
Information and Software Technology 77 (2016) 34–55

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Analyzing and visualizing information flow in heterogeneous

component-based software systems

Leon Moonen

a , ∗, Amir Reza Yazdanshenas b

a Simula Research Laboratory, Oslo, Norway
b Testify AS, Oslo, Norway

a r t i c l e i n f o

Article history:

Received 3 July 2015

Revised 2 May 2016

Accepted 4 May 2016

Available online 12 May 2016

Keywords:

Information flow analysis

Component-based software systems

Model reconstruction

Program comprehension

Software visualization

a b s t r a c t

Context: Component-based software engineering is aimed at managing the complexity of large-scale soft-

ware development by composing systems from reusable parts. To understand or validate the behavior of

such a system, one needs to understand the components involved in combination with understanding

how they are configured and composed. This becomes increasingly difficult when components are imple-

mented in various programming languages, and composition is specified in external artifacts. Moreover,

tooling that supports in-depth system-wide analysis of such heterogeneous systems is lacking.

Objective: This paper contributes a method to analyze and visualize information flow in a component-

based system at various levels of abstraction. These visualizations are designed to support the compre-

hension needs of both safety domain experts and software developers for, respectively, certification and

evolution of safety-critical cyber-physical systems.

Method: We build system-wide dependence graphs and use static program slicing to determine all pos-

sible end-to-end information flows through and across a system’s components. We define a hierarchy of

five abstractions over these information flows that reduce visual distraction and cognitive overload, while

satisfying the users’ information needs. We improve on our earlier work to provide interconnected views

that support both systematic, as well as opportunistic navigation scenarios.

Results: We discuss the design and implementation of our approach and the resulting views in a pro-

totype tool called FlowTracker. We summarize the results of a qualitative evaluation study, carried out

via two rounds of interview, on the effectiveness and usability of these views. We discuss a number of

improvements, such as more selective information presentations, that resulted from the evaluation.

Conclusion: The evaluation shows that the proposed approach and views are useful for understanding

and validating heterogeneous component-based systems, and address information needs that could ear-

lier only be met by manual inspection of the source code. We discuss lessons learned and directions for

future work.

© 2016 Elsevier B.V. All rights reserved.

m

a

w

t

o

r

s

1. Introduction

How well software engineers understand a system’s source

code affects how well the system will be maintained and evolved.

Studies have shown that program comprehension accounts for a

significant part of development and maintenance effort s [1] . With

today’s rapid growth in system size and complexity, software engi-

neers are faced with tremendous comprehension challenges.
∗ Corresponding author.

E-mail addresses: leon.moonen@computer.org (L. Moonen), amirry@simula.no

(A.R. Yazdanshenas).

s

p

c

c

http://dx.doi.org/10.1016/j.infsof.2016.05.002

0950-5849/© 2016 Elsevier B.V. All rights reserved.
Component-based software engineering [2] is aimed at better

anaging the complexity of large-scale software development by

ssembling systems from ready-made parts, similar to how hard-

are systems are assembled from integrated circuits. Software sys-

ems are composed of reusable components, implemented in one

r more programming languages, and connected using configu-

ation artifacts, ranging from simple key-value maps to domain-

pecific configuration languages.

Even though component-based design supports comprehen-

ion by lowering coupling and increasing the cohesion of com-

onents, the detailed analysis and comprehension of the complete

omponent-based system can be prohibitively complicated. This

hallenge stems from the fact that the configuration and composi-

http://dx.doi.org/10.1016/j.infsof.2016.05.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.05.002&domain=pdf
mailto:leon.moonen@computer.org
mailto:amirry@simula.no
http://dx.doi.org/10.1016/j.infsof.2016.05.002

L. Moonen, A.R. Yazdanshenas / Information and Software Technology 77 (2016) 34–55 35

t

i

o

d

c

t

l

p

c

f

s

n

i

p

c

l

b

h

p

c

c

h

b

t

r

w

d

s

i

a

t

t

i

t

t

f

u

(

l

c

s

c

q

g

v

fi

c

c

b

t

y

l

i

h

a

d

t

d

s

o

(

t

o

c

o

a

e

c

u

e

t

n

o

p

p

s

s

i

d

S

o

i

m

o

S

2

a

o

w

p

m

i

d

w

s

s

i

e

m

s

m

s

l

w

s

p

o

e

p

n

t

c

t

i

o

g

s

a

s

p
ion of the components play an essential part in the overall behav-

or of such systems [3] . Consequently, to understand the intricacies

f a system’s behavior, one needs to understand how control and

ata flow are interlaced through its combination of component and

onfiguration artifacts. Note that for this analysis it is not enough

o treat the components as black boxes: similar to what was ear-

ier found for testing of component based systems, white-box ap-

roaches are needed to collect the required information from the

omponents’ source code [4–7] .

In spite of these challenges, we found that there is little support

or system-wide analysis of component-based systems from their

ource artifacts. This shortage of system-wide analysis in compo-

ent based systems can be traced back to language heterogene-

ty : software components can be implemented using one or more

rogramming languages, while configuration artifacts are often en-

oded using smaller declarative languages such as XML. We fol-

ow Strein et al. [8] by referring to such multi-lingual component-

ased systems as heterogeneous systems . Most of the available tools

ave strict limitations on the programming languages they can

rocess, i.e., they are only fit for mono-lingual systems. This typi-

ally means that information from external configuration artifacts

annot be included, effectively inhibiting system-wide analysis in

eterogeneous systems and confining it to the boundaries defined

y the source code of a single component. In practice, this means

hat software engineers have only their own cognition abilities to

ely on for understanding the overall system’s behavior.

Another complicating factor in engineering large industrial soft-

are systems is that it is not just the developers who need to un-

erstand what’s going on in the code: also non-developers, for in-

tance safety domain experts, need to understand what is actually

mplemented in the code to assess whether the system properly

dheres to given safety requirements. However, most of the litera-

ure on reverse engineering and program comprehension assumes

hat the developers are the default, and the only, audience. There

s extensive literature on the visualization of non-source artifacts

o support domain experts [e.g., 9], but considerably less informa-

ion exists on the visualization of source code-related information

or non-developers. After all, why would non-developers need to

nderstand source code?

This paper is motivated by a typical industrial case in which

non-developer) safety domain experts need to understand the

ogic implemented in the system so that they can conduct software

ertification. These safety domain experts need to see the system’s

ource artifacts in a context relevant to them – not just what the

ode does , but what that means for safety concerns [10] . Conse-

uently, any reverse-engineered views on the system need to be

oal-driven, at a suitable level of abstraction, and based on rele-

ant knowledge of the application domain.

Our earlier work [11] presents a technique to reverse engineer a

ne-grained, system-wide dependence model from the source and

onfiguration artifacts of a component-based system. The paper

oncluded with the observation that the technique was promising

ut “considering the size and complexity of most industrial systems,

here are many opportunities in the direction of visualizing the anal-

sis results,” and “a visualization of the information flow at higher

evels of abstraction may considerably improve the comprehensibility.”

The current work builds on the technology developed

n [11] and makes the following contributions: (1) We propose a

ierarchy of views that represent system-wide information flows

t various levels of abstraction, aimed at supporting both safety

omain experts and developers; (2) We present the transforma-

ions that help us to achieve these views from the system-wide

ependence models and discuss the different trade-offs between

cope and granularity; (3) We discuss how we have implemented

ur approach and views in a prototype tool, named FlowTracker;

4) We report on a qualitative evaluation study, carried out via
wo rounds of interviews, on the effectiveness and usability

f the proposed views for software development and software

ertification.

The study reported here was carried out in collaboration with

ur industry partner in two stages: The first stage, consisting of

 feasibility study of the approach as well as an initial industrial

valuation of the prototype (Flowtracker V1), was discussed in our

onference paper [12] . This paper extends that work by following

p on several ideas for improvement that came out of the initial

valuation. We motivate and implement a number of extensions to

he prototype and improve the ways in which the views can be

avigated (Flowtracker V2). Moreover, we conduct a second round

f evaluations to assess if these changes indeed lead to the antici-

ated improvements. For the sake of clarity and completeness, this

aper elaborates on the work performed in both stages. Since the

econd stage is a continuation of the first one, we present the re-

ults in a single narrative, only distinguishing them with respect to

ndividual stages when the discussion of changes or results man-

ates such a distinction.

The remainder of the paper is organized as follows:

ection 2 describes the context of our work. We present the

verall approach and the proposed hierarchy of visualizations

n Section 3 , followed by a description of our prototype imple-

entation in Section 4 . We discuss the qualitative evaluation of

ur approach in Section 6 . We summarize related research in

ection 7 , and conclude in Section 8 .

. Background and motivation

Case description: The research described in this paper is part of

n ongoing industrial collaboration with Kongsberg Maritime (KM),

ne of the largest suppliers of programmable marine electronics

orldwide. The division that we work with specializes in com-

uterized systems for safety monitoring and automated corrective

easures to mitigate unacceptable hazardous situations. Examples

nclude emergency shutdown, process shutdown, and fire-and-gas

etection systems for vessels and off-shore platforms. In particular,

e study a family of complex, safety-critical embedded software

ystems that connect software control components to physical sen-

ors and mechanical actuators. The overall goal of the collaboration

s to provide our partner with tooling that provides source-based

vidence to support software certification , and assists the develop-

ent teams in understanding the behavior of deployed systems , i.e.,

ystems composed and configured to monitor the safety require-

ents of a particular installation (execution environment).

The remainder of this section gives a generalized view on how

ystems are developed in this application domain. We use the fol-

owing terminology: a component is a unit of composition with

ell-defined interfaces and explicit context dependencies [2] ; a

ystem is a network of interacting components; and a (component)

ort is an atomic part of an (component) interface , a single point

f interaction between a component and other components or the

nvironment. A component instance is the representation of a com-

onent as it would appear at run-time, specialized and intercon-

ected following the configuration data. A component implementa-

ion refers to the component’s source code artifacts (i.e., without

onfiguration information). There is one component implementa-

ion and possibly several component instances for each component

n the system.

Generality of the approach: We discuss our approach in terms

f the concrete case that was studied. This means that we use the

eneral term system-level input and the more case-specific term

ensor interchangeably, and, similarly, for system-level output and

ctivator . We use the general term system port to refer to both

ystem-level inputs and outputs. However, we emphasize that the

roposed approach is not specific to the specific system studied.

36 L. Moonen, A.R. Yazdanshenas / Information and Software Technology 77 (2016) 34–55

analog
input
#1

analog
input
#2

analog
input
#M

vote
#1

vote
#2

output
 #1

output
 #2

output
 #N

CascIn

CascOut

check
status

#2

check
status

#XSm

Aj

An

S1

S2

Si

kcehc
status #1

AlarmVal AlarmErr

InhibitIn

CheckSum

Manual
Override

A1
A2

Component Input PortSystem Input Port

Component Output PortSystem Output Port

Fig. 1. Component composition network for an example system.

c

b

a

i

s

c

h

a

c

v

i

c

a

p

p

o

t

t

l

t

It can be applied to component-based systems with other types of

input and output than sensors and activators, and it supports other

component models than the proprietary one of our industrial part-

ner. For example, quite diverse options such as the Koala [13] and

the Spring [14] component models are supported by our approach

by adding a simple parser for their configuration artifacts.

Configuration artifacts: Concrete software products are assem-

bled in a component-based fashion from reusable components. Our

industrial partner uses a limited collection of approximately 30

reusable components that are implemented in a safe subset of

C [15] and have control logic that is highly configurable via param-

eters (e.g., initialization, thresholds, comparison values, etc.). These

parameters and the component’s interface, i.e. the in- and output

ports with their respective data types, are externally described in

a so-called component definition file, which is one type of config-

uration artifacts that needs to be considered.

The system’s overall logic is achieved by composing a network

of interconnected component instances (Fig. 1). These processing

pipelines receive their input values from sensors and process them

in various ways, such as measuring, digitizing, voting, and count-

ing before sending the outputs to drivers for the actuators. Com-

ponents of the same type can be cascaded to handle a larger num-

ber of input signals than foreseen in their implementation (shown

in Fig. 1 for analog inputs #1 and #2). Similarly, the output of a

pipeline can be used as input for another pipeline to reuse the

safety outcomes for one area as inputs for a connected area. The

composition is specified in a second type of configuration artifacts

that need to be considered. For a concrete system, such an arti-

fact defines: (1) the various component instances in the system,

with values for configurable parameters where needed, and (2) the

connections between in- and output ports of these component in-

stances.

Motivation: As monitored installations become bigger, the

number of sensors and actuators grows rapidly, the safety logic

becomes increasingly complex, and the induced component net-

works end up interconnecting thousands of component instances.

To make this more concrete, consider that in contrast to those 11

instances and 4 stages shown in Fig. 1 , a typical real-life installa-

tion has 12 to 20 stages in each pipeline, and approximately 5,0 0 0
omponent instances in its safety system. As a result of these num-

ers, it becomes increasingly difficult to understand and reason

bout the overall behavior of the system.

Research question: The main question that drives our research

s: “Can we provide source-based evidence that the signals from the

ystem’s sensors trigger the appropriate actuators?”

Goals: In addition to this primary goal of supporting software

ertification questions, our industry partner indicated that they

ad a secondary goal: During the collaboration, their developers

nd system integrators recognized that such system-wide program

omprehension techniques had the potential to support various de-

elopment and maintenance tasks. For example, they were look-

ng for support that helped them to predict the consequences of a

hange in a given component on the complete system (i.e., impact

nalysis). Similarly, they also wanted to understand better what

arts of the system could actually affect the state of a given com-

onent. To support both the primary and secondary goals, we set

ut to provide black-box and white-box visualizations of the sys-

em at various levels of abstraction, aimed to satisfy the needs of

he various users and tasks foreseen by our collaborator, and al-

owing for a trade-off between detail and cognitive complexity.

The following list summarizes the goals and characteristics of

his work:

1. To track all possible system-wide channels for information flow

(a) in heterogeneous component-based systems,

(b) spanning across software components and configuration ar-

tifacts

(c) by means of static analysis, at design/compile time.

2. To present these information channels to end users,

(a) using a high-level black-box view aimed at supporting cer-

tification,

(b) as well as white-box views detailing the software elements

that enable the information channels,

(c) at levels of detail that support software developers and sys-

tem integrators with their tasks.

3. To visualize information flows in the system,

(a) to enhance software comprehension in general, and

L. Moonen, A.R. Yazdanshenas / Information and Software Technology 77 (2016) 34–55 37

3

p

fl

g

l

p

a

t

i

s

i

p

r

c

t

s

w

f

i

t

s

i

t

s

c

g

i

s

p

e

t

e

w

S

t

e

c

t

d

t

S

f

t

3

o

e

c

b

r

t

f

e

g

l

p

s

c

d

p

a

o

c

c

s

t

d

f

3

c

t

p

s

a

f

m

a

p

b

a

t

t

t

i

s

d

s

o

d

s

c

v

a

t

v

g
(b) to satisfy information needs typical to dependence analysis

and impact analysis,

(c) using notation that is intuitive and familiar to the stakehold-

ers.

. Approach

The question if signals from the system’s sensors affect the ap-

ropriate actuators can be answered by analyzing the information

ow between sensors and actuators using program slicing [16] . Pro-

ram slicing is a decomposition technique that can be used to

eave out all parts of the program that are irrelevant to a given

oint of interest, referred to as the slicing criterion . In other words,

 backward slice consists of all the program elements that poten-

ially affect the values at the slicing criterion [17] . Thus, by select-

ng an actuator as the slicing criterion, we can determine which

ensors can affect this actuator, since these will be contained in

ts backward slice. Conversely, a forward slice consists of all the

rogram points that are potentially affected by the slicing crite-

ion [17] . Thus, by selecting a sensor as the slicing criterion, we

an determine which actuators can be affected by this sensor, since

hey will be contained in its forward slice. In the remainder, analy-

is direction refers to the direction of the slicing, and forward (back-

ard) information flow refers to an information flow analyzed via

orward (backward) slicing.

Two challenges need to be addressed to successfully apply slic-

ng in our context: (1) Program slicing is typically defined within

he closed boundaries of source code, whereas our case needs

ystem-wide slicing across a network of interacting components,

.e., including information from the components’ source code and

he system configuration artifacts; (2) The information obtained via

licing typically contains many low-level details that can impede

omprehensibility.

The first challenge is addressed by reverse engineering a fine-

rained, system-wide model of the control and data dependencies

n the system based on our previous work [11] , which is briefly

ummarized in Section 3.1 . To address the second challenge, we

ropose a hierarchy of five abstractions (views), with close consid-

ration to the existing abstractions already known to our indus-

ry partner, and the software elements that have a decisive influ-

nce on end-to-end information flows. The motivation is that this

ill help define views that are intuitive for our industry partner. In

ection 3.2 we discuss the defining elements and the characteris-

ics of these views. We also present the methods used to construct

ach of these views from the system-wide dependence model via a

ombination of slicing, transformation (abstraction), and visualiza-

ion. In Section 3.3 we present a walk-through of a typical top-

own navigation of the system using the proposed views: what

he user sees at each stage, and his/her next options to browse. In

ection 3.4 , we describe how is it possible for the users to break

ree from a rigid top-down navigation schema and browse the sys-

em in an opportunistic manner.

.1. Reverse engineering a system-wide dependence model

This section summarizes the technique and terminology of

ur earlier work on reconstructing system-wide dependence mod-

ls [11] . The overall approach is as follows:

1. For each component in the system, we build a component de-

pendence graph (CDG) by following the method for constructing

interprocedural dependence graphs [18] and taking the compo-

nent source code as “system source.”

2. The system’s configuration artifacts are analyzed to build an in-

tercomponent dependence graph (ICDG) . This graph captures the
externally visible interfaces and interconnections of the compo-

nent instances. Construction of the ICDG is done in the same

way as the component composition framework sets up the cor-

rect network.

3. The system-wide dependence graph (SDG) is constructed by in-

tegrating the system’s ICDG with the CDGs for the individual

components. Conceptually, the construction can be seen as tak-

ing the ICDG and substituting each “component instance node”

with a sub-graph formed by the CDG for the component.

Fig. 2 gives an overview of the main types of information that we

ollect from various source artifacts to build the SDG. The dashed

oxes are used to indicate the parts of the meta-model that rep-

esent source code information respectively configuration informa-

ion and show how they are connected. To construct the CDG, the

undamental information are the nodes (program points), and the

dges (data and control dependencies). Informally speaking, a pro-

ram point is a fragment of source code that could be traced to a

ocation in the source code. For instance, the value of variable v at

rogram point p is a distinguishable element, and can be used as a

licing criterion. We refer to Horwitz et al. [18] for a detailed dis-

ussion on the aforementioned elements, and the construction of

ependence graphs in procedural languages. For traceability pur-

oses, we also extract some properties of program points, such

s their location in the source files and the physical structure

f the software artifacts. This information is extracted from the

omponents’ implementation. For the ICDG, the information is a

omponent’s inputs and outputs, parameters (see Section 3.5), in-

tances, and intercomponent connections. This information is ex-

racted from the configuration artifacts.

Further details on our reverse engineering of the system-wide

ependence models go beyond the scope of this paper and we re-

er to our earlier work [11] .

.2. Model abstraction and visualization

Dependence graphs, and slices through dependence graphs, are

omplex, often even more complex than the original source ar-

ifacts. This is because these models reflect all relevant program

oints and dependencies from a compiler’s perspective, an intrin-

ic characteristic that makes them well-suited for detailed program

nalysis. This characteristic does, however, make them less suited

or directly supporting comprehension or visualization [11,19] .

To make the detailed information contained in an SDG or slice

ore suitable for comprehension, we propose a hierarchy of five

bstractions (views) aimed at satisfying the needs of safety ex-

erts and developers. These information needs range from a black-

ox survey of the system, via a number of intermediate levels, to

 hypertext version of the source code. In addition to providing

he required information, these abstractions should be appealing to

he users with respect to familiarity and intuitiveness. To achieve

his, we aim to reuse visualizations that are already known to our

ndustrial partners as much as possible. In cases where such vi-

ualizations do not already exist in the daily activities of our in-

ustrial partner, we devise new visualizations that build on the

ame or very similar visual elements and beacons as the existing

nes. These views are constructed from the system-wide depen-

ence model via a combination of slicing, transformation and vi-

ualization.

Since, in our case, understanding the system-wide dependen-

ies is required in both directions (i.e., forward and backward), all

isualization levels accommodate abstractions over both forward

nd backward slices. Depending on the nature of the visualization,

he abstractions over forward and backward analyses are either

isualized in separate diagrams, or, whenever possible, in a sin-

le diagram enriched to accommodate both directions of analysis.

38 L. Moonen, A.R. Yazdanshenas / Information and Software Technology 77 (2016) 34–55

Source Code Information

Configuration Information

0..*

1..*

from

from

to

to

PDG

Compilation
Unit

Line#

Source
File

Configuration
File

Component
Interface

declares

to

declares

from

declares

Component
Parameter

Component
I/O Ports

type

type

Program
Point

Control
Dependence

Data
Dependence

Intercomponent
Data Dependence

Component
Instance

Port
Instance

Fig. 2. The main elements from various artifacts used to track information flow.

A1 A2 Aj An
S1
S2

Si

Sm

Fig. 3. System-wide dependence survey.

a

t

t

o

a

a

i

1 Note that the graphs in the paper are actual figures as they are created our tool

and shown using a standard webbrowser. They were taken from the study with our

industrial collaborator after some renaming for anonymization/nondisclosure pur-

poses.
Such separate (set of) diagrams that belong to the same abstrac-

tion layer target the same type of desired system elements, and can

address similar, but not identical, comprehension requirements. In

our description of the abstraction levels, we distinguish between

the two analysis directions, if needed.

The various levels are interconnected via hyperlinks to en-

able easy navigation and to support various comprehension strate-

gies [20] . We distinguish the following hierarchy of views, which

are discussed in more detail below:

1. System dependence survey: a black-box view that summarizes

possible information flow between the system’s sensors and ac-

tuators in a matrix;

2. System information flow: a grey-box view that details the in-

formation flow between selected sensors and actuators, includ-

ing the components and ports involved, but abstracts from the

component contents;

3. Component dependence survey: a black-box view that summa-

rizes information flow between input and output ports of a

component in a matrix;

4. Component information flow: a grey-box view that details the

information flow between input and output ports of a compo-

nent, and the conditions that control this flow, but hides the

lower level aspects of a component;

5. Implementation view: a white-box view of the source code en-

riched with navigation facilities.

(1) System dependence survey: This view shows the depen-

dencies between all system-level inputs (sensors) and outputs (ac-

tuators) in one single matrix, with sensors and actuators as rows
nd columns, respectively (see Fig. 3). 1 A filled cell indicates that

here is at least one path along which information can flow from

hat sensor to that actuator. This view gives a black-box summary

f the SDG that hides all details on how the information flow is re-

lized. Engineers can use it to quickly find what sensors can affect

 specific actuator, and vice versa.

In addition to providing a succinct black-box view, we specif-

cally used this matrix-based presentation as it is already well

L. Moonen, A.R. Yazdanshenas / Information and Software Technology 77 (2016) 34–55 39

k

a

t

a

b

i

s

s

t

a

d

b

e

t

a

t

t

(

s

s

n

h

T

l

t

t

u

h

F

m

r

t

i

t

t

t

l

i

2

r

i

s

r

n

f

v

d

s

i

a

r

t

g

n

f

t

a

F

t

t

v

o

c

p

t

u

w

t

n

a

c

d

c

t

t

f

i

i

t

t

a

i

f

e

I

c

t

t

t

fl

p

n

a

m

i

o

p

t

n

s

b

o

s

o

T

T

t

A

t

c

p

l

m

3

t

nown to our industry partners. The dependencies from sensors

nd actuators in each deployment are described in a decision table

hat is known as a Cause&Effect matrix [21,22] . This matrix serves

 reference contract in discussing the desired safety requirements

etween the supplier and the customers and safety experts. By fill-

ng certain cells of a this matrix, the expert can, for example, pre-

cribe which combination of sensors needs to be monitored to en-

ure safety in a given area. The System Dependence Survey mimics

he same visualization over the end-to-end dependencies as they

ppear in the implementation (as opposed to in the requirements

ocuments). Another advantage of such straight-forward matrix-

ased visualizations is that they are easy to interpret by software

ngineers and system integrators.

Note that there is only one System Dependence Survey and

here is no need to distinguish between forward and backward

nalysis directions in this view. Although the information con-

ained in forward and backward slices is different in general, in

his particular case where slicing is used to identify the end-to-end

abstract) dependencies between sensors and actuators, the overall

ystem-wide information (for all end-points combined) will be the

ame, no matter what slicing direction is used.

The System Dependence Survey serves as a starting point for

avigation. To this end, we make the matrix active by embedding

yperlinks to corresponding views on the next abstraction level.

o provide navigation to both analysis directions on the next lower

evel, matrix cells are diagonally divided in two. In a given ma-

rix cell (for example the one at index [S i , A j] shown in Fig. 3),

he lower left half corresponds to the respective sensor S i , and the

pper right half to the actuator A j . By clicking on the lower left

alf of the cell, the user can zoom in on the System Information

low for that specific sensor, in order to view the forward infor-

ation flows originating from that sensor. By clicking on the upper

ight half of the cell, the user can zoom in on the System Informa-

ion Flow for that specific actuator, in order to view the backward

nformation flows that end in that actuator.

(2) System information flow: This grey box view shows the in-

ercomponent information flow between particular sensors and ac-

uators, i.e., it shows system-wide slices through the complete sys-

em (Fig. 4). In the design of the visualizations at this abstraction

evel, our goal is to represent component-based systems with an

ntuitive and familiar notation, which bears a resemblance to UML

.0 Component Diagrams [23] . As shown in Fig. 4 , components are

epresented by a rectangular shape (Fig. 4 , marker A). Component

nput ports are represented by a stack of green boxes on the left

ide of the component, and the output ports with red boxes on the

ight side. All visualized elements (i.e., sensors, actuators, compo-

ents, ports, and connections) that are not part of the target in-

ormation flow are low-lighted, and in gray. We distinguish two

ariants based on analysis direction:

Backward system information flow: For each actuator, there is a

iagram that shows the intercomponent information flow from all

ensors to that actuator. The view hides all intracomponent level

nformation in a backward slice through the SDG with actuator A j

s the slicing criterion. The result highlights the actuator and all

elated sensors, component instances, and intercomponent connec-

ions. Fig. 4 a shows an example for actuator A j .

Forward system information flow: For each sensor, there is a dia-

ram that shows the intercomponent information flows that origi-

ate from that sensor. The view hides all intracomponent level in-

ormation in a forward slice through the SDG with sensor S i as

he slicing criterion. The result highlights the sensor and all related

ctuators , component instances, and intercomponent connections.

ig. 4 b shows an example for actuator S i .

Apart from showing the elements that a sensor influences, or

he elements that influence an actuator, this view serves as an in-

ermediate level between system-level views and component-level
iews. It includes hyperlinks for navigation so that a user can click

n a component instance to zoom in on a single component, or

lick outside the diagram to return to a higher level of abstraction.

(3) Component dependence survey: Similar to the System De-

endence Survey, the Component Dependence Survey summarizes

he dependencies between a component’s input and output ports,

sing cells in a matrix (see Fig. 5). This black-box view shows

hich input ports can affect which output ports but hides all de-

ails on how the information flow is realized. Again there is no

eed to provide separate matrices for the forward and backward

nalysis directions because the summarized information is identi-

al. There is one dependency matrix for each component, indepen-

ent of its instances, because the dependencies are induced by the

omponent source code.

To enable navigation to both analysis directions in more de-

ailed views, matrix cells are diagonally divided in two. Clicking on

he lower left half of a cell brings the user to the Component In-

ormation Flow for the corresponding input port that shows which

ntracomponent forward information flows can be affected by that

nput port. Clicking in the upper right half of a cell brings the user

o Component Information Flow for the corresponding output port

hat shows which intracomponent backward information flows can

ffect that output port.

(4) Component information flow: For a given component and

nput- or output port, this grey-box shows the intracomponent in-

ormation flows connected to that port (i.e., there are diagrams for

ach input port and for each output port of every component).

n addition to the input and output ports involved, this view in-

ludes all conditions that control the information flow between

hose ports. We distinguish two variants based on analysis direc-

ion:

Backward component information flow: For each output port,

here is a diagram that shows the intracomponent information

ow from all input ports to that output. Fig. 6 a shows an exam-

le with output port “AlarmErr” as the slicing criterion (single red

ode at the bottom). The input ports that can affect AlarmErr are

t the top (green nodes), and the conditions that control the infor-

ation flow are shown as yellow squares.

Forward component information flow: For each input port, there

s a diagram that shows the intracomponent information flows that

riginate from that input. Fig. 6 b shows an example with input

ort “InhibitIn” as the slicing criterion (single green node at the

op). The output ports affected by InhibitIn are at the bottom (red

odes), and the conditions that control the information flow are

hown as yellow squares.

Note that we have chosen to show both the forward and the

ackward flow in a top-down fashion with inputs at the top and

utputs at the bottom to make it easier for a user to orient them-

elves while changing views. In addition, we combine sequences

f conditions into aggregate nodes to reduce cognitive overhead.

he details of this refinement are described later, in Section 4.2 .

he conditional nodes have hyperlinks embedded to navigate to

he corresponding location in the source code (indicated by marker

 in Fig. 6 b).

(5) Implementation view: At the lowest level in our hierarchy,

he white-box implementation view shows pretty-printed source

ode with hypertext navigation facilities, e.g., cross-referencing of

rogram entities with their definition. Higher-level views provide

inks to the source code as a means of traceability and a way to

inimize user disorientation.

.3. Typical usage scenario

A typical scenario takes advantage of the hierarchical design of

he abstractions, and is sketched as the following:

40 L. Moonen, A.R. Yazdanshenas / Information and Software Technology 77 (2016) 34–55

analog
input
#1

analog
input
#2

analog
input
#M

vote
#1

vote
#2

output
 #1

output
 #2

output
 #N

check
status

#2

check
status

#XSm

Aj

An

S1

Si
Check
Status

#1

A1
A2

AlarmVal

InhibitIn

ChckSum

Manual
Override

AlarmErr
sensor

actuator

component output port

component input port

A

(a) Backward slice criterion: Aj

analog
input
#2

analog
input
#M

vote
#1

vote
#2

output
 #1

output
 #2

output
 #N

analog
input
#1

check
status

#2

check
status

#XSm

Aj

An

S1

Si
Check
Status

#1

A1
A2

(b) Forward slice criterion: Si

Fig. 4. Backward and forward system information flows for A j and S i , respectively (marker A is used for explanations in the text). (For interpretation of the references to

color in the text, the reader is referred to the web version of this article.)

1. Users start navigating the system from the System Dependence

Survey. In this view, they can immediately identify those sen-

sors that can (or can not) influence an actuator (Fig. 3).

2. By selecting a sensor-actuator pair in the matrix, the users

zoom in on the System Information Flow that helps them find

the components and intercomponent connections that play a

role in transferring the values from the selected sensor to the

selected actuator (Fig. 4). Depending on which half of the ma-

trix cell is clicked, the users either see the outgoing information

flows from a sensor (Fig. 4 b), or the incoming information flows

towards an actuator (Fig. 4 a).
3. By selecting on one of the component instances, they navigate

to the Component Dependence Survey. This view can be used

to identify which component input ports can (or can not) affect

which component output ports (Fig. 5).

4. By selecting a component input-output pair in the matrix, the

users focus on the Component Information Flow. This shows

the conditions that control how information from the selected

input port can reach the selected output port (Fig. 6). Depend-

ing on which half of the matrix cell is clicked, the users ei-

ther see the outgoing information flows from an input port

L. Moonen, A.R. Yazdanshenas / Information and Software Technology 77 (2016) 34–55 41

O1 O2 Oj On

I1

Ii

Im

Fig. 5. Component dependence survey.

3

t

f

d

fl

t

t

s

a

i

g

Fig. 6. Forward and backward component information flow examples (markers A–G and

of the references to color in the text, the reader is referred to the web version of this art
(Fig. 6 b), or the incoming information flows towards an output

port (Fig. 6 a).

5. Finally, the user can click on one of the conditions to navigate

to the corresponding location in the source code for traceability

and further (manual) inspection.

.4. Enhanced navigation

The aforementioned typical usage scenario of the visualiza-

ions supports top-down exploration and comprehension of the in-

ormation flows. As the user starts from the topmost layer and

escends the abstraction hierarchy, the scope of the information

ows decreases (i.e., from system-wide to intracomponent), and

he amount of details increases (from the system’s black-box view

o the source code). Apart from that, there are two – conceptually

imilar – types of information at every abstraction layer: forward

nd backward information flows.

This highly structured navigation profile helps the novice users

n finding their way through the system and prevents that they

et lost during their explorations. However, requiring the user to
the cloud-like fragments are used for explanations in the text). (For interpretation

icle.)

42 L. Moonen, A.R. Yazdanshenas / Information and Software Technology 77 (2016) 34–55

Fig. 7. The navigation structure of the visualizations. Every visualized element, except connections and edges, has a hyperlink (markers A–D are explained in the text). (For

interpretation of the references to color in the text, the reader is referred to the web version of this article.)

v

t

o

l

p

d

s

i

v

f

h

l

s
always go through such a fixed five-layer schema would be too

strong a restriction. In addition, the structure includes premature

commitment to analysis direction which is known to negatively

affect usability [24] . Frequent users who are already familiar with

the various parts of the system, do not need the structure provided

by the layered navigation. Instead, they need more flexible ways

to browse and navigate the collected information [20] , for exam-

ple, quickly remind himself of multiple information flows halfway

through a maintenance task. Forcing them to stick to a rigid and

cumbersome navigation schema would reduce their overall usabil-

ity experience up to a point where they might eventually abandon

the tool.

To address this threat, we provide an enhanced navigation

schema that allows users to browse the system more freely and

more spontaneously, as well as allowing them to follow the pre-
iously described hierarchical navigation. Below, we provide a de-

ailed explanation of the overall navigation structure with the help

f Fig. 7 , which contains all abstraction levels and highlights the

inks between the levels.

First, we enhance the system dependence survey with the com-

onent composition diagram of the complete system (Fig. 1). This

iagram shows how the system is currently configured, with the

ame graphical notation as in the System Information Flow, and

s rendered next to the matrix in the System Dependence Sur-

ey (Fig. 7 , Level 1). It can be seen as a generic System In-

ormation Flow before slicing, and thereby helps to build a co-

erent mental model for navigating through the system. We de-

iberately represent component input and output ports in the

ame color (green and red, respectively) in matrix-based and

L. Moonen, A.R. Yazdanshenas / Information and Software Technology 77 (2016) 34–55 43

C

c

i

a

w

c

t

c

s

t

b

1

c

t

v

d

a

s

u

t

o

s

fl

3

j

a

i

i

f

s

s

v

t

c

v

c

t

u

p

p

t

t

t

c

d

n

a

t

c

d

t

c

t

o

t

r

b

e

s

c

o

g

fl

w

t

t

a

d

t

T

a

b

c

i

p

i

t

n

h

t

t

i

omponent-Diagram-based visualizations to take advantage of

olor as a graphical beacon throughout the whole system.

Second, we activate almost every visualized element with nav-

gation hyperlinks. In Fig. 7 , clicking on any element other than

 connection leads to a diagram that shows the information flow

ith respect to that element. The following navigation rules apply

onsistently across all layers:

1. Every system input port points to the corresponding Forward

System Information Flow

2. Every system output port points to the corresponding Backward

System Information Flow

3. Every component input port points to the corresponding For-

ward Component Information Flow

4. Every component output port points to the corresponding Back-

ward Component Information Flow

In addition to these rules, clicking on the graphical representa-

ion of a component (Fig. 7 , Level 1 and 3) leads to the respective

omponent dependence survey (Fig. 7 , markers A and B). The re-

ulting navigation schema is highly intuitive, and enables the users

o navigate two or three abstraction layers in one step. Users can

rowse from the component configuration diagram (Fig. 7 , Level

) to system information flow or component information flow by

licking system or component ports, respectively (without going

hrough system dependence survey or component dependence sur-

ey).

Apart from that, the users are not bound to a specific analysis

irection once they descend the abstraction hierarchy (i.e., forward

nd backward), and can alternate the direction at any step. For in-

tance, while investigating a pair of sensor-actuator (S i , A j) , the

sers can quickly view the outgoing information flows from S i and

he incoming information flows to A j by a single click, and with-

ut backtracking to higher-level diagrams (Fig. 7 , marker C). The

ame direction switching is provided for component information

ow (Fig. 7 , marker D).

.5. Component parameters

As mentioned in Section 2 , our industry collaborator is a ma-

or producer of various safety and control systems. These products

nd systems (that is, the individual instances of a product that are

nstalled in the real world) share considerable similarities which

s exploited by assembling products in a component-based fashion

rom reusable components [25] . Nevertheless, there is also a con-

iderable variation between any two concrete installations and the

afety systems that monitor and control them. Examples include

ariations in the actual sensors and actuators that are used, and

he respective thresholds at which they trigger, and process spe-

ific variables such as what levels are considered hazardous, and

ariations that follow from complying to different safety standards.
Table 1

Component parameters.

Component 1 2

Total number of parameters 79 19

In forward flow min 0 12

max 48 29

avg 21 .20 17

In backward flow min 5 7

max 72 29

avg 24 .56 14

Average # parameters in flow 23 .76 15

Percentage of total filtered 69 .93% 92
In the systems that we studied, these reusability and variability

oncerns have been addressed by developing generic implementa-

ions for the components that are highly customizable and config-

rable with the help of component parameters . These component

arameters are used to concretize the functionality of these com-

onents in a specific installation of a specific product. The parame-

ers can be set either at system configuration time, or at execution

ime by user actions. In either case, they can be regarded as input

o the components; however, they are separate and different from

omponent input ports. The set of each component’s parameters is

eclared in (XML-based) configuration files, similar to the compo-

ent’s ports. For example, for a given component, the user may be

ble to set a threshold value that some input needs to reach, before

he signal is propagated to an output. This threshold is communi-

ated to the components as a parameter and is not considered for

etermining the normal (process-specific) sensor-actuator informa-

ion flows.

Because parameters can significantly affect the behavior of

omponents and the way in which they transfer information from

heir input to output ports, it is essential that developers are aware

f, and understand, the parameters’ potential influence on the in-

racomponent information flows. In addition, even though the pa-

ameters are described in the component documentation, there can

e many parameters for a component and not all of them are rel-

vant for every information flow. Moreover, the discussion of the

tates and effects of a parameter is scattered over various use-

ase specific sections, making it difficult to get a comprehensive

verview. We propose to highlight the parameters that can affect a

iven intracomponent information flow in the visualization of that

ow. To this end, we enrich component information flow diagrams

ith a table showing all component parameters that participate in

hat information flow (Fig. 6 , markers F and G).

This presentation has the added advantage of filtering the po-

entially long lists of parameters of a component to the ones that

re relevant for the task at hand (i.e. the information flow un-

er consideration). The more effective this filtering is, the lower

he overall comprehension overhead. To analyze its effectiveness,

able 1 , second row, reports the total number of parameters in

 subset of the studied components (selected randomly). The ta-

le also shows the minimum, maximum, and average number of

omponent parameters listed in forward and backward component

nformation flow diagrams. The last row of the table shows what

ercentage of the component parameters is included in component

nformation flow diagrams on average, disregarding the port direc-

ion. In other words, this last row can be regarded as an effective-

ess measure of the filtering that was achieved. Considering the

igh filtering percentages in Table 1 , we conclude that presenting

he relevant component parameters as part of component informa-

ion flow has a tangible effect on facilitating the comprehension of

ntracomponent information flows.
3 4 5

7 43 36 80

 0 3 25

 42 29 25

 .75 21 .5 10 .92 25

0 9 1

 24 35 6

 .5 11 .92 18 .33 3 .97

 .48 16 .08 15 .05 18 .34

 .15% 62 .61% 58 .20% 77 .08%

44 L. Moonen, A.R. Yazdanshenas / Information and Software Technology 77 (2016) 34–55

Fig. 8. Integrating models derived from heterogeneous sources into a homogeneous model.

c

t

t

F

s

t

n

s

a

b

t

S

t

R

p

c

f

s

’

t

A

p

j

e

t

c

p

T

o

h

3 https://xml.apache.org/xalan-j/
4 To give an impression of the model size and execution time, we refer to two of

the components in our studied system. A component with 13787 nodes and 46276

edges took 1.996 s to be transformed to KDM. Another component with 61507
4. Prototype implementation

This section discusses the implementation of the approach de-

scribed in Section 3 in a tool named FlowTracker. We distinguish

three stages in the implementation:

1. Model Reverse Engineering: constructing the homogeneous

model of the system from components’ source code and con-

figuration files.

2. View Construction: building the hierarchy of the views based

on the homogeneous model.

3. Presentation: packaging and presenting the end result to the

users.

The rest of this sections provides the mentioned stages in more

details.

4.1. Model reverse engineering

We reuse our earlier tool to reverse engineer system-wide de-

pendence graphs (SDGs) from source artifacts [11] in a model-

driven approach. Fig. 8 shows a high level overview of our ap-

proach. Constructing a homogeneous model from a collection of

heterogeneous sources is executed in two phases: (1) a model re-

covery phase in which we reverse engineer the dependency mod-

els of interest from individual source artifacts; (2) a model integra-

tion phase in which we merge these individual models into a sin-

gle homogeneous model of the system. To build the homogeneous

model, we use OMG’s Knowledge Discovery Metamodel (KDM),

a meta-model aimed at representing reverse engineering knowl-

edge [26] . KDM comes with a reference implementation based on

the Eclipse Modeling Framework (EMF) [27] , which we use in our

implementation.

We build on Grammatech’s CodeSurfer 2 to create component

dependence graphs (CDGs) for the individual components [28] .

CodeSurfer is a standalone tool that offers an API in the C program-

ming language by which the CDGs can be programmatically tra-

versed. The bridge between CodeSurfer and Eclipse is implemented

in C using Codesurfer’s API and the Java Native Interface (JNI) to
2 http://www.grammatech.com/

n

h

o

all methods in Eclipse. Upon traversing every node and edge of

he CDGs, we call the appropriate KDM constructor API in Eclipse

o inject the corresponding element into the homogeneous model.

or each program point, we include a pointer to its origin in the

ource code for traceability. Next, we use Xalan-J to analyze and

ransform the system configuration artifacts into the intercompo-

ent dependence graph (ICDG). 3 Finally, we use a straightforward

ubstitution transformation to integrate the CDGs with the ICDG,

nd create the final SDG.

As mentioned in Section 3 , all dependencies in the SDG need to

e interpreted in both forward and backward direction to compute

he various information flows. In our original reverse engineered

DG, each dependency is represented by an instance of a stereo-

yped ActionRelationship class in KDM, where stereotyping Action-

elationship is used to distinguish between different types of de-

endencies, such as data-, control-, and intercomponent dependen-

ies (for more details on the mapping of SDGs into KDM, we re-

er to [11]). Unfortunately, KDM does not support ActionRelation-

hips that can be interpreted bidirectionally. To enable slicing by

natively’ traversing the KDM representation, we therefore choose

o represent each dependency in our SDG by two (uni)directional

ctionRelationships, one for each direction. A downside of this im-

lementation decision is that the number of ActionRelationship ob-

ects doubles. This increases the model size, which has a tangible

ffect on the initial model loading time. 4 On the upside however,

here is no cost penalty for computing the system-wide slices, be-

ause the traversal of the dependencies in each direction is inde-

endent of the presence of dependencies of the opposite direction.

his clearly outbalances the alternative where, on average, for half

f the slicing computations the inverse dependence relation would

ave to be computed.
odes and 216956 edges took 9.938 s. Using unidirectional edges, one the other

and, enabled us to compute program slices in trivial time (in the order of ms). See

ur previous publication for more details [11] .

http://www.grammatech.com/
https://xml.apache.org/xalan-j/

L. Moonen, A.R. Yazdanshenas / Information and Software Technology 77 (2016) 34–55 45

4

s

s

c

a

m

b

o

t

t

p

i

a

n

p

w

f

b

T

f

s

W

b

t

i

I

d

f

r

a

4

d

t

t

i

C

i

t

i

t

i

A

S

s

o

t

t

t

p

l

c

c

t

f

b

f

fi

u

f

H

t

b

u

f

u

p

a

h

b

f

s

a

b

c

c

g

i

w

5

5

b

l

i

a

a

c

d

m

5 http://www.aisee.com/
6 http://www.doxygen.org/
.2. View construction

During view construction, we enrich the SDG with additional

ummary edges and aggregate nodes that capture a number of view-

pecific abstractions in the presentation stage. Alternatively, we

ould have defined several “destructive” transformations that cre-

te a new model for each view, but we prefer to enrich our SDG

odel to reuse information between views. Our implementation

uilds on a simple slicing tool in Java that we have created as part

f our earlier work [11] . Subsequently, we discuss the abstractions

hat were added for the various views. The names were chosen so

hat they map trivially on the names of the views in Section 3.2 .

The SysDep relation is based on slices for each of the system’s

orts and includes the summary edge (S i , A j) Backward if sensor S i is

n the backward slice for A j , and the summary edge (S i , A j) Forward if

ctuator A j is in the forward slice for S i . Similarly, for each compo-

ent C, the CompDep C relation is based on slicing all component

orts and including (I m

, O n) Backward if input port I m

is in the back-

ard slice for O n , and (I m

, O n) Forward if output port O n is in the

orward slice for I m

.

For each system port P , the relation SysInfoFlow direction , P is

ased on slicing the enriched SDG on P with the correct direction.

he direction has to be backward for the actuators, and forward

or the sensors. For each component C i in the slice, we use the

ummary edges of CompDep C i , direction to hide the internals of C i .

hat remains of the slice are summary edges for the connections

etween (ports of) the component instances involved and connec-

ions from the incoming sensors and toward the actuator. Note that

t is not possible to compute this information by simply slicing the

CDG, because the ICDG does not contain information about the

ependencies between a component’s input and output ports.

For each port P of every component C , the CompIn-

oFlow direction , C , P relation is based on three transformations:

1. Codesurfer splits sub-expressions of a condition over separate

program points to increase precision during slicing. When pre-

senting results to the user, this increases the cognitive distance

with respect to the original code. We address this issue by

merging the sub-expressions of conditions into aggregate nodes

that resemble the original code (Fig. 6 , marker B).

2. We replace edges by summary edges that subsume all nodes

that are not input ports, conditions, or output ports (Fig. 6 ,

marker C). For example, when we have edges (x,y) and (y,z),

and y is not an input port, condition, or output port, we re-

place both edges (and node y) by a single summary edge (x,z).

These summary edges are computed transitively, so that they

represent the longest path possible.

3. We analyze the resulting graph to detect so-called condition

chains . We define condition chains as the (longest possible)

paths in the SDG that exclusively consist of single-entry/single-

exit conditional nodes. For each condition chain, we add a spe-

cial aggregate node to represent the individual conditions in the

chain at a higher level of abstraction. This aggregate node is la-

beled based on the conditions it represents. For an example, see

Fig. 6 , marker D for the aggregate node, and marker E for the

condition cluster it represents.

Finally, the construction of the Implementation View does not

equire any additional summary edges or aggregate nodes to be

dded to the SDG.

.3. Presentation

We present the results of our System- and Component Depen-

ence Surveys as matrices that have been implemented as HTML

ables with input and output ports as rows and columns, respec-

ively. This presentation is intentionally chosen to resemble our
ndustrial partner’s specifications of the safety logic, known as

ause&Effect matrices [21,22] , to enable easy comparison of the

mplemented dependencies with the specified safety logic. The ma-

rices are made active by embedding hyperlinks to the correspond-

ng views on the next-lower abstraction level. By clicking one of

he cells below a port or actuator, the user can zoom in on the

nformation flow leading to that port or actuator.

To render the Component Information Flow, we use the KDM

PI to traverse the view-specific summary edges in our enriched

DG and transform the elements of interest into GDL, a graph de-

cription language that can be processed by the aiSee graph lay-

ut software. 5 We use GDL’s provisions for collapsable subgraphs

o represent conditional clusters and their aggregate representa-

ion so the user can go back and forth between these represen-

ations. We include navigation between views by embedding hy-

erlinks in the nodes representing components and ports. Simi-

arly, we provide traceability by embedding hyperlinks to source

ode locations in Component Information Flow nodes representing

onditions. These hyperlinks are preserved when aiSee computes

he layout and renders the graph in Scalable Vector Graphics (SVG)

ormat.

Finally, we create a pretty printed version of the source code

y using Doxygen. 6 Doxygen is a source code document generator

or numerous programming languages, including C. It can be con-

gured to include the source code as part of the generated doc-

ments in HTML format and embed various hypertext navigation

eatures.

A positive side-effect of implementing all visualizations in

TML is that we inherit all benefits of the familiarity and fea-

ures of modern web browsers as part of our user interface. These

rowsers are widely available and well-known to all prospective

sers of FlowTracker. Moreover, they provide standard navigation

eatures such as browsing history and bookmark creation that help

sers to maintain a breadcrumb trail and to store landmarks or

oints-of-interest for later recall. This helps the users to maintain

wareness about of their position, keep an overview of where they

ave been, and backtrack to earlier locations without considerable

urden on their own memory, and supporting various strategies

or comprehending software systems [20] .

Fig. 9 shows a screenshot of the various Flowtracker views in

eparate browser windows. The navigation between the views is

s described in Fig. 7 and would normally open up in the same

rowser window. For space reasons, we omitted the component

omposition diagram as it is similar to the level 2 view without

omponents greyed out, and the opening page which shows back-

round and usage information. Note that the level 2 and level 4

nformation flow graphs are the same as in Fig. 4 (a) and Fig. 6 (a),

ere they are more legible.

. Discussion

.1. Static versus dynamic analysis

Our approach is based on static analysis of the system which,

y its very nature, computes an approximation of the actual re-

ations that exist in a system at runtime. In theory, more precise

nformation could be obtained by using dynamic analysis, which

ims to capture exactly those relations that can be observed on

 running system. However, in the context of software intensive

ontrol systems, there are a number of limitations: First, in-vivo

ynamic analysis of these systems in their real operating environ-

ent is generally not an option, due to safety hazards. Second,

http://www.aisee.com/
http://www.doxygen.org/

46 L. Moonen, A.R. Yazdanshenas / Information and Software Technology 77 (2016) 34–55

Fig. 9. Screenshot of the various Flowtracker views in separate browser windows.

5

t

t

c

i

o

e

v

o

d

t

c

o

t

i

d

a

t

b

d

in-vitro dynamic analysis of such systems requires advanced, ex-

pensive, stubs and simulators to replace hardware components and

to create realistic execution scenarios, which is typically only avail-

able at limited development sites. Finally, this infrastructure for in-

vitro analysis is generally in high demand for product development

and testing. Faced with these limitations, we set out to investigate

an alternative approach based on static analysis.

Since the introduction of static program slicing [16] , there have

been several improvements to compute more accurate slices [see

e.g., [29,30]]. However, static program slicing remains a conser-

vative approximation , i.e., there might be statements in a slice

that have no relation to the slicing criterion. This characteristic

has the following effects on the information flows that we com-

pute: (1) They are safe ; conservativeness guarantees that no de-

pendency goes undetected between component input and output

ports, and eventually between system inputs and outputs. There-

fore, the users can be assured that when FlowTracker does not

show a dependency between a pair of system (or component) in-

put and output, there is no possibility of influence from that input

to the output. (2) They may contain false positives ; it is not guar-

anteed that a reported input actually does influence the value of a

given output. In other words, the extracted information flows are

a superset of the actual information flows.
.2. Forward versus backward slicing

As discussed in Section 3 , addressing the users’ informa-

ion needs requires computing both forward and backward slices

hrough the SDG to determine information flow. Apart from dis-

ussing the suitability of forward and backward slices as we did

n that chapter, here we would like to highlight some observations

n these two slicing directions, and especially focus on the differ-

nces in slice sizes, as this directly affects the cognitive load in-

olved with understanding the various diagrams that we create.

From a black-box point of view, the effects of both directions

f slicing are the same, i.e., they detect the same abstract depen-

ence relations between inputs and outputs, as shown in the sys-

em dependence survey and component dependence survey matri-

es. This is true of system-level slices, as well as component-level

nes. This observation in our diagrams is a direct implication of

he definition of dependence graphs [18] . If a program point P1 is

ncluded in the backward slice from program point P2 , then P2 is

efinitely included in a forward slice from P1 . Following the same

rgumentation, the average size of forward and backward slices is

he same. However, the distribution of slice sizes does not have to

e the same [31] , which makes it interesting to investigate a bit

eeper.

L. Moonen, A.R. Yazdanshenas / Information and Software Technology 77 (2016) 34–55 47

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14

S
lic

e
si

ze
 (

#n
od

es
)

Port ID

Backward Slices
Forward Slices

(a) Component 1

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5 6 7

S
lic

e
si

ze
 (

#n
od

es
)

Port ID

Backward Slices
Forward Slices

(b) Component 2

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12

S
lic

e
si

ze
 (

#n
od

es
)

Port ID

Backward Slices
Forward Slices

(c) Component 3

 0

 50

 100

 150

 200

 0 2 4 6 8 10

S
lic

e
si

ze
 (

#n
od

es
)

Port ID

Backward Slices
Forward Slices

(d) Component 4

Fig. 10. A comparison of the number of program points (nodes) included in intracomponent slice sizes in the forward vs. backward direction. Forward slices are computed

from the component input ports, and backward slices from the output ports. Component ports are sequentially numbered on the horizontal axis (starting from zero), in the

order of ascending slice sizes (vertical axis).

t

a

s

s

t

p

n

d

b

p

m

s

o

w

c

t

F

s

i

i

H

s

v

l

T

a

f

T

c

l

a

c

c

a

l

l

s

t

s

p

c

o

g

i

i

n

h

n

w

s

m

j

T

o

c

a

t

o

c

t

c
From a white-box point of view, i.e., from the perspective of in-

racomponent slices, one can observe differences between forward

nd backward slices. Fig. 10 depicts the slice sizes for a randomly

elected subset of the components studied. Slice sizes are mea-

ured by the number of program points in each slice. As men-

ioned before, forward slices are computed from component input

orts, and backward slices from component output ports. Compo-

ent ports are indexed on the horizontal axis in the ascending or-

er of the slice sizes, which is projected on the vertical axis.

In the selected components in Fig. 10 , forward slices are clearly

igger than backward slices. Consequently, we observe more com-

lex diagrams in component information flow for forward infor-

ation flows than backward information flows, which can be con-

idered an obstacle for comprehension. This observation confirms

ur initial intuition to extract information flows based on back-

ard slices to facilitate comprehension [12] . The same observation

ould also apply to the number of dependencies (a.k.a. edges in

he SDG) included in the forward and backward slices (shown in

ig. 11). The number of edges is not commonly used in measuring

lice sizes. However, this number is of interest to us, as it has an

ndirect, yet major, impact on the complexity of the final diagrams

n component information flow.

At first, these observations seem to contradict to Binkley and

arman’s empirical study which concludes “forward slices are

maller than backward slices” [31] . In this study, the authors pro-

ide evidence that the distribution of slices sizes for forward slices

eans toward smaller numbers compared with backward slices.

heir claim is strongly supported by: (1) Computing both forward

nd backward slices from every program point; and (2) Computing

orward slices from all inputs and backward slices from all outputs.

hey gather statistically significant data from a large code base

ontaining a wide range of programs (accumulating over 1 million

ines of code), which averages out the majority of architectural-

nd source code specific characteristics that could affect their con-

lusions.
n

r

The systems that we studied however, do follow a specific

omponent-based architecture, and we need to take into account

ny special characteristics that this design may have on the ana-

yzed components, before drawing our conclusions. Indeed, a closer

ook at Fig. 10 reveals that the number of input ports is typically

maller than the number of output ports (indicated by the fact that

here are fewer data points for forward slices that for backward

lices). Assuming that there is no unreachable code 7 in the com-

onents, the union of forward slices from all input ports should

over all program points in the component. Likewise, the union

f the backward slices from all output ports should cover all pro-

ram points. Therefore, having fewer input ports than output ports

mplies having bigger forward slices than backward slices. Closer

nspection of the component interfaces showed that most compo-

ents in the system we studied follow the same pattern, i.e., they

ave considerably fewer inputs ports than output ports.

The difference in the number of input and output ports might

ot be the only reason behind the difference in forward and back-

ard slice sizes. Certain other characteristics of the components’

ource code could be a complementary reason: Binkley and Har-

an [31] show that the effects of control dependence are the ma-

or cause of difference between forward and backward slice sizes.

hey propose an unproved conjecture that the “tree like” structure

f control dependencies in SDGs, which has roots in the typical

ontrol statements in structured programming (e.g., “for,” “while,”

nd “if” statements), is the decisive factor behind the aforemen-

ioned difference in slice sizes. Closer inspection of the source code

f the components sampled in Fig. 10 indicated that they do not

ontain loop structure, but include 490 conditional statements in

otal (“if” and “else if”).

This lack of loop structures is indeed one of the special code

haracteristics of the system under study and follows directly from
7 Unreachable code are those parts of the source code of a program that can

ever be executed because there exists no control flow path to that code from the

est of the program [32] .

48 L. Moonen, A.R. Yazdanshenas / Information and Software Technology 77 (2016) 34–55

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14

S
lic

e
si

ze
 (

#e
dg

es
)

Port ID

Backward Slices
Forward Slices

(a) Component 1

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6 7

S
lic

e
si

ze
 (

#e
dg

es
)

Port ID

Backward Slices
Forward Slices

(b) Component 2

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10

S
lic

e
si

ze
 (

#e
dg

es
)

Port ID

Backward Slices
Forward Slices

(c) Component 3

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10

S
lic

e
si

ze
 (

#e
dg

es
)

Port ID

Backward Slices
Forward Slices

(d) Component 4

Fig. 11. A comparison of the number of dependencies between program points (edges) included in intracomponent slice sizes in the forward vs. backward direction. As

in Fig. 10 , forward slices are computed from the component input ports, backward slices from the output ports, and component ports are sequentially numbered on the

horizontal axis (starting from zero), in the order of ascending slice sizes (vertical axis).

6

o

u

t

w

s

f

p

o

f

a

i

n

t

s

“

s

e

t

T

V

T

e

d

t

t

i

levels (Section 3.4).
the way in which these systems were architected: In general, com-

ponent parameters (see Section 3.5) are used to configure the con-

ditional clauses that decide how the data in input ports should

be directed to the output ports (see Section 2). This design shows

the “data-oriented” nature of the majority of interactions in these

systems, on both the intra- and inter-component levels that could

also explain part of the gap between our observations and those

by Binkley and Harman [31] .

We would like to emphasize that the aim of this study was not

to replicate Binkley and Harman’s study, and our results should not

be interpreted as contradicting their claims. However, we conclude

that the differences in forward and backward slice sizes deserve

more architecture-aware, and perhaps even domain-specific, stud-

ies. In addition, we conclude that in the context of our case study,

the design and code characteristics are such that backward slices

are typically smaller and generate information flow diagrams that

are therefore easier to comprehend than the ones that originate

from forward slices.

6. Evaluation

To evaluate our approach, we consider the following three as-

pects: accuracy, scalability, and usability. In a context of software

certification, the accuracy of our views is of utmost importance

and is determined by the accuracy of our model reconstruction

and of our slicing tool. Both were evaluated in detail in [11] and

showed 100% accuracy when compared to gold-standard results

from CodeSurfer. The same paper also reported that these steps

show linear growth of execution time and model size with respect

to program size. This indicates good overall scalability, as the views

that we construct in this paper are all projections of this model

(i.e., smaller in size).

In the remainder of this section, we focus on the results of a

preliminary qualitative study assessing the usability of FlowTracker,

and, in particular, of the proposed views.
.1. Study design

Considering that FlowTracker is still a prototype in early stages

f development, our goal is to conduct an exploratory study to eval-

ate the usability and the effectiveness of the visualizations, and

heir fitness for the needs of our industrial partner. To this end,

e conduct a qualitative evaluation of the tool with a group of

ix subjects that were selected so that we would cover the dif-

erent roles of prospective FlowTracker user groups. We use such a

re-experimental design, because it is a cost-effective way to find

ut the major positive and negative points, and identify missing

unctionality and required improvements before the tool can be

dopted by our industry partner [33] . In addition, this design lim-

ts the overhead and impact of our study on the industrial part-

er, and it decreases the influence of (negative) anchoring effects

hat can rise from having early prototypes evaluated by people that

hould later adopt the tool [34] (this effect can be paraphrased as

first impressions are hard to change”). This is an important con-

ideration for a domain-specific tool dedicated to a specific audi-

nce, like ours.

The evaluation study is conducted two rounds of interview with

he same participants, corresponding to the two versions of Flow-

racker we have developed so far (distinguished here as V1 and

2). In the first round we evaluate the core functionality of Flow-

racker V1, focusing on the aforementioned five abstraction lev-

ls and their functionality. As the changes in Flowtracker V2 were

riven by the initial evaluation of V1, the second round of evalua-

ions with the same participants focuses on the delta between the

wo versions to assess whether the changes led to the anticipated

mprovements. The new features of Flowtracker V2 include:

1. Supporting both forward and backward analysis of information

flows in each abstraction level (Section 3.2);

2. Inclusion of component parameters in component information

flow (Section 3.5); and

3. Providing an enhanced navigation schema across abstraction

L. Moonen, A.R. Yazdanshenas / Information and Software Technology 77 (2016) 34–55 49

“

n

m

a

v

d

w

n

s

a

m

s

r

v

t

i

h

c

d

l

o

u

c

a

s

d

r

s

t

c

d

g

s

p

s

p

m

a

i

t

s

e

w

s

i

F

s

o

t

3

p

r

w

r

l

i

t

h

c

o

B

b

q

a

a

r

a

n

q

i

w

h

a

t

m

6

a

c

f

r

t

g

g

t

p

s

a

(

c

u

t

t

g

a

t

i

u

w

(

a

v

t

(

p

t

f

a

t

t
In addition to evaluating the deltas, we include a number of

overall” questions to capture a holistic view of the positive and

egative aspects of FlowTracker usability. As FlowTracker V2 is a

ere continuation of its predecessor, for the benefit of cohesion

nd readability, we present the results of the two rounds of inter-

iew together as a single complete evaluation study. However, we

o present the results from the each round of interview separately,

henever necessary to maintain accuracy. 8

Participant profiles: Three of the participants are senior engi-

eers in Kongsberg Maritime (KM) who work daily with the case

tudy system. Participant P1 is a senior developer who develops

nd maintains core modules of the system studied; his focus is

ore on individual modules than complete systems. P2 is both a

ystem integrator and a system auditor: (a) In some projects, his

ole is to audit systems that are built by other teams to assess their

alidity and reliability; (b) In other projects, his role is to compose

he overall system logic from components, which includes verify-

ng correct component interconnections. P3 is a safety expert who

andles the certification process together with third-party certifi-

ation bodies, such as DNV GL or TÜV. 9 In addition, she has prior

evelopment experience on the system.

We recruited the other three subjects (P4 to P6) from col-

eagues who were in the final stages of their PhD studies

n model-based software verification and validation at Sim-

la Research Laboratory. These subjects are very familiar with

omponent-based design, model-driven engineering, verification

nd validation, but they have no previous exposure to the case

tudy system. However, each of them had two to four years of in-

ustrial experience prior to starting their doctoral studies, so we

efer to them as junior developers. We include this second group of

ubjects with a different perspective to decrease the potential bias

oward the specific traits of the case study, a bias that could be

aused by only selecting subjects from our industrial partner [35] .

Preparation: In both rounds, all evaluation sessions were con-

ucted independently of one another, and the results were aggre-

ated after all participants finished the evaluation. Each session

tarted with a brief presentation of FlowTracker (∼ 10 min). The

resentation included a walk-through of a typical usage scenario,

imilar to Section 3.3 . The junior developers were given an extra

resentation on the system studied, to clarify the problem state-

ent and the goals of the study. Next, we let the participants play

round with the tool until they felt confident in their understand-

ng of its functionality. We concluded this training session with

hree hands-on exercises, that participants had to complete before

tarting the evaluation. The exercises were designed in a way to

ngage all the views and the major features of FlowTracker. There

ere no time limits to complete the exercises, and discussion was

timulated. In both rounds, we continued training until the partic-

pants acknowledged full confidence in their ability to work with

lowTracker, before switching to the actual evaluation.

Data collection: The evaluation itself consists of semi-

tructured, researcher-administered, interviews that, for consistency

ver various participants, were driven by a common questionnaire

hat served as an interview plan. This questionnaire consisted of

0 closed questions for which the answers were ranked on a 5-

oint Likert scale and 6 open (discussion) questions in the first

ound, and 24 closed questions in the second round. Questions

here both positively and negatively phrased to break answering

hythms and avoid steering the subjects [36] . In total, each session

asted between 60 and 90 min in the first round, and 45 to 60 min

n the second round.
8 Note that the results reported in our earlier paper [12] were exclusively from

he first round of evaluation on FlowTracker V1.
9 For more information about these certification organizations we refer to their

ome pages, respectively http://www.dnvgl.com/ and http://www.tuv.com/ .

e

i

f

t

a

t
In line with our goal to conduct a qualitative evaluation, we

onsciously choose to conduct researcher-administered interviews

ver having participants fill out the questionnaires themselves.

ased on the answers, the interviewer could elicit as much feed-

ack as possible by means of relevant follow-up or clarification

uestions. In addition, participants were instructed to bring up

ny question or comment during the training exercises, questions,

nd the open-ended discussion, similar to think-aloud sessions. We

ecorded the complete audio of the sessions (training+interviews),

nd transcribed and analyzed them using the ELAN multimodal an-

otation tool [37] . This allowed us to collect the answers to our

uestions, find deeper reasons behind those answers, and get more

nsights into the preferred interactions with FlowTracker.

Workshop: Prior to the first round of interview, we organized a

orkshop meeting at KM to present FlowTracker to various stake-

olders with different roles and engineering backgrounds. As the

udience of this workshop was different from the evaluation par-

icipants, we will also discuss the relevant feedback from this

eeting.

.2. Findings

In the remainder of this section, we present the major take-

ways, key questions and the highlights of the feedback we re-

eived from the participants. The results are aggregated per view,

ollowed by a discussion of feedback on the overall usage expe-

ience. Whenever there are outliers or noteworthy differences be-

ween the answers of the group of junior developers versus the

roup of senior developers, we will discuss the details.

(1) System dependence survey: The responses to questions re-

arding this view indicated that the engineers very frequently need

o find out which system inputs affect a certain output. For exam-

le, P2 stated that he “needs that kind of information on a daily ba-

is.” When asked how they would obtain such information in the

bsence of FlowTracker, most subjects responded that they would

and currently did) revert to the manual inspection of the source

ode to find these dependencies, except for P4, who preferred “to

se UML activity diagrams to model the message passing in the sys-

em.”

Overall, the subjects indicated that they found the presenta-

ion of information in this view to be intuitive, and that the

oal of summarizing system-wide information flow was adequately

chieved. They agreed with our choice to designate this view as

he starting point for navigation in FlowTracker.

The positive response to this view is not surprising, consider-

ng that it closely resembles the Cause&Effect specifications already

sed by our partner. Already from the very first meetings, there

as a request for tooling that would enable safety domain experts

and certification bodies) to compare the “as-implemented” system

gainst the “as-specified” safety logic at a single glance, and this

iew satisfies that goal.

With respect to the use of each half of a matrix cells as a way

o zoom into respectively forward and backward information flows

a feature only in V2), the general response was highly positive. All

articipants viewed this feature as an added value that outweighs

he additional complexity on the user interface (“has far better

unctionality,” according to P4). Two of the junior developers (P5

nd P6) wanted more visual aids on the graphical user interface

o help the users. They believed that having different cells “creates

he expectation” that the cells would lead to different places. How-

ver in FlowTracker’s matrices, the right-half section of all the cells

n a single column leads to the same diagram representing the in-

ormation flows leading to that output (i.e. there is redundancy in

he user interface). Likewise, the left-half section of all the cells in

 single row leads to a single diagram that represents the informa-

ion flows originating from that input . In this situation, P5 and P6

http://www.dnvgl.com/
http://www.tuv.com/

50 L. Moonen, A.R. Yazdanshenas / Information and Software Technology 77 (2016) 34–55

Table 2

Summary of the results on system dependence survey.

Subjects Feedback

All Frequent need to know about system I/O dependencies.

All Alternative solution is manual code inspection.

All Intuitive presentation, familiar to our industry partners.

All Added value to have dependencies both in forward and

backward analysis.

P5, P6 Needs more graphical features, such as highlighting upon

mouse hover.

Table 3

Summary of the results on system information flow.

Subjects Feedback

All Generally satisfied with the functionality of this

abstraction level.

P1, P2, P3, P5 Preferred to see all elements, distinguished by

high/low light.

P4, P6 Extra information may lead to confusion (better to

remove elements).

All More interactive navigation needed, e.g. hiding

unwanted elements.

All - P5 Appropriate intermediary between System

Dependence Survey and Component Dependence

Survey.

P5 Would like to jump directly from System

Dependence Survey to Component Dependence

Survey.

All Intuitive presentation. Very beneficial for system

integrators.

P2 Suggests to add type checking among connected

ports to this view.

c

s

g

d

b

p

g

w

g

i

t

c

f

g

d

b

i

g

t

o

p

s

n

t

t

o

c

t

e

c

t

t

b

f

w

s

o

n

c

r
would like the user interface to emphasize all elements that point

to the same destination, e.g., by highlighting all “equivalent” ele-

ments at the moment one of them is “hovered” over by a mouse.

At one point during the evaluation, P6 indicated that she would

like to be able to click on the title row and the left-most column

of the matrix to navigate to the corresponding forward and back-

ward information flows (i.e., directly on the port names instead of

the matrix cells). However, she later reconsidered her choice, fear-

ing that the users would have to drag the mouse too much to be

able to switch between forward and backward information flows

in larger matrices. We foresee that both these requests can be eas-

ily, and transparently, addressed with some additional client-side

scripting and further extending the enhanced navigation scheme.

For better accessibility, Table 2 contains a summary of key take-

aways on System Dependence Survey.

(2) System information flow: The subjects were generally sat-

isfied with the functionality of this view, that indicates which com-

ponents, ports, and sensors can affect the value of a given actua-

tor, and in V2 also indicates which of these elements are affected

by a given sensor. FlowTracker currently shows all components and

ports, and highlights only those elements that participate in the tar-

get information flow; the others are dimmed. An alternative could

be to hide the unused elements in the diagram. Most subjects fa-

vored the current design. P5, for example, remarked that “this view

gives me the big picture as well as the micro answer.” However, two

subjects had some reservations about the amount of information

shown in this view; P4 and P6 were concerned that the extra in-

formation could lead to confusion. All subjects were positive about

the idea of adding more interactive facilities, such as an option to

include or hide the dimmed elements on demand in this view.

The view was regarded an appropriate navigation intermediary

between the System Dependence Survey and Component Depen-

dence Survey, except for P5, who preferred to have the choice to

jump directly from System Dependence Survey to Component De-

pendence Survey as alternative navigation path. We had consid-

ered this option while designing the navigation structure but de-

cided against it in favor of a single predictable navigation structure

without shortcuts, to avoid disorientation.

The way information is presented was received as intuitive, and

“very beneficial for the needs of system integrators.” This benefit was

also mentioned during the initial workshop, where a participant

remarked that this view was useful to inspect “what is happen-

ing when there is no system-wide information flow between a sensor-

actuator pair that is supposed to be connected.” Examples that were

mentioned included analyzing configuration issues like dangling

connections that could, for example, result from renaming compo-

nent port names but not updating existing (external) system con-

figurations.

Subjects also observed that the System Information Flow, to

some extent, duplicates the functionality of one of our partner’s

current tools, which shows the overall component composition

network based on the configuration information. However, the

FlowTracker view is based on fundamentally different underlying

knowledge: It is based on the system-wide dependencies across
omponents instead of just using the configuration information. As

uch, the System Information Flow gives a more reliable view re-

arding the actual intercomponent information flow, because any

isruptions that occur inside components will be rendered as a

roken flow in our view but are not noticed by the existing tool.

During the discussion, P2 (system integrator) pointed out a

romising new feature: He mentioned that KM has (preliminary)

uidelines for inter-connecting components, for example, detailing

hich port-types are compatible. Although these guidelines do not

uarantee correct behavior, having some form of automated check-

ng could save a lot of time by signaling apparent connection mis-

akes. P2 saw good opportunities for FlowTracker to check such

omposition guidelines, and to show deviations in the System In-

ormation Flow view.

Considering the forward and backward information flows to-

ether, one could argue that there is a certain degree of redun-

ancy in the visualizations (i.e., portions of information flows could

e repeated multiple times in forward and backward system-wide

nformation flows in V2). However, none of the participants re-

arded this as a problem and believed both directions of informa-

ion flows are necessary to visualize. Table 3 contains a summary

f key takeaways on System Information Flow.

(3) Component dependence survey: Similar to the System De-

endence Survey, the subjects agreed that this view adequately

ummarizes the dependencies between input and output termi-

als. P3 (safety expert dealing with system certification) regarded

his view as “top priority for the certification process and a facilita-

or of the discussions with the third-party certifiers.” Module devel-

per P1 stated that he “must know the input/output relations of the

omponents at all times, but I currently only have the source code

o read and hopefully find out about all dependencies.” P1 did not

xpect that this view would be beneficial for the certification pro-

ess, but he emphasized that he had not been directly involved in

he certification process. P6 preferred that the matrix would dis-

inguish between the data dependencies and control dependencies

etween inputs and outputs; input terminals whose value is trans-

erred to the output terminals appear differently from the inputs

hose value is used to control the information flow toward the

ame output port. Table 4 contains a summary of key takeaways

n Component Dependence Survey.

Considering FlowTracker V2 and using the matrix cell halves for

avigation, the feedback was consistent with the feedback we re-

eived for the System Dependence Survey.

(4) Component information flow: We received mixed feedback

egarding this view. The most positive responses came from the

L. Moonen, A.R. Yazdanshenas / Information and Software Technology 77 (2016) 34–55 51

Table 4

Summary of the results on system information flow.

Subjects Feedback

All Generally satisfied with the functionality of this abstraction layer.

P3 Top priority for the certification process.

P1 Alternative solution: manual code inspection.

P1 Doubts if the view can be used for certification purposes.

P6 Data and control dependencies should be distinguishable.

g

T

b

r

o

o

o

c

b

T

t

i

t

t

i

e

w

a

o

“

t

c

p

e

a

n

e

s

t

s

a

c

t

t

s

t

v

t

f

p

a

b

l

I

t

t

e

f

fl

o

Table 5

Summary of the results on system information flow.

Subjects Feedback

- Mixed feedback regarding the functionality of this abstraction

layer.

P1,P2,P3 Industry partners were generally more positive.

All - P6 Conditional points in source code are relevant for information

flows, and deserve to be visualized.

P6 Not intuitive. True and false edges of conditional statements

should be distinguishable.

P5 Probably not useful for certification purposes.

P3 A means to demonstrate actions taken to external certifiers.

All More interactive facilities needed for the diagrams, e.g.

zooming and hiding nodes.

All Highly positive to show forward and backward information

flows.

a

p

f

n

t

m

c

c

e

r

c

i

b

p

v

t

w

a

I

b

s

t

o

i

r

i

o

r

t

o

m

c

o

“

f

g

p

s

o

b

T

i

c

d
roup of industrial subjects, in particular P1, the module developer.

he variety of opinions about this view can perhaps be explained

y the fact that it uses an unfamiliar design. The design does not

esemble the more well-known matrix or UML diagram styles of

ur other views. Another potential cause is the visual complexity

f some of the larger diagrams, which was mentioned by at least

ne of the subjects.

Five of the subjects agreed that conditions can have a signifi-

ant effect on the intracomponent information flows, and should

e highlighted and put in perspective to improve comprehension.

he subjects also indicated that “such graphs clearly show the in-

racomponent information flows [and] the effects of conditions on the

nformation flow,” reportedly “much better than the source code.” On

he other hand, subject P6 answered that “one might need to see

he assignment statements in the diagram as well to understand the

nformation flows.” In addition, she would like to see the outgoing

dges of condition nodes labeled with “True” or “False” to indicate

hich edge would be used if the condition were evaluated during

ctual execution. Finally, she had concerns about the intuitiveness

f the diagrams when they grow in size, i.e., she mentioned that

the larger diagrams are no longer intuitive.” Subject P5 remarked

hat this view would “probably not contain enough information to

heck safety regulations or design guidelines.”

Prior to our evaluation, we assumed that the Component De-

endence Survey (i.e., one level above this view) would be the low-

st abstraction level that would be useful for non-developers such

s safety experts. However, safety expert P3 regarded this Compo-

ent Information Flow as “a very good tool to demonstrate to the

xternal certifiers what we have done,” i.e., to provide evidence for

oftware certification. During the workshop, participants discussed

hat this view would make a good point of reference for discus-

ions between different engineering roles. They stated that “it acts

s a bridge between the C programmers and integrators.”

The subjects would like to see more interactive facilities, espe-

ially measures to better deal with the larger diagrams. In addi-

ion to zooming, another concrete suggestion was to have the op-

ion of seeing exclusively the information flow that starts from a

ingle (selected) component input port. We foresee that many of

hese requests can be fulfilled quite easily by incorporating a graph

iewer that is better than the one that is now used in the proto-

ype.

With respect to the visualization of forward and backward in-

ormation flows in FlowTracker V2, all participants gave highly

ositive feedback and mentioned that this helped them better with

nswering program comprehension questions. This positive feed-

ack for including both analysis directions was consistent over all

ayers of abstraction.

Table 5 contains a summary of key takeaways on Component

nformation Flow.

Component parameters: A new feature in FlowTracker V2 is

hat the component parameters that are relevant to an informa-

ion flow are shown in the view (see Section 3.5). All participants,

specially P3, regarded component parameters as highly important

or the better comprehension of the intracomponent information

ows, and therefore, appropriate to be visualized. In the first round

f evaluations, before this feature was added, P3 regarded them as
 top priority to visualize. Filtering out the irrelevant component

arameters for each information flow was seen as highly positive

or the comprehension by all participants. Considering the large

umber of parameters for each component, and the sharp decrease

hat is achieved by filtering the relevant parameters for each infor-

ation flow (as shown in Table 1), this is hardly surprising (espe-

ially since the only alternative is manual inspection).

However, most participants stated that showing the relevant

omponents parameters in a list was not enough for them. For

xample, P3 expressed that she was certain that component pa-

ameters have influence on the information flows and did not per-

eive them as a subsidiary feature, but as an intrinsic part of the

nformation flow. In other words, the participants wanted to see

etter where a given component parameter could affect the com-

onent information flow. P3 and P6 would like to see the “rele-

ant” portions of the diagrams highlighted when the user “hovers”

he mouse over any of the component parameters in the list. P5

anted the parameters to be visualized in separate nodes visu-

lly connected to the relevant portions of the information flows.

n a nutshell, the consensus of P5 and P6 was that the relation

etween the component parameters and the information flows

hould be more explicit. In a follow-up discussion P3 indicated

hat she would also like to see the effect of “changing the value

f component parameters” on the information flows “on the fly” and

nteractively. For example, once the new value of a component pa-

ameter causes a conditional clause to be evaluated as “False”, the

nfeasible portions of the information flow are to be hidden. In

ther words, P3 wants the information flows to be “animated” with

espect to the values of component parameters at the execution

ime.

In contrast to the previously mentioned sophisticated features

f component parameter visualizations, P4 wanted only to see

ore information about the data types of the parameters in the

urrent listing. In his view, this information can help the devel-

pers, especially in cases where the component parameters are of

enumeration” or “Boolean” types. He stated that adding more in-

ormation about the component parameters would make the dia-

rams too complicated and decrease comprehensibility.

Table 6 contains a summary of key takeaways on component

arameter in FlowTracker V2.

(5) Implementation view: This view is very similar to the

ource code in a typical modern IDE (besides not being editable in

ur prototype). As such, the view by itself doesn’t contribute much,

ut the subjects reported that the inclusion of this view in Flow-

racker helped them relate more easily to higher-level views, since

t “helps to remove the gap between visualizations and the source

ode.”

In particular, subjects considered the hyperlinks from con-

itions in the Component Information Flow diagram to the

52 L. Moonen, A.R. Yazdanshenas / Information and Software Technology 77 (2016) 34–55

Table 6

Summary of the results on component parameters.

Subjects Feedback

All Component parameters are relevant for the understanding of

information flows.

All Only listing relevant component parameters is not enough for

understanding their effect on information flows.

P3, P6 Would like to see the relevant subset of the information flow

highlighted, upon hovering the mouse on component

parameters.

P5 Component parameters should be visualized as separate nodes,

and connected to the relevant nodes on the respective

information flows.

P3 Would like to see the effect of changing component

parameters on the fly.

p4 Would like to see data types of component parameters stated

directly in the diagram.

Table 7

Summary of the results on the implementation view.

Subjects Feedback

All Inclusion of this view helps to remove the gap between

visualizations and the source code.

All Direct hyperlinks from the diagrams to the source code

beneficial for comprehension and traceability.

P3 Beneficial for certification purposes.

P4, P6 Only beneficial for certification if the certifier knows the code

base.

P2, P5 No comment on usability for certification purposes.

Table 8

Summary of the results on the overall usability issues.

Subjects Feedback

All Satisfies by the intuitiveness of the diagrams in the tool.

All Visualizing information flows from forward and backward

perspectives is beneficial. Information needs of the users can

be satisfied more quickly.

P1 Beneficial to have FlowTracker integrated into their

programming IDE.

P4,P5,P6 FlowTracker is more beneficial at later stages of development

like integration. No acute need of integration to

programming IDEs.

All FlowTracker is excellent for system comprehension.

All FlowTracker is beneficial for certification, but only to some

extent.

n

f

r

i

d

e

F

i

i

i

f

p

c

r

f

p

d

t

T

n

r

s

(

u

6

i

f

T

a

b

s

o

s

t

a

a

s

i

c

10 We should add that two junior developers did not comment on this aspect,

because they felt that they did not know the certification process well enough.
respective locations in the source code beneficial for comprehen-

sion and traceability. They were less sure that these links would

support certification purposes equally well: P4 and P6 said they

are useful only if the certifier knows the source code (which they

thought unlikely); P1 considered the links beneficial; P2 and P5 re-

frained from answering this question, since they felt unsure about

the certification process. Safety expert P3 said that “certifiers gen-

erally do not look at the source code, but in the worst cases where

they want to see more evidence, these links will help to find the right

locations.”

Table 7 contains a summary of key takeaways on the imple-

mentation view.

Overall experience: All in all, the subjects were positive about

the intuitiveness of the tool, as they “did not need to learn a lot of

things before being able to work with FlowTracker” and “did not feel

that the tool was complex.”

All participants believed that providing the users with visual-

izations that represent forward information flows, as well as back-

ward information flows, is highly beneficial for comprehension

(V2). Unanimously, the participants said that being able to distin-

guish between the following two closely related questions helps

them to find: (1) what elements have an effect a given output?,

and (2) what elements are affected by a given input? The benefit

was acknowledged both at the system-level, and component-level

information flows. P4 also mentioned that having access to both

directions of information flows is not only beneficial for compre-

hension, but also helps the users to “follow the flow more easily”

and readily.

All participants regarded the enhanced navigation schema (see

Section 3.4) as a major improvement over the fixed, layered navi-

gation method. The choices of elements that lead to other visual-

izations (at the same or other abstraction layer) were deemed “in-

tuitive” by most of the participants. P4 found the choice of input

(output) ports to jump the forward (backward) information flows

very effective and “easy to remember, but only after the first intro-

duction to the tool” (which could be interpreted as indicating that

this may not be the most intuitive choice). Using the enhanced
avigation, all participants were confident in saying that user in-

ormation needs can be satisfied faster, and the overall user expe-

ience in V2 is better than V1.

The subjects would like to see the tool more closely integrated

nto their IDEs, although the junior developers remarked that they

id not see immediate benefits from using the tool during the

arly stages of developing the components. They preferred to “use

lowTracker during the more matured stages of development, such as

ntegration, testing, or for refreshing [their] understanding of an exist-

ng system.” The industrial subjects, on the other hand, were “look-

ng forward to using FlowTracker during the development process, and

or post-development phases, such as auditing and certification.”

Overall, FlowTracker received excellent feedback regarding com-

onent and system comprehension. When we look at the feedback

oncerning FlowTracker’s support for the certification process, the

esults were less conspicuous, but still very positive, most notably

rom the industrial subjects. 10 They argued that FlowTracker sup-

orts the certification process by “enabling discussions between the

evelopers and safety experts,” and “demonstrating the safety logic

hat is actually implemented in a system to the external certifiers.”

When subjects were asked to think of other tasks where Flow-

racker could be helpful, topics included: (1) source code mainte-

ance; (2) track ripple effects of modified source code; (3) track

ipple effects of modified configuration files; (4) configuring a new

ystem; (5) debug individual modules; (6) auditing projects; and

7) training new project members.

Table 8 contains a summary of key takeaways on the overall

sability of FlowTracker.

.3. Threats to validity

It could be argued that the number of subjects in our study

s too small to infer generalizable conclusions. We have taken the

ollowing measures to reduce this threat: Considering that Flow-

racker is a domain-specific tool with a specific industrial target

udience, the potential for recruiting a statistically significant num-

er of subjects is limited, so we use an exploratory qualitative

tudy design to get the best possible results from a limited group

f subjects at an early stage. In addition, the subjects were selected

uch that their profiles would match the various roles of prospec-

ive FlowTracker users. In addition to the industrial subjects, we

dded a second group of subjects with a different perspective to

void bias toward the specific traits of the case study.

Since we have conducted researcher-administered interviews,

ubjects might have been inclined to give socially acceptable, pos-

tive feedback. We have limited the impact of this threat by in-

luding control questions and follow-up questions, and instruct-

L. Moonen, A.R. Yazdanshenas / Information and Software Technology 77 (2016) 34–55 53

i

t

s

l

i

p

o

e

c

b

t

v

r

s

d

e

o

t

s

n

b

s

c

o

w

b

c

c

u

a

c

p

l

i

o

g

e

O

s

p

u

w

p

o

c

m

m

7

i

t

a

t

i

s

o

p

s

w

c

t

e

i

d

s

t

i

i

l

a

S

t

s

d

o

s

c

t

t

u

i

a

l

c

d

o

t

o

o

d

a

a

o

a

a

t

a

c

b

c

c

c

m

T

f

t

p

s

i

d

c

o

t

c

s

M

e

a

h

d

l
ng the subjects that honest answers would, in the end, give them

he most valuable tool. This threat would have been lower for

elf-administered questionnaires, but from other experiences, we

earned that the amount and the quality of feedback for such stud-

es is much lower.

Another threat is that the reliability of the collected data de-

ends on the interviewer’s interpretation of the subject’s answers

r actions. We have mitigated this threat in two ways: (1) We

mphasized that the participants should try to give (or include)

losed answers in terms of the Likert categories whenever possi-

le, to limit subjective interpretation of the evaluators; (2) Each of

he two authors independently transcribed and analyzed the inter-

iews. Afterward, the results were compared and differences were

e-analyzed (jointly) until an agreement was reached. The latter

tep was obviously most valuable for the cases in which subjects

id not (only) give a closed answer but included more discussion.

A potential concern with respect to generalization is that our

valuation included only one subject for each of the different roles

f module developer, system integrator, and safety expert. As such,

his subject gets a dominant voice in the evaluation, and the an-

wers may be based more on personal opinions than on what is

eeded for the role. We have tried to limit the impact of this threat

y organizing a pre-evaluation workshop, in which we asked the

takeholders to identify the most qualified senior engineers who

ould represent these roles in the evaluation. In addition, it turned

ut that subjects with a given role generally also had experience

ith some of the other roles, which also helps to create a more

alanced picture.

With respect to threats to external validity, our solution to

onstructing homogeneous dependence models of heterogeneous

omponent-based system, is designed for component models that

se distinct directional inter-component communication between

ddressable data points. Examples of such component models in-

lude the Koala [13] and Spring [14] component models, and the

roprietary solution used by our industrial collaborator. In ear-

ier work, we have developed prototype tool-support for comput-

ng system-wide slices in component-based systems built upon

n the Spring framework [14,38] and the Java programming lan-

uage. Spring offers a component model for modern Java-based

nterprise applications based on Inversion of Control (IoC) [39] .

ur initial evaluations on smaller Java systems show promising re-

ults, however, as we were lacking industry-quality tools for de-

endence graph generation (comparable to what CodeSurfer gives

s for C/C++ [28]), we have not been able to replicate the study

ith real-world industrial systems. Nevertheless, although our ap-

roach is not specifically tied to the component model used in

ur case study, there are various other forms of inter-component

ommunication that our approach has not been tested against, and

ay require further extensions of the model extraction of model

erging stages depicted in Fig. 8 .

. Related work

Maletic et al. [40] identify five dimensions of software visual-

zations: tasks (why); audience (who); source (what); representa-

ion (how); and medium (where). Our work can be summarized

s why: providing source-based evidence to support software cer-

ification; who: for safety domain experts and developers; what: of

mplementation artifacts of component-based systems; how: by vi-

ualizing information flow using a set of hierarchical views; where:

n a computer screen.

Hermans et al. [41] use leveled data flow diagrams to aid

rofessional spreadsheet users in comprehending large spread-

heets. Their survey showed that the biggest challenges occur

hen spreadsheets are transferred to colleagues or have to be

hecked by external auditors. They suggest a hierarchical visualiza-
ion of the spreadsheets: starting from coarse-grained worksheets,

xpanding worksheets to view the contained data blocks, and div-

ng into formula view to see “a specific formula and the cells it

epends on.” Our work is similar in providing a hierarchical vi-

ualization of information flow, with each view having a different

rade-off between scope and granularity. Another similarity is the

nclusion of non-developer, domain experts as users of the visual-

zations. However, the analysis subject, technique, and the under-

ying entities to be visualized are completely different. Our work

nalyzes source code to infer system-wide information flows using

DGs that are based on both data flow and control flow informa-

ion, while they analyze data flow dependencies in formula-rich

preadsheets.

Krinke [19] reports on various attempts to visualize program

ependence graphs and slices via existing (algorithmic) graph lay-

ut tools. He proposes a declarative graph layout, tailored to pre-

erve the relative locality of program points to provide a better

ognitive mapping back to the source code. A survey showed that

he standard representations of program slices were “less useful

han expected,” and the improved layout is “very comprehensible

p to medium sized procedures,” but “overly complex and non-

ntuitive” for large procedures. He concludes that a textual visu-

lization of source code is essential and introduces the distance-

imited slice to assign each program statement a specific color ac-

ording to its distance from the slicing criterion. In contrast, we

eveloped multiple layers of abstraction to reduce the complexity

f system-wide slices and show only the information relevant to

he particular task and users. We provide links between the vari-

us views that can be navigated down to a textual representation

f source as a last resort.

Pinzger et al. [42] use nested graphs to represent static depen-

encies in source code at various levels of abstraction. They follow

 top-down approach similar to ours for representing information

bout the system, and allow users to adjust the graphs by adding

r filtering information, such as adding a caller or “keep callees

nd remove other nodes.” In contrast to our approach, which cre-

tes abstracts from fine-grained data and control dependencies,

hey analyze static “uses” dependencies in Java programs at a rel-

tively coarse-grained level, considering elements such as package,

lass, method, method call, and field access.

Rountev [43] investigates data-flow analysis in component-

ased systems that have a similar communication model as our

ase study system, i.e. systems that do not contain call-backs. In

ontrast to the work presented here, their approach does not in-

orporate the configuration information into the analysis, as their

ethod does not work with a system-wide dependence structures.

he study also does not present any tool support.

Yang et al. [44] tackle the problem of control-flow analysis in

ramework-based and event-driven systems in the Android ecosys-

em. They contribute a new call-back control flow graph and ap-

ly a variation of graph reachability to compute a conservative

equences of callbacks. Their approach is different to ours in not

ncluding data dependencies into their analysis. Also their study

oes not concern the problem of how best presenting the extracted

ontrol-flows in a human-readable manner. However, their study is

f special interest to us as it opens up new opportunists for ex-

ending our method to component-based systems that have more

omplicated communication models based on call-backs.

One should note that the system-wide analysis of software

ystems has been studied by several authors (see for example

ysore et al. [45] , Enck et al. [46] , and Lee et al. [47]). How-

ver, these studies generally use (variations of) dynamic analysis

s their means to overcome complicating factors such as language-

eterogeneity, or component-based implementation. The fact that

ynamic analysis techniques can be used to circumvent these chal-

enges should hardly come as a surprise, as the complications

54 L. Moonen, A.R. Yazdanshenas / Information and Software Technology 77 (2016) 34–55

F

s

c

w

b

p

c

a

s

t

i

r

a

p

s

A

i

a

t

v

v

t

i

e

a

e

i

s

p

d

A

i

l

s

a

s

R

manifest themselves at design/compile time. However, for large

safety-critical cyber-physical systems like the ones built by our

industrial collaborator, dynamic analysis is simply not an option,

as instrumentation would affect operation, and simulation of re-

alistic inputs is not possible. For this reason, our study explores

the opportunities that are offered by pure static analysis on de-

sign/compile time software artifacts.

We refer to our previous work Yazdanshenas and Moonen

[11] for a detailed discussion of work related to our method to

build system-wide dependence models from heterogeneous source

artifacts.

8. Concluding remarks

Component-based software engineering is widely used to man-

age the complexity of large-scale software development. Although

correctly engineering the composition and configuration of compo-

nents is crucial for the overall behavior, there is surprisingly lit-

tle support for incorporating this information in the analysis of

such systems. Moreover, to get a correct understanding of a sys-

tem’s overall behavior, one needs to understand how the control

and data flow is interlaced through component sources and con-

figuration artifacts. We found that support for such a system-wide

analysis is lacking, because it is hindered by the heterogeneous na-

ture of these artifacts.

8.1. Contributions

In this paper, we address these issues by proposing an approach

that supports system-wide tracking and visualization of informa-

tion flow in heterogeneous, component-based software systems.

Our contributions are the following:

1. We propose a hierarchy of views that represent system-wide

information flows at various levels of abstraction, aimed at sup-

porting both safety domain experts and developers (addressing

Goals 1 and 2 from Section 2);

2. We present the transformations that help us achieve these

views from the system-wide dependence models and discuss

the different trade-offs between scope and granularity (address-

ing Goals 1 and 2 from Section 2);

3. We discuss how we have implemented our approach in a pro-

totype tool;

4. We report on two qualitative evaluations of the effectiveness

and usability of the proposed views for software development

and software certification (addressing Goal 3 from Section 2).

The evaluation results indicated that the prototype was already

very useful. In addition, a number of directions for further im-

provement were suggested.

8.2. Future work

We see several directions for future work: First of all, we want

to improve the overall user experience by adding more on-demand

interaction facilities, such as zooming and hiding or collapsing

groups of nodes. Such facilities allow users to be more selective in

the amount and type of information they see, according to their

information needs at the moment. As briefly mentioned before,

we foresee that this can be achieved by using a more elaborate

graph viewer than currently used in the prototype. Since the graph

presentation is done using SVG, a promising direction forward is

investigating the inclusion of some additional scripting based on

JavaScript libraries, such as Raphäel 11 or D3 12 .
11 http://raphaeljs.com/
12 http://mbostock.github.com/d3/

Moreover, to improve the scalability of Component Information

low diagrams, we want to investigate if the hierarchical block

tructure of the source code can be used to create a hierarchy of

ollapsable sub-graphs in the visualizations.

There were some interesting extensions to FlowTracker that

ere brought up during the evaluation. One example is the possi-

ility of including some kind of automated type checking for com-

onent interconnections or other forms of constraint checking on

omponent composition. Another extension that came up is the

bility to analyze and visualize multiple versions of a system at the

ame time, and highlighting the modifications and their impact in

he version history.

Based on the last discussions with our industry partner, there

s a desire to better understand what effects changing a given pa-

ameter values will have on the information flows that can be

chieved. Based on our earlier experiences with (static) value range

ropagation in source code for embedded systems, we do not fore-

ee that these questions can be answered using static analysis [48] .

n alternative is to extract this parameter change information us-

ng dynamic analysis methods. Leveraging the capabilities of static

nd dynamic analysis not only helps to increase the accuracy of

he information flows, but also opens many options toward better

isualization of intracomponent information flows using concrete

alues of the component parameters and conditional clauses at run

ime.

A final direction for future work is the integration of our tool-

ng with an IDE, such as the Eclipse platform. Besides the increased

ase of adoption, this would also have the added benefit of being

ble to directly navigate to editable source code and reuse of all

xisting Eclipse features, such as intelligent search and bookmark-

ng. Moreover, we will be able to take advantage of Eclipse per-

pectives and create separate perspectives for safety domain ex-

erts and developers to optimize the experience and avoid intimi-

ation or distraction by unneeded detail.

cknowledgments

We would like to thank the participants in our workshop and

nterviews for their valuable time and feedback. Without their col-

aboration, the evaluation of this work would not have been pos-

ible. This work was partly funded by Simula Research Laboratory

nd by the Research Council of Norway through the projects in-

pectIT (#191171), evolveIT (#221751) and Certus SFI (#203461).

eferences

[1] A. Abran , J. Moore , P. Bourque , R. Dupuis , L. Tripp , Guide to the Software Engi-
neering Body of Knowledge - 2004 Version - SWEBOK, IEEE-Computer Society

Press, 2005 . ISBN 0-7695-2330-7.

[2] C. Szyperski , Component Software: Beyond Object-Oriented Programming, sec-
ond, Addison-Wesley, 2002 . ISBN 0-201-74572-0.

[3] J. Li , R. Conradi , O. Slyngstad , M. Torchiano , M. Morisio , C. Bunse , A
state-of-the-practice survey of risk management in development with of-

f-the-shelf software components, IEEE Transactions on Software Engineering
34 (2) (2008) 271–286 . ISSN 0098-5589.

[4] Y. Wu , D. Pan , M.-H. Chen , Techniques for testing component-based software,

in: Proceedings Seventh IEEE International Conference on Engineering of Com-
plex Computer Systems, 2001, pp. 222–232 . ISSN 1050-4729.

[5] S. Beydeda , V. Gruhn , State of the art in testing components, in: Third In-
ternational Conference on Quality Software, 2003. Proceedings, IEEE, 2003,

pp. 146–153 . ISBN 0-7695-2015-4.
[6] S. Beydeda , V. Gruhn , Testing Commercial-off-the-Shelf Components and Sys-

tems, Springer, 2005 . ISBN 3-540-21871-8.
[7] H.-G. Gross , No Component-Based Software Testing with UML, Springer,

2005 . ISBN 3-540-20864-X.

[8] D. Strein , H. Kratz , W. Lowe , Cross-language program analysis and refactoring,
in: Source Code Analysis and Manipulation, 2006. SCAM ’06. Sixth IEEE Inter-

national Workshop on, 2006, pp. 207–216 .
[9] J. Steele , N. Iliinsky , Beautiful Visualization, Looking at Data through the Eyes

of Experts, first, O’Reilly Media, 2010 . ISBN 978-1-4493-7986-5.

http://raphaeljs.com/
http://mbostock.github.com/d3/
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0009

L. Moonen, A.R. Yazdanshenas / Information and Software Technology 77 (2016) 34–55 55

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[10] M. Petre , Mental imagery and software visualization in high-performance soft-
ware development teams, J. Vis. Lang. Comput. 21 (3) (2010) 171–183 . ISSN

1045926X.
[11] A.R. Yazdanshenas , L. Moonen , Crossing the boundaries while analyzing het-

erogeneous component-based software systems, in: 2011 27th IEEE Interna-
tional Conference on Software Maintenance (ICSM), 2011, pp. 193–202 . ISSN

1063-6773.
[12] A.R. Yazdanshenas , L. Moonen , Tracking and visualizing information flow in

component-based systems, in: IEEE International Conference on Program Com-

prehension (ICPC), 2012 .
[13] R. van Ommering , F. van der Linden , J. Kramer , J. Magee , The koala component

model for consumer electronics software, Computer 33 (3) (20 0 0) 78–85 . ISSN
00189162.

[14] P. Manickam , S. Sangeetha , S. Subrahmanya , Component-Oriented Develop-
ment and Assembly: Paradigm, Principles, and Practice using Java, first, Infosys

Press, CRC Press, 2013 . ISBN 1466580992.

[15] L. Hatton , Safer language subsets: an overview and a case history, MISRA c, Inf.
Softw. Technol. 46 (7) (2004) 465–472 . ISSN 09505849.

[16] M. Weiser , Program slicing, in: International Conference on Software Engineer-
ing (ICSE), IEEE, 1981, pp. 439–449 . ISBN 0897911466.

[17] K. Gallagher , D. Binkley , Program slicing, in: 2008 Frontiers of Software Main-
tenance, IEEE, 2008, pp. 58–67 . ISBN 978-1-4244-2654-6.

[18] S. Horwitz , T. Reps , D. Binkley , Interprocedural slicing using dependence

graphs, ACM Trans. Program. Lang. Syst. 12 (1) (1990) 26–60 . ISSN 01640925.
[19] J. Krinke , Visualization of program dependence and slices, in: IEEE Interna-

tional Conference on Software Maintenance (ICSM), 2004, pp. 168–177 . ISBN
0-7695-2213-0.

20] M.-A. Storey , Theories, tools and research methods in program comprehen-
sion: past, present and future, Softw. Qual. J. 14 (3) (2006) 187–208 . ISSN

0963-9314.

[21] X.-G. Lin , Structural techniques in the design of control systems, University of
Queensland, 1991 Ph.d. thesis .

22] L. Hopkins , P. Lant , B. Newell , Output structural controllability: a tool for inte-
grated process design and control, J. Process Control 8 (1) (1998) 57–68 . ISSN

09591524.
23] T.O.M. Group, Unified modeling language: superstructure v2.0, 2005, http:

//www.omg.org/spec/UML/2.0/Superstructure/PDF/ .

[24] T.R.G. Green , M. Petre , Usability analysis of visual programming environments
: a cognitive dimensions ’ framework, Vis. Lang. Comput. 7 (1996) 131–174 .

25] S. Deelstra , M. Sinnema , J. Bosch , Product derivation in software product fam-
ilies: a case study, J. Syst. Softw. 74 (2) (2005) 173–194 . ISSN 01641212.

26] OMG, Architecture-driven modernization (ADM): Knowledge discovery meta-
model (KDM) - v1.2, 2010, http://www.omg.org/spec/KDM/1.2/ .

[27] D. Steinberg , F. Budinsky , M. Paternostro , E. Merks , EMF: Eclipse Modeling

Framework 2.0, Addison-Wesley, 2009 . ISBN 0321331885.
28] P. Anderson , 90% perspiration: engineering static analysis techniques for indus-

trial applications, in: IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM), 2008, pp. 3–12 . ISBN 978-0-7695-3353-7.

29] F. Tip , A survey of program slicing techniques, J. Program. Lang. 3 (3) (1995)
121–189 .

30] J. Silva , A vocabulary of program slicing-based techniques, ACM Comput. Surv.
44 (3) (2012) 1–41 . ISSN 0360 030 0.
[31] D. Binkley , M. Harman , Forward slices are smaller than backward slices,
in: IEEE International Workshop on Source Code Analysis and Manipulation

(SCAM), 2005, pp. 15–24 . ISBN 0-7695-2292-0.
32] S.K. Debray , W. Evans , R. Muth , B. De Sutter , Compiler techniques for code

compaction, ACM Trans. Program. Lang. Syst. 22 (2) (20 0 0) 378–415 . ISSN
01640925.

[33] D.T. Campbell , J. Stanley , Experimental and Quasi-Experimental Designs for Re-
search, Wadsworth, 1963 . ISBN 0395307872.

34] A. Tversky , D. Kahneman , Judgment under uncertainty: heuristics and biases.,

Science 185 (4157) (1974) 1124–1131 . ISSN 0036-8075.
[35] J. Nielsen , R. Molich , Heuristic evaluation of user interfaces, in: SIGCHI Confer-

ence on Human Factors in Computing Systems, ACM, 1990, pp. 249–256 . ISSN
1556-3669.

36] A.N. Oppenheim , Questionnaire Design, Interviewing and Attitude Measure-
ment, Continuum, 1992 . ISBN 1855670437.

[37] H. Brugman, A. Russel, Annotating multi-media / multi-modal resources with

ELAN, in: Fourth International Conference on Language Resources and Evalua-
tion (LREC), 2004, 2004 . http://www.lat-mpi.eu/tools/elan/ .

38] C. Walls , Spring in Action, third, Manning Publications, 2011 . ISBN 1935182358.
39] R.E. Johnson , B. Foote , Designing reusable classes abstract designing reusable

classes, J. Object-Orient. Program. 1 (1988) 22–35 . ISSN 0896-8438.
40] J. Maletic , A. Marcus , M. Collard , A task oriented view of software visualiza-

tion, in: IEEE International Workshop on Visualizing Software for Understand-

ing and Analysis (VISSOFT), 2002, pp. 32–40 . ISBN 0-7695-1662-9.
[41] F. Hermans , M. Pinzger , A.V. Deursen , Supporting professional spreadsheet

users by generating leveled dataflow diagrams categories and subject de-
scriptors, in: International Conference on Software Engineering (ICSE), 2011,

pp. 451–460 .
42] M. Pinzger , K. Graefenhain , P. Knab , H.C. Gall , A tool for visual understanding of

source code dependencies, in: IEEE International Conference on Program Com-

prehension (ICPC), 2008, pp. 254–259 . ISBN 978-0-7695-3176-2.
43] A. Rountev , Component-level dataflow analysis, in: International Conference on

Component-Based Software Engineering (CBSE), Springer, 2005, pp. 82–89 .
44] S. Yang , D. Yan , H. Wu , Y. Wang , A. Rountev , Static control-flow analysis of

user-driven callbacks in android applications, in: 2015 IEEE/ACM 37th IEEE In-
ternational Conference on Software Engineering, IEEE, 2015, pp. 89–99 . ISBN

978-1-4799-1934-5 ISSN 02705257.

45] S. Mysore , B. Mazloom , B. Agrawal , T. Sherwood , Understanding and visualizing
full systems with data flow tomography, ACM SIGPLAN Notices 43 (3) (2008)

211 . ISSN 03621340.
46] W. Enck , P. Gilbert , S. Han , V. Tendulkar , B.-G. Chun , L.P. Cox , J. Jung ,

P. McDaniel , A.N. Sheth , Taintdroid, ACM Trans. Comput. Syst. 32 (2) (2014)
1–29 . ISSN 07342071.

[47] Y.K. Lee , J.Y. Bang , J. Garcia , N. Medvidovic , ViVA: a visualization and anal-

ysis tool for distributed event-based systems, in: Companion Proceedings of
the 36th International Conference on Software Engineering - ICSE Compan-

ion 2014, ACM Press, New York, New York, USA, 2014, pp. 580–583 . ISBN
9781450327688.

48] C. Boogerd , L. Moonen , On the use of data flow analysis in static profiling, in:
International Working Conference on Source Code Analysis and Manipulation

(SCAM), IEEE, 2008, pp. 79–88 . ISBN 978-0-7695-3353-7.

http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0022
http://www.omg.org/spec/UML/2.0/Superstructure/PDF/
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0024
http://www.omg.org/spec/KDM/1.2/
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0034
http://www.lat-mpi.eu/tools/elan/
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0046
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0046
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0046
http://refhub.elsevier.com/S0950-5849(16)30081-7/sbref0046

	Analyzing and visualizing information flow in heterogeneous component-based software systems
	1 Introduction
	2 Background and motivation
	3 Approach
	3.1 Reverse engineering a system-wide dependence model
	3.2 Model abstraction and visualization
	3.3 Typical usage scenario
	3.4 Enhanced navigation
	3.5 Component parameters

	4 Prototype implementation
	4.1 Model reverse engineering
	4.2 View construction
	4.3 Presentation

	5 Discussion
	5.1 Static versus dynamic analysis
	5.2 Forward versus backward slicing

	6 Evaluation
	6.1 Study design
	6.2 Findings
	6.3 Threats to validity

	7 Related work
	8 Concluding remarks
	8.1 Contributions
	8.2 Future work

	 Acknowledgments
	 References

