The Unified Form Language and Key Points on its Translation

Martin Sandve Alnæs

Center for Biomedical Computing, Simula Research Laboratory

February 27th SIAM CSE 2017

Overview of this talk

- Key concepts of the Unified Form Language (UFL)
- Generic remarks on what a UFL form compiler needs to do
- Specific algorithms of the UFLACS form compiler
- Some benchmarks

Mixed formulation of a Poisson problem

Find $(\sigma, u) \in W=V \times U$ s.t.

```
from fenics import *
mesh = UnitSquareMesh(150, 150)
cell = mesh.ufl_cell()
```

```
V = FiniteElement("BDM", cell, 1)
U = FiniteElement("DG", cell, 0)
W = FunctionSpace(mesh, V * U)
```

```
sigma, u = TrialFunctions(W)
tau, v = TestFunctions(W)
f = Expression("exp(pow(x[0]+x[1],2))",
    degree=1)
```

```
a = (dot(sigma,tau)*dx + u*div(tau)*dx
```

a = (dot(sigma,tau)*dx + u*div(tau)*dx
+ div(sigma)*v*dx)
+ div(sigma)*v*dx)
L = f*v*dx

```
L = f*v*dx
```

```
w = Function(W)
solve(a == L, w)
plot(w.sub(1))
```


Topics

Key concepts of the Unified Form Language (UFL)

Generic remarks on what a UFL form compiler needs to do

Specific algorithms of the UFLACS form compiler

Some benchmarks

The UFL model of a variational form

A Form is a sum of Integrals, where each integral is described by an integrand Expr and a Measure object.

$$
a(v, \ldots ; w, \ldots)=\sum_{k} \int_{\Omega^{k}} f_{k}(v, \ldots ; w, \ldots) d \mu_{k}
$$

The geometric domain can be attached to the Measure or inferred from the integrand.

The expression language is the bulk of UFL

$$
1 \quad a=\operatorname{dot}(\operatorname{grad}(f * u), \operatorname{grad}(v)) * d x
$$

Integral

Coefficient
Argument

The main categories of expr types

- Terminal values (e.g. SpatialCoordinate, Coefficient)
- Computation (e.g. Sum, Inner, IndexSum)
- Derivatives (e.g. Grad, Div, Curl)
- Reshaping (e.g. Transposed, Indexed)

Every Expr node has tensor properties:

tensor shape, a tuple of free indices, and index dimensions
Assuming a 2 by 3 matrix expression A and Index objects i, j :

Math	UFL	Shape	Free indices	Index dimensions
A	A	$(2,3)$	()	()
A_{00}	$\mathrm{~A}[0,0]$	()	()	()
$A_{i 0}$	$\mathrm{~A}[\mathrm{i}, 0]$	()	(i),	(2),
$A_{0 i}$	$\mathrm{~A}[0, \mathrm{i}]$	()	(i),	(3),
$A_{i j}$	$\mathrm{~A}[\mathrm{i}, \mathrm{j}]$	()	(i, j)	$(2,3)$
$A_{j i}$	$\mathrm{~A}[\mathrm{j}, \mathrm{i}]$	()	(i, j)	$(3,2)$
$e_{0} \cdot A$	$\mathrm{~A}[0,:]$	(3),	()	()
$e_{i} \cdot A$	$A[\mathrm{i},:]$	(3),	(i),	(2),

Example: tensor algebra and index notation

- equivalent expressions using tensor and index notation

$$
\begin{align*}
& u: x \mapsto R^{d}, \quad v: x \mapsto R^{d}, \quad M: x \mapsto R^{d, d} \tag{1}\\
& a_{1}(u, v ; M)=\int_{\Omega}(\operatorname{grad} u \cdot M): \operatorname{grad} v d x \tag{2}\\
& a_{2}(u, v ; M)=\int_{\Omega}\left(M^{T} \nabla u\right): \nabla v d x \tag{3}\\
& a_{3}(u, v ; M)=\int_{\Omega} M_{i j} u_{k, i} v_{k, j} \mathrm{~d} x \tag{4}
\end{align*}
$$

```
al = inner(dot(grad(u), M), grad(v))*dx
a2 = inner(M.T*nabla_grad(u), nabla_grad(v))*dx
a3 = M[i,j] * u[k].dx(i) * v[k].dx(j) * dx
```


Variational forms can be manipulated using e.g. partial evaluation or Gateaux differentiation

Consider the example bilinear form

```
a = dot(grad(f*u),grad(v))*dx
```

With this you can f.ex.

- Replace a coefficient function with another expression replace(a, \{ f: g \}) == dot(grad(g*u), grad(v))*dx
- Construct the action of a bilinear form on a coefficient $\operatorname{action}(a, g)==\operatorname{dot}(\operatorname{grad}(f * g), \operatorname{grad}(v)) * d x$
- Compute the derivative of a form or functional derivative(a, u, du)

Topics

Key concepts of the Unified Form Language (UFL)

Generic remarks on what a UFL form compiler needs to do

Specific algorithms of the UFLACS form compiler

Some benchmarks

UFL contains algorithms for form compiler preprocessing

Including but not limited to:

- Integrals are joined by subdomain
$\left(\int_{\Omega} f+\int_{\Omega_{0}} g \rightarrow \int_{\Omega-\Omega_{0}} f+\int_{\Omega_{0}} f+g\right)$
- High level types are rewritten to index notation $\left(A: B \rightarrow A_{i j} B_{i j}\right)$
- Automatic differentiation is applied $(\nabla(c f+g) \rightarrow c \nabla f+\nabla g)$
- Restrictions are propagated to terminals $\left((c v)^{+} \rightarrow c^{+} v^{+}\right)$
- Rewriting geometric quantities (next slide)

Symbolic geometric quantities can be rewritten in terms of the Jacobian

- Change of coordinates to reference cell integral:

$$
\begin{equation*}
\int f(x) d x \rightarrow \int F(X) \| \mid d X \tag{5}
\end{equation*}
$$

- Application of symbolic Piola mappings:

$$
\begin{equation*}
v \rightarrow J^{-T} V, \quad u \rightarrow \frac{1}{\operatorname{det} \jmath} J U \tag{6}
\end{equation*}
$$

- Lowering of abstractions of various cell geometry

$$
\begin{equation*}
n \rightarrow J^{-T} N, \quad|f| \rightarrow \operatorname{det}\left(J \frac{d X}{d X^{f}}\right)|F| \tag{7}
\end{equation*}
$$

Form compilers need to translate any modified terminals to the target framework

- A modified terminal a Terminal with a select set of operators optionally applied:
- ReferenceValue
- Grad or ReferenceGrad (any number)
- CellAvg or FacetAvg
- Restricted (obligatory where relevant)
- Indexed with fixed indices

Examples: $v \in V_{h}, \nabla v, v^{-}, \nabla v^{+},(\nabla v)_{01}^{+}$.

Topics

Key concepts of the Unified Form Language (UFL)
 Generic remarks on what a UFL form compiler needs to do

Specific algorithms of the UFLACS form compiler

First pass: Scalar value numbering

$$
\sum_{i} u_{i} A_{1 i}(8)
$$

$(6,7)$

$$
s_{8}=s_{6}+s_{7}
$$

$$
s_{6}=S_{0} S_{3} ; \quad S_{7}=S_{1} S_{5}
$$

$$
s_{0}, s_{1}=u
$$

$$
s_{2}, s_{3}, s_{4}, s_{5}=A
$$

A simpler scalar expression graph is created for

$$
\begin{equation*}
s_{8}=u_{0} A_{10}+u_{1} A_{11} \tag{8}
\end{equation*}
$$

Second pass: Form argument factorization

With a single pass over the new scalar graph, the integrand is factorized to a sum of monomials

$$
\begin{equation*}
a(u, v)=\int_{T} \sum_{k} f_{k} D_{k}^{0} u D_{k}^{1} v d x \tag{9}
\end{equation*}
$$

where f_{k} is an arbitrary scalar expression and $D_{k}^{1} v$ is a component or derivative of the test function v.

Example: Considering the 1D form

$$
\begin{equation*}
a(u, v)=\int_{T}(\alpha u) v+\left(K u^{\prime}\right)\left(K v^{\prime}\right) d x \tag{10}
\end{equation*}
$$

the factorized form is

$$
\begin{equation*}
a(u, v)=\int_{T} \alpha(u v)+(K K)\left(u^{\prime} v^{\prime}\right) d x \tag{11}
\end{equation*}
$$

Third pass: Classify monomial factors

Defining $\hat{u}=D^{0} u, \hat{v}=D^{1} v$, each integrated monomial is a matrix with structure $B_{i j}=\int_{T} f \hat{u}_{i} \hat{v}_{j} d x$.

- If f is cellwise constant, preintegration is possible:

$$
\begin{equation*}
P_{i j}=\int_{T} \hat{u}_{i} \hat{v}_{j} d x, \quad B_{i j}=f P_{i j} \tag{12}
\end{equation*}
$$

- If both \hat{u} and \hat{v} are cellwise constant, can integrate f at runtime and then scale B :

$$
\begin{equation*}
F=\int_{T} f d x, \quad B_{i j}=F \hat{u}_{i} \hat{v}_{j} \tag{13}
\end{equation*}
$$

- If $\hat{u}(o r \hat{v})$ is cellwise constant: the vector fû can be integrated runtime.

$$
\begin{equation*}
R_{i}=\int_{T} f \hat{u}_{i} d x, \quad B_{i j}=f R_{i} \hat{v}_{j} \tag{14}
\end{equation*}
$$

Topics

$$
\begin{aligned}
& \text { Key concepts of the Unified Form Language (UFL) } \\
& \text { Generic remarks on what a UFL form compiler needs to do } \\
& \text { Specific algorithms of the UFLACS form compiler }
\end{aligned}
$$

Some benchmarks

Benchmarks: a couple of nonlinear problems

ns	uflacs	quadrature	quadrature -O
Hyperelasticity	268	8656	1520
Cahn Hillard	460	3753	3225

- "tensor", "quadrature", "uflacs", and "tsfc" are representations or approaches to code generation in FFC.
- "tensor" representation in ffc does not handle the above equations.
- "tsfc" is not included in these benchmarks due to lack of time.
- Due to the same lack of time, please take these benchmarks with a grain of salt.

Benchmarks: some simpler problems

ns	uflacs	quadrature	quadrature -O	tensor
Mass q=1	34	33	38	29
Mass q=2	45	664	493	56
Mass q=3	113	8023	6252	137
Stiffness q=1	63	66	75	54
Stiffness q=2	280	984	2155	109
Stiffness q=3	1197	13036	35765	404
Stokes	1121	50189	7636	805
Helmholtz	76	158	230	56

Questions?

- martinal@simula.no
- https://fenicsproject.org
- https://bitbucket.org/fenics-project
- https://fenics.readthedocs.io
- https://fenicsproject.org/tutorial

Alnæs, Logg, Ølgaard, Rognes, Wells, Unified Form Language: A domain-specific language for weak formulations of partial differential equations, http://arxiv.org/abs/1211.4047

