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Abstract. Algebraic attacks have been developed against symmetric
primitives during the last decade. In this paper we represent equation
systems using binary decision diagrams, and explain techniques for solv-
ing them. Next, we do experiments with systems describing reduced
versions of DES and AES, as well as systems for the problem of deter-
mining EA-equivalence. We compare our results against Gröbner basis
and CryptoMiniSat.
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1 Introduction

Comparing the complexity of finding the key to a cryptosystem with solving a sys-
tem of equations were first mentioned by Claude Shannon [1], and is today known
as algebraic attacks. The main idea is to describe an encryption scheme via a sys-
tem of equations and solve it. However, algebraic attacks against cryptographic
primitives began to develop actively only in the early 2000s. Several methods to
attack hash functions, stream and block ciphers have been described [2–10].

In the middle of the 20th century, it was proposed to use binary decision dia-
grams (BDDs) for representing Boolean functions [11,12]. This representation
has several advantages. Many logical operations on BDDs can be implemented
by polynomial-time graph manipulation algorithms [12], and the memory con-
sumption can be extremely low, even for very complex Boolean functions. Most
modern cryptographic primitives are based on binary logic because of the large
spread of binary computers. Therefore, the description of cryptographic trans-
formations using Boolean or vectorial Boolean functions is an easy task.

Several attacks based on BDDs exist for stream ciphers. Their efficiency was
demonstrated both for general methods and for particular cases on A5/1, E0 and
Trivium [13,14]. In this paper we extend previous results on block ciphers and
present new specific strategies and approaches for solving systems of equations
based on BDDs.

We apply the proposed methods on DES with reduced number of rounds,
on MiniAES (a small variant of Rijndael) and on the problem of determin-
ing EA-equivalence. Our experiments on DES allow us to break six rounds in
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approximately one minute on a MacBook Air 2013. This is a factor 220 improve-
ment over the best earlier algebraic attack on DES using MiniSAT [5]. There
have been several earlier attempts to break MiniAES [7,15,16]. Approaches that
exploit the short key in MiniAES (only 16 bits) succeed very quickly, but the
general methods of F4 and XL/XSL failed to solve systems representing more
than one round of MiniAES. The approach we use in this paper does not exploit
the short key, while still solving systems representing 10 rounds of MiniAES
using approximately 45 min and 8 GB of memory.

The rest of the paper is organized as follows. Section 2 explains BDDs and
the fundamental operations we do on them. Section 3 describes our approach
to solving BDD systems, and introduces some solving strategies. Section 4 gives
the details and results of our algebraic attack against DES and MiniAES as
well as the EA-equivalence problem, comparing complexities against SAT-solver
and Gröbner base techniques. Finally, Sect. 5 concludes the paper and give some
directions for further research.

2 Binary Decision Diagram Fundamentals

The literature discusses several variants of BDDs. For clarity we will always mean
a zero-suppressed, reduced, and ordered BDD in this paper. A comprehensive
treatment of BDDs can be found in [12]. In this section we only give a brief
description with emphasis on visualization and our use of a BDD.

2.1 Binary Decision Diagrams

A BDD is a directed acyclic graph. Exactly one node in the graph, called the
source node, has no incoming edges, and exactly one node in the graph, called the
sink node, has no outgoing edges. All nodes except for the sink node are called
internal nodes, and have one or two outgoing edges, called the 0-edge and/or
the 1-edge. In most other descriptions of BDDs, each internal node is associated
with a variable. In this paper each internal node will be associated with a linear
combination of variables. There are no edges between nodes associated with
the same linear combination.

When visualizing a BDD, we draw the graph from top to bottom, with the
source node on top, the sink node at the bottom, and all edges directed down-
wards. All internal nodes are organized in horizontal levels between the sink and
source nodes. One level consists of all nodes associated to one particular linear
combination, and we write the linear combination to the left of the level. Dotted
edges indicate 0-edges while solid lines indicate 1-edges. An example of a BDD
with four levels associated with linear combinations in four variables is shown in
Fig. 1.

In the literature there are various ways to understand a BDD. Some interpret
a BDD to represent a family of sets while others see a BDD as an efficient
encoding of a Boolean function. In this paper we put emphasis on the fact that
a path from the source to the sink node assigns values to the linear combinations
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Fig. 1. Example of a BDD with four levels.

of the levels. If we choose the b-edge (b ∈ {0, 1}) out from a node, we assign the
value b to the linear combination associated with the level of the node. Any path
from the source to the sink node gives values to the linear combinations and can
be regarded as a right-hand side in a system of linear equations.

2.2 Representing an S-Box as a BDD

We are interested in finding a BDD that represents a given S-box with n input
bits and m output bits. Let the input bits and output bits of the S-box be
x0, . . . , xn−1 and y0, . . . , ym−1, respectively. Let the first n levels be associated
with x0, . . . , xn−1 (x0 for the source node and xn−1 for level n), and build a
complete binary tree from x0 to xn−1. Next, assign y0, . . . , ym−1 to the m lowest
levels (with y0 at the highest of these), and build a complete binary tree upwards
from the sink node to the y0-level, branching in 0-edges and 1-edges. Then there
will be only one path from a given node at the y0-level to the sink node. There
will be 2m nodes at the y0-level, each representing a unique path to the sink
node, assigning values to y0, . . . , ym−1.

Any path from the source node down to level xn−1 will assign values to the
input bits x0, . . . , xn−2. Selecting a 0-edge or a 1-edge out of a node at the xn−1-
level will complete the assignment of input bits. This edge is connected to the
node at the y0-level whose unique path to the sink node will give the correct
output of the S-box. Joining all nodes at the xn−1-level to all nodes at the y0-
level in this way will complete the construction of the BDD. Figure 2 shows an
example of a BDD representing a 4 × 4 S-box.

2.3 Basic Operations on a BDD

We must be able to run the reduction algorithm [17] on a BDD, bringing the
BDD into a reduced state. The reduction algorithm basically merges nodes rep-
resenting equivalent Boolean functions, thus minimizing the number of nodes
in the BDD. For a fixed order of the linear combinations, a reduced BDD is
unique. There are two other operations that forms the core of linear absorption
(explained later). Both were described in [18], but we repeat them briefly here
for completeness.
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Fig. 2. BDD representing the S-box {5,C,8,F,9,7,2,B,6,A,0,D,E,4,3,1}.

Swapping Levels. This operation swaps the linear combinations at two adja-
cent levels, and was first described in [19], using single variables. When changing
the order of the levels, nodes and edges must be re-arranged in the BDD to pre-
serve the underlying function. Fortunately, swapping levels is a local operation,
meaning that only nodes and edges at the two involved levels need to be touched
while the rest of the BDD remains intact. The time complexity of swapping two
levels is linear in the number of nodes on the highest level, but the number of
nodes on the lowest level may double in the worst case.

After swapping two levels, the BDD may not be in the reduced state, and it
may be necessary to run the reduction algorithm. Hence, the number of nodes
in the BDD after swapping two levels may increase or decrease. By repeatedly
swapping levels one may put the set of linear combinations for the levels into
any desired order. Finding the order of levels that give the fewest nodes is an
NP-complete problem [20].

Adding Levels. Traditionally, the levels in a BDD have been associated with
single variables and not linear combinations. It has therefore not been natural
to think of “adding” one level onto another. This changes when we have linear
combinations associated with the levels. If l1 and l2 are two linear combinations
associated to two adjacent levels (l1 above l2), we are interested in replacing
l2 with l1 + l2. The algorithm for adding levels was first described in [18], and
follows the same logic as with swapping levels. Nodes and edges at the levels for
l1 and l2 must be rearranged to preserve the underlying function, but the rest
of the BDD remains the same. The complexity is similar to swapping, and the
number of nodes at the new level associated to l1 + l2 may double in the worst
case. The reduction algorithm should be run after adding levels to make sure
the BDD remains in a reduced state.
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3 Solving Systems of Equations with Linear Absorption

By repeatedly swapping and adding linear combinations, we can essentially do all
linear operations on the linear combinations of the BDD. We can, for instance,
perform Gaussian elimination on the set of linear combinations. As will become
clear in the following, a barrier to find a solution to a system of equations arises
when there are dependencies among the linear combinations of the levels in a
BDD. We overcome this problem by using linear absorption. The technique was
first described in [18], but we include an example of the procedure here as it is
central in our approach to solve non-linear equation systems.

3.1 Absorbing One Linear Dependency

The attentive reader will have noticed that the linear combinations in the exam-
ple BDD in Sect. 2.1 are not independent. If we label them l0, l1, l2, l3 from top
to bottom we have l0 + l2 + l3 = 0. Thus, when we select a path in the BDD
and create the corresponding linear system of equations, we may or may not
get a consistent system. If the values assigned to l0, l2 and l3 sum to 0 we get a
solution, if not, the system is inconsistent. We use linear absorption to remove
all paths that yield inconsistent systems as follows.

First, swap l0 and l1 to obtain the BDD in Fig. 3a. Next, use addition of
linear combinations to add l0 onto l2, and obtain the BDD in Fig. 3b. Finally,
we use addition again to add l0 + l2 to l3. This creates the 0-vector as linear
combination for the lowest level, resulting in the BDD shown in Fig. 3c.

When selecting a path in the BDD now, it does not make sense to choose a
1-edge out of a node on the level associated with 0. Such a path would yield a
“0 = 1”-assignment. Hence we can delete all outgoing 1-edges from the nodes at
the 0-level. Now we are certain that any remaining path will yield a system of
linear equations that is consistent with the linear dependency l0 + l2 + l3 = 0.

Moreover, the whole level associated with 0 can be removed. It is easy to
show that the Boolean function represented by a node on this level is equal to
the function for the node pointed to by the 0-edge. Hence, all nodes on the 0-level
can be merged with their children along the 0-edge, and the level disappears. We
say that the linear dependency l0 + l2 + l3 = 0 has been absorbed. The resulting
BDD for our example is shown in Fig. 3d.

In general, the removal of 1-edges from a level associated with the 0-vector
may create internal nodes with no incoming edges. We call these orphan nodes as
they have no parents. After absorbing one linear dependency, all orphan nodes,
and subgraphs only reachable through an orphan node, should be removed as
part of the reduction procedure.

If there are several dependencies among the linear combinations in a BDD,
we can easily find all and absorb them one after another. When all dependencies
have been absorbed, we know that any remaining path in the BDD will give a
consistent linear system of equations, which in turn is solved to find the values
of the actual variables.
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3.2 Building and Solving Equation Systems as BDDs

It is rather straight-forward to build a system of equations representing a cryp-
tographic primitive as a set of BDDs. For an encryption algorithm, the user-
selected key bits become variables. We also look at the cipher blocks between
the rounds of the primitive. We assign variable names to the bits between rounds,
such that the input and output bits of all non-linear components can be written
as linear combinations of variables.

For each non-linear component we then construct the corresponding BDD,
like explained for S-boxes in Sect. 2.2. We replace the xi and yj with the linear
combinations actually occuring in the cipher. After this we are left with a set of
BDDs with linear combinations from the same pool of variables.

To proceed with finding a solution to the system we must join the BDDs
together. There exist algorithms for joining two BDDs [17][12, p.16], but they
are somewhat complex, and assume single variables associated with the levels.
We do it in a much simpler way:

– To join two BDDs, just replace the sink node of one with the source node of
the other.

With this simple operation, we can easily string together some or all BDDs
in a system and get fewer, or only one, BDD(s) in the set. If we join all BDDs
together, finding a solution is equivalent to finding a path in the joined BDD that
gives a right hand side yielding a consistent linear system. As can be expected,
for interesting systems there will be many dependencies among the linear combi-
nations in a fully joined BDD, so finding a path respecting all these dependencies
is not trivial. We can, however, try to handle this problem with linear absorp-
tion, and if we can absorb all linear dependencies in the BDD we know that any
remaining path will give a consistent linear system. The algorithm for solving a
system of BDDs can then be summed up as:

1. Join BDDs.
2. Absorb all linear dependencies.
3. Select path and solve resulting system of linear equations.

Fig. 3. Absorbing one linear dependency.
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3.3 Complexity

The first and third steps in the general solving algorithm are easy (assuming
a modest number of BDDs and variables, which is the case even for full scale
ciphers). Hence the second step must be hard if our cryptographic primitives are
to remain secure. What we get when joining all BDDs together is a very long
and very slim BDD, basically just a string of many small BDDs. The number of
nodes at one level may double when adding or swapping two linear combinations,
and after absorbing a whole linear dependency the total number of nodes may, in
the worst case, double. This seems to lead to exponential growth in the number
of dependencies absorbed, but in practice the number of nodes after absorbing
a linear dependency is very far from doubling. Remember, the number of nodes
may also decrease when applying a swap or an add operation.

If we expect a unique or only a few solutions, the BDD after absorbing all
dependencies will have only one or a few paths. A BDD with only one path
has only one node at each level, tied together with a string of 0- and 1-edges.
Since all the systems we are interested in have very few solutions, we know that
the number of nodes must decrease sharply before the last dependencies are
absorbed. This means we will always reach some tipping point when absorbing
dependencies, where the number of nodes in the BDD starts to decrease.

We take as our measure of complexity the largest number of nodes that a
BDD contained during linear absorption. This is a measure of memory complex-
ity, and is not equivalent to the time it takes to solve a system. On the other
hand, there is no guessing involved in our solving method, and no operations
that must be repeated an exponential number of times. Memory rather than
time is the resource that constrains us. With 8 GB of RAM it is hard to find a
system where our solver runs for over an hour without either finishing or running
out of memory. Therefore, we believe the largest number of nodes we had during
the solving process is the most meaningful measure of complexity.

3.4 Solving Strategies

When joining together many BDDs and absorbing all linear dependencies, the
solving complexity depends heavily on the order the BDDs are joined. Finding
the ordering of BDDs that gives the minimum complexity is probably a hard
problem. During our experiments we have not found a strategy for ordering that
is universally best. However, we describe here some strategies for how to join
and absorb with the aim to keep the complexity down.

Automatic Ordering. This is a default strategy, that can be applied to any
system and does not require any deeper understanding of how the BDDs have
been made. The procedure is to look for the subset of BDDs with the smallest
total number of nodes, that still contains some dependencies. When this subset
is found, we join these BDDs and absorb all dependencies. The number of BDDs
in the set will then decrease by at least one, and we repeat the procedure until
there is only one BDD left and all dependencies have been absorbed.
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Divide-and-Conquer. This strategy takes the approach that it is always easy
to join a few BDDs together and absorb all dependencies. To solve the system
though, one sooner or later has to join all BDDs, and absorb all remaining
dependencies. The assumption is that the true complexity of solving the system
will only appear when all BDDs are joined. Thus we would like to have only a
minimum of dependencies left when we are forced to join all BDDs together.

The divide-and-conquer strategy is to split the system in two (roughly)
equally large halves, such that there are many dependencies within each half
but only a few that use linear combinations from BDDs in both halves. We can
then attack each half independently, trying to absorb all dependencies. If we
succeed, we are left with one BDD with only independent linear combinations in
each half. These can now be joined, and we absorb the relatively few remaining
dependencies in the full BDD. When attacking one half, we use the Divide-
and-Conquer technique recursively, treating the half as a complete system. The
recursion stops when a “system” only contains one or two of the original BDDs.

Finding the optimal way to split a system in two equally sized parts seems to
be a hard problem in general. However, knowledge of how the system has been
constructed can help in this regard, as we will see with DES.

Finding Good Joining Order by Cryptanalysis. When we are trying to
solve a system representing a cryptographic primitive, analysis of the primitive
may help in deciding a good order of how to join the BDDs. The strategy is
simply to decide on an order for the original BDDs, join all of them into one
long BDD, and absorb all linear dependencies. The order of the BDDs should
be such that each linear dependency only involves linear combinations on levels
that are relatively close to each other. Absorbing each linear combination then
becomes a somewhat local operation that only affects a small part of the BDD,
keeping the complexity down.

4 Application of the Algebraic Attack Based on BDDs

This section describes practical aspects and results of the proposed attack on DES
and MiniAES as well as the time comparison of solving extended affine equivalence
(EA) problem using Gröbner basis, CrytoMiniSat and BDD approaches.

4.1 A Practical Attack on Reduced des

Previous results on solving DES systems can be found in [5] where the authors
solve a 6-round version, and in [21] where DES with 6, 7 and 8 rounds are
attacked. In all papers it was necessary to fix 20+ of the key bits to their correct
values for the attacks to work, reducing the effective key size to at most 36 bits.
The actual solving of equation systems was done by MiniSAT [22].

Our best result is that we can solve a 6-round system using 8 chosen plain-
text/ciphertext pairs without fixing or guessing any variables. The average
complexity is 220.571 nodes. Solving the system for 6-round DES with 8 chosen
plaintexts takes approximately one minute on a MacBook Air 2013 with 8 GB
of memory.
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Constructing des System of Equations. We assume the reader is familiar
with the operations of DES [23]. The only non-linear part of DES is the applica-
tion of the eight 6×4 S-boxes in each round. We assign variables to the output of
the S-boxes in each round, except for the last two whose output can be expressed
as linear conbinations of other variables and ciphertext bits. The key schedule of
DES is linear, so we only need to assign variables to the 56 user-selected key bits.
After this the input and output bits of each S-box can be expressed as linear
combinations of variables, and we construct a BDD for each S-box as described
in Sect. 2.2. Each BDD contains approximately 185 nodes after reduction, the
eight different S-boxes vary slightly in size.

Solving Strategy. The solving strategy we found to work best for DES is
Divide-and-Conquer. We then need to divide our system in two equally big
halves, and the key schedule of DES gives a clear hint on how to do this: One
half of the 56 key bits only appears in the inputs to S-boxes 1 − −4, while the
other half only appears in the S-boxes 5 − −8. This applies to all rounds. For
each round, we put the BDDs representing S-boxes 1 − −4 into the set A0, and
the BDDs for S-boxes 5 − −8 into the set B0. Then we try to solve A0 and B0

independently, using Divide-and-Conquer again. For dividing A0, we have found
(by exhaustive search) that the best division is to group together the same two
S-boxes from odd-numbered rounds, i.e. S-boxes 1 and 2, and the other S-boxes
(3 and 4) from even-numbered rounds, into set A1. The other BDDs from A0

go into the set B1. See Fig. 4 for a sketch of the division used. B0 is re-divided
similarly, and further divisions are done by exhaustive search on the fly.

Several Plaintexts. When using several plaintext/ciphertext pairs, we build
one DES system for each. These systems will have the same 56 key-bit variables,
but variables representing internal state will, in general, be different for each
plaintext. However, if we carefully choose the difference between the plaintexts
we can reuse a lot of internal variables across different systems. For producing
up to eight different plaintexts, we vary only three bits in the left half. Then
the input to the first round will be equal for each text, and the difference in the
input to the second round will only be in three bits. These bits are chosen so

Fig. 4. Division used for Divide-and-Conquer strategy for DES.
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they only affect one S-box each. In the experiments bits 1, 5 and 17 (numbering
from 0 through 31) in the left half were used for generating differences, affecting
S-boxes 1, 2 and 5 in the second round. Tracing differences further we find that
we may reuse variables across systems as far as into the fourth round.

We merge the different systems by joining all BDDs arising from the same
S-box in the same round. As these share the same key variables, and often many
other variables as well, there are many linear dependencies among the levels in
the joined BDD. These dependencies are absorbed, and after this pre-processing
we are left with a system of 8r BDDs representing an r-round version of DES,
regardless of the number of chosen plainexts used.

Extracting Linear Equations. When using more than four plainetxts in the
experiments, we observed that the heaviest step while solving did not occur
when joining the sets A0 and B0, but rather when joining A1 and B1. After all
dependencies in A0 had been absorbed the resulting BDD was very slim, with
many levels only containing one node.

If a level only has outgoing b-edges (which is often the case with one-node lev-
els) we know that the associated linear combination is equal to b, (b ∈ {0, 1}). We
can use this linear equation to eliminate a variable from the system. Extracting
as many linear equations as possible and eliminating variables after all depen-
dencies in A0 had been absorbed, it became trivial to absorb all dependencies
in B0, and the full system.

Results for des Experiments. We have solved systems representing DES
for 4, 5 and 6 rounds, using 1 − 8 plaintext/ciphertext pairs. For each choice of
rounds and number of plaintexts we randomly generated and solved 100 systems,
recording their complexities. The minimum, maximum and average (in bold)
complexities observed are summarized in Table 1.

There are rather large variations in complexities inside most cells in Table 1.
In each cell, the key and one plaintext were chosen at random for each of the 100
instances, and some choices give much lower complexity than others. We can not
explain the differences, and have not been able to identify which choices lead to
low solving complexity.

4.2 A Practical Attack on Scaled-Down Version of AES

There are many scaled-down versions of the AES cipher (MiniAES). The first
one that follows Rinjdael’s description was proposed in [24]. A few years later
Cid et al. analyzed many small AES variants in [7], and Elizabeth Kleiman tried
to attack MiniAES in her master and doctoral theses [15,25]. Also, an equation
system representing MiniAES was solved in [16].

Description of MiniAES. The constants of our studied encryption model are
the block length (16 bits) and the key size (16 bits). This scaled-down cipher
corresponds to AES-128 [26]. In contrast to original AES, the mini version is
a nibble (4 bits) oriented cipher with the state represented as a 2 × 2 matrix.
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Table 1. Complexities for solving reduced-round DES-systems. Each cell shows the
minimum, average and maximum complexity observed over 100 instances.

The round function consists of four routines: AddroundKey (AKk), SubBytes
(SB), ShiftRows (SR) and MixColumns (MC). The encryption algorithm can
be described as

EK(M) =
r∏

i=1

(AKki
◦ MC ◦ SR ◦ SB) ◦ AKk0(M),

where r is the number of rounds. The substitution and MDS matrix was taken
from [24].

Constructing System of BDDs for MiniAES. Unlike DES, MiniAES has
non-linear components in the key schedule. We assign variables to the output of
the S-boxes in each round, except for the last one. Additionally, we have to add
8 extra variables for each round key, except the first one with 16 bits of the user-
selected key. Then the number of BDDs and variables is equal to 2r + 4r = 6r
and (16 + 8r) + 16(r − 1) = 24r, respectively.

Solving Strategy. The best strategy we found for solving the MiniAES systems
was to determine a good order of BDDs by cryptanalysis, join all BDDs and do
a full absorption of all dependencies.

The order was found by carefully studying which variables that appear in
each BDD, both from the key schedule and the encryption function. Variables
from the cipher state only appear in two consecutive rounds. It is therefore clear
that the four BDDs from the same round should be joined close to each other,
and also close to the two BDDs from the key schedule producing the round
key used for the round. The BDDs were put together in groups of six this way,
following the rounds of the cipher.
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The order of the BDDs in each group was determined by looking at which
variables that appear in each individual BDD. Two BDDs that share many
variables should be adjacent in the final order. After doing this for the four, five
and six round versions it became clear that a pattern emerged for the joining
order. This pattern was followed for the higher number of rounds.

Results for MiniAES Experiments. The complexities for solving MiniAES
systems for various rounds are summed up in Table 2. Of course, MiniAES only
has a 16-bit key and can be broken very fast using for instance CryptoMiniSAT,
which essentially does a very intelligent brute force on the key [27, p.250-251].
In [16], the authors create the polynomials for the ciphertext bits using only the
user-selected key bits as variables. This results in 16 polynomials in 16 variables
containing approximately 215 terms each, that can be solved using PolyBoRi.
Our algorithm does not take advantage of the short key, and should be compared
to the earlier attacks in [7,15] that also does not exploit the short key.

For each number of rounds we solved 10 different instances, using 1 known
plaintext/ciphertext pair. We were not able to reduce the complexities by using
more pairs. The observed complexities for one particular number of rounds did
not vary, so the minimum, maximum and average complexities are all the same.
We have also changed the S-box and the MixColumn matrix to see if other
choices affected the complexity, but we found the complexity remains the same
for all variants tried.

It has been observed before that for one plaintext/ciphertext pair in scaled-
down AES versions there may be more than one key that encrypts the given
plaintext into the given ciphertext. This was shown in our experiments as well,
often we had two, three or even four solutions to our systems.

Table 2. Complexities of solving MiniAES systems.

Rounds 4 5 6 7 8 9 10

Complexity 222.404 223.051 223.440 224.154 224.217 224.862 224.961

4.3 Problem of Determining EA-equivalence

To get a good comparison against other solvers we have chosen the problem
of EA-equivalence [29]. This problem is interesting in cryptography, and it can
be solved via non-linear systems of equations. There are no special variables in
these systems, like key bits, so we get a fair comparison between CryptoMiniSAT,
Gröbner bases and the BDD method.

Two functions are EA-equivalent if the following equation holds for all x ∈
GF (2)n

F (x) = M1 · G(M2 · x ⊕ V2) ⊕ M3 · x ⊕ V1, (1)
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where elements of {M1,M2,M3, V1, V2} have dimensions {m × m,n × n,m ×
n,m, n} and M1 and M2 are non-singular [29]. For simplicity, we set n = m.
The EA-equivalence problem can then be formulated as follows:

For given functions F,G : GF (2)n �→ GF (2)n find M1,M2,M3, V1, V2 such that
(1) holds or show that such vectors and matrices do not exist.

The variables in the system to be solved are the entries in M1,M2,M3, V1 and
V2, so the number of variables is 3n2 + 2n. The maximum number of equations
and a system’s degree can be calculated theoretically for given F and G [30].
However, for n ≤ 6 the system can always be made quadratic by introducing
the matrix M

′
3 = M−1

1 · M3 and the vector V
′
1 = M−1

1 · V1 and add them as
additional equations and variables.

For n = 4 and n = 5 the problem of EA-equivalence is tractable, and the com-
plexity comparison of Gröbner basis (GB), CryptoMiniSat (SAT) and proposed
approach (BDD) is presented in Table 3 for five different instances. Unlike the
two other methods, CryptoMiniSat only finds one solution by default. Therefore,
we have used the option “n = +infinity” in CryptoMiniSat to force it to find all
solutions and get a fair comparison. For GB we tested with several options for
ordering, with or without using “faugere” option (turning linear algebra on or
off), and with or without parallelization. The smallest observed times we could
achieve are reported below.

Table 3. Time complexity for solving EA-equivalence problem

# n Number of solutions Seconds used to solve

BDD GB SAT

1 4 2 24.05 21.30 213.71

2 4 60 24.86 † 216.77

3 4 2 23.92 21.01 212.08

4 5 1 210.20 211.43 -

5 5 155 210.48 † -

In Table 3 “†” means that the Gröbner bases solver implemented in Sage
crashes after several minutes with out-of-memory message, and “–” means
that CryptoMiniSat spent more than 78 hours (218 seconds) without finding a
solution [28].

5 Conclusions

In this paper we have explained an approach to build and solve equation systems
using binary decision diagrams and reported on experiments with the method.
The best previous results on algebraic attacks against DES use guessing at least
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20 of the key bits. We improved on these results using BDDs, breaking six rounds
of DES without guessing any variables.

For MiniAES we have also received results which are better than the previ-
ous algebraic attacks described in [7] and [15]. According to our experiments a
system representing 10 rounds of MiniAES can be solved in 45 min on a ordi-
nary computer using the BDD approach. However, attacks exploiting the short
key have lower complexities. At the same time, the BDD method is shown to
be advantageous compared to Gröbner basis and CryptoMiniSat on solving the
EA-equivalence problem.

These experiments indicate the BDD approach can compete with other meth-
ods in applications which require solving the non-linear equation systems. There
are several open questions to address in future research. Does there exist a generic
algorithm giving an order of BDDs that yield low complexity when applying lin-
ear absorption? Is it possible to analytically estimate the complexity of solving
a BDD system of equations, or do we have to actually run the solver to find
out? Which ciphers are most vulnerable against this type of algebraic attacks?
We hope the potential of BDDs in cryptanalysis will be thoroughly examined in
future research.
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