
Towards System-Wide Analysis of
Heterogeneous Component-Based

Software Systems

by
Amir Reza Yazdanshenas

Thesis submitted for the degree of Philosophiae Doctor
Department of Informatics
Faculty of Mathematics and Natural Sciences
University of Oslo
September 2015

Abstract

One way to manage the complexity of software systems is to compose them from reusable
components, instead of starting from scratch. Components may be implemented in
different programming languages and are tied together using configuration files, or
glue code, that entail their instantiation, initialization and interconnections. Although
correctly engineering the composition and configuration of components is crucial for the
overall behavior, there is little support for incorporating this information in the static
verification and validation of such systems. Analyzing the properties of programs within
closed code boundaries has been studied for some decades and is a well-established
research area, where as analyzing heterogeneous component-based systems is not as
mature. The heterogeneous nature of source code and configuration artifacts often
hinders system-wide analysis of component-based systems.

This thesis contributes a method to support analysis across the components of
component-based systems by, firstly, building upon the Knowledge Discovery Metamodel
to reverse engineer homogeneous models of the system. This homogeneous model is then
used as the building block to support various activities crucial for efficient maintenance
and evolution of heterogeneous systems, namely: information flow analysis to support
quality assurance, visualizations needed for comprehension, and change impact analysis.

For end-to-end information flow analysis of component-based systems, we apply
program slicing through and across the components. Dependencies between pairs of
inputs and outputs are revealed at both component-level, as well as system-level. This
method is implemented in a prototype tool, that has been successfully used to track
information flow across the components of a large-scale industrial system.

The homogeneous model repository is extended to allow for visualization of information
flows in component-based systems at various levels of abstraction, and from two
complementary perspectives. We propose a hierarchy of five interconnected views to
support the comprehension needs of both safety domain experts and developers from
our industrial partner. The abstractions are selected to minimize visual distraction and
reduce the cognitive load while satisfying information needs of the users. The views
are interconnected in a way that supports both systematic, as well as opportunistic
navigation scenarios. We discuss the implementation of our approach in a prototype
tool, called FlowTracker, and present the results of two qualitative evaluation studies
on the effectiveness and usability of the proposed views for software development and
software certification. Based on the received feedback we can report positive results,
and a number of in-depth insights for future improvements.

As a third step, we devise a method to support the evolution of component-based

iii

systems as members of product portfolios, where evolution can happen both as a result
of collective domain engineering activities, as well as product-specific developments.
Developing software product-lines based on a set of shared components is a proven
tactic to enhance reuse, quality, and time to market. Adaptations of product-lines
software engineering is heavily used by our industry partner, Kongsberg Maritime. To
help developers make informed decisions about prospective modifications, we contribute
a method to estimate what other sections of the system, as well as what other products
in the same product portfolio, will be affected and need “maintenance attention.”
We use static program slicing as the underlying analysis technique, and adapt the
aforementioned framework of homogeneous model repositories to accommodate large-
scale product portfolios. Our method trades off precision and scalability in a way to
maintain maximum precision at intra-component analyses, while being highly scalable
upon the propagation of ripple effects. Our approach also ranks the results based on an
approximation of the scale of impact. We have implemented our approach in a prototype
tool, called Richter, which was evaluated on a real-world product family.

As the final section of this thesis, we conduct a study to asses the state of the art
in cross-lingual program analysis. We contribute a systematic literature review on the
available literature, and discus several implications for future research and practice as a
basis for the improvement of software evolution in multi-language systems. We search
through seven digital libraries to find the relevant primary studies on cross-language
program analysis, and identify additional studies with manual snowballing, which results
in 75 studies. We classify the studies based on several criteria, including their purpose
(why), the adopted or suggested approach (how), the information leveraged in each
programming language or artifact (what), and the conducted evaluation (quality). The
results include objective findings on the diversity of the applied techniques, application
domains, programming languages, and reliability of the approaches. Based on the
findings of this literature review, several implications for research and practice are
discussed, including potential breakthroughs, and negative effects of the shortage of
community-driven research.

iv

Acknowledgments

First and foremost, I am grateful to Simula Research Laboratory and Simula School of
Research and Innovation for creating a fantastic framework to conduct industry-driven
research, as well as a pleasant working atmosphere. Specifically, I want to thank Aslak
Tveito, Are Magnus Bruaset, and Molly Maleckar for their support of my PhD program.

I want to express my gratitude to Kongsberg Maritime for the opportunity of this
research collaboration. I am grateful to Lionel Briand for his involvement in initializing
the collaboration with Kongsberg Maritime. Special thanks goes to Anne-Heidi Mills as
an instrumental contributor to this collaboration.

I want to cordially thank Magnus Jørgensen, my secondary supervisor, for his support
and insightful comments at times most needed. I would like to show my gratitude to my
previous secondary supervisor and my current employer, Erik Arisholm, for his support
and appreciation of my PhD program and for granting me the necessary time to finish
what I started almost six years ago.

I am most thankful to Leon Moonen, my mentor and principle supervisor, for
accompanying me on this journey. His insights, scientific rigor, thoroughness in learning,
and constant urge for self-improvement have helped me to become a better learner.
I wish to thank him again for going an extra mile in finalizing this rather prolonged
research program, despite several ups and downs.

I am thankful to my many colleagues and friends at Simula for creating such an
inspiring and joyous working atmosphere. It was a privilege to interact with so many
smart people with various cultural backgrounds: Hadi, Razieh, Nina, Shokoofeh, Raj,
Aiko, Andrea, Shuakat, Zoheib, Sunil, Sagar, Tor, Hans Christian, Kari, and many
more.

Last but by no means least, I am truly in debt to my family for their relentless
support throughout these years, and not letting me feel absent in the many years I was.
Dad, thanks for all that support. Mom, This is for you.

v

vi

List of Papers

Paper I
Crossing the Boundaries while Analyzing Heterogeneous Component-Based
Software Systems
Amir Reza Yazdanshenas, Leon Moonen
In Proceedings of the 27th IEEE International Conference on Software Maintenance
(ICSM 2011)

Paper II
Analyzing and Visualizing Information Flow in Heterogeneous Component-
Based Software Systems
Amir Reza Yazdanshenas, Leon Moonen
Submitted to Journal of Information and Software Technology, 2015. This is an extended
version of the paper that was published in Proceedings of the 27th IEEE International
Conference on Program Comprehension (ICPC 2012)

Paper III
Fine-Grained Change Impact Analysis for Component-Based Product Fam-
ilies
Amir Reza Yazdanshenas, Leon Moonen
In Proceedings of the 28th IEEE International Conference on Software Maintenance
(ICSM 2012)

Paper IV
Cross-language program analysis for the evolution of multi-language soft-
ware systems: a systematic literature review
Amir Reza Yazdanshenas, Leon Moonen
Submitted to Journal of Software: Evolution and Process, 2015.

vii

viii

Contents

Abstract iii

Acknowledgments v

List of Papers vii

Summary 3
1 Introduction . 3
2 Background . 8

2.1 Program Analysis . 8
2.1.1 Static Program Analysis 11
2.1.2 Program Dependence Graphs 12
2.1.3 Program Slicing . 12
2.1.4 Software Model Reconstruction 13
2.1.5 Software Visualization 14
2.1.6 Change Impact Analysis 15

2.2 Model-Driven Engineering . 15
2.2.1 Architecture-Driven Modernization 16
2.2.2 Knowledge Discovery Metamodel 16

2.3 Component-Based Software Engineering 17
2.3.1 Software Product Families 18

2.4 Systematic Literature Reviews 18
3 Cross-Component Analysis . 19

3.1 Pitfalls of large-scale component-based systems 19
3.2 Toward system-wide analysis: an overview 22

3.2.1 Briding Modelware to Grammarware 23
3.2.2 Information flow analysis and comprehension 25
3.2.3 Change Impact Analysis in product families 27

3.3 Cross-language program analysis: a systematic literature review 31
3.3.1 Conduct of the survey 32
3.3.2 Summary of the results 35

4 Research Methodology . 37
4.1 Investigating the industrial context 38
4.2 Literature review and tool evaluations 39
4.3 Devising a model-based approach to enhance grammarware . . . 39
4.4 Empirical studies and expert-based evaluations 40

ix

4.5 Systematic literature review . 40
5 Summary of Results . 41

5.1 Paper I . 41
5.2 Paper II . 42
5.3 Paper III . 43
5.4 Paper IV . 44

6 Future Directions . 45
7 Conclusion . 46

Paper I: Crossing the Boundaries while Analyzing Heterogeneous Component-
Based Software Systems 55
1 Introduction . 58
2 Background and Motivation . 59
3 Approach . 61

3.1 Tracking Information Flow . 61
3.2 Construction of A System-wide Dependence Graph 62

4 Prototype Implementation . 64
4.1 Component Dependence Graphs 64
4.2 The Inter-Component Dependence Graph 65
4.3 The System-wide Dependence Graph 68
4.4 Slicing . 68

5 Evaluation . 69
5.1 Accuracy . 69
5.2 Scalability . 70
5.3 Threats to validity . 71

6 Related Work . 72
7 Concluding Remarks . 74

Paper II: Analyzing and Visualizing Information Flow in Heteroge-
neous Component-Based Software Systems 77
1 Introduction . 80
2 Motivation . 81
3 Approach . 84

3.1 Reverse Engineering a System-Wide Dependence Model 84
3.2 Model Abstraction and Visualization 85
3.3 Typical Usage Scenario . 90
3.4 Enhanced Navigation . 92
3.5 Component Parameters . 94

4 Prototype Implementation . 96
5 Discussion . 99

5.1 Static versus Dynamic Analysis 99
5.2 Forward versus Backward Slicing 99

6 Evaluation . 103
7 Related Work . 112
8 Concluding Remarks . 113

x

Paper III: Fine-Grained Change Impact Analysis for Component-Based
Product Families 117
1 Introduction . 120
2 Related Work . 121
3 Background and Motivation . 122
4 Approach . 124
5 Prototype Implementation . 131
6 Evaluation . 133
7 Concluding Remarks . 136

Paper IV: Cross-language program analysis for the evolution of multi-
language software systems: a systematic literature review 141
1 Introduction . 144
2 Scoping and Terminology . 145

2.1 What is program analysis? . 145
2.2 What is cross-language? . 146
2.3 Borderline studies . 148

3 Review Protocol . 150
3.1 Pilot Study . 151
3.2 Research Questions . 152
3.3 Data Sources and Search Strategy 153
3.4 Study Selection and Management 155
3.5 Reliability of Selection . 159
3.6 Study Quality Assessment . 159
3.7 Data Extraction Strategy . 160
3.8 Data Synthesis . 161

4 Findings . 162
4.1 Analysis of publications . 162
4.2 Analysis of studies . 163

4.2.1 Study Goals . 166
4.2.2 Study Characterisation 168

4.3 Research Questions . 172
4.3.1 Position papers . 183

5 Discussion . 185
5.1 Implications for research . 185
5.2 Implications for the community 186

6 Limitations to this systematic literature review 189
7 Conclusion . 190
Appendices . 192
A Concrete Queries . 192
B Data Extraction Table . 194

xi

xii

Summary

1

2

Summary

1 Introduction

Automated or semi-automated systems are increasingly prevailing in modern society,

and so is their essential element: software. Software systems contribute to almost every

aspect of our society, such as energy, heavy industries, aerospace, commerce, consumer

products, entertainment, information technology, and many more. This dominating

trend in software brings forth two other inevitable and ever-increasing trends:

1. The necessity of quality assurance

2. The complexity of the software’s behavior and structure

The more software systems become essential for us, the more important is their

integrity. This necessity is maximized in safety-critical systems, in which a single defect

could pose a major hazard for the humans or the environment. In this situation, it is to

be expected that enough attention should be paid to the quality of software systems

prior to their deployment. Depending on the expected reliability of the system, the

integrity of the software system should be assessed thoroughly, often using some form(s)

of testing and/or program analysis. The degree of thoroughness in the quality assurance

process depends on many factors, such as the criticality of the system, the number

of users, the cost of a prospective defect, the budget at a project’s disposal, etc. For

safety-critical systems the stakes are so high that the common desire is to ace on the

quality assurance process, however, in practice, the extent of such processes is limited

to a trade-off versus their costs. In general, quality assurance is not a trivial task. For

some systems (e.g., safety-critical systems) the costs of quality assurance could even

exceed the cost of building the system, and therefore, the success and failure of the

quality assurance process could be the main determining factor in the faith of such

projects.

On the other hand, as software systems tend to constantly grow in functionality,

so might their size and structural complexity. This trend can come at odds with

the growing criticality of quality assurance, unless appropriate measures are taken in

advance to enhance quality assurance processes, for instance by extended tool support.

The growth of the complexity of a system does not necessarily root from more use

3

1. Introduction Summary

cases at the end-users’ disposal, but sometimes it is simply due to cope with more

users or more complex distribution models. For instance, once a monolithic desktop

application expands the scope of its service delivery to users across multiple locations,

it might adapt a more complex distributed architecture while its set of use cases remain

essentially the same from the end-users’ perspective.

Software developers tackle the system’s increasing complexity by dividing the

system in smaller units (e.g., subsystems, components, classes, methods), perhaps with

each unit being implemented in a programming language that fits best the purpose

of that unit. This ubiquitous divide-and-conquer method in software engineering can

be a double-edged sword. It facilitates the design and implementation of individual

units, while it obstructs the comprehension, manipulation, and quality assurance of

the overall system. The latter phenomenon is partly due to the (potential) language

heterogeneity of the different system units. This heterogeneity often renders the available

language-specific testing and program analysis methods simply inapplicable, or at best

only applicable after extensive adaptations.

Component-Based Software Engineering (CBSE) can be considered as a special

school of the more general divide-and-conquer design technique. CBSE emphasizes

software reuse by composing software systems from prefabricated units, called com-

ponents [1]. CBSE could be viewed as a continuation of the goals and principles of

Object-Oriented (OO) software design, however, components are generally expected to

be coarse-grained enough to deliver richer value than the medium-sized objects. CBSE

has gained considerable attention since its introduction in the domain of software, and

today several successful component-based technology stacks exist. Nonetheless, despite

several decades of research and practice in CBSE, few people might argue that the goal

of seamless hot-pluggable “software-ICs” [2] [3] have been fully realized. There could be

several technical and non-technical reasons behind this illusive target, but one major

reason is perhaps the lack of a universal coordination model among components.

In CBSE, components are only the building blocks, and the final system still

needs to be synthesized using a coordination model which enables the components to

interact. This coordination mechanism, by itself, adds a level of heterogeneity to the

final product. Apart from that, the lack of a common agreement in modeling, specifying,

and implementing component interactions (despite several standardization attempts

[1]), hinders any cross-component analysis. This characteristic of component-based

systems, in turn, puts the already-lagging program analysis technologies several steps

behind, compared to mono-lingual non-component-based systems.

This thesis investigates the issue of language heterogeneity in software analysis, and

contributes an approach to overcome the problem of conducting system-wide program

analysis in multi-lingual component-based systems. Our objective is to facilitate the

development and maintenance of such systems by providing intuitive abstractions over

intra- and inter-component system elements that are capable of satisfying the information

needs of various system stakeholders. To be relevant to real world systems, we need to

4

Summary 1. Introduction

devise a practical approach with close attention to applicability and cost-effectiveness.

We propose a method that (i) combines Model-Driven Engineering (MDE) – a more

recent engineering paradigm in software systems to tackle complexity – with program

analysis techniques to develop a homogeneous model of heterogeneous component-based

systems, (ii) enables analysis across the components of a component-based system,

(iii) computes system-wide slices as a basis for various higher-level analysis techniques,

(iv) exploits the flexibility of modern standards in MDE to visualize multiple abstractions

over the collected knowledge about a system, and (v) enables impact analysis in families

of component-based products. Information flows play a pivotal role in our approach, as

the knowledge of a system or component’s I/O is essential for correct manipulation of

it. For the same reason, advanced tool support for identification and comprehension

of the information flows is highly sought by our industry partner1 in this project. We

have developed two prototype tools up to this point, and a number of evaluations are

conducted to assess the applicability of the tools to our industry partner. Detailed

descriptions of how the above goals are realized, together with concise guidelines on how

to cost-effectively build upon reusable well-established program analysis technologies

are also provided. Taking a broader perspective than CBSE, this thesis also investigates

the challenges posed by language heterogeneity in software systems and summarizes the

proposed solutions as the state of the art in cross-lingual program analysis.

Contributions This thesis focuses on a subset of obstacles introduced to program

analysis in the presence of multi-lingual component-based systems. Contributions are

related to both design and implementation of new cross-component analysis techniques,

as well as presenting a concise overview on cross-lingual program analysis techniques.

In particular:

1. We have identified a generalizable problem of identifying and verifying information

flows in component-based systems based on program slicing. The problem domain

as well as the essential characteristics of viable solutions were identified with

collaboration with our industry partners, based on a battery of real-world, large-

scale, safety critical systems. In particular the inherent need for maintaining

system-wide as well as component-wide scopes while conducting and presenting

the findings of the analysis is one of the main objectives of this thesis.

2. Extending on the notion of dependence graphs, we define System-wide Dependence

Graphs (SDGs) to include (intra-)Component Dependence Graphs (CDGs) as the

building blocks, and Inter-component Dependence Graphs (ICDGs) as the gluing

material. In that respect, our approach is distinguished from the original and

seminal method of inter-procedural program slicing [4] in covering both source

code and configuration artifacts.

1Kongsberg Maritime, http://www.km.kongsberg.com

5

1. Introduction Summary

3. We present a generalizable approach that combines model-driven engineering

with program analysis techniques to support analysis across and through the

components of heterogeneous component-based systems. For the purpose of

cost-effectiveness, amongst others, we build upon the foundations laid out by

OMG‘s Knowledge Discovery Metamodel (KDM) to reverse engineer homogeneous

(dependence) models from heterogeneous software artifacts and use this model

as the basis for our analysis. By doing so, we add a point of reference to the use

and extension of KDM in an industrial setting, extending an area of literature

that is currently underdeveloped. We have implemented and evaluated our slicing

approach by building a prototype tool which has been successfully used to track

information flow in a component-based system using program slicing, and has

satisfied industry-driven scaling and efficiency requirements.

4. Building upon the slicing framework, we devise and implement a hierarchy of

views that visualize system-wide information flows at various levels of abstraction,

aimed at supporting both safety domain experts and developers with different

trade-offs between scope and granularity. The views were selected to reduce visual

distraction and reduce cognitive overload and were interconnected in a way that

supports both systematic as well as opportunistic navigation scenarios ending

eventually to the source code. Information flows are visualized and navigable both

from inputs’ perspective (forward), and from outputs (backward).

5. We conducted two qualitative evaluations of the effectiveness and usability of our

prototype tool (called FlowTracker) in collaboration with our industry partner.

Based on the received feedback from the domain experts, key takeaways and

lessons learned are discussed as a reference point for further improvement.

6. We devised Family-wide Dependence Graphs (FDGs) as a means to support

quality assurance across a portfolio of similar products. Using this homogeneous

and highly scalable model, we devise a method to trace ripple effects across

component-based product families (change impact analysis). The model trades off

precision and scalability in a way to achieve maximum precision while detecting

intra-component change sets, and to achieve linear scalability while detecting

the impact set across the whole product portfolio. We propose a measure to

approximate the scale of the impact of a change based on program slice sizes

and use it to rank the analysis results before the end user. We implemented our

approach by building a prototype tool, called Richter.

7. We conducted a systematic literature review on the available literature on cross-

language program analysis techniques. Our review identified 75 conference and

journal papers, which are analyzed to identify numerous trends in the respective

body of research and to answer eight research questions. In addition, the findings

6

Summary 1. Introduction

of the review reveals a number of implications for future research initiatives, such

as the open areas wherein research still falls short. The review also reflects on the

strength of the findings and puts forward a number of suggestions to the interested

research community to overcome the present shortcomings.

Thesis Structure The thesis is compiled as a collection of papers and is organized

as the following:

Summary: This part presents a summary of the research conducted in this project,

together with the main contributions of each paper. Section 2 summarizes the

underlying concepts and the background information needed to understand the

rest of the thesis. In Section 3, the overall solutions of the thesis are briefly

discussed, followed by the methodology used to conduct this body of research in

Section 4. Section 5 highlights the main results of each of our studies. Section 6

outlines the future directions to this research, and Section 7 concludes the thesis.

Papers: The second part of the thesis consists of the published or submitted papers,

which present the results of this research project. Three of the papers have been

already published in international and peer-reviewed conferences. Two articles

have been submitted to journals, however, a shorter version of one article had

been refereed and published in a conference and selected for a journal extension.

Paper I lays out the overall framework and covers items one, two and three in

the aforementioned list. Paper II discusses items four and five in visualizing the

information flows; while Paper III addresses item six in the context of software

product families. Item seven is reported in Paper IV.

7

2. Background Summary

Figure 1: Word cloud of this thesis (www.wordle.net)

2 Background

This section presents a brief introduction to the material upon which this project is based

on. The purpose is not to be exhaustive, but rather to present the preliminary knowledge

to understand the rest of the thesis, to contextualize our research in reference to the

sate-of-the-art, and to guide the interested reader to more comprehensive references.

For clarity, it also mentions some of the “adjoining” subjects that are not addressed in

this thesis.

As described in the following four subsections, we see four relevant research and

practice domains (see Figure 2).

2.1 Program Analysis

The ISO/IEC/IEEE 24765 standard defines source code as the “computer instructions

and data definitions expressed in a form suitable for input to an assembler, compiler, or

other translator” [5]. Others have taken a more relaxed definition like “any fully exe-

cutable description of a software system” [6], and Binkley also considers the “documents

needed to execute or compile the program” as source code [7].

In the broadest sense, any (semi)automatic investigation of a software program to

gain more knowledge about its structure or behavior can be categorized as program

8

www.wordle.net

Summary 2. Background

software product family

component-based
software engineering

knowledge-discovery
metamodel

architecture-driven
modernization

model-driven
architecture

evidence-based
software engineering

static program
slicing

program
analysis

fact
extraction

source
code

structurebehavior

knowledge
inference

internal
representation

static source
code analysis

reverse
engineering

dependence
graph

software
visualization

change impact
analysis evaluation

graphics
technology

systematic literature
review

integrated safety &
control systems

has

has

uses

issues

kind*of
branch*of

specified*by

implemented*by

describes*exis7ng

we*use

branch*of

uses

State-of-the-art
Study

Technology Domain &
Case Study

Model-Driven
Software Engineering

Traditional
 Source Code Analysis

cognitive
science

dynamic
analysis

evolution
history

Figure 2: The four main research and industrial domains relevant to this thesis: (1) traditional source
code analysis, (2) model-driven software engineering, (3) component-based systems, and (4) systematic
literature reviews. Items with the red cross, are not investigated in this thesis. The relevance of each
item is described in Section 2.1 to Section 2.4.

analysis. In the academic circles pertinent to program analysis, there has been a growing

interest in recent years to include non-source code resources to gain more insight into the

system and especially its development process. Examples of such secondary information

resources are the metadata in the version control systems (commit logs), bug reports,

mailing archives, developer activities in social medias, collective tacit knowledge in

development teams, etc (e.g., look at [8] [9] [10] [11] [12] [13]). Once the analyzed

material is limited to a system’s source code, the respective analysis method can also

be referred to as source code analysis. However, program analysis and source code

analysis are occasionally used interchangeably, and we choose to do so in the thesis.

The analysis of software programs have been a long-standing active research topic,

perhaps as old as the history of modern computing [14]. There are numerous application

areas for program analysis and numerous approaches to conduct such analyses [15] [7],

9

2. Background Summary

fact
extraction

knowledge
inference

presentationinternal
representation

software
artifacts

third-party
program analyser

Figure 3: The anatomy of a source code analyzer.

from which we only point out the ones that are relevant to this thesis.2 Most, if not all,

program analysis approaches are composed of three components (see Figure 3)[7]:

1. Fact extraction (e.g. parsing)

2. An internal representation (or information repository)

3. Analysis (knowledge inference or abstraction).

Should you aim at analyzing a subject, you set out to gather enough information

about it (step one). For future reference, you need to keep track of the gathered

information in a suitable manner (step two), and then you are ready to crunch the

gathered information to infer higher order knowledge about the system (step three). Of

course, the resulting knowledge can be stored back into the repository and the analysis

process can continue iteratively to produce more valuable knowledge. The output of

a program analyzer should be either directly at the disposal of the end users (e.g.,

via report documents or the GUI), or to other program analyzers as input (e.g., via

a custom API). The efficiency and user friendliness of the way a program analyzer

presents the output to the users could not be overrated.

With the introduction of several programming languages (and programming

paradigms), numerous application domains, and various end goals in mind, the academics

has been kept very busy pushing forward the boundaries of each of the aforementioned

steps. From that perspective, the contributions of this thesis are also in the direction of

2Harman argues that the topic of source code analysis will always be relevant (at least as long as
computing is relevant). In his view, its importance will grow dramatically with the growing prevalence
of software, up to a point where “source code will to be seen to be one of the most fundamental and
pivotal materials with which humankind has ever worked” [14].

10

Summary 2. Background

improving the same three steps, mainly to facilitate the maintenance of component-based

and heterogeneous software systems.

Binkley lists a number of challenges which has been addressed and also a number of

emerging challenges yet to be addressed by the research community [7]. Cross-language

or multi-language program analysis, which is one of the contributions of this thesis, is

rightly mentioned as one of the existing challenges [16].

2.1.1 Static Program Analysis

One of the main dichotomies in source code analysis is static versus dynamic. Static

program analysis is conducted without executing the system. The analysis is usually

performed using the design time textual representation of the source code, or at times

using the compiled version of the source code (e.g., Java bytecode [17] [18] [19]). Dynamic

analysis, on the other hand, is performed using program executions [20]. The required

information is gathered through program instrumentation or profiling.

In many respects, static and dynamic analysis are the dual of each other [20]

[21]. Static analysis does not concern program inputs, whereas dynamic analysis is

actually bound to one or more inputs. Therefore, for static analysis to be sound, the

results should be valid for all possible executions of the program. This characteristic

forces static analysis to always make safe approximations, whenever the flow of data or

control cannot be fully determined without knowing the run time values of the program

variables. In such cases static analysis can resume, but only after taking all possibilities

into account. This generally leads to a substantial increase in the number of false

positives. However, this restriction does not apply to dynamic analysis, as the flow of

control and data in already known to us. In short, static analysis is complete, safe, and

imprecise, while dynamic analysis is incomplete and precise.

Despite, or indeed because of, the inherent differences between static and dynamic

analysis, several authors have advocated for possible synergies of the two approaches

[22], hoping to leverage the best of the two worlds [21] [7] [15]. Nevertheless, there are

occasions in which only one of the two approaches is feasible. For instance, in cases

where the source code is not accessible, one might be obliged to directly instrument

the executable code and perform dynamic analysis, whereas not having access to an

executable (sub)system (e.g., an incomplete system under construction) might incline

the analyst to choose a source-based approach.

This thesis puts forward a case in which static analysis is the only feasible approach.

As pointed out in Section 3, and in Paper I, this research project is motivated by a

safety-critical integrated safety and control system. The safety-critical characteristic of

the system prohibits the instrumentation and analysis of the system execution in the

intended habitat of the system. Moreover, the embedded characteristic of the system

makes it largely dependent on various proprietary hardware and software platforms,

which in turn prohibits practicing the system in laboratory conditions without having

11

2. Background Summary

access to the necessary stubs and emulators. Therefore, in this project we are limited

to what static analysis can offer.

2.1.2 Program Dependence Graphs

As mentioned in Section 2.1, most program analysis approaches utilize an internal

representation of the system under study, which fits best the purpose of the analysis.

The most common internal representation is in the form of graphs [7], which can vary

substantially depending on the type of information elements chosen as the graph nodes,

and the type of dependencies representing the edges of the graph.

One main class of dependence graphs which is labeled as Program Dependence

Graph (PDG), reflects the fine-grained control and data dependencies present in a

program’s source code using a directed graph [23] [4]. There is a single PDG for each

procedure, and in a simple definition, the assignment statements and control predicates

of that procedure constitute the nodes of the PDG. There is a control dependence edge

from the vertex v1 to v2, if executing v1 determines whether v2 is executed or not. There

is a data dependence from v1 to v2, when (1) v1 defines variable x, (2) v2 uses x, and (3)

execution order can reach v2 after v1, and there is no other vertex in-between which

defines x.

Horwitz et al., [4] extended the notion of PDGs to encompass interprocedural

dependencies, and devised System Dependence Graph (SDG). This seminal progress

enabled various analyses on complete (structured) programs with the call-return control

model and paved the path for future extensions of dependence graphs for object-oriented

[24], multi-thread [25], and web-based systems [26]. Apart from the PDG of each

procedure, several other structured internal representations are needed to construct a

complete SDG: abstract syntax tree, control flow graph, points-to graph, definition and

use of variables [27].

Throughout this thesis, we refer to SDGs numerous times, and extend this notion

to fit one of our goals: computing system-wide slices in component-based systems.

While we are within component boundaries, our dependence graph is essentially the

same as the traditional SDG defined in [4]. We add the required elements to construct

the system-wide dependence graph in a way that is scalable and easy to construct.

Implementing a reliable SDG constructor for a general-purpose language is not a trivial

task. Therefore, we intend to choose an approach that maximizes reuse from the

available professional tools, to increase the applicability of our approach in realistic

settings.

One of the major applications of PDGs and SDGs is, of course, slicing.

2.1.3 Program Slicing

Program slicing is a technique to determine a subset of a program that can affect the

computation at a point of interest, known as the slicing criterion. Alternatively, from

12

Summary 2. Background

a negative perspective, a slice can be decomposed from a program by detecting what

sections of the program are not relevant to the slicing criterion. Weiser coined the

notion of slicing about three decades ago [28] [28]. In his view, slicing was a variant of

the ubiquitous divide-and-conquer technique and was inspired by the way developers

understand the behavior of a subset of a program: ignoring the irrelevant parts, and

resuming inspection on the relevant parts. His proposed (static) slicing approach was

based on dependence graphs.

Since its inception, program slicing has been an active area of research. Numerous

program slicing techniques have been proposed for different languages and different

precision levels. Apart form that, various applications of program slicing have been

proposed for software inspection and maintenance [29] [30] [31]. Debugging, impact

analysis, testing, program comprehension, software metrics (e.g., cohesion measurement),

reverse engineering, program decomposition (e.g., via diagnosing program clusters),

program differencing are among the many applications of program slicing used to assist

software development and evolution.3

As the output of slicing is (a subset of) the program’s source code and not a higher

order knowledge, it is formally regarded as program manipulation rather than program

analysis in more recent papers [7] [14]. In this thesis we are largely indifferent to this

taxonomy. However, we argue that our application of slicing bears some resemblance

to the definition of program analysis, as it unveils the existing dependencies in the

system which would be otherwise hidden to the “naked eye” due to the sheer size of

today’s industrial systems. An overly cluttered presentation of data hides the essential

information from the user’s perception [32] [33] [34], a phenomenon which is often referred

to as “less is more” in the domain of information visualization. In this research project,

we use static slicing to unveil input/output dependencies in and across components in

large-scale systems. In that respect, we argue that the output of our slicing can be very

well viewed as higher-order enough to be regarded as program analysis.

2.1.4 Software Model Reconstruction

Reverse engineering, design recovery, software model reconstruction, architecture recovery,

and software archeology are only a handful of terms used to refer to a division of the

broad topic of program analysis, which revolves around analyzing an existing system

to infer (high order) knowledge about its structure, behavior, or the way it has been

developed [35] [36] [37] [38]. Of course, there are (sometimes fuzzy) differences between

each of the mentioned terms, however from an abstract point of view, all try to facilitate

the comprehension and maintenance of the existing complex software systems. For

instance, architecture recovery can be regarded as a design recovery method whose

output is as abstract as the high level architecture of the system (e.g., determining

3Harman [14] succinctly reports the number of papers on the topic of slicing during a decade of
holding the International Working Conference on Source Code Analysis and Manipulation (SCAM) [6].

13

2. Background Summary

coarse-grained subsystems and layers), instead of fine-grained design elements (e.g.,

procedures). Likewise, the main visible difference between software archeology and the

traditional reverse engineering is that the former connotes strongly with legacy systems

according to some researchers [37] [39] [40]. However, there is no consensus on what

exactly is legacy code. Traditionally, legacy code was regarded as a heavily outdated

piece of software, with some main elements (e.g., operating systems) that are no longer

supported. On the contrary, some authors regard any high maintenance software [39],

or a system without test code as legacy [41].

Indifferent to the minute differences of the aforementioned topics, this thesis is

certainly relevant to the general topic of software model reconstruction. We conduct

low-level program analyses to obtain high-level knowledge about the system. Later, we

convey the obtained knowledge using various models for the benefit of the developers

and other system stakeholders.

2.1.5 Software Visualization

As mentioned in Section 2.1, the third step in a general program analysis method is to

infer abstract knowledge and present the result to the user in an appropriate manner.

One approach is to use diagrams and graphical presentations, mainly to facilitate human

comprehension. This need gradually introduced software visualization as a distinct

research domain with dedicated conference venues [42]. In short, software visualization

is the use of, possibly interactive, computer graphics and animations to enhance the

interface to the user for understanding software artifacts and their evolution [32] [43].

Vision is the topmost dominant perception channel in humans [44]. Quite natu-

rally so, the subject of software visualization has grabbed the attention of numerous

researchers and practitioners. Although the use of graphics in computers is a long-

standing practice, the use of visualizations to support the understanding of software

systems is a relatively recent movement. Early works in the domain of software visual-

ization seem to be inspired more by expert intuitions rather than based on informed

choices (understanding how human perceive visual information). Pioneers would“simply”

propose a certain visualization or notation they thought would best fit the metaphor

they intended to convey - pure instincts. However, there has been a growing interest

among computer scientists to study the human cognitive processes, particularly the

visual perception, and design a visualization which fits best the human psyche [45]

[46] [47]. In that respect, various research domains could contribute more and more to

software visualization in the future, such as cognitive science, neuroscience, psychology,

and psychophysics.

Apart from the complex enigmas of human cognition, there are at least two other

major challenges to overcome in this domain: (1) graphics technology, and (2) evaluation.

There are several design criteria for a successful software visualization tool [47] [48].

Easy and intuitive user interface, spontaneous and directional navigation, scalable

14

Summary 2. Background

and uncluttered diagrams, automated and user-driven layout algorithms, satisfying

interactive experience, and aesthetic look-and-feel of the visualizations are only a handful

of design elements that contribute to the overall usability of the visualization tool [33].

Contrary to one might think, there are not many general-purpose tools that are flexible

enough to be used in more than one context, without extensive customization and high

implantation overheads.

The main purpose of software visualization is to facilitate comprehension, and

comprehension is inherently subjective. Therefore, evaluating the usability and efficiency

of visualization tools is not straightforward and does not lend itself very well to

quantitative measurements. In this situation, researchers often opt for a human-based

qualitative, and sometimes purely heuristic-based evaluations [49]. Involving human

subjects in a study introduces numerous challenges (e.g., designing questionnaires and

priming), and perhaps it will never be “accurate,” as such [50] [51] [52].

In this thesis, we do not touch upon the cognitive aspects of visual perception. In

Paper II, we propose a number of visualizations which we think fit the requirements of

component-based systems (and our industry partners), implement them using a number

of available libraries cost-effectively, and evaluate their fitness using human-based

qualitative studies.

2.1.6 Change Impact Analysis

Consistency, in general, is the holy grail of most of our daily activities as a software

engineer. Software artifacts can have various (direct and indirect) dependencies, and

once one is modified the engineers need to know what other artifacts should be updated

accordingly. With the increasing complexity and size of today’s software systems,

determining dependencies using only developer’s memory and comprehension becomes

prohibitively difficult. This ubiquitous issue has opened a line of research, referred to as

Change Impact Analysis (CIA) [53]. The results of CIA can be utilized in many typical

activities in software change management, such as cost (effort) estimation, testing, and

issue tracking [54] [55]. Many approaches in CIA use a variant of dependence graphs

[56] [57] [58], and PDGs are also highly amenable for such purposes [59] [60].

We directly concern this topic in Paper III, in which we propose a family-wide

dependence graph to conduct CIA in a family of component-based systems.

2.2 Model-Driven Engineering

Model-driven engineering is a relatively recent, but promising, approach in computer

science, which tries to overcome the complexity of software systems by using abstract

models. To conduct our research, we try to take advantage of the benefits of model-

driven approaches, such as their language and platform independence, flexibility, and

extensibility.

15

2. Background Summary

Model-driven engineering, or its OMG version Model-Driven Architecture (MDA)

[61] [62], is more concerned with the forward engineering of software systems. However,

we are more interested in the maintenance and evolution of existing systems, and that

directly leads us to Architecture-Driven Modernization.

2.2.1 Architecture-Driven Modernization

As soon as one piece of software is labeled as“legacy,”modernization becomes a debatable

solution, and consequently a challenge. Architecture-Driven Modernization (ADM) is

a line of research initiated by the Object Management Group (OMG) to tackle the

modernization problem, using the new opportunities offered by model-driven approaches.

ADM’s mission statement, “creating specifications and promote industry consensus on

modernization of existing applications,” rightly does not limit its scope to only legacy

systems [63].

The way we utilize ADM approaches through the thesis is exactly in line with

their mission statement. We heavily rely on the their standardized specifications to

facilitate the evolution and quality assurance of existing component-based systems.

2.2.2 Knowledge Discovery Metamodel

Knowledge Discovery Metamodel (KDM) is the cornerstone of ADM standards, with

the goal of representing the existing software systems [64]. KDM is a metamodel, rich

enough to cover arguably all elements and characteristics of existing software systems.

KDM’s scope spans from coarse-grained software elements, such as directories and

files, to fine-grained elements, such as a single variable access. Inventory, Code, Build,

Structure, Data, Business Rules, User Interface, Event, and Platform constitute KDM’s

main domain knowledge.

The original idea behind KDM initiative was to boost, or basically enable, interop-

erability between various program analysis tools [65]. With the current complex systems,

which might be constructed from several heterogeneous subsystems, traditional program

analysis and quality assurance tools will not be adequate, since they are commonly

limited to a single programming language, a single platform, a single analysis target,

and a proprietary output. With KDM’s standardization, tool builders have access to a

“common ontology and (data) interchange format” that facilitates a holistic system-wide

quality assurance.

In this thesis we utilize a subset of KDM packages to represent our target software

artifacts: components and component configuration files. This representation is used

and enriched by higher order analysis tool-sets that eventually deliver the abstract

knowledge we seek in a desired format. In case a certain element is not directly presented

in the metamodel, we use KDM’s own extension mechanism to enrich the metamodel

according to our needs, while the “standard” ontology is not breached. Our experiences

with KDM are described in our papers, to some extent.

16

Summary 2. Background

KDM is specified based on Meta Object Facility (MOF), which is the cornerstone

(Standardized) specification by OMG’s MDA Task Force [66]. Currently, an imple-

mentation of KDM is available as open source [67] [65], through the Eclipse Modeling

Framework (EMF) [68].

2.3 Component-Based Software Engineering

Along with researchers and practitioners’ endeavors to overcome software complexity

Component-Based Software Engineering (CBSE) was conceived. Raising the abstraction

level of software artifacts, increasing reuse, improving separation of concerns, and

facilitating off-the-shelf software market has been the major motivations behind CBSE.

Software components have often been associated with hardware components, and even

called “software ICs” by some of the pioneers of CBSE [1]. However, the original idea

of complete plug-and-play software components have not been fully realized, arguably,

mainly due to lack of standards for the component composition mechanism (also known

as the “component bus”). Nevertheless, component technology have thrived enormously,

and nowadays, software projects are rarely developed entirely from scratch and with

no reusable components. There are numerous successful component-based technology

platforms available, which are backed by well-established open-source or proprietary

vendors. This topic has witnessed numerous dedicated conferences and workshops [69]

[70], and literally hundreds of papers [71] [72] [73]. Also, our industrial partner in this

project relies heavily on CBSE to deliver reliable mission-critical software, efficiently

and in a predictable manner.

Components are not the only products of following the suggested software design

principles. Objects, components, modules, and packages have a great deal of similarity,

and their definitions sometimes overlap. Apart from that, these terms are highly

overloaded, and they have (sometimes confusing) different definitions within the different

programming paradigms (e.g., Ada packages and UML packages). Throughout this

thesis we follow what Szyperski [1] provides as the definition of a component:

“A software component is a unit of composition with contractually specified

interfaces and explicit context dependencies only. A software component

can be deployed independently and is subject to composition by third parties.”

Szyperski perceives software components as units of : abstraction, accounting,

compilation, deployment, maintenance, and – more relevant to this thesis – analysis.

This characteristic of components to be the natural unit of analysis is perhaps the root

cause of this thesis, as it overlooks cross-component analysis and quality assurance.

Therefore, we deliberately steer our contributions toward component-based software

systems in this research project.

17

2. Background Summary

2.3.1 Software Product Families

Software Product Line Engineering (SPLE) is an engineering approach to maximize

predictive reuse of software by creating coarse-grained reusable software packages, which

can cover a portfolio of products, rather than a single product. In this discipline of

engineering reuse is deemed to not only include source code, but also frameworks,

architecture, tools, methodologies, etc. In today’s software market, where customization

of the product according to various costumer needs is essential, most long-standing

companies have no choice but to adapt a variation of SLPE to succeed, or merely to

survive [74] [75]. Most SPLE approaches rely heavily on component-based software

design, and therefore, there is considerable common grounds among the two design

approaches. In this thesis, Paper III covers change impact analysis in component-

based product families. As a concrete case study, we work on a family of safety-

critical Integrated Control and Safety Systems (ICSS), which is developed based on a

considerable shared component repository, developed in C.

2.4 Systematic Literature Reviews

Evidence-Based Software Engineering (EBSE) is a relatively recent shift in conducting

research on software engineering, inspired by a similar paradigm in medical studies, to

“provide the means by which best evidence from research can be integrated with practical

experience in the decision making process regarding the development and maintenance

of software” [76] [77]. The main goal of EBSE is to increase the dependability of

the processes by which software engineers and researchers perform, by systematically

investigating ideally all the available (or the best) evidence for a certain issue. Systematic

Literature Reviews (SLR) are one of EBSE’s toolset members used for “identifying,

evaluating and interpreting all available research relevant to a particular research

question.” The main difference between an SLR and a traditional survey study is that

SLRs should be repeatable by other researchers, and this mandates a detailed report of

the research questions, a complete description of the evidence finding process, and a

transparent synthesis of the gathered evidence [78] [79].

As pointed out in this section, the state of the art and practice in program analysis,

software maintenance, quality assurance and component-based software engineering is

enormously vast. There is a considerable number of papers in each of these domains

and even in each of their sub-domains. In such circumstances, it is not improbable

that researchers overlook a highly relevant and valuable piece of evidence and even

reinvent the wheel due a fragmentary view over the matter. While conducting our

individual studies presented in this thesis, we encountered several occasions in which we

felt an urgent need to use the results of a relevant SLR to make informed choices, rather

than based on our intuitions and (inevitably-) partial studies of the available evidence.

However, several searches for such an SLR proved futile, and therefore, we decided to

18

Summary 3. Cross-Component Analysis

conduct an SLR on the topics we felt most needed a systematic survey. Paper IV is

reports our findings and lessons learned in conducting an SLR on cross-lingual program

analysis.

3 Cross-Component Analysis

The main goal in this thesis is to tackle the program analysis challenges in industrial

component-based multi-lingual systems as a means to facilitate the typical tasks needed

for software maintenance, namely comprehension, impact analysis, testing, and quality

assurance. In the final section of this thesis, we intentionally drop the constraint of

component-based to provide a deeper understanding into the specifics of cross-lingual

program analysis in all multi-lingual systems. In this section, we first describe the

common context in the development of industrial component-based systems, and explain

the challenges of system maintenance imposed within this context. The context is

motivated by the case of our industry partner, but it is by no means limited exclusively

to our case studies. Then we present a brief overview of our contributions toward

addressing a number of maintenance challenges.

3.1 Pitfalls of large-scale component-based systems

Component-based design is an effective approach to tackle the (accidental) complexity

of software systems. However, even the best component-based design approach is no

silver bullet to eliminate the essential and accidental complexity of modern real-world

software systems [80] [81].

Large-scale component-based systems are typically built from a relatively limited

number of reusable components, often implemented in general-purpose programming

languages (e.g., C, C++, Java). Well-designed components are customizable (e.g., via

parameters), nevertheless, the components might have to undergo further adaptations

and customizations to fit the project at hand [82]. These parameterized code-bases (a.k.a.

components) account for the lion’s share of the reusability gain of the component-based

design strategy.

Preparation of the individual components is only a prelude to the more sensitive

task of assembling the components, to form the final product. In practice, the number

of components is rarely trivial. In large-scale systems, especially the ones with fine-

to-medium-grained components, the number of components and the total number of

run-time instances of the components can easily mount to hundreds or thousands [83].

Apart form instantiation, initialization of the components is also a substantial task,

depending on the “parameterizability” of the components. In addition, the final wiring

or configuration of the components is often most demanding task. Even in the simplest

cases, in which each component has only a handful of input and output ports, the total

state space of component interconnections is overwhelmingly large. The three tasks

19

3. Cross-Component Analysis Summary

of component instantiation, initialization, and configuration are often simply called

configuration in the rest of this thesis, and also in general.

component repository
(parametrized code bases)

.c, .java

configuration expert

system
requirements

system
architecture

component
documents

(component assembler)

configuration file

component
instantiations

+
parameter

initialisations
+

component
interconnections

+
key-value

assignments
+
...

Figure 4: The overall configuration process.

The output of the configuration process is usually an overwhelmingly large con-

figuration file, which together with the component code-bases constitute the complete

system (see Figure 4). This configuration file conveys a a considerable, or the major,

portion of the system specification. This specification is then read and processed by a

variant of component framework (or component container), whose responsibilities are

analogous to the “main” function in a procedural program. The component framework

loads the specified components into the memory, makes enough number of instances of

each component, sets the initial values, and sets up the component inter-communication

channels (if necessary). The integrity of the configuration file, and its compliance with

the correct component communication requirements, cannot be overrated with respect to

the integrity of the complete system. Some studies indicate that a considerable portion

of errors in highly component-based systems are the result of faulty configurations (e.g.,

up to 40% in [84]).

This configuration is by no means a trivial task and requires a considerable effort

from the system engineers. Although the process of component configuration is not

totally different from the traditional programming, there are a number of peculiarities

that complicate this task:

• Insufficient or lack of tool support. For decades, the tremendous demand

for better programming tool-sets have driven researchers and practitioners to

constantly improve the capabilities, efficiency, and the overall user experience

of the Integrated Development Environments (IDE). Modern IDEs provide a

20

Summary 3. Cross-Component Analysis

wide range of services to assist the developers in their daily tasks. Smart code

completion, advanced refactoring, on-the-fly code analysis, automated build,

facilities to manage and share code are only a few examples of what modern

IDEs can offer. Services like “project explorers,” syntax highlighting, text-based

searching, debugging facilities (e.g., breakpoints, “watches,” and runtime stack

viewers) are taken granted in mainstream IDEs from a long time ago. On the

contrary, similar facilities for component configuration files are either non-existing

or offered at minimal levels. Only the highly popular component frameworks that

have a considerable contributor crowd (e.g., Spring) offer the very basic services

of syntax highlighting, code completion, and basic (XML-derived) syntax checks.

In proprietary component frameworks, the developers are often left with nothing

but a basic text editor to manipulate a gigantic text file.4

• Complicated comprehensibility. Comprehension is hindered in component-

based systems due to two factors: (1) comprehensibility of the configuration file

per se, and (2) the overall system comprehension. Modal properties are features

in the source artifacts that help the developers’ associative memory to maintain

associations (or conceptual links) between points of interest [46]. These associations

are essential for comprehension and navigation of the source artifacts. Modal

properties can be essentially anything “that emphasizes (reminds of) a specific

aspect of interest,” such as lexical, structural, spatial, and syntactical beacons

[46]. As mentioned before, configuration files can sometimes be lengthy, mono-

colored, text-based, flat-structured files with few opportunities to form the needed

modal properties, to maintain the required mental associations. On the other

hand, having the overall program logic scattered among several software artifacts

increases programmers’ cognitive overheads; an issue known as disorientation [47].

The problem of disorientation is not limited to component-based systems, however,

scattering program logic in more than one design paradigm (e.g., configuration

specification versus programming languages) can increase the cognitive overheads.

• Obstacles of program analysis. Components are known to be the unit of

program analysis in component-based systems ([1] p. 141). To be fair, this

characteristic helps to solve a range of program analysis obstacles, however on the

other hand, it introduces a range of other obstacles. Once software is structured

into cohesive and independent components, memory or computationally intensive

analysis algorithms are more feasible (e.g., massive slicing [85]), as there is less

demand to conduct a global analysis on the complete system which might mount

to millions of lines of code. Apart from that, component-based design facilitates

4Configuration files can be prohibitively lengthy as the mechanisms of modular design (such as
classes and packages in object-oriented paradigm) has not yet been realized in many (proprietary)
component configuration frameworks. Consequently, all the configuration data ends up in a single, flat
(text) file.

21

3. Cross-Component Analysis Summary

the analysis and verification of portions of the system before other portions

are developed, which helps to reduce the overall risk as early as possible in a

project life cycle. However, there is always a limit to independent analysis of

components in the overall system. According to the level of (inevitable) coupling

between a group of components, some properties of the other components need

to be considered during the analysis of a certain component, and to conduct a

cross-component analysis certain properties of all components are needed. As the

component interactions are needed to conduct a cross-component analysis, and as

such interactions are specified mostly in the configuration artifacts, conducting

system-wide analyses is not a trivial task. Moreover, components are regarded

as “units of independent deployment” ([1], p. 36) and are, ideally, amenable for

creating a third-party component market. Having heterogeneous components

implemented in different programming languages, and third-party components

whose source code might not be available at the time of analysis, complicates most

system-wide analyses by leaps and bounds.

In addition to the aforementioned issues which directly root from the state-of-the-

practice in component-based software development, there are also a number of generic

problems that could sometimes be intensified due the application of component-based

design guidelines. One such example is the problem of documentation. Outdated docu-

ments are a hassle in every software engineering methodology, however, as components

could be developed independently by different organizations, this problem could cause

more problems, and there are higher chances of having non-uniform documentations

and terminologies. As these issues are not inherently the result of component-based

design, we will not focus on them in this thesis. Nevertheless, one should remember that

all such factors can amount to the challenges of evolution, maintenance, and quality

assurance in component-based systems.

3.2 Toward system-wide analysis: an overview

One main motivation of this thesis is to devise and implement a cost-effective approach

to address the aforementioned challenges in the development and evolution of component-

based systems. Our immediate aim is to facilitate intra and inter-component program

slicing, which in turn, can be the bed rock of various types of analyses, such as information

flow analysis and visualization, and change impact analysis. Each of these analysis

methods are a tool in the quality assurance tool-set, which requires comprehension,

knowledge inference, and leveraging any source of information that can assist testing

and fault discovery. The contributions of this thesis are presented step-wise, which

corresponds to the incremental implementation road-map in reality.

22

Summary 3. Cross-Component Analysis

3.2.1 System-wide dependence graphs: bridging modelware to grammar-

ware

Grammarware refers to the whole technological space that revolves around the concept

of grammars in programming languages, including the formalism and mechanisms used

to specify and implement the grammar itself, in addition to the technology stack that

is built on top of grammars [86]. From this perspective, all grammar notations and

formalism, compilers, parse trees, abstract syntax trees, and most of the groundbreaking

technologies used for language engineering are considered well within this technological

space. This technological domain is among the most well-established ones in computer

science and historically accounts for a considerable portion of the linguists’ and computer

scientists’ contributions. A major advantage of this technological domain is the strong

formalism behind grammars, which makes the derivatives to a large extent unambiguous,5

verifiable, and machine executable. This close reliance to formalism, however, comes at

the cost of reducing the flexibility, modularity, and interoperability of most technologies

in this domain. A traditional C/C++ compiler might not be forgiving enough to compile

a wrong or incomplete piece of source code (e.g., without the necessary header files); nor

able to process source artifacts in other programming languages or even other dialects

of the same language.

Island grammars are one proven way to increase the flexibility and robustness of

parsers [87]. The idea behind island grammars is to maintain grammar precision in only

specific areas and trade off precision with flexibility in areas that are not interesting

for the task at hand. Another opening is to prospect the modelware technological

space (Model-driven engineering (MDE)) for new opportunities. Most MDE standards

are specified with close attention to flexibility, extensibility, and customizability. A

well-balanced approach, which harvests each of grammarware and modelware in their

own natural territory, can exploit the best of the two technological spaces: precision of

grammars, and flexibility of (meta)models. This idea of having hybrid program analysis

approaches in not unprecedented [88] [89]. We adapt the same idea to our context to

enhance the overall applicability of our solution, brief description follows.

As pointed out in Section 2.1.3, program slicing has various applications in software

evolution and quality assurance, and program dependence graphs are one major enabler

of program slicing (see Section 2.1.2). Therefore, as our first step, we set off to

build a homogeneous and system-wide dependence graph for component-based systems.

Constructing robust and precise PDGs for general purpose programming languages

is a mammoth task, and enforcing that as a prerequisite will severely undermine the

applicability of our approach. Fortunately though, PDGs are fairly well established in

grammarware, and there are a number of open source and commercial PDG constructors

(e.g., CodeSurfer for C/C++ [27]).

5In the presence of ambiguities in the grammar, there are often assisting mechanisms to resolve
them in most mainstream programming languages.

23

3. Cross-Component Analysis Summary

Model Integration

Source Code
Models

Source Code
Models

Heterogeneous
Sources Homogeneous ModelModel Recovery

C/C++
Source Code

Domain Specific
Artifacts

Configuration
Artifacts

System-wide
Model

Repository

C/C++
Analysis Tool

Tailor-made
Fact Extractor

Configuration
Analysis Tool

Java
Analysis Tool

Source Code
Models

Configuration
Model

Integrate

Java
Source Code (component DG)

Knowledge Inference

Knowledge Inference

Representation

Information
Flow Analysis

Change Impact
Analysis

Visualization
enrich

Grammarware
Modelware

Graphics

A

B

C

Figure 5: Overall approach.

Therefore, we devise our approach in a way to reuse the available state-of-the-

practice in grammarware and construct robust and precise dependence graphs with

minimum overheads (Figure 5, marker A). Of course, this trick works as long as we stay

within the boundaries of individual components, as these are the only portions of the

system developed in programming languages. Afterward, we analyze the configuration

file(s) to understand component interactions needed to build the respective partial

intercomponent dependence graph (Figure 5, marker B). Text or XML-based configuration

files – as lengthy as they might be – often have less rigorous grammar than programming

languages, and developing a special-purpose parser (or fact extractor) usually requires

much less effort than those of, say, C++. Once we retrieve the dependence graphs

of each component, in addition to the intercomponent dependence graph from the

configuration information, we are ready to combine all these partial dependence graphs

to construct the final system-wide dependence graph. This is where the flexibility and

extensibility of modelware technologies are utilized at best to construct a homogeneous

dependence graph from a number of heterogeneous partial graphs (Figure 5, marker C).

To pave the path for prospective integrations of our approach to other program

analyses used for quality assurance, we choose to use a standard metamodel to represent

our system-wide dependence graph. Knowledge Discovery Metamodel (KDM) is utilized

for this purpose, as demonstrated in Paper I, is extensible enough to easily accommodate

all the needed elements of program dependence graphs as well as any secondary attribute

of source code elements, such as line number. We point out that this integrated

information repository is not limited to the dependence graph and contains detailed

information about various elements of the source code.

At this point we have the information necessary to compute intra and inter-

component slices using a variation of traditional reachability analysis algorithms (see

24

Summary 3. Cross-Component Analysis

Paper I).

3.2.2 Information flow analysis and comprehension

Computing slices on critical points of the system (e.g., inputs and outputs) can be a

valuable source of information to the developers, however, the level of abstraction is still

too low to be conveniently consumed. For this reason, we perform slicing not as an end,

but as a means to provide higher order knowledge about the system. We use slicing

as a decomposition technique to identify information flows, which are the channels in

which information can be transferred within the system.6

Comprehension is arguably the most fundamental prerequisite to any development

and maintenance task. Considering the aforementioned difficulties in the comprehension

of large-scale component-based systems (and also considering the top priority require-

ments of our industrial partner), we intend to utilize the extracted information flows

as a means to address comprehension challenges. We devise a number of abstractions

over the extracted information flows, and visualize each abstraction layer, ideally, in the

most intuitive and succinct manner.

Although we have the advantage of conducting system-wide slices in component-

based systems, we analyze the information flows in two scopes: system-wide, and

component-wide. Our homogeneous model of the system is capable of slicing at any

program point, however, we focus on inputs and outputs at both component and system

level. Apart form that, the dependencies in our homogeneous model can be traversed

in both directions of forward and backward and this characteristic helps us to create

two perspectives over the information flows: forward information flows, and backward

information flows.

To avoid the computational overheads of computing slices (especially in large-scale

systems) each time we are about to analyze a specific information flow, we enrich the

homogeneous model with the knowledge about the abstracted information flows. Such

modifications to the dependence graph are proven to be trivial, considering the flexibility

and extensibility of our modelware. The newly added information can be, and is indeed,

used to iteratively and incrementally enrich the homogeneous model.

All the resulting information flows (i.e., system or component-wide, and forward

and backward) are presented to the user in a single package, which is also integrated to

the components’ source code. However, the toolset is designed in a way that the user

can choose the level of abstraction according to his/her needs, and therefore, it can be

used by various system stakeholders (e.g., safety experts). See Figure 6 for an example

depiction of the various visualization layers and possible navigations amongst them.

6Identification of information flows using program slicing is not unique to our project, and has been
put to test in other contexts and programming languages as well [90] [91].

25

3. Cross-Component Analysis Summary

Level 4 - Forward Slice

Level 2 - Backward Slice

Level 1

Level 5

Level 4 - Backward Slice

Level 3

Level 2 - Forward Slice

 int AlarmVal = Param->AlarmVal;
 int foo = AlarmVal;
 int bar = fun();
 AlarmVal = bar;
 if (AlaramVal > -0.0001){
 ...

 component.c

layered navigation

extended navigation

alternate analysis direction in the same abstraction layer

A

BC

 D

click area

Figure 6: The navigation structure of the visualizations. Every visualized element, except connection
arrows, functions as a hyperlink to a target visualization (markers A-D are explained in detail in
Paper III).

26

Summary 3. Cross-Component Analysis

3.2.3 Change Impact Analysis in component-based product families

Large-scale software systems are not the result of the work of a few developers over a

course of weeks. Rather, they are often developed by tens or hundreds of engineers and

constantly maintained for many years. Consequently, it is not practical for the developers

to understand and remember the dependencies between different systems elements just

by relying on their cognitive power and memory. As pointed out in Section 2.1.6, having

the necessary tool support to help developers identify such dependencies in software

systems is highly beneficial, and is commonly referred to as Change Impact Analysis

(CIA). CIA could be put to both prospective and retrospective usage scenarios: (1)

what software elements need to be changed if a certain element is to be modified?, and

(2) what software elements need to be changed now that a certain element has been

modified?

Assembly

Configuration Selection

Architecture
Derivation

Component
Selection

Parameter
Setting

Base
Configuration

Old
Configuration

Initial
Validation

(Re)Derive
Architecture Validate

(Re)Select
Components

(Re)Set
Parameters

A

B

D

C

Figure 7: Product derivation process in product families, using reusable and adaptable components.

In large-scale component-based systems, which might constitute thousands of

components each developed by a different team, the need for an efficient CIA mechanism

is arguably more than other systems. Apart from the size of industrial component-based

product families, it is their development process that calls for efficient CIA mechanisms.

Deelstra et al. describe the product derivation process in component-based product

families as a two phase process [82]:

Initial phase to build a skeleton product by either assembling a subset of the shared

product family assets (Figure 7, Marker A), or by selecting a closest matching

existing configuration (Figure 7, Marker B). An initial validation might conclude

this phase by checking whether the skeleton implementation “sufficiently imple-

ments the desired product” with the available shared assets (Figure 7, Marker

C).

27

3. Cross-Component Analysis Summary

Iterative phase in which software components and/or product configuration is mod-

ified and validated against costumer requirements until the product is deemed

ready (Figure 7, Marker D).

Following the same process description, there are two main sources of component

evolution in such product families: (1) once a new product is derived from the core

components, changes are required to adapt the reused components to product-specific

requirements; and (2) it is not uncommon for product-specific components to “mature”

into shared components, for instance due to an improved implementation, bug-fix, or

an emerging requirement for the whole product family. In such cases, other products

of the family often need to be updated with the improved components as well. This

can cause a considerable ripple effect throughout the product family. To exemplify the

monumental maintenance overheads of this process we can point out to the case of

our industrial partner, Kongsberg Maritim, which assembled a designated retrofit team

whose task was to take an exiting (deployed) product in the product family and update

it to the latest revision of the shared components, just to escape the complications of

dealing with several working versions of several hundred shared components. Correctly

updating the product family (and the existing deployed systems) requires a thorough

understanding of the potential impact of such a change.

Using CIA the developers can rely on tool support to ease the evolution process

to some extent. We utilize the aforementioned cross-component slicing mechanism as

a means of conducting CIA in component-based systems. To this end, we enhance

the system-wide system dependence graph described in Paper I, in a way to efficiently

accommodate all members of a large-scale component-based product family. The overall

approach to construct this dependence model, which we call the Family Dependence

Graph (FDG), is as follows:

1. For each component in the system, we build a component dependence graph (CDG)

by following the method for constructing inter-procedural dependence graphs [4]

and taking the component source code as system source. This CDG contains

the fine-grained program points and data- and control-dependencies from the

component’s implementation (Figure 8, tag A). To avoid repeating expensive

slicing in later stages of our impact analysis, we enrich our CDGs with Component

Summary Edges (CSEs) that capture component-wide dependencies between

component input and output ports.

2. To efficiently represent components in members of the product family, we define

the notion of a Component Summary Node (CSN). A CSN is a projection of

a component’s CDG from the perspective of its externally visible interface, i.e.

without the fine-grained dependence graph. There’s a separate CSN for a given

component, and for each product containing an instance of that component

(Figure 8, tag B).

28

Summary 3. Cross-Component Analysis

ProdA.CompB

o2

o1

port

port instance

i2

i1
ProdA.CompA

o2

o1
i1

i2

port-type data dependency
intercomponent data dependency
port-instance data dependency

ProdA.CompC

o1

i1

i2 c2.o1

c1.o1

b1.i1

b1.i2

b2.i1

b2.i2

a1.o2

a1.o1
a1.i1

a1.i2

b1.o1

b2.o1

b1.o2

b2.o2

c1.i1

c2.i1

c1.i2

c2.i2

a1.i3
i3

C

D

first use
program point
last may-kill
program point

ProdB.CompB
o2

o1

i2

i1

ProdB.CompD
o2

o1
i1

i2

ProdB.CompC

o1

i1

i2
c2.o1

c1.o1

b1.i1

b1.i2

b2.i1

b2.i2

d1.o2

d1.o1d1.i1

d1.i2

b1.o1

b2.o1

b1.o2

b2.o2

c1.i1

c2.i1

c1.i2

c2.i2

d1.i3
i3

Component B
o2

o1

i2

i1

ComponentN

i1

i2

i3
CDGB

Component C

CDGC

o1

i1

i2

Product A

Product B

x=f(i1);

o2=g(y);

Component N
o2

o1
i1

i2

i3

component data dependency

ProdB.CompE

o1

i1

i2

e1.i1

e1.i2

e1.o1

A

B

F

component summary edgeComponent
Dependence Graph

Component
Summary Node

E

CSNA

CSNC

CSNB

CSNC

CSND

CSNB

CSNE

Figure 8: Family Dependence Graph (tags A–F are explained in the text)

29

3. Cross-Component Analysis Summary

C.V1

I1

I2

O1

O2
C.V2

I1

I2

O1

O2
C.V1

I1

I2

O1

O2
C.V2

I1

I2

O1

O2

C.V1

I1

I2

O1

O2
C.V2

I1

I2

O1

O2

C.V1

O1

O2
C.V2

I1

I2

O1

O2

wo1 wo2

C.V1

I1

I2

O1

O2
C.V2

I1

I2

O1

O2

C.V1

I1

I2

O1

C.V2

I1

I2

O1

O2

C.V1

I1

I2

O1

C.V2

I1

I2

O1

O2

C.V1

I1 O1

O2
C.V2

I1

I2

O1

O2

C.V1

O1

O2
C.V2

I1 O1

O2

I1

I2

wo1 wo2wi1wi1

wi2 wi3

wi1 wi1wo1

wiCSE Added

CSE Deleted Possible Network
Change

Forward Slice Size

Backward Slice Size
Slice Size Changed

wo

wo2

1

2

4

6

8

3

5

7

9

I1

I2

Version One V1
Version Two V2

Figure 9: IIS cases and propagation of ripple effects. See Paper III for detailed discussions.

3. To link a CDG and its counterpart CSN in a product, dependencies are added from

each input port of a CSN to the corresponding input port of the CDG (Figure 8,

tag C), and from each output port of that CDG to the corresponding output port

of the CSN. This makes the CDG appear “in-line” with its product-specific CSN.

4. For each product, the configuration artifacts are analyzed to build a product-

specific inter-component dependence graph (ICDG). This graph captures the

network of interconnected component instances via their externally visible in-

terfaces. Construction of the ICDG is done in the same way as the component

composition framework uses to set up the correct network.

5. The product system-wide dependence graph (PSDG) is constructed by integrating

the product’s ICDG with the CSNs of the components (Figure 8, tag D). Concep-

tually, the construction can be seen as taking the ICDG and substituting each

component instance node with the CSN for the given component.

The union of PSDGs for all members of the product family forms the FDG.

We conduct CIA in way that it leverages the fine-grained information inside the

CDGs and balances them with the coarse-grained CSNs and product-specific ICDGs to

trade-off between precision and scalability. The overall steps are as the following:

30

Summary 3. Cross-Component Analysis

1. Detect the Change Set (CS): this is accomplished using text-based analysis and

checking against fine-grained CDGs.

2. Find the Initial Impact Set (IIS): requires slicing through the fine-grained CDG of

the updated component, with each component output port as the slicing criterion.

However computationally expensive is this step, it takes place within the low-scale

boundaries of individual components.

3. Find the Final Impact Set (FIS): requires forward and backward traversal of the

FDG all system input-output pairs whose information flows have been affected

by the source modification are found. This traversal is very cost-effective using

coarse-grained summary edges in the FDG. The propagation scenarios are defined

based on the extent and type of the seeding IIS (see Figure 9 for a depiction of

IIS varieties).

The details of each step, as well as evaluation results, are described in full detail in

Paper III.

3.3 Cross-language program analysis: a systematic literature

review

In the 1990s, at least one third of the applications developed in USA were known to

utilize two languages, and 10% of the applications were estimated to use three or more

languages [92]. Nowadays, these percentages have grown extensively, and it is no longer

surprising to see a team of software engineers use up to 30 different programming,

scripting, markup, and configuration languages to build large-scale software systems [93].

However cacophonous it may sound, this large variety in programming languages is a

natural consequence of the absence of a “silver bullet” programming language: barely

surprising. If utilized wisely, variety in the choice of programming languages can be

highly beneficial for the development of software systems. On the other hand, this

language heterogeneity complicates most system-wide tasks in the evolution of such

multi-language systems, as cross-language dependencies and interactions are substantially

more difficult to identify, comprehend, and manage. In the last part of this thesis, we

intend to provide a basis for the improvement of software evolution of multi-language

systems, by assessing the state of the art in cross-language program analysis, and

discussing the implications for research and practice.

We define cross-language program analysis as the analysis of multi-lingual systems

as a single entity; not only covering artifacts of several languages individually, but also

incorporating the structural or behavioral relations that are realized through inter-

language interactions across artifacts. Figure 10 is a symbolic depiction of cross-language

program analysis, and its distinction criteria from single-language and multi-language

analysis methods. To exemplify cross-language analysis, we can point out Paper I,

31

3. Cross-Component Analysis Summary

cross-language
analysis approach

multi-language
analysis approach

single-language
analysis approach

.java.c

an
al

ys
is

 to
ol

an
al

ys
is

 to
ol

.java.c

an
al

ys
is

 to
ol

.java.c

an
al

ys
is

 to
ol

A B C

Figure 10: Single-, multi-, and cross-language analysis approaches applied on multi-language systems.
Only the cross-language analysis approach covers the interaction of multiple languages. See Paper IV
for a more detailed discussion, following markers A, B, and C.

Paper II, and PaperIII in this thesis which track system-wide information flows through

a combination of C modules and a third party component composition framework.

3.3.1 Conduct of the survey

With respect to investigating the available literature, the general scope of this study

can be described as:

• Population: Published scientific literature reflecting on cross-lingual program

analysis.

• Intervention: Devising new and/or applying cross-language program analysis

methods.

• Outcomes: The extent of the studied cross-lingual relations, and the languages

involved.

• Experimental designs: No restrictions. All primary studies that concern a relevant

intervention are accepted on the condition that they demonstrate their relevance

32

Summary 3. Cross-Component Analysis

Identify search terms, develop
the review protocol

electronic search, retrieve
potentially relevant studies

Exclude studies based on
title

Exclude studies based on
abstract

Exclude studies based on
full text

Snowball

review protocolpilot study

step 1

step 3

step 4

step 5

step 6

n = 2,806

n = 765

n = 451

n = 49

n = 75

Select unique studies across
electronic databasesstep 2 n = 1,767

Figure 11: The study selection process, and the number of primary studies at each selection stage.

with enough objective data. Our quality assessment criterion is whether the paper

provides an answer for one or more of our research questions.

Following Kitchenham’s guidelines for conducting systematic literature reviews

in software engineering [78], we conduct our study as a series of discrete steps, which

are collectively called the systematic review protocol. The protocol entails: (1) the

research questions, (2) the search strategy, (3) the study selection (i.e. inclusion and

exclusion) criteria, (4) data extraction procedures, and (5) data synthesis methods.

The review protocol itself is defined after several iterations of an initial pilot study

to repeatedly test and improve all the aforementioned items until the possibility of

researcher bias is reduced to a minimum. One key feature of a review protocol is that

it should be well-documented so that the “readers can assess the rigor, completeness,

and repeatability of the process” [78]. Therefore, Paper IV presents the review protocol,

and the key decision points that lead to the protocol, in great detail.

Our search strategy consists of two consecutive stages: (1) searching seven well-

established online digital libraries, and (2) manual snowballing. The sole criterion

to determine the relevance of the gathered primary studies is whether they contain

a non-trivial pertinence to the topic of cross-language program analysis (as defined

earlier in this thesis). Any paper devising, experimenting, surveying, or advocating

33

3. Cross-Component Analysis Summary

cross-language program analysis is considered relevant, even though it might lack some

aspects of a full-fledged study, such as evaluation. We judge the papers, in respective

steps, by their title, abstract, and full-text until their relevance to our review can be

fully established. Our selection process is based on exclusion, rather than inclusion:

i.e. at each step only those studies that are clearly not fit for our review are filtered

out, and the rest are left for more detailed judgments (Figure 11). All borderline cases,

or cases in which either of the two authors had doubts about, were double checked

separately by both authors and discussed until consensus was reached.

All identified papers were subject to an in depth analysis to answer the following

eight research questions:

RQ1: What approaches have been used for cross-language program analysis?

RQ2: What fact extraction methods are common in cross-language program analysis?

RQ3: What types of facts are typically extracted for cross-language program analysis?

RQ4: What internal representations of software artifacts are used?

RQ5: What higher level goals are targeted using cross-language program analysis?

RQ6: Which languages and types of software artifact have been analyzed?

RQ7: Which technological domains attracted most attention in literature?

RQ8: How rigorously are newly proposed approaches tested and evaluated?

To collect the information that is needed to answer our research questions, we

classify the studies along several criteria. To guide this process, we developed a data

extraction table in the pilot study, whose columns are derived from the research questions.

To avoid ad hoc interpretation upon data collection into this table (and to minimize

the effects of terminology mismatch between reviewers), we chose to limit the options

for answering to Y/N check-boxes, or selection from a limited set of options (using

drop-down lists) over free text answers whenever possible. We used the pilot study

to define the taxonomy of possible answers by open and axial coding techniques from

grounded theory [94]. For most columns the number of alternatives in the taxonomy

stabilized early in the pilot study, and the taxonomy of possible answers were succinctly

defined. For other columns we largely remained loyal to the original terminology in the

primary study to avoid researcher bias as much as possible.

Data synthesis and presentation were fairly straightforward for data columns with

small taxonomies. For other columns, however, we had to employ another step of axial

coding, grouping related concepts into more general abstractions [94]. This synthesis

was iteratively conducted along both axes of the table: across co-related primary studies,

and across the concepts in the taxonomy. Using study-specific terminology during

34

Summary 3. Cross-Component Analysis

Reverse Engineering

Clone Detection &
Resolution

Refactoring

Metrics &
Measurement

Postmortem Fault
Diagnosis

Flow Analysis

Type Checking -
Foreign Function Call

IDE &
Tool Support

Visualisation & Model
Reconstruction

Architecture
Recovery

Dependency Analysis
& Navigation

Change Impact
Analysis

Security Analysis

Low-cost Parser &
Analyser Eng.

benefits

Comprehension

Query Engine &
Exploration Env.

uses

type of

relates torelates to

Comprehension and
Reverse Engineering Interactions and Ripple Effects

uses

uses uses

Standalone (unordered)

Figure 12: Overview of the study goals that were identified, and their relations.

data extraction and creating cross-study abstractions during data synthesis (when the

informative value of each individual concept became more clear) allowed us to make

informed decisions about balancing the line between precision and conciseness.

3.3.2 Summary of the results

Our investigation identified 75 relevant papers, published between 1995 to 2014, in

37 different publication channels. The majority of primary studies were published in

conferences and workshops (71 of 75, i.e., 95%), while only 4 studies were published in

scientific journals. Having published almost half of all relevant papers, five conferences

and workshops clearly stand out as premier channels for the research on cross-language

program analysis: SANER7, ICPC/IWPC, ICSM, WSE, and SCAM.

Upon analyzing the content of the studies, 10 publications were removed from

further analysis as their content is largely repeated in other publications of the same

author. In cases of highly similar publications, to avoid publication bias, only the most

complete paper is accounted. The remainder of the SLR reflects on the results of 65

unique primary studies, which fall into the following broad categories:

1. technology papers (58 studies, 89%)

2. position papers (7 studies, 11%)

Technology papers propose a new, or evaluate an existing analysis method. Position

papers contain general views that are independent from any specific method.

Within the 58 technology papers, we identified 16 distinct analysis goals. Figure 12

depicts the studied goals, as well as their interrelations. Reverse Engineering is the

practice of analyzing a system to gain desired information, and generally benefits further

7In 2014 WCRE and CSMR merged into the SANER conference. Relevant publications in either of
the conferences before the merge have been accounted for SANER in here.

35

3. Cross-Component Analysis Summary

comprehension attempts. Comprehension can either be addressed using graphical

Visualizations and Model Reconstruction, or by providing the user with non-graphical

Query Mechanisms to explore the system interactively. Architecture Recovery is a

specialized type of model reconstruction and visualization, whose output is aimed at

the abstract architectural level. A number of studies put a special price on Cost-

effective Parser and Analyzer Engineering, which in turn facilitates day-to-day reverse

engineering needs. We recorded considerable commonalities between the topics of

Dependency Analysis and Navigation, Change Impact Analysis (CIA), and to a lesser

extent with the topic of Refactoring. Some form of Flow Analysis on data and/or control

across multiple languages is typically used do drive these analyses, but flow analysis was

also observed as an independent primary goal in some of the selected studies. A number

of studies have paid exclusive attention to Foreign Function Calls, mainly by providing

cross-language Type Checking facilities. Although most authors have acknowledged

the importance of tool support, only few have pursued the implementation of their

work in native IDEs or as Generic Tool Support. Established techniques for Software

Metrics, Fault Diagnosis, Clone Detection and Resolution, and Security Analysis have

been adapted in the context of cross-language analysis. Although the aforementioned

goals are distinct enough to form respectable groups, there are noteworthy overlaps

among the problem space and the findings of the respective studies. For example, most

studies targeting model reconstruction also have a respectable contribution to basic fact

extraction and reverse engineering techniques.

Our study identifies the primary analysis goal of each study, in addition to marking

studies with an additional “secondary” goal. We highlight some of the more frequently

visited research goals in here:

1. Comprehension is the most sought after goal, with 15 papers (26%) having it as

their primary goal, either using a text-based query mechanism (4) or some form

of graphical visualization (9) or view reconstruction (2).

2. Considering auxiliary and primary goals together, one-third of studies has pursued

graphical visualizations (9 + 9 + 2 = 20, 34%).

3. Dependency identification and analysis is the second most popular target (9, 16%).

4. With reverse engineering as prerequisite to comprehension in our classification,

we see 31% of studies have investigated ways to extract and abstract cross-lingual

facts. Four additional papers (7%) focus on making reverse engineering more

cost-effective.

5. Considering auxiliary and primary goals together, 10 papers analyze cross-lingual

flow of control or data (17%).

6. Although several studies contribute task-specific tools, only two studies (3.4%)

aim at holistic tool support comparable to a general-purpose IDE.

36

Summary 4. Research Methodology

The aforementioned data exemplifies a portion of the results of our SLR, with

respect to RQ5. To avoid repetition, as well as over-simplification of our multifaceted

results, we refer interested readers to Paper IV for further objective discussions on the

research questions.

Based on our -to some extent subjective- interpretation of the primary findings of

the research questions, a set of discussion points for future research are presented in the

final section of the SLR. Here follows a summary of the highlights:

There are several fact points in our synthesized answers to the research questions,

that when put together convey a sense of immaturity regarding the state of the art in

cross-language analysis research. The abundance of studies with no or only proof-of-

concept implementations, the non-negligible number of short papers, the low number of

journal articles, and the light-weight evaluation conducted in many studies are some

of the symptoms. We argue that the limited occurrence of cross-references among the

primary studies, in addition to the aforementioned observations, indicates a shortage of

incremental and community-driven research and evaluation initiatives (e.g., by means of

a “bake-off” or analysis challenge at a workshop or conference, were participants apply

their approach on a common subject system and compare and possibly integrate their

results).

The considerable amount of language- and technology-specific analyses, together

with a noticeable lack of (semi-)generic methods are clear signs that generalizablity

is a major challenge as well as a potential key breakthrough for the future of cross-

language program analysis. Considering the high pace of technology and language

development, research on highly adaptable and generalizable methods might be the only

viable approach to close the gap between industry-quality tool support and the growing

needs in software maintenance. This need for more generic approaches makes us doubt

the trade-off of developing techniques that are highly dependent on heuristics, over

investing in sound theoretical frameworks as a basis for future generations of analysis

tools. While knowledge repositories have been used in half of the relevant primary

studies, there is little evidence that the state-of-the-art is capable of accommodating

our future needs, given the sporadic use of each repository technology. Model-driven

technologies, supported by standards and open-source movements, may change this

trend, but still need to stand the test of time.

4 Research Methodology

Various research methods have been applied in different parts of this research initiative.

Here follows a brief description of the methods, and areas of activities leading to the

results presented in this thesis.

37

4. Research Methodology Summary

4.1 Investigating the industrial context

This research project was conducted with close collaboration with our industry partner,

Kongsberg Maritime (KM), which is a leading technology provider for a extensive range

of products for on- and offshore oil and gas platforms, commercial maritime, subsea

installations, fisheries and naval vessels, etc. As a producer of large-scale cyber-physical

systems, KM needs to apply the necessary resources to develop the software needed to

run their end-to-end systems. Moreover, as the operation of such systems are safety-

critical, they also need to spend additional resources on quality assurance, testing, and

certification of each product before they can be deployed on the target installation plant.

Developing industry-quality software is time consuming, and it is hardly surprising that

substantial amount of time and resources are needed to drive the software production

and certification processes at our industry partner. KM is one of the largest in-house

software development bodies in Norway, and the subdivision in collaboration with us

is in charge of developing and maintaining a safety (sub-)system used in fire and gas

detection, process shutdown, and emergency shutdown systems.

The initial phase of our collaborations with our industry partner were dedicated

to understand the context: the general requirements of the overall system, the role

of software in the system, the devised software architecture, the quality assurance

processes ahead of software development, and more importantly the areas in which

quality assurance either fell short or were faced with extremely time-consuming and

expensive tasks. We had a number of meetings, and were given access to several technical

and non-technical documents, as well as an adequate portion of their source code. In a

nutshell, we found that KM had (1) a portfolio of similar products, (2) built upon a

highly scalable, and strictly component-based architecture, (3) developed in MISRA C,

and configured using a propitiatory XML-based component-configuration framework, (4)

shared and maintained incrementally across more than one department in KM, (5) with

unwieldy quality assurance and certification processes whose key concern is to ensure

correct passage of information from systems inputs to the outputs. We also found out

that it is not only software (component) developers who are involved, but also safety

experts, testers, and product developers who combine and configure the components for

each new installation. Moreover, it became clear that due to extensive dependencies on

specific hardware and processing units to run the system, and due to the prohibitive

cost and risk of running our analysis on running systems, our solution space is bound

to static analysis.

Using this information, we performed domain analysis, in several iterations, to

characterize viable solutions that could facilitate the quality assurance process at KM.

After each iteration, the results were discussed with our industry partner to ensure a

correct understanding of the problem domain, and fitness of the proposed solution to the

expectations of our partners in terms of scope (e.g. system-wide or component-wide),

level of detail for various user groups, and tool support. Paper I, Paper II and Paper III

38

Summary 4. Research Methodology

each describe and address an aspect of the problem domain.

4.2 Literature review and tool evaluations

Having the attributes of the problem in place, we conducted a review over the available

literature and the state-of-the-practice to find a viable solution to the problem at hand.

A number of key constraints in the problem domain were crucial in how we navigated a

vast body of literature:

1. slim chances of executing the (sub-)system, which rules out dynamic analysis

2. complying with component-based systems

3. involving at least two types of development artifacts, namely source code and

configuration artifacts

4. the crucial need for ensuring correct dependencies between inputs and outputs

In the review, we explored and evaluated several third-party tools which could

be reused to deliver (a portion of) the solution space. Software visualization tools,

component configuration frameworks, adaptable compilers, model recovery tools are

some of the explored areas. Of particular importance was investigation over the existing

technology space on grammarware and tools providing dependence graphs from source

code. Likewise, our review over the available literature on program slicing proved crucial

for our basic approach in detecting component- and system-wide information flows. As

also mentioned in Paper I however, we found very little existing work on multi-language

software systems pertinent to our problem domain.

4.3 Devising a model-based approach to enhance grammar-

ware

Having identified the aforementioned gap in literature and tool-support, we defined our

approach to analyze information flows through and across components of a large-scale

software system. Our approach is devised in a way to reuse the existing mechanism

and tools as much as possible. This characteristic is vital in an industry-driven research

collaboration, where practicality and plausibility of the solutions is a key factor.

We built on the seminal work of Horwitz et al. [4], and used program slicing as

a means to find component-wide information flows. One benefit of this approach is

the possibility of reusing well-established tool support, namely CodeSurfer [27]. To

fill the gap in slicing in multi-language component-based systems, we developed a

model-based approach to leverage the extensive flexibility of models and the emerging

tool support in this domain, such as Eclipse Modeling Framework. Paper I explains

our proposed approach for cross-component program slicing, adapted to the notion of

39

4. Research Methodology Summary

information flows in our case study system. Paper II presents our solution for visualizing

system-wide information flows, to fill the gap in tool-assisted comprehension for both

software developers, and safety experts in Kongsberg Maritime. In Paper III, we present

our solution for conducting change impact analysis in a family of products, which is

required for the long-term maintenance and evolution of large-scale component-based

systems.

4.4 Empirical studies and expert-based evaluations

Each stage of our research collaboration resulted in a prototype tool to demonstrate the

applicability of our approach. This enabled us to provide hands-on experience for our

industry partner, and address deficiencies based on the received feedback in a number

of iterations.

In particular, we conducted two rounds of evaluation with six participants, to

evaluate the core functionalities of FlowTracker as well as the overall questions to

capture a holistic view of the positive and negative aspects of FlowTracker usability.

Evaluation sessions were conducted independently of one another, and the results were

aggregated after all participants finished the evaluation. After an initial introduction

of FlowTracker, the participants had a training session with three hands-on exercises.

The evaluation session were driven by a structured interview following a questionnaire,

consisting of both closed questions and a number of open (discussion) questions. The

gathered feedback gave us deep insight into the usability issues of the provided tool

set, which lead to an improved version afterwards. Paper II presents the results of two

expert-based rounds of evaluation.

4.5 Systematic literature review

In the final stage of this research initiative, we intend to provide a basis for the

improvement of software evolution of multi-language systems by assessing the state

of the art in cross-language program analysis. Therefore we conducted a systematic

review over the available literature on cross-language program analysis, to gather the

diversity of the applied techniques, application domains, programming languages, and

on the strength of the findings. The findings of the SLR gave us enough insight to

categorize the applied approaches, identify possible trends in research, and identify

possible implications for research.

This study was conducted following the established guidelines of conducting

Systematic Literature Reviews, described in [78]. We provide extensive documentation

over the applied process in Paper IV; a necessary measure for the purpose of repeatability

in systematic literature reviews.

40

Summary 5. Summary of Results

5 Summary of Results

In this section we list the main results of our research initiative. Detailed discussions

are covered in the four papers included in this thesis.

5.1 Paper I

Crossing the Boundaries while Analyzing Heterogeneous Component-Based

Software Systems. Amir Reza Yazdanshenas, Leon Moonen. Published in the

proceedings of the 27th IEEE International Conference on Software Maintenance, 2011.

This paper describes our case study system at Kongsberg Maritime and explains

the substantial challenges ahead of quality assurance and certification processes. It

entails the main attributes of the subject system, as well as the main characteristics

of viable solutions and usage scenarios. We clarify the root cause that hinders our

industry-partner to perform any system-wide analysis in the subject system at design

time.

The following contributions can be listed with reference to Paper I:

• Sets the case for system-wide, or cross-component, program analysis for the

purpose of quality assurance. With no loss of generality, the case is set in reference

a range of large scale safety-critical systems at our industry partner.

• Clarifies where state-of-the-practice falls short in conducting system-wide analyses

in multi-lingual component-based systems. Highlights the urgent shortage of tool

support in cross-component analysis, despite wide acceptance of component-based

design methods.

• Argues the significance of information flows in our industry partner as well as

similar systems with large-scale networks of data-intensive components.

• Discuses possibilities of extending traditional intra-component analysis methods

to cross-component analysis methods, capable of producing system-wide insights.

• Introduces the notion of inter-component dependence graph (ICDG).

• Devises a method to cost-effectively combine traditional (intra-component) pro-

gram dependence graphs and inter-component dependencies: yielding homoge-

neous system-wide dependence models from a system’s heterogeneous source

and configuration artifacts. The method solely uses design time artifacts (static

analysis).

• Builds upon the foundations of OMG’s Knowledge Discovery Metamodel (KDM)

and demonstrates how this standardized and modeling specification could be

used to produce language-independent intermediate representations amenable for

program analysis.

41

5. Summary of Results Summary

• Applies program slicing across heterogeneous software artifacts, based on a homo-

geneous internal representation of a software system.

• Reports on building a prototype tool which has been successfully applied on

our case study system. Discusses positive and negative points of the proposed

approach based on a number of “in vitro” evaluations.

• Adds a point of reference to the use and extension of KDM in an industrial setting.

5.2 Paper II

Tracking and Visualizing Information Flow in Component-Based Systems.

Amir Reza Yazdanshenas, Leon Moonen. Submitted to Journal of Information and

Software Technology, 2015. This is an extended version of the paper that was published

in Proceedings of the 27th IEEE International Conference on Program Comprehension

(ICPC 2012).

Paper II continues with the same case study as in Paper I, however, focuses on

comprehension issues rather than quality assurance. Nevertheless, program comprehen-

sion is the fundamental prerequisite for arguably any activity in program maintenance

and evolution, including quality assurance. Moreover, in the case of our industry partner

tool-assisted program comprehension can be a direct input to demonstration of safety

and certification processes.

Paper II offers contributions on the following areas:

• Sets the case for additional comprehension challenges across heterogeneous software

artifacts.

• Builds upon the achievements of Paper I and successfully uses forward and

backward slicing to navigate the flow of information across heterogeneous software

systems: starting from inputs to outputs and vice versa.

• Devises a hierarchy of five interconnected views to support the comprehension needs

of various stakeholders, such as safety domain experts and software developers.

These hierarchy of visualizations are devised in a way to enable the user to “zoom

in and out” over the information flows on demand.

• Proposes traditional matrix-based visualizations to succinctly present dependencies

among pairs of input and outputs, both at component and system level.

• Devises System Information Flow and Component Information Flow abstractions

to visualize the exact flow of information throughout the system, with different

levels of granularity.

42

Summary 5. Summary of Results

• Presents Component Information Flow capable of visualizing conditions that

control the information flow. Presents a method to reduce the visual cluttering

of large dependence graphs by building concise summary edges from information

flows.

• Presents navigable visualizations with use of active hyperlinks, allowing both

systematic (e.g. top-down) as well as opportunistic navigation scenarios.

• Presents a method to directly connect visualizations to exact positions in source

code as a means of traceability and to minimize user disorientation.

• We implement our approach in a prototype tool and present two qualitative

evaluation studies on the effectiveness and usability of the proposed views for

software development and software certification. The evaluations provide insight

how users would best benefit from visualized information flows, how intuitive they

find each visualization type, and areas in which presented visualizations fall short

of users’ expectations.

5.3 Paper III

Fine-Grained Change Impact Analysis for Component-Based Product Fam-

ilies. Amir Reza Yazdanshenas, Leon Moonen. Published in the proceedings of the

28th IEEE International Conference on Software Maintenance, 2012.

Developing software product-lines based on a set of shared components is a proven

tactic to enhance reuse, quality, and time to market in producing a portfolio of products.

Large-scale product families face rapidly increasing maintenance challenges as their

evolution can happen both as a result of collective domain engineering activities, and as

a result of product-specific developments. To make informed decisions about prospective

modifications, developers need to estimate what other sections of the system will be

affected and need attention, which is known as change impact analysis. Paper III

proposes a technique for Change Impact Analysis in component-based product families

using a combination of Model-Driven Engineering with well-established program analysis

techniques.

In short, the following contribution points can be listed for Paper III:

• Builds upon the achievements of Paper I, and uses static program slicing to

support change impact analysis in heterogeneous component-based systems.

• Devises a method for constructing fine-grained family-wide dependence graphs

(FDG) from the source and configuration artifacts of a component-based product

family.

43

5. Summary of Results Summary

• Devises a method to conduct change impact analysis based on a taxonomy of

change types. Uses fine-grained and well-established text-based analysis methods

as a seed for conducting change impact analysis (Change Set).

• Defines the notion of Initial Impact Set (IIS) as the set of modifications to a

component’s interface on a given change set. Adapts fine-grained analysis of

program dependence graphs to calculate the IIS with maximum precision.

• Computes the Final Impact Set (FIS) by propagating the IIS throughout a family

of products via traversal of lightweight and coarse-grained dependencies.

• Discusses an optimum balance between the precision of IIS and the required

efficiency of FIS and argues why components’ interface is the crucial breaking

point between the two.

• Presents the transformations needed to achieve homogeneous models of product

families and the lessons learned in implementing a prototype tool based on a

standardized language-independent metamodel (KDM) to enhance interoperability

and generalizability.

• Proposes a ranking scheme based on approximations of the scale of impact using

program slice sizes.

• Presents the result of an “in vitro” evaluation.

5.4 Paper IV

Cross-language program analysis for the evolution of multi-language soft-

ware systems: a systematic literature review. Amir Reza Yazdanshenas, Leon

Moonen. Submitted to Journal of Software: Evolution and Process.

In Paper 4, which concludes this thesis, we provide a basis for the improvement of

software evolution of multi-language systems by assessing the state of the art in cross-

language program analysis and discussing the implications for research and practice.

The following contribution points can be listed for Paper IV:

• Defines cross-language program analysis, and highlight its distinction from single-

and multi-language analysis methods.

• Identifies 75 papers addressing cross-language program analysis.

• Identifies 58 technical and seven position papers and provides in-depth analysis

customized to the characteristics of each group.

• Presents a mapping study over the identified primary studies, highlighting the more

popular publication challenges relevant to cross-language analysis. Presents the

44

Summary 6. Future Directions

distribution of conducted studies over a continuous course of 20 years. Identifies

the more efficient online digital libraries, with extensive coverage of relevant

primary studies.

• Classifies the studies based on several criteria, including their purpose (why),

the adopted or suggested approach (how), the information leveraged in each

programming language or artifact (what), and the conducted evaluation (quality).

• Extracts data from all primary studies and synthesizes data to provide in-depth

answers to eight research questions (see Paper 4 for the list of research questions).

The answers objectively reveal several trends in the relevant body of research and

systematically put the available knowledge into perspective.

• Based on the research questions, presents a set of implications for research and

the interested community. Here follows a short list:

– Argues for research on more language-generic analysis approaches.

– Explains why reducing dependence of analysis methods on “heuristics” can

be beneficial.

– Objectively reveals that the state-of-the-art in knowledge repositories has

been far from conclusive with respect to the research on cross-language

program analysis.

– Highlights the potential impact of generic name-resolution mechanisms.

– Reveals a shortage of industry-driven research on cross-language program

analysis.

– Reveals a shortage of incremental research among the interested community

and proposes possible initiatives.

– Highlights the lack of common terminology, and possible implications.

• Contributes to the discipline of conducting systematic literature reviews in the

domain of software engineering by providing a number of lessons learned while

conducting the study. Explains how the research protocol developed incrementally

by conducting a pilot study.

6 Future Directions

Based on the results so far and our gained insight in this thesis, we foresee a number of

directions for future research.

The first extension could be the adaptation of our cross-component slicing tool

to several other programming languages, and component composition/configuration

frameworks. Although the gist of many component container design principles are

45

7. Conclusion Summary

essentially the same, there can be numerous wide-spread component containers which

are radically different from our case study system. For instance component interactions

based on API calls (call-and-return) might not be amenable to information flow analysis

as much as data-oriented component frameworks that interact by sending and receiving

data on a set of well-defined data ports. Possible implications of more moderns

design principles, such as Inversion of Control (IoC), need to be adapted to our model

construction method, and put to test. We have developed a proof-of-concept tool

connecting Java and configuration files in the Spring framework. However, we need to

experiment beyond toy-example systems.

Based on the results of expert-based evaluations on visualized information flows

in Paper II, we acknowledge that the overall user experience needs to be improved by

adding more on-demand interaction facilities, such as zooming and hiding or collapsing

groups of nodes. Such facilities allow users to be more selective in the amount and

type of information they see and spontaneously adjust the visualizations according to

their information needs at the moment. We speculate that a portion of the necessary

improvement can be achieved by using a more elaborate graph viewer than what we

currently use in our prototype tool, called FlowTracker. A major improvement to the

future of our visualization method is integration with a general-purpose IDE such as

Eclipse. This integration has the benefit of minimizing user disorientation, and avoids

the common difficulties of familiarizing seasoned developers to new working toolsets. A

number of extensions to FlowTracker were advised by our industry collaborators during

the evaluation sessions. Namely, “visualizing multiple versions” of a system at the same

time and highlighting the implied delta on the information flows were requested by the

developers.

With respect to our devised method for change impact analysis in families of

component-based systems, one immediate next step would be to empirically evaluate

the precision and recall factors of our analysis in an industrial context and demonstrate

applicability in real-world evolution scenarios. In addition, our approximation of impact

scale based on program slice sizes needs to be validated by closely monitoring how our

approach is used in practice and by gathering feedback from more industry partners. One

could also try out the effect of different weighting schemes on our ranking mechanism,

based on the type of the program points involved in the slice. For instance, we can

assign a larger weight for a node in a condition clause than a node in an assignment

statement, assuming that a change in a condition clause should take priority to another

change with the same size with no condition clause.

7 Conclusion

Heterogeneity of software artifacts poses several challenges in the development, evolution,

comprehension, and quality assurance of multi-language software systems. One main

46

Summary 7. Conclusion

source of heterogeneity in contemporary software systems is widespread component-

based design principles, which is an effective tool in managing complexity of large-scale

software systems by composing them from reusable parts. Another source of language

heterogeneity is the (legitimate) tendency to develop each part of a system with the

programming language that fits best. The urgency of challenges introduced by language

heterogeneity comes into perspective once we realize that contemporary software systems

are rarely implemented uniformly in one programming language, and delivered in one

type of development artifact. This thesis contributes a number of approaches to tackle

heterogeneity in component-based systems in addition to providing objective insight

over the existing body of literature on cross-language program analysis.

As the first step we devise a method to build homogeneous dependence models

from component-based systems. We use model-driven engineering methods to integrate

traditional program dependence graphs (extracted from source code) with partial

intercomponent dependence graphs (extracted from component configuration files). We

use OMG’s Knowledge Discovery Metamodel (KDM) to accommodate this system-wide

model in our prototype tool. The resulting unified model can be traversed forward and

backward to compute program slices through and across components to detect channels

of information flow in the system. System-wide information flows, or relations among

systems’ input and outputs, are a major point-cut to verify correct behavior and correct

configuration in component-based systems. The extracted information flows can be

consulted in several quality assurance activities of our industry partner, Kongsberg

Maritime.

Secondly, we utilized the same system-wide information flows to assist system

stakeholders in comprehending component-based systems. Comprehension is of utmost

value in arguably any development and maintenance task in any system, specially large-

scale component-based systems. We propose a hierarchy of five interconnected views to

support the comprehension needs of various stakeholders, namely safety domain experts

and developers in our industrial partner. The abstractions are stacked on top of each

other in a way to allow the end user to easily “zoom in and out” a given information flow;

ranging from high-level traditional matrix views, to intra-component information flows

presenting condition points in the source code, and finally to the source code. Using

active hyper-links, the views are interconnected in a way to support both top-down,

as well as ad hoc navigation scenarios. A prototype tool is delivered to our industry

partner, and two qualitative evaluation studies reveal overall promising results with

respect to effectiveness and usability, as well as a number of insightful feedback on the

shortcomings.

Thirdly, we contribute a method to carry out change impact analysis in a

component-based product families based on system-wide information flows. Change

impact analysis concerns estimating the ripple effects of a change through out a system.

Tool-assisted change impact analysis can substantially facilitate long-term evolutions of

large-scale component-based software systems. We build upon the same model-driven

47

Bibliography Summary

engineering techniques as before and devise a method to cost-effectively build homoge-

neous family-wide dependence graphs. We devise a method to conduct change impact

analysis based on a taxonomy of change types. The Initial Impact Set (IIS) is defined

as the modifications to a component’s interface on a given change set, and the Final

Impact Set (FIS) is marked on a system(s)’ interface by propagating the IIS throughout

a family of products via traversal of lightweight and coarse-grained dependencies. We

also propose an auxiliary mechanism to rank the impact of a change on information

flows according to an approximation of the scale of impact using changes in program

slice size.

Finally, we seek to provide a basis for the improvement of software evolution in

multi-language systems by assessing the state of the art in cross-language program

analysis. To this end, we conducted a systematic review over the available literature in

several digital libraries and by manual snowballing. Our search revealed 75 primary

studies, which were systematically put to an in-depth analysis to answer eight research

questions. In the hindsight of the research questions, we reveal a number of areas in

which current state of research falls short and discuss several implications for improving

future research initiatives.

Bibliography

[1] C. Szyperski, Component Software: Beyond Object-Oriented Programming, 2nd ed.

Addison-Wesley, 2002.

[2] M. D. McIlroy, “Mass Produced Software Components,” in Software Engineering Report

on a Conf. sponsored by the NATO Science Committee, ser. {NATO} Software engineering

conference, P. Naur and B. Randell, Eds., vol. 1, no. October 1968, NATO. NATO

Science Committee, 1968, pp. 138–155.

[3] B. Cox and A. Novobilski, Object-oriented Programming; An Evolutionary Approach,

2nd ed. Addison-Wesley, 1986.

[4] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using dependence graphs,”

ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 12, no. 1,

pp. 26–60, Jan. 1990.

[5] “24765-2010 - Systems and software engineering – Vocabulary,” p. 418, 2010.

[6] “Working Conference on Source Code Analysis and Manipulation (SCAM),” Dec. 2012.

[Online]. Available: http://www.ieee-scam.org/2012/SCAM/index.html

[7] D. Binkley, “Source Code Analysis: A Road Map,” in Future of Software Engineering

(FoSE). IEEE, May 2007, pp. 104–119.

[8] “Working Conference on Mining Software Repositories,” Dec. 2013. [Online]. Available:

http://2013.msrconf.org/index.php

[9] A. Kuhn and M. Stocker, “CodeTimeline: Storytelling with versioning data,” in 2012

34th Int’l Conf. on Software Engineering (ICSE). IEEE, Jun. 2012, pp. 1333–1336.

[10] A. Hindle, M. W. Godfrey, and R. C. Holt, “Software process recovery using Recovered

48

http://www.ieee-scam.org/2012/SCAM/index.html
http://2013.msrconf.org/index.php

Summary Bibliography

Unified Process Views,” in 2010 IEEE Int’l Conf. on Software Maintenance. IEEE, Sep.

2010, pp. 1–10.

[11] M. W. Godfrey, A. E. Hassan, J. Herbsleb, G. C. Murphy, M. Robillard, P. Devanbu,

A. Mockus, D. E. Perry, and D. Notkin, “Future of Mining Software Archives: A

Roundtable,” IEEE Software, vol. 26, no. 1, pp. 67–70, Jan. 2009.

[12] T. Wolf, A. Schroter, D. Damian, and T. Nguyen, “Predicting build failures using

social network analysis on developer communication,” in 2009 IEEE 31st Int’l Conf. on

Software Engineering. IEEE, 2009, pp. 1–11.

[13] A. Meneely, L. Williams, W. Snipes, and J. Osborne, “Predicting failures with developer

networks and social network analysis,” in Proceedings of the 16th ACM SIGSOFT Int’l

Symposium on Foundations of software engineering - SIGSOFT ’08/FSE-16. ACM

Press, 2008, pp. 13–23.

[14] M. Harman, “Why Source Code Analysis and Manipulation Will Always be Important,”

in 2010 10th IEEE Working Conf. on Source Code Analysis and Manipulation. IEEE,

Sep. 2010, pp. 7–19.

[15] D. Jackson and M. Rinard, “Software analysis: a roadmap,” in Proceedings of the Conf.

on The future of Software engineering - ICSE ’00. ACM Press, 2000, pp. 133–145.

[16] D. Strein, H. Kratz, and W. Lowe, “Cross-Language Program Analysis and Refactoring,”

in Source Code Analysis and Manipulation, 2006. SCAM ’06. Sixth IEEE Int’l Ws. on,

2006, pp. 207–216.

[17] R. Pawlak, C. Noguera, and N. Petitprez, “Spoon: Program Analysis and Transformation

in Java,” Tech. report #inria-00071366, INRIA, 2006.

[18] S. Genaim and F. Spoto, “Information Flow Analysis for Java Bytecode,” in The 6th Int’l

Conf. on Verification, Model Checking, and Abstract Interpretation (VMCAI’05), 2005,

pp. 346–362.

[19] J. Zhao, “Dependence analysis of Java bytecode,” in Proceedings 24th Annual Int’l

Computer Software and Applications Conf.ĊOMPSAC2000. IEEE Comput. Soc, pp.

486–491.

[20] T. Bell, “The concept of dynamic analysis,” ACM SIGSOFT Software Engineering Notes,

vol. 24, no. 6, pp. 216–234, Nov. 1999.

[21] M. D. Ernst, “Invited Talk Static and dynamic analysis: synergy and duality,” in

Proceedings of the ACM-SIGPLAN-SIGSOFT Ws. on Program analysis for software tools

and engineering - PASTE ’04. ACM Press, 2004, pp. 35–35.

[22] R. Gupta, M. L. Soffa, and J. Howard, “Hybrid slicing: integrating dynamic information

with static analysis,” ACM Transactions on Software Engineering and Methodology,

vol. 6, no. 4, pp. 370–397, Oct. 1997.

[23] M. Weiser, “Program Slicing,” IEEE Transactions on Software Engineering, vol. SE-10,

no. 4, pp. 352–357, Jul. 1984.

[24] L. Larsen and M. Harrold, “Slicing object-oriented software,” in Int’l Conf. on Software

Engineering (ICSE). IEEE, 1996, pp. 495–505.

[25] J. Krinke, “Static slicing of threaded programs,” in ACM SIGPLAN-SIGSOFT Ws. on

Program Analysis for Software Tools and Engineering (PASTE), Jul. 1998, pp. 35–42.

49

Bibliography Summary

[26] F. Ricca and P. Tonella, “Web application slicing,” in IEEE Int’l Conf. on Software

Maintenance (ICSM), vol. 12, no. 2, Apr. 2001, pp. 148–157.

[27] P. Anderson, T. Reps, T. Teitelbaum, and M. Zarins, “Tool support for fine-grained

software inspection,” IEEE Software, vol. 20, no. 4, pp. 42–50, Jul. 2003.

[28] M. Weiser, “Program slicing,” in Int’l Conf. on Software Engineering (ICSE). IEEE,

1981, pp. 439–449.

[29] F. Tip, “A survey of program slicing techniques,” Journal of Programming Languages,

vol. 3, no. 3, pp. 121–189, 1995.

[30] M. Harman and R. Hierons, “An overview of program slicing,” Software Focus, vol. 2,

no. 3, pp. 85–92, Jan. 2001.

[31] K. Gallagher and D. Binkley, “Program slicing,” in Frontiers of Software Maintenance

(FoSM). IEEE, Sep. 2008, pp. 58–67.

[32] B. Price, I. Small, and R. Baecker, “A taxonomy of software visualization,” in Proceedings

of the Twenty-Fifth Hawaii Int’l Conf. on System Sciences, no. January. IEEE, 1992, pp.

597–606 vol.2.

[33] H. M. Kienle and H. a. Muller, “Requirements of Software Visualization Tools: A

Literature Survey,” in IEEE Int’l Ws. on Visualizing Software for Understanding and

Analysis (VISSOFT), Jun. 2007, pp. 2–9.

[34] J. Steele and N. Iliinsky, Beautiful Visualization, Looking at Data through the Eyes of

Experts, 1st ed. O’Reilly Media, 2010.

[35] E. Chikofsky and J. Cross, “Reverse engineering and design recovery: a taxonomy,”

IEEE Software, vol. 7, no. 1, pp. 13–17, 1990.

[36] M. L. Nelson, “A Survey of Reverse Engineering and Program Comprehension,” Old

Dominion University, Tech. Rep., 1996.

[37] A. Hunt and D. Thomas, “Software archaeology,” IEEE Software, vol. 19, no. 2, pp.

20–22, 2002.

[38] G. Canfora and M. Di Penta, “Frontiers of reverse engineering: A conceptual model,” in

Frontiers of Software Maintenance (FoSM). IEEE, Sep. 2008, pp. 38–47.

[39] T. Kuipers, “Techniques for Understanding Legacy Software Systems,” Ph.D. dissertation,

Universiteit van Amsterdam, 2002.

[40] B. Moyer, “Software Archeology. Modernizing Old Systems,” Embedded Technology

Journal, pp. 1–4, 2009.

[41] M. Feathers, Working Effectively With Legacy Code. Prentice Hall, 2004.

[42] “IEEE Working Conference on Software Visualization (VISSOFT),” 2013. [Online].

Available: http://icsm2013.tue.nl/VISSOFT/

[43] S. Diehl, Software Visualization: Visualizing the Structure, Behaviour, and Evolution of

Software. Springer, 2007.

[44] N. Wade and M. Swanston, Visual Perception: An Introduction. Psychology Press, 2001.

[45] D. Moody, “The Physics of Notations: Toward a Scientific Basis for Constructing Visual

Notations in Software Engineering,” IEEE Transactions on Software Engineering, vol. 35,

no. 6, pp. 756–779, Nov. 2009.

[46] C. Parnin and S. Rugaber, “Programmer information needs after memory failure,” in

50

http://icsm2013.tue.nl/VISSOFT/

Summary Bibliography

2012 20th IEEE Int’l Conf. on Program Comprehension (ICPC). IEEE, Jun. 2012, pp.

123–132.

[47] M. Storey, “Cognitive design elements to support the construction of a mental model

during software exploration,” Journal of Systems and Software, vol. 44, no. 3, pp.

171–185, Jan. 1999.

[48] M. M. Ber, D. Cruz, M. Jo, and R. Uzal, “Evaluation Criteria of Software Visualization

Systems used for Program Comprehension,” in Conferência Interacção Pessoa-Máquina,

2008.

[49] J. Nielsen and R. Molich, “Heuristic evaluation of user interfaces,” in SIGCHI Conf. on

Human Factors in Computing Systems. ACM, 1990, pp. 249–256.

[50] M. Sensalire, P. Ogao, and A. Telea, “Evaluation of software visualization tools: Lessons

learned,” in IEEE Int’l Ws. on Visualizing Software for Understanding and Analysis

(VISSOFT), Sep. 2009, pp. 19–26.

[51] R. Molich and J. S. Dumas, “Comparative usability evaluation (CUE-4),” Behaviour &

Information Technology, vol. 27, no. 3, pp. 263–281, May 2008.

[52] A. N. Oppenheim, Questionnaire Design, Interviewing and Attitude Measurement.

Continuum, 1992.

[53] S. Bohner and R. Arnold, Software Change Impact Analysis. IEEE, 1996.

[54] M. A. Chaumun, H. Kabaili, R. K. Keller, and F. Lustman, “A change impact model for

changeability assessment in object-oriented software systems,” in European Conf. on

Software Maintenance and Reengineering (CSMR). IEEE, 1999, pp. 130–138.

[55] H. Kagdi and J. Maletic, “Software-Change Prediction: Estimated+Actual,” in IEEE

Int’l Ws. on Software Evolvability (SE), Sep. 2006, pp. 38–43.

[56] S. Lehnert, “A Review of Software Change Impact Analysis,” Techn. Univ. Ilmenau,

Report ilm1-2011200618, 2011.

[57] ——, “A taxonomy for software change impact analysis,” in Int’l Ws. on Principles of

Software Evolution (IWPSE-EVOL). ACM, 2011, pp. 41–50.

[58] B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of code-based change impact analysis

techniques,” Software Testing, Verification and Reliability, pp. n/a–n/a, Apr. 2012.

[59] P. Tonella, “Using a concept lattice of decomposition slices for program understanding

and impact analysis,” IEEE Transactions on Software Engineering, vol. 29, no. 6, pp.

495–509, Jun. 2003.

[60] M. Acharya and B. Robinson, “Practical change impact analysis based on static program

slicing for industrial software systems,” in Proceeding of the 33rd Int’l Conf. on Software

engineering - ICSE ’11. ACM Press, 2011, p. 746.

[61] “A Proposal for an MDA Foundation Model,” 2005. [Online]. Available: http:

//www.omg.org/cgi-bin/doc?ormsc/05-04-01

[62] “Model-Driven Architecture,” 2013. [Online]. Available: http://www.omg.org/mda/index.

htm

[63] “Architecture-Driven Modernization,” 2013. [Online]. Available: http://adm.omg.org/

[64] OMG, “Architecture-Driven Modernization (ADM): Knowledge Discovery Meta-Model

(KDM) - v1.2,” 2010.

51

http://www.omg.org/cgi-bin/doc?ormsc/05-04-01
http://www.omg.org/cgi-bin/doc?ormsc/05-04-01
http://www.omg.org/mda/index.htm
http://www.omg.org/mda/index.htm
http://adm.omg.org/

Bibliography Summary

[65] R. Pérez-Castillo, I. G.-R. de Guzmán, and M. Piattini, “Knowledge Discovery

Metamodel-ISO/IEC 19506: A standard to modernize legacy systems,” Computer

Standards & Interfaces, vol. 33, no. 6, pp. 519–532, Nov. 2011.

[66] O. M. T. Force, “OMG Meta Object Facility (MOF) Core Specification,” 2003.

[67] G. Barbier, H. Brunelière, F. Jouault, Y. Lennon, and F. Madiot, “MoDisco,

a Model-Driven Platform to Support Real Legacy Modernization Use Cases,” in

Information Systems Transformation: Architecture-Driven Modernization Case Studies,

W. M. Ulrich and P. Newcomb, Eds. Morgan Kaufmann, 2010, ch. 14, pp. 365–400.

[68] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse Modeling

Framework 2.0. Addison-Wesley, Dec. 2009.

[69] “International ACM Sigsoft Symposium on Component-Based Software Engineering,”

2013. [Online]. Available: http://cbse-conferences.org/2013/

[70] “ICSE Workshop Series on Component-Based Software Engineering,” 2013. [Online].

Available: http://www.icse-conferences.org/2003/

[71] S. Mahmood, R. Lai, and Y. S. Kim, “Survey of component-based software development,”

IET Software, vol. 1, no. 2, pp. 57–66, 2007.

[72] S. P. Shashank, P. Chakka, and D. V. Kumar, “A systematic literature survey of

integration testing in component-based software engineering,” in 2010 Int’l Conf. on

Computer and Communication Technology (ICCCT). IEEE, Sep. 2010, pp. 562–568.

[73] O. Slyngstad, M. Torchiano, M. Morisio, and C. Bunse, “A State-of-the-Practice Survey

of Risk Management in Development with Off-the-Shelf Software Components,” IEEE

Transactions on Software Engineering, vol. 34, no. 2, pp. 271–286, Mar. 2008.

[74] J. Bosch, Design and Use of Software Architectures: Adopting and Evolving a

Product-Line Approach. Addison-Wesley, 2000.

[75] P. Clements and L. Northrop, Software Product Lines: Practices and Patterns.

Addison-Wesley, 2002.

[76] B. A. Kitchenham, T. Dyb̊a, and M. Jorgensen, “Evidence-based Software Engineering,”

in Int’l Conf. on Software Engineering (ICSE), 2004, pp. 273–281.

[77] T. Dyba, B. Kitchenham, and M. Jorgensen, “Evidence-based software engineering for

practitioners,” IEEE Software, vol. 22, no. 1, pp. 58–65, Jan. 2005.

[78] B. A. Kitchenham, “Guidelines for performing Systematic Literature Reviews in Software

Engineering,” Keel University & University of Durham, Tech. Rep., 2007.

[79] J. Biolchini, P. G. Mian, A. C. C. Natali, and G. H. Travassos, “Systematic Review in

Software Engineering,” UFRJ, Tech. Rep. May, 2005.

[80] F. P. Brooks, “No Silver Bullet Essence and Accidents of Software Engineering,”

Computer, vol. 20, no. 4, pp. 10–19, Apr. 1987.

[81] T. Mens, “On the Complexity of Software Systems,” Computer, vol. 45, no. 8, pp. 79–81,

Aug. 2012.

[82] S. Deelstra, M. Sinnema, and J. Bosch, “Product derivation in software product families:

a case study,” Journal of Systems and Software, vol. 74, no. 2, pp. 173–194, Jan. 2005.

[83] R. Behjati, “A Model-Based Approach to the Software Configuration of Integrated

Control Systems,” Ph.D. dissertation, Faculty of Mathematics and Natural Sciences,

University of Oslo, 2012.

52

http://cbse-conferences.org/2013/
http://www.icse-conferences.org/2003/

Summary Bibliography

[84] R. Behjati, T. Yue, L. Briand, and B. Selic, “SimPL: A product-line modeling

methodology for families of integrated control systems,” Information and Software

Technology, vol. 55, no. 3, pp. 607–629, Oct. 2012.

[85] D. Binkley, M. Harman, and J. Krinke, “Empirical study of optimization techniques for

massive slicing,” ACM Transactions on Programming Languages and Systems, vol. 30,

no. 1, pp. 3–es, Nov. 2007.

[86] P. Klint, R. Lämmel, and C. Verhoef, “Toward an engineering discipline for grammarware,”

ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 14, no. 3,

pp. 331–380, 2005.

[87] L. Moonen, “Generating robust parsers using island grammars,” in Proceedings Eighth

Working Conf. on Reverse Engineering. IEEE Comput. Soc, pp. 13–22.

[88] M. Wimmer and G. Kramler, “Bridging grammarware and modelware,” in Ws. in

Software Model Engineering (WiSME). Springer, 2006, pp. 159–168.

[89] T. Reus, H. Geers, and A. Van Deursen, “Harvesting Software Systems for MDA-Based

Reengineering,” in European Conf. on Model Driven Architecture-Foundations and

Applications (ECMDA-FA). Springer, 2006, pp. 213–225.

[90] B. Li, “Analyzing information-flow in java program based on slicing technique,” ACM

SIGSOFT Software Engineering Notes, vol. 27, no. 5, pp. 98–103, Sep. 2002.

[91] J.-F. Bergeretti and B. a. Carré, “Information-flow and data-flow analysis of

while-programs,” ACM Transactions on Programming Languages and Systems (TOPLAS),

vol. 7, no. 1, pp. 37–61, Jan. 1985.

[92] C. Jones, Estimating Software Costs : Bringing Realism to Estimating: Bringing Realism

to Estimating, 2nd ed., ser. McGraw-Hill’s AccessEngineering. Mcgraw-hill, 2007.

[93] R.-H. Pfeiffer and A. Wasowski, “Cross-language support mechanisms significantly

aid software development,” in Proceedings of the 15th Int’l Conf. on Model Driven

Engineering Languages and Systems, ser. MODELS’12. Springer-Verlag, 2012, pp.

168–184.

[94] A. Strauss and J. Corbin, Basics of Qualitative Research: Techniques and Procedures for

Developing Grounded Theory. SAGE, 1998.

53

Paper I

Crossing the Boundaries while
Analyzing Heterogeneous
Component-Based Software
Systems

55

56

Crossing the Boundaries while Analyzing

Heterogeneous Component-Based

Software Systems

Amir Reza Yazdanshenas, Leon Moonen

Software Engineering Department, Simula Research Laboratory,

P. O. Box 134, N-1325 Lysaker, Norway

Abstract – One way to manage the complexity of software systems is to compose

them from reusable components, instead of starting from scratch. Components may

be implemented in different programming languages and are tied together using con-

figuration files, or glue code, defining instantiation, initialization and interconnections.

Although correctly engineering the composition and configuration of components is

crucial for the overall behavior, there is surprisingly little support for incorporating

this information in the static verification and validation of these systems. Analyzing

the properties of programs within closed code boundaries has been studied for some

decades and is well-established. This paper contributes a method to support analysis

across the components of a component-based system. We build upon the Knowledge

Discovery Metamodel to reverse engineer homogeneous models for systems composed of

heterogeneous artifacts. Our method is implemented in a prototype tool that has been

successfully used to track information flow across the components of a component-based

system using program slicing.

Keywords – program analysis, reverse engineering, model reconstruction, KDM,

component-based software systems, SDG

57

1. Introduction Paper I

1 Introduction

Component-based software engineering is a frequently advocated approach for the

development of large software systems. It is based on the notion that the complexity

of software development can be better managed by assembling systems from reusable

parts, similar to how hardware systems are constructed from ready-made components.

Many of today’s software systems are built following these principles: they are composed

from reusable components, implemented in one or more programming languages, and

connected using a variety of configuration artifacts, ranging from simple key-value maps

to elaborate domain specific configuration languages.

Since correctly engineering the composition and configuration of components is no

less challenging or error-prone than source code, one could assume that the analysis of

such artifacts is an intrinsic part of professional software development methods and tools.

However, we found that even though these aspects are crucial for the overall behavior

of such systems, there is surprisingly little support for incorporating this information in

static verification and validation.

Analyzing the properties of programs within closed code boundaries is a well-

established area that has been studied for some decades [1], and techniques have

successfully been implemented in professional program analysis tools [2, 3]. However,

most of these tools have strict limitations on the programming languages that can

be processed. In the context of component-based systems, this typically means that

information from configuration artifacts can not be included, effectively inhibiting

system-wide analysis and confining it to the boundaries defined by the source code of

a single component. We address this issue with an approach that allows crossing the

boundaries between components, enabling system-wide analysis of component-based

systems.

The contributions of this paper are the following: We present a method that

combines model-driven engineering with program analysis techniques to support analysis

across the components of a component-based system. In particular, we build upon

the foundations laid out by OMG’s Knowledge Discovery Metamodel (KDM) [4] to

reverse engineer a homogeneous system-wide dependence model from a software system’s

heterogeneous source- and configuration artifacts, and use this model as the basis for

our analysis. We have implemented and evaluated our approach by building a prototype

tool which has been successfully used to track information flow in a component-based

system using program slicing. Finally, we add a point of reference to the use and

extension of KDM in an industrial setting, extending an area of literature that is

currently underdeveloped.

The remainder of the paper is organized as follows: Section 3 describes the

background of this study. We describe our approach in Section 4, and report on our

prototype implementation in Section 5. We evaluate our approach and prototype in

Section 5, discuss the related work in Section 7, and conclude in Section 7.

58

Paper I 2. Background and Motivation

2 Background and Motivation

The research described in this paper is part of an ongoing industrial collaboration

with Kongsberg Maritime (KM), one of the largest suppliers of systems for dynamic

positioning, navigation and automation to vessels and on- and offshore installations

worldwide. The division that we work with specializes in computerized systems for

safety monitoring and automatic corrective actions on unacceptable hazardous situations.

Examples include emergency shutdown, process shutdown, and fire & gas detection in

installations such as drilling vessels, and offshore oil and gas terminals. In particular,

we study a family of complex safety-critical embedded software systems that connect

software control components to physical sensors and mechanical actuators. The overall

goal of the collaboration is to supply our partner with software analysis tooling that

provides source based evidence to support software certification.

The remainder of this section gives a generalized view on how systems are developed

in this domain. We use the following terminology: a component is a unit of composition

with well-defined interfaces and explicit dependencies; a system is a network of interacting

components; and a port is an atomic part of an interface, a single point of interaction

between components or components and the environment.

Concrete software products are assembled in a component-based fashion from

a limited collection of reusable components. Components are implemented in a safe

subset of C called MISRA C [5]. They are relatively small in size and the computations

are relatively straightforward. The control logic, however, can be rather complex and is

highly configurable via parameters (e.g. initialization, thresholds, multipliers etc). This

flexibility is taken to the max in the control components, which are configured using

a cause and effect matrix. This is basically a decision table that defines what action

should be triggered when a given situation arises.

The system’s overall logic is composed as a network of interconnected component

instances. The control components play a central role and receive inputs that are

derived from raw sensor data via a series of components that implement tasks such as

measurement, voting, and counting. The control components’ outputs are read by a

series of components that trigger and drive the system’s actuators.

Components can be cascaded to handle larger numbers of input signals (Figure 1a),

and the output of a given network can be used as input signal for another (Figure 1b).

The latter is used, for example, to reuse the conclusion for one area as input for a

connected area. As the installations that are monitored become bigger, the numbers

of sensors and actuators grow rapidly, the safety logic becomes increasingly complex

and the induced component networks end up interconnecting hundreds of component

instances.

59

2. Background and Motivation Paper I

casc_in

in1

in2

in3

in4

casc_in

in5

in6

in7

in8

in9 casc_out

out9

out8

out7

out6

out5

casc_out

out4

out3

out2

out1

out0

in0

(a) Cascading components.

Area B

Area A

digital input

analog input

analog input

voting

measure

input

main

output

output

digital input

analog input

voting

input

input

output

output

input main

resetdigital input

input

digital input

(b) Combining component networks (the drawing is simplified for readability

by representing multiple connections between modules as a single line).

Figure 1: Examples of component configurations

60

Paper I 3. Approach

Model Integration

Source Code
Models

Source Code
Models

Heterogeneous
Sources

Homogeneous
ModelModel Recovery

C
source code

Java
source code

Configuration
artifacts

System-wide
Dependence
Graph (KDM)

C
Analysis Tool

Java
Analysis Tool

Configuration
Analysis Tool

C++
Analysis Tool

Source Code
Models
(CDGs)

Configuration
Model
(ICDG)

Integrate

C++
source code

Figure 2: Integrating models derived from heterogeneous sources into a homogeneous model

3 Approach

3.1 Tracking Information Flow

It will not be surprising that one of the main software certification questions asks for

evidence that signals from the sensors trigger the appropriate actuators. In program

analysis terms, this amounts to tracking the information flow between sensors and

actuators through the network of components that makes up the system. Conceptually,

this question lends itself well to being answered by means of program slicing [6].

Program slicing is a decomposition technique that leaves out all parts of the

program that are not relevant to a given point of interest, referred to as the slicing

criterion. In other words, the program slice consists of the parts of the program that

potentially affect the values at the slicing criterion [7]. When we select a given actuator

as slicing criterion, the program slice of our system would contain exactly those sensors

that may have an effect on the given actuator.

The predominant way of computing program slices is based on traversing the

system dependence graph (SDG) [8], and one of the main challenges that a program

slicing tool has to tackle is the construction of this SDG from a system’s source code.

In extension to the original approach which was defined on procedural code, various

authors have proposed methods to construct SDGs for other paradigms, such as object

oriented and parallel programming. In contrast to our expectations, an investigation

61

3. Approach Paper I

of the scientific literature did not bring up any work on the construction of SDGs for

heterogeneous component-based systems. As discussed in the introduction, this gap

in literature is mirrored by the state of the art in program analysis tools which are

typically confined to the boundaries defined by the source code of a single component

because they can not construct an SDG that incorporates information from configuration

artifacts.

To enable program slicing across the components of our subject systems, we devise

a method to construct a system-wide dependence graph that integrates the dependencies

from both the components and the configuration artifacts.

3.2 Construction of A System-wide Dependence Graph

This section describes a model-driven approach to construct a system-wide dependence

graph that incorporates and integrates the dependence’s from all components and

configuration artifacts. A high level overview of our approach is shown in Figure 2. We

distinguish two main phases in the process: (1) model recovery in which we reverse

engineer the dependency models of interest from individual source artifacts; (2) model

integration in which we merge the individual models into a single homogeneous system

model.

The overall process of creating a system-wide dependence graph can be described

using the following steps. The first two steps are concerned with model reconstruction,

the third is concerned with model integration. The process can be completely automated

(as shown in Section 5):

1. For each component in the system, we build an (intra-)

component dependence graph (CDG). The construction of these CDGs can be done

following the SDG construction method in [8], with the component’s implementa-

tion as “system” source code.

2. The system’s configuration artifacts are analyzed to build an inter-component

dependence graph (ICDG). This is a dependence graph at a higher level of ab-

straction than the CDG: the ICDG captures the externally visible interfaces and

interconnections of components and component instances. These facts can be

derived from the configuration files since they are also needed by the component

composition framework to set up the correct network. Because the format of

the configuration files is specific to the component composition framework, we

need to write a dedicated language processor to analyze its configuration files.

However, this is not a demanding task as these “languages” are typically very

straightforward, most often in the form of key-value pairs or a simple XML based

configuration.

3. The system-wide dependence graph (SDG) is constructed by integrating the

system’s ICDG with the CDGs for the individual components. Conceptually, the

construction of the SDG can be seen as a process that creates a copy of the ICDG

62

Paper I 3. Approach

KDM Metamodel Classes

CodeSurfer Notions

InventoryModel

AbstractInventoryElement AbstractCodeElement

InventoryItem

SourceFile

CodeModel

SourceRegion

SourceRef

owner

0..*

CodeItem

ComputationalObject

ActionElement

CallableUnit

0..*

owner

source

1
from
0..*

ActionRelationship

1
to
0..*

«stereotype»
ControlDependence

«stereotype»
DataDependence

file

maps to

0..*

1..*

from
from

to

to

region

DataDependence

ControlDependence

ProgramPointPDG

CompilationUnit

Line#

SourceFile

CompilationUnit

Figure 3: Target KDM metamodel classes and their mapping to CodeSurfer constructs

and replaces each high level “component” node in that copy with a sub-graph that

is the CDG for that component.

To enable flexible integration of individual models in step (3), we propose to use

OMG’s Knowledge Discovery Metamodel (KDM) [4] as a foundation for representing

the various intra- and inter-component dependence graphs. The KDM was designed as a

wide-spectrum intermediate representation for describing existing software systems and

their operating environments. It is uniform, language- and platform independent. Its

goal is to ensure interoperability between tools for maintenance, evolution, assessment

and modernization. One of the key concepts is that of a container: an entity that

owns other entities. This enables the representation of software systems at various

levels of abstraction. The KDM supports incremental analysis that can be used to

augment an initial representation based on new knowledge. In addition, it has an

extensibility mechanism that allows adding domain-, application- or implementation-

specific knowledge. By using the KDM as a basis for our models, we become language

agnostic. In the next section we will discuss the concrete mapping from SDG elements

63

4. Prototype Implementation Paper I

to entities in the KDM.

Finally, we want to point out that it is possible to reuse existing program analysis

tools for the construction of the individual CDGs in step (1). In this case we will

also benefit from the KDM as it helps us to become tool independent. We distinguish

the following two sub-steps: (1a) use a third party tool to build the CDG; (1b) apply

a model transformation that converts the internal representation of the tool into a

KDM-based representation of the CDG. Obviously, the tool should provide access to

its internal representation or be able to emit it in some structured format. We will

discuss a concrete example of this setup in the next section where we use the CodeSurfer

program analysis tool to recover CDGs for components written in C language.

4 Prototype Implementation

In this section we discuss a prototype implementation of the approach that was sketched

in Section 4. First, we discuss how we derive CDGs for the individual components by

building on functionality provided by a third party tool and transforming the tool’s

internal representation into dependence graphs represented using KDM. Next, we

describe how we analyze configuration artifacts to combine these individual CDGs into

a system-wide SDG.

4.1 Component Dependence Graphs

Our prototype builds on Grammatech’s CodeSurfer to derive the CDG. CodeSurfer is a

program analysis tool that can construct dependence graphs for C and C++ programs

[2]. It provides an API that can be used to make your own analysis plugin that can

query and traverse the internal representation that CodeSurfer builds to analyze a

system.

We have built a CodeSurfer plugin that traverses the internal representation and

uses the Java Native Interface (JNI) to build a counterpart of the dependence graph

by driving a Java implementation of KDM in the Eclipse Modeling Framework (EMF).

This relieves us from having to deal with the challenging idiosyncrasies of analyzing C

code, including parsing the various dialects and performing pointer analysis.

Figure 3 shows a simplified excerpt of the KDM together with the mapping between

CodeSurfer constructs and metamodel classes that we used to represent dependence

graphs in the KDM. Although dependence graphs are not “natively” supported in the

KDM, the metamodel contains appropriate fine-grained entities that can be used (or

extended) to represent such graphs. As is shown in the figure, we can define a direct

mapping for most constructs and we use KDM’s lightweight extension mechanism to

create appropriate stereotypes for constructs that have no direct mapping. Note that

we only need a small part of the KDM; the KDM-specific classes in this figure belong

to three of the twelve KDM packages: Source, Code and Action. These are respectively

64

Paper I 4. Prototype Implementation

shown in the left, middle and right “columns” of the KDM-specific part of Figure 3.

The Code package represents ”implementation level program elements and their

associations”, and the Action package expresses ”implementation-level behavior descrip-

tions”. Both packages complement each other to build a CodeModel of the system,

capable of describing almost any valid element in a programming language in KDM. For

instance, a CallableUnit represents ”a basic stand-alone element that can be called, such

as a procedure or a function”. We use this container class to include the information

about each PDG. An ActionElement, ”a basic unit of behavior”, is used to represent a

program point in PDG, and can be linked to the original representation through the

SourceRef element.

The Action package defines several relationship classes to represent relations

between ActionElements or between ActionElements and DataElements, such as En-

tryFlow, GuardedFlow, Calls, Reads, Writes, etc. However, none of these map to the

control and data dependency relations in PDGs. ActionRelationship is a ”wild-card

element to define new metamodel elements through the KDMs light-weight extension

mechanism”. We use ActionRelationships together with the stereotyping mechanism in

KDM to express control, data, forward, and backward dependencies among program

points.

In addition to the dependence graph, we also extract additional information from

CodeSurfer to make our model more complete, such as information regarding compilation

units, functions, etc. that is used to populate the inventory model. The inventory model

is part of KDM’s Source package and is used to represent the physical artifacts in the

system [4]. Although we do not need this model to perform slicing, we use it to add

traceability to our models. This information can be used, for example, to highlight the

source code that is the result of a slice. We use the SourceFile and SourceRegion classes

to save the location (file:line#) of each program point.

Based on this mapping we can build CDGs in KDM. This enables us to compute

an intra-component slice: when we select an output port as slicing criterion, we can

determine which of the component’s input ports can affect the value on that output

port. Although one could argue that the transition from proprietary program analysis

tool to KDM-enabled platform opens up many interoperability opportunities, we still

can not do anything more than CodeSurfer already does out of the box. To change this,

we need to take the next step and assemble a system-wide dependence graph.

4.2 The Inter-Component Dependence Graph

Before we can assemble all individual CDGs into a system-wide dependence graph

(SDG), we analyze the configuration artifacts to derive information about component

instantiations and interconnections. We capture this information in an inter-component

dependence graph (ICDG) which models the externally visible interfaces and intercon-

nections of components and component instances. The nodes in this graph represent

65

4. Prototype Implementation Paper I

1

2

i

2 3 j

3

cause
input A output B

output D

output C

effect

effect

cause & effect
 matrix

main

effect

Figure 4: Cause&Effect matrix: a domain-specific inter-component communication mechanism based
on shared memory.

component instances and port instances and we use data dependence edges to repre-

sent connections between port instances, and control dependence edges to associate

components with their input/output ports. We refer to Figure 5 later in this paper

for an overview of the nodes and edges in the ICDG (but note that this figure serves

another role and the ICDG does not contain the parts that are shown inside the grey

component nodes). In our case study, the configuration files are in XML and we use

Xalan-Java for processing (but other XSLT processors could have been used as well).

We distinguish two types of inter-component communication: the first type are the

common port-based connections where an output port of component A is connected to an

input port of component B. These connections are explicitly defined in the configuration

files and can directly be translated into dependencies between port instances in our

ICDG.

The second type of connections are made via the cause & effect matrix, a domain-

specific inter-connection mechanism that needs some explanation: At the core of the

system, the inputs (causes) are processed by a control component that decides what

outputs (effects) to trigger. The mapping from causes to effects is encoded in a decision

table that is known as the cause & effect (C&E) matrix. This matrix serves an important

role in discussing the desired safety requirements between the supplier and the customers

and safety experts. By filling certain cells of a C&E matrix, the expert can, for example,

prescribe which combination of sensors needs to be monitored to ensure safety in a

given area.

The C&E matrix is implemented as shared memory in the main control component

(see Figure 4). It creates a blackboard architecture to which components have read or

write access. Each input component handles one cause and can only write to a single

cell in the C&E matrix. Multiple output components can read that same cell, effectively

66

Paper I 4. Prototype Implementation

ComponentB
o2

o1

port

port instance

i2

i1

ComponentA
o2

o1
i1

i2

port-type
data dependency

intercomponent
data dependency

port-instance
data dependency

ComponentC

CDGC
o1

i1

i2

x=f(i1);

o2=g(y);

c2.o1

c1.o1

b1.i1

b1.i2

b2.i1

b2.i2

a1.o2

a1.o1
a1.i1

a1.i2

b1.o1

b2.o1

b1.o2

b2.o2

c1.i1

c2.i1

c1.i2

c2.i2

a1.i3
i3

C

E

B

D

first use
program point
last may-kill
program point

A
CDGA

CDGB

Figure 5: Assembling the SDG from the individual CDGs and the ICDG (note that markers A–E are
explained in the text).

ensuring that a cause could trigger multiple effects. The cells to which the inputs

can write and from which the output modules can read are described in (XML-based)

configuration files.

Note that this form of connections is of special interest because static analysis tools

in general have trouble with following the flow through such a block of shared memory.

Even the tools that use sophisticated pointer-analysis algorithms will at some point

need to make the trade-off between precision and analysis time/resources. For most

tools this trade-off means that they will analyze pointers down to the level of directly

addressable (named) memory locations, but not consider the individual elements of

arrays or matrices: these are lumped together as a single array or matrix object. This

conservative estimate has unfortunate effects in this situation, as the C&E matrix will

be seen as a single object that is being written by all input- and read put all output

components. Although this is a safe approximation that does not miss any potential

dependencies, it is prohibitively sub-optimal as it creates numerous false positives.

We address this issue as follows: During processing of the configuration artifacts,

whenever we find a pair of input-output components that write and read from the same

matrix cell respectively, we capture this indirect connection via the C&E by adding a

direct inter-component data dependency between the input and output components to

the ICDG. This will enable program analysis (and slicing) to “pass through” the C&E

matrix from output component instances to exactly those input component instances

that write to the same cell in the C&E matrix as the output components read from.

Although this example is specific to our case, we believe that the proposed solution

is general enough to be used as a template for other inter-component communication

mechanisms, such as message passing, sockets, and pipes.

67

4. Prototype Implementation Paper I

4.3 The System-wide Dependence Graph

The method of assembling a system-wide dependence graph from CDGs closely resembles

the method of building an SDG from a collection of PDGs in [8] with the exception

that there is no call-return relation between a couple of connected components so we

adapt our description accordingly. The concrete assembly process is implemented as

follows: Based on the information in the ICDG, we add an ActionElement for each port

to the owner component (CompilationUnit) in our KDM model (Figure 5, marker A).

These ActionElements (ports) play exactly the same role to a component, as a formal

parameter plays to a procedure.

Analogous to the intra-procedural dependency edges of each formal parameter,

we need to add the intra-component data dependencies of each port (Figure 5, marker

B). The output ports have a data dependency to the last ”may-kill” program points

for that port, i.e. those locations at which the value communicated over the port can

be defined [9]. Similarly, there is a data dependence between an input port and the

first ”uses” of values received over that port. Note that a component may contain

multiple functions that read or write values to ports and we need to add the above data

dependencies for each of them.

We model component instantiation analogous to procedure calls in [8] with the

exception that there is no return flow. For each port instance in the ICDG, we add

an ActionElement and add a data dependency to the element representing the port

(Figure 5 marker C). Such port-instance nodes roughly correspond to actual parameters

in procedure calls. Note that the structured names of port-instance ActionElements

(Figure 5, marker D) play an important role in our method as these are used to associate

the input ports of a component instance to the output ports of the same component

instance. This helps preserving context during slicing.

Finally, we add the component interconnections to the model: wherever we see

a data dependence between two port instances in the ICDG, we simply add a data

dependency edge between the corresponding ActionElements of those port-instances

(Figure 5, marker E).

4.4 Slicing

Now we have a homogeneous model representing the system-wide dependence graph,

we can slice it to gather evidence to support our original certification questions.

We have created a simple slicing tool in Java which compute slices by traversing

the dependencies (ActionRelationships) in our SDG using the standard graph reacha-

bility algorithms with one minor adaptation for context preservation: when entering

a component via a port instance we save the component instance name, and when

exiting a component, we only ascend to those port instances that belong to the same

component instance as the saved one.

68

Paper I 5. Evaluation

5 Evaluation

In order to evaluate our approach and the implemented prototype tool, we will consider

two aspects: First, we evaluate accuracy by comparing the results of our slicing method

with a gold standard set by CodeSurfer. Second, we evaluate performance and scalability

by converting and analyzing a series of large industrial code bases.

5.1 Accuracy

One of the challenges in evaluating the accuracy of our approach is determining a gold

standard to compare our results to. Remember that one of the motivations was that

existing approaches and tools are not able to handle the type of systems that we want

to analyze.

We have solved this challenge by increasing our level of control during the ex-

perimental evaluation: First, we have developed a simple component based system

that closely resembles the architecture of the ones described in Section 3. Our system

consists of a “framework” (main function) that reads a number of external configuration

files that describe how it should instantiate and interconnect a network of components

(represented by other functions). We follow a similar component-based design and

use the same component interconnection mechanisms as the system in our case study.

Port declarations, component instantiations, and all component interconnections are

described using text-based configuration files. The connection mechanism is simple, yet

general enough to represent most component-based systems, including our case study.

The characteristics of this system are described as System A in Table 1.

Second, because we have full control over this system, we can trivially create a

variant A’ in which we replace the framework code that reads the configuration files

by code that directly instantiates and interconnects components. To minimize the

differences, this hard-coded variant A’ uses the same instantiation and interconnection

functions as the configuration file reader to programmatically build a network of

components. We program A’ to create a network that corresponds exactly to the

network that is specified in the configuration files of system A.

Since system A’ does not depend on external configuration files and since all

aspects are programmed in C, it can be analyzed by CodeSurfer to set the gold standard

in our evaluation. The components and configuration artifacts of the original system

(A) are analyzed using our prototype tool-set: we generate an SDG in KDM using the

tooling described in Section 5-A&B and slice it for a given set of slicing criteria using

the tool described in Section 4.4.

We evaluate the accuracy by comparing the slices obtained for system A using

our tool-set with the gold standard computed by CodeSurfer on system A’, looking for

any differences in the program points, component instances, and port instances that

are included in a slice. To maximize the fault-revealing potential, we have repeated

69

5. Evaluation Paper I

this comparison for all elements in a set of slicing criteria that was increased in a

guided-random fashion until the complete set of slices covered the SDG (i.e., in each

increment we add a randomly selected element from the program points that were not

yet covered as new slicing criterion, until we have covered the whole SDG). Moreover,

we have repeated this process for three different configurations (adding variants A” and

A”’).

Our comparisons showed that for each configuration and slicing criterion, both

slicing tools generated the same output for what concerns the components and their

interactions. The slices computed by CodeSurfer also contained the code that was

added to the variants to programmatically set up the component connections. Since our

approach by design abstracts from the framework and directly captures the configuration,

those program points have no counterpart in our slices, as was expected. We conclude

that we achieve 100% accuracy.

5.2 Scalability

For this step we use our prototype to analyze the source code of three industrial code

bases of increasing size and create the corresponding SDGs in KDM. These systems are

shown as systems B, C and D in Table 1. Note that the number of components that

is reported refers to the number of component types in each code base. Each of these

types may be instantiated numerous times in an actual configuration.

Analysis of the results shows that the number of nodes (ActionElements) in

the KDM SDG is equal to the sum of all program points of the individual CDGs

in CodeSurfer, as long as there are no component instantiations. When component

instantiation is included, the difference between these two is a linear function of the

number of instances of each component and the number of input/output ports of the

instantiated components. This shows the main advantage of the way how we model

component instances compared to the alternative, where the complete CDG is duplicated

for each component instance. The latter approach would yield a high risk of scalability

problems in our case, since the typical scenario in our application domain is to create

large numbers of instances from a limited set of components.

The model reconstruction and transformations are performed on a general-purpose

laptop with 2.66 GHz Intel Core 2 Duo CPU, 4 GB of memory, running Mac OS X V10.6.

The value reported as ”Total CodeSurfer time” is the sum of the times that it takes

CodeSurfer to create all individual CDGs, including the time for parsing and full pointer

analysis. The value reported as “SDG construction time” includes reconstructing the

ICDG from the configuration artifacts, transforming all CDGs into KDM representation

and assembling these parts into a single homogeneous SDG.

To minimize potential performance fluctuations of a multitasking system, we

profile 22 executions of our model transformation, omit both the longest and shortest

execution times and report the average time of remaining 20 executions. We should

70

Paper I 5. Evaluation

Table 1: Characteristics of analyzed systems and resulting models

System A B C D

Distinct Components 4 6 30 60

LOC 207 16181 54053 101393

Total CodeSurfer time (sec.) 3.181 13.064 65.022 132.381

SDG construction time (sec.) 0.246 1.996 9.938 19.755

Nodes in final SDG 2074 13787 61507 121197

Dependencies in final SDG 3784 46276 216956 431042

remark that the transformation times had very little variation, so this precaution was

probably not needed. However, the purpose of these tests was not so much to analyze

the execution times but to assess the scalability. Our results show that both execution

time and model size grow linear as the system size grows (see also Figure 6, the small

dent can be explained by startup overhead which has more impact for A than for the

other systems). The growth rate is constant, even for the largest code base which

measures a little over 100KLOC in size. The serialized KDM model for this code base

results in an impressive 600,000 lines of XMI (78MB). In all cases, the execution of the

slicing algorithm takes a trivial time, in the order of milliseconds.

5.3 Threats to validity

We have identified the following threats to the validity: Internal Validity: Since our

accuracy evaluation is based on a form of “regression testing” where we compare the

slices generated by our approach for random slicing criteria with the slices that are

generated by CodeSurfer, there are two factors that could affect the evidence that

supports our claims: (1) The statically configured systems A’, A” and A”’ that are

analyzed by CodeSurfer may differ from the original system A that is analyzed by

our approach (and cannot be analyzed by CodeSurfer). While designing the example

software systems, we have taken all possible measures to prevent differences between

these systems with the required exception of the way in which the component network

is configured. The fact that all the resulting slices are identical supports our belief

that we were successful in mitigating this threat of changing the instrument. (2) The

evaluation is based on randomly selected slicing criteria that by chance may not expose

problems in our implementation. We have minimized this risk by taking a sufficiently

large number of slices and use a random selection of slicing criteria to increase the

coverage of the SDG by the generated slices.

External Validity: We have identified the following two threats to the general-

izability of our results: (1) In addition to our own example system, the study only

includes industrial code from one particular company. As a result, there may be a bias

in our approach towards specifics of that particular codebase. In general, this is hard to

71

6. Related Work Paper I

 0

 5

 10

 15

 20

 0 20000 40000 60000 80000 100000
 0

 20000

 40000

 60000

 80000

 100000

 120000
S

D
G

 c
o

n
s
tr

u
c
ti
o

n
 t

im
e

 (
s
e

c
.)

S
iz

e
 o

f
fi
n

a
l
S

G
D

 (
#

n
o

d
e

s
)

System size (LOC)

A

SDG construction time (sec.)
Size of final SGD (#nodes)

B

C

D

Figure 6: Transformation time and SDG size vs. system size.

avoid in an industrial collaboration, and specifically so in a setting as described in this

paper where one needs to develop a small dedicated language processor to derive facts

from the configuration artifacts. However, we have identified two general component

interconnection mechanisms and present a solution that can be used as template for

other interconnection mechanisms. We leave the demonstration on other cases as future

work. (2) The evaluation is based based on one particular tool (CodeSurfer) to generate

CDG’s. Although this tool supports both C and C++, the generalizability to tools that

process other languages is not evaluated. The extension of the SDG to represent other

languages has been described by many papers and we do not expect problems with

mapping those extensions to KDM. However there seems to be only a limited amount

of industrial strength tools that can create PDGs or SDGs from given source code, so

this may be a practical challenge to the generalizability.

6 Related Work

Architecture Driven Modernization: In the recent years, several studies have been

published that follow the ADM approach and use KDM to capture knowledge about

legacy systems [10–13]. Although there are similarities in the approach and use of KDM,

both the type and abstraction level of the information that is recovered in these studies

is very different from ours. The MARBLE framework [11] creates KDM models from

database schemes and SQL statements embedded in Java source code which are used for

data contextualization: the recovery of links between source code and the relevant parts

of any databases that are used. In [12, 13], KDM models are recovered from PL/SQL

triggers in Oracle Forms applications. These models are used to measure the coupling

72

Paper I 6. Related Work

between code and UI as this was recognized as major factor influencing the time and

effort required to migrating the applications.

MoDisco is an Eclipse plug-in aimed at supporting model-driven software mod-

ernization by reverse engineering models from (Java) source code [14]. It consists of a

“model discoverer”, which uses the Eclipse Java Development Tools (JDT) parser and its

resulting AST to create models from Java source code files. These models conform to a

detailed Java metamodel defined in Ecore, and can be browsed by the MoDisco model

browser. In addition, they can be analyzed and explored by all tools that can process

Ecore models, such as transformation and querying engines. Finally, MoDisco includes

transformations to transform their internal Java models into models that conform to the

Knowledge Discovery Metamodel (KDM) and the Software Metrics Metamodel (SMM).

Several other researchers have investigated the reverse engineering of fine-grained model

from source code, resulting in tools such as Spoon [15], and JaMoPP [16] but at the

time of writing, these approaches do not generate KDM compliant models. The main

difference between our work and the approaches mentioned above is that those are

based on building structural models of the code entities and their direct relations, such

as function calls and control flow, whereas our approach is aimed at models that include

the higher level semantic relations needed for program analysis (such as control and data

dependence). As such, the KDM models that are recovered by MoDisco are orthogonal

to ours for the same set of source artifacts, and one of the main advantages of building

on KDM is that they can easily be merged together to recover an even richer model.

Program analysis: Ricca and Tonella describe the construction of system dependence

graphs for web application slicing [17]. Their approach addresses a problem similar to

ours in that they need to combine dependence information from the server side program-

ming language PHP with dependence information from the client side programming

language JavaScript. They extend the traditional SDG to one that contains specific

dependencies for web applications.

Several authors have studied slicing at the architectural level. In general, all

these approaches aim at raising the abstraction level of the analysis to the component

level: the (dependency) relations that are captured are between components and not

within components. As such, these approaches cannot be used to conduct a detailed

analysis across components, as we aim at in our work. The authors typically aim at

answering impact analysis questions such as “What other components are required when

one component is to be reused in another system?”, “What other components might be

affected when a given component is changed?”, “What is the minimal set of components

that must be inspected when a system fails at a given component?”. Both Zhao [18]

and Stafford et al. [19] have studied the analysis and slicing of software architectures

based on their specification in an Architecture Description Language (ADL). In both

approaches, the components and relations in a software system’s architecture are first

(manually) modelled in a domain specific language before they are analyzed. In addition

to the difference in abstraction levels described above, these approaches differ from ours

73

7. Concluding Remarks Paper I

in that we aim at automatically reconstructing our analysis models from the system’s

source artifacts (code and configuration).

Li et al. introduce the component dependency graph (and component dependence

adjacency matrix) to explicitly represent dependencies in a component-based system [20].

They find components in C++ or Java source code by identifying all classes and interfaces,

and derive component dependencies from the #include directives. The difference with

our work is that the granularity of dependencies in their approach is at the component

level, where the Boolean cells in their adjacency matrix indicate the existence or absence

of a dependency between the two components. Such information can be used to estimate

the impact of changes, and for finding the set of components that is required to support

the reuse of a component in another system. However, the granularity is too coarse

for the type of detailed program analysis that we aim to support with our technique,

such as program slicing and information flow analysis, which need dependencies at the

granularity of individual program points.

Eichberg et al. define an approach that uses static analysis expressed in Datalog

for the continuous checking of constraints on structural program dependencies [21]. The

granularity of their dependencies is more fine-grained than that of Li et al. discussed

above and ranges from intra-class dependencies to the level of architectural building

blocks. Their approach is designed to check architectural and design level constraints

and they provide a domain-specific language to easily specify these constraints. The

main difference with our work is that their approach is limited to identifying and

reasoning over structural dependencies between source elements. Since they do not

capture semantic dependencies such as control- and data-dependence, their approach

cannot be used to analyze (constraints on) the information flow in a system, as opposed

to our work.

7 Concluding Remarks

Many of today’s software systems are composed from reusable components, implemented

in one or more programming languages, and connected using a variety of configuration

artifacts. Correctly engineering these configuration artifacts is no less challenging or

error-prone than source code. We found that even though these are crucial for the

overall behavior of these systems, there is surprisingly little support for incorporating

them in the static verification and validation. In this paper, we remediate this situation.

Contributions of this paper include: We present a method that combines model-

driven engineering with program analysis techniques to support analysis across the

components of a component-based system. Our approach is based on (1) recovering

intra-component dependence graphs (CDGs) for each component; (2) recovering an

inter-component dependence graph (ICDG) from the configuration artifacts; and (3)

integrating the ICDG with the various CDGs to reconstruct a system-wide dependence

74

Paper I Bibliography

graph (SDG).

We build on the Knowledge Discovery Metamodel (KDM) to reverse engineer

a homogeneous model from heterogeneous artifacts. We leverage KDM to become

programming language agnostic and tool independent. This enables us to reuse existing

tools for constructing the individual CDGs.

We have implemented and evaluated our approach by building two prototype tools

which have been successfully used to recover models from component-based systems

and track information flow using program slicing. We have tested the scalability of

our approach on industrial code bases up to 100 KLOC, and the results show a linear

growth in execution time and model size, as the system size increases.

Future Work: We see several directions for future research. The first (and obvious) one

is the extension of our prototype and experiments to include the analysis of more source

languages and component composition/configuration languages.

Next, considering the size and complexity of most industrial systems, there are

many opportunities in the direction of visualizing the analysis results. So far, we have

used the SourceRegion objects in our KDM model as traceability links between the

analysis results and the source code, but a visualization of the information flow at higher

levels of abstraction may considerably improve the comprehensibility. More abstract

visualizations are of special interest to our industrial partner because it is not just

the developers but also the (non-developer) safety domain experts that could use the

recovered information to support software certification.

Another interesting direction is the “injection” of our SDG back into CodeSurfer

by modifying its internal representation. This would enable us to reuse the visualization,

exploration and analysis capabilities of CodeSurfer.

Finally, by integrating the SDG into a graph exploration tool, it may be possible to

provide more user-friendly visualization and navigation facilities. This can, for example,

enable the user to “zoom” from a high-level view of the system showing information

flow, to a fine-grained view showing CDG internals. Such variations in abstraction

level support the requirements imposed by different maintenance tasks, for instance

debugging a single component, or finding an ill-configured system before deployment.

Bibliography

[1] D. Binkley, “Source Code Analysis: A Road Map,” in Future of Software Engineering.

IEEE, May 2007, pp. 104–119.

[2] P. Anderson, “90% Perspiration: Engineering Static Analysis Techniques for Industrial

Applications,” in IEEE Int’l Working Conf. on Source Code Analysis and Manipulation,

Sep. 2008, pp. 3–12.

[3] P. Anderson, T. Reps, T. Teitelbaum, and M. Zarins, “Tool support for fine-grained

software inspection,” IEEE Software, vol. 20, no. 4, pp. 42–50, Jul. 2003.

[4] OMG, “Architecture-Driven Modernization (ADM): Knowledge Discovery Meta-Model

(KDM) - v1.2,” 2010.

75

Paper I

[5] L. Hatton, “Safer language subsets: an overview and a case history, MISRA C,” Informa-

tion and Software Technology (IST), vol. 46, no. 7, pp. 465–472, Jun. 2004.

[6] M. Weiser, “Program Slicing,” IEEE Transactions on Software Engineering, vol. SE-10,

no. 4, pp. 352–357, Jul. 1984.

[7] K. Gallagher and D. Binkley, “Program slicing,” in Frontiers of Software Maintenance.

IEEE, Sep. 2008, pp. 58–67.

[8] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using dependence graphs,”

ACM TOPLAS, vol. 12, no. 1, pp. 26–60, Jan. 1990.

[9] M. S. Hecht, Flow analysis of computer programs. North Holland, 1977.

[10] W. M. Ulrich and P. Newcomb, Information Systems Transformation: Architecture-Driven

Modernization Case Studies. Morgan Kaufmann, 2010.

[11] R. Pérez-Castillo, I. Garćıa-Rodŕıguez de Guzmán, M. Piattini, and O. Ávila garćıa, “On

the Use of ADM to Contextualize Data on Legacy Source Code for Software Moderniza-

tion,” in Working Conf. on Reverse Engineering, 2009, pp. 128–132.

[12] J. L. C. Izquierdo and J. G. Molina, “A Domain Specific Language for Extracting Models

in Software Modernization,” in European Conf. on Model Driven Architecture-Foundations

and Applications (ECMDA-FA). Springer, 2009, pp. 82–97.

[13] J. L. C. Izquierdo and J. G. Molina, “An Architecture-Driven Modernization Tool for

Calculating Metrics,” IEEE Software, vol. 27, no. 4, pp. 37–43, Jul. 2010.

[14] H. Brunelière, J. Cabot, F. Jouault, and F. Madiot, “MoDisco: a generic and extensible

framework for model driven reverse engineering,” in IEEE/ACM Int’l Conf. on Automated

Software Engineering (ASE). ACM, 2010, pp. 173–174.

[15] R. Pawlak, C. Noguera, and N. Petitprez, “Spoon: Program Analysis and Transformation

in Java,” Tech. report #inria-00071366, INRIA, 2006.

[16] F. Heidenreich, J. Johannes, M. Seifert, and C. Wende, “Closing the Gap between

Modelling and Java,” in Software Language Engineering (SLE). Springer, 2009, pp.

374–383.

[17] F. Ricca and P. Tonella,“Construction of the system dependence graph for Web application

slicing,” in IEEE Int’l Ws. on Source Code Analysis and Manipulation, 2002.

[18] J. Zhao, “A slicing-based approach to extracting reusable software architectures,” in

European Conf. on Software Maintenance and Reengineering. IEEE, 2000, pp. 215–223.

[19] J. A. Stafford and A. L. Wolf, “Architecture-Level Dependence Analysis for Software

Systems,” International Journal of Software Engineering and Knowledge Engineering,

vol. 11, no. 04, pp. 431–451, Aug. 2001.

[20] B. Li, Y. Zhou, Y. Wang, and J. Mo, “Matrix-based component dependence representation

and its applications in software quality assurance,” ACM SIGPLAN Notices, vol. 40,

no. 11, pp. 1–29, Nov. 2005.

[21] M. Eichberg, S. Kloppenburg, K. Klose, and M. Mezini, “Defining and continuous checking

of structural program dependencies,” in Int’l Conf. on Software Engineering. ACM,

2008, pp. 391–400.

76

Paper II

Analyzing and Visualizing
Information Flow in Heterogeneous
Component-Based Software
Systems

77

78

Analyzing and Visualizing Information Flow in

Heterogeneous Component-Based Software Systems

Amir Reza Yazdanshenas, Leon Moonen

Software Engineering Department, Simula Research Laboratory,

P. O. Box 134, N-1325 Lysaker, Norway

Abstract – Component-based software engineering is aimed at managing the com-

plexity of large-scale software development by composing systems from reusable parts.

In order to understand or validate the behavior of a system, one needs to acquire

understanding of the components involved in combination with understanding how these

components are instantiated, initialized, and interconnected in that system. In practice,

the heterogeneous nature of source and configuration artifacts often hinders this task,

and there is little to no tool support to help software engineers with such a system-wide

analysis.

This paper contributes a method to analyze and visualize information flow in a

component-based system at various levels of abstraction, and from two complementary

perspectives. We propose a hierarchy of five interconnected views to support the compre-

hension needs of both safety domain experts and developers from our industrial partner.

The abstractions were selected to reduce visual distraction and reduce cognitive overload

while satisfying the prospective users’ information needs. The perspectives focus on

either impact analysis or dependence analysis. The views are interconnected in a way

that supports both systematic, as well as opportunistic navigation scenarios. We discuss

the implementation of our approach in a prototype tool, and present two qualitative

evaluation studies on the effectiveness and usability of the proposed views for software

development and software certification. During the evaluation, the prototype has already

been found to be very useful, and a number of directions for further improvement were

suggested. We conclude by discussing these improvements and the lessons learned.

Keywords – information flow analysis, component-based software systems, model

reconstruction, program comprehension, software visualization

79

1. Introduction Paper II

1 Introduction

How well software engineers understand a system’s source code affects how well the

system will be maintained and evolved. Studies have shown that program comprehension

accounts for a significant part of development and maintenance efforts [see 1, for an

overview]. With today’s rapid growth in system size and complexity, software engineers

are faced with tremendous comprehension challenges.

Component-based software engineering is aimed at better managing the complexity

of large-scale software development by assembling systems from ready-made parts, similar

to how hardware systems are assembled from integrated circuits. Software systems are

composed of reusable components, implemented in one or more programming languages,

and connected using configuration artifacts, ranging from simple key-value maps to

domain-specific configuration languages.

Even though component-based design supports comprehension by lowering coupling

and increasing the cohesion of components, the overall comprehension of component-

based systems can be prohibitively complicated. This difficulty stems from the fact

that the configuration and composition of the components play an essential part in the

overall behavior of such systems. Consequently, to understand a system’s behavior, one

needs to understand how control and data flow are interlaced through its combination

of component and configuration artifacts.

In spite of these challenges, we found that there is little support for system-

wide analysis of component-based systems from their source artifacts. Most of the

available tools have strict limitations on the programming languages they can process.

This typically means that information from external configuration artifacts can not be

included, effectively inhibiting system-wide analysis and confining it to the boundaries

defined by the source code of a single component. In practice, this means that software

engineers have only their own cognition abilities to rely on for understanding the overall

system’s behavior.

Another complicating factor in engineering large industrial software systems is

that it is not just the developers who need to understand what’s going on in the code:

also non-developers, for instance safety domain experts, need to understand what is

actually implemented in the code to assess whether the system properly adheres to given

safety requirements. However, most of the literature on reverse engineering and program

comprehension assumes that the developers are the default, and the only, audience.

There is extensive literature on the visualization of non-source artifacts to support

domain experts [e.g., 21], but considerably less information exists on the visualization of

source code-related information for non-developers. After all, why would non-developers

need to understand source code?

This paper is motivated by a typical industrial case in which (non-developer)

safety domain experts need to understand the logic implemented in the system so that

they can conduct software certification. These safety domain experts need to see the

80

Paper II 2. Motivation

system’s source artifacts in a context relevant to them – not just what the code does,

but what that means for safety concerns [18]. Consequently, any reverse-engineered

views on the system need to be goal-driven, at a suitable level of abstraction, and based

on relevant knowledge of the application domain.

Our earlier work [29] presents a technique to reverse engineer a fine-grained, system-

wide dependence model from the source and configuration artifacts of a component-based

system. The paper concluded with the observations that the technique was promising

but “considering the size and complexity of most industrial systems, there are many

opportunities in the direction of visualizing the analysis results,” and “a visualization

of the information flow at higher levels of abstraction may considerably improve the

comprehensibility.”

The current paper builds on the technology developed in [29] and makes the

following contributions: (1) We propose a hierarchy of views that represent system-wide

information flows at various levels of abstraction, aimed at supporting both safety

domain experts and developers; (2) We present the transformations that help us to

achieve these views from the system-wide dependence models and discuss the different

trade-offs between scope and granularity; (3) We discuss how we have implemented

our approach and views in a prototype tool, named FlowTracker; (4) We report on

two qualitative evaluations of the effectiveness and usability of the proposed views for

software development and software certification. The results from the first evaluation

indicated that the prototype was already very useful and a number of directions for

further improvement were suggested. Based on these suggestions, several changes and

extensions were implemented which were in turn evaluated in the second study. We have

reported on the initial results from the first study in [30]. In this paper we elaborate

on those results, discuss the changes that were made to improve on the views and the

tooling and report on the followup evaluation.

The remainder of the paper is organized as follows: Section 2 describes the

context of our work. We present the overall approach and the proposed hierarchy of

visualizations in Section 4, followed by a description of our prototype implementation

in Section 4. We discuss the qualitative evaluation of our approach in Section 6. We

summarize related research in Section 7, and conclude in Section 7.

2 Motivation

The research described in this paper is part of an ongoing industrial collaboration with

Kongsberg Maritime (KM), one of the largest suppliers of programmable marine elec-

tronics worldwide. The division that we work with specializes in computerized systems

for safety monitoring and automated corrective measures to mitigate unacceptable

hazardous situations. Examples include emergency shutdown, process shutdown, and

fire-and-gas detection systems for vessels and off-shore platforms. In particular, we study

81

2. Motivation Paper II

a family of complex, safety-critical embedded software systems that connect software

control components to physical sensors and mechanical actuators. The overall goal of the

collaboration is to provide our partner with tooling that provides source-based evidence

to support software certification, and assists the development teams in understanding

the behavior of deployed systems, i.e., systems composed and configured to monitor the

safety requirements of a particular installation (execution environment).

The remainder of this section gives a generalized view on how systems are devel-

oped in this application domain. We use the following terminology: a component is a

unit of composition with well-defined interfaces and explicit context dependencies [24];

a system is a network of interacting components; and a (component) port is an atomic

part of an (component) interface, a single point of interaction between a component

and other components or the environment. A component instance is the representation

of a component as it would appear at run-time, specialized and interconnected follow-

ing the configuration data. A component implementation refers to the component’s

source code artifacts (i.e., without configuration information). There is one component

implementation and possibly several component instances for each component in the

system.

Without loss of generality, we discuss our approach in terms of the system we

studied. This means that we use the general term system-level input and the more

case-specific term sensor interchangeably, and, similarly, for system-level output and

activator. We emphasize that the proposed approach can also be applied to component-

based systems with other types of input and output than sensors and activators. In

cases where the direction of a system interaction point is not significant, we use the

general term system port to refer to both system-level inputs and outputs.

Concrete software products are assembled in a component-based fashion from

a limited collection of approximately 30 reusable components. The components are

implemented in MISRA C (a safe subset of C [10]). They are relatively small (in

the order of 1-2 KLOC), and the computations are relatively straightforward. Their

control logic, however, can be complex and is highly configurable via parameters (e.g.,

initialization, thresholds, comparison values, etc).

The system’s overall logic is achieved by composing a network of interconnected

component instances (Figure 1). These processing pipelines receive their input values

from sensors and process them in various ways, such as measuring, digitizing, voting,

and counting before sending the outputs to drivers for the actuators. Components of

the same type can be cascaded to handle a larger number of input signals than foreseen

in their implementation (shown in Figure 1 for analog inputs #1 and #2). Similarly,

the output of a pipeline can be used as input for another pipeline to reuse the safety

outcomes for one area as inputs for a connected area.

Research Question – As monitored installations become bigger, the number of sensors

and actuators grows rapidly, the safety logic becomes increasingly complex, and the

induced component networks end up interconnecting thousands of component instances.

82

Paper II 2. Motivation

analog
input
#1

analog
input
#2

analog
input
#M

vote
#1

vote
#2

output
 #1

output
 #2

output
 #N

CascIn

CascOut

check
status

#2

check
status

#XSm

Aj

An

S1
S2

Si

Check
Status #1

AlarmVal AlarmErr

InhibitIn

CheckSum

Manual
Override

A1
A2

Figure 1: Component composition network for an example system.

To make this more concrete, consider that in contrast to those 11 instances and 4 stages

shown in Figure 1, a typical real-life installation has 12 to 20 stages in each pipeline,

and approximately 5,000 component instances in its safety system. As a result of these

numbers, it becomes increasingly difficult to understand and reason about the overall

behavior of the system. The main question that drives our research is: “Can we provide

source-based evidence that the signals from the system’s sensors trigger the appropriate

actuators?”

In addition to this primary goal of supporting software certification questions, our

industry partner indicated that they had a secondary goal: During the collaboration,

their developers and system integrators recognized that such system-wide program

comprehension techniques had the potential to support various development and main-

tenance tasks Storey [23]. For example, they were looking for support that helped

them to predict the consequences of a change in a given component on the complete

system (i.e., impact analysis). Similarly, they also wanted to understand better what

parts of the system could actually affect the state of a given component. To support

both the primary and secondary goals, we set out to provide black-box and white-box

visualizations of the system at various levels of abstraction, aimed to satisfy the needs

of the various users and tasks foreseen by our collaborator, and allowing for a trade-off

between detail and cognitive complexity.

83

3. Approach Paper II

3 Approach

The question if signals from the system’s sensors affect the appropriate actuators can

be answered by analyzing the information flow between sensors and actuators using

program slicing [28]. Program slicing is a decomposition technique that can be used

to leave out all parts of the program that are irrelevant to a given point of interest,

referred to as the slicing criterion. In other words, a backward slice consists of all the

program elements that potentially affect the values at the slicing criterion [8]. Thus,

by selecting an actuator as the slicing criterion, we can determine which sensors can

affect this actuator, since these will be contained in its backward slice. Conversely,

a forward slice consists of all the program points that are potentially affected by the

slicing criterion [8]. Thus, by selecting a sensor as the slicing criterion, we can determine

which actuators can be affected by this sensor, since they will be contained in its forward

slice. In the remainder, analysis direction refers to the direction of the slicing, and

forward (backward) information flow refers to an information flow analyzed via forward

(backward) slicing.

Two challenges need to be addressed to successfully apply slicing in our context: (1)

Program slicing is typically defined within the closed boundaries of source code, whereas

our case needs system-wide slicing across a network of interacting components, i.e.,

including information from the components’ source code and the system configuration

artifacts; (2) The information obtained via slicing typically contains many low-level

details that can impede comprehensibility.

The first challenge is addressed by reverse engineering a fine-grained, system-wide

model of the control and data dependencies in the system based on our previous work [29],

which is briefly summarized in Section 3.1. To address the second challenge, we propose

a hierarchy of five abstractions (views). We discuss how these views are constructed

from the system-wide dependence model via a combination of slicing, transformation

(abstraction), and visualization in Section 3.2.

3.1 Reverse Engineering a System-Wide Dependence Model

This section summarizes the technique and terminology of our earlier work on recon-

structing system-wide dependence models [29]. The overall approach is as follows:

1. For each component in the system, we build a component dependence graph (CDG)

by following the method for constructing interprocedural dependence graphs [12]

and taking the component source code as “system source.”

2. The system’s configuration artifacts are analyzed to build an intercomponent

dependence graph (ICDG). This graph captures the externally visible interfaces

and interconnections of the component instances. Construction of the ICDG is

done in the same way as the component composition framework sets up the correct

84

Paper II 3. Approach

network.

3. The system-wide dependence graph (SDG) is constructed by integrating the

system’s ICDG with the CDGs for the individual components. Conceptually, the

construction can be seen as taking the ICDG and substituting each “component

instance node” with a sub-graph formed by the CDG for the component.

Figure 4 gives an overview of the main types of information that we collect from various

source artifacts to build the SDG. To construct the CDG, the fundamental information

is the program points, and the data and control dependencies. For traceability purposes,

we also extract some properties of information points, such as their location in the

source files and the physical structure of the software artifacts. This information

is extracted from the components’ implementation. For the ICDG, the information

is a component’s inputs and outputs, parameters (see Section 3.5), instances, and

intercomponent connections. This information is extracted from the configuration

artifacts.8

3.2 Model Abstraction and Visualization

Dependence graphs, and slices through dependence graphs, are complex, often even

more complex than the original source artifacts. This is because these models reflect all

relevant program points and dependencies from a compiler’s perspective, an intrinsic

characteristic that makes them well-suited for detailed program analysis. This charac-

teristic does, however, make them less suited for directly supporting comprehension or

visualization [13, 29].

To make the detailed information contained in an SDG or slice more suitable for

comprehension, we propose a hierarchy of five abstractions (views) aimed at satisfying

the needs of safety experts and developers. These needs range from a black-box survey of

the system, via a number of intermediate levels, to a hypertext version of the source code.

These views are constructed from the system-wide dependence model via a combination

of slicing, transformation and visualization. Since, in our case, understanding the

system-wide dependencies is required in both directions (i.e., forward and backward),

all visualization levels accommodate abstractions over both forward and backward

slices. Depending on the nature of the visualization, the abstractions over forward and

backward analyses are either visualized in separate diagrams, or, whenever possible, in

a single diagram enriched to accommodate both directions of analysis. Such separate

(set of) diagrams that belong to the same abstraction layer target the same type of

desired system elements, and can address similar, but not identical, comprehension

requirements. In our description of the abstraction levels, we distinguish between the

two analysis directions, if needed. The various levels are interconnected via hyperlinks

8 [29] contains more information about mapping the extracted information points to KDM.

85

3. Approach Paper II

Source Code Information

Configuration Information

0..*

1..*

from

from

to

to

PDG

Compilation
Unit

Line#

Source
File

Configuration
File

Component
Interface

declares

to

declares

from

declares

Component
Parameter

Component
I/O Ports

type

type

Program
Point

Control
Dependence

Data
Dependence

Intercomponent
Data Dependence

Component
Instance

Port
Instance

Figure 2: The main elements from various artifacts used to track information flow.

to enable easy navigation and to support various comprehension strategies [22]. We

distinguish the following views:

(1) System Dependence Survey: This view shows the dependencies between all

system-level inputs (sensors) and outputs (actuators) in one single matrix, with sensors

and actuators as rows and columns, respectively (see Figure 3A).9 A filled cell indicates

that there is at least one path along which information can flow from that sensor to that

actuator. This view gives a black-box summary of the SDG that hides all details on

how the information flow is realized. Engineers can use it to quickly find what sensors

can affect a specific actuator, and vice versa.

By definition, there is no need to distinguish between forward and backward

analysis directions in this view. Apart from that, although forward and backward slices

9Note that the views in this paper are actual views taken from the study with our industrial
collaborator after some renaming for anonymization/nondisclosure purposes.

86

Paper II 3. Approach

A1 A2 Aj An
S1
S2

Si

Sm

O1 O2 Oj On
I1

Ii

Im

(a) System-wide dependencies (b) Component dependencies

Figure 3: System- and Component Dependence Surveys.

would be different in general, in this particular case were slicing is used to identify

the end-to-end (abstract) dependencies between sensors and actuators, the overall

system-wide view (for all end-points combined) will be the same, no matter what slicing

direction is used.

The System Dependence Survey serves as a starting point for navigation. To this

end, we make the matrix active by embedding hyperlinks to corresponding views on

the next abstraction level. To provide navigation to both analysis directions on the

next lower level, matrix cells are divided in two diagonally. In a given matrix cell (e.g.,

(Si, Aj)), the lower left half corresponds to the respective sensor (Si), and the upper

right half to the actuator (Aj) (Figure 3a). By clicking on the lower left half of the cell,

the user can zoom in on the System Information Flow for that specific sensor, in order

to view the forward information flows originating from that sensor. By clicking on the

upper right half of the cell, the user can zoom in on the System Information Flow for

that specific actuator, in order to view the backward information flows that end in that

actuator.

(2) System Information Flow: This view shows the intercomponent information

flow between particular sensors and actuators, i.e., it shows system-wide slices through

the complete system (Figure 4). In the design of the visualizations at this abstraction

level, our goal is to represent component-based systems with an intuitive and familiar

notation, which bears a resemblance to UML 2.0 Component Diagrams. As shown in

Figure 4, components are represented by a rectangular shape (Figure 4, marker A).

Component input ports are represented by a stack of green boxes on the left side of

the component, and the output ports with red boxes on the right side. All visualized

elements (i.e., sensors, actuators, components, ports, and connections) that are not part

87

3. Approach Paper II

analog
input
#1

analog
input
#2

analog
input
#M

vote
#1

vote
#2

output
 #1

output
 #2

output
 #N

check
status

#2

check
status

#XSm

Aj

An

S1
Si

Check
Status

#1

A1
A2

AlarmVal

InhibitIn

ChckSum

Manual
Override

AlarmErr
sensor

actuator

component output port

component input port

A

(a) Backward slice criterion: Aj

analog
input
#2

analog
input
#M

vote
#1

vote
#2

output
 #1

output
 #2

output
 #N

analog
input
#1

check
status

#2

check
status

#XSm

Aj

An

S1
Si

Check
Status

#1

A1
A2

(b) Forward slice criterion: Si

Figure 4: Backward and forward system information flows for Aj and Si, respectively (marker A is
used for explanations in the text).

88

Paper II 3. Approach

of the target information flow are low-lighted, and in gray. We distinguish two variants

based on analysis direction:

Backward System Information Flow: For each actuator, there is a diagram that shows

the intercomponent information flow from all sensors to that actuator. The view hides

all intracomponent level information in a backward slice through the SDG with actuator

Aj as the slicing criterion. The result highlights the actuator and all related sensors,

component instances, and intercomponent connections. Figure 4a shows an example for

actuator Aj.

Forward System Information Flow: For each sensor, there is a diagram that shows

the intercomponent information flows that originate from that sensor. The view hides

all intracomponent level information in a forward slice through the SDG with sensor

Si as the slicing criterion. The result highlights the sensor and all related actuators ,

component instances, and intercomponent connections. Figure 4b shows an example for

actuator Si.

Apart from showing the elements that a sensor influences, or the elements that

influence an actuator, this view serves as an intermediate level between system-level

views and component-level views. It includes hyperlinks for navigation so that a user

can click on a component instance to zoom in on a single component, or click outside

the diagram to return to a higher level of abstraction.

(3) Component Dependence Survey: Similar to the System Dependence Survey,

the Component Dependence Survey summarizes the dependencies between a component’s

input and output ports, using cells in a matrix (see Figure 3b). This black-box view

shows which input ports can affect which output ports but hides all details on how

the information flow is realized. Again there is no need to provide separate matrices

for the forward and backward analysis directions because the summarized information

is identical. There is one dependency matrix for each component, independent of its

instances, because the dependencies are induced by the component source code.

To enable navigation to both analysis directions in more detailed views, matrix

cells are diagonally divided in two. Clicking on the lower left half of a cell brings the

user to the Component Information Flow for the corresponding input port that shows

which intracomponent forward information flows can be affected by that input port.

Clicking in the upper right half of a cell brings the user to Component Information

Flow for the corresponding output port that shows which intracomponent backward

information flows can affect that output port.

(4) Component Information Flow: For a given component and input- or output

port, this view shows the intracomponent information flows connected to that port (i.e.,

there are diagrams for each input port and for each output port of every component).

In addition to the input and output ports involved, the graph includes all conditions

that control the information flow between those ports. We distinguish two variants

based on analysis direction:

Backward Component Information Flow: For each output port, there is a diagram

89

3. Approach Paper II

that shows the intracomponent information flow from all input ports to that output.

Figure 5a shows an example with output port “AlarmErr” as the slicing criterion (single

red node at the bottom). The input ports that can affect AlarmErr are at the top

(green nodes), and the conditions that control the information flow are shown as yellow

squares.

Forward Component Information Flow: For each input port, there is a diagram that

shows the intracomponent information flows that originate from that input. Figure 5b

shows an example with input port “InhibitIn” as the slicing criterion (single green node

at the top). The output ports affected by InhibitIn are at the bottom (red nodes), and

the conditions that control the information flow are shown as yellow squares.

Note that we have chosen to show both the forward and the backward flow in a

top-down fashion with inputs at the top and outputs at the bottom to make it easier

for a user to orient themselves while changing views. In addition, we combine sequences

of conditions into aggregate nodes to reduce cognitive overhead. The details of this

refinement are described later, in Section 4. The conditional nodes have hyperlinks

embedded to navigate to the corresponding location in the source code (indicated by

marker A in Figure 5b).

(5) Implementation View: At the lowest level in our hierarchy, the implementation

view shows pretty-printed source code with hypertext navigation facilities, e.g., cross-

referencing of program entities with their definition. Higher-level views provide links to

the source code as a means of traceability and a way to minimize user disorientation.

3.3 Typical Usage Scenario

A typical scenario takes advantage of the hierarchical design of the abstractions, and is

sketched as the following:

1. Users start navigating the system from the System Dependence Survey. In this

view, they can immediately identify those sensors that can (or can not) influence

an actuator (Figure 3a).

2. By selecting a sensor-actuator pair in the matrix, the users zoom in on the System

Information Flow that helps them find the components and intercomponent

connections that play a role in transferring the values from the selected sensor

to the selected actuator (Figure 4). Depending on which half of the matrix

cell is clicked, the users either see the outgoing information flows from a sensor

(Figure 4b), or the incoming information flows towards an actuator (Figure 4a).

3. By selecting on one of the component instances, they navigate to the Component

Dependence Survey. This view can be used to identify which component input

ports can (or can not) affect which component output ports (Figure 3b).

90

Paper II 3. Approach

AlarmErr

AlarmVal InhibitIn CheckSum

 AlarmVal != ErrValue

 AlarmVal > -0.0001

 AlarmVal < + 0.0001

 IOErr != FALSE

 Param->LowSetFlag AlarmVal <= Param->Limit

 ((AlarmStat != DisableALL) && (Measure == TRUE))

 Param->PrevInhibitIn

 InhibitCntr < MAX_IDLE
 ManualOverride

 OprMode == MANUAL
 Chk(LValue) > 0

 GlobalResetStat
PrevGlobalResetStat

IOErr! = FALSE
ALType & 0x08
getChkSum(AL)

ManualOverride

 getChSum(AL) != CheckSum

 PrevAlarmStat == AlarmStat

 Param-> InhibitOut Param->instance & DISPLAYOUT

Param->AckALL
 ChkSumIN == getCheckSum(pram->InputVal)

param->IOErr != FALSE
 Param->InhibitOut

 Param->instance & DISPLAYOUT

D

 ...
 if (Param->Instance & DISPLAYOUT) {
 ...

 Component.c

B
 Param->AckALL

 ChkSumIN == getCheckSum(pram->InputVal)

 param->IOErr != FALSE

EA

Parameters:
1- AckCnt
2- AckCntDn
3- ASIAck
4- ASIAgeC
5- ASIMode
6- AlarmMax
7- AutoSD
8- iModAlarm
9- InhibitTerm
10- MaxAckT
11- Timer

 F

(a) Backward Component Information Flow

AlarmErr

InhibitIn

 Param->PrevInhibitIn

 InhibitCntr < MAX_IDLE
 ManualOverride

 OprMode == MANUAL
 Chk(LValue) > 0

 Param->InhibitOut

 Param->instance & DISPLAYOUT

 PrevSupress == 0

 SupressType

 ResetTerminal != (Reset | resetStat)

 ResetOperation

AlarmErr

 SDState && MaxAckTime

 (AckOut || po->palaram == NULL) && !(AckIn || ASIAck)

AckOut

Parameters:
1- AckCnt
2- AckCntDown
3- AutoSD
4- MaxAckTime
5- ResetOp
6- SuppDelay
7- SuppInv

C

AlarmVal = Param->AlarmVal

 foo = AlarmVal

 bar = Fun$Result1

 AlarmVal = bar

 IF AlaramVal > -0.0001

 Fun$Result1

 int AlarmVal = Param->AlarmVal;
 int foo = AlarmVal;
 int bar = fun();
 AlarmVal = bar;
 if (AlaramVal > -0.0001){
 ...

 call Fun

G

(b) Forward Component Information Flow

Figure 5: Forward and backward Component Information Flow examples (markers A-G and the
cloud-like fragments are used for explanations in the text).

4. By selecting a component input-output pair in the matrix, the users focus on

the Component Information Flow. This shows the conditions that control how

information from the selected input port can reach the selected output port

(Figure 5). Depending on which half of the matrix cell is clicked, the users either

91

3. Approach Paper II

see the outgoing information flows from an input port (Figure 5b), or the incoming

information flows towards an output port (Figure 5a).

5. Finally, the user can click on one of the conditions to navigate to the corresponding

location in the source code for traceability and further (manual) inspection.

3.4 Enhanced Navigation

The aforementioned typical usage scenario of the visualizations supports top-down

exploration and comprehension of the information flows. As the user starts from the

topmost layer and descends the abstraction hierarchy, the scope of the information

flows decreases (i.e., from system-wide to intracomponent), and the amount of details

increases (from the system’s black-box view to the source code). Apart from that, there

are two – conceptually similar – types of information at every abstraction layer: forward

and backward information flows.

This highly structured navigation profile helps the novice users in finding their way

though the system and prevents that they get lost during their explorations. However,

requiring the user to always go through such a fixed five-layer schema would be too

strong a restriction. In addition, the structure includes premature commitment to

analysis direction which is know to negatively affect usability [9]. Frequent users who

are already familiar with the various parts of the system, do not need the structure

provided by the layered navigation. Instead, they need more flexible ways to browse and

navigate the collected information [23], for example, quickly remind himself of multiple

information flows halfway through a maintenance task. Forcing them to stick to a rigid

and cumbersome navigation schema would reduce their overall usability experience up

to a point where they might eventually abandon the tool.

To address this threat, we provide an enhanced navigation schema that allows

users to browse the system more freely and more spontaneously, as well as allowing

them to follow the previously described hierarchical navigation. Below, we provide a

detailed explanation of the overall navigation structure with the help of Figure 6, which

contains all abstraction levels and highlights the links between the levels.

First, we enhance the system dependence survey with the component composition

diagram of the complete system (Figure 1). This diagram shows how the system is

currently configured, with the same graphical notation as in the System Information

Flow, and is rendered next to the matrix in the System Dependence Survey (Figure 6,

Level 1). It can be seen as a generic System Information Flow before slicing, and

thereby helps to build a coherent mental model for navigating through the system. We

deliberately represent component input and output ports in the same color (green and

red, respectively) in matrix-based and Component-Diagram-based visualizations to take

advantage of color as a graphical beacon throughout the whole system.

Second, we activate almost every visualized element with navigation hyperlinks.

92

Paper II 3. Approach

Level 4 - Forward Slice

Level 2 - Backward Slice

Level 1

Level 5

Level 4 - Backward Slice

Level 3

Level 2 - Forward Slice

 int AlarmVal = Param->AlarmVal;
 int foo = AlarmVal;
 int bar = fun();
 AlarmVal = bar;
 if (AlaramVal > -0.0001){
 ...

 component.c

layered navigation

extended navigation

alternate analysis direction in the same abstraction layer

A

BC

 D

click area

Figure 6: The navigation structure of the visualizations. Every visualized element, except connections
and edges, has a hyperlink (markers A-D are explained in the text).

93

3. Approach Paper II

In Figure 6, clicking on any element other than a connection leads to a diagram that

shows the information flow with respect to that element. The following navigation rules

apply consistently across all layers:

1. Every system input port points to the corresponding Forward System Information

Flow

2. Every system output port points to the corresponding Backward System Informa-

tion Flow

3. Every component input port points to the corresponding Forward Component

Information Flow

4. Every component output port points to the corresponding Backward Component

Information Flow

In addition to these rules, clicking on the graphical representation of a component

(Figure 6, Level 1 and 3) leads to the respective component dependence survey (Figure 6,

markers A and B). The resulting navigation schema is highly intuitive, and enables

the users to navigate two or three abstraction layers in one step. Users can browse

from the component configuration diagram (Figure 6, Level 1) to system information

flow or component information flow by clicking system or component ports, respectively

(without going through system dependence survey or component dependence survey).

Apart from that, the users are not bound to a specific analysis direction once they

descend the abstraction hierarchy (i.e., forward and backward), and can alternate the

direction at any step. For instance, while investigating a pair of sensor-actuator (Si, Aj),

the users can quickly view the outgoing information flows from Si and the incoming

information flows to Aj by a single click, and without backtracking to higher-level

diagrams (Figure 6, marker C). The same direction switching is provided for component

information flow (Figure 6, marker D).

3.5 Component Parameters

As mentioned in Section 2, our industry collaborator is a major producer of various

safety and control systems. These products and systems (that is, the individual

instances of a product that are installed in the real world) share considerable similarities

which is exploited by assembling products in a component-based fashion from reusable

components [7]. Nevertheless, there is also a considerable variation between any two

concrete installations and the safety systems that monitor and control them. Examples

include variations in the actual sensors and actuators that are used, and the respective

thresholds at which they trigger, and process specific variables such as what levels are

considered hazardous, and variations that follow from complying to different safety

standards.

94

Paper II 3. Approach

In the systems that we studied, these reusability and variability concerns have

been addressed by developing generic implementations for the components that are

highly customizable and configurable with the help of component parameters. These

component parameters are used to concretize the functionality of these components

in a specific installation of a specific product. The parameters can be set either at

system configuration time, or at execution time by user actions. In either case, they

can be regarded as input to the components; however, they are separate and different

from component input ports. The set of each component’s parameters is declared in

(XML-based) configuration files, similar to the component’s ports. For example, the user

can prescribe the so-called operation mode of (part of) the system in some cases. When

the user sets the operation mode to “Test Mode,” the “Alarm” output of the components

is treated as normal in the computations of the system; however, no actuator is engaged

(e.g., no alarm bell goes off). This operation mode is communicated to the components

as a parameter and is not considered for determining the normal (process-specific)

sensor-actuator information flows.

Because parameters can significantly affect the behavior of components and the

way in which they transfer information from their input to output ports, it is essential

that developers are aware of, and understand, the parameters’ potential influence

on the intracomponent information flows. In addition, even though the parameters

are described in the component documentation, there can be many parameters for a

component and not all of them are relevant for every information flow. Moreover, the

discussion of the states and effects of a parameter is scattered over various use-case

specific sections, making it difficult to get a comprehensive overview. We propose to

highlight the parameters that can affect a given intracomponent information flow in the

visualization of that flow. To this end, we enrich component information flow diagrams

with a table showing all component parameters that participate in that information

flow (Figure 5, markers F and G).

This presentation has the added advantage of filtering the potentially long lists

of parameters of a component to the ones that are relevant for the task at hand (i.e.

the information flow under consideration). The more effective this filtering is, the

lower the overall comprehension overhead. To analyze its effectiveness, Table 1, second

row, reports the total number of parameters in a subset of the studied components

(selected randomly). The table also shows the minimum, maximum, and average

number of component parameters listed in forward and backward component information

flow diagrams. The last row of the table shows what percentage of the component

parameters is included in component information flow diagrams on average, disregarding

the port direction. In other words, this last row can be regarded as an effectiveness

measure of the filtering that was achieved. Considering the high filtering percentages

in Table 1, we conclude that presenting the relevant component parameters as part of

component information flow has a tangible effect on facilitating the comprehension of

intracomponent information flows.

95

4. Prototype Implementation Paper II

Table 1: Component Parameters

Component 1 2 3 4 5

Total number of parameters 79 197 43 36 80

In forward flow

min 0 12 0 3 25

max 48 29 42 29 25

avg 21.20 17.75 21.5 10.92 25

In backward flow

min 5 7 0 9 1

max 72 29 24 35 6

avg 24.56 14.5 11.92 18.33 3.97

Average # parameters in flow 23.76 15.48 16.08 15.05 18.34

Percentage of total filtered 69.93% 92.15% 62.61% 58.20% 77.08%

4 Prototype Implementation

This section discusses the implementation of the approach described in Section 4 in a

tool named FlowTracker. We distinguish three stages in the implementation, detailed

below:

Model Reverse Engineering: We reuse our earlier tool to reverse engineer system-wide

dependence graphs (SDGs) from source artifacts [29]. It builds on Grammatech’s

CodeSurfer [2]10 to create component dependence graphs (CDGs) for the individual

components. Next, these CDGs are traversed using CodeSurfer’s API to inject them

into OMG’s Knowledge Discovery Metamodel (KDM) [16]. The traversal uses the Java

Native Interface to drive KDM constructors in the Eclipse Modeling Framework. For

each program point, we include a pointer to its origin in the source code for traceability.

Next, we use Xalan-J to analyze and transform the system configuration artifacts

into the intercomponent dependence graph (ICDG). Finally, we use a straightforward

substitution transformation to integrate the CDGs with the ICDG, and create the final

SDG.

As mentioned in Section 4, all dependencies in the SDG need to be interpreted in

both forward and backward direction to compute the various information flows. In our

original reverse engineered SDG, each dependency is represented by an instance of a

stereotyped ActionRelationship class in KDM, where stereotyping ActionRelationship

is used to distinguish between different types of dependencies, such as data-, control-

, and intercomponent dependencies (for more details on the mapping of SDGs into

KDM, we refer to [29]). Unfortunately, KDM does not support ActionRelationShips

that can be interpreted bidirectionally. To enable slicing by ’natively’ traversing the

KDM representation, we therefore choose to represent each dependency in our SDG

by two (uni)directional ActionRelationShips, one for each direction. A downside of

10http://www.grammatech.com/

96

Paper II 4. Prototype Implementation

this implementation decision is that the number of ActionRelationship objects doubles.

This increases the model size, which has a tangible effect on the initial model loading

time. On the upside however, there is no cost penalty for computing the system-wide

slices, because the traversal of the dependencies in each direction is independent of

the presence of dependencies of the opposite direction. This clearly outbalances the

alternative where, on average, for half of the slicing computations the inverse dependence

relation would have to be computed.

View Construction: During view construction, we enrich the SDG with additional

summary edges and aggregate nodes that capture a number of view-specific abstractions

in the presentation stage. Alternatively, we could have defined several “destructive”

transformations that create a new model for each view, but we prefer to enrich our

SDG model to reuse information between views. Our implementation builds on a simple

slicing tool in Java that we have created as part of our earlier work. Subsequently, we

discuss the abstractions that were added for the various views. The names were chosen

so that they map trivially on the names of the views in Section 3.2.

The SysDep relation is based on slices for each of the system’s ports and includes

the summary edge (Si,Aj)Backward if sensor Si is in the backward slice for Aj, and the

summary edge (Si,Aj)Forward if actuator Aj is in the forward slice for Si. Similarly, for

each component C, the CompDepC relation is based on slicing all component ports

and including (Im,On)Backward if input port Im is in the backward slice for On, and

(Im,On)Forward if output port On is in the forward slice for Im.

For each system port P, the relation SysInfoFlowdirection,P is based on slicing the

enriched SDG on P with the correct direction. The direction has to be backward for

the actuators, and forward for the sensors. For each component Ci in the slice, we use

the summary edges of CompDepCi,direction to hide the internals of Ci. What remains

of the slice are summary edges for the connections between (ports of) the component

instances involved and connections from the incoming sensors and toward the actuator.

Note that it is not possible to compute this information by simply slicing the ICDG,

because the ICDG does not contain information about the dependencies between a

component’s input and output ports.

For each port P of every component C, the CompInfoFlowdirection,C,P relation is

based on three transformations:

1. Codesurfer splits sub-expressions of a condition over separate program points

to increase precision during slicing. When presenting results to the user, this

increases the cognitive distance with respect to the original code. We address

this issue by merging the sub-expressions of conditions into aggregate nodes that

resemble the original code (Figure 5, marker B).

2. We replace edges by summary edges that subsume all nodes that are not input

ports, conditions, or output ports (Figure 5, marker C). For example, when we

have edges (x,y) and (y,z), and y is not an input port, condition, or output port, we

97

4. Prototype Implementation Paper II

replace both edges (and node y) by a single summary edge (x,z). These summary

edges are computed transitively, so that they represent the longest path possible.

3. We analyze the resulting graph to detect so-called condition chains. We define

condition chains as the (longest possible) paths in the SDG that exclusively consist

of single-entry/single-exit conditional nodes. For each condition chain, we add

a special aggregate node to represent the individual conditions in the chain at a

higher level of abstraction. This aggregate node is labeled based on the conditions

it represents. For an example, see Figure 5, marker D for the aggregate node, and

marker E for the condition cluster it represents.

Finally, the construction of the Implementation View does not require any additional

summary edges or aggregate nodes to be added to the SDG.

Presentation: We present the results of our System- and Component Dependence

Surveys as matrices that have been implemented as HTML tables with input and output

ports as rows and columns, respectively. This presentation is intentionally chosen to

resemble our industrial partner’s specifications of the safety logic, known as Cause &

Effect matrices, to enable easy comparison of the implemented dependencies with the

specified safety logic. The matrices are made active by embedding hyperlinks to the

corresponding views on the next-lower abstraction level. By clicking one of the cells

below a port or actuator, the user can zoom in on the information flow leading to that

port or actuator.

We use the KDM API to traverse the view-specific summary edges in our enriched

SDG and transform the elements of interest into GDL, a graph description language

that can be processed by the aiSee graph layout software.11 We use GDL’s provisions for

collapsable subgraphs to represent conditional clusters and their aggregate representation

so the user can go back and forth between these representations. We include navigation

between views by embedding hyperlinks in the nodes representing components and ports.

Similarly, we provide traceability by embedding hyperlinks to source code locations

in Component Information Flow nodes representing conditions. These hyperlinks are

preserved when aiSee computes the layout and renders the graph in Scalable Vector

Graphics (SVG) format.

Finally, we create a pretty printed version of the source code by using Doxygen.12

Doxygen is a source code document generator for numerous programming languages,

including C. It can be configured to include the source code as part of the generated

documents in HTML format and embed various hypertext navigation features.

A positive side-effect of implementing all visualizations in HTML is that we inherit

all benefits of the familiarity and features of modern web browsers as part of our user

interface. These browsers are widely available and well-know to all prospective users of

FlowTracker. Moreover, they provide standard navigation features such as browsing

11http://www.aisee.com/
12http://www.doxygen.org/

98

Paper II 5. Discussion

history and bookmark creation that help users to maintain a breadcrump trail and to

store landmarks or points-of-interest for later recall. This helps the users to maintain

awareness about of their position, keep an overview of where they have been, and

backtrack to earlier locations without considerable burden on their own memory, and

supporting various strategies for comprehending software systems [23].

5 Discussion

5.1 Static versus Dynamic Analysis

Our approach is based on static analysis of the system which, by its very nature,

computes an approximation of the actual relations that exist in a system at runtime. In

theory, more precise information could be obtained by using dynamic analysis, which

aims to capture exactly those relations that can be observed on a running system.

However, in the context of software intensive control systems, there are a number of

limitations: First, in-vivo dynamic analysis of these systems in their real operating

environment is generally not an option, due to safety hazards. Second, in-vitro dynamic

analysis of such systems requires advanced, expensive, stubs and simulators to replace

hardware components and to create realistic execution scenarios, which is typically only

available at limited development sites. Finally, this infrastructure for in-vitro analysis

is generally in high demand for product development and testing. Faced with these

limitations, we set out to investigate an alternative approach based on static analysis.

Since the introduction of static program slicing [27], there have been several

improvements to compute more accurate slices [see e.g., 20, 25]. However, static

program slicing remains a conservative approximation, i.e., there might be statements in

a slice that have no relation to the slicing criterion. This characteristic has the following

effects on the information flows that we compute: (1) They are safe; conservativeness

guarantees that no dependency goes undetected between component input and output

ports, and eventually between system inputs and outputs. Therefore, the users can be

assured that when FlowTracker does not show a dependency between a pair of system

(or component) input and output, there is no possibility of influence from that input to

the output. (2) They may contain false positives ; it is not guaranteed that a reported

input actually does influence the value of a given output. In other words, the extracted

information flows are a superset of the actual information flows.

5.2 Forward versus Backward Slicing

As discussed in Section 4, addressing the users’ information needs requires computing

both forward and backward slices through the SDG to determine infomation flow. Apart

from discussing the suitability of forward and backward slices as we did in that chapter,

here we would like to highlight some observations on these two slicing directions, and

99

5. Discussion Paper II

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14

S
lic

e
 s

iz
e
 (

#
n
o
d
e
s
)

Port ID

Backward Slices
Forward Slices

(a) Component 1

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5 6 7

S
lic

e
 s

iz
e
 (

#
n
o
d
e
s
)

Port ID

Backward Slices
Forward Slices

(b) Component 2

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12

S
lic

e
 s

iz
e
 (

#
n
o
d
e
s
)

Port ID

Backward Slices
Forward Slices

(c) Component 3

 0

 50

 100

 150

 200

 0 2 4 6 8 10

S
lic

e
 s

iz
e
 (

#
n
o
d
e
s
)

Port ID

Backward Slices
Forward Slices

(d) Component 4

Figure 7: A comparison of intracomponent slice sizes in the forward vs. backward direction. Forward
slices are computed from the component input ports, and backward slices from the output ports.
Component ports are sequentially numbered on the horizontal axis (starting from zero), in the order of
ascending slice sizes (vertical axis).

especially focus on the differences in slice sizes, as this directly affects the cognitive load

involved with understanding the various diagrams that we create.

From a black-box point of view, the effects of both directions of slicing are the same,

i.e., they detect the same abstract dependence relations between inputs and outputs, as

shown in the system dependence survey and component dependence survey matrices.

This is true of system-level slices, as well as component-level ones. This observation in

our diagrams is a direct implication of the definition of dependence graphs [12]. If a

program point P1 is included in the backward slice from program point P2, then P2 is

definitely included in a forward slice from P1. Following the same argumentation, the

average size of forward and backward slices is the same. However, the distribution of

slice sizes does not have to be the same [3], which makes it interesting to investigate a

bit deeper.

From a white-box point of view, i.e., from the perspective of intracomponent slices,

one can observe differences between forward and backward slices. Figure 7 depicts the

slice sizes for a randomly selected subset of the components studied. Slice sizes are

measured by the number of program points in each slice. As mentioned before, forward

100

Paper II 5. Discussion

slices are computed from component input ports, and backward slices from component

output ports. Component ports are indexed on the horizontal axis in the ascending

order of the slice sizes, which is projected on the vertical axis.

In the selected components in Figure 7, forward slices are clearly bigger than

backward slices. Consequently, we observe more complex diagrams in component infor-

mation flow for forward information flows than backward information flows, which can be

considered an obstacle for comprehension. This observation confirms our initial intuition

to extract information flows based on backward slices to facilitate comprehension [30].

The same observation could also apply to the number of dependencies (a.k.a. edges in

the SDG) included in the forward and backward slices (see Figure 8). The number of

edges is not commonly used in measuring slice sizes. However, this number is of interest

to us, as it has an indirect, yet major, impact on the complexity of the final diagrams

in component information flow.

At first, these observations seem to contradict to Binkley and Harman’s empirical

study which concludes “forward slices are smaller than backward slices” [3]. In this

study, the authors provide evidence that the distribution of slices sizes for forward slices

leans toward smaller numbers compared with backward slices. Their claim is strongly

supported by: (1) Computing both forward and backward slices from every program

point; and (2) Computing forward slices from all inputs and backward slices from all

outputs. They gather statistically significant data from a large code base containing a

wide range of programs (accumulating over 1 million lines of code), which averages out

the majority of architectural- and source code specific characteristics that could affect

their conclusions.

The systems that we studied however, do follow a specific component-based

architecture, and we need to take into account any special characteristics that this

design may have on the analyzed components, before drawing our conclusions. Indeed,

a closer look at Figure 7 reveals that the number of input ports is typically smaller than

the number of output ports (indicated by the fact that there are fewer data points for

forward slices that for backward slices). Assuming that there is no unreachable code

in the components, the union of forward slices from all input ports should cover all

program points in the component. Likewise, the union of the backward slices from all

output ports should cover all program points. Therefore, having having fewer input

ports than output ports implies having bigger forward slices than backward slices. Closer

inspection of the component interfaces showed that most components in the system we

studied follow the same pattern, i.e., they have considerably fewer inputs ports than

output ports.

The difference in the number of input and output ports might not be the only reason

behind the difference in forward and backward slice sizes. Certain other characteristics

of the components’ source code could be a complementary reason: Binkley and Harman

[3] show that the effects of control dependence are the major cause of difference between

forward and backward slice sizes. They propose an unproved conjecture that the “tree

101

5. Discussion Paper II

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14

S
lic

e
 s

iz
e
 (

#
e
d
g
e
s
)

Port ID

Backward Slices
Forward Slices

(a) Component 1

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6 7

S
lic

e
 s

iz
e
 (

#
e
d
g
e
s
)

Port ID

Backward Slices
Forward Slices

(b) Component 2

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10

S
lic

e
 s

iz
e
 (

#
e
d
g
e
s
)

Port ID

Backward Slices
Forward Slices

(c) Component 3

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10

S
lic

e
 s

iz
e
 (

#
e
d
g
e
s
)

Port ID

Backward Slices
Forward Slices

(d) Component 4

Figure 8: A comparison of intracomponent slice sizes in the forward vs. backward direction. In all
subfigures, the size of the slice in measured by the number of included dependencies (a.k.a. edges in
the SDG). Component ports are sequentially numbered on the horizontal axis (starting from zero), in
the order of ascending slice sizes (vertical axis).

like” structure of control dependencies in SDGs, which has roots in the typical control

statements in structured programming (e.g., “for,”“while,” and “if” statements), is the

decisive factor behind the aforementioned difference in slice sizes. Closer inspection

of the source code of the components sampled in Figure 7 indicated that they do not

contain loop structure, but include 490 conditional statements in total (“if” and “else

if”).

This lack of loop structures is indeed one of the special code characteristics of

the system under study and follows directly from the way in which these systems were

architected: In general, component parameters (see Section 3.5) are used to configure

the conditional clauses that decide how the data in input ports should be directed

to the output ports (see Section 2). This design shows the “data-oriented” nature of

the majority of interactions in these systems, on both the intra- and inter-component

levels that could also explain part of the the gap between our observations and those by

Binkley and Harman [3].

We would like to emphasize that the aim of this study was not to replicate Binkley

and Harman’s study, and our results should not be interpreted as contradicting their

102

Paper II 6. Evaluation

claims. However, we conclude that the differences in forward and backward slice sizes

deserve more architecture-aware, and perhaps even domain-specific, studies. In addition,

we conclude that in the context of our case study, the design and code characteristics are

such that backward slices are typically smaller and generate information flow diagrams

that are therefore easier to comprehend than the ones that originate from forward slices.

6 Evaluation

To evaluate our approach, we consider the following three aspects: accuracy, scalability,

and usability. In a context of software certification, the accuracy of our views is of

utmost importance and is determined by the accuracy of our model reconstruction and

of our slicing tool. Both were evaluated in detail in [29] and showed 100% accuracy

when compared to gold-standard results from CodeSurfer. The same paper also reported

that these steps show linear growth of execution time and model size with respect to

program size. This indicates good overall scalability, as the views that we construct in

this paper are all projections of this model (i.e., smaller in size).

In the remainder of this section, we focus on the results of a preliminary qualitative

study assessing the usability of FlowTracker, and, in particular, of the proposed views.

Study Design: Considering that FlowTracker is still a prototype in early stages of

development, our goal is to conduct an exploratory study to evaluate the usability and

the effectiveness of the visualizations, and their fitness for the needs of our industrial

partner. To this end, we conduct a qualitative evaluation of the tool with a group of

six subjects that were selected so that we would cover the different roles of prospective

FlowTracker user groups. We use such a pre-experimental design, because it is a cost-

effective way to find out the major positive and negative points, and identify missing

functionality and required improvements before the tool can be adopted by our industry

partner [6]. In addition, this design limits the overhead and impact of our study on the

industrial partner, and it decreases the influence of (negative) anchoring effects that

can rise from having early prototypes evaluated by people that should later adopt the

tool [26] (this effect can be paraphrased as “first impressions are hard to change”). This

is an important consideration for a domain-specific tool dedicated to a specific audience,

like ours.

We conduct two rounds of evaluation, corresponding to the two versions of Flow-

Tracker we have developed so far (V1.0 and V1.1). In the first round we evaluate

the core functionalities of FlowTracker (V1.0). As V1.1 is an incremental iteration

of FlowTracker where features were only added or extended, and not removed, the

second round of evaluation focuses on the delta of the two versions. The new features

of V1.1 include: (1) Supporting both forward and backward analysis of information

flows (Section 3.2); (2) Inclusion of component parameters in component information

flow (Section 3.5); and (3) Providing an enhanced navigation schema (Section 3.4). In

103

6. Evaluation Paper II

addition to evaluating the deltas, we include a number of “overall” questions to capture

a holistic view of the positive and negative aspects of FlowTracker usability. For the

benefit of cohesion and readability, we present the results of the two rounds of evaluation

together. However, we distinguish between the two rounds of evaluations whenever

necessary to maintain accuracy.13

Participant profiles – Three of the participants are senior engineers in Kongsberg

Maritime (KM) who work daily with the case study system. Participant P1 is a senior

developer who develops and maintains core modules of the system studied; his focus

is more on individual modules than complete systems. P2 is both a system integrator

and a system auditor: (a) In some projects, his role is to audit systems that are built

by other teams to assess their validity and reliability; (b) In other projects, his role is

to compose the overall system logic from components, which includes verifying correct

component interconnections. P3 is a safety expert who handles the certification process

together with third-party certifiers such as DNV or TÜV. In addition, she has prior

development experience on the system.

We recruited the other three subjects (P4 to P6) from colleagues who were in the

final stages of their PhD studies on model-based software verification and validation at

Simula Research Laboratory. These subjects are very familiar with component-based

design, model-driven engineering, verification and validation, but they have no previous

exposure to the case study system. However, each of them had two to four years of

industrial experience prior to starting their doctoral studies, so we refer to them as

junior developers. We include this second group of subjects with a different perspective

to decrease the potential bias toward the specific traits of the case study, a bias that

could be caused by only selecting subjects from our industrial partner [15].

Preparation – In both rounds, all evaluation sessions were conducted independently of

one another, and the results were aggregated after all participants finished the evaluation.

Each session started with a brief presentation of FlowTracker (∼10 minutes). The

presentation included a walk-through of a typical usage scenario, similar to Section 3.3.

The junior developers were given an extra presentation on the system studied, to clarify

the problem statement and the goals of the study. Next, we let the participants play

around with the tool until they felt confident in their understanding of its functionality.

We concluded this training session with three hands-on exercises, that participants had

to complete before starting the evaluation. The exercises were designed in a way to

engage all the views and the major features of FlowTracker. There were no time limits

to complete the exercises, and discussion was stimulated. In both rounds, we continued

training until the participants acknowledged full confidence in their ability to work with

FlowTracker, before switching to the actual evaluation.

Data Collection – The evaluation itself consists of a structured interview guided by a

13Note that the initial results reported in [30] were exclusively from the first round of evaluations on
FlowTracker V1.0.

104

Paper II 6. Evaluation

questionnaire. The questionnaire consisted of 30 closed questions that used a 5-point

Likert scale and 6 open (discussion) questions in the first round, and 24 Likert scale

questions in the second round. Questions where both positively and negatively phrased

to break answering rhythms and avoid steering the subjects [17]. In total, each session

lasted between 60 and 90 minutes in the first round, and 45 to 60 minutes in the second

round.

Researcher-administered interviews were chosen over self-administered question-

naires to elicit as much feedback as possible. Participants were instructed to bring up

any question or comment during the training exercises, questions, and the open-ended

discussion, similar to think-aloud sessions. Based on the answers, the interviewer in-

cluded relevant follow-up or clarification questions. We recorded the complete audio

of the sessions (training+interviews), and transcribed and analyzed them using the

ELAN multimodal annotation tool [5]. This allowed us to collect the answers to our

questions, find deeper reasons behind those answers, and get more insights into the

preferred interactions with FlowTracker.

Workshop – Prior to the first round of evaluation, we organized a workshop meeting at

KM to present FlowTracker to various stakeholders with different roles and engineering

backgrounds. As the audience of this workshop was different from the evaluation

participants, we will also discuss the relevant feedback from this meeting.

Findings: In the remainder of this section, we present the major findings, key questions

and the highlights of the feedback we received from the participants. The results are

aggregated per view, followed by a discussion of feedback on the overall usage experience.

Whenever there are outliers or noteworthy differences between the answers of the group

of junior developers versus the group of senior developers, we will discuss the details.

(1) System Dependence Survey: The responses to questions regarding this view

indicated that the engineers very frequently need to find out which system inputs affect

a certain output. For example, P2 stated that he “needs that kind of information on a

daily basis.” When asked how they would obtain such information in the absence of

FlowTracker, most subjects responded that they would (and currently did) revert to

the manual inspection of the source code to find these dependencies, except for P4, who

preferred “to use UML activity diagrams to model the message passing in the system.”

Overall, the subjects indicated that they found the presentation of information in

this view to be intuitive, and that the goal of summarizing system-wide information

flow was adequately achieved. They agreed with our choice to designate this view as

the starting point for navigation in FlowTracker.

The positive response to this view is not surprising, considering that it closely

resembles the Cause & Effect specifications already used by our partner. Already from

the very first meetings, there was a request for tooling that would enable safety domain

experts (and certification bodies) to compare the “as-implemented” system against the

“as-specified” safety logic at a single glance, and this view satisfies that goal.

With respect to the use of each half of a matrix cells as a way to zoom into

105

6. Evaluation Paper II

respectively forward and backward information flows (a feature only in V1.1), the

general response was highly positive. All participants viewed this feature as an added

value that outweighs the additional complexity on the user interface (“has far better

functionality,” according to P4). Two of the junior developers (P5 and P6) wanted

more visual aids on the graphical user interface to help the users. They believed that

having different cells “creates the expectation” that the cells would lead to different

places. However in FlowTracker’s matrices, the right-half section of all the cells in a

single column leads to the same diagram representing the information flows leading

to that output (i.e. there is redundancy in the user interface). Likewise, the left-half

section of all the cells in a single row leads to a single diagram that represents the

information flows originating from that input. In this situation, P5 and P6 would like

the user interface to emphasize all elements that point to the same destination, e.g., by

highlighting all “equivalent” elements at the moment one of them is “hovered” over by

a mouse. At one point during the evaluation, P6 indicated that she would like to be

able to click on the title row and the left-most column of the matrix to navigate to the

corresponding forward and backward information flows (i.e., directly on the port names

instead of the matrix cells). However, she later reconsidered her choice, fearing that the

users would have to drag the mouse too much to be able to switch between forward and

backward information flows in larger matrices. We foresee that both these requests can

be easily, and transparently, addressed with some additional client-side scripting and

further extending the enhanced navigation scheme.

(2) System Information Flow: The subjects were generally satisfied with the

functionality of this view, that indicates which components, ports, and sensors can

affect the value of a given actuator, and in V1.1 also indicates which of these elements

are affected by a given sensor. FlowTracker currently shows all components and

ports, and highlights only those elements that participate in the target information flow;

the others are dimmed. An alternative could be to hide the unused elements in the

diagram. Most subjects favored the current design. P5, for example, remarked that

“this view gives me the big picture as well as the micro answer.” However, two subjects

had some reservations about the amount of information shown in this view; P4 and P6

were concerned that the extra information could lead to confusion. All subjects were

positive about the idea of adding more interactive facilities, such as an option to include

or hide the dimmed elements on demand in this view.

The view was regarded an appropriate navigation intermediary between the System

Dependence Survey and Component Dependence Survey, except for P5, who preferred

to have the choice to jump directly from System Dependence Survey to Component

Dependence Survey as alternative navigation path. We had considered this option while

designing the navigation structure but decided against it in favor of a single predictable

navigation structure without shortcuts, to avoid disorientation.

The way information is presented was received as intuitive, and “very beneficial

for the needs of system integrators.” This benefit was also mentioned during the

106

Paper II 6. Evaluation

initial workshop, where a participant remarked that this view was useful to inspect

“what is happening when there is no system-wide information flow between a sensor-

actuator pair that is supposed to be connected.” Examples that were mentioned included

analyzing configuration issues like dangling connections that could, for example, result

from renaming component port names but not updating existing (external) system

configurations.

Subjects also observed that the System Information Flow, to some extent, dupli-

cates the functionality of one of our partner’s current tools, which shows the overall

component composition network based on the configuration information. However,

the FlowTracker view is based on fundamentally different underlying knowledge: It is

based on the system-wide dependencies across components instead of just using the

configuration information. As such, the System Information Flow gives a more reliable

view regarding the actual intercomponent information flow, because any disruptions

that occur inside components will be rendered as a broken flow in our view but are not

noticed by the existing tool.

During the discussion, P2 (system integrator) pointed out a promising new feature:

He mentioned that KM has (preliminary) guidelines for inter-connecting components,

for example, detailing which port-types are compatible. Although these guidelines do

not guarantee correct behavior, having some form of automated checking could save

a lot of time by signaling apparent connection mistakes. P2 saw good opportunities

for FlowTracker to check such composition guidelines, and to show deviations in the

System Information Flow view.

Considering the forward and backward information flows together, one could

argue that there is a certain degree of redundancy in the visualizations (i.e., portions of

information flows could be repeated multiple times in forward and backward system-wide

information flows in V1.1). However, none of the participants regarded this as a problem

and believed both directions of information flows are necessary to visualize.

(3) Component Dependence Survey: Similar to the System Dependence Survey,

the subjects agreed that this view adequately summarizes the dependencies between

input and output terminals. P3 (safety expert dealing with system certification) regarded

this view as “top priority for the certification process and a facilitator of the discussions

with the third-party certifiers.” Module developer P1 stated that he “must know the

input/output relations of the components at all times, but I currently only have the

source code to read and hopefully find out about all dependencies.” P1 did not expect

that this view would be beneficial for the certification process, but he emphasized that he

had not been directly involved in the certification process. P6 preferred that the matrix

would distinguish between the data dependencies and control dependencies between

inputs and outputs; input terminals whose value is transferred to the output terminals

appear differently from the inputs whose value is used to control the information flow

toward the same output port.

Considering FlowTracker V1.1 and using the matrix cell halves for navigation,

107

6. Evaluation Paper II

the feedback was consistent with the feedback we received for the System Dependence

Survey.

(4) Component Information Flow: We received mixed feedback regarding this

view. The most positive responses came from the group of industrial subjects, in

particular P1, the module developer. The variety of opinions about this view can

perhaps be explained by the fact that it uses an unfamiliar design. The design does

not resemble the more well-known matrix or UML diagram styles of our other views.

Another potential cause is the visual complexity of some of the larger diagrams, which

was mentioned by at least one of the subjects.

Five of the subjects agreed that conditions can have a significant effect on the

intracomponent information flows, and should be highlighted and put in perspective

to improve comprehension. The subjects also indicated that “such graphs clearly show

the intracomponent information flows [and] the effects of conditions on the information

flow,” reportedly “much better than the source code.” On the other hand, subject P6

answered that “one might need to see the assignment statements in the diagram as well

to understand the information flows.” In addition, she would like to see the outgoing

edges of condition nodes labeled with “True” or “False” to indicate which edge would be

used if the condition were evaluated during actual execution. Finally, she had concerns

about the intuitiveness of the diagrams when they grow in size, i.e., she mentioned

that “the larger diagrams are no longer intuitive.” Subject P5 remarked that this view

would “probably not contain enough information to check safety regulations or design

guidelines.”

Prior to our evaluation, we assumed that the Component Dependence Survey

(i.e., one level above this view) would be the lowest abstraction level that would be

useful for non-developers such as safety experts. However, safety expert P3 regarded

this Component Information Flow as “a very good tool to demonstrate to the external

certifiers what we have done,” i.e., to provide evidence for software certification. During

the workshop, participants discussed that this view would make a good point of reference

for discussions between different engineering roles. They stated that “it acts as a bridge

between the C programmers and integrators.”

The subjects would like to see more interactive facilities, especially measures

to better deal with the larger diagrams. In addition to zooming, another concrete

suggestion was to have the option of seeing exclusively the information flow that starts

from a single (selected) component input port. We foresee that many of these requests

can be fulfilled quite easily by incorporating a graph viewer that is better than the one

that is now used in the prototype.

With respect to the visualization of forward and backward information flows

in FlowTracker V1.1, all participants gave highly positive feedback and mentioned

that this helped them better with answering program comprehension questions. This

positive feedback for including both analysis directions was consistent over all layers of

abstraction.

108

Paper II 6. Evaluation

Component Parameters: A new feature in FlowTracker V1.1 is that the compo-

nent parameters that are relevant to an information flow are shown in the view (see

Section 3.5). All participants, especially P3, regarded component parameters as highly

important for the better comprehension of the intracomponent information flows, and

therefore, appropriate to be visualized. In the first round of evaluations, before this

feature was added, P3 regarded them as a top priority to visualize. Filtering out the

irrelevant component parameters for each information flow was seen as highly positive

for the comprehension by all participants. Considering the large number of parameters

for each component, and the sharp decrease that is achieved by filtering the relevant

parameters for each information flow (as shown in Table 1), this is hardly surprising

(especially since the only alternative is manual inspection).

However, most participants stated that showing the relevant components parame-

ters in a list was not enough for them. For example, P3 expressed that she was certain

that component parameters have influence on the information flows and did not perceive

them as a subsidiary feature, but as an intrinsic part of the information flow. In other

words, the participants wanted to see better where a given component parameter could

affect the component information flow. P3 and P6 would like to see the “relevant”

portions of the diagrams highlighted when the user “hovers” the mouse over any of

the component parameters in the list. P5 wanted the parameters to be visualized in

separate nodes visually connected to the relevant portions of the information flows. In a

nutshell, the consensus of P5 and P6 was that the relation between the component pa-

rameters and the information flows should be more explicit. In a follow-up discussion P3

indicated that she would also liked to see the effect of “changing the value of component

parameters” on the information flows “on the fly” and interactively. For example, once

the new value of a component parameter causes a conditional clause to be evaluated

as “False”, the infeasible portions of the information flow are to be hidden. In other

words, P3 wants the information flows to be “animated” with respect to the values of

component parameters at the execution time.

In contrast to the previously mentioned sophisticated features of component

parameter visualizations, P4 wanted only to see more information about the data types

of the parameters in the current listing. In his view, this information can help the

developers, especially in cases where the component parameters are of “enumeration”

or “boolean” types. He stated that adding more information about the component

parameters would make the diagrams too complicated and decrease comprehensibility.

(5) Implementation View: This view is very similar to the source code in a typical

modern IDE (besides not being editable in our prototype). As such, the view by itself

doesn’t contribute much, but the subjects reported that the inclusion of this view in

FlowTracker helped them relate more easily to higher-level views, since it “helps to

remove the gap between visualizations and the source code.”

In particular, subjects considered the hyperlinks from conditions in the Component

Information Flow diagram to the respective locations in the source code beneficial for

109

6. Evaluation Paper II

comprehension and traceability. They were less sure that these links would support

certification purposes equally well: P4 and P6 said they are useful only if the certifier

knows the source code (which they thought unlikely); P1 considered the links beneficial;

P2 and P5 refrained from answering this question, since they felt unsure about the

certification process. Safety expert P3 said that “certifiers generally do not look at the

source code, but in the worst cases where they want to see more evidence, these links

will help to find the right locations.”

Overall Experience – All in all, the subjects were positive about the intuitiveness of

the tool, as they “did not need to learn a lot of things before being able to work with

FlowTracker” and “did not feel that the tool was complex.”

All participants believed that providing the users with visualizations that represent

forward information flows, as well as backward information flows, is highly beneficial for

comprehension (V1.1). Unanimously, the participants said that being able to distinguish

between the following two closely related questions helps them to find: (1) what elements

have an effect a given output?, and (2) what elements are affected by a given input? The

benefit was acknowledged both at the system-level, and component-level information

flows. P4 also mentioned that having access to both directions of information flows is

not only beneficial for comprehension, but also helps the users to “follow the flow more

easily” and readily.

All participants regarded the enhanced navigation schema (see Section 3.4) as a

major improvement over the fixed, layered navigation method. The choices of elements

that lead to other visualizations (at the same or other abstraction layer) were deemed

“intuitive” by most of the participants. P4 found the choice of input (output) ports to

jump the forward (backward) information flows very effective and “easy to remember,

but only after the first introduction to the tool” (which could be interpreted as indicating

that this may not be the most intuitive choice). Using the enhanced navigation, all

participants were confident in saying that user information needs can be satisfied faster,

and the overall user experience in V1.1 is better than V1.0.

The subjects would like to see the tool more closely integrated into their IDEs,

although the junior developers remarked that they did not see immediate benefits

from using the tool during the early stages of developing the components. They

preferred to “use FlowTracker during the more matured stages of development, such

as integration, testing, or for refreshing [their] understanding of an existing system.”

The industrial subjects, on the other hand, were “looking forward to using FlowTracker

during the development process, and for post-development phases, such as auditing and

certification.”

Overall, FlowTracker received excellent feedback regarding component and system

comprehension. When we look at the feedback concerning FlowTracker’s support for

the certification process, the results were less conspicuous, but still very positive, most

110

Paper II 6. Evaluation

notably from the industrial subjects.14 They argued that FlowTracker supports the

certification process by “enabling discussions between the developers and safety experts,”

and “demonstrating the safety logic that is actually implemented in a system to the

external certifiers.”

When subjects were asked to think of other tasks where FlowTracker could be

helpful, topics included: (1) source code maintenance; (2) track ripple effects of modified

source code; (3) track ripple effects of modified configuration files; (4) configuring a

new system; (5) debug individual modules; (6) auditing projects; and (7) training new

project members.

Threats to Validity: It could be argued that the number of subjects in our study is

too small to infer generalizable conclusions. We have taken the following measures

to reduce this threat: Considering that FlowTracker is a domain-specific tool with a

specific industrial target audience, the potential for recruiting a statistically significant

number of subjects is limited, so we use an exploratory qualitative study design to get

the best possible results from a limited group of subjects at an early stage. In addition,

the subjects were selected such that their profiles would match the various roles of

prospective FlowTracker users. In addition to the industrial subjects, we added a second

group of subjects with a different perspective to avoid bias toward the specific traits of

the case study.

Since we have conducted researcher-administered interviews, subjects might have

been inclined to give socially acceptable, positive feedback. We have limited the impact

of this threat by including control questions and follow-up questions, and instructing

the subjects that honest answers would, in the end, give them the most valuable tool.

This threat would have been lower for self-administered questionnaires, but from other

experiences, we learned that the amount and the quality of feedback for such studies is

much lower.

Another threat is that the reliability of the collected data depends on the inter-

viewer’s interpretation of the subject’s answers or actions. We have mitigated this

threat in two ways: (1) We emphasized that the participants should try to give (or

include) closed answers in terms of the Likert categories whenever possible, to limit

subjective interpretation of the evaluators; (2) Each of the two authors independently

transcribed and analyzed the interviews. Afterward, the results were compared and

differences were re-analyzed (jointly) until an agreement was reached. The latter step

was obviously most valuable for the cases in which subjects did not (only) give a closed

answer but included more discussion.

A potential concern with respect to generalization is that our evaluation included

only one subject for each of the different roles of module developer, system integrator,

and safety expert. As such, this subject gets a dominant voice in the evaluation, and the

answers may be based more on personal opinions than on what is needed for the role.

14We should add that two junior developers did not comment on this aspect, because they felt that
they did not know the certification process well enough.

111

7. Related Work Paper II

We have tried to limit the impact of this threat by organizing a pre-evaluation workshop,

in which we asked the stakeholders to identify the most qualified senior engineers who

could represent these roles in the evaluation. In addition, it turned out that subjects

with a given role generally also had experience with some of the other roles, which also

helps to create a more balanced picture.

7 Related Work

Maletic et al [14] identify five dimensions of software visualizations: tasks (why);

audience (who); source (what); representation (how); and medium (where). Our

work can be summarized as why: providing source-based evidence to support software

certification; who: for safety domain experts and developers; what: of implementation

artifacts of component-based systems; how: by visualizing information flow using a set

of hierarchical views; where: on a computer screen.

Hermans et al [11] use leveled data flow diagrams to aid professional spreadsheet

users in comprehending large spreadsheets. Their survey showed that the biggest

challenges occur when spreadsheets are transferred to colleagues or have to be checked

by external auditors. They suggest a hierarchical visualization of the spreadsheets:

starting from coarse-grained worksheets, expanding worksheets to view the contained

data blocks, and diving into formula view to see “a specific formula and the cells it

depends on.” Our work is similar in providing a hierarchical visualization of information

flow, with each view having a different trade-off between scope and granularity. Another

similarity is the inclusion of non-developer, domain experts as users of the visualizations.

However, the analysis subject, technique, and the underlying entities to be visualized are

completely different. Our work analyzes source code to infer system-wide information

flows using SDGs that are based on both data flow and control flow information, while

they analyze data flow dependencies in formula-rich spreadsheets.

Krinke [13] reports on various attempts to visualize program dependence graphs

and slices via existing (algorithmic) graph layout tools. He proposes a declarative

graph layout, tailored to preserve the relative locality of program points to provide a

better cognitive mapping back to the source code. A survey showed that the standard

representations of program slices were “less useful than expected,” and the improved

layout is “very comprehensible up to medium sized procedures,” but “overly complex

and non-intuitive” for large procedures. He concludes that a textual visualization of

source code is essential and introduces the distance-limited slice to assign each program

statement a specific color according to its distance from the slicing criterion. In contrast,

we developed multiple layers of abstraction to reduce the complexity of system-wide slices

and show only the information relevant to the particular task and users. We provide

links between the various views that can be navigated down to a textual representation

of source as a last resort.

112

Paper II 8. Concluding Remarks

Pinzger et al [19] use nested graphs to represent static dependencies in source

code at various levels of abstraction. They follow a top-down approach similar to ours

for representing information about the system, and allow users to adjust the graphs by

adding or filtering information, such as adding a caller or “keep callees and remove other

nodes.” In contrast to our approach, which creates abstracts from fine-grained data

and control dependencies, they analyze static “uses” dependencies in Java programs at

a relatively coarse-grained level, considering elements such as package, class, method,

method call, and field access.

We refer to our previous work [29] for a detailed discussion of work related to our

method to build system-wide dependence models from heterogeneous source artifacts.

8 Concluding Remarks

Component-based software engineering is widely used to manage the complexity of

large-scale software development. Although correctly engineering the composition and

configuration of components is crucial for the overall behavior, there is surprisingly little

support for incorporating this information in the analysis of such systems. Moreover, to

get a correct understanding of a system’s overall behavior, one needs to understand how

the control and data flow is interlaced through component sources and configuration

artifacts. We found that support for such a system-wide analyses is lacking, because it

is hindered by the heterogeneous nature of these artifacts.

Contributions – In this paper, we address these issues by proposing an approach that

supports system-wide tracking and visualization of information flow in heterogeneous,

component-based software systems. Our contributions are the following: (1) We

proposed a hierarchy of views that represent system-wide information flows at various

levels of abstraction, aimed at supporting both safety domain experts and developers; (2)

We presented the transformations that help us achieve these views from the system-wide

dependence models and discuss the different trade-offs between scope and granularity;

(3) We discussed how we have implemented our approach in a prototype tool; and (4)

We reported on two qualitative evaluations of the effectiveness and usability of the

proposed views for software development and software certification. The evaluation

results indicated that the prototype was already very useful. In addition, a number of

directions for further improvement were suggested.

Future Work – We see several directions for future work: First of all, we want to improve

the overall user experience by adding more on-demand interaction facilities, such as

zooming and hiding or collapsing groups of nodes. Such facilities allow users to be more

selective in the amount and type of information they see, according to their information

needs at the moment. As briefly mentioned before, we foresee that this can be achieved

by using a more elaborate graph viewer than currently used in the prototype. Since the

113

8. Concluding Remarks Paper II

graph presentation is done using SVG, a promising direction forward is investigating the

inclusion of some additional scripting based on JavaScript libraries, such as Raphäel15

or D316.

Moreover, to improve the scalability of Component Information Flow diagrams,

we want to investigate if the hierarchical block structure of the source code can be used

to create a hierarchy of collapsable sub-graphs in the visualizations.

There were some interesting extensions to FlowTracker that were brought up during

the evaluation. One example is the possibility of including some kind of automated

type checking for component interconnections or other forms of constraint checking

on component composition. Another extension that came up is the ability to analyze

and visualize multiple versions of a system at the same time, and highlighting the

modifications and their impact in the version history.

Based on the last discussions with our industry partner, there is a desire to better

understand what effects changing a given parameter values will have on the information

flows that can be achieved. Based on our earlier experiences with (static) value range

propagation in source code for embedded systems, we do not foresee that these questions

can be answered using static analysis [4]. An alternative is to extract this parameter

change information using dynamic analysis methods. Leveraging the capabilities of static

and dynamic analysis not only helps to increase the accuracy of the information flows,

but also opens many options toward better visualization of intracomponent information

flows using concrete values of the component parameters and conditional clauses at run

time.

A final direction for future work is the integration of our tooling with an IDE, such

as the Eclipse platform. Besides the increased ease of adoption, this would also have the

added benefit of being able to directly navigate to editable source code and reuse of all

existing Eclipse features, such as intelligent search and bookmarking. Moreover, we will

be able to take advantage of Eclipse perspectives and create separate perspectives for

safety domain experts and developers to optimize the experience and avoid intimidation

or distraction by unneeded detail.

Acknowledgements

We would like to thank the participants in our workshop and interviews for their valuable

time and feedback. Without their collaboration, the evaluation of this work would not

have been possible.

15http://raphaeljs.com/
16http://mbostock.github.com/d3/

114

Paper II Bibliography

Bibliography

[1] Abran A, Moore J, Bourque P, Dupuis R, Tripp L (2005) Guide to the Software Engi-

neering Body of Knowledge - 2004 Version - SWEBOK. IEEE-Computer Society Press

[2] Anderson P (2008) 90% Perspiration: Engineering Static Analysis Techniques for Indus-

trial Applications. In: IEEE International Working Conference on Source Code Analysis

and Manipulation (SCAM), pp 3–12

[3] Binkley D, Harman M (2005) Forward slices are smaller than backward slices. In: IEEE

International Workshop on Source Code Analysis and Manipulation (SCAM), pp 15–24

[4] Boogerd C, Moonen L (2008) On the Use of Data Flow Analysis in Static Profiling. In:

International Working Conference on Source Code Analysis and Manipulation (SCAM),

IEEE, pp 79–88

[5] Brugman H, Russel A (2004) Annotating Multi-media / Multi-modal resources with

ELAN. In: Fourth International Conference on Language Resources and Evaluation

(LREC), 2004, http://www.lat-mpi.eu/tools/elan/

[6] Campbell DT, Stanley J (1963) Experimental and Quasi-Experimental Designs for

Research. Wadsworth

[7] Deelstra S, Sinnema M, Bosch J (2005) Product derivation in software product families:

a case study. Journal of Systems and Software 74(2):173–194

[8] Gallagher K, Binkley D (2008) Program slicing. In: Frontiers of Software Maintenance

(FoSM), IEEE, pp 58–67

[9] Green TRG, Petre M (1996) Usability Analysis of Visual Programming Environments : a

âĂŸ cognitive dimensions âĂŹ framework. Visual Languages and Computing 7:131–174

[10] Hatton L (2004) Safer language subsets: an overview and a case history, MISRA C.

Information and Software Technology (IST) 46(7):465–472

[11] Hermans F, Pinzger M, Deursen AV (2011) Supporting Professional Spreadsheet Users

by Generating Leveled Dataflow Diagrams Categories and Subject Descriptors. In: Inter-

national Conference on Software Engineering (ICSE), pp 451–460

[12] Horwitz S, Reps T, Binkley D (1990) Interprocedural slicing using dependence graphs.

ACM Transactions on Programming Languages and Systems (TOPLAS) 12(1):26–60

[13] Krinke J (2004) Visualization of program dependence and slices. In: IEEE International

Conference on Software Maintenance (ICSM), pp 168–177

[14] Maletic J, Marcus A, Collard M (2002) A task oriented view of software visualization. In:

IEEE International Workshop on Visualizing Software for Understanding and Analysis

(VISSOFT), pp 32–40

[15] Nielsen J, Molich R (1990) Heuristic evaluation of user interfaces. In: SIGCHI Conference

on Human Factors in Computing Systems, ACM, pp 249–256

[16] OMG (2010) Architecture-Driven Modernization (ADM): Knowledge Discovery Meta-

Model (KDM) - v1.2

[17] Oppenheim AN (1992) Questionnaire Design, Interviewing and Attitude Measurement.

Continuum

[18] Petre M (2010) Mental imagery and software visualization in high-performance software

development teams. Journal of Visual Languages & Computing 21(3):171–183

115

Paper II

[19] Pinzger M, Graefenhain K, Knab P, Gall HC (2008) A Tool for Visual Understanding of

Source Code Dependencies. In: IEEE International Conference on Program Comprehen-

sion (ICPC), pp 254–259

[20] Silva J (2011) A Vocabulary of Program Slicing-Based Techniques. ACM Computing

Surveys (to appear)

[21] Steele J, Iliinsky N (2010) Beautiful Visualization, Looking at Data through the Eyes of

Experts. O’Reilly Media, p 416

[22] Storey MA (2005) Theories, Methods and Tools in Program Comprehension: Past, Present

and Future. In: IEEE International Workshop on Program Comprehension (IWPC), pp

181–191

[23] Storey MA (2006) Theories, tools and research methods in program comprehension: past,

present and future. Software Quality Journal 14(3):187–208

[24] Szyperski C (2002) Component Software: Beyond Object-Oriented Programming, 2nd

edn. Addison-Wesley

[25] Tip F (1995) A survey of program slicing techniques. Journal of Programming Languages

3(3):121–189

[26] Tversky A, Kahneman D (1974) Judgment under Uncertainty: Heuristics and Biases.

Science 185(4157):1124–31

[27] Weiser M (1981) Program slicing. In: International Conference on Software Engineering

(ICSE), IEEE, pp 439–449

[28] Weiser M (1982) Programmers use slices when debugging. Communications of the ACM

25(7):446–452

[29] Yazdanshenas AR, Moonen L (2011) Crossing the Boundaries while Analyzing Hetero-

geneous Component-Based Software Systems. In: IEEE International Conference on

Software Maintenance (ICSM)

[30] Yazdanshenas AR, Moonen L (2012) Tracking and Visualizing Information Flow in

Component-Based Systems. In: IEEE International Conference on Program Comprehen-

sion (ICPC)

116

Paper III

Fine-Grained Change Impact
Analysis for Component-Based
Product Families

117

118

Fine-Grained Change Impact Analysis for

Component-Based Product Families

Amir Reza Yazdanshenas, Leon Moonen

Software Engineering Department, Simula Research Laboratory,

P. O. Box 134, N-1325 Lysaker, Norway

Abstract – Developing software product-lines based on a set of shared components is

a proven tactic to enhance reuse, quality, and time to market in producing a portfolio of

products. Large-scale product families face rapidly increasing maintenance challenges as

their evolution can happen both as a result of collective domain engineering activities,

and as a result of product-specific developments. To make informed decisions about

prospective modifications, developers need to estimate what other sections of the system

will be affected and need attention, which is known as change impact analysis.

This paper contributes a method to carry out change impact analysis in a component-

based product family, based on system-wide information flow analysis. We use static

program slicing as the underlying analysis technique, and use model-driven engineering

(MDE) techniques to propagate the ripple effects from a source code modification into

all members of the product family. In addition, our approach ranks results based on an

approximation of the scale of their impact. We have implemented our approach in a

prototype tool, called Richter, which was evaluated on a real-world product family.

Keywords – component-based software development, software product-lines, change

impact analysis, information flow

119

1. Introduction Paper III

1 Introduction

Integrated Control and Safety Systems (ICSSs) are complex, large-scale, software-

intensive systems where hardware and software components are integrated to control

and monitor safety-critical devices and processes. ICSSs are increasingly pervasive

in domains like process plants, oil and gas production platforms, and in maritime

equipment. These systems interact with their environment via physical sensors and

mechanical actuators. Consequently, for deployment in concrete situations, ICSSs need

to be adapted and configured to different safety logic and installation characteristics,

such as sensor properties and field layout. On the other hand, there can still be a

considerable similarity between different installations of an ICSS, ranging from high-level

requirements to low-level implementation details (e.g. two off-shore platforms that

are quite similar but not exactly identical). To leverage these commonalities and to

accommodate variations as efficiently as possible, many ICSSs are developed using

product-line engineering (PLE) techniques.

Component-based development is one of the main approaches to realize such

software product-lines [1], and a set of shared components commonly constitutes the

backbone of ICSSs. Software evolution in families of software products is arguably more

complex as a result of the increased dependencies between software assets [2]. Shared

components might be updated as a result of both family-wide domain engineering

activities, and product-specific development and maintenance tasks. For large-scale

systems and highly populated product families, the task of updating all products with

a new version of a component comes at considerable cost.

Change Impact Analysis (CIA) plays a significant role in the software maintenance

process by estimating the ripple effect of a change [3]. It takes a set of modified program

elements (the change set), and computes the set of elements that need to be modified

accordingly (the impact set) [4]. We found that the CIA methods published in scientific

literature (and reviewed in the next section) were not sufficient for component-based

product families. In these families, components can be implemented in various program-

ming languages. Moreover, component composition, initialization and interconnection

is typically specified in separate configuration files, ranging from simple key-value pairs

to domain-specific languages. The heterogeneity of these artifacts complicates many

types of system- and family-wide analysis, including change impact analysis [5, 6].

In our earlier work [7], we present a technique to reverse engineer a fine-grained

system-wide dependence model from the source and configuration artifacts of a component-

based system, i.e. it can be applied to a single ICSS in the product family. This paper

builds on that technology and makes the following contributions: (1) we define a method

for constructing a fine-grained family-wide dependence graph (FDG) from the source

and configuration artifacts of a component-based product family; (2) we extend the

approach of [8] to find the initial impact set in terms of modifications to a component’s

interface based on a set of source code changes; (3) we define a method that uses the

120

Paper III 2. Related Work

initial impact set in combination with model-driven engineering and program slicing

techniques to efficiently compute the final impact set across a component-based product

family (i.e., to perform change impact analysis); (4) we define a measure to approximate

the scale of the impact of a change, and use it to rank the analysis results; (5) we

implemented and evaluated our approach by building a prototype tool, called Richter.

The remainder of this paper is structured as follows: Sections 2 and 3 summarize

related work and describe the context of our research. We present the overall approach

in Section 4, and our implementation in Section 5. We evaluate our work in Section 6

and conclude in Section 7.

2 Related Work

Lehnert provides an in-depth review of software change impact analysis [9]. In the

context of our work, we define Change Impact Analysis (CIA) as the process of estimating

what parts will be affected by a proposed change to a software system. The input is the

change set and the output is the impact set. Our focus is on source based CIA. In this

case, impact estimation is generally done by analyzing reachability between program

elements via some form of dependencies. These dependencies can be expressed as a

graph, and the ripple effects of a change can be found by traversing this dependence graph.

CIA approaches in literature typically vary in: (a) the type of program information that

is represented by the nodes and edges in the dependence graph, and (b) the type of

graph traversal that is performed.

Chaumun et al. [10] propose a change impact model to investigate the influence of

high-level design on the changeability of Object-Oriented programs. They use abstrac-

tions of OO entities and relations as the starting point for building their dependence

graph. Sun et al. [8] propose a static CIA technique based on a predefined list of change

types and impact rules. They argue that, apart from well-chosen change types and

accurate dependency analyses, the precision of a CIA technique can be improved by

distinguishing two stages: (1) derivation of an Initial Impact Set (IIS) from the change

set (based on change types), and (2) propagation of that IIS through the dependence

graph to find the Final Impact Set (FIS). They show that a more accurate IIS results in

a more precise FIS. Our approach also separates the IIS and FIS to increase precision

and scalability and conducts CIA based on abstractions of the system-under-analysis.

However, we need different abstractions and dependency links to represent a complete

component-based product family.

Moreover, there is an implicit assumption in [8, 10] that all dependencies yield equal

impacts. Consequently, they manipulate impact as coarse-grained Boolean expressions,

i.e. for a given change they can only compute whether or not a class is impacted by that

change. In contrast, our approach aims at ranking CIA results based on approximating

impact scale (i.e., approximating the size of the affected area).

121

3. Background and Motivation Paper III

Component-based CIA: A number of studies have taken a formal approach to spec-

ify component interfaces and component composition mechanisms either to conduct

CIA, or to assess the modifiability of component-based systems using CIA-inspired

techniques [11–13]. In a nutshell [11, 12] specify a component, based on its set of

provided/required interface functions. Each of them define their own variants of de-

pendency relationships among components, e.g. component adjacency, (transitive)

connectivity, change dependency, etc. Having defined dependency relationships in ma-

trices, these studies take advantage of straight-forward matrix manipulation operators

(e.g. production and subtraction) to conduct CIA. They focus more on propagation of

change throughout the system, than on deriving the change set from modified artifacts.

Unfortunately, they do not discuss the application of their approaches to real-world

systems.

Feng and Maletic [14], conduct CIA on the architectural level, to estimate the

ripple effects of component replacement in component-based systems. They generate

component interaction traces based on the static structure of the components’ interface

and UML sequence diagrams. They define a short taxonomy of the atomic changes in

the externally visible part of a component interface, and impact rules for each type

of change. Finally, they derive the list of impacted elements (i.e. components, and

provider/required interfaces) by slicing the generated interaction traces according to

the impact rules. This work is aimed at the inter-component-level, whereas our goal is

to analyze the impact of fine-grained code changes at the intra-component-level and

propagate these to the inter-component-level and family-level.

Recently, there has been an increased interest in tailoring CIA to software product-

lines [15, 16]. Diaz et al. [16] propose a meta-model that supports knowledge specific

to product-lines (e.g. variability models), and apply traceability analysis on these

models to conduct CIA on the architectural level. In general, these studies are aimed at

exploiting state-of-the-art features of MDE and PLE such as domain-specific modeling

and variability modeling. However, there are many manufacturers of software product

families that have not adopted these state-of-the-art methods. We aim at devising

techniques that can also support this class of practitioners.

We refer to our previous work [7] for a detailed discussion of work related to our

method to build system-wide dependence models from heterogeneous source artifacts.

3 Background and Motivation

The research described in this paper is part of an ongoing industrial collaboration

with Kongsberg Maritime (KM), one of the largest suppliers of programmable marine

electronics worldwide. The division that we work with specializes in “high-integrity

computerized solutions to automate corrective actions in unacceptable hazardous situa-

tions.” It produces a large portfolio of highly-configurable products, such as emergency

122

Paper III 3. Background and Motivation

shutdown, process shutdown, and fire and gas detection systems, that will be tailored to

specific deployment environments, such as vessels, off-shore platforms, and on-shore oil

and gas terminals. These products are prime examples of large-scale, software-intensive,

safety-critical embedded systems that interconnect software control components with

physical sensors and mechanical actuators.

Terminology: We use the following terminology: a component is a unit of composition

with well-defined interfaces and explicit context dependencies [17]; a system is a network

of interacting components; and a port is an atomic part of an interface, a point of

interaction with other components or the environment. A component instance represents

a component in a system, i.e. initialized and interconnected following the product

configuration data, and a component implementation refers to its source code. There is

one implementation and possibly more instances for every component in a system.

Production: Concrete software products are assembled in a component-based fashion

and the system’s overall logic is achieved by composing a network of interconnected

component instances. These “processing pipelines” receive their input from sensors

and decide what actuators to trigger. Components can be cascaded to handle a larger

number of input signals than foreseen in their implementation. Similarly, the output of

a given pipeline can be used as input for another pipeline to reuse the safety conclusions

for connected areas. The dependencies from sensors and actuators are described in a

decision table that is known as the cause & effect (C&E) matrix. This matrix serves

an important role in discussing the desired safety requirements between the supplier

and the customers and safety experts. By filling certain cells of a C&E matrix, the

expert can, for example, prescribe which combination of sensors needs to be monitored

to ensure safety in a given area. As installations become larger, the number of sensors

and actuators grow, the safety logic becomes increasingly complex and the products end

up interconnecting thousands of component instances. To give an impression, a typical

real-life installation has in the order of 5000 component instances in its safety system.

Product Family: Based on workshops and interviews with safety domain experts and

software engineers at KM [18], we have identified the following causes for variability

in this domain: (1) functional requirements of each product category; (2) customer

specific requirements; (3) size and structure of each installation, (4) different deployment

configurations. To deal with this variability, our industrial collaborator adopted a

component-based product development process that can be regarded product-line

engineering (PLE): They maximize predictive reuse by exploiting product commonality

using a set of generic and highly configurable shared components that acts as the

backbone of the product family [19]. They did not adopt more formal PLE activities

like variability modeling. The components are implemented in MISRA C (a safe subset

of C [20]), relatively small in size (in the order of 1-2 KLOC), and contain relatively

straightforward computations. Their control logic, however, can be rather complex and

is highly configurable via parameters (e.g. initialization, thresholds, comparison values

etc).

123

4. Approach Paper III

Evolution: There are two sources of evolution in such a product family: (1) once a new

product is derived from the core components, changes are required to adapt the reused

components to product-specific requirements (cf. [21]); and (2) it is not uncommon for

product-specific components to ”mature” into shared components, for instance due to an

improved implementation, bug-fix, or an emerging requirement for the whole product

family. In such cases, other (deployed) products of the family often need to be updated

with the improved components as well. This can cause a considerable ripple effect

throughout the product family. There is currently a designated retrofit team whose

task is to take an exiting (deployed) product in the product family and update it to

the latest revision of the shared components. Correctly updating the product family

(and the existing deployed systems) requires a thorough understanding of the potential

impact of such a change. Although a considerable amount of documentation exists for

each (version of a) component to facilitate understanding, our interviews with safety

domain experts and software engineers also indicated that the evolution process still

depends on considerable tacit knowledge. It is inherently difficult to communicate this

information to all developer groups; and it is vulnerable to be forgotten or lost once

team members are substituted.

Research Question: The question that drives the research presented in this paper is

“Can we devise techniques to carry out fine-grained family-wide change impact analysis

on the source and configuration artifacts of a component-based product family.” The goal

is to provide our industrial partner with (prototype) tools to support the component

evolution and retrofitting activities on their product portfolio.

4 Approach

In the remainder, we use system-level input and sensor interchangeably, and likewise

for system-level output and actuator. We discuss our approach in terms of the studied

product family but emphasize that it is also applicable with other inputs and outputs

than sensors and actuators.

As discussed in Section 2, CIA techniques are characterized by the type of program

information that is represented by the nodes and edges in the dependence graph, and the

type of graph traversal that is performed. Considering the significance of connections

between sensors and actuators in the domain of our case study, we select the information

flow from sensors to actuators as backbone of our CIA technique.

Tracking Information Flow: In a previous study [7], we proposed a method for tracking

the information flow between sensors and actuators using program slicing [22]. In

that work, we also addressed the challenge of constructing a system-wide dependence

graph of a single component-based system which was successfully used for system-wide

program slices. It could be argued that having the necessary tooling to compute system-

wide slices in component-based systems makes product-line-specific CIA obsolete. By

124

Paper III 4. Approach

ProdA.CompB

o2

o1

port

port instance

i2

i1
ProdA.CompA

o2

o1
i1

i2

port-type data dependency
intercomponent data dependency
port-instance data dependency

ProdA.CompC

o1

i1

i2 c2.o1

c1.o1

b1.i1

b1.i2

b2.i1

b2.i2

a1.o2

a1.o1
a1.i1

a1.i2

b1.o1

b2.o1

b1.o2

b2.o2

c1.i1

c2.i1

c1.i2

c2.i2

a1.i3
i3

C

D

first use
program point
last may-kill
program point

ProdB.CompB
o2

o1

i2

i1

ProdB.CompD
o2

o1
i1

i2

ProdB.CompC

o1

i1

i2
c2.o1

c1.o1

b1.i1

b1.i2

b2.i1

b2.i2

d1.o2

d1.o1d1.i1

d1.i2

b1.o1

b2.o1

b1.o2

b2.o2

c1.i1

c2.i1

c1.i2

c2.i2

d1.i3
i3

Component B
o2

o1

i2

i1

ComponentN

i1

i2

i3
CDGB

Component C

CDGC

o1

i1

i2

Product A

Product B

x=f(i1);

o2=g(y);

Component N
o2

o1
i1

i2

i3

component data dependency

ProdB.CompE

o1

i1

i2

e1.i1

e1.i2

e1.o1

A

B

F

component summary edgeComponent
Dependence Graph

Component
Summary Node

E

CSNA

CSNC

CSNB

CSNC

CSND

CSNB

CSNE

Figure 1: Family Dependence Graph (tags A–F are explained in the text)

125

4. Approach Paper III

replicating the method in [7], one could (1) build a separate SDG for each product in

the product family, (2) compute a straightforward system-wide slice with each actuator

as the slice criterion (to find all the program points with a potential affect on that

actuator), (3) and take the intersection of each slice with the change set and report those

with a non-null intersection as being impacted. However, this straightforward approach

would certainly not scale up to the hundreds of product installations in our product

family and hundreds of actuators in each product. Not capturing the commonality and

variability would lead to a combinatorial explosion of alternatives to analyze, especially

since components can be included multiple times in a product (e.g. voter components).

Family Dependence Graphs – We build on our previous technique to construct a

homogeneous family-wide dependence model that can represent all members of a large-

scale component-based product family. Apart from scalability, the target dependence

model should be amenable to CIA, with comparable precision to fine-grained program

slicing. The overall approach to construct this dependence model, which we call the

Family Dependence Graph (FDG), is as follows:

1. For each component in the system, we build a component dependence graph (CDG)

by following the method for constructing inter-procedural dependence graphs [23]

and taking the component source code as “system source”. This CDG contains

the fine-grained program points and data- and control-dependencies from the

component’s implementation (Figure 1, tag A).

2. To efficiently represent components in members of the product family, we define

the notion of a Component Summary Node (CSN). A CSN is a projection of

a component’s CDG from the perspective of its externally visible interface, i.e.

without the fine-grained dependence graph. There’s a separate CSN for a given

component, and for each product containing an instance of that component

(Figure 1, tag B).

3. To link a CDG and its counterpart CSN in a product, dependencies are added from

each input port of a CSN to the corresponding input port of the CDG (Figure 1,

tag C), and from each output port of that CDG to the corresponding output port

of the CSN. This makes the CDG appear “in-line” with its product-specific CSN.

4. For each product, the configuration artifacts are analyzed to build a product-

specific inter-component dependence graph (ICDG). This graph captures the

network of interconnected component instances via their externally visible in-

terfaces. Construction of the ICDG is done in the same way as the component

composition framework uses to set up the correct network.

5. The product system-wide dependence graph (PSDG) is constructed by integrating

the product’s ICDG with the CSNs of the components (Figure 1, tag D). Concep-

tually, the construction can be seen as taking the ICDG and substituting each

126

Paper III 4. Approach

“component instance node” with the CSN for the given component. As in [7], we

use structured IDs for port-instances (Figure 1, tag E) to preserve context during

slicing.

The union of PSDGs for all members of the product family forms the FDG, where

products are interconnected via their shared components. This homogeneous model of

the product family can be sliced using standard graph reachability algorithms with one

minor adaptation to preserve the calling context of components: whenever a component

CDG is entered via a port-instance, we save the instance ID, and when exiting that

component, we only continue slicing on connections that match the saved instance ID.

This is analogous to how procedure calls are handled in [23].

To avoid repeating expensive slicing in later stages of our impact analysis, we

enrich our CDGs with Component Summary Edges (CSEs) that capture component-

wide dependencies between component input and output ports. CSEs show which

input ports can affect which output ports, but abstract away all the details on how the

information flow is realized. For each component C, we enrich the respective CDGC by

slicing all output ports and including the summary edge On → Im if input port Im is

included in the slice for On (Figure 1, tag F). The size of the slice, i.e. the number of

the program points included in that slice, is added as a property to this summary edge.

Note that, CSEs can be (and in our case are) one-to-many relations, i.e. more than one

component input port can affect a single output port. In such cases we use an aggregate

summary edge, which connects a given output port to all of the affecting input ports,

and the slice size becomes an attribute of this aggregate edge.

We develop our CIA approach based on the above-mentioned FDG in such a way

that it leverages the fine-grained information inside the CDGs and balances them with

the coarse-grained CSNs and product-specific ICDGs to trade-off between precision and

scalability. The steps are as the following: (1) Detect the Change Set: what has been

modified? (2) Find the Initial Impact Set: what has changed from the external interface

of a modified component? (3) Find the Final Impact Set: what products, and which

sections of those products, will be impacted?

Detect the Change Set (CS): We focus on syntactic changes as no static analysis

method can guarantee to infer the semantic differences between two versions of a

program. The process retrieves the syntactic differences of two consecutive revisions of

a given component using a source-differencing tool available in most of the mainstream

software revision control systems (Figure 2, case 1). Using a pure text-based tool, such

as SVN “diff”, has the benefit that no syntactic change will go undetected. However as

a downside, ineffective trivial modifications to the source code are also retrieved (e.g.

adding comments). Such modifications are obviously irrelevant with respect to CIA, and

we remove them by comparing the retrieved modifications against the CDG to filter out

the pseudo changes, i.e. changes in the source code that do not have a counterpart in

the component’s CDG (Figure 2, case 2). Hereinafter, a CS node stands for a program

127

4. Approach Paper III

1

Line Change
Change Set Node

I1

I2

O1

O2

2

I1

I2

O1

O2

3

I1

I2

O1

O2

Program Point
Change in IIS

Source Code
Dependency

Figure 2: Detecting the CS and IIS

point in the CDG of a component whose counterpart source code has changed.

Find the Initial Impact Set (IIS): To estimate the ripple effects of a modification in a

component-based system, we first need to detect the consequences of the source-changes

from the perspective of the component’s interface — hereinafter called the the Initial

Impact Set (IIS). By component interface in this product family, we mean the set

of input and output ports of the component. As the IIS will later seed the process

of propagating ripple effects throughout the product family, the accuracy of the IIS

will have a great impact on the final precision of our CIA. Therefore, considering the

safety-critical characteristic of our case study, we do not intend to trade-off precision

for scalability at the IIS level.

To this end, we slice through the fine-grained CDG of the updated component,

with each output port as the slicing criterion. This step tracks the new intra-component

information flows, and at the same time, extracts the new set of CSEs and their slice

sizes. The following two cases will be included in the IIS on the original component:

1. Any output port whose program slice has a non-null intersection with the CS

nodes (Figure 2, case 3).

2. Any difference between the new enriched CDG and the previous one (with respect

to component interface ports, summary edges, and their slice size).

At a first sight, it might appear that the second item in the above list makes the first

item obsolete as all cases of the first item are also included in the second one. However,

a more detailed look on the cases entails their differences in the context of CIA, as

exemplified in the following: Consider the case of two component revisions (with input

port I1 and output port O1), whose only difference is changing the program statement:

“O1 = I1 + 1;” to “O1 = I1 + 1000;”. This source modification does not yield any

difference in the structure of the enriched CDG, nor does it change the slice size of O1

between the two versions. Therefore it will not be caught in the second item, while

it will be caught by the first one as the program point(s) that represent the modified

source line will result in a non-null intersection with the backwards slice from O1. As a

result, the first item is needed for the purpose of a “safe” analysis. Likewise, the second

item is not a subset of the first item since the modifications in the new version of the

128

Paper III 4. Approach

component, might occur next to and disjoint to the previous code. (e.g. adding a new

pair of input and output ports to a component and not changing code which belongs to

previously-existing ports).

We emphasize that one component-wide slice is performed for each port of a given

component type (approximately 10-30 ports for each component), and not for each

component instance (up to thousands of instances of each component). Therefore, the

scalability of our approach will not depend on the size of the deployed systems or the

number of component instances, but on the number of component implementations and

the number of ports belonging to each component.

Find the Final Impact Set (FIS): Before discussing the propagation rules, we remark

that change requests that alter the overall black-box behavior of a product (e.g. adding

a new actuator), are not considered in our CIA approach. Such modifications are

represented by a new cause & effect matrix (Section 3) by adding/removing sensors

or actuators, and definitely call for maintenance effort (e.g. testing and certification).

However, it is unlikely that the expected behavior of all sensors/actuators are altered in

an existing product. It is in such cases where CIA can be especially valuable as it can

limit the maintenance effort to only the new sensor/actuators, should the previously

existing behavior of the system be reckoned as intact by CIA.

Similar to most existing CIA techniques, we propagate the prospective ripple

effects of the detected IIS throughout all products of our product family, by forward and

backward traversal of our intermediate system representation, i.e. the FDG in our case.

We call this impact set the Final Impact Set (FIS), which contains all sensor-actuator

pairs whose information flows have been affected by the source modification.

To discuss different change propagation scenarios, we distinguish several atomic

IIS cases, graphically shown in as pre-change (V1) and post-change (V2) versions in

Figure 3:

1. Only the slice size of a CSE is changed (Figure 3, #1).

2. A CSE between a pair of component input and output is added or removed

(Figure 3, #2-3).

3. A component input or output port is added or removed (Figure 3, #4-7).

Figure 3, #8-9 show refinements discussed later.

Realistic IIS cases can, and usually do, contain more than one of the above-

mentioned items at the same time. However, we separate such compound cases into the

atomic cases to conduct impact analysis and aggregate the results afterwards.

Traversal of the FDG is done by a straightforward reachability analysis on coarse-

grained summary dependencies (CSEs) and inter-component dependence graph (ICDG).

For clarity, we discuss the highlights with respect to two versions of a hypothetical

component (C.V1 and C.V2 in Figure 3).

Case 1 (Figure 3, #1) – Fine-grained slice sizes change and coarse-grained dependencies

are the same: we only need to traverse the existing FGD (forwards and backwards), and

mark all reaching sensors and actuators as FIS. We take the slice size as an approximation

129

4. Approach Paper III

C.V1

I1

I2

O1

O2
C.V2

I1

I2

O1

O2
C.V1

I1

I2

O1

O2
C.V2

I1

I2

O1

O2

C.V1

I1

I2

O1

O2
C.V2

I1

I2

O1

O2

C.V1

O1

O2
C.V2

I1

I2

O1

O2

wo1 wo2

C.V1

I1

I2

O1

O2
C.V2

I1

I2

O1

O2

C.V1

I1

I2

O1

C.V2

I1

I2

O1

O2

C.V1

I1

I2

O1

C.V2

I1

I2

O1

O2

C.V1

I1 O1

O2
C.V2

I1

I2

O1

O2

C.V1

O1

O2
C.V2

I1 O1

O2

I1

I2

wo1 wo2wi1wi1

wi2 wi3

wi1 wi1wo1

wiCSE Added

CSE Deleted Possible Network
Change

Forward Slice Size

Backward Slice Size
Slice Size Changed

wo

wo2

1

2

4

6

8

3

5

7

9

I1

I2

Version One V1
Version Two V2

Figure 3: IIS cases and propagation of ripple effects

of impact, and rank the FIS according to the (absolute) delta in the system-wide slice

sizes. In this scheme, a system-wide information flow whose size is changed by V is

considered equal to an information flow whose size has changed by −V (with respect to

impact), and an information flow with size S1 is ranked higher than one with size S2,

provided that S1 > S2.

Case 2 (Figure 3, #2-3) – Intra-component information flows are added/removed but

the externally visible interface remains the same: system-wide information flows might

change as a result of the changes and may yield different dependence relations between

sensor-actuator pairs. Given that multiple instances of a component might participate

in a single system-wide information flow, it is not enough to propagate the IIS only in

the previous FDG as it only contains the previous CSEs. In this case we need to conduct

two rounds of propagation: once with the previous enriched CDG, and once with the

new CDG of the component in the FDG. The FIS will be the union of the results from

the two propagations, as we are interested in every change in the externally-visible

behavior of the system (e.g. an actuator engaged due to a sensor that was previously

ineffective, and vice versa). Any differences in system-wide information flows will be

130

Paper III 5. Prototype Implementation

marked as cases with definite impact. The remaining information-flows will be ranked

as in case 1.

Case 3 (Figure 3, #4-7) – Externally-visible interface of the components are changed:

we should conduct the propagation in two phases, similar to Case 2. However, in case

the inter-component connections (the ICDG in our model) have also adapted to the

component’s new interface, we should conduct the second round of propagation with

an extra twist: with the new ICDG in place. We point out that addition/removal of a

component port does not necessarily imply that the ICDG of the product will change,

as it is not uncommon to replace a component with a revision which has an extended

interface, while the product only uses the previously existing interface. For instance,

consider the case of a revised component who contains a number of bug-fixes and also

introduces more optional capabilities into the product family. In such cases we do not

need to conduct the second round of propagations with the new ICDG.

Refinement (Figure 3, #8-9) – Enriching the FDG with forward component-wide slice

sizes can improve the accuracy of change propagation in a number of cases: Figure 3,

#8, shows O1 being affected by I1 and I2 in version V1. This could for example be the

results of the following two program statements: “O1 = I1 + 1;” and “O1 = I2 + 2;”. In

V2, we change the latter to “O1 = (I2 > 0) ? 0 : 1;”, and the size of the backward slice

from O1 changes from Wo1 to Wo2. This will put O1, I1, and I2 in the IIS. However,

considering that forward slices from I1 in the two versions have not changed, we can

conclude that the modifications have only affected the information flow between O1

and I2, and not I1. Therefore, we trim the IIS accordingly and avoid propagating the

changes from I1 as they would be false-positives. Figure 3, #9, shows a more involved

case of #8 in which the information flow between O1 and I2 have been completely cut

off. Likewise, by considering forward slice sizes we are able reduce false positives.

Distinguishing atomic parts makes it easier to analyze complex cases, but it does

not affect the FIS, which is computed by taking the union of the atomic cases. However,

some caution is needed for ranking based on slice size: when two atomic changes affect

the same system-wide information flow respectively by size V1 and V2, we rank this flow

once with size |V 1|+ |V 2| to avoid reporting that flow more than once with different

impact scales.

5 Prototype Implementation

This section discusses the implementation of our approach in a tool named Richter.

In [7] we developed tooling to reverse engineer system-wide dependence graphs from

source artifacts of a single component-based system. Richter reuses parts of this work

to develop a homogeneous model from source artifacts of a family of products, which

will be reported briefly in this section.

To enable flexible integration of individual models to build our FDG, we use

131

5. Prototype Implementation Paper III

OMGÕs Knowledge Discovery Meta-model (KDM) [24] as a foundation for representing

the various intra- and inter-component dependence graphs. KDM was designed as a

wide-spectrum intermediate representation for describing existing software systems and

their operating environments. KDM is completely language- and platform independent,

making it an ideal match for the purpose of modeling product families with heterogeneous

artifacts.

We use Grammatech’s CodeSurfer [25]17 to create component dependence graphs

(CDGs) for the individual components. The top portion of Figure 4 gives an overview

of the main information that we collect from component implementations to build the

CDGs. Next, these CDGs are traversed using CodeSurfer’s API to inject them into KDM.

We refer to [7] for more details on the mapping between program elements and KDM

classes. The traversal uses the Java Native Interface to drive KDM constructors in the

Eclipse Modeling Framework (EMF). For each program point, we include a pointer to its

origin in the source code for traceability. We enrich the CDGs with additional summary

edges using a simple slicing tool in Java that we have created as part of our earlier work.

Alternatively, we could have defined several “destructive” transformations that create

an additional new model for each CDG, but we prefer to enrich our dependence model

in order to reuse information in multiple applications. To avoid keeping the whole

FGD in memory, we exploit EMF notions of Resource and ResourceSet to compartment

our model and to serialize each compartment separately [26]. For each (version of)

a component implementation we need to build its fine-grained CDG once, and save

this model into a separate EMF Resource. By activating the optional lazy-loading

mechanism of EMF Resources, once a CDG is required to build a PSDG for the first

time, it will be automatically loaded into memory.

Next, we use Xalan-J to analyze and transform the system configuration artifacts

of each product (lower portion in Figure 4) into its inter-component dependence graph

(ICDG). Finally, we use KDM container elements to add the component summary nodes

(CSNs) for each component that is included in a product, and use a straightforward

substitution transformation to integrate the CSNs with the ICDG and create the final

PSDG. The edges between CDG and CSN interface ports are easily mimicked by adding

stereotyped ActionRelationShips (a KDM wild-card meta-model class to be extended by

new meta-model classes).

Our prototype calls SVN “diff” to detect syntactic changes in the source code, but

similar tools can be used instead. With the FDG constructed, we propagate changes

throughout the product family by slightly adapting our straightforward Java slicing tool

to traverse coarse-grained summary edges and accumulating slice sizes along the way.

17http://www.grammatech.com/

132

Paper III 6. Evaluation

Source Code Information

Configuration Information

0..*

1..*

from

from
to

to

DataDependence

ControlDependence

ProgramPointPDG

CompilationUnit

Line#

SourceFile

PortInstance

Intercomponent
DataDependence

ConfigurationFile

PortType

declares
todeclares

from
declares

ComponentInstance

Figure 4: Meta-model describing the main elements used to track information flow across a component-
based system.

6 Evaluation

In the context of large-scale safety-critical systems, two important factors for evaluating

our approach are its accuracy and scalability. Since our CIA technique largely depends

on the quality of the family-wide dependence model that is used as the medium to both

detect changes, and to propagate ripple effects throughout the product family, we focus

on evaluating the accuracy and the scalability of our FDG.

Accuracy: One of the challenges in evaluating the accuracy of our cross-component

approach is determining a gold standard to compare our results to. This is due to the

fact that existing program analysis tools are typically confined to the boundaries defined

by the source code of a single component as they can neither incorporate the component

configuration information, nor heterogeneous programming languages.

We address this challenge in the same way as we did in [7] by increasing our level

of control during the experimental evaluation. In short, we create two code bases and

compare the results of applying (a) our approach, and (b) an existing reliable tool on

these code bases: First, we develop two simple in-house component based products that

closely resemble the architecture of the products described in Section 3. To simulate a

product family, these two products have one shared component. Each product mimics

the component composition framework of our real-world case study by processing

a number of external configuration files and building the inter-component network.

Port declarations, component instantiations, and all component interconnections are

133

6. Evaluation Paper III

described using text-based configuration files. The connection mechanism is simple,

yet general enough to represent most component-based systems, including our case

study. Second, we create another product family which contains the same ingredients as

the first one, but everything is implemented as a homogeneous program. This is done

by replacing the component composition framework by hard-coded connections in the

program’s source code.

The components and configuration artifacts of the first product family are analyzed

using our slicer. Moreover, since the second product family does not depend on external

configuration files and since all aspects are programmed in C, it can be analyzed by

CodeSurfer to set the gold standard in our evaluation. We evaluate the accuracy by

comparing the slices obtained using our tool with the gold standard computed by

CodeSurfer, and looking for any differences in the program points, component instances,

and port instances that are included in a slice. To maximize the fault-revealing potential

and test both system-wide and partial information flow paths, we repeat this comparison

for each system and component output port as the slicing criteria.

Our comparisons show that for each configuration and slicing criterion, both slicing

tools generate the same output for what concerns the components and their interactions.

The slices computed by CodeSurfer also contained the code that was added to the

variants to hard-code the component connections. Since our approach abstracts from

the framework and directly captures the configuration, those program points have no

counterpart in our slices, as was expected. We conclude that we achieve 100% accuracy.

Scalability: We discuss the scalability of our dependence model and fine-grained

system-wide slicing in reference to the evaluation in [7] in recognition of the continuity

in our industrial collaboration. Afterwards, we discuss the effects of coarse-grained

dependencies on the FDG and system-wide dependency analysis, which are specific to

our current study.

As mentioned earlier, the System Dependence Graph (SDG) introduce in [7]

provided a fine-grained dependency model for a single component-based system. We

have developed our FDG based on the same principles and terminology as in [7], but

tailored the dependence model with respect to shared vs. product-specific components.

However, product-specific components can be regard as a special product-line asset

which has been used in only one system so far. According to [21], product-specific

components can, and in reality do, mature into core components once they enrich their

variabilities. In conclusion, if we build our FDG for a hypothetical product whose

components are all specific to that product, the FDG becomes identical to our previous

SDG. Therefore, we developed our prototype tool (Richter) by reusing our previous

implementation reported in detail in [7]. In that paper we demonstrated in detail

that both execution time and model size show linear growth with respect to program

size (measured by LOC). The growth rate was shown to be constant from a number

of industrial code bases ranging from about 100LOC to 100KLOC in size. To give

an impression of the resulting model size, we report that the (KDM) model for the

134

Paper III 6. Evaluation

Table 1: Graph size: fine-grained vs. coarse-grained

Component 1 2 3 4

Fine-Grained
Node # 3010 1864 2518 1592

Dependency# 10386 5915 8702 5220

Coarse-Grained
Node # 23 13 23 21

Dependency# 44 26 50 50

mentioned system with 100KLOC is transformed into 600,000 lines of XMI (78MB),

once serialized on disk.

To efficiently represent components inside PSDGs, we substitute fine-grained

CDGs with CSNs which only contain the externally-visible interface of a component. To

implement this scheme we need one node in the CSN for each component port, and one

edge (ActionRelationShip in KDM) between the port nodes. Apart from that, we enrich

each CDG with coarse-grained CSEs which summarize component-wide information

flows by using a single edge for each component input-output pair that is connected by

program slicing. These two design choices make our system-wide dependency analysis

completely independent from the components’ source code size once the FDG is built.

The efficiency of our dependency analysis is a linear function of the number of component

instances that participate in each system-wide information flow, which is approximately

in the range of 12-20 in the product family we study. To traverse across each competent

instance we need to walk five edges: two edges between port instances and port types

in the CSN, two for the edges between a port in CSN and its counterpart node in

CDG, and one for the summary edge inside the CDG. Traversing such low number of

dependencies in our model takes a trivial time, in the order of milliseconds.

We would like to demonstrate the effectiveness of the coarse-grained dependencies

(i.e. CSNs and CSE) with respect to the graph size. Table 1 reports graph size in

four randomly selected components from a subset of our industrial partner’s software

repository which was accessible to us to evaluate our approach. The first row of the

table shows the number of CDG nodes and edges, corresponding to program points and

data- and control dependencies in the component source code. The second row shows

the number of CSN nodes and CSEs, corresponding to component ports (input and

output) and pairs of input-outputs that are connected together by information flow. As

a reference for comparison, the component dependence graph for “Component 1” has

3010 program points and 10386 dependencies. Its corresponding coarse-grained graph

has only 23 nodes (for each product that has an instance of “Component 1”), and 44

edges (each one connecting input to output directly).

Validity: The above-mentioned evaluation covers the accuracy and scalability of the

FDG and the underlying program analysis technique, i.e. slicing. Although they are an

important determinant in the efficiency of our CIA approach, we acknowledge that a

thorough application of our CIA approach is needed before we can assess its reliability.

135

7. Concluding Remarks Paper III

First and foremost, the precision and recall factors of our CIA needs to be demonstrated

in practice using the software repository of our industry partner. The mentioned

repository contains the actual evolution history of the product family for almost two

decades. We can put to test our CIA approach by choosing a component revision whose

actual ripple effects are known in the repository, and compare our FIS against that.

Likewise, the intuition to associate the scale (severity) of impact with program slice sizes,

which was the basis of our approximate ranking scheme, should be empirically put to

test before it can be adopted as a reliable measure. Both of the mentioned tasks require

long-term collaborations with our industry partner, to closely monitor the applicability

of our approach in day-to-day maintenance tasks in the course of time. This process, in

return, requires integrating our approach in the existing development environments of

our industry partner. We are currently planning and discussing a number of prospective

research avenues with our industry partner to accomplish the mentioned goals.

Discussion: As described in Section 4, a single CDG is built for every component

in the product family, regardless of being a shared or being a product-specific asset.

Therefore, all PSDGs are built by using a much more lightweight Component Summary

Node (CSN). Alternatively, we could build an equally-expressive model without building

separate CDGs and CSNs for product-specific components. As such components appear

only once in the product family, we could embed the original CDGs inside the PSDGs.

One could argue that having separate CSNs for product specific components imposes

extra nodes into the model, albeit only a handful of nodes. We believe such (low)

overheads in model space are negligible given that we get a highly regular, and much

simpler, modeling of the domain in return. Also from a technical point of view, having

the heavy and fine-grained CDGs in one model compartment (together with the lazy-

binding mechanism mentioned in Section 5), makes PSDGs extremely lightweight. This

makes (potentially frequent) executions of CIA even more cost-effective.

7 Concluding Remarks

Integrated Control and Safety Systems (ICSSs) are complex, large-scale, software-

intensive systems to control and monitor safety-critical devices and processes that are

increasingly pervasive in technical industry, such as oil and gas production platforms,

and process plants. These systems are highly-configurable and for deployment in

concrete situations they need to be adapted and configured to different safety logic and

installation characteristics. Component-based development of product families is one of

the main approaches to cope with such a high variability space while controlling quality,

cost and time to market by maximizing the reuse of components between products.

However, software evolution in such products families is arguably more complex

as a result of the increased dependencies that are introduced via shared components.

Change Impact Analysis (CIA) can play a significant role in this process by estimating

136

Paper III 7. Concluding Remarks

the ripple effect of a change, but the heterogeneity of software artifacts hinders a uniform

analysis in product families.

Contributions: This paper proposes a technique for Change Impact Analysis in

component-based product families using a combination of Model-Driven Engineering with

well-established program analysis techniques, such as program slicing. The contributions

of this paper are the following: (1) we recover a Family Dependence Graph (FDG)

which balances the trade-off with precision and scalability, for the purpose of change

impact analysis; (2) we improve the precision of change propagation by detecting the

Initial Impact Set (IIS) using fine-grained dependence graphs; (3) we compute the Final

Impact Set (FIS) by propagating the IIS throughout a family of products via traversal

of lightweight and coarse-grained dependencies — this choice of where to draw the line

between IIS and FIS, and move from fine-grained to coarse-grained dependencies, is the

key decision to balancing precision and efficiency in our approach — (4) we propose

a ranking scheme based on approximations of the scale of impact using program slice

sizes; (5) we present the transformations that helped us to achieve these models, and

discuss how we developed a prototype tool (named Richter) based on a standardized

language-independent meta-model (KDM) to ensure interoperability and generalizability.

The proposed approach is not limited to the proposed domain and can be applied on

systems with inputs and outputs other than sensors and actuators. The evaluation

indicates that it scales well to the constraints of real-world product families.

Future Work: We see several directions for future work: First, as mentioned in Section 6,

we intend to empirically assess our approach to evaluate the precision and recall factors

of our analysis in an industrial context. In addition, our approximation of impact

scale based on program slice sizes, needs to be validated by closely monitoring how our

approach is used in practice, and by gathering feedback from the so-called retrofit team

(Section 3). We also intend to try out the effect of different weighting schemes on our

ranking mechanism, based on the type of the program points involved in the slice. For

instance, we can assign a larger weight for a node in a condition clause than a node

in an assignment statement, assuming that a change in a condition clause should take

priority to another change with the same size with no condition clause. These studies

require long-term close collaborations with our industry partner.

The externally-visible interface of the components in our case study, is highly

“data oriented”, i.e. components interact by sending and receiving data to/from each

other. This characteristic makes them very amenable to information flow analysis, which

is the foundation for our impact analysis. One line of future work is to investigate

the application of our approach in component-based system whose interaction is via

API calls. One main difference of such systems with our case study is that component

interactions follows a ”call-and-return” scheme. The effect of such interaction schemes

on the homogeneous dependence model needs to be studied.

Apart from CIA techniques, another approach for estimating the effects of software

change is investigating how a given system has evolved in the past [27]. Several studies

137

Bibliography Paper III

have reported on cases that uncover co-evolution trends among software artifacts,

by applying data-mining techniques on the previous versions of the artifacts and

other related historical data (e.g. bug reports and the meta-data in version control

software) [28]. There is an emerging trend to integrate the two approaches to increase

the precision of software evolution estimations [27, 29]. It would be interesting to

investigate how our CIA-based estimations can be enhanced using the historical evolution

information from our industrial partner’s software repository.

Acknowledgments: We thank the safety experts and software engineers from Kongsberg

Maritime that participated in our workshop and interviews for their time and feedback.

Bibliography

[1] M. Matinlassi, “Comparison of software product line architecture design methods: COPA,

FAST, FORM, KobrA and QADA,” in Int’l Conf. Softw. Eng. IEEE, 2004.

[2] M. Svahnberg and J. Bosch, “Evolution in software product lines: two cases,” J. Software

Maintenance: Research and Practice, vol. 11, no. 6, 1999.

[3] S. Bohner and R. Arnold, Software Change Impact Analysis. IEEE, 1996.

[4] S. Lehnert, “A taxonomy for software change impact analysis,” in Int’l Ws. Principles of

Softw. Evolution (IWPSE-EVOL). ACM, 2011.

[5] M. J. Harrold, D. Liang, and S. Sinha, “An Approach To Analyzing and Testing

Component-Based Systems,” in ICSE Ws. Testing Distributed Component-Based Systems,

1999.

[6] A. Rountev, “Component-Level Dataflow Analysis,” in Int’l Conf. Component-Based

Softw. Eng. (CBSE). Springer, 2005.

[7] A. R. Yazdanshenas and L. Moonen, “Crossing the Boundaries while Analyzing Heteroge-

neous Component-Based Software Systems,” in IEEE Int’l Conf. Softw. Maintenance,

2011.

[8] X. Sun, B. Li, C. Tao, W. Wen, and S. Zhang, “Change Impact Analysis Based on a

Taxonomy of Change Types,” in Computer Softw. and Applications Conf. IEEE, 2010.

[9] S. Lehnert, “A Review of Software Change Impact Analysis,” Techn. Univ. Ilmenau,

Report ilm1-2011200618, 2011.

[10] M. A. Chaumun, H. Kabaili, R. K. Keller, and F. Lustman, “A change impact model for

changeability assessment in object-oriented software systems,” in European Conf. Softw.

Maintenance and ReEng. IEEE, 1999.

[11] Z.-j. Wang, X.-f. Xu, and D.-c. Zhan, “Agility Evaluation for Component-based Software

Systems,” J. Information Science And Engineering, vol. 23, no. 6, 2007.

[12] L. Yan and X. Li, “An Interface Matrix Based Detecting Method for the Change of

Component,” in Int’l Symp. Information Science and Eng. IEEE, 2008.

[13] C. Mao, J. Zhang, and Y. Lu, “Matrix-based Change Impact Analysis for Component-

based Software,” in Computer Softw. and Applications Conf. IEEE, 2007.

[14] T. Feng and J. I. Maletic, “Applying Dynamic Change Impact Analysis in Component-

based Architecture Design,” in Int’l Conf. Softw. Engineering, Artificial Intelligence,

Networking, and Parallel/Distributed Computing. IEEE, 2006.

138

Paper III

[15] H. Cho, Y. Cai, S. Wong, and T. Xie, “Model-Driven Impact Analysis of Software Product

Lines,” in Model-Driven Domain Analysis and Softw. Development: Architecture and

Functions. IGI, 2011.

[16] J. Dı́az, J. Pérez, J. Garbajosa, and A. L. Wolf, “Change impact analysis in product-line

architectures,” in European Conf. Softw. Architecture, 2011.

[17] C. Szyperski, Component Software: Beyond Object-Oriented Programming, 2nd ed. AW,

2002.

[18] A. R. Yazdanshenas and L. Moonen, “Tracking and Visualizing Information Flow in

Component-Based Systems,” in IEEE Int’l Conf. Program Comprehension (ICPC), 2012.

[19] J. Bosch, Design and Use of Software Architectures: Adopting and Evolving a Product-Line

Approach. AW, 2000.

[20] L. Hatton, “Safer language subsets: an overview and a case history, MISRA C,” Informa-

tion and Software Technology (IST), vol. 46, no. 7, 2004.

[21] S. Deelstra, M. Sinnema, and J. Bosch, “Product derivation in software product families:

a case study,” J. Systems and Software, vol. 74, no. 2, 2005.

[22] M. Weiser, “Programmers use slices when debugging,” Communications of the ACM,

vol. 25, no. 7, 1982.

[23] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using dependence graphs,”

ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 12, no. 1,

1990.

[24] OMG, “Architecture-Driven Modernization (ADM): Knowledge Discovery Meta-Model

(KDM) - v1.2,” 2010.

[25] P. Anderson, “90% Perspiration: Engineering Static Analysis Techniques for Industrial

Applications,” in IEEE Int’l Working Conf. Source Code Analysis and Manipulation,

2008.

[26] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse Modeling

Framework 2.0. AW, 2009.

[27] H. Kagdi and J. Maletic, “Software-Change Prediction: Estimated+Actual,” in IEEE

Int’l Ws. Softw. Evolvability, 2006.

[28] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy of approaches for

mining software repositories in the context of software evolution,” J. Software Maintenance

and Evolution: Research and Practice, vol. 19, no. 2, 2007.

[29] L. Hattori, S. Jr, F. Cardoso, and M. Sampaio, “Mining Software Repositories for Software

Change Impact Analysis : A Case Study,” in Brazilian Symp. Databases (SBBD), 2008.

139

Paper IV

Cross-language program analysis
for the evolution of multi-language
software systems: a systematic
literature review

141

142

Cross-language program analysis for the evolution

of multi-language software systems: a systematic

literature review

Amir Reza Yazdanshenas, Leon Moonen

Software Engineering Department, Simula Research Laboratory,

P. O. Box 134, N-1325 Lysaker, Norway

Abstract – Contemporary software systems are rarely implemented uniformly in one

programming language, and delivered in one type of development artifact. Instead, it is

common practice to use the programming language that fits best to develop each part of

the system. Moreover, in large-scale legacy software systems, the maintainance process

often has to deal with several programming languages and artifacts simultaneously. This

heterogeneity complicates most system-wide tasks in the evolution of such multi-language

systems, as cross-language dependencies and interactions are substantially more difficult

to identify and manage.

This paper seeks to provide a basis for the improvement of software evolution of multi-

language systems, by assessing the state of the art in cross-language program analysis,

and discussing the implications for research and practice. We conduct a systematic

review over the available literature in seven digital libraries, to find the relevant primary

studies on cross-language program analysis, and identify additional studies with manual

snowballing. We classify the studies based on several criteria, including their purpose

(why), the adopted or suggested approach (how), the information leveraged in each

programming language or artifact (what), and the conducted evaluation (quality). Our

investigation identified 75 relevant papers, which were analysed in depth to answer

eight research questions. The results include objective findings on the diversity of the

applied techniques, application domains, programming languages, and reliability of the

approaches. Building on these findings, several implications for research and practice

are discussed, including potential breakthroughs based on use of historic data, and

possible negative effects of having a shortage of community-driven research.

Keywords – systematic literature review, cross-language, program analysis, source

code analysis, multi-language software systems

143

1. Introduction Paper IV

1 Introduction

This paper reviews the available literature on the topic of cross-language program

analysis, which is applied to the maintenance of Multi-Language Software Systems

(MLSS). By MLSS, we mean those systems that are implemented in more than one

programming language, or a combination of programming languages and other types

of software development artifacts, such as web page scripts, configuration artifacts,

deployment descriptors, database-related artifacts, etc.

The domain of programming language design and implementation witnesses a

constant stream of new work aimed at developing “better” languages, for example

by improving the ability to define abstractions, adding constructs for particular de-

sign paradigm, or improving aspects such as expressive power, simplicity, readability,

portability, extensibility, efficiency, and many more. This phenomenon has resulted in

hundreds, if not thousands, of general-purpose and domain-specific languages

However, like most other engineering problems, there is no silver bullet in language

design, and designers need to trade off many of the (often contradictory) aforementioned

criteria. Faced with the effects of these trade-offs, it has become common to use multiple

programming languages in a single software system, each solely for the purpose they

were originally built for, following the idea of language-as-a-tool. In the 1990s, at least

one third of the applications developed in USA were known to utilize two languages, and

10% of the applications were estimated to use three or more languages [76]. Nowadays,

these percentages have grown extensively, and it is no longer surprising to see a team

of software engineers use up to 30 different programming-, scripting-, markup-, and

configuration languages to built large-scale software systems [77].

The progress in component-based development, popularity of domain-specific

languages [78], ubiquity of web-based applications, and widespread use of software

frameworks and middle-ware have all contributed to the rise in MLSS. Apart from

developing new systems using multiple languages, the integration of legacy software

in systems-of-systems is another source of MLSS. For all these reasons, many have

perceived language heterogeneity as a perpetual issue in software engineering [79].

A recurring research topic in software engineering is program analysis: the (semi-

) automated investigation of software artifacts to understand and reason about the

structure and behavior of a system [80]. Program analysis is an enabling technique for

numerous essential activities during software development and maintenance, ranging

from efficient compilation and comprehension of a system, to more specific tasks such

as refactoring and clone detection. There are a number of long-standing challenges

that stand in the way of efficient and wide-scale adoption of program analysis tools

in software engineering [80]. One of these challenges is dealing with the linguistic

heterogeneity in MLSS, which is the topic of this systematic literature review.

This paper reviews the available literature concerning cross-language program

analysis on the diversity of the applied techniques, application domains, programming

144

Paper IV 2. Scoping and Terminology

languages, and on the strength of the findings. We seek to categorize the proposed

approaches, and identify trends where possible. Our aim is to help researchers in

identifying proven techniques in exercised areas, as well as the open areas wherein

research still falls short. Moreover, we aim to support practitioners and tool builders as

well, by systematically putting the available knowledge into perspective.

Following the established guidelines of conducting Systematic Literature Reviews

(SLR) [81], we provide detailed documentation on the proceedings of our study. This

includes, amongst others, the challenges that we faced, peculiarities of the domain

literature we came across, as well as a number of “lessons learned.” We have two-fold

goals with this extensive documentation: (1) promoting the reproducibility of our results,

and (2) contributing to the discipline of conducting systematic literature reviews in the

domain of software engineering.

The remainder of the paper is organized as follows: Section 2 presents some

background material, as well as the scope of this review. The review protocol is

documented in Section 3, including the research questions, study selection criteria, and

the process of data extraction and synthesis. The findings of our study are presented

in Section 4, starting with an analysis of the publication (meta)data, and continuing

with a detailed analysis of facts extracted for the primary studies, and the answers to

our research questions. Our interpretation of the findings and their possible implications

for future research is presented in Section 5. We discuss the limitations of our study

in Section 6, before concluding in Section 7.

2 Scoping and Terminology

Aligning our study with the common terminology in evidence-based software engineer-

ing [82], “multi-language software systems” is the population, and “program analysis”

is the intervention that is analyzed in this study. Our target primary studies dwell

somewhere within the intersection of the mentioned areas, however, not all such papers

fall within the scope of this study, and due to the reasons we shall see, finding the

relevant studies is not always straightforward. In this section we present the necessary

background, and define our target subject. The outcomes of this discussion will later

be used upon protocol development (Section 3), query formulation, and definition of

the study selection criteria.

2.1 What is program analysis?

Program analysis has been a topic of active research from the early days of modern

computing [80, 83]. Applications of program analysis have been sought arguably in every

aspect of software development, for every technological domain, in several (sometimes

disconnected) research communities, and over a long period of time. Some achievements

have been the result of opportunistic attempts to adopt some known technique in a new

145

2. Scoping and Terminology Paper IV

application areas, whereas others have been nurtured by long-term and planned research

initiatives. These factors have resulted in a lack of standardization of terminology, and

considerable vocabulary mismatch in the available literature.18 The (probably healthy)

tendency among authors for creative writing and exploiting the full range of the English

language has perhaps amplified the problem, too. This issue might not stand much in

the way of senior academics, but it does pose challenges for the junior audience, and

more important in our context, the resulting phrase-sensitivity is an impediment for

systematically searching through digital libraries that contain scientific literature.

We follow Binkley’s definition of source code analysis as “the process of extracting

information about a program from its source code or artifacts (e.g., from Java byte

code or execution traces) generated from the source code using automatic tools. Source

code is any static, textual, human readable, fully executable description of a computer

program that can be the description can include documents needed to execute or compile

the compiled automatically into an executable form” [80].

In this SLR, we focus on cross-language program analysis in the context of

supporting maintenance and evolution of existing systems. In this context, many tasks

revolve around the process of “reverse engineering” information from source artifacts by

means of fact extraction and inference of higher level abstractions and relations from

lower level facts (knowledge inference or knowledge discovery). As such, we consider

studies that exclusively focus on a “forward engineering” context (e.g. model-to-code

transformation papers) to be outside our target scope.

Note that we are not only concerned by static program analysis, but also consider

dynamic analysis (in an evolution context) [85] to be within the scope of our study (as

shown by the inclusion of execution traces in the aforementioned definition). However,

since we are interested in analyzing challenges raised by language heterogeneity, studies

that do not discuss cross-linguistic aspects (e.g. analysis of language-agnostic execution

traces) will not be included in this SLR.

2.2 What is cross-language?

Program analysis is generally perceived as a language-specific process, and unless

explicitly stated otherwise, it implies application on a single programming language.

To get better insight into the terminology that is used when describing program analysis

studies that do not concern application on a single programming language, we followed

the established guidelines for conducting systematic reviews [86, 87], and ran a pre-

review to test the relevance of our research questions and the reliability of our query

terms, This proved to be a valuable step to identify the phrases that are commonly

used by researcher and practitioners in the domain. The pre-review revealed that target

18 Note that the use of mismatching, or even contradictory, terminology has been observed be-
tween different standardization bodies, and in some cases among different task forces within a single
standardization body [84].

146

Paper IV 2. Scoping and Terminology

Table 1: The main focus points for characterization identified in the pre-review.

System artifacts Analysis method Development method

multi-language multi-language polyglot programming

multilingual multilingual

mixed-language cross-language

heterogeneous language-independent

polylingual language-agnostic

papers typically19 characterize themselves by either focusing on the system’s artifacts,

on the analysis method used, or on the development method used. We give an overview

of the various characterizations in Table 1. One could argue that polyglot programing is

an instance of artifact focus, but we decided to include it as separate category because

those papers treat it as a development method, not as a system characteristic, and the

resulting terminology would affect the choice of search terms in any follow-up studies.

In order to better scope the target of this study, we distinguish the following

conceptual approaches to the analysis of multi-language software systems:

1. Single-language analysis: the use of two or more intra-language analyses to study

each single-language portion of the system independently and individually, each

using a separate analysis tool. Obviously, in this case portions of the overall

structure and behavior of the system that are realized only through inter-language

interactions are not covered in the analysis (Figure 1a). As an example of this type

of analysis, consider language specific clone detection techniques that typically

operate at the function level or below.

2. Multi-language analysis: the use of one analysis method (or tool) that, generally

by means of a common representation, is capable of analyzing different languages,

but still analyses the artifacts of each language independently (Figure 1b). For

example, the consistent visualization of software control structure and complexity

for all the modules in a multi-language software system that is provided by the

GRASP tool [88].

This approach is not fundamentally different from the first one, but rather a natural

evolution of it. It primarily results from making the implementation of program

analysis tools more cost-effective by enabling the reuse of tools and techniques

already developed for other languages through the use of common intermediate

representations. This research is closely connected to topics such as language-

independent or language-agnostic code analysis and manipulation, intermediate

source code representation [89, 90], standard exchange formats in-between program

analysis tools [91], retargetable analysis tools [92], etc.

19 Counter examples are covered in Section 3.3.

147

2. Scoping and Terminology Paper IV

cross-language
analysis approach

multi-language
analysis approach

single-language
analysis approach

.java.c

an
al

ys
is

 to
ol

an
al

ys
is

 to
ol

.java.c

an
al

ys
is

 to
ol

.java.c

an
al

ys
is

 to
ol

A B C

Figure 1: Single-, multi-, and cross-language analysis approaches applied on multi-language systems.
Only the cross-language analysis approach covers the interaction of multiple languages.

3. Cross-language analysis: the analysis of the whole system as a single entity;

not only covering all software artifacts, but also incorporating the structural or

behavioral relations that are realized through inter-language interactions across

artifacts (Figure 1c). As an example of this analysis, consider the system-wide

information flow tracking through a combination of C modules and a third party

component composition framework, as discussed in [93], or the visualization of

system-wide call graphs in a MLSS.

The scope of this study is cross-language analysis as described in the last item above.

However, to avoid missing potentially relevant work, the focus is not exclusive: all

papers that discuss at least some cross-language analysis aspects are considered relevant

to our study, even if the analysis approach would not primarily be categorized as

cross-language analysis.

2.3 Borderline studies

Heterogeneity is a challenge that applies to various areas of software engineering.

Although programming language is only one source of heterogeneity,20 it is already broad

enough to intersect with several research topics.

While we are not aware of any study that explicitly opposes to the distinction

20 Other examples include processor and data representation heterogeneity.

148

Paper IV 2. Scoping and Terminology

between cross-language and multi-language analysis discussed in the previous section,

making this distinction is far from commonplace. Many authors do not use the term

“cross-language” (or “cross-lingual”) analysis, but instead report on their approaches

as a form of “analysis of multi-language systems.” Note that this does not settle the

ambiguity whether their approach includes cross-lingual relations or not. In some cases,

both authors of this SLR had to review a paper in great detail, and debated all the

available information, before a consensus could be reached.

On the other hand, there is a large amount of studies that merely mentions cross-

language program analysis in passing, and their treatment of the topic is limited to a

few auxiliary clauses. For instance, in [94] the authors propose a methodology to specify

cross-language interactions among DSLs (using a separate DLS), and as a prerequisite

they do mention that cross-language interactions need to be identified before hand.

However, as the focus of the paper is elsewhere, the discussion then proceeds in other

directions. The authors of this SLR reviewed the paper and discussed its contributions

to reach a consensus on inclusion (Section 3.4). We decided to exclude this paper from

the study, and do so with similar papers in which cross-language program analysis is

merely an auxiliary part of the paper. A good indicator for evaluating such papers was

to how many of our research questions (see Section 3.2) the paper provided data points.

Although the number of cases were both evaluators disagreed in their verdict

was relatively small, it made us aware of the intricate judgments that surround the

design and discussion of multilingual and cross-lingual analysis, and the wide range

of possible interpretations by different authors on the topic. For reproducibility, we

discuss a number of research topics that we considered not relevant to this specific SLR,

but which were found during the pre-review based on our query terms:

1. Data integration in heterogeneous data base systems by means of ontologies

synthesized from run time data.

2. Studies with an exclusive focus on compiler technology with no direct connection

to software evolution.

3. Enabling interoperability between (a heterogeneous collection of) standalone

software systems via (black-box) bridging technologies, such as web-services,

service orchestration, software agents, etc [95].

4. Studies that focus on Natural Language Processing (NLP) to analyze multiple

natural languages (e.g., multi-language textual content of webpages [96]).

5. Studies that purely analyze models of software [97, 98], with no consideration of

programming languages or model extraction/reconstruction from source artifacts.

6. Low-level embedded software, such as System-on-Chip engineering, FPGA pro-

gramming, digital signal processing, hardware description languages like VHDL

and Verilog, etc.

149

3. Review Protocol Paper IV

7. Studies that concern recording/playback and analysis of black-box behavior of

subsystems (e.g. their network interactions, [99]).

8. Retargetable program analyzers that can be configured cost-effectively to handle

other languages, but the paper does not discuss analysis of MLSSs as a unity [100].

Although these approaches are likely adaptable to cross-lingual situations, we do

not include them unless this application is explicitly discussed in the paper.

9. Studies whose approach could be applied to cross-language analysis, but the paper

does not demonstrate or refer to such applications (e.g. [101, 102]).

10. Purely language-agnostic, or language-transparent [103] techniques that are com-

pletely insensitive to the underlying programming language. We focus on tech-

niques to go across the language boundaries, not in techniques that avoid them.

11. Studies that are aimed at integrating several (heterogeneous) program analysis

techniques on a single programming language [104].

12. Studies that analyze if various dynamically generated outputs of a program

conforms to a different grammar. For instance, [105, 106] use abstract-parsing

techniques to check whether the generated output of a, say, JSP script qualifies as

a well-formed HTML or SQL. The analysis of each language happens separately,

and cross-lingual interactions are not included.

We remind the interested reader that some of these excluded topics can be of interest

when investigating approaches for cross-language analysis. Nevertheless, we consider

such papers outside the scope and purpose of this SLR, because they do not explicitly

contribute to literature on cross-language analysis.

Overall, we take a conservative approach while judging the relevance of such

borderline studies, and consider only those papers that: (1) are relevant to program

analysis and software evolution, (2) analyze information derived from artifacts written

in at least two different (computer) languages, of which at least one programming or

scripting language, and (3) contain a non-trivial discussion of the relevant cross-lingual

analysis aspects.

3 Review Protocol

This SLR was carried out as a series of discrete steps, closely following Kitchenham’s

guidelines for conducting systematic literature reviews in software engineering [81], and

adapted to the characteristics of our study topic. This section presents the review

protocol, which details the procedure that was followed during the course of the study.

The protocol entails: the research questions, the search strategy, the study selection

(i.e. inclusion and exclusion) criteria, data extraction procedures, and data synthesis

methods.

150

Paper IV 3. Review Protocol

Table 2: Most frequent bigrams (with window size 2, 3 or 4) in the titles, abstracts and keywords of
documents in our test collection.

Bigram Freq.

reverse engineering 45

source code 33

software systems 23

multi language 19

case study 16

programming languages 15

analysis tools 13

meta model 12

language independent 12

engineering tools 12

component based 12

Bigram Freq.

abstract software 12

software engineering 10

software development 10

reverse tools 10

program analysis 10

paper presents 10

multiple languages 10

language software 9

cross language 9

conceptual model 8

abstract paper 8

Bigram Freq.

web applications 7

source models 7

prototype tool 7

programming language 7

multi software 7

language systems 7

language dependencies 7

island grammars 7

intermediate representation 7

dependency analysis 7

3.1 Pilot Study

When defining a review protocol, it is strongly suggested to conduct a small pilot study

to check the effectiveness of the (draft) protocol and possibly make corrections, before

one sets out to conduct the full study.

For the pilot study, we created an initial collection of about 40 papers, all of

which were considered highly relevant to the topic of our study, that is intended as

test set for our developing our protocol and queries. This collection was compiled from

(1) hand-picked papers, based on our knowledge of the domain, (2) the related work

mentioned in milestone cross-lingual analysis papers, and (3) querying the most obvious

phrases of “multi-language” and “cross-language” against Google Scholar, and the IEEE

and ACM digital libraries.

The papers in the test set were used in three different ways: First, the test set

was used to identify phrases that are commonly used in the domain, to support query

formulation. To this end, the titles, keywords, and abstracts are extracted from the

individual papers to create a corpus, which, after filtering out stop-words (e.g. a, of, who,

been, etc.), is subjected to a standard n-gram phrase analysis.21 To cancel out the effects

of having different word order or interspersed words (e.g. “analyzing multi-language

systems,” and “analysis of multi-language software systems”), different bigrams are

extracted using window sizes of resp. 2, 3, and 4. Although most of the generated

bigrams were too general to be effective search terms (such as “source code” and “case

study”), there were other bigrams, such as “web applications” and “component-based”,

that hinted at ways to strengthen our query terms. An overview of the most frequent

bigrams is shown in Table 2).

21 We use count.pl from T. Pedersen’s Ngram Statistics Package (NSP), available from
http://search.cpan.org/dist/Text-NSP/

151

3. Review Protocol Paper IV

Second, the test set served as a minimum acceptance test while experimenting with

different query formulation strategies on the various digital libraries [107]. The query

formulation and search strategy will be discussed in more detail below, in Section 3.3.

Third, full text of the test case papers was carefully analyzed to help define/refine

the data extraction form. Having the test set at our disposal, we could identify what

aspects of cross-language analysis methods were stressed in most papers, and could

complement the data extraction protocol accordingly. The data extraction protocol will

be discussed in more detail below, in Section 3.7.

As the scoping of the study became more clear, about 20 papers from this initial

test set made their way into the final results. Although the rest of the papers did

not pass our criteria to be assessed as cross-lingual and were later excluded from the

study, these papers still helped to fine-tune our scope and terminology, and increased

our insight into the topic. In fact, most of these papers discuss borderline research

topics, such as the language-independent and retargetable program analyzers, that were

discussed previously in Sections 2.2 and 2.3.

3.2 Research Questions

The starting point of this SLR can be summarized as: “What cross-language program

analysis methods have been studied so far?” This question, by itself, might closer

relate to a systematic mapping study than a systematic literature review. Although the

border between the two types of studies is not rigid, mapping studies are more aimed

at providing a overview of a research area, classifying and quantifying the available

literature, the common publication forums, and often contains an analysis of publication

trends over time. In contrast, systematic reviews aim at a deeper analysis of the primary

studies, to establish the state of the evidence [81, 108]. In this perspective, the first

phase of our study can be categorized as a mapping study, aimed to maximize the

coverage of the field, and the second phase adds the deeper analysis of a systematic

literature review. Indeed, some authors advise a mapping study as a prerequisite to a

deeper, complementary systematic review [108].

Note that our analysis does not stop at a coarse-grained statistical analysis of the

study topics, nor do we limit ourselves to the titles and abstracts of the primary studies.

Our study analyses the full text of the papers and seeks answers to specific research

questions, prior to aggregating a qualitative review of the primary studies.

The list of research questions that structure our review is shown in Table 3. Some

of the questions are strictly within the boundaries of a mapping study, whereas others

need a full analysis of the primary studies.

152

Paper IV 3. Review Protocol

Table 3: Research questions.

RQ1 What approaches have been used for cross-language program analysis?

RQ2 What fact extraction methods are commonly used during cross-language program?

RQ3 What types of facts are typically extracted for cross-language program analysis?

RQ4 What internal representations of software artifacts are used?

RQ5 What higher level goals are targeted using cross-language program analysis?

RQ6 Which languages and types of software artifact have been analyzed?

RQ7 Which technological domains attracted most attention in literature?

RQ8 How rigorously are newly proposed approaches tested and evaluated?

3.3 Data Sources and Search Strategy

With respect to investigating the available literature, the general scope of this study

can be described as:

• Population: Scientific literature reflecting on cross-lingual program analysis.

• Intervention: Devising new and/or applying cross-language analysis methods.

• Outcomes: Extent of the studied cross-lingual relations, and the languages in-

volved.

• Experimental designs: No restrictions. All primary studies that concern a relevant

intervention are accepted, on the condition that they demonstrate their relevance

with enough objective data. Our quality assessment criterion (see [81]) is whether

the paper provides an answer for one or more of our research questions.

Our search strategy consists of two consecutive stages: (1) searching digital libraries,

and (2) snowballing.

Digital Library Search – We consult the following seven digital libraries to search for

primary studies:

IEEE Xplore http://ieeexplore.ieee.org/

ACM Digital library http://dl.acm.org/

Wiley Online Library http://onlinelibrary.wiley.com/

IET Inspec http://inspecdirect.theiet.org/

ISI Web of Science http://webofknowledge.com/

ScienceDirect http://sciencedirect.com/

Scopus http://scopus.com/

We do not constrain the search by date, i.e. all entries in these libraries at the time of the

search (March 2014) are potentially of interest. We do limit the search to peer reviewed

papers and books in those repositories were it was possible to specify document types.

153

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://onlinelibrary.wiley.com/
http://inspecdirect.theiet.org/
http://webofknowledge.com/
http://sciencedirect.com/
http://scopus.com/

3. Review Protocol Paper IV

Table 4: Sub-expressions used to build the queries.

E1: (“multi-language” OR “multilingual” OR “cross-language” OR “heterogeneous” OR

“heterogeneity” OR “language independent” OR “language agnostic” OR “multiple languages”

OR “polyglot” OR “polylingual”)

E2: (“program analysis” OR “source code analysis” OR “program analyzer” OR

“source code analyzer” OR “impact analysis” OR “dependency analysis” OR

“analyzing dependency” OR “analyzing dependencies” OR “traceability analysis”

OR “fact extraction” OR “exchange format” OR “intermediate representation” OR

“reverse engineer” OR “reverse engineering” OR “reengineer” OR “reengineering”

OR “program comprehension” OR “comprehending” OR “comprehend” OR

“system comprehension” OR “program understanding” OR “software understanding” OR

“understanding software” OR “understanding program” OR “modernize” OR “modernization”

OR “modernizing” OR “modernise” OR “modernisation” OR “software maintenance” OR

“software evolution” OR “maintainability” OR “evolvability” OR “comprehensibility” OR

“software metrics”)

E3: (software OR system OR program OR “source code” OR “application” OR “applications”

OR “software development” OR “software engineering” OR “component-based” OR

“web application” OR “web applications” OR “web-based”)

Since this is not the case for all libraries, the results still include a number of non-peer

reviewed documents, which are removed in the study selection process (Section 3.4).

The overall query string is constructed by a conjunction of three sub-expressions:

E1 and E2 and E3, corresponding to the population, intervention, and the general

context respectively (see Table 4). To ensure that the digital library search was as

exhaustive as possible, we built on the experiences from the pilot study (Section 3.1)

and extended the query sub-expressions with a series of alternative search terms, while

keeping the number of false positives under control using the conjunction.

The selection of phrases in the query sub-expressions is the result of several test

runs during the pilot study. E1 and E3 form a straightforward characterization of the

population based on results of the pilot study. E3 is particularly useful for decreasing

the number of false positives from general-purpose digital libraries that are not limited

to computer science, such as Scopus. Moreover, E3 is beneficial for queries on computer

science digital libraries, such as the ACM and IEEE Xplore digital libraries, as it helps

to restrict generic query terms, such as “analysis” and “analyse” in E2, to the more

restrictive n-grams that were found in the pilot study.

Wherever possible, we search within the paper meta-data (i.e., the title, abstract

and keywords), because searching against the full text of the papers in a library makes

the precision of the queries very low (i.e., the queries return many false positives) [107].

Note that the query shown in Table 4 is generalized. In practice, each of the

mentioned digital libraries employs their own specific search technology, leaving the

end-user with a non-uniform interface and set of options. Differences that should

be carefully taken into account upon query articulation include: the availability of

154

Paper IV 3. Review Protocol

word expansion services,22 the possibility of limiting (sub)queries to titles, abstracts,

keywords, or full text, the ability, and the syntax, to form nested queries, To support

replication of our study, we report on our specific queries for the various digital libraries

in Appendix A.

The limitations of the aforementioned query facilities, their brittle syntactical

sensitivity, and our lessons learned w.r.t. query formulation are not within the scope of

this paper. However, we do want to point out that the articulation of the query, and its

normalization and unification across the different digital libraries, took considerably

more time and effort than what we originally expected. We want to highlight the

instrumental role of (1) the pilot study, (2) the initial test set of known relevant papers,

and (3) documenting the evolution of the query strings with lessons learned for each

search engine, as a means to effective query articulation.

Snowballing – There are three main approaches to search for primary studies for the

purposes of a systematic review: automated searching in digital libraries, manually

investigating the records of known publication venues, and (backwards) snowballing :

searching for studies in the references of initial seeds or in the references of studies

that were found before. There is no best technique among these when it comes to

completeness, precision, or the required manual effort [109, 110]. Rather, it is advised

to not exclusively depend on a single search technique, but to complement the main

method with the help of a second, or even a third. In our SLR, we use snowballing

to complement the automated search described in the previous section. This step is

completely manual and starts from the set of studies identified in the digital library

search. The criteria to include a paper during snowballing are the same criteria as are

used to check for the relevance during the digital library search.

3.4 Study Selection and Management

In this section we present the process and the criteria used to select the relevant primary

studies that will be included in the final analysis of the review. Figure 2 depicts the

main steps of the study selection process. Our selection approach was based “exclusion,”

rather than inclusion: i.e. at each step only those studies that were clearly not fit for

our review were filtered out, and the rest were left for more thorough selection steps.

Bibliography Management – A drawback of using automated searches over a number of

digital libraries is that they require considerable manual effort to unify the results of the

individual libraries. In our study, we have opted to use the (free) Mendeley Reference

Manager23 as a means for bibliography management, from capturing query results for

individual digital libraries, to identifying duplicate results (e.g., the same study was

found in different libraries), and all successive selection steps. The use of Mendeley

22 For example, stemming a user’s query containing the term “analyzing”, and matching related
terms such as analyze, analysis, analytical, etc.

23 http://www.mendeley.com

155

http://www.mendeley.com

3. Review Protocol Paper IV

Identify search terms, develop
the review protocol

electronic search, retrieve
potentially relevant studies

Exclude studies based on
title

Exclude studies based on
abstract

Exclude studies based on
full text

Snowball

review protocolpilot study

step 1

step 3

step 4

step 5

step 6

n = 2,806

n = 765

n = 451

n = 49

n = 75

Select unique studies across
electronic databasesstep 2 n = 1,767

Figure 2: Study selection process.

has the advantage that we can easily annotate references and organize them using tags.

These annotations can be shared between the authors of the SLR, and any updates

are synchronized to all parties. Moreover, in the later stages of the selection process,

full-text PDFs can be attached, annotated and synchronized.

Step 1. Automated Search – Results from the automated searches using the query

described in Table 4 were gathered in BIBTEX format, in a separate file for each individual

digital library. The search resulted in a grand total of 2806 hits, i.e., potentially relevant

papers, for all seven libraries (step 1 in Figure 2). An overview of the results for the

individual libraries (and various selection steps) is presented in Table 5.

Step 2. Removing duplicate results – We observed that the results from different search

engines had considerable overlap, leading to hundreds of duplicate entries. These

were identified by importing and tagging the results in Mendeley on a library by

library basis. To this end, the BibTex files created in step 1 were imported into

separate groups (repositories) in Mendeley, and tagged according to their origins (e.g.,

“search results acm”).

While importing entries, Mendeley matches them with existing entries, and when-

ever a reference already exists, the newly added entry will be tagged with the same

156

Paper IV 3. Review Protocol

Table 5: Search result in digital libraries: initial hits, unique entries, number of papers remaining
after selection on title, on abstract and on full text.

Digital Library Hits Unique Title Abstract Full

1 IEEE 535 535 370 240 36

2 ACM 282 173 112 53 9

3 Wiley 213 194 22 7 0

4 Inspec 426 243 112 60 0

5 Web of Science 359 149 48 31 1

6 Science Direct 78 48 8 7 1

7 Scopus 913 425 93 53 1

Total 2806 1767 765 451 49

tags as were set on the existing one. As a result, duplicate references could be easily

identified, because they contained multiple origin tags, leaving us with 1767 unique

entries (step 2, Figure 2).24

We processed the digital libraries in the order indicated by the first column of

Table 5. Duplicate entries were removed from the non-original libraries: for a paper

published in IEEE, but present in both IEEE and ACM search results, the entry in the

ACM results was deleted. Table 5 shows the number of unique entries from each of the

search engines.

Step 3. Selection on Title – The third step in the study selection process is based on the

titles of the papers. Entries that were out of the scope of computer science and software

engineering were easy targets for exclusion. Entries that had clearly nothing to do with

program analysis were also filtered out. In addition, non-peer reviews studies such as

poster sessions, announcements for panel discussions, keynote presentations, workshops

summaries, interviews, and the like, were removed. PhD theses and their summaries

were also removed from the study, but papers that were at the basis of the theses were

manually added to the results if they seemed relevant to the study (e.g. [111, 112]). One

paper that was flagged as plagiarism in IEEE Xplore was also removed. The excluded

papers were tagged as excluded in Mendeley, rather than deleted from the repository to

make bookkeeping and double-checking easier. All other papers were given the benefit

of the doubt and forwarded to the next step of study selection.

Step 4. Selection on Abstract – The next source of information to judge the relevance

of the studies are the abstracts. As already mentioned, the terminology relevant to

cross-language program analysis is not standardized, and authors use various phrases

and writing styles to describe their work. Also, not all abstracts clearly state the goal,

the proposed technique, and the conclusion of the study.

In fact, we observed that a considerable portion of the papers in our result set did

24 Note that some duplication still remained due to small differences in the bibliographic data kept
by different digital libraries which prevented Mendeley from matching earlier imported entries. These
duplicates were manually removed as part of the later stages.

157

3. Review Protocol Paper IV

not have clear indicators in their titles and abstracts. As such, we took a conservative

approach and only filtered away those papers that were clearly irrelevant to our research

topic. The exclusion was implemented, again, by means of tags on our Mendeley

repository.

Step 5. Selection on Full Text – Finally, we conducted a full review of the remaining

papers to decide on their inclusion. Due to our conservative approach in excluding

studies in the previous steps, we were left with a considerable number of papers subject

to full text review, and this step took significant manual effort for completion.

The criterion to include a study was demonstration of relevance to the topic of

cross-language analysis (see Section 2). As a first step, the information present in the

abstract, introduction and conclusion sections of the papers were considered together to

determine inclusion or exclusion. The majority of papers that remained in our repository

contained enough details in these sections to enable a decision. However, some papers

required a full review, and even then there were a few difficult cases where there was not

enough information for a single reviewer to confidently take a decision. Some examples

include:

• papers that include cross-language analysis as a goal in the introduction, but do

not discuss the topic explicitly in the remainder of the paper;

• papers that characterize themselves as doing multi-language analysis, and do not

contain enough details on their approach to infer specific cross-language aspects;

• papers that contain cross-language analysis aspects, but do not present the

work accordingly, or present it with a sufficiently distant terminology to be

unrecognizable;

• papers that present a broad study, of which only a small portion has “something

to do” with cross-language analysis.

All “borderline” cases, or cases in which either of the two authors had doubts about,

were double checked separately by both authors, and discussed until consensus was

reached. The conclusions and lessons learned from such discussions were captured, and

used to judge the relevance of similar studies in a uniform manner. The bottom-line

criterion was the application of cross-language program analysis; basically checking if

the proposed solution considered information derived from two or more languages to

conduct an analysis.

Step 6. Snowballing – After selection on full text, we are left with 49 primary studies.

To ensure proper coverage of our study, we applied backward snowballing and checked

the references (of references) of selected studies to find additional relevant studies.

Borderline papers, that were excluded from papers selected for the study, were also

subjected to snowballing to find potentially relevant material.

158

Paper IV 3. Review Protocol

In addition to reference based snowballing, the publication records of authors of

selected papers were manually investigated to search for relevant mat Finally, we used

Google to check additional phrase combinations that were derived from the meta-data of

papers in our selection, and potentially not covered by our initial query. The snowballing

phase made a significant contribution to the final results with 26 additions (34% of the

total set).

3.5 Reliability of Selection

This systematic literature review is the result of the collaborations of the two authors of

this paper. The first author was the main responsible for the execution of the various

selection steps. However, to ensure the reliability of inclusion decisions, the second

author made independent inclusion/exclusion decisions on a subset of the studies, and

the results were compared and discussed using Cohen’s Kappa inter-rater agreement

statistic [81, 113].

Before the execution of each of the selection steps 3, 4, and 5, at least 10% of

the inputs to that step were randomly selected as the screening set: 180 papers for

selection by title, 77 papers for abstract, and 45 papers for full text analysis. Next, both

authors independently judged on inclusion/exclusion of the papers in the respective

screening set. Individual results were compared, and conflicting verdicts were analyzed

and discussed until a consensus was reached. In addition to settling the decision on that

particular paper, these also served as lessons-learned for later decisions in the selection

step, which is why the screenings were conducted as the first phase of these steps.

In addition to the studies that were double-checked in the screening sets, all studies

for which the first author was not completely certain during the selection process, were

tagged and then later double-checked by the second author. As with the screening sets,

the final selection verdict for these studies was reached by mutual consensus.

Overall inter-rater agreement levels during the screenings were high, and there was

only one study for which we could not settle an agreement without investigating the full

text version. We argue that the combination of witnessing high inter-rater agreement

levels for the different screenings, and leaving no “suspicious” inclusion decisions to the

judgment of only one author, helps to achieve a high confidence in the reliability of the

selection process.

3.6 Study Quality Assessment

In addition to the selection based on general inclusion/exclusion criteria, the evaluation

of additional quality appraisal criteria for primary studies may lead to a refinement of the

selection. For example, in order to enable systematic assessment of the evidence that is

available with respect to a certain intervention, systematic literature reviews often require

the use of rigorous empirical evaluation as a mandatory quality criterion for inclusion

159

3. Review Protocol Paper IV

of a primary study [108]. On the other hand, it is known that the initial literature on

new research topics often lacks methodological rigor in its evaluation. For example,

Mendes showed that only 5% of the studies in the domain of web engineering follow

the methodological rigor required for empirical evaluation, and lightweight evaluation

methods such as “experience report” and “proof of concept” are frequently mistaken for

more elaborate methods like “experiments” and “case studies” [114].

As mentioned, the first part of our study is essentially a systematic mapping study,

aimed at covering the full range of attention that cross-language program analysis has

received in the research community. During our pilot (and later also during the full

study), we observed a situation similar to that of Mendes, were the lack of methodological

rigor in potentially relevant studies implied that requiring the use of rigorous empirical

evaluation would overly restrict the coverage of our study. As such, we decided to not

introduce additional quality appraisal criteria for primary studies, other than addressing

our focus area.

3.7 Data Extraction Strategy

After selection of the relevant primary studies, they need to be systematically analyzed

to collect the information that is needed to answer our research questions (Table 3). To

guide this process, we developed a data extraction table (included as Appendix B), to

record the data extracted from the primary studies. The columns in the table are derived

from the research questions to be answered. Most research questions were mapped to a

single column in a straightforward way, while some were mapped to multiple columns,

depending on the amount of aspects relevant to answering the respective question.

To avoid ad hoc interpretation during data synthesis, and to minimize the effects

of terminology mismatch between reviewers, we chose to try and limit the options

for answering to Y/N check-boxes, or selection from a limited set of options (using

drop-down lists) over free text answers whenever possible.25

After piloting the extraction process on a representative random sample of 20% of

the primary studies to identify recurring concepts, the taxonomy of possible answers

was created by open and axial coding techniques from grounded theory [115], When

assessing the initial extraction results from this pilot, we realized that answers to the

same questions had a wide variation for a number of reasons, such as:

• the wide range of analysis goals, application domains and languages that were

analyzed;

• range of terminology used by the authors of the primary studies, come from

different research communities (e.g. model-driven engineering vs. language design

and compiler technology) and have varied experience levels;

25 The data extraction table was implemented in Microsoft Excel and a small amount of Visual Basic
scripting for the drop-down lists.

160

Paper IV 3. Review Protocol

• differences between claims (or outsets) and the actual contributions

We concluded that the most reliable approach was to iteratively synthesize our taxonomy

using open (unrestricted) coding, followed by grouping these into a limited amount of

categories using axial coding, based on mutual consensus between the reviewers on the

relations between the open codes [115].26

For some of the table columns, the number of alternatives in the taxonomy

stabilized early in the pilot. For other columns, however, the more studies we reviewed,

the more options we had to add to the respective group to ensure keeping precision

in the characterization. A typical example was the group reflecting the type of data

extracted by a study to enable cross-lingual analysis. It quickly became clear that

the pilot would not show us the whole range of options, so to accommodate as many

answers as needed, we promoted this column to open-ended answers. However, even in

such cases we opted to maintain a growing list of answers over pure free text answers to

promote reuse of answers. We largely remained loyal to the original terminology in the

study, only allowing for minimal interpretation for in cases where a similar item was

already present in the list.

Overall, this proved to be an effective strategy for systematic data extraction:

with the taxonomy in place there were only minor disagreements in characterizing the

primary studies.

3.8 Data Synthesis

The next stage, data synthesis, is aimed at creating an overview of all facts gathered in

the data extraction table. The goal is to allow an unambiguous insight into the matter,

yet abstract enough to be presentable to the reader in an accessible way.

As a result of our systematic data extraction strategy, a number of columns were

already limited to a manageable number of distinct facts. Most of these columns could

readily be presented without needing further processing or generalization. The data in

other columns, especially the aforementioned open-ended answers, needed additional

processing to make the information presentable in an accessible way.

To this end, we employed another step of axial coding, grouping related concepts

into more general abstractions [115]. This synthesis was iteratively conducted along

both axes of the table: across co-related primary studies, and across the concepts in the

taxonomy. For example, during data extraction we distinguished between intra-, and

inter -procedural control flow graphs to maximize precision, and to be able to identify

potential trends in usage of either of these concepts. However, during the data synthesis

phase, we realized that only two studies ([30] and [7]) distinguish between these types

26 Note that this process provides a less rigid alternative to the meta-ethnographic analysis [116, 117],
that is suggested in [81]. We chose not to conduct a full meta-ethnographic analysis due to the large
number of primary studies and wide diversity of subject areas in our selection, as translating all studies
into a single common format would hide too much interesting details.

161

4. Findings Paper IV

0	

2	

4	

6	

8	

10	

19
95
	

19
96
	

19
97
	

19
98
	

19
99
	

20
00
	

20
01
	

20
02
	

20
03
	

20
04
	

20
05
	

20
06
	

20
07
	

20
08
	

20
09
	

20
10
	

20
11
	

20
12
	

20
13
	

20
14
	

Figure 3: Distribution of studies over time. 2014 is not included as a full year.

of control flow, and it we can abstract to the more general “Control Flow”, without

loosing valuable insights.

The use of study-specific terminology during data extraction, and generalizing to

cross-study abstractions during data synthesis, when the informative value of keeping

individual concepts became more clear, allowed us to make informed decisions about

balancing the line between precision and conciseness.

4 Findings

This section discusses the findings of our SLR based on analysis of the selected primary

studies, which are presented in the first 75 references in the bibliographic section (1 to

75). First, we will analyze the publication data of the studies, without reflecting on

their content. Next, we will consolidate the content of the selected studies by developing

a number of classifications with respect to various aspects of the studies. We will make

use of tabular presentations to provide a succinct united perspective on the available

body of knowledge. Finally, this section addresses the individual research questions in

more detail, staying close to the extracted (verbatim) data, and referring to concrete

technologies wherever suitable.

4.1 Analysis of publications

In this part section our goal is to position the available literature across the interested

research communities. As such, we include all studies, including those where the same

research was presented in more than one publication (in later analyses these will be

unified to avoid bias in quantitative assessments).

Time – The earliest primary study in our review dates back to 1995, and the latest is

162

Paper IV 4. Findings

from March 2014. Figure 3 shows the publication frequency between these times. As

can be seen in the figure, there were no years in this period without relevant studies

being published. Moreover, although the number of published studies fluctuates over

time, the distribution hints at a general increase in attention for the topic in the recent

years.

Publication channels – Table 6 gives an overview of the type of the publications, and

publication channels. The majority of primary studies were published in conferences

and workshops (71 of 75, i.e., 95%), while only 4 (5%) of the studies were published in

scientific journals.

The 75 primary studies were published in 37 publication channels in total, and 25

of these channels only published a single study. From Table 6, it is obvious that cross-

lingual program analysis has enjoyed considerable attention in conferences in the area of

software maintenance and evolution. The top five publication channels are dedicated to

this area and contain 48% of the relevant primary studies, the premier channel being the

SANER conference, which is the merger of the former WCRE and CSMR conferences on

respectively software reverse engineering, and software maintenance and re-engineering.

Another noteworthy fact is that the call for papers of one of these (WSE - Symposium

on Web System Evolution) explicitly mentions “analysis of multilingual systems” as a

topic of interest.

Source of results – With respect to our search strategy, Table 7 presents the number of

studies selected from each of the seven digital libraries and in the successive snowballing

stage. Note that the numbers in this table are affected by the order in which we processed

the different digital libraries (which is specified in Table 5), and its consequences for

duplicate removal (i.e., we only count the first occurrence of a paper in cases were

different digital libraries contain duplicates, as discussed in Section 3.4). Nevertheless,

the table hints at the fact that approximately 95% of the relevant primary studies

could have been retrieved using an electronic search on the IEEE and ACM libraries,

together with snowballing on those results. Although we chose to use several digital

libraries (for the benefit of completeness), this finding might encourage other researchers

to limit their search to the mentioned libraries, should they follow different criteria for

cost-effectiveness.

4.2 Analysis of studies

To avoid publication bias, 10 studies are removed from further synthesis as their content

is largely repeated in other papers, for example in the form of journal extensions of

conference papers, or full conference papers that build on initial short papers. In such

cases, only the most complete paper is analyzed and accounted. The remainder of this

SLR reflects on the results of the 65 unique primary studies.

There is also a number of studies that have a certain degree of overlap, yet the

contents are considerably different that neither study can be removed from our analysis

163

4. Findings Paper IV

Table 6: Distribution of publication channels and types.

Publication Channel Type Number Percent

SANER (WCRE+CSMR)∗ Conference 13 17.3

ICPC/IWPC Conference 7 9.3

ICSM Conference 7 9.3

WSE Conference 5 6.7

SCAM Conference 4 5.3
– 48.0%

ICSE Conference 3 4.0

WRT (Refactoring) Workshop 3 4.0

ECMFA Conference 2 3.0

ESEM Conference 2 2.7

FSE Conference 2 2.7

PLDI Conference 2 2.7
– 66.7%

ASE Conference 1 1.3

ASF+SDF Conference 1 1.3

C3S2E Conference 1 1.3

CASCON Conference 1 1.3

ECOOP Conference 1 1.3

ESOP Conference 1 1.3

IASTED Conference 1 1.3

ICECCS Conference 1 1.3

ICPP Conference 1 1.3

ICSOFT Conference 1 1.3

ISADS Conference 1 1.3

ISISE Conference 1 1.3

MODELS Conference 1 1.3

PASTE Conference 1 1.3

QUATIC Conference 1 1.3

SEKE Conference 1 1.3

SYNASC Conference 1 1.3

TACAS Conference 1 1.3

WEC Conference 1 1.3

MiSE Workshop 1 1.3

TOPI Workshop 1 1.3

Elsevier SCP Journal 1 1.3

Springer ANSOFT Journal 1 1.3

Springer ISSE Journal 1 1.3

Wiley JSME Journal 1 1.3

Total 75 100%

∗ In 2014 WCRE and CSMR merged into the SANER conference; of the 13 papers, 1 was from a joint
event, 9 were from WCRE and 3 were from CSMR prior to the merge.

164

Paper IV 4. Findings

Table 7: Sources for the selected studies after the snowballing stage.

Source Number Percent

IEEE 36 48

Snowballing (manual) 26 35

ACM 9 12

Web of Science 2 3

Scopus 1 1

Science Direct 1 1

Inspec 0 0

Wiley 0 0

Total 75 100

without loosing value. For instance, in [2], Alalfi et al. envision a conceptual solution

to reverse engineer access control models of PHP applications using both static and

dynamic analysis, while in [3], they present and evaluate the dynamic analysis approach

to analyze the database interactions of PHP applications in more detail. We identify

such cases in the presentation of the results, and account for these overlaps in our

quantitative analyses, so that they do not bias our results when it comes to answering

the research questions.

A number of concepts in the data extraction table pertain to cross-cutting features

that reflect on all primary studies. Such cross-cuttings features will unified in the pre-

sentation, with no further categorisation, to provide a succinct answer to the respective

research question. On the other hand, a number of research questions only apply to

certain types of primary studies, and some research questions have a wide variety in

their possible answers, which poses challenges to using a systematic flat presentation

across all studies at the same time. To avoid having an unwieldy large and sparse

presentation, we group studies into a set of coherent sets, and present an overview for

each of these at an appropriate level of abstraction. This allows us to add more specific

details for those groups of studies without loosing overall accuracy.

At the top-most level, we distinguish the following broad categories of studies:

1. technology papers (58 studies, 89%)

2. position papers (7 studies, 11%)

Where technology papers propose a new, or evaluate an existing, analysis method, and

position papers contain general views that are independent from any specific method.

In addition to answering our research questions, the studies within each category will

be presented and discussed in more detail. To that end, technology papers will be

classified further into coherent subgroups based on the goals of the studies and the

applied techniques.

165

4. Findings Paper IV

Reverse Engineering

Clone Detection &
Resolution

Refactoring

Metrics &
Measurement

Postmortem Fault
Diagnosis

Flow Analysis

Type Checking -
Foreign Function Call

IDE &
Tool Support

Visualisation & Model
Reconstruction

Architecture
Recovery

Dependency Analysis
& Navigation

Change Impact
Analysis

Security Analysis

Low-cost Parser &
Analyser Eng.

benefits

Comprehension

Query Engine &
Exploration Env.

uses

type of

relates torelates to

Comprehension and
Reverse Engineering Interactions and Ripple Effects

uses

uses uses

Standalone (unordered)

Figure 4: Overview of the study goals that were identified, and their relations.

4.2.1 Study Goals

Within the 58 technology papers, we identified 16 distinct goals that were aimed at

by the authors. A number of these goals are frequently targeted by several authors,

while others have received significantly less attention. For clarity, we decided to keep

all the identified goals (and not categorize the less frequent ones into “general” or

“other” categories) despite the sparseness of some of the resulting groups. Likewise, we

distinguished important subcategories of the more generic maintenance goals. This

resulted in a number of conceptually correlated goals, as well as a number of standalone

goals. An overview of the 16 goals and their relations is presented in Figure 4. Most

identified study goals have self-explanatory titles. Here follows a brief description of the

identified goals.

Reverse Engineering is the practice of analyzing a system to gain desired in-

formation, and generally benefits further “comprehension” attempts. Comprehension

can either be addressed using graphical Visualizations and Model Reconstruction, or

by providing the user with non-graphical Query Mechanisms to explore the system

interactively. Architecture Recovery is a specialized type of model reconstruction and

visualization, whose output is aimed at the abstract architectural level. A number of

studies put a special price on Cost-effective Parser and Analyzer Engineering, which in

turn facilitates day-to-day reverse engineering needs. We recorded considerable com-

monalities between the topics of Dependency Analysis and Navigation, Change Impact

Analysis (CIA), and to a lesser extent with the topic of Refactoring. Some form of Flow

Analysis of data and/or control across multiple languages is typically used do drive these

analyses, but was also observed as a primary goal in the selected studies. A number of

studies have paid exclusive attention to Foreign Function Calls, mainly by providing

cross-language Type Checking facilities. Although most authors have acknowledged

the importance of tool support, only few have pursued the implementation of their

166

Table 8: Goals of the 58 technology papers, in alphabetical order on first author.∗

re
la

te
d

sh
o
rt

p
ap

er

re
ve

rs
e

en
g.

q
u
er

y

v
is

u
a
li
za

ti
o
n

a
rc

h
.

re
co

ve
ry

p
ar

se
r

en
g
.

d
ep

en
d
en

cy

C
IA

re
fa

ct
or

in
g

fl
ow

a
n
al

y
si

s

cl
on

es

ty
p

e
ch

ec
k

m
et

ri
cs

ID
E

fa
u
lt

d
et

ec
t

se
cu

ri
ty

te
st

in
g

Al-Omari+, 2012, [1] · · · · · · · · · 3 · · · · · ·
Alalfi+, 2009, [2] a 3 � · · · · · · · · · · · · · 3 ·
Alalfi+, 2009, [3] a · 3 · · · · · · · � · · · · · · ·

Amalfitano+, 2013, [6] · · · 3 · · · · · � · · � � · · �
Ayers+, 2008, [7] · · · · · · · · · � · · · · 3 · ·
Barrett, 1996, [8] · · · · · · · · · · · 3 · · · · ·

Bellettini+, 2004, [9] b · · · 3 · · · · · · · · · · · · ·
Bellettini+, 2005, [10] b 3 · · 3 · · · · · · · · · · · · ·
Boldyreff+, 2002, [11] · � · · · · · · · · 3 · · · · · ·

Chase+, 1998, [13] · � · · 3 · · · · · · · · · · · ·
Chen+, 2005, [15] 3 · · · · · · · 3 · · · · · · · ·

Cossette+, 2007, [16] · · · · · � 3 · · · · · · · · · ·
Cossette+, 2010, [17] · · · · · � 3 · · · · · · · · · ·
Deruelle+, 2001, [18] c · · · � · · · 3 · · · · · · · · ·
Deruelle+, 2001, [19] c · · · � · · · 3 · · · · 3 · · · ·
DiLucca+, 2004, [22] · · · 3 · · � · · � · · · · · · ·

Druk+, 2013, [23] 3 · · · · · · · 3 · · · · · · · ·
Furr+, 2005, [24] d · · · · · · · · · · · 3 · · · · ·
Furr+, 2006, [25] d · · · · · · · · · · · 3 · · · · ·

Hassan+, 2003, [28] · · · · 3 · · � · · · · · · · · ·
Hayes+, 2000, [29] · � · � · 3 · · · · · · · · · · ·

Hessellund+, 2008, [30] · · · · · · � · · 3 · · · · · · ·
Hsu+, 1999, [31] · · · · · · � 3 · · · · · · · · ·
Kamp, 1998, [32] e · · 3 · · · · · · · · · · · · · ·

Kempf+, 2008, [33] 3 · · · · · · · 3 · · · · · · · ·
Kolsch, 1998, [35] · 3 · · · · · · · · · · · · · · ·
Kraft+, 2008, [36] 3 · · · · · · · · · 3 · · · · · ·

Kullbach+, 1998, [37] e · · 3 � · · · · · · · · · · · · ·
Lange+, 2001, [38] e · · 3 � · · · · · · · · · · · · ·

Lehnert+, 2013, [39] · · · · · · · 3 · · · · · · · · ·
Linos, 1995, [40] 3 · · 3 · · � · · � · · · · · · ·

Linos+, 2003, [41] · · · � · · 3 · · · · � · · · · ·
Linos+, 2007 [42] · · · · · · · · · · · · 3 · · · ·

Marinescu+, 2007, [43] · 3 · · · · � · · · · · · · · · ·
Mayer+, 2012, [44] · · · · · · � · 3 · · · · · · · ·
Moise+, 2005, [46] · � · · · · 3 · · · · � · · · · ·
Moise+, 2006, [47] · � · � · · 3 · · · · � · · · · ·
Moonen, 1997, [49] · � · · · · · · · 3 · · · · · · ·
Morris+, 2010, [50] · · · · · · · · · · · · 3 · · · ·

Nguyen+, 2012, [51] 3 · · · · · � · 3 · · · · · · · ·
Perin+, 2010, [53] · � · 3 · · · · · · · · · · · · ·

Pfeiffer+, 2011, [54] · · · · · � 3 · · · · · · · · · ·
Pfeiffer+, 2012, [55] · · · � · · � · � · · � · 3 · · ·

Polychniatis+, 2013, [57] 3 · · · · · 3 · · · · · · · · · ·
Ricca+, 2001, [58] · · · 3 · · · · · · · · · · · · 3
Salah+, 2003, [59] · · 3 � · · · · · · · · · · · · ·
Schink, 2013, [60] 3 · · · · · · · 3 · · · · · · · ·

Strein+, 2006, [63] · · · · · · � · 3 · · · · � · · ·
Synytskyy+, 2003, [64] · · · · · · · · · · 3 · · · · · ·
Synytskyy+, 2003, [65] · � · · · 3 · · · · · · · · · · ·
Tomassetti+, 2013, [67] 3 · · · · · · · � · · � · 3 · · ·
Tomassetti+, 2014, [68] 3 · · · · · 3 · · · · · · · · · ·

Vetro+, 2012, [70] 3 · · · · · 3 · · · · · · · · · ·
Weijun+, 2008, [71] 3 · · 3 · · · · · · · · · · · · ·
Yazdan+, 2011, [72] f · · · · · · · · · 3 · · · · · · ·
Yazdan+, 2012, [73] f · · · 3 · · · · · � · · · · · · ·
Yazdan+, 2012, [74] f · · · · · · · 3 · � · · · · · · ·

Zheng+, 2007, [75] · · · · · · · 3 · · · · · · · · 3
Primary 3 4 9 2 2 9 6 7 3 4 3 3 2 1 1 2
Auxilliary 9 0 9 0 3 9 1 2 7 0 5 1 2 0 0 1
Total 12 4 18 2 5 18 7 9 10 4 8 4 4 1 1 3

* Primary goals are indicated by 3, secondary goals are indicated by �,
related studies are indicated by the same letter in the “related” column.

4. Findings Paper IV

work in native IDEs or as Generic Tool Support. Established techniques for Software

Metrics, Fault Diagnosis, Clone Detection and Resolution, and Security Analysis have

been adapted in the context of cross-language analysis. Although the aforementioned

goals are distinct enough to form respectable groups, there are noteworthy overlaps

among the problem space and the findings of the respective studies. For example, most

studies targeting model reconstruction also have a respectable contribution to basic fact

extraction and reverse engineering techniques.

Table 8 summarizes the distribution of the high-level goals targeted by the 58

technology papers. Overlapping studies that were based on the same or closely related

work are labeled by the same letter in the “related” column. A number of papers are

dedicated to one specific goal, while others address more goals. In the latter case,

it is common that not all goals of the study are treated with the same amount of

detail. In recognition of this, Table 8 distinguishes between the primary and auxiliary

contributions. Three studies [19, 58, 75] were identified as serving two primary goals,

as both goals were treated to an equal extent (by consensus of the two authors of this

SLR, who felt that downgrading either of the identified goals to auxiliary would hurt

accuracy). [19] can alternatively be viewed as two independent sub-studies: one using

static analysis for CIA, and the other using dynamic analysis for runtime profiling. [58]

and [75] aim for model reconstruction and CIA, respectively, and use the outcome to

drive further testing steps.

4.2.2 Study Characterisation

The taxonomy that resulted from our analysis over the selected papers is presented

in Table 9. The table contains categories of attributes that are formed by identifying

the main concepts from the primary studies, which are also related to our research

questions. The attributes in each category are the results of synthesizing the extracted

data from individual primary studies, first by open coding of the findings, which was

followed by axial coding to group these into a limited set of (more abstract) classes.

We identified 15 attributes that could characterize the main approach taken

in the primary studies. Note that the attributes are not mutually exclusive and

can be at different levels of abstraction. This means that a primary study can be

characterized by multiple attributes. By following the attributes, at first, we know

whether a study uses static analysis, dynamic analysis, or both. Then we can get more

information about, say, the applied dynamic analysis method using other attributes. For

instance, we identified two granularity levels for dynamic analysis, one using machine-

level execution traces, and one by user-level, coarse-grained flow of events. We also

identified code instrumentation and runtime interception as two major techniques of

carrying out dynamic analysis. One perspective would be to classify these attributes

as information extraction techniques, but we decided to keep them as an approach

attribute since they characterize the overall approach of the study to such a large

168

Paper IV 4. Findings

Table 9: Synthesized attribute framework of the studies.

Attributes Description

A
p
p

ro
ac

h

static analysis application of static analysis approaches.

execution trace analysis application of dynamic analysis, using machine-level execution traces.

navigation flow analysis application of dynamic analysis, using user-level flow of hypertext navigations.

automation level fully automated, semi-automated, or manual (resp. indicated as ‘3’, ‘·’, and ’M’).

evaluation study presenting a benchmark or evaluation of existing approaches.

unified model uses a homogeneous information repository, populated from heterogeneous artifacts.

modelware technology uses model-driven technologies, e.g., Ecore metamodels, or XMI transformations.

multiple parsers uses multiple language-specific parsers to gather information from MLSSs.

retargetable parser uses a generic, or adaptable, parser to process multiple artifact types, or multiple
languages in one file.

island grammar approaches directly inspired by island grammars, or fuzzy parsing.

naming conventions has an explicit dependency on naming conventions, and shared identifiers.

statistical analysis approaches based on predictive statistics; approximations based on data mining.

formalism & theory studies presenting a respectable formal model as the basis of their approach.

code instrumentation an exercise of dynamic analysis based on code instrumentation.

runtime interception an exercise of dynamic analysis based on intercepting events during execution.

In
fo

rm
at

io
n

E
x
tr

ac
ti

on

parsing uses traditional parsing/syntactical analysis to gather data from system artifacts.

lexical analysis uses light-weight and selective analysis of artifacts, often targeting small code structures,
and no final parse tree.

search & regular expr. manipulation of regular expressions, or use of pre-fabricated search API to scan for
data (e.g. the Eclipse search API).

GUI event listener intercepts GUI communication to gather data about runtime behavior.

decompiler use of a decompiler or disassembler to gather system data.

debugger interception overrides a feature of the runtime environment, such as a debugger or browser console,
to gather data.

web crawler exercising a web crawler to trigger dynamic analysis.

profiling application of single or hybrid profiling methods, e.g. probe-based and sample-based.

A
rt

if
ac

ts

source code artifacts containing general-purpose programming or scripting languages.

compiled artifacts binary code or any other machine-readable code such as Java Bytecode or .NET CIL.

web pages static, dynamic, or Web 2.0 Rich Internet Application, web documents.

SQL artifacts standalone or embedded database-related artifacts, mostly in a dialect of SQL.

configuration &
deployment info.

any peripheral artifact containing data about configuration or deployment of a system,
including component interface descriptions (such as CORBA IDL).

D
om

ai
n

web based web applications

component based systems built with a full-blown or partial component-based design and technology.

distributed distributed systems

parallel systems systems with a high degree of parallelism, as seen in high-performance computing.

Java frameworks contemporary, often configuration-rich, Java frameworks.

.NET studies tightly relying on the .NET technology and its languages.

general generic software systems with no specificity.

Im
p
le

m
en

t

none studies presenting no implementation.

proof-of-concept implementations explicitly characterised by the authors as “prototype,” “partial,”
“preliminary,”“lightweight,” etc.

laboratory an implementation offered by the authors with no specific characteristic revealing
maturity level.

commercial commercial or commercial-quality implementations.

eclipse-plugin implementations based upon and/or distributed using the eclipse plugin platform.

publicly available yes, if a publicly-available release of the implementation is stated in the paper.

E
va

lu
at

io
n

none no evaluation is presented in the study.

toy example a highly preliminary evaluation, often using a minimal code base.

open source evaluation(s) based on open source systems.

industrial codebase evaluation(s) based on real world industrial code bases.

human subjects involving third-party human subjects in the evaluation, i.e., usability studies, controlled
experiments and questionnaires.

Languages languages involved in the study, reported verbatim, as claimed by authors

169

Table 10: Studies incorporating static analysis.∗

Approach Info. Extract Artifacts Domain Implementation Eval. Languages

U
n
ifi

e
d

M
o
d
e
l

M
o
d
e
lw

a
re

T
e
ch

n
.

R
e
ta

rg
e
ta

b
le

P
a
rs

e
r

M
u
lt

ip
le

P
a
rs

e
rs

Is
la

n
d

G
ra

m
m

a
r

N
a
m

in
g

C
o
n
v
e
n
ti

o
n
s

F
o
rm

a
l

&
T

h
e
o
re

ti
c

S
ta

ti
st

ic
a
l

A
n
a
ly

si
s

E
v
a
lu

a
ti

o
n

S
tu

d
y

F
u
ll
y

A
u
to

m
a
te

d

P
a
rs

in
g

L
e
x
ic

a
l

A
n
a
ly

si
s

D
e
c
o
m

p
il
e

S
e
a
rc

h
&

R
e
g
.

E
x
p
.

S
o
u
rc

e
C

o
d
e

C
o
m

p
il
e
d

A
rt

if
a
c
ts

W
e
b

p
a
g
e

sq
l

A
rt

if
a
c
ts

C
o
n
fi
g
.

&
D

e
p
lo

y
.

G
e
n
e
ra

l
W

e
b

B
a
se

d
C

o
m

p
o
n
e
n
t

J
a
v
a

F
ra

m
e
w

o
rk

s
.n
e
t

P
ro

o
f-

o
f-

c
o
n
c
e
p
t

L
a
b

Im
p
le

m
e
n
ta

ti
o
n

C
o
m

m
e
rc

ia
l

Q
u
a
li
ty

E
c
li
p
se

P
lu

g
in

P
u
b
li
c
ly

A
v
a
il
a
b
le

T
o
y

E
x
a
m

p
le

O
p

e
n

S
o
u
rc

e

In
d
u
st

ri
a
l

C
o
d
e

H
u
m

a
n
e

S
u
b

j.

[35] · · · · · · · · · M · · · · 3 · · 3 · 3 · · · · − − − − − − − − − Cobol, Assembler

R
.E

.

[43] 3 3 · 3 · 3 · · · 3 · 3 · · 3 · · 3 · 3 · · · · 3 · · · · 3 · 3 · Java, sql

[32] 3 · · 3 · · · · · · 3 · · · 3 · · · 3 3 · · · · · 3 · · · · · · · Cobol, csp, jcl

[37] 3 · · 3 · · · · · · 3 · · · 3 · · 3 3 3 · · · · · 3 · · · · · · · Cobol, jcl, sql

Q
u
e
ry

[38] · · · · · · · · 3 − − − − − 3 · · · · 3 · · · · − − − − − · · 3 · C/C++, Java

[40] 3 · · 3 · · · · · 3 3 · · · 3 · · · · 3 · · · · 3 · · · · · · · · C, Lisp

[53] 3 · · · · 3 · · · 3 3 3 · · 3 · · 3 3 · · · 3 · · 3 · · 3 · · 3 3 Java, xml, sql

V
is

u
a
l

[73] 3 3 · 3 · · · · · 3 3 · · · 3 · · · 3 · · 3 · · 3 · · · · · · 3 3 C, xml

[13] · · · 3 · · · · · · 3 · · · 3 · · · · 3 · 3 · · · 3 · · · · · 3 · C, Fortran, Unix api

A
rc

h

[28] 3 · · 3 · · · · · · 3 · · · · · 3 3 · · 3 · · · 3 · · · · 3 · · · sql, html, vbScript

[29] 3 · 3 · · · · · · · 3 · · · 3 · · · · 3 · · · · 3 · · · · · · · · C, tcl/Tk

P
a
rs

e

[65] · · · · 3 · · · · 3 3 · · · · · 3 · · · 3 · · · 3 · · · · 3 · · · js, html, vb

[16] · · · 3 3 · · · 3 · · 3 · · 3 · · 3 · 3 · · · · · 3 · · · · 3 · · Java, sql, xml

[17] · · · · 3 3 · · · · · 3 · 3 3 · · 3 3 3 · · · · · 3 · 3 · · 3 3 3 Java, xml

[41] · · · · · · · · · 3 · 3 · · 3 · · · · 3 · · · · 3 · · · · 3 · · 3 Java, jni, C/C++

[46] 3 · · 3 · 3 · · · 3 3 3 · · 3 · · · · 3 · · · · · 3 · · · 3 3 · · Java, jni, C/C++

[47] 3 3 · 3 · · · · · 3 3 · · · 3 · · · · 3 · · · · · 3 · · · · 3 · · C, Perl, Python, tcl

[54] 3 3 3 · · · · · · · 3 · · · 3 · · · 3 · · 3 · · · 3 · · 3 · 3 · · ∞ (emf metamodel)

[57] · · · · · · · 3 · · · 3 · · 3 · · · · 3 · · · · 3 · · · · 3 3 · 3 ∞
[68] · · · 3 · · · 3 · 3 3 · · · 3 · · · · 3 · · · · 3 · · · 3 3 3 · · ∞D

e
p

e
n
d
e
n
c
y

A
n
a
ly

si
s

[70] · · · · · · · · · 3 − − − − − − − − − 3 · · · · · · · · · · 3 · · ∞

[18] 3 · 3 · · · 3 · · 3 3 · · · 3 · · 3 3 · · 3 · · 3 · · · · · · 3 · Java, corba, sql

[31] 3 3 · · · · · · · 3 − − − − · · 3 3 · · 3 · · · 3 · · · · 3 · · · html, sql

[39] 3 3 · 3 · · · · · · 3 · · · 3 · · · · 3 · · · · 3 · · · 3 3 3 · · Java, Junit, uml

[74] 3 3 · 3 · · · · · 3 3 · · · 3 · · · 3 · · 3 · · 3 · · · · · · 3 · C, xml

C
IA

[75] 3 · · 3 · · · · · · 3 · · · 3 · 3 3 · · 3 3 · · 3 · · · · · · 3 · Java, sql, html, Perl, C

[15] · · · · · · · · · 3 3 3 · 3 3 · · · 3 · · · 3 · 3 · · 3 · 3 · · · Java, xml, jsp

[23] · · · · · · · · · 3 · · · 3 3 · · · · 3 · · · · · 3 · 3 3 · · · · Java, Fit Test

[33] · · · · · · · · · 3 · 3 · 3 3 · · · · 3 · · · · 3 · · 3 · · · · · Java, Groovy

[44] · 3 · 3 · 3 · · · · 3 · · · 3 · 3 3 · 3 · · · · 3 · · 3 · · · · · Ruby, xml, Java

[51] 3 · · · · · · · · 3 · 3 · · · · 3 · · · 3 · · · · 3 · 3 · · 3 · · js, html, php

[60] 3 · · 3 · · · · · · 3 · · · 3 · · 3 · 3 · · · · 3 · · · 3 3 · · · Java, sqlR
e
fa

c
to

ri
n
g

[63] 3 · · 3 · · 3 · · 3 3 · · · 3 3 · · · 3 · · · · · · 3 · 3 · 3 · · .net, Java,asp,html,xml

[30] · · · 3 · · 3 · · 3 3 · · · 3 · · · 3 · · · 3 · 3 · · 3 3 · 3 · · Java, xml

[49] 3 · · 3 · 3 · · · − 3 · · · 3 · · · · 3 · · · · · · · · − − − − − ∞

F
lo

w

[72] 3 3 · 3 · · · · · 3 3 · · · 3 · · · 3 · · 3 · · 3 · · · · · · 3 · C, xml

[1] · · · · · · · · · 3 · · 3 · · 3 · · · · · · · 3 3 · · · · · 3 · · C#, J#, vb.net

[11] 3 · · · · · · · · 3 3 · · · 3 · 3 3 · · 3 · · · · 3 · · · · · 3 · html, asp, js, css

[36] 3 · 3 · · · · · · 3 3 · · · 3 · · · · · · · · 3 · 3 · · · · 3 · · .net languages

C
lo

n
e
s

[64] · · · · 3 · · · · 3 3 · · · 3 · 3 · · · 3 · · · 3 · · · · 3 · · · jsp, vbScript, html

[8] 3 · · 3 · · · · · · 3 · · · 3 · · · · 3 · · · · 3 · · · · · · 3 · C++, cls

[24] · · · 3 · · 3 · · 3 3 · · · 3 3 · · · 3 · · · · 3 · · · 3 · 3 · · C, OCaml

T
y
p

e
ch

[25] · · · 3 · · 3 · · 3 3 · · · 3 3 · · · 3 · · · · 3 · · · · · 3 · · Java, C, jni

M [42] · · · · · · · · · 3 · · 3 · · 3 · · · · · · · 3 3 · · · · · 3 3 3 .net cil

[55] 3 3 · · · · · · · 3 · 3 · · 3 · 3 3 3 3 · · · · 3 · · · 3 · 3 · 3 ∞

ID
E

[67] · 3 · · · · · · · · 3 · · · 3 · · · 3 3 · · · · 3 · · · · · · · · Java, xml

46 25 11 4 23 4 6 5 2 2 28 31 11 2 4 39 5 9 14 13 28 7 7 3 3 28 13 1 7 10 12 18 13 7
no impl:4 no eval:10

* The letter M in the first column indicates the Metrics goal. Cell value ’−’ means that respective data was not provided.
Fully Automated column values are either ‘3’: fully automated, ‘·’: semi-automated, or ’M’: manual.

Languages in italics have less evidence of support, and ‘∞’ indicates language-neutral or language-parametrized approaches.

Paper IV 4. Findings

Table 11: Studies incorporating dynamic analysis.*

Approach Info Extraction Artifacts Domain Implement. Eval. Languages
E

x
ec

u
ti

on
T

ra
ce

N
av

ig
at

io
n

F
lo

w

C
o
d
e

In
st

ru
m

en
ta

ti
on

R
u
n
ti

m
e

In
te

rc
ep

ti
on

H
y
b

ri
d

an
al

y
si

s

E
va

lu
at

io
n

S
tu

d
y

F
u

ll
y

A
u

to
m

at
ed

?

W
eb

C
ra

w
le

r

G
U

I
E

ve
n
t

li
st

en
er

D
ec

om
p
il
er

D
eb

u
gg

er
In

te
rc

ep
ti

on

P
ro

fi
li
n
g

S
o
u

rc
e

C
o
d
e

C
om

p
il
ed

A
rt

if
ac

ts

W
eb

p
ag

e

sq
l

A
rt

if
ac

ts

W
eb

B
as

ed

D
is

tr
ib

u
te

d

P
ar

al
le

l
S
y
st

em
s

P
ro

of
-o

f-
co

n
ce

p
t

L
ab

Im
p
le

m
en

ta
ti

on

C
om

m
er

ci
al

Q
u

al
it

y

P
u

b
li
cl

y
A

va
il
ab

le

T
oy

E
x
am

p
le

O
p

en
S
ou

rc
e

In
d

u
st

ri
a
l

C
o
d

e

H
u
m

a
n

S
u
b

j.

[3] 3 3 3 · 3 · 3 · 3 · · · · · 3 3 3 · · 3 · · · · 3 · · php, sql

[6] 3 3 · 3 · · 3 · 3 · 3 · · · 3 · 3 · · · 3 · 3 3 · 3 · js, html, dom

[9] · 3 · · 3 · · · · · · · · · 3 · 3 · · 3 · · · 3 · · · js, html, asp

[10] · · · · · 3 − − − − − − · · 3 · 3 · · 3 · · · 3 · · · html, php

[22] · 3 · 3 3 · · · 3 · · · 3 · 3 · 3 · · 3 · · · · · 3 3 js, html, asp, php

[58] · 3 · · 3 · · 3 · · · · · · 3 · 3 · · 3 · · · · · 3 · js, html

[59] 3 · · 3 · · · · · · 3 · 3 3 · · · 3 · · 3 · · 3 · · · Java, C/C++, vbre
ve

rs
e

en
gi

n
ee

ri
n

g

[71] 3 3 3 · 3 · − · · · · · · · 3 3 3 · · · · · · · · · · −
[19] 3 · 3 · 3 · 3 · · 3 · · 3 3 · · · 3 · 3 · · · · · 3 · Java, C/C++

m
et

rc
s

[50] 3 · · 3 3 · 3 · · · · 3 3 · · · · · 3 3 · · · · 3 3 · C/C++, Fortran, Python

[2] 3 3 3 · 3 · 3 · · · · · · · 3 3 3 · · · · · · · · · · php, sql

ot
h
er

[7] 3 · 3 · · · 3 · · · · · · 3 · · · 3 · · · 3 · 3 · 3 · Java, C/C++, .net

12 8 7 5 4 8 1 6 1 3 1 2 1 5 4 8 2 8 3 1 7 2 1 1 5 2 6 1
no impl:2 no eval:2

* In this and all remaining tables, the symbol ‘−’ indicates cases where no data is presented in the paper, or cases where the
aspect is not applicable to the respective study.

extent. Unified model refers to the use of a central knowledge repository to represent

all relevant information regarding the system artifacts that is needed by the later

analyses. This pattern comes in many different forms, at various granularity levels,

and using a wide range of implementation technologies. Homogeneous/centralized

model repository, unifying model, internal/intermediate representation, common schema,

universal language representation, are among the variations used in the primary studies,

which were all classified as unified model.

We identified eight main techniques for information extraction, six types of artifacts,

and seven technology domains that were subjected to cross-lingual analysis. As these

attributes are typically referred to using specific, and widely shared names, there were

no significant challenges in determining the relevant attributes in the primary studies.

Six attributes were identified to describe the provided implementation, and five

for the reported evaluation. These two aspects are largely aiming at characterizing the

overall maturity level. We found that not all studies presented enough information to

establish the maturity level. Moreover, among those studies with “enough” information,

the lack of a common vocabulary makes it difficult to objectively determine the maturity

in a uniform manner across different studies. For instance, prototype implementations

reported in some studies appeared to be more involved than full implementations

reported in other studies. Therefore, we took a conservative approach by (1) choosing a

minimal classification, (2) leaning towards the author’s self-characterization in studies

171

4. Findings Paper IV

that provide such arguments, and (3) building a mutual consensus in judging papers

with insufficient supportive information, or cases where the original vocabulary seemed

out of place. We suggest a liberal interpretation of the identified attributes, nevertheless,

the provided information still provides a decent insight over the maturity levels provided.

See Table 9 for a full description of the attributes.

Characterisation Results – We report the final classification in two tables. Table 10

presents studies exclusively based on static analysis. Table 11 covers studies that use

dynamic analysis, either exclusively, or in a hybrid approach in combination with static

analysis. For the hybrid case, the tabular presentation focuses on the aspects related

to dynamic analysis. Together, both tables provide a succinct characterization of the

58 technology papers. Note that a relatively small number of primary studies did

not contain explicit information on all aspects of our characterization. In such cases,

we refrained from inserting our own interpretations beyond the available information.

However, as a result of this, some studies are characterized with seemingly insufficient

attributes with respect to our classification.

4.3 Research Questions

This section addresses our target research questions based on the selected papers. Note

that since the seven position papers do not present a full study tackling cross-lingual

analysis, they are not included in the analysis in this section. We refer to Section 4.3.1

for a discussion of those position papers. The discussion in this section revisits the

research questions and information derived from the 58 technology papers. It is largely

based on the synthesized information in Table 11 and Table 10, and were possible

enriched with concrete examples from the primary studies that were not presented in

the tables, to connect the discussion to specific technologies. Finally, note that the

static-analysis aspects of those studies taking a hybrid (i.e., static + dynamic) approach

shown in Table 11 are fully taken into account in this section.

RQ1 What approaches have been used for cross-language program analysis?

Figure 5 shows the distribution of the attributes identified as the general approach. For

the purpose of cross-language analysis, it is clear that static analysis has been (far)

more applied than dynamic analysis in the studies (79% comparing to 7%). In addition,

eight studies (14%) have applied a hybrid approach of static and dynamic analysis, to

take advantage of (or trade-off) the characteristics of both approaches.

Most studies used some form of unified model (32, 56%) to tackle cross-language

analysis. This observation is not too surprising as this architectural pattern is also very

common among single-language analysis tools, and resembles the use of an intermediate

representation to connect alternative front-ends to the same back-end in compiler

building [80]. It is also noticeable how model-driven engineering techniques (and

172

Paper IV 4. Findings

sta$c:	 46	

dynamic:	 4	

hybrid:	 8	

Analysis	

full:	 34	

manual:	 1	

semi:	 23	

Automa-on	 Level	

32	

27	

12	

6	 6	 5	 5	 5	 4	 3	 2	

un
ifie
d	 m

od
el	

mu
l2p
le	
pa
rse
rs	

mo
de
lw
are
	 te
ch
.	

ret
art
ge
tab
el	
pa
rse
r	

na
mi
ng
	 co
nv
en
2o
ns
	

isla
nd
	 gr
am
ma
r	

for
ma
lism

	 &
	 th
eo
ry	

co
de
	 in
str
um
en
ta2
on
	

run
2m
e	 i
nte
rce
p2
on
	

ev
alu
a2
on
	 st
ud
y	 	

sta
2s
2c
al	
an
.	

Approaches

Figure 5: Frequencies and high level classification of the applied approaches.

technologies) have contributed to the domain of program analysis with 12 studies (21%),

half of which were published after 2011.

To detect cross-language dependencies, six of the studies (10%) explicitly rely

on (case-specific) naming conventions and identifiers, which is arguably a quite brittle

(i.e. fault prone) approach, not just for dependency analysis but also during forward

engineering.

Finally, only three of the studies (5%) explicitly aimed at reflecting on existing

(third party) approaches for cross-language analysis, using benchmarks and evaluations.

This low number hints at a certain immaturity in the community with respect to

adequate evaluation initiatives, or a lack of collective evaluation efforts, such as call

for contests and open challenges. Moreover, as such third-party evaluation studies aim

at minimizing bias or preference towards a particular approach, this low number of

2nd-tier studies could negatively affect the overall confidence in results in this area.

RQ2 What fact extraction methods are commonly used for analysis across multiple

languages?

The identification of information extraction methods was fairly straightforward

in most papers, due to direct references to well-known techniques and tool-sets. Nev-

173

4. Findings Paper IV

36	

11	

5	 5	 4	 3	 2	 1	 1	 1	

pa
rsi
ng
	

lex
ica
l	 a
n.	

sea
rch
	 &
	 re
gu
lar
	 ex
p.	
	

GU
I	 e
ve
nt	
list
en
er	
	

ma
nu
al	

de
co
mp
ile
r	

de
bu
gg
er	
int
erc
ep
@	 	

we
b	 c
raw

ler
	 	

sym
bo
lic	
ex
e.	

pro
be
-‐ba
sed
	 pr
ofi
lin
g	

Figure 6: Frequency of information extraction methods.

ertheless, a number of papers did not provide enough information on this aspect to

objectively identify the applied method. For example, in some cases the descriptions

remained vague with respect to the differences between lightweight/island parsing and

lexical analysis; instead island parsing was used as a catch-all phrase to refer to some

form of robust semi-structured textual analysis. In such cases we made a judgment by

building mutual consensus using all the information at hand, e.g. the implementation

and evaluation details and the granularity of the extracted information.

The majority of the primary studies used parsing27 (36, 62%), either due to

extensive information needs, or simply because an already-available parser is the most

cost-effective implementation. On the contrary, 11 studies used limited-scope lexical

analyzers (19%), and 5 studies used regular expressions and the available search APIs

to gather the desired information (9%). Four studies relied on manual fact extraction,

either partially or completely [35]. In addition to the aforementioned facets in Table 11

and Table 10, there is one study that applies symbolic execution for cross-language

analysis [50].

RQ3 What types of facts are typically extracted to enable cross-language program

analysis?

Most primary studies report on the types of information that underlies their analysis

(of course with a varying degree of detail). Some approaches are built on one major

information type, while others use a wide range of extracted facts. Apart from very

few exceptions, primary studies generally do not distinguish between the types of data

that are needed for intra-language versus inter-language analysis. In other words,

cross-language analysis aspects are not discussed as an extension to a general-purpose

single/multi language analysis method, but rather as an integrated approach. This

27Either accurate or lightweight parsing.

174

Paper IV 4. Findings

made it difficult for many papers to decide what are the specific types of information

enable the cross-language aspects of their analysis. When formulating this question, we

set out to identify that specific information to provide developers of new cross-language

analysis approaches with specific starting points for extraction. Based on these findings,

Table 12 reflects on all types of information that is extracted and used in the primary

studies. Note that studies are repeated if they extract multiple types of information

and related studies have been grouped together and are indicated by underlining them.

As we can see, some of the identified information types have a certain degree of

overlap. For instance, studies who extract function/method signatures use a portion

of the program entities, too. However, as the constructing of a mutually-exclusive

ontology of information pertaining to source code artifact was not the goal of this

section, we decide to leave this overlap in place, and report on extracted information in

close reference to the vocabulary used by the original authors.

A first look at the usage frequencies shows the significance of program entities to

cross-lingual program analysis, with 35 (60%) primary studies stating a direct need to

extract program identifiers, variables, methods, class names, and etc. This is mainly

due to the necessity of a (cross-language) name resolution mechanism in majority of

the studies - be it improvised and partial, or canonical and complete. String literals in

the program are also gathered for essentially the same purpose (7, 12%), and if we add

up the respective groups we can conclude that 37 primary studies have had the need

for a form of name resolution. Coarse-grained structure of software artifacts, such as

containment relation in the file structure or package inclusions, comes at the second

place in usage frequency (14, 24%). Such relations can indicate a lot when it comes to

detecting cross-language relations.

Program elements with direct impact on the behavior of software systems are

frequently targeted in cross-language analyses. (1) Control flow and/or function call

trees, (2) remote procedure calls (RPC) and/or cross-language procedure calls, and (3)

network socket calls are used in 11, 4, and 2 studies, respectively. Method signatures

are also used in 5 studies, although this refers to a completely static look up of the

signature without considering the fan- in/out interactions. Note that although most

data is collected using white-box analysis of the source code, back-box observation

techniques such as client-server network traffic snooping have also been used.

We would like to highlight that the essence of many of the approaches not only

resides in the information they capture, but perhaps even more importantly in the

information that they filter out. Studies using island grammars are a prime example for

this alternative perspective [64].

RQ4 What internal representations of software artifacts are used to achieve cross-

language analysis?

During our investigation it became clear that primary studies have polarized views

on the general issue of knowledge repositories. Some studies treat the design and

175

4. Findings Paper IV

Table 12: Data extracted to support cross-language analysis.∗

Data type # studies

program entities 34 [8], [9], [15], [17], [16], [19], [22], [18], [23], [28], [29], [32], [33], [37], [38],

[39], [40], [42], [43], [44], [47], [46], [51], [55], [54], [57], [59], [63], [68], [67],

[74], [72], [73], [75]

artifact structure 14 [9], [18], [19], [22], [28], [31], [39], [32], [37], [38], [40], [44], [54], [58]

control flow graph 11 [30], [7], [6], [13], [38], [40], [47], [49], [53], [63], [71]

abstract syntax tree 9 [13], [23], [28], [29], [30], [36], [55], [63], [68]

hyperlinks 9 [2], [3], [9], [22], [28], [31], [58], [71], [75]

database queries 8 [2], [3], [28], [43], [53], [60], [71], [75]

HTML tags 7 [9], [11], [28], [58], [64], [71], [75]

keyword/annotation 7 [16], [25], [24], [41], [47], [46], [53]

string literals 7 [2], [3], [17], [25], [24], [51], [55]

configuration data 6 [30], [53], [54], [72], [73], [74]

database schema 6 [2], [3], [18], [31], [43], [60]

data flow 6 [13], [30], [31], [40], [49], [75]

method signatures 5 [8], [24], [25], [41], [44]

PDG/SDG 4 [72], [73], [74], [75]

RPC 4 [59], [41], [46], [75]

cookie/session vars 3 [2], [3], [71]

workflow description 3 [32], [37], [38]

execution traces 2 [6], [7]

network socket calls 2 [13], [59]

bytecode strings 1 [1]

client-server traffic 1 [6]

code block structure 1 [16]

commit history 1 [70]

GUI interaction 1 [6]

runtime call stack 1 [50]

symbol table entries 1 [47]

* Related studies are indicated by underlining them.

176

Paper IV 4. Findings

implementation of this aspect as the key ingredient to tackling the problem of cross-

language analysis, and, naturally, dedicate a significant portion of the paper to provide

a detailed description of the proposed knowledge repository. On the other hand, other

studies provide no, or very limited information; implicitly dismissing the topic as

irrelevant. Nevertheless we decided to keep this research question in our SLR, and

provide answers based on the available information.

Table 13 summarizes the available data on the implementation of knowledge

repositories, or internal program representations. It reports the most specific description

of the knowledge repositories is picked from the primary studies. For instance, in the

studies included here, OMG’s KDM models are implemented using EMF metamodels,

and these EMF models are realized through XML, however, we report KDM with no

further generalization.

Overall, the provided information implies a rather sporadic use of each technology,

with little trace of continued use of (meta)models among different authors. 15 studies

provided to little information to determine if and what intermediate representation

was used, and nine more studies effectively mentioned no more specific than the fact

that they using relational databases. KDM, Extended Entity-Relationship (EER), and

proprietary Abstract Syntax Trees (AST) are each used by three studies, with the

former two used by overlapping studies. KDM is the only standardized model schema

in here [118]. It is noticeable how the Eclipse Modeling Framework (EMF) has been

utilized increasingly often in the very recent years. So far, it is arguably the only

implementation technology that gained a noticeable momentum within the community.

RQ5 What higher level goals are targeted using cross-lingual program analysis?

Using the information in Table 8, we can reflect on the higher level goals that are

aimed at using cross-language program analysis. Some highlights that become apparent

include:

1. Comprehension is the most sought after goal, with 15 papers (26%) having it as

their primary goal, either using a text-based query mechanism (4) or some form

of graphical visualisation (9) or view reconstruction (2).

2. Considering auxiliary and primary goals together, one-third of studies has pursued

graphical visualisations (9 + 9 + 2 = 20, 34%).

3. Dependency identification and analysis is the second most popular target (9, 16%).

4. With reverse engineering as prerequisite to comprehension in our classification,

we see 31% of studies have investigated ways to extract and abstract cross-lingual

facts. Four additional papers (7%) focus on making reverse engineering more

cost-effective.

177

4. Findings Paper IV

Table 13: Use of internal representations and knowledge repositories.

Format # Studies

not specified 15 [8], [9], [10], [13], [16], [24], [25], [30], [31], [40], [57], [58], [63], [64], [71]

none 10 [1], [6], [15], [17], [23], [33], [35], [50], [65], [70]

relational db 9 [2], [3], [11], [22], [28], [41], [42], [59], [75]

EMF-based 5 [39], [44], [47], [54], [55]

AST 3 [29], [68], [67]

EER model 3 [32], [37], [38]

OMG’s KDM 3 [72], [73], [74]

IR 2 [43], [49]

XML-based 2 [18], [19]

CodeDOM 1 [36]

D-Model 1 [51]

execution traces 1 [7]

FAMIX 1 [53]

GXL 1 [46]

jgraph 1 [60]

Total 58

5. Considering auxiliary and primary goals together, 10 papers analyze cross-lingual

flow of control or data (17%).

6. Although several studies contribute task-specific tools, only two studies(3.4%) aim

at holistic tool support comparable to a general-purpose IDE.

RQ6 Which languages and types of software artifacts have been subjected to cross-

lingual analysis?

Most studies, both technology as well as position papers, provide sufficient informa-

tion to identify the type of artifacts on which they (intend to) apply cross-language

analysis. However, we found that the position papers did not target specific program-

ming languages, so we only use the technology papers to identify specific programming

languages.

Table 14 gives an overview of the types of artifacts that are typically analyzed,

and the number of studies that targeted this type. Note that studies are repeated if

they analyze multiple artifact types and related studies have been grouped together

and are indicated by underlining them. As could be expected, source code analysis is

used in the majority of the selected studies, which is of course heavily influenced by

the domain and scope of this SLR. Next, we see that database-related artifacts, web

pages and configuration and build files have attracted considerable attention in the

community - each appearing in a quarter of the primary studies. Compiled software

178

Paper IV 4. Findings

Table 14: Artifact types subjected to multi-language analysis.

Artifact # Studies

source code 43 [8], [11], [13], [15], [17], [16], [22], [19], [50], [18], [23], [25], [24], [29], [30],

[32], [33], [35], [36], [37], [38], [39], [40], [41], [43], [44], [46], [47], [49], [53],

[55], [54], [57], [60], [59], [63], [64], [68], [67], [74], [72], [73], [75]

database artifacts 18 [2], [3], [11], [16], [17], [18], [28], [31], [35], [37], [43], [44], [53], [55], [60], [61],

[71], [75]

web page 18 [2], [3], [6], [9], [10], [11], [22], [28], [31], [44], [51], [55], [56], [58], [64], [65],

[71], [75]

config/̇build files 13 [15], [17], [30], [45], [48], [53], [54], [55], [66], [67], [72],[73],[74]

binary/byte code 9 [1], [7], [9], [19], [24], [25], [42], [59], [71]

license 1 [12]

not specified 3 [10], [34], [70]

artifacts have also been subject to analysis in nine papers (14%), with two of them being

related. Finally, three studies do not specify artifact types, and there is one “outlier”

that includes license agreements into the analysis [12].

Table 15 summarizes the programming languages that are analyzed. Java and

C/C++ are by far the most frequent studied languages, which could be explained

by their widespread use, both in industry and academia. Given the heterogeneous

nature of contemporary software systems, the significant research attention spent on

database/SQL-related, HTML, and XML artifacts is also hardly a surprise. Another

areas where multi-language artifacts are common is that of dynamic web applications,

which is evidenced by the considerable attention to the scripting languages used to

develop such applications . In total 13 primary studies (22%) consider web scripting

languages, divided over JSP, ASP, PHP, VBScript, and JavaScript (JS).

When looking at languages whose interaction is typically analyzed together, we

can identify the following pairs:

• Java - C/C++ is targeted in eight studies; three of which specifically analyze the

JNI interaction mechanism.

• Java - XML is analyzed in eight studies.

• Java - SQL is targeted in five studies.

• C/C++ language extensions: the interaction of native C/C++ code with external

languages such as Fortran, Python, Perl, Tcl, OCaml, CLOS is analyzed in seven

studies [8], [13], [24], [29], [40], [47], and [50].

A clear trend is the raised interest in approaches that are not tied to specific programming

languages (marked by the symbol ‘∞’ in Table 10). Since 2012, five studies have aimed

179

4. Findings Paper IV

Table 15: Languages included in cross-language program analysis.

Language # Studies

Java 22 [7], [15], [16], [17], [18], [19], [23], [25], [30], [33], [38], [39], [41], [43], [44], [46], [53],

[59], [60], [63], [67], [75]

C/C++ 18 [7], [8], [13], [19], [24], [25], [29], [38], [40], [41], [46], [47], [50], [59], [72], [73], [74],

[75]

html 13 [6], [9], [10], [11], [22], [28], [51], [31], [63], [64], [65], [75], [71]

sql 11 [2], [3], [16], [18], [28], [31], [37], [43], [53], [60], [75]

xml 11 [15], [16], [17], [30], [44], [53], [63], [67], [72], [73], [74]

js 7 [6], [9], [11], [22], [51], [58], [65]

generic 6 [49], [54], [55], [57], [68], [70]

.net 5 [1], [7], [36], [42], [63]

asp 4 [9], [11], [22], [63]

php 4 [2], [3], [10], [22], [51]

Cobol 3 [32], [37], [35]

Python 2 [47], [50]

Fortran 2 [13], [50]

jsp 2 [15], [64]

unknown 2 [10], [71]

at tackling the challenges of cross-language program analysis using approaches that can

(ideally) handle “all” programming languages in a generic manner, with no (or little)

re-implementation costs.

Finally we should point out that there is considerable variation in granularity level

among the selected studies. For example, the level of engagement in language constructs

could make it seem that studies such as [68] and [70] should be considered “borderline”

studies or even should not be included in our selection. Nevertheless, as their research

goals fall well within the scope of this SLR, we decided that they should be included.

RQ7 Which technological domains have attracted more attention in the literature on

cross-lingual analysis?

Identifying the technology domains in which cross-language program analysis is (to

be) applied is relevant to both position papers as well as technology papers. Table 16

reflects on the frequencies of the studied domains, based on verbatim data as presented

in the primary studies, with minor generalization. Note that a single study can be

associated with more than one technological domain and related studies are grouped

together and underlined.

Only one position paper investigates systems with multiple and heterogeneous

distribution licenses; The same is true for product lines. Three studies present an

180

Paper IV 4. Findings

Table 16: Overview of targeted technology domains.

Domain # Studies

multi-licensed 1 [12]

product lines 1 [48]

parallel 1 [50]

.NET 3 [1], [36], [42]

distributed 3 [7], [19], [59]

Java frameworks 4 [15], [30], [45], [53]

component-based 9 [12], [13], [18], [48], [54], [75] [72], [73], [74],

web-based 16 [2], [3], [6], [9], [10], [11], [22], [28], [31], [34], [51], [58], [64], [65], [71], [75]

general 32 [8], [13], [17], [16], [23], [25], [24], [29], [30], [32], [33], [35], [37], [38], [39], [40],

[41], [43], [44], [47], [46], [49], [55], [56], [57], [60], [61], [63], [66], [67], [68], [70]

approach exclusively based on the inherent characteristics of the .NET framework,

while five studies are focused on the ubiquitous configuration-rich Java frameworks.

Parallel systems are tackled by three primary studies - all of which using a dynamic

analysis approach. Component-based systems are investigated by nine studies - seven

use static analysis, and two are position papers. The top most special-purpose visited

domain is web applications, which is not surprising considering the common design and

implementation techniques of such applications (and was predicted in one of the earlier

position papers by Kienle and Muller in 2001 [34]). 31 studies discuss a solution that is

considered general, i.e. not tied to any particular technology domain (other than being

multilingual, of course).

RQ8 How rigorously are newly proposed approaches tested and evaluated?

This question naturally only applies to the technology papers. As the evaluation

is co-related with tool support for, we start with a brief overview of the reported

implementations, before we continue to answer this research question.

Tool support – Of the 57 technology papers, six do not report on implementation

initiatives, and two report commercial quality tool support. The remaining 49 papers

present laboratory implementations, 35 of which were self-described as “prototype,”

“partial,” “preliminary,” or “lightweight.” Although the maturity level varies greatly

among the instances in this laboratory implementation category (from bare-bone hacks

to moderately designed tool-sets with some usability features), they all share the common

characteristic of not being deemed ready for unsupervised use by end-users. In fact,

only 11 of the 49 laboratory implementations are described as being publicly available.

Finally it was interesting to see that, from all implementations, seven were made using

Eclipse as their implementation platform and packaged as an Eclipse extensions (only

two of these were publicly available).

181

4. Findings Paper IV

none,	
6	

proof-‐of-‐
concept,	 35	

laboratory	
impl.,	 15	

commercial	
quality,	 2	

Figure 7: Conveyed maturity level of tool support.

Evaluations – As mentioned before, the lack of methodological rigor among the primary

studies prevents us from directly reusing evaluation characterizations made by the

authors. For example, some studies use the well-established term empirical study

to characterize evaluation efforts that, at best, can be regarded as a “preliminary

evaluation” by today’s standards. Consequently, we used our own, more moderate but

more objective, characterization of the evaluation processes.

Figure 8 summarizes these evaluation characteristics. It shows that 12 studies

did not discuss evaluation, while another 10 exclusively rely on preliminary evaluations

based on toy examples. Overall, we can conclude that over a third (38%) of the studies

have little or no experimental evidence to back up their findings, whereas 36 studies

(62%) do use larger open source and/or industrial code bases to evaluate their approach.

As we have seen in the discussion of RQ5, the main goal of (cross-language)

program analysis is to support the developer with maintenance and evolution of (multi-

language) software systems. In that light, we found it noteworthy to discover that only

eight studies (14%) involve human subjects as part of their evaluation, either in the

form of usability studies, stakeholder questionnaires, and the like.

The challenges of conducting unbiased, repeatable, experimental evaluation using

human-subjects is long known to the scientific community [119, 120]. Moreover, access

to sufficient domain experts as reliable assessors is another obstacle in such evaluations.

However, despite these challenges, the low number of studies involving human subjects is

striking, even though we should point out that equally low rates have been documented

in SLRs that have a somewhat different focus, but a largely overlapping community

and domain [85].

Based on our, possibly subjective, interpretation of available information, we can

only conclude that the state of real-life evaluation in cross-language analysis research is

inadequate. There is almost no demonstration of day-to-day applicability of proposed

approaches to industrial cases, and this gets even worse if we consider evaluation to

formal empirical studies. In addition to the aforementioned lack of collective initiatives

or frameworks for evaluation that were discussed for RQ1, these observations point to a

182

Paper IV 4. Findings

only	 toy	
example,	 10	

industrial/	
open	 source,	

36	

none,	 12	

Figure 8: Frequency of evaluation subjects.

lack of maturity of this particular research area, and a considerable gap to practice. We

speculate that future research efforts could gain extensive benefits if this gap would be

addressed, and evaluations would be conducted more rigorously.

4.3.1 Position papers

Table 17 gives an overview of the seven papers who do not propose a new analysis method

or technology, but rather share their experiences, insights, and possible directions for

future research to the community. In the remainder of this section, we will discuss some

highlights from these papers.

Obviously all primary studies in this review value the topic of cross-lingual program

analysis, however, five papers spend a significant portion to advocate the necessity of

making progress along this direction before the research community – often including

figures on the abundance of multi-language software systems. One study ([56]) backed

Table 17: Overview of position papers.

Contribution Maintenance Task Artifact Type Domain

sh
or

t
p

ap
er

ad
v
o
ca

cy

fu
tu

re
re

se
ar

ch

ta
x
on

om
y

fe
as

ib
il
it

y
an

.

C
IA

re
ve

rs
e

en
g.

v
is

u
al

iz
at

io
n

re
fa

ct
or

in
g

n
av

ig
at

io
n

li
ce

n
se

co
m

p
at

.

so
u
rc

e
co

d
e

co
n
fi
g.

&
d
ep

lo
y

li
ce

n
se

w
eb

p
ag

e

S
Q

L
ar

ti
fa

ct
s

co
m

p
on

en
t

m
u
tl

i-
li
ce

n
se

d

w
eb

b
as

ed

J
av

a
fr

am
ew

or
k
s

p
ro

d
u
ct

L
in

es

Boughanmi, 2010, [12] 3 3 3 · · 3 · · · · 3 3 · 3 · · 3 3 · · ·
Kienle+, 2001, [34] · 3 · · · · 3 · · · · − − − − − · · 3 · ·
Mayer+, 2013, [45] · · · 3 · − − − − − − 3 3 · · 3 · · · 3 ·
Moonen, 2013, [48] · 3 3 · · 3 3 · · · · 3 3 · · · 3 · · · 3

Pfeiffer+, 2012, [56] · 3 · · · · · 3 3 3 · 3 · · 3 · − − − − −
Schink+, 2011, [61] 3 · · · 3 · · · 3 · · 3 · · · 3 − − − − −

Tomassetti, 2013, [66] 3 3 · 3 · − − − − − − 3 3 · · · − − − − −

183

4. Findings Paper IV

up their speculations using a controlled experiment, demonstrating the benefits of using

IDEs equipped with cross-language analysis to various software maintenance tasks.28

Two recent studies ([45, 66]) argue that the community’s understanding of the struc-

ture and context of cross-language interactions is inadequate, and use grounded theory

to gain a better insight. Both studies analyse examples of contemporary, framework-rich,

Java applications, with heavy use of DSLs for configuration, to identify generic patterns

of cross-language interactions. [66] uses the findings of another overlapping study as

corpus [70], which relies on cross-language commits to “spot the presence of” (but not

pinpointing) logical interactions. 29

Roughly published at the same time, Moonen [48] reasons how progress in cross-

lingual program analysis could benefit quality assurance, by enabling recommendation

systems that oversee the evolution of families of component-based cyber-physical

systems. This study also considers the involvement of configuration DSLs as a necessity

in analysing component-based systems.

[12] is the only paper in our SLR that speculates about the application of cross-

language analysis to software licensing. The author proposed to identify and update

subsystems’ interactions for systems built on top of heterogeneously-licensed subsystems,

to analyse (and possibly refactor) how these interactions could affect licensing. However,

this line of work seems to have been abandoned, as no related paper has been published

by the author since.

From the publication data in Table 17 it is evident that the majority of position

papers is from 2010 or later. However, keeping in mind that our selection started from

1995, there is one outlier that is not all that recent: In 2001, at the start of Web 2.0

initiatives and an increase of web applications, Kienle and Müller ([34]) made the case

that the state-of-the-art reverse engineering methods of that time should be extended

with multilingual and cross-lingual capabilities, to be able to cope with the prospective

flood of web-based systems. The findings of this SLR confirm that many studies have

addressed this challenge in the decade following the publication of that paper.

However, the fact that today’s capabilities to analyze web-based systems are far

from perfect, signals that this is still a relevant open research question. We argue that a

significant increase in attention paid to cross-lingual program analysis is needed, partly

to address these web-based systems, but even more so in the light of the abundance of

open-source software frameworks and cross-platform mobile applications.

28Although the term “controlled experiment” has been used by at least two other studies in our SLR,
this is actually the only study that presents an experiment which has sufficient methodological rigor.

29In addition to the position papers, a number of technology papers present taxonomies for cross-
language relation types, such as [40] and [55]. However, such taxonomies are often partial and closely
bounded to the proposed analysis method.

184

Paper IV 5. Discussion

5 Discussion

This SLR reviews cross-language program analysis papers published in peer-reviewed

scientific journals and conferences. The aim is to support the ongoing research by

compiling a library of related papers, and a classification of tackled problems, analysis

approaches, analysis subjects, and evaluation methods. Based on our interpretation of

the gathered data, we discuss a number of recommendations that may help the research

community.

5.1 Implications for research

Research on more language-generic approaches – A major portion of the available

scientific literature on cross-language program analysis consists of studies that aim

at specific technology stacks, specific languages, and specific types of cross-lingual

dependencies. While such specificity should not necessarily be regarded as a drawback

(in particular for pioneering exploratory studies), a lack of generalizable solutions will

likely lead to challenges support the increasing numbers of multi-language software

systems.

While fully generic approaches may seem beyond reach at the moment, we rec-

ognize the substantial potential in research on generalizable approaches with respect

to programming languages. We want to highlight the five recently-published papers

identified in this SLR that address that line of work as part of their research agenda

(see RQ6, Table 15). We consider this a highly promising avenue for further research,

and one that will prove to be essential for dealing with the ever-increasing complexity

of modern heterogeneous software systems and their maintenance needs.

Reduce dependance on heuristics – We identified 11 studies which explicitly mention that

their proposed solution depends on heuristics. Typically, this means that they leverage

certain, non-generalizable, patterns in extracted facts, such as case-specific naming

conventions and directory structures, or even the structure of specific development

teams [26]. In addition to these, a number of other studies also depend on similar

case-specific solutions, although they do not explicitly mention the use of heuristics.

The disadvantage of using heuristics is that they often limit the generalizability of

the solution, which is especially problematic in cases where the context in which the

heuristics do, or do not, apply is not clearly described. Unfortunately, we noticed a

tendency among the studies that employed heuristics to leave out some of these details.

On the other side of the spectrum, we also identified only five studies that base

their approach on formal or theoretical underpinnings (see RQ1, Figure 5). One main

advantage of building on such an underlying formalism is that reasoning about the

applicability of the solution in other domains is more accessible, hence increasing

the odds for repeatability and incremental work in the community. Based on our

observations while conducting this SLR, we speculate there is still considerable open

185

5. Discussion Paper IV

space for new approaches that are developed around a sound model, an unambiguous

grammar, or a verifiable theory, rather than depending on potentially brittle and hard

to generalize heuristics.

Revisiting knowledge repositories – With many research studies heavily relying on the

design and implementation of their knowledge repository, and several others completely

circumventing the topic, we sense a polarized view over the importance of the issue.

The quest for an ideal knowledge repository (or internal representation), is not exclusive

to cross-language analysis, and has attracted a significant research effort over the

years [91, 118]. Confirmed by our findings in RQ4, the sporadic usage of each repository

technology implies that the state of the practice is still far from a widely accepted

solution. Although, at the syntax level, the (faint) trend to use standardized, open

source, solutions like KDM and EMF seems plausible, we consider more customized

and semantic-rich solutions for cross-language analysis to be a fruitful research topic.

Universal name-resolution mechanisms – We observe that the significant use of program

entities and string literals (see RQ3, Table 12) stems from the recurring need for cross-

language name resolution. The studies on cross-language dependency discovery and

refactoring are prime examples of such use. In the light of the aforementioned need

for more generic approaches, this observation points us in the direction of a building

block that could further cross-language analysis research: a universal name resolution

mechanism. The term universal should not be interpreted too strictly; there is need for

a reusable approach without strong dependencies on the actual programming languages

analyzed. Although there is a substantial body of research on name resolution for

various programming languages, we did not identify any generic approach in the primary

studies included in this SLR.

More collaboration and evaluation with industry – Our findings show that empirical

studies on real-world systems are extremely rare in the domain of cross-language

program analysis, and only few studies have demonstrated their applicability to day-to-

day maintenance activities. This can be explained by the fact that realistic empirical

studies in industry are only possible with fairly mature and user-friendly tool; whereas

many primary studies in this SLR present either no or only proof-of-concept prototypes.

However, it is important to address this aspect by closer collaboration with industry, as

the lack of empirical evaluation in real-world scenarios will likely lead to lower confidence

in reported findings, and decreased opportunities for adoption by practitioners.

5.2 Implications for the community

In addition to research oriented implications, the findings collected in this SLR also led

to some insights in the research community conducting cross-lingual program analysis

research, and to ideas for potential improvements.

Limited incremental work – Table 18 gives an overview of cross-citations among the

studies included in this SLR, without considering self-citations. The overview shows that

186

Paper IV 5. Discussion

Table 18: List of cross-citations among the 65 primary studies. Self-citations are not considered.

Study Cited Studies

[1] [36]

[3] [22], [65]

[9] [20], [34], [58]

[10] [20], [34], [58]

[12] [37], [40], [41], [42], [46], [47]

[16] [25], [46], [65]

[17] [25], [46]

[22] [11], [26]

[25] [8]

[32] [40]

[34] [27], [37], [58]

[36] [41], [42], [46], [63]

[37] [32]

[42] [19], [63]

[44] [15], [17], [19], [33], [37], [40], [41], [42], [46], [54], [61], [63]

[45] [17], [42], [54], [55], [56], [61], [63]

[46] [19], [28], [37], [41]

[47] [19], [27], [28], [37], [41]

[51] [33], [62]

[52] [43]

[53] [43]

[55] [63]

[56] [15], [37]

[57] [17], [54]

[59] [27]

[60] [44], [63]

[61] [15], [33], [42], [63]

[63] [37]

[64] [11]

[65] [11] [27]

[68] [45], [55], [56]

[67] [44], [55], [56]

[66] [44], [55], [56]

[70] [54]

[71] [9], [20], [22], [26]

other 30 no citations of other papers that were included in this SLR

187

5. Discussion Paper IV

30 papers (46%) have not cited any other paper selected for the SLR, while 20 papers

(31%) have cited only one or two. This relatively small number of cross-references is

not due to inadequate literature review by the original authors, but rather a sign of

limited incremental work within the “community” of cross-lingual program analysis

researchers. The majority of studies have used existing work on single-language program

analysis, and extended it to produce cross-language program analysis. Given the origins

of cross-lingual program analysis research, this observation is neither disconcerting nor

problematic. However, it does highlight limited occurrence of incremental research [121],

which in turn, indicates a general immaturity in the domain of cross-lingual program

analysis. We hope this SLR raises awareness on the body of relevant literature that the

community could build on with further ideas.

Lack of journal papers – We find it noteworthy that only 4 out of 65 studies in this

SLR have been published in scientific journals. Although publication channel is not

a definite measure for quality, this low number of journal publications corroborates

the impression of immaturity of the work in this domain. Extensively-developed and

well-evaluated research studies typically do not conform very well with strict page

limitations of conferences. A tentative conclusion of this observation is that it is another

sign of the need for more involved industrial cases and empirical evaluation.

Common terminology – One immediate observation while conducting this SLR was the

significant variation, mismatch, or even contradictory terminology used in the primary

studies. For instance, considering the various descriptors for “systems,”“artifacts,” and

“programming models,” we listed well over 15 different expressions used to characterize

MLSS. The case is not better when it comes to characterizing sub-elements of analysis

methods, such as fact extraction, and evaluation processes. This issue hinders translation

of the findings among different studies, and increases chances for misinterpretations.

While this is not specific to cross-language program analysis (nor to program analysis in

general), it again shows that many of the research in this domain is performed largely

in isolation.

Dedicated Research Channels – To the best of our knowledge, there is no dedicated

workshop or conference aimed at cross-lingual program analysis. Although such a

dedicated research channel is not a prerequisite for progress, it can advance the state

of research by fostering a more integrated community. Considering the ubiquity of

MLSS and the respective maintenance needs, we believe it is inevitable that cross-

language program analysis is needed in the near future. This SLR shows that the

amount of publications in recent years is already sufficient to initiate a small workshop,

or designated session in existing conferences. Moreover, if such initiatives would be

combined with collaborative challenges or “bake-offs”, they could promote more detailed

mutual understanding of approaches, and lead more incremental research efforts. Finally,

considering the close conceptual, as well as practical, interactions among the topics of

multi-language and cross-language program analysis, we speculate that joint initiatives

would pay off for both areas.

188

Paper IV 6. Limitations to this systematic literature review

6 Limitations to this systematic literature review

Conducting an SLR requires interpretation over the available literature throughout

several stages, and the current SLR is no exception to this process. We acknowledge

that researcher bias is a major challenge in the course of publication selection, data

extraction, and data synthesis. To overcome this challenge, the existing guidelines for

literature reviews [81, 86] were extensively examined and discussed to identify the best

applicable practices to avoid known pitfalls. To test and refine the research protocol

prior to conducting the SLR, , the main study was preceded by a pilot study. This

iteration helped us to weed out ambiguity, define stronger criteria and a more systematic

process, which all helped to avoid bias during processing of the individual studies for

the main SLR. To maintain direction and uniformity of decisions over a relatively long

period of time, we documented the research protocol in a technical report prior to

conducting the study, and presented the necessary details in the paper to promote

transparency and repeatability of the results.

Search strategy – In the pilot study, we started with a set of research questions, and a set

of 40 known relevant studies. We used n-gram analysis to extract the most frequently

used terms, and combinations of terms, in the relevant papers. The results were used

to iteratively develop and adapt our the search query to each of the digital libraries,

using the collection of 40 known studies as a regression test. To address the sensitivity

of the search engines to minute syntactical issues, we decided to complemented the

automated search with manual reference checking of the identified studies (also known

as snowballing), and continued the snowballing process until no new studies could be

identified (fix-point). Using the combination of these two search methods ensured our

confidence in the completeness of our selection.

Study selection and scoping – We defined the target scope of this review in the pilot

phase to avoid the risk of scope creep, however, the greatest risk is in judging the

relevance of candidate studies with respect to the defined scope. To minimize bias, we

adapted a multi-stage selection process, where each stage was subjected to inter-rater

agreement screening tests. Throughout the selection process, we took a conservative

approach by removing only those studies that were clearly out of the scope for this SLR

at that respective stage (i.e., respectively based on title, abstract, and finally on the

full text). To limit selection bias as a result of ad-hoc decisions, we required mutual

consensus among both authors in the presence of even minor uncertainty about potential

removal of a study.

Despite such measures, it is not possible to claim or demonstrate absolute complete-

ness. For one, some studies concerning web applications, in particular, are ambiguous

with respect to the level of cross-lingual analysis involved, and their inclusion could be

argued either way. In all such cases, we tried to objectively determine their relevance

using a full text analysis, and by their ability to contribute possible answers to each of

our research questions. Rigidly following this selection process increases the confidence

189

7. Conclusion Paper IV

that we have not excluded particularly major or well-cited studies by mistake.

Data extraction and analysis – Early during the pilot run of the data extraction process,

we realized that depending solely on verbatim data as presented in individual primary

studies would pose a major threat to the precision of our findings. The lack of common

terminology, lack of uniformity in the discussion of technical details, and varying levels

of methodological rigor in conducting and reporting the primary studies contribute to

this realization. On the other hand, unifying the findings of the primary studies based

on our personal interpretations would substantially increase the risk of researcher bias

in our overall results.

To address this challenge, we applied open and axial coding techniques from

grounded theory to iteratively synthesize a taxonomy of possible answers for each

research question. A data extraction table was defined, and structured sets of possible

answers were encoded into the table using check-boxes and lists wherever possible. A

pilot study with a representative sample of primary studies helped us iteratively define

the structured lists for many of the columns, and also revealed for which columns we

had to use open-ended coding to maintain precision in the data extraction phase. This

process made room for mutual consent by providing an succinct overview toward an

iteratively-defined data set, and minimized the aforementioned threats by avoiding pure

free text answers, and ad-hoc interpretations during data extraction.

The structured data extraction table proved as a reliable starting point for the

data synthesis process as well. Table columns with limited list of possible answers

could readily be presented with no need for further analysis and abstraction by us.

For open-ended coded columns we postponed the comparison and translation of the

findings after all studies and their respective footprint on the taxonomies were settled.

Conducting the second round of axial coding at this stage, enabled repeatedly testing

and verifying of our interpretations against other co-related studies, and other items in

the respective taxonomy, as well as building mutual consensus whenever needed. This

played a key role in avoiding individual interpretations.

We believe that the applied approach helped us minimize researcher bias to

a large extent, and raised our confidence in the findings. Nevertheless, due to the

inherent subjective nature of interpretations that still plays a role when depending

on consensus between two researchers, it is difficult to objectively assess (or claim)

the overall repeatability of our results – a highly-valued (and to some extent illusive)

characteristic of systematic reviews.

7 Conclusion

We identified 75 studies addressing cross-language program analysis, searching through

1767 studies using digital search methods and several hundred manual look-ups while

snowballing. Since some of the studies are reported in more than one paper, 10 papers

190

Paper IV 7. Conclusion

were removed from further analysis. A total of 58 papers were associated with specific

analysis technologies, while the other seven contribute insights and propositions. The

publication meta-data for the selected studies was analyzed to reveal characteristics of

the involved community and the relevant publication channels. Next, information was

systematically extracted from the selected studies, based on a data extraction table that

was developed and refined using grounded theory, i.e. we iteratively synthesized the

extraction taxonomy using open (unrestricted) coding and axial coding based on mutual

consensus between the authors. Based on our, possibly subjective, interpretation of the

extracted data, we formulated the answers to our initial research questions, and drew a

number of conclusions regarding the implications for research, and for the community

interested in the topic of cross-language program analysis.

A total of 16 overall goals were identified in the primary studies, among which

“comprehension” and “visualizations” were the most frequently targeted, closely followed

by “dependency” identification and the analysis of “ripple-effects.” Approaches based on

static analysis proved to be far more popular than (exclusive) dynamic approaches, with

40% of the studies reaching only semi-automation levels. The majority of studies have

adopted the well-known “unified model” pattern to create a homogeneous representation

of information derived from heterogeneous artifacts. In recent years, technologies such

as model-driven engineering have had a noticeable impact on how approaches are

implemented. The type of information that is extracted to conduct cross-language

analysis varies greatly among the studies. As could be expected, source code information

forms the most frequently included data for cross-language analysis. After source code,

there was an equal amount of attention for either database-related artifacts, web pages,

or configuration files. Although compiled artifacts and even license agreements play

a role in some studies, the most extensively studied cross-language interactions are

between Java and C/C++. In addition, there was considerable attention for the analysis

of the Java-XML combination and for the Java-SQL combination.

With respect to evaluation methods, the results show a that over one third of the

studies had no or only very limited empirical evaluation, more importantly, even though

many of the goals are related to human aspects such as comprehension of multi-language

systems, there were only very few studies that actually involved human subjects (other

than the authors) in the evaluation.

The abundance of studies with no or only proof-of-concept implementations, the

non-negligible number of short papers, the low number of journal articles, and the

light-weight evaluation conducted in many studies, all convey a sense of immaturity

regarding the state of the art in cross-language analysis research. We argue that the

limited occurrence of cross-references among the primary studies, in addition to the

aforementioned observations, indicates a shortage of incremental and community-driven

research and evaluation initiatives (e.g., by means of a ‘bake-off‘ or analysis challenge at

a workshop or conference, were participants apply their approach on a common subject

system, and compare and possibly integrate their results).

191

A. Concrete Queries Paper IV

Based on our interpretation of the findings of the SLR, a set of implications for

research and the community were discussed. The considerable amount of language-

and technology-specific analyses, together with a noticeable lack of (semi-)generic

methods are clear signs that generalizablity is a major challenge, as well as a potential

key breakthrough for the future of cross-language program analysis. Considering the

high pace of technology and language development, research on highly adaptable and

generalizable methods might be the only viable approach to close the gap between

industry-quality tool support and the growing needs in software maintenance. This need

for more generic approaches makes us doubt the trade-off of developing techniques that

are highly dependent on heuristics, over investing in sound theoretical frameworks as a

basis for future generations of analysis tools. While knowledge repositories have been

used in half of the studies, there is little evidence that the state-of-the-art is capable of

accommodating our future needs, given the sporadic use of each repository technology.

Model-driven technologies, supported by standards and open-source movements, may

change this trend, but still have to stand the test of time. We discussed signs that

seem to indicate a shortage of incremental and community-driven research in cross-

language program analysis, and challenges that rise from a lack of common terminology.

Establishing some dedicated research channels can be an effective starting point to

overcome some of these challenges, and promote incremental research.

Considering the steady increase in multi-language software systems, we advocate

for increased research attention to cross-language analysis of such software systems.

It is our goal that the findings of this systematic literature review will benefit those

efforts, by providing a starting point for identifying related work in the area, providing

a taxonomy that helps to better articulate contributions and research questions, and

exposing parts of the research area that could benefit from increased attention.

Appendices

A Concrete Queries

Table 19 shows the concrete queries that we used used during the electronic search. The

queries are constructed based on the three sub-expressions E1, E2, and E3, discussed

earlier in Table 4. In addition to the table, we provide some complementary information

to explain some of the differences in the concrete queries in different search engines.

IEEEXplore: Using the provided interface in the “Command Search” tab of IEE-

EXplore’s “Advanced Search” page30 we were able to use a very straightforward

query: (E1 AND E2 AND E3). It is possible to execute the query in two modes:

“Metadata Only” and “Full Text and Metadata”. Using the latter resulted in

30Available at: http://ieeexplore.ieee.org/search/advsearch.jsp?expression-builder

192

http://ieeexplore.ieee.org/search/advsearch.jsp?expression-builder

Paper IV A. Concrete Queries

Table 19: Concrete queries for the different digital libraries

Search Engine Query

IEEEXplore E1 AND E2 AND E3

ACM (Owner:GUIDE) AND

((Abstract: (E1)) OR (Title: (E1)) OR (Keywords: (E1))) AND

((Abstract: (E2 AND E3′))

where E3′: (software OR system OR program OR“source code”OR“application”OR

“applications”OR“software development”OR“software engineering”OR“component-

based” OR web)

Wiley create E1-, E2- and E3- by removing the hyphens from E1, E2, and E3;

insert E1- AND E2- AND E3- for “Abstract” and insert E3- for “Article Title”.

Inspec create E1-, E2- and E3- by removing the hyphens from E1, E2, and E3;

insert each sub-expression as a separate “Abstract”-field in the “Multi-Field Search”

page and create a conjunction using the AND operator from the user interface.

Web of Sci. SU=(Computer Science OR Engineering) AND TS=(E1 AND E2 AND E3)

Science. Dir. TITLE-ABS-KEY(E1 AND E2 AND E3)

Scopus TITLE-ABS-KEY(E1 AND E2 AND E3)

an order-of-magnitude increase in the number of hits (about 14,000), however,

manual inspection of the results clearly indicated a considerable increase in the

number of false positives. Therefore, we executed the query against the metadata

of papers, which includes, title, abstract and keywords.

ACM: The notion of “metadata” is not readily available in ACM Digital Library search

engine in the same way as it is in IEEEXplore. Therefore, we simulate a similar

search using the keywords that cover the title, abstract and keywords of the

papers. It is crucial to note that ACM offers two databases to search: “Publication

from ACM and Affiliated Organizations” and “The ACM Guide to Computing

Literature”. At the time of this study, the former contained about 400,000 entries

and the latter had 2,200,000 entries. Our pilot study convinced us to use the

larger collection, as it covered more of the papers in our hand-selected test set

(see Section 3.1). The term “Owner:GUIDE” in 19 instructs the search engine to

do so (“Owner:ACM” is the other option).

Wiley & Inspec: Our tests indicate that it is more reliable to remove the hyphens

from the query sub-expressions. Wiley and Inspec do not provide a plain command-

based interface, hence, the final query has to be constructed using the logical

operands embedded into the web interface.

Science Direct & Scopus: No special remarks, the queries were used as in Table 19.

193

B. Data Extraction Table Paper IV

B Data Extraction Table

Table 20 shows the form that was used for data extraction.

Field Description Result Type

Basic

1. ID A unique identifier for the study . . .

2. Bibliographic data Title, author, publication year . . .

3. Publisher Original publisher of the study . . .

4. Publication type What type of publication Journal, conference, workshop

5. Publication channel Name of journal, conference, or
workshop

. . .

6. Number of pages Publication size (#pages) . . .

Search

7. Study search source How was the study retrieved? IEEE, ACM, Wiley, Inspec,
WebSci, SciDirect, Scopus,
Snowball

RQ1

8. General Category Main approach of the study Open coding

9. Analysis type Basic analysis method of artifacts Static, dynamic (execution trace),
dynamic (navigation flow), N/A

10. Knowledge repository Does the study use a knowledge
repository?

Yes / No

RQ2

11. Capturing technique Method used for fact extraction Open coding

RQ3

12. Information captured Type of information extracted Open coding

RQ4

13. IR format What intermediate representation Open coding

RQ5

14. Goal The objectives of the study Open coding

RQ6

15. Automation level Does the approach require human
interaction?

Fully automated, semi-automated,
fully manual, N/A

RQ7

16. Artifact type Types of analyzed artifacts Open coding

17. Language Programming languages analyzed

RQ8

18. Implementation Tool implementation Commercial quality, lab. imple-
mentation, proof-of-concept, N/A

19. Tool availability Is the tool publicly available? Yes / No

20. Evaluation Presence and extent of evaluation Controlled experiment, industrial
code base, open source system, toy
example, none, N/A

21. Limitations

Reviewer

22. Reviewer Name Initial reviewer AY / LM

23. Needs double check? Yes/No/Done

24. Other Notes

Table 20: Data Extraction Table.

194

Paper IV Bibliography

Bibliography

[1] F. Al-Omari, I. Keivanloo, C. K. Roy, and J. Rilling, “Detecting Clones Across Microsoft

.NET Programming Languages,” in Reverse Engineering (WCRE), 2012 19th Working

Conf. on. Knowledge Systems Institute Graduate School, 2012, pp. 405–414.

[2] M. H. Alalfi, J. R. Cordy, and T. R. Dean, “A verification framework for access control

in dynamic web applications,” in Proceedings of the 2009 C3S2E Conf. on - C3S2E ’09.

ACM Press, 2009, p. 109.

[3] ——, “WAFA: Fine-grained dynamic analysis of web applications,” in 2009 11th IEEE

Int’l Symposium on Web Systems Evolution. IEEE, Sep. 2009, pp. 141–150.

[4] D. Amalfitano, A. R. Fasolino, A. Polcaro, and P. Tramontana, “Comprehending Ajax

Web Applications by the DynaRIA Tool,” in Quality of Information and Communications

Technology (QUATIC), 2010 Seventh Int’l Conf. on the, 2010, pp. 122–131.

[5] ——, “DynaRIA: A Tool for Ajax Web Application Comprehension,” in Program Com-

prehension (ICPC), 2010 IEEE 18th Int’l Conf. on, 2010, pp. 46–47.

[6] ——, “The DynaRIA tool for the comprehension of Ajax web applications by dynamic

analysis,” Innovations in Systems and Software Engineering, vol. 10, no. 1, pp. 41–57,

Apr. 2013.

[7] A. Ayers, R. Schooler, C. Metcalf, A. Agarwal, J. Rhee, and E. Witchel, “TraceBack:

first fault diagnosis by reconstruction of distributed control flow,” in Proceedings of the

2005 ACM SIGPLAN Conf. on Programming language design and implementation, ser.

PLDI ’05. ACM, 2005, pp. 201–212.

[8] D. J. Barrett, A. Kaplan, and J. C. Wileden, “Automated support for seamless inter-

operability in polylingual software systems,” in Proceedings of the 4th ACM SIGSOFT

symposium on Foundations of software engineering - SIGSOFT ’96. ACM Press, 1996,

pp. 147–155.

[9] C. Bellettini, A. Marchetto, and A. Trentini, “WebUml: Reverse Engineering of Web

Applications,” in Proceedings of the 2004 ACM symposium on Applied computing - SAC

’04. ACM Press, 2004, p. 1662.

[10] ——, “Validation of Reverse Engineered Web Application Models,” in The Second

World Enformatika Conf. (WEC’05), ser. Proceedings of World Academy of Science

Engineering and Technology, C. Ardil, Ed., vol. 4. WASET, 2005, pp. 125–128.

[11] C. Boldyreff and R. Kewish, “Reverse engineering to achieve maintainable WWW sites,”

in Proceedings Eighth Working Conf. on Reverse Engineering. IEEE Comput. Soc,

2002, pp. 249–257.

[12] F. Boughanmi, “Multi-Language and Heterogeneously-licensed Software Analysis,” in

Reverse Engineering (WCRE), 2010 17th Working Conf. on, 2010, pp. 293–296.

[13] M. P. Chase, S. M. Christey, D. R. Harris, and A. S. Yeh, “Managing recovered function

and structure of legacy software components,” in Reverse Engineering, 1998. Proceedings.

Fifth Working Conf. on, 1998, pp. 79–88.

[14] ——, “Recovering software architecture from multiple source code analyses,” in Proceed-

ings of the 1998 ACM SIGPLAN-SIGSOFT Ws. on Program analysis for software tools

and engineering - PASTE ’98. ACM Press, 1998, pp. 43–50.

195

Bibliography Paper IV

[15] N. Chen and R. Johnson, “Toward refactoring in a polyglot world: extending automated

refactoring support across Java and XML,” in Proceedings of the 2nd Ws. on Refactoring

Tools, ser. WRT ’08. ACM, 2008, pp. 4:1—-4:4.

[16] B. Cossette and R. J. Walker, “Polylingual Dependency Analysis Using Island Grammars:

A Cost Versus Accuracy Evaluation,” in 2007 IEEE Int’l Conf. on Software Maintenance.

IEEE, Oct. 2007, pp. 214–223.

[17] ——, “DSketch: lightweight, adaptable dependency analysis,” in Proceedings of the

eighteenth ACM SIGSOFT Int’l symposium on Foundations of software engineering, ser.

FSE ’10. ACM, 2010, pp. 297–306.

[18] L. Deruelle, M. Bouneffa, N. Melab, and H. Basson, “A change propagation model and

platform for multi-database applications,” in Software Maintenance, 2001. Proceedings.

IEEE Int’l Conf. on, 2001, pp. 42–51.

[19] L. Deruelle, N. Melab, M. Bouneffa, and H. Basson, “Analysis and manipulation of

distributed multi-language software code,” in Source Code Analysis and Manipulation,

2001. Proceedings. First IEEE Int’l Ws. on, 2001, pp. 43–54.

[20] G. Di Lucca, A. Fasolino, F. Pace, P. Tramontana, and U. De Carlini, “WARE: a tool for

the reverse engineering of Web applications,” in Proceedings of the Sixth European Conf.

on Software Maintenance and Reengineering. IEEE Comput. Soc, 2002, pp. 241–250.

[21] G. Di Lucca, A. Fasolino, P. Tramontana, and U. De Carlini, “Abstracting business level

UML diagrams from Web applications,” in Fifth IEEE Int’l Ws. on Web Site Evolution,

2003. Theme: Architecture. Proceedings. IEEE Comput. Soc, 2003, pp. 12–19.

[22] G. A. Di Lucca, A. R. Fasolino, and P. Tramontana, “Reverse engineering web applica-

tions: the WARE approach,” Journal of Software Maintenance and Evolution, vol. 16,

no. 1-2, pp. 71–101, Jan. 2004.

[23] M. Druk and M. Kropp,“ReFit: A Fit test maintenance plug-in for the Eclipse refactoring

plug-in,” in Developing Tools as Plug-ins (TOPI), 2013 3rd Int’l Ws. on, May 2013, pp.

7–12.

[24] M. Furr and J. S. Foster, “Checking type safety of foreign function calls,” in Proceedings of

the 2005 ACM SIGPLAN Conf. on Programming Language Design and Implementation,

PLDI’05. ACM, 2005, pp. 62–72.

[25] ——, “Polymorphic Type Inference for the JNI,” in Proceedings of the 15th European

Conf. on Programming Languages and Systems (ESOP’06), vol. 3924. Springer-Verlag,

2006, pp. 309–324.

[26] A. E. Hassan and R. Holt, “Towards a better understanding of Web applications,” in

Proceedings 3rd Int’l Ws. on Web Site Evolution. WSE 2001. IEEE Comput. Soc, 2001,

pp. 112–116.

[27] A. E. Hassan and R. C. Holt, “Architecture recovery of web applications,” in Proceedings

of the 24th Int’l Conf. on Software Engineering - ICSE ’02. ACM Press, 2002, p. 349.

[28] ——, “A Visual Architectural Approach to Maintaining Web Applications,” Annals of

Software Engineering- Special Volume on Software Visualization, vol. 16, 2003.

[29] J. Hayes, W. G. Griswold, and S. Moskovics, “Component design of retargetable program

analysis tools that reuse intermediate representations,” in Proceedings of the 22nd Int’l

Conf. on Software Engineering, ser. ICSE ’00. ACM, 2000, pp. 356–365.

196

Paper IV Bibliography

[30] A. Hessellund and P. Sestoft, “Flow Analysis of Code Customizations,” in The 22nd

European Conf. on Object-Oriented Programming (ECOOP 2008). Springer Berlin

Heidelberg, 2008, pp. 285–308.

[31] C.-L. Hsu, H.-C. Liao, J.-L. Chen, and F.-J. Wang, “A Web database application model

for software maintenance,” in Autonomous Decentralized Systems, 1999. Integration of

Heterogeneous Systems. Proceedings. The Fourth Int’l Symposium on, 1999, pp. 338–344.

[32] M. Kamp, “Managing a multi-file, multi-language software repository for program

comprehension tools: a generic approach,” in Program Comprehension, 1998. IWPC

’98. Proceedings., 6th Int’l Ws. on, 1998, pp. 64–71.

[33] M. Kempf, R. Kleeb, M. Klenk, and P. Sommerlad, “Cross language refactoring for

Eclipse plug-ins,” in Proceedings of the 2nd Ws. on Refactoring Tools - WRT ’08. ACM

Press, 2008, pp. 1–4.

[34] H. Kienle and H. Muller, “Leveraging program analysis for Web site reverse engineering,”

in Proceedings 3rd Int’l Ws. on Web Site Evolution. WSE 2001. IEEE Comput. Soc,

2001, pp. 117–125.

[35] U. Kolsch, “Object-oriented re-engineering of information systems in a heterogeneous

distributed environment,” in Reverse Engineering, 1998. Proceedings. Fifth Working

Conf. on, 1998, pp. 104–114.

[36] N. A. Kraft, B. W. Bonds, and R. K. Smith, “Cross-Language Clone Detection,” in the

20th Int’l Conf. on Software Engineering and Knowledge Engineering (SEKEâĂŹ08),

2008, pp. 54–59.

[37] B. Kullbach, A. Winter, P. Dahm, and J. Ebert, “Program comprehension in multi-

language systems,” in Proceedings Fifth Working Conf. on Reverse Engineering (Cat.

No.98TB100261), ser. WCRE ’98. IEEE Comput. Soc, 1998, pp. 135–143.

[38] C. Lange, H. M. Sneed, and A. Winter, “Comparing graph-based program comprehension

tools to relational database-based tools,” in Program Comprehension, 2001. IWPC 2001.

Proceedings. 9th Int’l Ws. on, 2001, pp. 209–218.

[39] S. Lehnert, Q. Farooq, and M. Riebisch, “Rule-Based Impact Analysis for Heterogeneous

Software Artifacts,” in Software Maintenance and Reengineering (CSMR), 2013 17th

European Conf. on, Mar. 2013, pp. 209–218.

[40] P. K. Linos, “PolyCARE: a tool for re-engineering multi-language program integrations,”

in Engineering of Complex Computer Systems, 1995. Held jointly with 5th CSESAW,

3rd IEEE RTAW and 20th IFAC/IFIP WRTP, Proceedings., First IEEE Int’l Conf. on.

IEEE Computer Society, 1995, pp. 338–341.

[41] P. K. Linos, Z.-h. Chen, S. Berrier, and B. O’Rourke, “A Tool For Understanding

Multi-Language Program Dependencies,” in Proceedings of the 11th IEEE Int’l Ws. on

Program Comprehension, ser. IWPC ’03. IEEE Computer Society, 2003, pp. 64–73.

[42] P. Linos, W. Lucas, S. Myers, and E. Maier, “A metrics tool for multi-language software,”

in Proceedings of the 11th IASTED Int’l Conf. on Software Engineering and Applications,

ser. SEA ’07. ACTA Press, 2007, pp. 324–329.

[43] C. Marinescu, “Identification of Relational Discrepancies between Database Schemas

and Source-Code in Enterprise Applications,” in Ninth Int’l Symposium on Symbolic

197

Bibliography Paper IV

and Numeric Algorithms for Scientific Computing (SYNASC 2007). IEEE, Sep. 2007,

pp. 93–100.

[44] P. Mayer and A. Schroeder, “Cross-Language Code Analysis and Refactoring,” in Source

Code Analysis and Manipulation (SCAM), 2012 IEEE 12th Int’l Working Conf. on,

2012, pp. 94–103.

[45] ——, “Patterns of cross-language linking in java frameworks,” in Program Comprehension

(ICPC), 2013 IEEE 21st Int’l Conf. on, May 2013, pp. 113–122.

[46] D. L. Moise and K. Wong, “Extracting and Representing Cross-Language Dependencies

in Diverse Software Systems,” in Proceedings of the 12th Working Conf. on Reverse

Engineering, ser. WCRE ’05. IEEE Computer Society, 2005, pp. 209–218.

[47] D. L. Moise, K. Wong, H. J. Hoover, and D. Hou, “Reverse Engineering Scripting

Language Extensions,” in Proceedings of the 14th IEEE Int’l Conf. on Program Compre-

hension, ser. ICPC ’06. IEEE Computer Society, 2006, pp. 295–306.

[48] L. Moonen, “Towards evidence-based recommendations to guide the evolution of

component-based product families,” Science of Computer Programming, vol. 97, pp.

105–112, 2013.

[49] ——, “A generic architecture for data flow analysis to support reverse engineering,” in

Proceedings of the 2nd Int’l Conf. on Theory and Practice of Algebraic Specifications,

ser. Algebraic’97. British Computer Society, 1997, p. 10.

[50] A. Morris, A. D. Malony, S. Shende, and K. Huck, “Design and Implementation of a

Hybrid Parallel Performance Measurement System,” in 2010 39th Int’l Conf. on Parallel

Processing. IEEE, Sep. 2010, pp. 492–501.

[51] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen, “BabelRef: Detection

and renaming tool for cross-language program entities in dynamic web applications,” in

Software Engineering (ICSE), 2012 34th Int’l Conf. on, 2012, pp. 1391–1394.

[52] F. Perin, “Enabling the Evolution of J2EE Applications through Reverse Engineering

and Quality Assurance,” in Reverse Engineering, 2009. WCRE ’09. 16th Working Conf.

on, 2009, pp. 291–294.

[53] F. Perin, T. Girba, and O. Nierstrasz, “Recovery and analysis of transaction scope

from scattered information in Java Enterprise Applications,” in Software Maintenance

(ICSM), 2010 IEEE Int’l Conf. on, 2010, pp. 1–10.

[54] R.-H. Pfeiffer and A. Wasowski, “Taming the confusion of languages,” in Proceedings

of the 7th European Conf. on Modelling foundations and applications, ser. ECMFA’11.

Springer-Verlag, 2011, pp. 312–328.

[55] R.-H. Pfeiffer and A. Wakasowski, “TexMo: a multi-language development environment,”

in Proceedings of the 8th European Conf. on Modelling Foundations and Applications,

ser. ECMFA’12. Springer-Verlag, 2012, pp. 178–193.

[56] R.-H. Pfeiffer and A. Wasowski, “Cross-language support mechanisms significantly

aid software development,” in Proceedings of the 15th Int’l Conf. on Model Driven

Engineering Languages and Systems, ser. MODELS’12. Springer-Verlag, 2012, pp.

168–184.

[57] T. Polychniatis, J. Hage, S. Jansen, E. Bouwers, and J. Visser,“Detecting Cross-Language

198

Paper IV Bibliography

Dependencies Generically,” in Software Maintenance and Reengineering (CSMR), 2013

17th European Conf. on, Mar. 2013, pp. 349–352.

[58] F. Ricca and P. Tonella, “Building a Tool for the Analysis and Testing of Web Appli-

cations: Problems and Solutions,” in The 7th Int’l Conf. on Tools and Algorithms for

the Construction and Analysis of Systems, TACAS 2001. Springer-Verlag, 2001, pp.

373—-388.

[59] M. Salah and S. Mancoridis, “Toward an environment for comprehending distributed

systems,” in 10th Working Conf. on Reverse Engineering, Proceedings. Reengn Forum;

IEEE Comp Soc, Tech Council Sofware Engn; Univ Victoria; Univ Alberta, 2003, pp.

238–247.

[60] H. Schink, “sql-schema-comparer: Support of multi-language refactoring with relational

databases,” in Source Code Analysis and Manipulation (SCAM), 2013 IEEE 13th Int’l

Working Conf. on, Sep. 2013, pp. 173–178.

[61] H. Schink, M. Kuhlemann, G. Saake, and L. Ralf, “Hurdles in multi-language refactoring

of hibernate applications,” in Proceedings of the 6th Int’l Conf. on Software and Database

Technologies. SciTePress - Science and and Technology Publications, 2011, pp. 129–134.

[62] S. Sidler, S. Reinhard, and P. Sommerlad, “Cross Language Refactoring for Groovy and

Java in Eclipse,” in 3rd wprkshop on refactoring tools (WRT’09), 2009, pp. 1–2.

[63] D. Strein, H. Kratz, and W. Lowe, “Cross-Language Program Analysis and Refactoring,”

in Source Code Analysis and Manipulation, 2006. SCAM ’06. Sixth IEEE Int’l Ws. on,

2006, pp. 207–216.

[64] N. Synytskyy, J. R. Cordy, and T. Dean, “Resolution of static clones in dynamic Web

pages,” in Web Site Evolution, 2003. Theme: Architecture. Proceedings. Fifth IEEE Int’l

Ws. on, 2003, pp. 49–56.

[65] N. Synytskyy, J. R. Cordy, and T. R. Dean, “Robust multilingual parsing using island

grammars,” in Proceedings of the 2003 Conf. of the Centre for Advanced Studies on

Collaborative research, ser. CASCON ’03. IBM Press, 2003, pp. 266–278.

[66] F. Tomassetti, M. Torchiano, and A. Vetro, “Classification of Language Interactions,” in

2013 ACM / IEEE Int’l Symposium on Empirical Software Engineering and Measurement.

IEEE, Oct. 2013, pp. 287–290.

[67] F. Tomassetti, A. Vetro, M. Torchiano, M. Voelter, and B. Kolb, “A model-based

approach to language integration,” in Modeling in Software Engineering (MiSE), 2013

5th Int’l Ws. on, May 2013, pp. 76–81.

[68] F. Tomassetti, G. Rizzo, and M. Torchiano, “Spotting automatically cross-language

relations,” in Software Maintenance, Reengineering and Reverse Engineering (CSMR-

WCRE), 2014 Software Evolution Week - IEEE Conf. on, Feb. 2014, pp. 338–342.

[69] P. Tramontana, “Reverse engineering Web applications,” in Software Maintenance, 2005.

ICSM’05. Proceedings of the 21st IEEE Int’l Conf. on. IEEE Computer Society, 2005,

pp. 705–708.

[70] A. Vetro’, F. Tomassetti, M. Torchiano, and M. Morisio, “Language interaction and

quality issues,” in Proceedings of the ACM-IEEE Int’l symposium on Empirical software

engineering and measurement - ESEM ’12. ACM Press, 2012, p. 319.

[71] S. Weijun, L. Shixian, and L. Xianming, “An Approach for Reverse Engineering of Web

199

Bibliography Paper IV

Applications,” in 2008 Int’l Symposium on Information Science and Engineering. IEEE,

Dec. 2008, pp. 98–102.

[72] A. R. Yazdanshenas and L. Moonen, “Crossing the boundaries while analyzing heteroge-

neous component-based software systems,” in Proceedings of the 2011 27th IEEE Int’l

Conf. on Software Maintenance, ser. ICSM ’11. IEEE Computer Society, 2011, pp.

193–202.

[73] ——, “Tracking and visualizing information flow in component-based systems,” in 2012

20th IEEE Int’l Conf. on Program Comprehension (ICPC). IEEE, Jun. 2012, pp.

143–152.

[74] ——, “Fine-grained change impact analysis for component-based product families,” in

2012 28th IEEE Int’l Conf. on Software Maintenance (ICSM), no. 5. IEEE, Sep. 2012,

pp. 119–128.

[75] X. Zheng and M.-H. Chen, “Maintaining Multi-Tier Web Applications,” in Software

Maintenance, 2007. ICSM 2007. IEEE Int’l Conf. on, 2007, pp. 355–364.

[76] C. Jones, Estimating Software Costs : Bringing Realism to Estimating: Bringing Realism

to Estimating, 2nd ed., ser. McGraw-Hill’s AccessEngineering. Mcgraw-hill, 2007.

[77] R.-H. Pfeiffer and A. Wasowski, “Cross-language support mechanisms significantly

aid software development,” in Proceedings of the 15th Int’l Conf. on Model Driven

Engineering Languages and Systems, ser. MODELS’12. Springer-Verlag, 2012, pp.

168–184.

[78] M. Fowler, Domain-Specific Languages, 1st ed. Addison-Wesley Professional, 2010.

[79] P. Mayer and A. Schroeder, “Cross-Language Code Analysis and Refactoring,” in Source

Code Analysis and Manipulation (SCAM), 2012 IEEE 12th Int’l Working Conf. on,

2012, pp. 94–103.

[80] D. Binkley, “Source Code Analysis: A Road Map,” in Future of Software Engineering

(FoSE). IEEE, May 2007, pp. 104–119.

[81] B. A. Kitchenham, “Guidelines for performing Systematic Literature Reviews in Software

Engineering,” Keel University & University of Durham, Tech. Rep., 2007.

[82] B. A. Kitchenham, T. Dyb̊a, and M. Jorgensen, “Evidence-based Software Engineering,”

in Int’l Conf. on Software Engineering (ICSE), 2004, pp. 273–281.

[83] M. Harman, “Why Source Code Analysis and Manipulation Will Always be Important,”

in 2010 10th IEEE Working Conf. on Source Code Analysis and Manipulation. IEEE,

Sep. 2010, pp. 7–19.

[84] T. Rout, “Consistency and conflict in terminology in software engineering standards,”

in Proceedings 4th IEEE Int’l Software Engineering Standards Symposium and Forum

(ISESS’99). ’Best Software Practices for the Internet Age’. IEEE Comput. Soc, 1998,

pp. 67–74.

[85] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke, “A Systematic

Survey of Program Comprehension through Dynamic Analysis,” IEEE Transactions on

Software Engineering (TSE), vol. 35, no. 5, pp. 684–702, Sep. 2009.

[86] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil, “Lessons from

applying the systematic literature review process within the software engineering domain.”

Journal of Systems and Software, vol. 80, no. 4, pp. 571–583, 2007.

200

Paper IV Bibliography

[87] B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin, K. El Emam, and

J. Rosenberg, “Preliminary guidelines for empirical research in software engineering,”

IEEE Transactions on Software Engineering, vol. 28, no. 8, pp. 721–734, Aug. 2002.

[88] T. Hendrix, J. Cross, L. Barowski, and K. Mathias, “Tool support for reverse engineer-

ing multi-lingual software,” in Proceedings of the Fourth Working Conf. on Reverse

Engineering. IEEE Comput. Soc, 1997, pp. 136–143.

[89] F. Chow, “Intermediate representation,” Communications of the ACM, vol. 56, no. 12,

pp. 57–62, Dec. 2013.

[90] M. L. Collard, M. J. Decker, and J. I. Maletic, “Lightweight Transformation and Fact

Extraction with the srcML Toolkit,” in 2011 IEEE 11th Int’l Working Conf. on Source

Code Analysis and Manipulation. IEEE, Sep. 2011, pp. 173–184.

[91] D. Jin, J. R. Cordy, and T. R. Dean, “Where is the Schema? A Taxonomy of Patterns

for Software Exchange,” in Int’l Ws. on Program Comprehension (IWPC’ 2002), 2002,

pp. 65–74.

[92] J. Hayes, W. G. Griswold, and S. Moskovics, “Component design of retargetable program

analysis tools that reuse intermediate representations,” in Proceedings of the 22nd Int’l

Conf. on Software Engineering, ser. ICSE ’00. ACM, 2000, pp. 356–365.

[93] A. R. Yazdanshenas and L. Moonen, “Crossing the boundaries while analyzing heteroge-

neous component-based software systems,” 2011 27th IEEE International Conference

on Software Maintenance (ICSM), pp. 193–202, 2011.

[94] H. Lochmann and A. Hessellund, “An integrated view on modeling with multiple domain-

specific languages,” in The IASTED Int’l Conf. Software Engineering (SE 2009), 2009,

pp. 1–10.

[95] J. Oberleitner, F. Rosenberg, and S. Dustdar, “A lightweight model-driven orchestration

engine for e-services,” in Proceedings of the 6th Int’l Conf. on Technologies for E-Services,

ser. TES’05. Springer-Verlag, 2006, pp. 48–57.

[96] F. Ricca, P. Tonella, E. Pianta, and C. Girardi, “Experimental results on the alignment

of multilingual Web sites,” in Software Maintenance and Reengineering, 2004. CSMR

2004. Proceedings. Eighth European Conf. on, 2004, pp. 288–295.

[97] B. Baudry, S. Ghosh, F. Fleurey, R. France, Y. Le Traon, and J.-M. Mottu, “Barriers to

systematic model transformation testing,” Commun. ACM, vol. 53, no. 6, pp. 139–143,

Jun. 2010.

[98] R. Rahimi and R. Khosravi, “Architecture conformance checking of multi-language

applications,” in Proceedings of the ACS/IEEE Int’l Conf. on Computer Systems and

Applications - AICCSA 2010, ser. AICCSA ’10. IEEE Computer Society, 2010, pp.

1–8.

[99] C. Ackermann, M. Lindvall, and R. Cleaveland, “Recovering Views of Inter-System

Interaction Behaviors,” in Working Conf. on Reverse Engineering (WCRE). IEEE,

Oct. 2009, pp. 53–61.

[100] I. Åd̄ora, “A meta-model for representing language-independent primary dependency

structures,” in ENASE 2012 - Proceedings of the 7th Int’l Conf. on Evaluation of Novel

Approaches to Software Engineering, 2012, pp. 65–74.

[101] A. Puder, “An XML-based cross-language framework,” Lecture Notes in Computer

201

Bibliography Paper IV

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), vol. 3762 LNCS, pp. 20–21, 2005.

[102] N. Asif, F. Shahzad, N. Saher, and W. Nazar, “Clustering the source code,” WSEAS

Transactions on Computers, vol. 8, no. 12, pp. 1835–1844, 2009.

[103] D. Strein, R. Lincke, J. Lundberg, and W. Löwe, “An Extensible Meta-Model for

Program Analysis,” IEEE Transactions on Software Engineering, vol. 33, no. 9, pp.

592–607, Sep. 2007.

[104] O. Chebaro, P. Cuoq, N. Kosmatov, B. Marre, A. Pacalet, N. Williams, and

B. Yakobowski, “Behind the Scenes in SANTE: A Combination of Static and Dynamic

Analyses,” Automated Software Engg., vol. 21, no. 1, pp. 107–143, Mar. 2014.

[105] H. Kim, K. G. Doh, and D. A. Schmidt, “Static validation of dynamically generated

HTML documents based on abstract parsing and semantic processing,” in Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 7935 LNCS. Springer, 2013, pp. 194–214.

[106] G. Wassermann, C. Gould, Z. Su, and P. Devanbu, “Static checking of dynamically

generated queries in database applications,” ACM Transactions on Software Engineering

and Methodology, vol. 16, no. 4, pp. 14–es, Sep. 2007.

[107] B. Kitchenham and A. Burn, “Validating Search Processes in Systematic Literature

Reviews,” in The 1st Int’ Ws. on Evidential Assessment of Software Technologies, In

conjunction with ENASE 2011. SciTePress, 2011, pp. 3–9.

[108] T. MAREW, J. KIM, and D. H. BAE, “SYSTEMATIC FUNCTIONAL DECOMPO-

SITION IN A PRODUCT LINE USING ASPECT-ORIENTED SOFTWARE DE-

VELOPMENT: A CASE STUDY,” International Journal of Software Engineering and

Knowledge Engineering, vol. 17, no. 01, pp. 33–55, 2007.

[109] B. Kitchenham, P. Brereton, M. Turner, M. Niazi, S. Linkman, R. Pretorius, and

D. Budgen, “The impact of limited search procedures for systematic literature reviews

âĂŤ A participant-observer case study,” in 2009 3rd Int’l Symposium on Empirical

Software Engineering and Measurement. IEEE, Oct. 2009, pp. 336–345.

[110] T. Greenhalgh and R. Peacock, “Effectiveness and efficiency of search methods in

systematic reviews of complex evidence: audit of primary sources.” BMJ (Clinical

research ed.), vol. 331, no. 7524, pp. 1064–5, Nov. 2005.

[111] F. Boughanmi, “Change Impact analysis of Multi-Language and Heterogeneously-licensed

Software,” Ph.D. dissertation, École Polytechnique de Montréal, 2010.

[112] F. Perin, “Reverse Engineering Heterogeneous Applications,” Ph.D. dissertation, Univer-

sity of Berne, 2012.

[113] J. Cohen, “Weighted kappa: nominal scale agreement with provision for scaled disagree-

ment or partial credit.” Psychological bulletin, vol. 70, no. 4, pp. 213–220, 1968.

[114] E. Mendes, “A systematic review of Web engineering research,” in 2005 Int’l Symposium

on Empirical Software Engineering, 2005. IEEE, 2005, pp. 481–490.

[115] A. Strauss and J. Corbin, Basics of Qualitative Research: Techniques and Procedures

for Developing Grounded Theory. SAGE, 1998.

[116] G. W. Noblit and R. D. Hare, Meta-Ethnography: Synthesizing Qualitative Studies.

Sage Publications, 1988.

202

Paper IV

[117] N. Britten, R. Campbell, C. Pope, J. Donovan, M. Morgan, and R. Pill, “Using meta

ethnography to synthesise qualitative research: a worked example.” Journal of health

services research & policy, vol. 7, no. 4, pp. 209–15, Oct. 2002.

[118] OMG, “Architecture-Driven Modernization (ADM): Knowledge Discovery Meta-Model

(KDM) - v1.2,” 2010.

[119] C. Seaman, “Qualitative methods in empirical studies of software engineering,” IEEE

Transactions on Software Engineering, vol. 25, no. 4, pp. 557–572, 1999.

[120] S. Carpendale, “Evaluating information visualizations,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), vol. 4950 LNCS, 2008, pp. 19–45.

[121] B. Meyer, “Incremental research vs. paradigm-shift mania,” Communications of the

ACM, vol. 55, no. 9, p. 8, Sep. 2012.

203

	Abstract
	Acknowledgments
	List of Papers
	Summary
	Introduction
	Background
	Program Analysis
	Static Program Analysis
	Program Dependence Graphs
	Program Slicing
	Software Model Reconstruction
	Software Visualization
	Change Impact Analysis

	Model-Driven Engineering
	Architecture-Driven Modernization
	Knowledge Discovery Metamodel

	Component-Based Software Engineering
	Software Product Families

	Systematic Literature Reviews
	Cross-Component Analysis
	Pitfalls of large-scale component-based systems
	Toward system-wide analysis: an overview
	Briding Modelware to Grammarware
	Information flow analysis and comprehension
	Change Impact Analysis in product families

	Cross-language program analysis: a systematic literature review
	Conduct of the survey
	Summary of the results

	Research Methodology
	Investigating the industrial context
	Literature review and tool evaluations
	Devising a model-based approach to enhance grammarware
	Empirical studies and expert-based evaluations

	Systematic literature review

	Summary of Results
	Paper I
	Paper II
	Paper III
	Paper IV
	Future Directions
	Conclusion
	Paper I: Crossing the Boundaries while Analyzing Heterogeneous Component-Based Software Systems
	Introduction
	Background and Motivation
	Approach
	Tracking Information Flow
	Construction of A System-wide Dependence Graph
	Prototype Implementation
	Component Dependence Graphs
	The Inter-Component Dependence Graph
	The System-wide Dependence Graph
	Slicing

	Evaluation
	Accuracy
	Scalability
	Threats to validity
	Related Work
	Concluding Remarks
	Paper II: Analyzing and Visualizing Information Flow in Heterogeneous Component-Based Software Systems
	Introduction
	Motivation
	Approach
	Reverse Engineering a System-Wide Dependence Model
	Model Abstraction and Visualization
	Typical Usage Scenario
	Enhanced Navigation
	Component Parameters

	Prototype Implementation
	Discussion
	Static versus Dynamic Analysis
	Forward versus Backward Slicing
	Evaluation
	Related Work
	Concluding Remarks
	Paper III: Fine-Grained Change Impact Analysis for Component-Based Product Families
	Introduction
	Related Work
	Background and Motivation
	Approach
	Prototype Implementation
	Evaluation
	Concluding Remarks
	Paper IV: Cross-language program analysis for the evolution of multi-language software systems: a systematic literature review
	Introduction
	Scoping and Terminology
	What is program analysis?
	What is cross-language?
	Borderline studies
	Review Protocol
	Pilot Study
	Research Questions
	Data Sources and Search Strategy
	Study Selection and Management
	Reliability of Selection

	Study Quality Assessment
	Data Extraction Strategy

	Data Synthesis
	Findings
	Analysis of publications
	Analysis of studies
	Study Goals
	Study Characterisation

	Research Questions
	Position papers

	Discussion
	Implications for research
	Implications for the community
	Limitations to this systematic literature review
	Conclusion
	Appendices
	Concrete Queries
	Data Extraction Table

