. Thence, a zero-trust 

approach introduces fewer vulnerabilities and threats than conventional network management models. For 

instance, it will be feasible to identify and reduce the attacker's ability to carry out network lateral 

movement attack. Furthermore, this approach also provides greater data protection since a smart data 

segmentation is necessary to regulate access control. Another essential characteristic is the capacity to 

dynamically support access control based on the current use cases. A real scenario could be when a 

stakeholder detects lack of capability to address the tasks agreed through an SLA, and therefore, it needs 

to request resources from a third-party resource provider. In this case, a set of resources/services will be 

shared across multiple administrative domains, and consequently, it will be essential to continuously 

assess the trust level, establish access control policies, and perform identity management of the entities 

that will use the resources, in order to generate an end-to-end zero trust relationship.  

As a consequence, the introduction of zero trust management involves a set of requirements and features 

that must be considered in order to guarantee security and trustworthiness. First and foremost, identity 

management is a mandatory requirement in zero-trust approaches due to the fact that assets, subjects, 

services and resources should be recognized before granting access. Second, access control since such 

model should consider the implementation of the least-privilege as a basis. Last but not least, the model 

should be able to learn and adapt to current situations, hence zero-touch management is another key aspect 

to be introduced in zero-trust management. 

4.4.4 Widely available data-sets 

The success of AI/ML models in a variety of network applications and services relies heavily on the use of 

network data in diverse levels of granularity. Publicly available real and simulated benchmark datasets 

play an important role in model development and evaluation, as well as fair comparison with state-of-the-

art solutions.  

As discussed in previous sections the training of AI/ML algorithms is requiring large amounts of data, 

which are typically not readily available for many reasons. In research projects often the amount of data 

that can be generated with the prototype systems and experimentation use cases do not suffice to 

efficiently train the algorithms. Access to readily available data is needed; however so far no sustainable 

initiatives have emerged that attempted to create a large repository of network traffic data from the 

different network domains. Importantly, data may contain privacy related information that needs to be 
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sustainably anonymised before it can be provided to an open repository. Similarly, data, especially from 

commercial networks, typically contain business related information that need to be cleansed as well.  

Due to concerns of data privacy of end users and commercial confidentiality of network operators and 

service providers, it is difficult for third parties to obtain network data. Typical accesses to public datasets 

include:  

 Open-access data/code repositories maintained e.g. on Zenodo, GitHub, and Kaggle.  

 International competitions organized by network related conferences and organizations together 

with operators and service providers.  

 Projects funded by the EU Framework programs (H2020/ 5G PPP) [14], [13].  

 Scientific publications providing datasets used to evaluate the proposed AI-driven solutions. Due 

to requirements of replication and reproduction, an increasing number of papers published in 

conferences and journals intend to release the datasets to the research community. 

In the context of European projects, telecom operators have proposed the idea of building a repository of 

open data sets, however with very limited success so far. The idea of choosing a pre-competitive 

environment such a European framework programmes to build an open repository, seems attractive and 

could be the best environment to overcome the potential concerns. Considering the heavy dependency of 

AI/ML on such open training data, it is worthwhile to consider launching an open initiative for creating 

such a repository in the near future. 

Alternatively, open source software (OSS) is often used to produce simulated datasets for development of 

AI-driven network applications. For example, O-RAN Bronze [220] and FlexRAN [105] are used for the 

RAN domain, OpenAirInterface [214] for EPC/RAN/E-UTRAN, OSM [213] for NFV MANO, as well as 

OpenStack [215] and Kubernetes [156] for NFVI. Importantly, all the public datasets and OSS should be 

leveraged under the open source licenses required by the owners/authors. 

4.4.5 Stochastic geometry for network analysis and optimization 

In the context of generation of large data sets, stochastic geometry is a powerful tool for modelling, 

analysing, and optimizing large-scale and ultra-dense cellular networks [278]. A major research problem 

in current and future wireless networks is to optimize the deployment density of a cellular network, given 

the transmit power of the base stations and aiming at energy-efficiency optimization. Assuming that the 

base stations are distributed according to a Poisson point process, an accurate and realistic analytical 

model for optimizing energy efficiency was recently proposed in [278] and formulated the optimal 

deployment density of the cellular base stations in a tractable analytical form. By leveraging the approach 

described in [278], large data sets can be generated with low computational effort. This provides system 

designers with the optimal base station density as a function of the base station transmit power. However, 

similarly tractable analytical frameworks cannot be easily obtained if cellular base stations are distributed 

according to non-Poisson spatial models, so energy-efficiency optimization of such cellular network 

deployments is difficult. In addition, the generation of large data sets based on non-Poisson point 

processes is a time- and memory-consuming task, making it hard to obtain large data sets containing 

optimal data pairs (optimal deployment density and transmit power for training purposes). This is a typical 

example in which a tractable model is available (based on the Poisson point process), but it is not 

sufficiently accurate. Nevertheless, even inaccurate models can provide system designers with useful 

information that should not be missed. In general, employing a fully data-driven approach to train an 

artificial neural network (ANN) requires the acquisition of a huge amount of live data. This task, however, 

might not be practical due to time, complexity, or economic factors in the process of acquiring data. 

Instead, the availability of an approximate model can be exploited to perform a first rough training of the 
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ANN, which can be subsequently refined through a small set of real data. This approach is likely to reduce 

the amount of live data needed for training ANNs. Therefore, in this context, an approach that combines 

approximate modelling based on stochastic geometry and data driven methods is well motivated. In [266] 

and [246], for example, the authors assume that the base stations are distributed according to a non-

Poisson point process, whose exact distribution is not known, and that only (some) empirical samples for 

the locations of the base stations are available. The authors aim to understand whether by first performing 

an initial training of the ANN based on a large Poisson-based data set and then executing a second training 

based on a small data set of empirical (or synthetic from simulations) data, we can obtain a performance 

similar to that obtained using only a large training set of real data. The results obtained in [266] and [246] 

clearly show that pre-training an ANN by using a Poisson-based data set and then refining it by using few 

non-Poisson data is possible and lead to the same results as training an ANN by using large data sets of 

non-Poisson data. 

4.5 AI/ML-based KPI validation and system troubleshooting 

The instantiation of a Monitoring and Analytics (M&A) framework is key in modern communication 

systems, and 5G exacerbates this requirement [91]. In particular, 5G services have to comply with SLAs, 

which state the E2E KPIs that have to be guaranteed to end-users and verticals. This leads to the need for 

automated monitoring and management of the instantiated resources, in order to promptly identify 

network bottlenecks and system malfunctions that hinder the compliance with SLAs. A reliable and 

efficient M&A framework should thus consider both end-users’ and operators’ perspectives, aiming at 

improving systems’ QoS and users’ QoE, while minimizing operators’ management and operational costs.  

Within the above context, a 5G PPP infrastructure project [234] targets the realization of a full-chain 

M&A framework, for a reliable validation of 5G KPIs [236]. The framework enables the analysis of 

experimental data collected by dedicated monitoring probes during the usage of the experimentation 

facility. This in turn allows for pinpointing the interdependencies between network configurations, 

scenario conditions, and QoS/QoE KPIs, ultimately leading to the derivation of optimized management 

policies for further improvement of users’ and verticals’ performance. 

The M&A framework includes several monitoring tools and both statistical and ML-based analytics. It is 

formed by three main blocks:  

 Infrastructure Monitoring, which focuses on the collection of data on the status of infrastructure 

components, e.g., user equipment, radio access and core networks, SDN/NFV environments, and 

computing and storage distributed units;  

 Performance Monitoring, which is devoted to the active measure of E2E QoS/QoE KPIs. These 

include traditional indicators, such as throughput and latency,  but also other indicators tailored on 

specific use cases and applications (e.g., for mission critical services); 

 Storage and Analytics, which enables efficient management of large amounts of heterogeneous 

data, and drives the discovery of hidden values, correlation, and causalities among them. 
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Among others, the M&A framework aims at providing the following analytics functionalities: 

KPI validation, i.e., the execution of the KPI statistical analysis defined in [237]. 

1. Time series management, which allows to coherently merge the data coming from different 

probes, in order to perform further analyses. In a M&A system, this task is needed for several 

reasons. First, different sampling rates might be used by different probes. For example, QoS/QoE 

KPIs might be collected at higher sampling rates compared to infrastructure data. Second, the 

probes might be not perfectly synchronized. Hence, synchronization is applied if the time series 

collected from different probes present similar sampling rates, while interpolation better suits 

situations where the probes use different sampling rates.  

2. Outlier detection, in order to eliminate data obtained under incorrect functioning of the probes, 

which may negatively affect the analyses. Classical approaches include Z-score and Modified Z-

score, which consider data sample statistics. Other approaches exploit ML algorithms, such as 

SVM, Isolation Forest, and Autoencoders, among others.  

3. Feature selection, which allows simplifying the analyses by eliminating some of the collected 

parameters. As a matter of fact, 5G networks include a huge number of components. Hence, using 

AI/ML approaches for network management and optimization could be challenged by the large 

amount of data that can be potentially collected; some of these data might also be not useful and 

could negatively affect the analyses. Hence, feature selection algorithms (e.g., Recursive Feature 

Elimination, Backward Elimination, and Least Absolute Shrinkage and Selection Operator – 

LASSO – regression, among others) can be used to remove redundant features, making the next 

analyses computationally simpler and faster. In general, feature selection allows training ML 

algorithms faster, reducing model complexity and overfitting, and improving model accuracy. 

4. Correlation analysis, which allows highlighting how system configurations and network 

conditions, collected via IM probes, are correlated and affect QoS/QoE KPIs, collected via 

performance monitoring tools. Revealing the correlation between infrastructure and performance 

monitoring parameters allows improving network management and deriving better configuration 

policies for assuring SLAs. Lack of correlation between parameters which are known to have 

dependencies is also a key indicator pinpointing system malfunctioning and trigger needed 

reactions.  

5. KPI prediction, which allows building a model and estimating QoS/QoE KPIs by looking at other 

parameters, collected under different circumstances and scenarios. Several supervised ML 

algorithms can be used, such as Linear and Support Vector Regression and Random Forest, 

among others. Being able to accurately predict a KPI would enable better network planning and 

management.  

6. KPI time series forecasting, in order to build a model over time for QoS/QoE KPIs, thus deriving 

nominal trends and forecasting next-future patterns. Also in this case, several algorithms can be 

used, including Seasonal ARIMA and LSTM networks. The deviation from the expected pattern 

can be used as an indication of anomalous behaviors due to unexpected reasons, and may trigger a 

network alarm system for prompt reaction aiming at restoring nominal trends.  
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Summary and recommendations 
This white paper on AI/ML as enablers of 5G and B5G networks is based on contributions from 5G PPP 

projects that research, implement and validate 5G and B5G network systems. 

The white paper introduces the main relevant mechanisms in Artificial Intelligence and Machine Learning 

currently investigated and exploited for 5G and beyond 5G networks. A family of neural networks is 

presented, which are generally speaking, non-linear statistical data modelling and decision making tools. 

They are typically used to model complex relationships between input and output parameters of a system 

or to find patterns in data. Feed-forward neural networks, deep neural networks, recurrent neural 

networks, and convolutional neural networks belong to this family. Reinforcement learning is concerned 

about how intelligent agents must take actions in order to maximize a collective reward, e.g. to improve a 

property of the system. Deep reinforcement learning combines deep neural networks and has the benefit 

that is can operate on non-structured data. Hybrid solutions are presented such as combined analytical and 

machine learning modelling as well as expert knowledge aided machine learning. Finally other specific 

methods are presented, such as generative adversarial networks and unsupervised learning and clustering.  

In the sequel the white paper elaborates on use case and optimisation problems that are being tackled with 

AI/ML, partitioned in three major areas, namely: network planning, network diagnostics/insights, and 

network optimisation and control. In network planning, attention is given to the network element 

placement problem and to dimensioning considerations for C-RAN clusters. In network diagnostics, 

attention is given to forecasting network conditions, characteristics and undesired events, such as security 

incidents. Estimating user location is part of network insights. Finally, in network optimisation and control 

attention is given to the different network segments, including RAN, transport networks, fronthaul and 

backhaul, virtualisation infrastructure, end-to-end network slicing, security and application functions. 

The white paper discusses the application of AI/ML in the 5G network architecture. In this context is 

identifies solutions pertaining to AI-based autonomous slice management, control and orchestration, 

AI/ML-based scaling operations in network service orchestration, AI/ML as a Service in network 

management and orchestration, enablement of ML for the verticals' domain, cross-layer optimization, 

management analytics in general, 3
rd

 party ML analytics for network operation optimization in particular, 

anomaly detection using AI/ML. In the context of architecture it discusses the requirements for ML model 

lifecycle and interface management. Furthermore it investigates the global efforts for the enablement of 

AI/ML in networks, including the network data analytics function, the lack of availability of data-sets for 

training the AI/ML models and the associated privacy concerns. Finally, it identifies the challenges in 

view of trust in AI/ML-based networks and potential solutions such as the zero-trust management 

approach. The section concludes with a brief overview of AI/ML-based KPI validation and system 

troubleshooting. 

In summary the findings of this white paper conclude that for enhancing future network return on 

investment the following areas need further attention (research and development work): 

(g) building standardized interfaces to access relevant and actionable data,  

(h) exploring ways of using AI to optimize customer experience,   

(i) running early trials with new customer segments to identify AI opportunities,  

(j) examining use of AI and automation for network operations, including planning and optimization,  

(k) ensuring early adoption of new solutions for AI and automation to facilitate introduction of new 

use cases, and  

(l) establish/launch an open repository for network data sets that can be used for training and 

benchmarking algorithms by all 
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Abbreviations 

2D Two-Dimensional 

3D Three-Dimensional 

3GPP 3
rd

 Generation Partnership Project 

5G PPP 5G Public Private Partnership 

5GC 5G Core 

AaAaaS Acronyms and Abbreviations as a Service 

AAoA Azimuth Angle of Arrival 

AAoD Azimuth Angle of Departure 

ABR Adaptive Bitrate 

ACL Autonomic Control Loop 

AGV Automated Guided Vehicle 

AI Artificial Intelligence 

AIMLaaS AIML as a Service 

AIMLP AIML Platform 

AMF Access and Mobility management Function 

ANM Autonomic Network Management 

ANMO-SDR Autonomic Network Management Optimisation SDR 

ANN Artificial neural networks 

AoA Angle of Arrival 

AoD Angle of Departure 

AP Access Point 

APEX Adaptive Policy Execution 

API Application Programming Interface 

AQM Active Queue Management 

ARIMA Auto Regressive Integrated Moving Average 

ASIC Application-Specific Integrated Circuit 

ATSSS / AT3S Access Traffic Steering, Switching & Splitting 

AUSF Authentication Server Function 

B5G Beyond 5G 

BBU Baseband Unit 

BGP Border Gateway Protocol 

BH Backhaul 
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BP Backward Propagation 

BPNN Back-Propagation Neural network 

BWMS Bandwidth Management Service 

CAPEX Capital Expenditure 

CDN Content Delivery Network 

CER Crossover Error Rate 

CI/CD Continuous Integration / Continuous Delivery or Deployment 

CIR Channel Impulse Response 

CN Core Network 

CNF Cloud native Network Function 

CNN Convolutional Neural Network 

CPU Central Processing Unit 

CQI Channel Quality Information 

C-RAN Cloud Radio Access Network 

CRN Cognitive Radio Network 

CU Central Unit 

CUDA Compute Unified Device Architecture 

D2D Device to Device 

DASH Dynamic Adaptive Streaming over HTTP 

DBN Deep Belief Network 

DDoS Distributed Denial of Service 

DDPG Deep Deterministic Policy Gradient 

DDQN Double Q-Learning 

DL Downlink 

DNN Deep Neural Network 

DOI Digital Object Identifier 

DPG Deterministic Policy Gradient 

DPP Data Plane Programmability 

DQN Deep Q-Learning Network 

DRL Deep Reinforcement Learning 

DU Distributed Unit 

E2E End-to-End 

EAoA Elevation Angle of Arrival 

EAoD Elevation Angle of Departure 
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eAT3S enhanced AT3S 

ECDF Empirical Cumulative Distribution Function 

E-CID Enhanced-Cell ID 

ECN Explicit Congestion Notification 

EGMF Exposure Governance Management Function 

EKF Extended Kalman Filter 

eMBB Enhanced Mobile Broadband 

EMS Element Management System 

eNB eNodeB, Base Station in 4G/LTE 

ENI Experiential Networked Intelligence (ETSI) 

EOP Edge Orchestration Platform 

EPC Evolved Packet Core 

ESN Echo State Network 

ETS Error, Trend, Seasonality  

ETSI European Telecommunications Standards Institute 

EU European Union 

E-UTRAN Evolved UMTS Terrestrial Radio Access Network 

FCAPS Fault, Configuration, Accounting, Performance, Security 

FDMA Frequency-Division Multiple Access 

FF Feed Forward 

FFNN Feed Forward Neural Network 

FH Fronthaul 

FL Federated Learning 

FPGA Field Programmable Gate Array 

FQL Fuzzy Q-Learning 

GA Genetic Algorithm 

GAN Generative Adversarial Network 

gNB gNodeB, Base Station in 5G 

GPS Global Positioning System 

GPU Graphics Processing Unit 

GRU Gated Recurrent Unit 

GS Group Specification (ETSI) 

GSMA GSM Association 

GST Generic Network Service Template (GSMA) 
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HSS Home Subscriber Server 

ICC International Conference on Communications 

ICT Information and Communication Technologies 

IEEE Institute of Electrical and Electronics Engineers 

ILP Integer Linear Programming 

IOO Indoor Open Office 

IoRL Internet of Radio Light 

IP Internet Protocol 

ISG Industry Specification Group (ETSI) 

ITU-T International Telecommunication Union - Telecommunication Standardization Sector 

KF Kalman Filter 

k-NN k-Nearest Neighbours 

KPI Key Performance Indicator 

KQI Key Quality Indicator 

LAN Local Area Network 

LASSO Least Absolute Shrinkage and Selection Operator 

LED Light-Emitting-Diode 

LiFi Wireless communication technology over visible light 

LoS Line of Sight 

LS-SVM Least Square Support Vector Machine 

LSTM Long Short Term Memory 

LTE Long Term Evolution 

M&A Monitoring and Analytics 

M2M Machine to Machine 

MAC Medium Access Control 

MAD Median Absolute Deviation 

MANO Management and Orchestration 

MAPE Monitor-Analyse-Plan-Execute 

MAPE-K Monitor-Analyse-Plan-Execute-Knowledge 

MARL Multi-Agent Reinforcement Learning 

MDAS Management Data Analytics Service 

MDP Markov Decision Process 

MEC Multi-access Edge Computing 

MEO Mobile Edge Orchestrator 
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MIMO Multiple-Input and Multiple-Output 

mIoT Massive Internet of Things 

ML Machine Learning 

MLFO Machine Learning Function Orchestrator 

MLP Multilayer Perceptron 

MME Mobility Management Entity 

mMTC Massive Machine Type Communications 

MN Mobile Node 

MNO Mobile Network Operator 

MOCN Multi Operator core Network 

MPTCP Multi-Path TCP 

MSE Mean Square Error 

MTD Moving Target Defence  

NEF Network Exposure Function 

NF Network Function 

NFVI Network Function Virtualisation Infrastructures 

NIST National Institute of Standards and Technology 

NLoS Non-Line-of-Sight 

NLP Non-Linear Programming 

NMS Network Management System 

NN Neural Network 

NP Nondeterministic Polynomial time 

NR New Radio 

NRF NF Repository Function 

NSD Network Service Descriptor 

NSP Network Service Provider 

NSSF Network Slice Selection function 

NT Network Tomography 

NWDAF Network Data Analytics Function 

OAM Operations Administration and Management 

ONAP Open Network Automation Platform 

OPEX Operational Expenditure 

OSA One Stop API 

OSM Open source MANO 
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OSS Open Source Software 

OWC Optical wireless Communication 

PCF Policy Control Function 

PHY Physical layer 

PnP Perspective-n-Point 

PoP Point-of-Presence 

PPO Proximal Policy Optimization 

PPP Poisson Point Process 

PRB Physical Resource Block 

PRS Positioning Reference Signal 

PSO Particle Swarm Optimisation 

PUSCH Physical Uplink Shared Channel 

QoE Quality of Experience 

QoS Quality of Service 

QPSK Quadrature Phase Shift Keying 

RAN Radio Access Network 

RAT Radio Access Technology 

RCA Resource Channel Allocation 

ReLU Rectified Linear Unit 

REST Representational State Transfer 

RF Radio Frequency 

RIC Radio Intelligent Controller 

RIS Reconfigurable Intelligent Surface 

RL Reinforcement Learning 

RL Resource Layer 

RMS Root Mean Square 

RMSE Root Mean Square Error 

RNIS Radio Network Information Service 

RNN Recurrent Neural Network 

RRM Radio Resource Management 

RSI RAN Slice Instance 

RSRP Reference Signal Received Power 

RSRQ Reference Signal Received Quality 

RSS Received Signal Strength 



5G PPP Technology Board  AI/ML for Networks 

 116  

RSSI Received Signal Strength Indication 

RT Real-Time 

RTT Round Trip Time 

RU Remote Unit 

RVM Relevance Vector Machine 

SA Service Assurance 

SARSA State–action–reward–state–action 

SBA Service based Architecture 

SDN Software Defined Networking 

SDO Standards Developing Organisation 

SDR Software Defined Radio 

SFC Service Function Chaining 

SI Soft Information 

SINR Signal-to-Interference-plus-Noise Ratio 

SLA Service Level Agreement 

SMF Session Management Function 

SMO Service Management and Orchestration 

SNPN Standalone Non-Public Network 

SNR Signal to Noise Ratio 

SO Service Orchestrator 

SOM Self-Organising Map 

SP Service provider 

SPGW Serving Gateway/Packet Data Network Gateway 

SSID Service Set Identifier 

SVE Single Value Estimation 

SVM Support Vector Machine 

TCP Transmission Control Protocol 

TD3 Twin Delayed DDPG 

TDOA Time Difference of Arrival 

TMF Tele-Management Forum 

UDM Unified Data Management 

UE User Equipment 

UKF Unscented Kalman Filter 

UL Uplink 
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UPF User Plane Function 

URLLC Ultra-Reliable Low Latency Communications 

UWB Ultra-Wideband 

V2N Vehicle to Network 

VIM Virtualised Infrastructure manager 

VLC Visual Light Communication 

VM Virtual Machine 

VNF Virtualised Network Function 

VNI Virtual Network Indicator 

VoMS Vertical oriented Monitoring Service 

vRAN Virtualised RAN 

VS Vertical Slicer 

VUF Virtual Utility Function 

VxLAN Virtually extensible Local Area Network 

WDM Wavelength Division Multiplexing 

WLAN Wireless Local Area Network 

ZSM Zero Touch Network and Service Management (ETSI) 
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