The Unified Form Language

and Key Points on its Translation

Martin Sandve Alnæs

Center for Biomedical Computing, Simula Research Laboratory

February 27th SIAM CSE 2017

Overview of this talk

- Key concepts of the Unified Form Language (UFL)
- Generic remarks on what a UFL form compiler needs to do
- Specific algorithms of the UFLACS form compiler
- Some benchmarks

Mixed formulation of a Poisson problem

```
Find (\sigma, u) \in W = V \times U s.t.
```

$$\int_{\Omega} \sigma \cdot \tau + u \nabla \cdot \tau + \nabla \cdot \sigma v \, dx$$
$$= \int_{\Omega} f v \, dx, \qquad \forall (\tau, v) \in W$$

```
from fenics import *
mesh = UnitSquareMesh(150, 150)
cell = mesh.ufl_cell()
```

```
V = FiniteElement("BDM", cell, 1)
U = FiniteElement("DG", cell, 0)
W = FunctionSpace(mesh, V * U)
```

```
1 w = Function(W)
2 solve(a == L, w)
3 plot(w.sub(1))
```


Topics

Key concepts of the Unified Form Language (UFL)

Generic remarks on what a UFL form compiler needs to do

Specific algorithms of the UFLACS form compiler

Some benchmarks

The UFL model of a variational form

A Form is a sum of Integrals, where each integral is described by an integrand Expr and a Measure object.

$$a(v, ...; w, ...) = \sum_{k} \int_{\Omega^{k}} f_{k}(v, ...; w, ...) d\mu_{k}$$

The geometric domain can be attached to the Measure or inferred from the integrand.

The expression language is the bulk of UFL

The main categories of Expr types

- ► Terminal values (e.g. SpatialCoordinate, Coefficient)
- ► Computation (e.g. Sum, Inner, IndexSum)
- ► Derivatives (e.g. Grad, Div, Curl)
- ► Reshaping (e.g. Transposed, Indexed)

Every Expr node has tensor properties:

tensor shape, a tuple of free indices, and index dimensions

Assuming a 2 by 3 matrix expression A and Index objects i, j:

Math	UFL	Shape	Free indices	Index dimensions
A	Α	(2, 3)	()	()
A_{00}	A[0,0]	()	()	()
A_{i0}	A[i,0]	()	(i,)	(2,)
A_{0i}	A[0,i]	()	(i,)	(3,)
A_{ij}	A[i,j]	()	(i,j)	(2,3)
A_{ji}	A[j,i]	()	(i,j)	(3,2)
$e_0 \cdot A$	A[0,:]	(3,)	()	()
$e_i \cdot A$	A[i,:]	(3,)	(i,)	(2,)

Example: tensor algebra and index notation

- equivalent expressions using tensor and index notation

$$u: x \mapsto R^d, \qquad v: x \mapsto R^d, \qquad M: x \mapsto R^{d,d}.$$
 (1)

$$a_1(u, v; M) = \int_{\Omega} (\operatorname{grad} u \cdot M) : \operatorname{grad} v \, \mathrm{d}x, \tag{2}$$

$$a_2(u, v; M) = \int_{\Omega} (M^T \nabla u) : \nabla v \, \mathrm{d}x, \tag{3}$$

$$a_3(u,v;M) = \int_{\Omega} M_{ij} u_{k,i} v_{k,j} \, \mathrm{d}x \tag{4}$$

```
al = inner(dot(grad(u), M), grad(v))*dx
a2 = inner(M.T*nabla_grad(u), nabla_grad(v))*dx
a3 = M[i,j] * u[k].dx(i) * v[k].dx(j) * dx
```


Variational forms can be manipulated using e.g. partial evaluation or Gateaux differentiation

Consider the example bilinear form

```
a = dot(grad(f*u),grad(v))*dx
```

With this you can f.ex.

- Replace a coefficient function with another expression replace(a, { f: g }) == dot(grad(g*u),grad(v))*dx
- Construct the action of a bilinear form on a coefficient action(a, g) == dot(grad(f*g),grad(v))*dx
- Compute the derivative of a form or functional derivative(a, u, du)

Topics

Key concepts of the Unified Form Language (UFL)

Generic remarks on what a UFL form compiler needs to do

Specific algorithms of the UFLACS form compiler

Some benchmarks

UFL contains algorithms for form compiler preprocessing

Including but not limited to:

- Integrals are joined by subdomain $(\int_{\Omega} f + \int_{\Omega_0} g \to \int_{\Omega \Omega_0} f + \int_{\Omega_0} f + g)$
- ▶ High level types are rewritten to index notation $(A : B \rightarrow A_{ij}B_{ij})$
- Automatic differentiation is applied $(\nabla(cf+q) \rightarrow c\nabla f + \nabla q)$
- ▶ Restrictions are propagated to terminals $((cv)^+ \rightarrow c^+v^+)$
- Rewriting geometric quantities (next slide)

Symbolic geometric quantities can be rewritten in terms of the Jacobian

Change of coordinates to reference cell integral:

$$\int f(x) dx \to \int F(X)|J| dX \tag{5}$$

Application of symbolic Piola mappings:

$$v \to J^{-T}V, \qquad u \to \frac{1}{\det J}JU$$
 (6)

Lowering of abstractions of various cell geometry

$$n \to J^{-T}N$$
, $|f| \to \det\left(J\frac{dX}{dX^f}\right)|F|$ (7)

Form compilers need to translate any *modified* terminals to the target framework

- A modified terminal a Terminal with a select set of operators optionally applied:
 - ► ReferenceValue
 - ► Grad or ReferenceGrad (any number)
 - ► CellAvg or FacetAvg
 - Restricted (obligatory where relevant)
 - ► Indexed with fixed indices

Examples:
$$v \in V_h$$
, ∇v , v^- , ∇v^+ , $(\nabla v)_{01}^+$.

Topics

Key concepts of the Unified Form Language (UFL)

Generic remarks on what a UFL form compiler needs to do

Specific algorithms of the UFLACS form compiler

Some benchmarks

First pass: Scalar value numbering

A simpler scalar expression graph is created for

$$s_8 = u_0 A_{10} + u_1 A_{11} \tag{8}$$

Second pass: Form argument factorization

With a single pass over the new scalar graph, the integrand is factorized to a sum of monomials

$$a(u, v) = \int_{T} \sum_{k} f_{k} D_{k}^{0} u D_{k}^{1} v dx$$
 (9)

where f_k is an arbitrary scalar expression and $D_k^1 v$ is a component or derivative of the test function v.

Example: Considering the 1D form

$$a(u,v) = \int_{T} (\alpha u)v + (Ku')(Kv') dx, \qquad (10)$$

the factorized form is

$$a(u,v) = \int_{T} \alpha(uv) + (KK)(u'v') dx.$$
 (11)

Third pass: Classify monomial factors

Defining $\hat{u} = D^0 u$, $\hat{v} = D^1 v$, each integrated monomial is a matrix with structure $B_{ij} = \int_T f \, \hat{u}_i \, \hat{v}_j \, dx$.

▶ If *f* is cellwise constant, preintegration is possible:

$$P_{ij} = \int_{T} \hat{u}_i \, \hat{v}_j \, dx, \qquad B_{ij} = f \, P_{ij}. \tag{12}$$

▶ If both \hat{u} and \hat{v} are cellwise constant, can integrate f at runtime and then scale B:

$$F = \int_{T} f \, dx, \qquad B_{ij} = F \, \hat{u}_{i} \, \hat{v}_{j}. \tag{13}$$

▶ If \hat{u} (or \hat{v}) is cellwise constant: the vector \hat{fu} can be integrated runtime.

$$R_i = \int_T f \, \hat{u}_i \, dx, \qquad B_{ij} = f \, R_i \, \hat{v}_j. \tag{14}$$

Topics

Key concepts of the Unified Form Language (UFL)

Generic remarks on what a UFL form compiler needs to do

Specific algorithms of the UFLACS form compiler

Some benchmarks

Benchmarks: a couple of nonlinear problems

ns	uflacs	quadrature	quadrature -O
Hyperelasticity	268	8656	1520
Cahn Hillard	460	3753	3225

- "tensor", "quadrature", "uflacs", and "tsfc" are representations or approaches to code generation in FFC.
- "tensor" representation in ffc does not handle the above equations.
- "tsfc" is not included in these benchmarks due to lack of time.
- ▶ Due to the same lack of time, please take these benchmarks with a grain of salt.

Benchmarks: some simpler problems

ns	uflacs	quadrature	quadrature -O	tensor
Mass q=1	34	33	38	29
Mass q=2	45	664	493	56
Mass q=3	113	8023	6252	137
Stiffness q=1	63	66	75	54
Stiffness q=2	280	984	2155	109
Stiffness q=3	1197	13036	35765	404
Stokes	1121	50189	7636	805
Helmholtz	76	158	230	56

Questions?

- ▶ martinal@simula.no
- ▶ https://fenicsproject.org
- ▶ https://bitbucket.org/fenics-project
- ▶ https://fenics.readthedocs.io
- ▶ https://fenicsproject.org/tutorial

Alnæs, Logg, Ølgaard, Rognes, Wells, *Unified Form Language:*A domain-specific language for weak formulations of partial differential equations, http://arxiv.org/abs/1211.4047

