
The Unified Form Language
and Key Points on its Translation

Martin Sandve Alnæs

Center for Biomedical Computing,
Simula Research Laboratory

February 27th
SIAM CSE 2017

Overview of this talk

I Key concepts of the Unified Form
Language (UFL)

I Generic remarks on what a UFL
form compiler needs to do

I Specific algorithms of the
UFLACS form compiler

I Some benchmarks

Mixed formulation of a Poisson problem

Find (σ,u) ∈ W = V × U s.t.∫
Ω

σ · τ+ u∇ · τ+∇ · σ v dx

=

∫
Ω

f v dx, ∀(τ, v) ∈ W

1 from fenics import *
2 mesh = UnitSquareMesh(150, 150)
3 cell = mesh.ufl_cell()

1 V = FiniteElement("BDM", cell, 1)
2 U = FiniteElement("DG", cell, 0)
3 W = FunctionSpace(mesh, V * U)

1 sigma, u = TrialFunctions(W)
2 tau, v = TestFunctions(W)
3 f = Expression("exp(pow(x[0]+x[1],2))",
4 degree=1)

1 a = (dot(sigma,tau)*dx + u*div(tau)*dx
2 + div(sigma)*v*dx)
3 L = f*v*dx

1 w = Function(W)
2 solve(a == L, w)
3 plot(w.sub(1))

Topics

Key concepts of the Unified Form Language (UFL)

Generic remarks on what a UFL form compiler needs to do

Specific algorithms of the UFLACS form compiler

Some benchmarks

The UFL model of a variational form

A Form is a sum of Integrals, where each integral is described
by an integrand Expr and a Measure object.

a(v, ...;w, ...) =
∑

k

∫
Ωk

fk(v, ...;w, ...)dµk

The geometric domain can be attached to the Measure or
inferred from the integrand.

The expression language is the bulk of UFL

1 a = dot(grad(f*u),grad(v))*dx
Integral

Inner

Grad

Product

Coefficient Argument

Grad

Argument

The main categories of Expr types

I Terminal values (e.g. SpatialCoordinate, Coefficient)

I Computation (e.g. Sum, Inner, IndexSum)

I Derivatives (e.g. Grad, Div, Curl)

I Reshaping (e.g. Transposed, Indexed)

Every Expr node has tensor properties:
tensor shape, a tuple of free indices, and index dimensions

Assuming a 2 by 3 matrix expression A and Index objects i, j:

Math UFL Shape Free indices Index dimensions

A A (2, 3) () ()
A00 A[0,0] () () ()

Ai0 A[i,0] () (i,) (2,)
A0i A[0,i] () (i,) (3,)

Aij A[i,j] () (i,j) (2,3)
Aji A[j,i] () (i,j) (3,2)

e0 · A A[0,:] (3,) () ()
ei · A A[i,:] (3,) (i,) (2,)

Example: tensor algebra and index notation
– equivalent expressions using tensor and index notation

u : x 7→ Rd, v : x 7→ Rd, M : x 7→ Rd,d. (1)

a1(u, v;M) =

∫
Ω

(gradu ·M) : grad v dx, (2)

a2(u, v;M) =

∫
Ω

(MT∇u) : ∇v dx, (3)

a3(u, v;M) =

∫
Ω

Mijuk,ivk,j dx (4)

1 a1 = inner(dot(grad(u), M), grad(v))*dx
2 a2 = inner(M.T*nabla_grad(u), nabla_grad(v))*dx
3 a3 = M[i,j] * u[k].dx(i) * v[k].dx(j) * dx

Variational forms can be manipulated using

e.g. partial evaluation or Gateaux

differentiation

Consider the example bilinear form

1 a = dot(grad(f*u),grad(v))*dx

With this you can f.ex.

I Replace a coefficient function with another expression
replace(a, { f: g }) == dot(grad(g*u),grad(v))*dx

I Construct the action of a bilinear form on a coefficient
action(a, g) == dot(grad(f*g),grad(v))*dx

I Compute the derivative of a form or functional
derivative(a, u, du)

Topics

Key concepts of the Unified Form Language (UFL)

Generic remarks on what a UFL form compiler needs to do

Specific algorithms of the UFLACS form compiler

Some benchmarks

UFL contains algorithms for form compiler

preprocessing

Including but not limited to:

I Integrals are joined by subdomain
(
∫
Ω f +

∫
Ω0

g→
∫
Ω−Ω0

f +
∫
Ω0

f + g)

I High level types are rewritten to index notation
(A : B→ AijBij)

I Automatic differentiation is applied
(∇(cf + g)→ c∇f +∇g)

I Restrictions are propagated to terminals
((cv)+ → c+v+)

I Rewriting geometric quantities (next slide)

Symbolic geometric quantities can be

rewritten in terms of the Jacobian

I Change of coordinates to reference cell integral:∫
f(x)dx→

∫
F(X)|J|dX (5)

I Application of symbolic Piola mappings:

v→ J−TV, u→ 1

det J
JU (6)

I Lowering of abstractions of various cell geometry

n→ J−TN, |f |→ det

(
J
dX

dXf

)
|F| (7)

Form compilers need to translate any modified

terminals to the target framework

I A modified terminal a Terminal with a select set of
operators optionally applied:

I ReferenceValue
I Grad or ReferenceGrad (any number)
I CellAvg or FacetAvg
I Restricted (obligatory where relevant)
I Indexed with fixed indices

Examples: v ∈ Vh, ∇v, v−, ∇v+, (∇v)+01.

Topics

Key concepts of the Unified Form Language (UFL)

Generic remarks on what a UFL form compiler needs to do

Specific algorithms of the UFLACS form compiler

Some benchmarks

First pass: Scalar value numbering∑
i ui A1i (8)

ui A1i (6,7)

ui (0,1)

u (0,1)

A1i (3,5)

A (2,3,4,5)

s8 = s6 + s7

s6 = s0s3; s7 = s1s5

. . .

s0, s1 = u

. . .

s2, s3, s4, s5 = A

A simpler scalar expression graph is created for

s8 = u0A10 + u1A11 (8)

Second pass: Form argument factorization

With a single pass over the new scalar graph, the integrand is
factorized to a sum of monomials

a(u, v) =

∫
T

∑
k

fk D0
ku D1

kv dx (9)

where fk is an arbitrary scalar expression and D1
kv is a

component or derivative of the test function v.

Example: Considering the 1D form

a(u, v) =

∫
T
(αu)v + (Ku ′)(Kv ′)dx, (10)

the factorized form is

a(u, v) =

∫
T
α(uv) + (KK)(u ′v ′)dx. (11)

Third pass: Classify monomial factors

Defining û = D0u, v̂ = D1v, each integrated monomial is a
matrix with structure Bij =

∫
T f ûi v̂j dx.

I If f is cellwise constant, preintegration is possible:

Pij =

∫
T

ûi v̂j dx, Bij = f Pij. (12)

I If both û and v̂ are cellwise constant, can integrate f at
runtime and then scale B:

F =

∫
T

f dx, Bij = F ûi v̂j. (13)

I If û (or v̂) is cellwise constant: the vector f û can be
integrated runtime.

Ri =

∫
T

f ûi dx, Bij = f Ri v̂j. (14)

Topics

Key concepts of the Unified Form Language (UFL)

Generic remarks on what a UFL form compiler needs to do

Specific algorithms of the UFLACS form compiler

Some benchmarks

Benchmarks: a couple of nonlinear problems

ns uflacs quadrature quadrature -O

Hyperelasticity 268 8656 1520
Cahn Hillard 460 3753 3225

I “tensor”, “quadrature”, “uflacs”, and “tsfc” are
representations or approaches to code generation in FFC.

I “tensor” representation in ffc does not handle the above
equations.

I “tsfc” is not included in these benchmarks due to lack of time.

I Due to the same lack of time, please take these benchmarks
with a grain of salt.

Benchmarks: some simpler problems

ns uflacs quadrature quadrature -O tensor

Mass q=1 34 33 38 29
Mass q=2 45 664 493 56
Mass q=3 113 8023 6252 137

Stiffness q=1 63 66 75 54
Stiffness q=2 280 984 2155 109
Stiffness q=3 1197 13036 35765 404

Stokes 1121 50189 7636 805
Helmholtz 76 158 230 56

Questions?

I martinal@simula.no

I https://fenicsproject.org

I https://bitbucket.org/fenics-project

I https://fenics.readthedocs.io

I https://fenicsproject.org/tutorial

Alnæs, Logg, Ølgaard, Rognes, Wells, Unified Form Language:
A domain-specific language for weak formulations of partial
differential equations, http://arxiv.org/abs/1211.4047

martinal@simula.no
https://fenicsproject.org
https://bitbucket.org/fenics-project
https://fenics.readthedocs.io
https://fenicsproject.org/tutorial
http://arxiv.org/abs/1211.4047

	Key concepts of the Unified Form Language (UFL)
	Generic remarks on what a UFL form compiler needs to do
	Specific algorithms of the UFLACS form compiler
	Some benchmarks

