
Ref: IFI-UIT Technical Report 2015-76 ——

Technical Report: Evaluation of the power efficiency of UPC,
OpenMP and MPI
Is PGAS ready for the challenge of energy efficiency? A study with the NAS
benchmark.

Jérémie Lagravière · Phuong H. Ha · Xing Cai

-

Abstract In this study we compare the performance

and power efficiency of Unified Parallel C (UPC), MPI

and OpenMP by running a set of kernels from the NAS

Benchmark. One of the goals of this study is to fo-

cus on the Partitioned Global Address Space (PGAS)

model, in order to describe it and compare it to MPI

and OpenMP. In particular we consider the power effi-

ciency expressed in millions operations per second per

watt as a criterion to evaluate the suitability of PGAS

compared to MPI and OpenMP. Based on these mea-

surements, we provide an analysis to explain the differ-

ence of performance between UPC, MPI, and OpenMP.

Keywords PGAS · power efficiency · performance

evaluation · UPC · MPI · OpenMP · NAS Benchmark

1 Introduction & Motivations

The High Performance Computing research community

is strongly interested in reducing energy consumption

and optimizing power efficiency of the programs. Even

though computation speed is still the number one ob-

jective, understanding the impact of hardware and soft-

ware on energy consumption is equally important.

Jérémie Lagravière
Simula Research Laboratory, Martin Linges vei 25 1364
Fornebu, Norway
E-mail: jeremie@simula.no

Phuong H. Ha
UiT The Arctic University of Norway, NO-9037 Tromsø, Nor-
way
E-mail: phuong.hoai.ha@uit.no

Xing Cai
Simula Research Laboratory, Martin Linges vei 25 1364
Fornebu, Norway
E-mail: xingca@simula.no

Optimizing energy efficiency, without sacrificing com-

putation performance is the key challenge of energy-

aware HPC, which is an absolute requirement of Exas-

cale computing in future. Particularly for the race to

Exascale, staying under 20 MegaWatts is one of the

objectives proposed by the US Department of Energy

[26]. The goal of energy efficiency is twofold: reducing

both the cost related to energy consumption and the

environmental footprint of supercomputers.

In this study we focus on three parallel program-

ming languages and models: UPC (UPC is based on

Partitioned Global Address Space model or PGAS),

MPI (message passing) and OpenMP (shared memory

multiprocessing). MPI and OpenMP are well-known

and have been used for years in parallel programming

and High Performance Computing. UPC (PGAS) pro-

vides ease of programming through a simple and unified

memory model. On a supercomputer, this means that

the programmer can access the entire memory space

as if it is a single memory space that encompasses all

the nodes. Through a set of functions that makes the

data private or shared, PGAS languages ensure data

consistency across the different memory regions.

We will evaluate performance and measure energy

consumption of a well-established parallel benchmark

suite implemented in all the models mentioned above.

We compare the behaviors of the three different im-

plementations based on MPI and OpenMP and UPC.

We run the Numerical AmeS Parallel Benchmark (NAS

Benchmark or NPB) provided by NASA and imple-

mented in each of these languages.

Our motivation for this report is based on recent

studies that advocate the use of PGAS as a promising

solution for High Performance Computing [20,24]. Pre-

vious studies have focused on the evaluation of PGAS

performance and UPC in particular[13,18]. Thus, we

2 Jérémie Lagravière et al.

are warranted to re-investigate using the latest CPU

architecture and focusing on energy efficiency.

This report is organized as follows: Section 2 out-

lines the related work and background to this study.

Section 3 briefly presents the UPC framework and the

reasons why we chose this programming language. Sec-

tion 4 describes the benchmark chosen for this study.

Section 5 contains the description of the application

used to measure energy consumption for our experi-

ments. Section 6 explains in detail the hardware and

software set-up used for running our experiments. Sec-

tion 7 presents the result obtained through the experi-

ments.

In the appendix, we provide a technical description

on how to perform the experiments used in this paper.

In particular, we explain how to handle Intel PCM in

order to get energy measurement and other metrics con-

cerning communication behavior and memory traffic.

2 Previous Work

Previous studies [10,13,23,29] focused on the NAS Bench-

mark and considered only the performance evaluation

of this benchmark. While part of our work is based

on the results of these studies, we also use the NAS

Benchmark as an evaluation basis to measure energy

consumption.

The NAS Benchmark was released in 1991 [5] and

has been maintained by the NASA. Since then, the NAS

Benchmark has been used as the basis of many studies

in High Performance Computing. Even in recent years,

the NAS Benchmark has been considered a valid base

to analyze computation performance of a chosen tech-

nology. In [23], published in 2011, the NAS Benchmark

is used in cooperation with OpenCL. In [29], the perfor-

mance of the NAS Benchmark is characterized to eval-

uate a hybrid version combining MPI and OpenMP. In

[10,13], UPC performance are evaluated by using NPB.

The need for energy awareness in High Performance

Computing has been increasingly covered over the last

10 years: Two major trends can be identified, energy

estimation or profiling as in [9,16] and energy measure-

ment or monitoring as in [15,22,25]. In [6], several ap-

proaches are described to achieve energy measurement

for HPC architectures: software approach, hardware ap-

proach and hybrid approach. In our study, we use the

software approach to obtain energy measurements. In

particular, Intel PCM (Intel Performance Counter Mon-

itor) is chosen to perform these measurements. We con-

sider Intel PCM to be a valid choice because many stud-

Fig. 1 PGAS Communication Model [19] - Figure used with
the courtesy of Marc Tajchman

ies have selected this tool for their energy measurements

such as in [6,14].

In the past decade, many studies have chosen UPC

as a central topic in High Performance Computing. In

[8,13,18] UPC performance is compared to MPI and

OpenMP. The goal of this technical report is to provide

a continuation to these studies, and additionally deliver

a power efficiency analysis of UPC, MPI and OpenMP.

3 PGAS Paradigm and UPC

PGAS is a parallel programming model that has a logi-

cally partitioned global memory address space, where a

portion of it is local to each process or thread. A special

feature of PGAS is that the portions of the shared mem-

ory space may have an affinity for a particular process,

thereby exploiting locality of reference [8] [27].

Figure 1 shows a view of the communication model

of the PGAS paradigm [19]. In this model, each node

(C0 or C1) has access to a private memory and a shared

memory. Accessing the shared memory to either read

or write data can imply inter-node communication. The

blue arrow in Figure 1 represents distant access to shared

memory. This kind of distant access is of type RDMA

(Remote Direct Memory Access) and is handled by one-

sided communication functions.

PGAS is also a family of languages, among which

UPC. UPC is an extension of the C language. The key

characteristics of UPC are:

– A parallel execution model of Single Program Mul-

tiple Data (SPMD) type;

Technical Report: Evaluation of the power efficiency of UPC, OpenMP and MPI 3

– Distributed data structures with a global addressing

scheme, and static or dynamic allocation;

– Operators on these structures, with affinity control;

– Copy operators between private, local shared, and

distant shared memories and

– Two levels of memory coherence checking (strict for

computation safety and relaxed for performance).

Additionally, multiple open-source implementations of

the UPC compiler and runtime environment are avail-

able, in particular Berkeley UPC [7] and GCC/UPC

[11].

4 The NAS Benchmark

The NAS Benchmark [5], is a set of kernels that pro-

vides different ways to stress a supercomputer. The

NAS Benchmark is originally implemented in Fortran

and C, we also use the UPC version of the NAS Bench-

mark [8] [2]. In our study, we have selected four kernels:

Integer Sort (IS), Conjugate Gradient (CG), Multi-Grid

(MG) and Fourier Transformation (FT).

CG refers to a conjugate gradient method used to

compute an approximation to the smallest eigenvalue of

a large, sparse, symmetric positive definite matrix. This

kernel is typical of unstructured grid computations in

that it tests irregular all-to-all communication through

sparse matrix-vector multiplication.

MG is a simplified multigrid kernel. Multigrid (MG)

methods in numerical analysis solve differential equa-

tions using a hierarchy of discretizations. For example,

a class of techniques called multiresolution methods, are

very useful in (but not limited to) problems exhibiting

multiple scales of behavior. MG tests both short-and

all-to-all data as well as local memory accesses.

FT is a three-dimensional partial differential equa-

tion solver using Fast Fourier Transformations. This

kernel performs the essence of many spectral codes. It is

a rigorous test of all-to-all communication performance.

[5]

IS represents a large integer sort. This kernel per-

forms a sorting operation that is important in particle

method codes. It evaluates both integer computation

speed and communication performance. [5]

Among the benchmarks available in NPB we se-

lected CG, IS, MG and FT because they are the most

relevant ones: stressing memory, communication and

computation. The other benchmarks in NPB are of lim-

ited relevance to this study.

The above four benchmark kernels involve very dif-

ferent communications schemes, which is important in

order to evaluate the performance of the selected lan-

guages (see Section 7).

5 Energy Measurement

We have chosen a software based solution in order to

measure the CPU and RAM energy consumption. In-

tel Performance Monitor (Intel PCM) is used for the

experiments of this study [12].

Intel PCM provides a set of ready-made tools that

can output information about CPU energy, Dynamic

Random Access Memory (DRAM) energy, NUMA de-

tails, performance flaws, and so forth in various formats

(joules, watts). Intel PCM works on compatible pro-

cessors, such as Intel Xeon, Sandybridge, Ivy Bridge,

Haswell, Broadwell, or Skylake processors [6].

Intel PCM requires both root access and activation

of counters in the BIOS/UEFI. Intel PCM uses the Ma-

chine Specific Registers (MSR) and RAPL counters to

disclose the energy consumption details of the applica-

tion [6]. This is a major constraint when running our

experiments. We solved this limitation by running all

the experiments on a machine equipped with two Intel

Xeon E5-2650 on which we have root access.

Intel PCM is able to identify the energy consump-

tion of the CPU(s), the RAM and the Quick Path In-

terconnect (QPI) between sockets. In this study, the

energy measurement is considered as a whole, which

means that we aggregate the energy consumption of

the CPU and RAM. QPI energy consumption was not

taken in account in this study because Intel PCM was

unable to provide measurement on the chosen hardware

platform.

In the appendix, we will describe how to use Intel

PCM in order to perform measurements such as energy

consumption, power efficiency, communication pattern

and memory traffic.

6 Hardware Testbench

For our experiments, we used a computer equipped with

two processors of type Intel Xeon E5-2650, and 32GB of

RAM DDR3-1600MHz. This computer has 16 physical

cores, and 16 additional logical cores, due to Hyper-

Threading.

This machine runs Ubuntu 12.04.5 LTS with the

Linux kernel 3.13.0-35-x64. We used Berkeley UPC im-

plementation [7] in version 2.2.0 compiled with GCC

4.6.4. The NAS Benchmark is implemented in C and

Fortran version 3.3 [3], to compile NPB we used GCC

version 4.6.4 and gfortran version 4.8 OpenMPI version

1.8.4 was used for MPI and OpenMP was used with ver-

sion 3.0. For energy measurement we used Intel PCM

in version 2.8 [12].

Each measurement made use of three runs; the run

with the best value values was chosen.

4 Jérémie Lagravière et al.

Table 1 Cases where thread-binding was activated

- OpenMP MPI UPC

CG 16 threads 2 and 4 processes 16 threads
MG 8, 16 threads - -
FT 16 threads 16 processes -
IS - 2,4 and 8 processes -

For each kernel Class ”C” was chosen [3] [1]:

– IS Class C: Number of keys is 216

– FT Class C: Grid size is 512 × 512 × 512

– CG Class C: Number of rows is 150000

– MG Class C: Grid size is 512 × 512 × 512

Size C provides data sets that are sufficiently large

to exceed the cache capacity of the chosen hardware

architecture [28] [1]. Each benchmark is measured for

execution time and energy consumption for 2, 4, 8, 16,

32 threads.

6.1 Thread binding

Thread binding or thread pinning is an approach that

associates each thread with a specific processing ele-

ment.

During our experiment, we realized that binding the

threads to physical cores often gave the best results

in terms of execution time and energy consumption.

More specifically, thread binding means that we divided

the threads evenly between the two sockets (see Ta-

ble 1). We only applied thread binding if it resulted in

the fastest computation and highest energy-efficiency.

When not activated, the threads were managed auto-

matically by the operating system. Concerning MPI,

instead of threads binding the correct terminology is

process binding.

Table 1 shows to which kernels thread binding has

been applied.

7 Results

In this report, we selected two metrics to measure per-

formance and energy efficiency. To evaluate performance

we chose time in seconds for measuring the executing

time. To evaluate energy efficiency Millions Operations

Per Seconds over Watts (MOPS / Watt) were chosen

to measure the performance per power unit. The 500

Green - Energy Efficient High Performance Comput-

ing Power Measurement Methodology [4] advises this

measurement methodology.

For convenience we use the following notation: [Bench-

mark name]-[number of threads/processes]. For instance,

CG-32 stands for Conjugate Gradient running on 32

threads (or processes for MPI).

Figures 2, 4, 6 and 8 show the execution time for the

four benchmarks: CG, MG, FT and IS. Each bench-

mark ran for different thread numbers (process num-

bers for MPI): 2, 4, 8, 16 and 32. Each of these figures

shows the results for all the selected languages: UPC,

OpenMP, MPI.

Figures 3, 5, 7 and 9 show the performance per watt

expressed in MOPS per watt. Thread numbers, colors

and language orders are the same as in the previous

figures.

The time measurement results show that the kernels

scale over the number of thread/cores independently

of the language. There is no clear winner in the sense

that none of the chosen languages is better than the

other two counterparts for all the benchmarks. We have

the same observation for energy efficiency; there is an

improvement in the efficiency by dividing the work over

more threads.

Using 32 threads implies using the HyperThreading

capability of the CPU. In most cases, only OpenMP

took advantage of the HyperThreading. In CG-32, MG-

32 and FT-32, UPC and MPI achieved lower perfor-

mance than the same kernel running on 16 threads (pro-

cesses).

Even though there is no global winner in the achieved

measurements, we are interested in knowing whether

UPC performs well in terms of computation perfor-

mance and energy efficiency. Concerning the execution

time, UPC is the best in CG-4, CG-8, CG-16, MG-

2, MG-4, MG-8, MG-16 and MG-32. For FT and IS,

UPC is not the winner, however it competes well with

OpenMP and MPI.

UPC’s energy efficiency is directly connected to its

performance result. Therefore, the best results in en-

ergy efficiency are achieved, in most cases, for the same

benchmarks and thread-count as mentioned above. UPC

competes well with OpenMP and MPI in this aspect.

UPC is the best in MG-2 to MG-32,CG-8, CG-16, and

FT-8.

8 Discussion

In this section, we give an explanation of the differences

in performance that were observed in the previous sec-

tion.

Intel PCM provides access to metrics such as: L2

cache hit and miss rates, L3 cache hit and miss rates,

Memory accesses (Local (same socket) and remote (other

Technical Report: Evaluation of the power efficiency of UPC, OpenMP and MPI 5

socket) etc. In this section we will use these measure-

ments to find the explanation of differences in perfor-

mance obtained with OpenMP, MPI and UPC. In the

appendix, the procedure on how to obtain those metrics

is explained.

For instance, in Figure 3, that represents the Conju-

gate Gradient power efficiency, there is a noticeable dif-

ference in the results obtained using UPC and OpenMP:

in this case, UPC wins. By looking at the behavior of

the OpenMP implementation compared to the UPC im-

plementation, we can see that the level of L2 cache hit

for UPC is higher than for OpenMP: UPC L2 cache hit

ratio is 56% and OpenMP L2 cache hit ratio 14%. As a

direct consequence the OpenMP implementation of CG

running over 16 threads uses more CPU cycles to miss

data in L2 cache and then fetching data in L3 cache

than the UPC implementation. L2 cache hit rate is the

cause for the difference in performance, in this case, as

it is the only metric that differs significantly between

the performance of the OpenMP implementation and

that of UPC implementation.

In Figure 5, representing the Multigrid power ef-

ficiency, UPC performs better than OpenMP over 16

threads. In this case, the analysis of the memory traffic

(amount of data that is read and written in/to RAM) is

the useful metric that determines the cause of the lower

performance of OpenMP. In total the OpenMP reads

and writes 500GB of data into memory while the UPC

only reads and writes 350GB, this difference of 150GB

is the main cause for the difference in performance as all

the other metrics indicate similar or comparable values.

Another way to look at this difference of performance

is by analyzing the use of memory bandwidth done by

the OpenMP and UPC implementations: the OpenMP

implementation reaches 60GB/s of memory bandwidth

(cumulated bandwidth: read + write) while the UPC

implementation reaches 47GB/s. In this case, only the

memory related values (read and write) differ signifi-

cantly between the performance of the OpenMP imple-

mentation and that of UPC implementation.

In Figure 7, representing the 3D-Fourier Transform

power efficiency, OpenMP performs better than UPC.

In this case, it is both the L3 cache miss and the amount

of memory traffic (read+write) of the UPC implemen-

tation that cause poor performance compared to the

OpenMP implementation. The UPC implementation

reads and writes 950GB of data from/to memory and

has a L3 cache hit ratio of 15% while the OpenMP

implementation reads and writes only 500GB of data

from/to memory and has a L3 cache hit ratio of 62%.

For FT only the hit ratio and the memory related values

(read and write) differ significantly between the mea-

surements performed on both OpenMP implementation

and UPC implementation.

9 Conclusion & Future Work

In this study, we have measured the energy efficiency

and the computation performance of four kernels from

the NAS Benchmark using three different programming

languages: UPC, MPI and OpenMP. From the measure-

ments presented in Figures 2 to 9, we observe that by

scaling over more thread/cores the performance and the

energy efficiency both increase for the four selected ker-

nels on the chosen hardware platform.

As PGAS is our focus, it is important as a conclusion

to highlight the fact that UPC can compete with MPI

and OpenMP in terms of both computation speed and

energy efficiency.

Another hardware solution that we would like to

explore are accelerators, such as Many Integrated Cores

(MIC) and GPUs. These kinds of accelerators are well-

known for being more energy efficient than CPUs. This

requires both the benchmark and UPC to support these

accelerators.

Some of the UPC/PGAS libraries and runtime envi-

ronment, provide support for both GPU and Intel Phi

(Many Integrated Cores). To compete with more recent

PGAS languages such as X10, UPC has to adapt: the

MVAPICH initiative provides support of both MIC and

GPU for UPC [17] [21]. One of our next objectives is to

cover the energy consumption on accelerators by using

this runtime environment.

The next stage in our study of PGAS, is to study

UPC’s performance for computation speed and energy

efficiency on a supercomputer compared to MPI and

OpenMP.

To go further in the energy measurements and to

have a fine grained approached of the location of the

energy consumption: it is interesting to study sepa-

rately the energy cost of computation, communication

between nodes, and memory. This would allow improve-

ment to achieve both in the code and in the UPC com-

piler and runtime environment.

The need for precision in the energy measurement

is a strong requirement. Thus validating the quality of

the software-based energy measurement with hardware-

based energy measurement is one of our objectives for

future work.

10 Acknowledgments

We would like to thank Saeed Shariati for helping us in

the early phase of this project.

6 Jérémie Lagravière et al.

Fig. 2 CG Size C execution time in seconds. The lower, the
better.

Fig. 3 CG Size C Performance per watt: MOPS / Watt. The
higher, the better.

Fig. 4 MG Size C execution time in seconds. The lower, the
better.

Fig. 5 MG Size C Performance per watt: MOPS / Watt.
The higher, the better.

Fig. 6 FT Size C execution time in seconds. The lower, the
better.

Fig. 7 FT Size C Performance per watt: MOPS / Watt. The
higher, the better.

Fig. 8 IS Size C execution time in seconds. The lower, the
better.

Fig. 9 IS Size C Performance per watt: MOPS / Watt. The
higher, the better.

Technical Report: Evaluation of the power efficiency of UPC, OpenMP and MPI 7

References

1. NAS Benhcmark Official Webpage - Prob-
lem Size (last accessed on 11/04/2015). URL
www.nas.nasa.gov/publications/npb problem sizes.html

2. NAS Benchmark implemented in UPC
(last accessed on 28/032015). URL
https://threads.hpcl.gwu.edu/sites/npb-upc

3. NAS Benhcmark Official Webpage
(last accessed on 28/032015). URL
http://www.nas.nasa.gov/publications/npb.html

4. 500, T.G.: The 500 Green - Energy Efficient High Per-
formance Computing Power Measurement Methodology
(last accessed on 28/032015)

5. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S.,
Carter, R.L., Dagum, L., Fatoohi, R.A., Frederickson,
P.O., Lasinski, T.A., Schreiber, R.S., et al.: The NAS
Parallel Benchmarks. International Journal of High Per-
formance Computing Applications 5(3), 63–73 (1991)

6. Benedict, S.: Energy-aware performance analysis
methodologies for hpc architectures—an exploratory
study. Journal of Network and Computer Applications
35(6), 1709–1719 (2012)

7. Berkeley: UPC Implementation From Berkeley (last ac-
cessed on 28/03/2015). URL http://upc.lbl.gov

8. Coarfa, C., Dotsenko, Y., Mellor-Crummey, J., Canton-
net, F., El-Ghazawi, T., Mohanti, A., Yao, Y., Chavarŕıa-
Miranda, D.: An evaluation of global address space lan-
guages: co-array fortran and unified parallel C. In: Pro-
ceedings of the tenth ACM SIGPLAN symposium on
Principles and practice of parallel programming, pp. 36–
47. ACM (2005)

9. Cupertino, L., Da Costa, G., Pierson, J.M.: Towards a
generic power estimator. Computer Science - Research
and Development pp. 1–9 (2014). DOI 10.1007/s00450-
014-0264-x. URL http://dx.doi.org/10.1007/s00450-014-
0264-x

10. El-Ghazawi, T., Cantonnet, F.: UPC performance and
potential: A NPB experimental study. In: Supercom-
puting, ACM/IEEE 2002 Conference, pp. 17–17. IEEE
(2002)

11. Inc., I.T.: UPC Implementation on GCC (last accessed
on 28/03/2015). URL http://www.gccupc.org/

12. Intel: Intel PCM Official Webpage (last accessed
on 28/032015). URL https://software.intel.com/en-
us/articles/intel-performance-counter-monitor

13. Jose, J., Luo, M., Sur, S., Panda, D.K.: Unifying UPC
and MPI runtimes: experience with MVAPICH. In: Pro-
ceedings of the Fourth Conference on Partitioned Global
Address Space Programming Model, p. 5. ACM (2010)

14. Karpov, V., Kryukov, Y., Savransky, S., Karpov, I.: Nu-
cleation switching in phase change memory. Applied
physics letters p. 123504 (2007)

15. Kunkel, J., Aguilera, A., Hübbe, N., Wiedemann, M.,
Zimmer, M.: Monitoring energy consumption with SIOX.
Computer Science - Research and Development pp.
1–9 (2014). DOI 10.1007/s00450-014-0271-y. URL
http://dx.doi.org/10.1007/s00450-014-0271-y

16. Lively, C., Taylor, V., Wu, X., Chang, H.C., Su,
C.Y., Cameron, K., Moore, S., Terpstra, D.: E-
AMOM: an energy-aware modeling and optimization
methodology for scientific applications. Computer
Science - Research and Development 29(3-4), 197–
210 (2014). DOI 10.1007/s00450-013-0239-3. URL
http://dx.doi.org/10.1007/s00450-013-0239-3

17. Luo, M., Wang, H., Panda, D.K.: Multi-Threaded UPC
Runtime for GPU to GPU communication over Infini-
Band. In: Proceedings of the 6th Conference on Par-
titioned Global Address Space Programming Models
(PGAS’12) (2012)

18. Mallón, D.A., Taboada, G.L., Teijeiro, C., Touriño, J.,
Fraguela, B.B., Gómez, A., Doallo, R., Mouriño, J.C.:
Performance evaluation of MPI, UPC and OpenMP on
multicore architectures. In: Recent Advances in Parallel
Virtual Machine and Message Passing Interface, pp. 174–
184. Springer (2009)

19. Marc Tajchman, C.: Programming paradigms us-
ing PGAS-based languages. Figure used with
the courtesy of Marc Tajchman (2015). URL
http://www-sop.inria.fr/manifestations/cea-edf-inria-
2011/slides/tajchman.pdf

20. Milthorpe, J., Rendell, A.P., Huber, T.: Pgas-fmm: Im-
plementing a distributed fast multipole method using the
x10 programming language. Concurrency and Computa-
tion: Practice and Experience 26(3), 712–727 (2014)

21. MVAPICH, O.S.U.: MVAPICH Official Webpage (last
accessed on 28/032015). URL http://mvapich.cse.ohio-
state.edu/overview/

22. Scogland, T.R., Steffen, C.P., Wilde, T., Parent, F.,
Coghlan, S., Bates, N., Feng, W.c., Strohmaier, E.: A
Power-measurement Methodology for Large-scale, High-
performance Computing. In: Proceedings of the 5th
ACM/SPEC International Conference on Performance
Engineering, ICPE ’14, pp. 149–159. ACM, New York,
NY, USA (2014). DOI 10.1145/2568088.2576795. URL
http://doi.acm.org/10.1145/2568088.2576795

23. Seo, S., Jo, G., Lee, J.: Performance characterization of
the NAS Parallel Benchmarks in OpenCL. In: Work-
load Characterization (IISWC), 2011 IEEE International
Symposium on, pp. 137–148. IEEE (2011)

24. Shan, H., Wright, N.J., Shalf, J., Yelick, K., Wag-
ner, M., Wichmann, N.: A Preliminary Evaluation of
the Hardware Acceleration of the Cray Gemini Inter-
connect for PGAS Languages and Comparison with
MPI. SIGMETRICS Perform. Eval. Rev. 40(2), 92–
98 (2012). DOI 10.1145/2381056.2381077. URL
http://doi.acm.org/10.1145/2381056.2381077

25. Shoukourian, H., Wilde, T., Auweter, A., Bode, A.: Mon-
itoring power data: A first step towards a unified energy
efficiency evaluation toolset for HPC data centers. Envi-
ronmental Modelling & Software 56, 13–26 (2014)

26. Tolentino, M., Cameron, K.W.: The Optimist, the
Pessimist, and the Global Race to Exascale in 20
Megawatts. Computer 45(1), 95–97 (2012). DOI
http://doi.ieeecomputersociety.org/10.1109/MC.2012.34

27. Wikipedia: Wikipedia Definition of PGAS - Last accessed
on 27/03/2015 (2015)

28. Wong, F.C., Martin, R.P., Arpaci-Dusseau, R.H., Culler,
D.E.: Architectural requirements and scalability of
the NAS parallel benchmarks. In: Supercomputing,
ACM/IEEE 1999 Conference, pp. 41–41. IEEE (1999)

29. Wu, X., Taylor, V.: Performance characteristics of hybrid
MPI/OpenMP implementations of NAS parallel bench-
marks SP and BT on large-scale multicore supercomput-
ers. ACM SIGMETRICS Performance Evaluation Re-
view 38(4), 56–62 (2011)

Appendix

Measuring energy consumption of
parallel applications

Experiments based on measuring NAS Benchmarks implemented in OpenMP, MPI and

UPC

Author
Jérémie Lagravière – PhD candidate – Simula Research – www.simula.no –
jeremie@simula.no

Intel PCM – Technical Report 1/15

Table of Contents

Introduction..3
Technical information about our experiments..3

Hardware architecture..3
Selected benchmark..3
Programming languages...4

Intel Performance Counter Monitor...5
Installation..5

Download...5
Instructions..5
Compiling the tools..5
Compiling the library...6

How to use..6
Global Information...7
Intel PCM in the code..8
Intel PCM from the command line..9

Measuring energy...9
Monitoring Communications..10
Tracking memory traffic...12
Tracking memory bandwidth...13

Turbostat: another way to measure energy consumption...14
How to install...14
How to use..14

Bibliography..15

Intel PCM – Technical Report 2/15

Introduction
In this document we present a set of practical solutions to measure the energy consumption

of parallel programs on systems based on Intel Xeon processors.

The energy measurements are performed on the software side, which is a necessity when

direct access to the hardware is not possible.

We have used the NAS Benchmark (see next chapter for a description) and the Intel

Performance Counter Monitor1 to evaluate the energy consumption.

Technical information about our experiments

Hardware architecture

To run our experiments we have used Intel PCM v2.8 on a two socket machine equipped
with two Intel(R) Xeon(R) CPU E5-2650 and 32 GB RAM.

Selected benchmark

The NAS Benchmark, is a set of kernels that provides different ways to stress a
supercomputer. The NAS Benchmark is implemented in Fortran and C, we also use the
UPC version of the NAS Benchmark. In our study, we have selected four kernels: Integer
Sort (IS), Conjugate Gradient (CG), Multi-Grid (MG) and Fourier Transformation (FT).

IS represents a large integer sort. This kernel performs a sorting operation that is
important in particle method codes. It evaluates both integer computation speed and
communication performance.

MG is a simplified multi-grid kernel. Multigrid (MG) methods in numerical analysis are a
group of algorithms for solving differential equations using a hierarchy of discretizations.
They are an example of a class of techniques called multiresolution methods, very useful in
(but not limited to) problems exhibiting multiple scales of behavior.

CG is a conjugate gradient method used to compute an approximation to the smallest
eigenvalue of a large, sparse, symmetric positive definite matrix. This kernel is typical of
unstructured grid computations in that it tests irregular all-to-all communication, using
unstructured matrix-vector multiplication.

FT is a three-dimensional partial differential equation solution using Fast Fourier
Transformations. This kernel performs the essence of many spectral codes.

1 https://software.intel.com/en-us/articles/intel-performance-counter-monitor

Intel PCM – Technical Report 3/15

The NAS benchmark provides very different communications schemes, which is important
in order to stress and evaluate the performance of the selected languages.

Programming languages

We used the OpenMP and MPI version of NAS Bencharmk available at:
 http://www.nas.nasa.gov/publications/npb.html

We also used the UPC version of NAS Benchmark, available at:
https://threads.hpcl.gwu.edu/sites/npb-upc

Compiled with the Berkeley UPC Compiler, available at:
http://upc.lbl.gov/

Intel PCM – Technical Report 4/15

Intel Performance Counter Monitor
Intel Performance Counter Monitor is a practical tool to measure energy consumption,
memory usage and cache behavior on a compatible computer (Intel Xeon Processor):

The complexity of computing systems has tremendously increased over the last decades.
Hierarchical cache subsystems, non-uniform memory, simultaneous multithreading and out-
of-order execution have a huge impact on the performance and compute capacity of
modern processors.

Software that understands and dynamically adjusts to resource utilization of modern
processors has performance and power advantages. The Intel® Performance Counter
Monitor provides sample C++ routines and utilities to estimate the internal resource
utilization of the latest Intel® Xeon® and Core™ processors and gain a significant
performance boost.

Installation

Download

Intel PCM can be downloaded at this URLs:

• https://software.intel.com/en-us/articles/intel-performance-counter-monitor

or

• https://software.intel.com/protected-download/328018/326559

From this link you obtain a zip file, such as: IntelPerformanceCounterMonitorV2.8.zip

Instructions

Unzip the file that you downloaded in a directory intelPCM/

Intel PCM – Technical Report 5/15

Compiling the tools

Intel PCM provides some ready made tools (described in How to use Intel PCM).

To compile these tools, run this command:

IntelPCM $ make

All you need is a working C++ compiler configured in environment variable CXX. If the

compilation process ran correctly you should obtain this set of executable:

• ./pcm-pcie.x

• ./pcm-numa.x

• ./pcm-memory.x

• ./pcm.x

• ./pcm-sensor.x

• ./pcm-power.x

• ./pcm-msr.x

• ./pcm-tsx.x

Compiling the library

In the directory IntelPCM/intelpcm.so/ you can compile Intel PCM as a shared library in

order to use Intel PCM API directly in your code.

IntelPCM/intelpcm.so $ make

All you need is a working C++ compiler configured in environment variable CXX.

If the compiling process ran correctly you should obtain these files:

• client_bw.o

• cpucounters.o

• libintelpcm.so

• msr.o

• pci.o

Intel PCM – Technical Report 6/15

How to use

There are three different ways to use Intel PCM:

• In the code of your application, you add some Intel PCM function calls to measure
acurately any kind of metrics related to energy consumption, memory, bandwidth
etc.;

• From the command line, by specifying an external program to make measurements
from;

• From the command line by without specifying an external program. This gives
general information and measurements on the whole computer.

Global Information

When measuring energy on any system, root access is required. This is due to the fact that

Intel PCM has to read “MSR” registers (not write though) only accessible by the root.

Intel PCM requires a compatible processors: for all of our experiments we have used a dual

socket Intel(R) Xeon CPU E5-2650 @ 2.00GHz, delivering 16 physical cores, and 32 cores

with HyperThreading.

Intel PCM – Technical Report 7/15

Intel PCM in the code

Here is an example of C++ code using Intel PCM to perform measurements

#include <stdlib.h>
#include <iostream>
#include <stdio.h>
#include "cpucounters.h"
int main(void)
{

//Instantiate Intel PCM singleton
PCM * m = PCM::getInstance();

//Creation of a counter before the code to measure
SystemCounterState before_sstate = getSystemCounterState();

//Some code that you want to measure

//Creation of a counter before the code to measure
SystemCounterState after_sstate = getSystemCounterState();

/*
From the counters you can extract values such as:
Instruction per clock, L3 Hit ratio, Memory transferred from the memory controller to

L3 cache.
And much more
*/

cout << "Instructions per clock:" << getIPC(before_sstate,after_sstate) << endl;

cout<<"L3 cache hit ratio:" << getL3CacheHitRatio(before_sstate,after_sstate) << endl;

cout << "Bytes read from memory controller: ";

cout << getBytesReadFromMC(before_sstate,after_sstate) / double(1024ULL * 1024ULL * 1024ULL)
<< endl;

m->cleanup();

}

This code sample show the usage of a few available Intel PCM functionality, more at:
http://intel-pcm-api-documentation.github.io/annotated.html

Intel PCM – Technical Report 8/15

Intel PCM from the command line

In this section we use Intel PCM from a terminal in order to get some measurements:
energy, power, memory usage, bandwidth etc. while a given program is running.

All the Intel PCM program that we describe are used in this way:

intelProgram --external_program programToExecute <options for the program to
execute>

This command implies that the intelProgram will perform measurements as long as
programToExecute is running.

Reminder: all the commands are supposed to be run as root

Measuring energy

To measure energy consumption with Intel PCM, we use the pcm-power.x program as
follow
pcm-power.x --external-program programToExecute

For example with an MPI application
pcm-power.x --external-program mpirun --allow-run-as-root -n 32 ./cg.C.32

Pcm-power.x will produce this kind of output:

Time elapsed: 25757 ms
Called sleep function for 1000 ms
[...]
S0; Consumed energy units: 119574580; Consumed Joules: 1824.56; Watts: 70.84; Thermal
headroom below TjMax: 42
S0; Consumed DRAM energy units: 33159075; Consumed DRAM Joules: 505.97; DRAM Watts:
19.64
[...]
S1; Consumed energy units: 117557570; Consumed Joules: 1793.79; Watts: 69.64; Thermal
headroom below TjMax: 48
S1; Consumed DRAM energy units: 41041785; Consumed DRAM Joules: 626.25; DRAM Watts:
24.31

For each socket (S0, S1) we got measurements of the consumed Joules, and the related
power in Watts (Joules / s).
Pcm-power.x also outputs the energy consumption, for each socket, of the memory
controller.
This measurements DOES NOT include the energy consumed by the Quick Path
Interconnects, because our hardware setup is not compatible for such measurements.

Intel PCM – Technical Report 9/15

Monitoring Communications

Using pcm.numa.x we are able to have a view of the inter-socket communication scheme of
a given program.

To do so, we run a command that looks like this:
pcm-numa.x --external_program programToExecute

For example we ran MG over 32 cores:
pcm-numa.x --external_program mpirun --allow-run-as-root -n 32 ./mg.C.32

This gives an output that looks like this
Core | IPC | Instructions | Cycles | Local DRAM accesses | Remote DRAM Accesses
 0 0.00 22 G 18446462 T 222 M 26 M
 1 0.00 22 G 18446462 T 221 M 25 M
[...]
 30 0.00 23 G 18446462 T 219 M 27 M
 31 0.00 23 G 18446462 T 218 M 28 M

 * 0.00 728 G 18437737 T 7028 M 869 M

We can specifically look at the local and remote accesses, that are given in million of cache
lines.
The measurements are available both globally (whole computer) and by core (from 0 to
31).

Intel PCM – Technical Report 10/15

If we run MG over 16 cores we will get a different communication scheme:
pcm-numa.x --external_program mpirun --allow-run-as-root -n 16 ./mg.C.16

Time elapsed: 9666 ms
Core | IPC | Instructions | Cycles | Local DRAM accesses | Remote DRAM Accesses
 0 2.04 28 G 14 G 254 M 28 M
 1 2.02 40 G 19 G 354 M 38 M
 2 2.02 40 G 19 G 355 M 38 M
 3 2.06 34 G 16 G 298 M 33 M
 4 2.06 29 G 14 G 257 M 28 M
 5 2.06 24 G 11 G 213 M 23 M
 6 1.98 9500 M 4793 M 84 M 9593 K
 7 2.05 9486 M 4621 M 84 M 9323 K
 8 1.99 29 G 14 G 259 M 29 M
 9 2.02 40 G 20 G 353 M 39 M
 10 2.07 9817 M 4734 M 85 M 9487 K
 11 2.03 40 G 19 G 351 M 40 M
 12 0.33 51 M 155 M 332 K 485 K
 13 2.02 40 G 19 G 353 M 40 M
 14 0.90 35 M 39 M 267 K 28 K
 15 1.52 120 M 79 M 1025 K 56 K
 16 1.88 11 G 5955 M 100 M 11 M
 17 0.27 12 M 47 M 40 K 13 K
 18 0.64 42 M 66 M 72 K 42 K
 19 1.76 6148 M 3502 M 56 M 6465 K
 20 1.89 11 G 5844 M 98 M 11 M
 21 1.93 15 G 8240 M 141 M 15 M
 22 2.00 30 G 15 G 270 M 30 M
 23 2.00 30 G 15 G 270 M 30 M
 24 2.06 10 G 5252 M 93 M 10 M
 25 0.74 64 M 87 M 59 K 90 K
 26 2.01 30 G 15 G 267 M 30 M
 27 0.38 3942 K 10 M 10 K 6369
 28 2.02 40 G 19 G 353 M 40 M
 29 0.44 32 M 73 M 85 K 155 K
 30 2.02 40 G 19 G 351 M 40 M
 31 2.02 40 G 20 G 350 M 40 M

* 2.01 645 G 320 G 5661 M 638 M

In the output above, the 32 cores are still monitored, because Intel PCM does not take in
account the fact that we required only 16 cores in the mpi command.

Intel PCM – Technical Report 11/15

Tracking memory traffic

Using pcm.x we are able to have a view on what happens at different memory and cache
levels when running a given program.

To do so, we run a command that looks like this:
pcm.x --external_program programToExecute

We used this command to illustrate the use of pcm.x
pcm.x --external_program mpirun --allow-run-as-root --cpu-set 0-15 -bind-to core -n
16 ./mg.C.16

We obtain this output:
 Core (SKT) | EXEC | IPC | FREQ || L3MISS | L2MISS | L3HIT | L2HIT ||| READ | WRITE | TEMP

 0 0 1.84 2.06 0.89 39 M 46 M 0.16 0.39 N/A N/A 48
 1 0 1.58 2.06 0.77 34 M 40 M 0.15 0.39 N/A N/A 50
[...]
 30 1 2.08 2.02 1.03 48 M 56 M 0.14 0.37 N/A N/A 57
 31 1 2.08 2.00 1.04 48 M 57 M 0.15 0.36 N/A N/A 51

 SKT 0 1.04 2.01 0.52 392 M 456 M 0.14 0.37 178.29 68.94 46
 SKT 1 1.04 2.01 0.52 391 M 454 M 0.14 0.36 178.35 69.42 50

 TOTAL * 1.04 2.01 0.52 784 M 911 M 0.14 0.36 356.65 138.36 N

For memory traffic the values to consider are the collumns “READ” and “WRITE”.

In our case, to run MG in MPI over 16 cores 356GB of data were read from memory and
138GB were written to memory in total.

These values are also available by socket: SKT 0 and SKT 1.

Intel PCM – Technical Report 12/15

Tracking memory bandwidth

By using pcm.memory.x it is possible to have a view of the bandwidth usage during the
execution of a given program.

To do so, we run a command that looks like this:
pcm-memory.x --external_program programToExecute

We used this command to illustrate the use of pcm-memory.x:
pcm-memory.x --external_program mpirun --allow-run-as-root --cpu-set 0-15 -bind-to core
-n 16 ./mg.C.16

---------------------------------------||---------------------------------------
-- Socket 0 --||-- Socket 1 --
---------------------------------------||---------------------------------------
---------------------------------------||---------------------------------------
---------------------------------------||---------------------------------------
-- Memory Performance Monitoring --||-- Memory Performance Monitoring --
---------------------------------------||---------------------------------------
-- Mem Ch 0: Reads (MB/s): 4953.48 --||-- Mem Ch 0: Reads (MB/s): 4944.73 --
-- Writes(MB/s): 1916.74 --||-- Writes(MB/s): 1914.39 --
-- Mem Ch 1: Reads (MB/s): 4950.63 --||-- Mem Ch 1: Reads (MB/s): 4936.47 --
-- Writes(MB/s): 1915.93 --||-- Writes(MB/s): 1907.49 --
-- Mem Ch 2: Reads (MB/s): 4952.48 --||-- Mem Ch 2: Reads (MB/s): 4932.35 --
-- Writes(MB/s): 1921.75 --||-- Writes(MB/s): 1907.39 --
-- Mem Ch 3: Reads (MB/s): 4949.20 --||-- Mem Ch 3: Reads (MB/s): 4934.67 --
-- Writes(MB/s): 1915.87 --||-- Writes(MB/s): 1907.20 --
-- NODE0 Mem Read (MB/s): 19805.79 --||-- NODE1 Mem Read (MB/s): 19748.21 --
-- NODE0 Mem Write (MB/s): 7670.29 --||-- NODE1 Mem Write (MB/s): 7636.47 --
-- NODE0 P. Write (T/s) : 180188 --||-- NODE1 P. Write (T/s): 180380 --
-- NODE0 Memory (MB/s): 27476.08 --||-- NODE1 Memory (MB/s): 27384.69 --
---------------------------------------||---------------------------------------
-- System Read Throughput(MB/s): 39554.01 --
-- System Write Throughput(MB/s): 15306.76 --
-- System Memory Throughput(MB/s): 54860.77 --
---------------------------------------||---------------------------------------

In this example we have access to the read and write performance for each memory

channel for socket 0 and socket 1.

Global values are also given at the bottom of the generated table.

Intel PCM – Technical Report 13/15

Turbostat: another way to measure energy consumption

How to install

Turbostat is a stand linux tools, it does not require any specific installation on most of the

systems as long as you have this packages installed:

• linux-tools-common

• linux-tools-generic

• linux-cloud-tools-common

Turbostat

How to use

Turbostat is simple to use, it can be run with a command line that looks like this:
turbostat programToExecute <options for programToExecute>

We used this command to illustrate the use of turbostat:
turbostat mpirun --allow-run-as-root --cpu-set 0-15 -bind-to core -n 16
./mg.C.16

This produces this output
pk cor CPU %c0 GHz Pkg_W Cor_W RAM_W PKG_% RAM_%
 48.43 2.39 145.90 109.03 48.17 0.00 0.00
 0 0 0 71.90 2.40 73.50 55.13 21.04 0.00 0.00
 1 0 0 71.90 2.40 72.40 53.90 27.13 0.00 0.00

Values are given per socket and the first line is for global values (socket 0+socket 1).

Cor_W is the power consumption of the core itself, Pkg_W includes the Cor_W plus
their dedicated caches, and the “uncore”, including their shared caches and the
communication network between them, the PCI IO sub-system, and the memory controller.

Intel PCM – Technical Report 14/15

Bibliography

UPC NAS Benchmarks
https://threads.hpcl.gwu.edu/sites/npb-upc

NAS Benchmarks
http://www.nas.nasa.gov/publications/npb.html

Intel PCM API
http://intel-pcm-api-documentation.github.io/annotated.html
https://software.intel.com/en-us/articles/intel-performance-counter-monitor

Intel PCM Download

https://software.intel.com/en-us/articles/intel-performance-counter-monitor

https://software.intel.com/protected-download/328018/326559

UPC Compiler

http://upc.lbl.gov/

Intel PCM – Technical Report 15/15

