The Unified Form Language

and Key Points on its Translation

Martin Sandve Alnaes

Center for Biomedical Computing,
Simula Research Laboratory

February 27th
SIAM CSE 2017

o)

Overview of this talk

W M » Key concepts of the Unified Form
Language (UFL)

v

{ generst 2 @ » Generic remarks on what a UFL
‘] form compiler needs to do
FENICS Specific algorithms of the
DPOLJECG UFLACS form compiler

» Some benchmarks

o)

Mixed formulation of a Poisson problem

Find (o,u) e W=V x U s.t.

J o-1+uV-1+V-ovdx
Q

:J fv dx, V(t,v) e W
Q

N A WN N N

N

from fenics import x
mesh = UnitSquareMesh (150, 150)
cell = mesh.ufl_cell()

= FiniteElement("BDM", cell, 1)
U = FiniteElement("DG", cell, 0)
= FunctionSpace(mesh, V * U)

sigma, u = TrialFunctions (W)

tau, v = TestFunctions (W)
f = Expression("exp(pow(x[0]+x[1],2))",
degree=1)

a = (dot(sigma,tau)*dx + uxdiv(tau)s*dx
+ div(sigma)*vxdx)
L = fxvsdx

w = Function(W)
solve(a == L, w)
plot(w.sub(1))

o)

Topics

Key concepts of the Unified Form Language (UFL)

The UFL model of a variational form

A Form is @ sum of Integrals, where each integral is described
by an integrand Expr and a Measure object.

The geometric domain can be attached to the Measure or
inferred from the integrand.

o)

The expression language is the bulk of UFL

Integral
1 |a = dot(grad(fxu),grad(v))=*dx
o5 T Inner
Ta.
c3:
£ / \
+
—
2 Grad Grad
on l I Coefficient Product Argument
Cor[ﬁ]tlonale r / \
Coefficient Argument

o)

The main categories of exr types

» Terminal values (e.g. SpatialCoordinate, Coefficient)
» Computation (e.g. Sum, Inner, IndexSum)

» Derivatives (e.g. Grad, Div, Curl)

» Reshaping (e.g. Transposed, Indexed)

o)

Every exor node has tensor properties:

tensor shape, a tuple of free indices, and index dimensions

Assuming a 2 by 3 matrix expression A and Index objects i, j:

Math UFL Shape Freeindices Index dimensions
A A (2,3) 0 0]

Aoo A[0,0] () 0] 0]

Aio Ali,0] () (i,) (2,)

Aoi AL0,i1 () (i,) (3,

Aji Alj,i] () (i.j) (3,2)

e -A A0:] (3) 0 0]

e-A Al (3, (i,) (2,)

o)

Example: tensor algebra and index notation

- equivalent expressions using tensor and index notation

U:Xl—>Rd, V:X+—>Rd, M : x — R%. (1)
ai(u,v;M) = (gradu-M): gradvdx, (2)
Q
ax(u,v;M) = | (M"Vu): Vvdx, (3)
JQ
as(u,v;M) = | Mjugvgjdx (4)
JQ
1 |al = inner(dot(grad(u), M), grad(v))x*dx
2 |a2 = inner(M.Txnabla_grad(u), nabla_grad(v))x*dx
3 a3 = M[i,j] * u[k].dx(i) * v[k].dx(j) * dx

o)

Variational forms can be manipulated using
e.g. partial evaluation or Gateaux
differentiation

Consider the example bilinear form

1 |a = dot(grad(f*u),grad(v))=dx

With this you can f.ex.
» Replace a coefficient function with another expression
replace(a, { f: g }) == dot(grad(gxu),grad(v))=*dx
» Construct the action of a bilinear form on a coefficient
action(a, g) == dot(grad(fxg),grad(v))=*dx

» Compute the derivative of a form or functional

derivative(a, u, du)

o)

Topics

Generic remarks on what a UFL form compiler needs to do

UFL contains algorithms for form compiler
preprocessing

Including but not limited to:
» Integrals are joined by subdomain
Jaf+Ja, 9= Ja o, ft[a,f+9)
» High level types are rewritten to index notation
(A:B — AjBjj)
» Automatic differentiation is applied
(V(cf+g) — cVF+Vg)

» Restrictions are propagated to terminals
((ev)™ — ctv'h)

» Rewriting geometric quantities (next slide)

o)

Symbolic geometric quantities can be
rewritten in terms of the Jacobian

» Change of coordinates to reference cell integral:
Jf(x)dx—>JF(X)|j|dX (5)
» Application of symbolic Piola mappings:
v—)TV u—>iju (6)
' det/

» Lowering of abstractions of various cell geometry

- ax
n—J TN, Ifl — det <jde> IF| (7)

Form compilers need to translate any modified
terminals to the target framework

» A modified terminal a Terminal with a select set of
operators optionally applied:

» ReferenceValue

Grad or ReferenceGrad (any number)
CellAvg or FacetAvg

Restricted (obligatory where relevant)
Indexed with fixed indices

>
>
>
>

Examples: v € Vp, Vv, v, VvT, (Vv)g;.

o)

Topics

Specific algorithms of the UFLACS form compiler

First pass: Scalar value numbering

D jUiA1; (8) Sg =S + S7
uiAq; (6,7) Se = 5053, S7 = 5155
Ay (3,5)
u(0,1) A(2,3,4,5) S0,51 =U $2,53,54,55 = A

A simpler scalar expression graph is created for

Sg = UpA1o + U1A11 (8)

o)

Second pass: Form argument factorization

With a single pass over the new scalar graph, the integrand is
factorized to a sum of monomials

a(u,v) = J Z f DYu Div dx (9)
Tk

where fg is an arbitrary scalar expression and D,%v is a
component or derivative of the test function v.

Example: Considering the 1D form

a(u,v) = L(ocu)v + (Ku”)(Kv') dx, (10)

the factorized form is

alu,v) = L o(uv) + (KK)(u'v’) dx. (11)

Third pass: Classify monomial factors

Defining & = D°u, ¥ = D'v, each integrated monomial is a
matrix with structure B = [f {; V; dx.
» If fis cellwise constant, preintegration is possible:

P,'j = J ll:l,' \7/ dX, B,'j = fP,'j. (12)
T

» If both U and ¥ are cellwise constant, can integrate f at
runtime and then scale B:
F:J de, BU:F{,\I,\/}j (13)
T

» If U (or V) is cellwise constant: the vector fii can be
integrated runtime.

R,‘ZJ f&,-dx, B,'j:fR,'\I}j. (14)
T

Topics

Some benchmarks

Benchmarks: a couple of nonlinear problems

ns uflacs quadrature quadrature -O
Hyperelasticity 268 8656 1520
Cahn Hillard 460 3753 3225
» “tensor”, “quadrature”, “uflacs”, and “tsfc” are

representations or approaches to code generation in FFC.

» “tensor” representation in ffc does not handle the above
equations.

» “tsfc” is not included in these benchmarks due to lack of time.

» Due to the same lack of time, please take these benchmarks
with a grain of salt.

o)

Benchmarks: some simpler problems

ns uflacs quadrature quadrature-O tensor
Mass q=1 34 33 38 29
Mass q=2 45 664 493 56
Mass q=3 113 8023 6252 137
Stiffness q=1 63 66 75 54
Stiffness q=2 280 984 2155 109
Stiffness q=3 1197 13036 35765 404
Stokes 1121 50189 7636 805
Helmholtz 76 158 230 56

o)

Questions?

v

martinal@simula.no

https://fenicsproject.org
https://bitbucket.org/fenics-project
https://fenics.readthedocs.io

vV v v v

https://fenicsproject.org/tutorial

Alnaes, Logg, @lgaard, Rognes, Wells, Unified Form Language:
A domain-specific language for weak formulations of partial
differential equations, http://arxiv.org/abs/1211.4047

o)

martinal@simula.no
https://fenicsproject.org
https://bitbucket.org/fenics-project
https://fenics.readthedocs.io
https://fenicsproject.org/tutorial
http://arxiv.org/abs/1211.4047

	Key concepts of the Unified Form Language (UFL)
	Generic remarks on what a UFL form compiler needs to do
	Specific algorithms of the UFLACS form compiler
	Some benchmarks

