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Abstract—In this paper we propose an adaptive kernel
regularization algorithm for blood glucose reading from subcu-
taneous electric current. We illustrate the proposed algorithm
with clinical data and quantify its clinical accuracy by means
of the Clarke error grid analysis (EGA) and by the number
of detected hypoglycemic events. We show that the proposed
algorithm provides more accurate blood glucose reading than
a commercially available system.

I. INTRODUCTION
Diabetes mellitus is a common and serious disease in

which blood glucose levels abnormally fluctuate. Moreover,
diabetes is a prime risk factor for heart disease, kidney
failure, eye problems, brain damage, coma and diabetic
hyperosmolar syndrome. It has been shown in the Diabetes
Controls and Complication Trial (DCCT) [1] that there are
several advantages if diabetes patients control blood glucose
levels at close to normal values. Moreover, bolus calculators,
which are extensively used in diabetes management, also rely
on the knowledge of current blood glucose level [2]. Hence,
in order to control blood glucose evolution within the normal
range, it is important to know the current blood glucose level.

Minimal-invasive continuous glucose monitoring (CGM)
systems are developed to provide estimated blood glucose
values almost in real-time in replacement of painful finger
sticks measurements. Some of the approved and commer-
cially available CGM sensors are Medtronic’s Minimed
device, DexCom and Abbott Freestyle Navigator. The needle
based electrochemical sensors, for example Abbott Freestyle
Navigator, measure electrical signal (ADC counts) in the
interstitial fluid (ISF) and return estimated current blood
glucose concentration (mg/dL) exploiting some internal cal-
ibration procedure.

At the same time, it is known [3] that the equilibration
between blood and ISF glucose is not instantaneous. There-
fore, sometimes CGM systems provide a distorted estimated
blood glucose level.

In [3] it has been shown how such a distortion can
be compensated through the use of a mathematical model
of blood-interstitium kinetics. Within this model a blood
glucose concentration can be recovered from ISF glucose
level provided that the latter one was accurately determined

V. Naumova, S. V. Pereverzyev and S. Sampath, Johann
Radon Institute for Computational and Applied Mathematics
(RICAM), Austrian Academy of Sciences, Altenbergerstrasse 69,
A-4040 Linz, Austria valeriya.naumova@oeaw.ac.at,
sergei.pereverzyev@oeaw.ac.at,
sivananthan.sampath@oeaw.ac.at

from subcutaneous electric current measurements by means
of a calibration procedure.

The results of [3] show that in this approach the role
of calibration is really crucial. In particular, these results
suggest that further improvements of blood glucose recon-
struction require more sophisticated procedures than the
standard calibration by which ISF glucose is determined in
CGM systems, such as Abbott Freestyle Navigator.

In this paper we propose to develop such a procedure on
the base of regularization in variable Reproducing Kernel
Hilbert Spaces (RKHSs).
The problem can be stated as follows: we are given a
sample set z = {(xi, yi)}ni=1, where xi denotes electric
current in ISF (ADC counts), and yi denotes blood glucose
concentration (mg/dL) measured at the same time. The goal
is to find a function f that minimizes the given data error,
for example,

f := argmin
g∈H

1

|z|

|z|∑

i=1

(yi − g(xi))
2, (1)

where |z| is the cardinality of the set z, i.e. |z| = n, and H
is some class of functions. However, in practice we do not
know the class H, and also the given measurements are not
exact.

Most of the calibration procedures assume that the relation
between blood and ISF glucose levels is linear. In such a
case, H can be chosen as the space of linear polynomials
[4]. But we do know that such a model is too simplistic [3].

At the same time, if we choose H to be too large then
the function f in (1) will interpolate the given noisy data,
and we end up in overfitting. Therefore, one has to trade-off
between the data fitting and the complexity of the data fitter.
This problem can be solved by using the following Tikhonov-
type functional with H to be an RKHS HK , defined by a
positive definite function K ,

TK,λ,z(f) =
1

|z|

|z|∑

i=1

(yi − f(xi))
2 + λ||f ||2K , (2)

where ||f ||2K is the norm in HK , and λ is a regularization
parameter [5]. Then the blood glucose estimator f = f λ

K,z
can be given by

fλ
K,z := arg min

f∈HK

TK,λ,z(f). (3)

Use of the Tikhonov regularization scheme (2), (3) raises two
issues to be concerned about. One of them is how to choose
a regularization parameter λ in (3). For a fixed kernel K , the
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choice of the regularization parameter λ has been extensively
studied [6], [7], [8].

Another issue is how to choose the regularization space
HK or, that is the same thing, as the choice of the kernel K
generating this space. Despite of its importance, this issue
has begun to be discussed only recently (see for example,
[8], [9], [10], [11]).

In the present paper we partly use the theoretical results
of [11], where these two issues have been addressed in
the context of the function reconstruction from a given
data set, in particular, for blood glucose reading. However,
here we concentrate our attention more on the problem of
improvement of the blood glucose estimation from subcu-
taneous electric current. The main novelty of this paper
is a new criterion for the kernel choice, which is oriented
towards more accurate blood glucose reading in dangerous
glycemic ranges (see, for example, Fig. 1). In experiments
with clinical data a blood glucose reader based on this
criterion outperforms a commercially available CGM-device
(Abbott Freestyle Navigator) that uses the same electric
current measurements (see Tables I and III). A surprising
by-product is that the proposed criterion leads to a patient
independent kernel choice, at least for available clinical data.

The paper is organized as follows. In section 2, we
discuss a theoretical background for regularization in variable
RKHSs. In section 3, we adjust the approach of [11] to the
blood glucose reading by introducing a new form of the
minimization functional. Further, we illustrate the proposed
algorithm with clinical data and discuss its clinical accuracy.

II. REGULARIZATION IN VARIABLE REPRODUCING
KERNEL HILBERT SPACES

Let X be a subset of R. A function K : X × X → R
is called a kernel if for all finite subsets x := {xj : j =
1, . . . , n, n ∈ N} ⊂ X the matrix K[x] := [K(xi, xj)]ni,j=1

is symmetric and positive definite.
A Hilbert space H of real valued functions on X with an

inner product 〈·, ·〉 is called a Reproducing Kernel Hilbert
Space if for any x ∈ X the functional Fx defined as

Fx(f) = f(x)

is bounded. As a consequence of the Riesz representation
theorem, there exists a unique kernel K(x, u) on X , called
a reproducing kernel of H, which has the following repro-
ducing property

f(x) = 〈f,K(x, ·)〉, ∀ f ∈ H. (4)

Conversely, if K is a kernel on X then there exists a unique
RKHS H such that K(x, ·) ∈ H, ∀x ∈ H, and it has the
reproducing property (4) [12]. Therefore, there is one-to-one
correspondence between the set of kernels and the set of
RKHSs. Thus, determining the RKHS H = HK is equivalent
to determining the corresponding kernel K .

For a given data z = {(xi, yi)}ni=1 ⊂ X × R, consider
the minimization problem (3). Then from the Representer

theorem [5] the function f λ
K,z can be explicitly written as

fλ
K,z(x) =

|z|∑

i=1

cλi K(xi, x), (5)

where the vector of coefficients c = (cλi )
|z|
i=1 satisfies

c = (K[x]+λ|z|I)−1y, here I is the identity matrix of order
|z| and y = (yi)

|z|
i=1.

Regularization in an RKHS has a number of attractive
features, including the effective error bounds and stability
analysis relative to perturbations of the data. For further
detailed information, please refer to [13], [14], [15].

From equation (5), it is clear that if one provides an appro-
priate kernel K and a regularization parameter λ for a given
data z then one can compute the regularized approximant
fλ
K,z. In the following subsections, we discuss a choice of

the regularization parameter λ and the kernel K .

A. A posteriori regularization parameter choice

Suppose a kernel K is fixed, then an appropriate choice
of the regularization parameter λ is important to get a good
performance of (3). For example, one can use a data-driven
method for choosing the regularization parameter called the
quasi-balancing principle [8]. This heuristic principle can be
seen as a combination of the balancing-principle [8] and the
quasi-optimality criterion [6]. In [8] and [16] it has been
shown that the balancing-principle and the quasi-optimality
criterion may potentially give an accuracy of optimal order
for a given kernel K .

To apply the quasi-balancing principle [8] one needs to
calculate the approximations f λ

K,z given by (5) for λ from a
finite geometric sequence

Λν
q = {λs = λ0q

s, s = 0, 1, 2, . . . , ν}, q > 1. (6)

Then one needs to calculate the norms

σ2
emp(s) = ||fλs

K,z − fλs−1

K,z ||2
{xi}|z|

i=1

(7)

:=
1

|z|

|z|∑

i=1




|z|∑

j=1

(cλs
j − cλs−1

j )K(xi, xj)




2

,

σ2
HK

(s) = ||fλs
K,z − fλs−1

K,z ||2K . (8)

and find

λemp = λh, h = argmin{σ2
emp(s), s = 1, 2, . . . , ν},

λHK = λp, p = argmin{σ2
HK

(s), s = 1, 2, . . . , ν}.

Finally, in accordance with the quasi-balancing principle a
value of the regularization parameter λ = λ+ ∈ Λν

q is given
as

λ+ = min{λemp,λHK}. (9)

As it can be easily seen, the choice of the regularization
parameter is fully governed by the kernel and input data.
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B. Extrapolation-oriented choice of the kernel
A choice of the kernel depends on the intended use

of fλ
K,z. This choice can make a significant difference in

practice. Thus, it is important to have a criterion to choose
a suitable kernel for a given problem.

Ideally, the kernel should be ‘learned’ from the data. The
simplest way of doing this is to take a rich parameterized set
of kernels and choose the values of the parameters by some
prescribed criteria.

In [9] and [17] the authors considered the set K of
linear combinations of some prescribed kernels {K i}li=1 and
proposed various criteria how to select the kernel from the
set K. However, for some practical applications such a set
of admissible kernels may not be rich enough.

In [10] the authors proposed to choose a kernel K by
minimizing the value TK,λ,z(fλ

K,z) over a set of admissible
kernels K.

In the recent paper [11], it has been demonstrated that
the method of [10] may not be suitable for extrapolation
problem. Therefore, as an alternative, the kernel adaptive
regularization (KAR) algorithm has been proposed in [11].
It is oriented towards extrapolation and based on splitting
of available data z. In general form it can be described as
follows.

The given data set z = {(xi, yi)}|z|i=1 is splitted as z =
zT ∪ zP such that

co{xi : (xi, yi) ∈ zT } ∩ {xi : (xi, yi) ∈ zP } = ∅,

where co{xi} is the closed convex hull of data points {xi}.
Then for the fixed zT and corresponding Tikhonov-type

regularization functional

TK,λ,zT (f) =
1

|zT |
∑

(xi,yi)∈zT

(yi − f(xi))
2 + λ‖f‖2K , (10)

one considers a rule λ = λ(K) that for any kernel K on X
selects a regularization parameter from some fixed interval
[λmin,λmax], λmin > 0. Using the set zT , one constructs
the regularized approximant

fλ
K,zT = argminTK,λ,zT (f), λ = λ(K),

and measures its extrapolation performance on the set zP by
the value of the functional P (f λ

K,zT
, zP ), where

P (f, zP ) =
1

|zP |
∑

(xi,yi)∈zP

ρ(f(xi), yi), (11)

and ρ(·, ·) is a continuous non-negative function of two
variables. Then the kernel K is chosen as the minimizer
of the following functional

Qµ(K,λ, z) = µTK,λ,zT (f
λ
K,zT ) + (1 − µ)(P (fλ

K,zT , zP ))
(12)

over the set of admissible kernels K, for example,

K = {K(x, u) = (xu)α + βe−γ(x−u)2,α,β, γ ∈ [10−4, 3]}.
(13)

Note that the parameter µ ∈ [0, 1] in (12) can be seen as a
performance regulator on the sets zT and zP . Taking µ closer

to zero we put more emphasize on the ability to extrapolate,
while for µ > 1

2 we are more interested in interpolation.
It has been shown in [11] that the existence of a kernel of

choice can be guaranteed for a rather general form of set K.
Theorem 2.1: Let K(X) be the set of all kernels defined

on X , Ω be a compact metric space, and G : Ω → K(X)
be a continuous map in the sense that for any x, u ∈ X the
function w -→ Kw(x, u) ∈ R is continuous on Ω, where for
w ∈ Ω the kernel Kw ∈ K(X) is given as Kw = G(w).
Define

K = K(Ω, G) = {K : K = G(w),K ∈ K(X), w ∈ Ω}

to be the set of kernels parameterized via G by elements of
Ω.
Then for any parameter choice rule λ = λ(K) there are
K0 ∈ K(Ω, G) and λ0 ∈ [λmin,λmax] such that

Qµ(K
0,λ0, z) = inf{Qµ(K,λ(K), z),K ∈ K(Ω, G)}.

The proof of the Theorem can be found in [11].
Since the problem of the blood glucose reading can be

seen as a particular example of extrapolation, we use the
approach of [11] to choose a kernel from the set (13) and
then use it for constructing a blood glucose reader.

III. READING BLOOD GLUCOSE FROM SUBCUTANEOUS
ELECTRIC CURRENT

The possibility to use the Theorem 2.1 in the context
of the blood glucose reading has been already discussed
in [11]. In that paper the form of the functional (11) has
been inspired by the notion of the risk function r(·), that
has been introduced similar to [18]. In terms of this function
the functional (11) has been written in [11] as follows

P (f, zP ) =
1

|zP |
∑

(xi,yi)∈zP

|yi − f(xi))|w(yi, f(xi)), (14)

where w(u, v) = |r(u)−r(v)|
r(v) + 1. In the experiments with

clinical data it has turned out that a kernel, that was found
as the minimizer of (12), (14) for data z of one patient, does
not allow a clinically acceptable blood glucose reading for
another one’s. It means that for each patient the kernel choice
procedure based on the minimization of the functionals (12),
(14) should be repeated. This may be seen as a disadvantage.
Here we propose another form of the functional (11) that not
only leads to more accurate blood glucose reading, but also,
as a by-product, allows a patient independent kernel choice.
Define

P (f, zP ) =
1

|zP |
∑

(xi,yi)∈zP

|yi − f(xi)|A,ε, (15)

where the quantity |yi − f(xi)|A,ε is aimed at penalizing
the overestimation of low glucose levels, as well as the
underestimation of high ones. It is set out as follows:
Case-1 if yi < 70 (mg/dL) and for sufficiently small ε,
say ε = 5 (mg/dL), we have yi + ε < f(xi), then we put
|yi − f(xi)|A,ε = A, where A is large enough.
Case-2 if f(xi) ≤ yi < 70 (mg/dL) then |yi − f(xi)|A,ε =
yi − f(xi).
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Case-3 in the range of euglycemia, when 70 ≤ y i ≤ 180
(mg/dL), we put |yi − f(xi)|A,ε = |yi − f(xi)|.
Case-4 if yi > 180 (mg/dL) and yi − ε > f(xi), we put
|yi − f(xi)|A,ε = A.
Case-5 if 180 < yi ≤ f(xi) (mg/dL) then |yi − f(xi)|A,ε =
f(xi)− yi.
Otherwise, we define the penalizing quantity |y i− f(xi)|A,ε

by linear interpolation between 0 and A to make it contin-
uously depending on (yi − f(xi)), since such continuity is
necessary for the application of the Theorem 2.1.

Let us summarize the proposed approach. To select a
kernel K0 from a given class K = K(Ω, G) one needs a
training data set z = {(xi, yi)}ni=1 consisting of values of
the subcutaneous electric current xi and values of the blood
glucose concentration yi measured at the same moments
of time. This training set z is splitted into two parts zT

and zP . The first one is used for constructing regularized
blood glucose readers f λ

K,zT
as the minimizers of (10) for

K ∈ K(Ω, G) and λ = λ(K). The performance of these
readers is measured on the second data set zP by the values
of the functional (15). In accordance with the Theorem 2.1,
there exist a kernel K0 ∈ K(Ω, G) and λ = λ0 that optimize
the weighted performance in the sense of (12), (15). Then
K0 is the kernel of our choice, and for any current value x

the regularized blood glucose reading is given as f λ(K0)
K0,z (x).

In our experiments the role of K(Ω, G) is played by the
set (13), and for each K ∈ K(Ω, G) the value λ = λ(K)
is chosen in accordance with the quasi-balancing principle
(6)–(9).

To illustrate this approach we use data sets of nine dia-
betic subjects studied in the Montpellier University Hospital
Center (CHU, France) and in the Department of Clinical and
Experimental Medicine at the University of Padova (UNIPD,
Italy) within the framework of EU-project “DIAdvisor” [19].

For each subject blood glucose concentration and subcu-
taneous electric current were measured in parallel for 3 days
in hospital conditions. The blood glucose concentration was
measured at least 30 times per day by the HemoCue glucose
meter. Blood samples were collected every hour during a day,
every 2 hours during a night, every 15 minutes after meals
for 2 hours. Specific sampling schedule was adopted after
breakfast: 30 minutes before mealtime, 10, 20, 30, 60, 90,
120, 150, 180, 240, 300 minutes after. Subcutaneous electric
current was measured every 1 minute by the same needle
based sensor that is used in the Abbott Freestyle Navigator.

For each subject the values of the blood glucose concen-
tration and subcutaneous electric current measured at the
same time during the first day were used as a training data
z = {(xi, yi)}30i=1. Here xi ∈ [1, 1024] are the current values
(ADC counts), while yi ∈ [0, 450] are corresponding values
of the blood glucose concentration (mg/dL).

The training set z corresponding to the subject CHU102
was used for choosing the kernel K 0 from the set (13).
For this purpose, the set z was sorted in increasing order
of xi and then splitted into two parts, namely zP =
{(xi, yi)}, |zP | = 4, is formed by two first and two last
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Fig. 1. A graph plot of blood glucose reading from subcutaneous electric
current for Subject ID – UNIPD203: The solid line is formed by blood
glucose estimations produced by the regularized blood glucose reader.
The estimations given with 10 minutes frequency by the Abbott Freestyle
Navigator are plotted on the dashed line. The plus points correspond to
blood glucose measurements made by HemoCue meter (references).

elements from the ordered set z; zT = z\zP . Then the kernel

K0(x, u) = (xu)0.89 + 0.5e−0.0003(x−u)2 (16)

was chosen as an approximate minimizer of the functional
(12), (15) with µ = 0.5, and λ = λ(K) is given by the
quasi-balancing principle (6)–(9) with λ0 = 10−4, q = 1.01.
The approximate minimizer was found by minimizing the
functional Qµ(K,λ(K), z) of the form (12), (15) on the set
(13). The minimization has been performed by full search
over the grid of parameters αi = 10−4i,βj = 10−4j, γl =
10−4l, i, j, l = 1, 2, . . . , 3 · 104. Of course, the application
of the full search method in finding the minimum of (12),
(15) is computationally intensive, but in the present context
it can be performed off-line.
For all nine subjects this kernel K 0 was used to construct a
regularized estimators (5) that, starting from a raw electric
signal x ∈ [1, 1024], return a blood glucose concentration
y = fλ(K0)

K0,z (x), where z = {(xi, yi)}30i=1 are subject’s data
collected during the first day, and λ(K 0) was chosen from
(6) in accordance with the quasi-balancing principle (9) for
the kernel K0.

A. Assessment of the blood glucose reading using Clarke
EGA

To quantify the clinical accuracy of constructed regular-
ized blood glucose estimators we use the original Clarke
EGA, which is accepted as one of the “gold standards” for
determining the accuracy of blood glucose meters [20]. Note
that another accuracy assessment metric that was originally
developed to quantify the clinical accuracy of CGM systems
is the continuous glucose-error grid analysis (CG-EGA) [21].
But to make use of the CG-EGA, the real blood glucose
measurements must be sampled every 10–15 minutes or even
more frequently (see [21], [22]). Keeping in mind that we
operate only with restricted amount of real blood glucose
measurements, in the present context we cannot use the CG-
EGA as an assessment metric.
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Fig. 3. Clarke EGA for Regularized estimator

In accordance with EGA methodology, for each of the
nine subjects the available blood glucose values obtained
by the HemoCue meter have been compared with the es-
timates of the blood glucose y = f λ(K0)

K0,z (x). Here x is
a subcutaneous electric current value at the moment when
corresponding HemoCue measurement was executed. Since
HemoCue measurements made during the first day have been
used for constructing regularized estimators only the data
from another 2 days (at least 60 HemoCue measurements)
have been used as references in the Clarke’s analysis.

In this analysis each pair (reference value, estimated value)
identifies a point in the Cartesian plane, where the positive
quadrant is subdivided into five zones, A to E, of varying
degrees of accuracy and inaccuracy of glucose estimations
(see Fig. 2, for example). Points in zones A and B represent
accurate or acceptable glucose estimations. Points in zone C
may prompt unnecessary corrections that could lead to a poor
outcome. Points in zones D and E represents a dangerous
failure to detect and treat. In short, the more points that
appear in zones A and B, the more accurate the estimator is
in terms of clinical utility.

Subject A B C D E
CHU102 86.42 13.58 − − −
CHU105 87.5 11.25 − 1.25 −
CHU111 88.46 10.26 − 1.28 −
CHU115 92.21 7.79 − − −
CHU116 92.11 7.89 − − −
CHU119 89.87 10.13 − − −
CHU128 87.76 12.24 − − −

UNIPD202 81.08 17.57 − 1.35 −
UNIPD203 93.33 6.67 − − −
Average 88.75 10.82 − 0.43 −

TABLE I
PERCENTAGE OF POINTS IN EGA-ZONES FOR ESTIMATORS BASED ON

THE KERNEL (16)

A representative Clarke error grid (subject UNIPD203) for
the proposed regularized blood glucose estimator is shown
in Fig. 3. For comparison, in Fig. 2 the results of the EGA
for blood glucose estimations determined from the internal
readings of the Abbott Freestyle Navigator, calibrated ac-
cording to the manufacturer’s instruction, are presented for
the same subject and reference values. Comparison shows
that regularized estimator is more accurate, especially in case
of low blood glucose. It can be also seen from the Fig. 1.

The results of the EGA for all subjects are summarized in
Table I (regularized estimator) and Table II (Abbott Freestyle
Navigator). From the D-columns in these tables one may
conclude that the regularized estimator is, on average, at
least 4 times more accurate than the considered commercial
system.

To make the presented results even more transparent, let
us closely look at the blood glucose reading in case of
low blood glucose for which errors may have important
clinical implications for patient health and safety. From
Table III one can see that the Abbott Freestyle Navigator
failed in detection of 66.7% of hypoglycemic events, whereas
regularized estimator detected 75% of such events accurately.

From the comparison of these tables it is clear that in the
considered clinical trial the proposed blood glucose estima-
tors outperform the commercially available CGM systems
that use the same input information. Moreover, in Table
IV we also present the results of the EGA for the blood
glucose estimator constructed with the use of the kernel
(16) and the training set of only one subject CHU102.
The exhibited performance was demonstrated in a 3-day
test without any calibration to other subjects. Nevertheless,
the clinical accuracy of the estimator is still acceptable,
compared to required 94% in A+B-zone and 60% in A-
zone [23]. This result demonstrates the potential portability
of a regularized estimator from patient to patient with no
calibration.

In Table II one may observe a poor performance of the
commercial CGM system in the case of subject CHU128,
which is the only one type 2 diabetic patient in the considered
group. At the same time, as it can be seen from Table I, the
regularized estimator performs well for this patient that may
be seen as a robustness to a diabetes type.
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Subject A B C D E
CHU102 93.83 6.17 − − −
CHU105 92.5 5 − 2.5 −
CHU111 85.9 12.82 − 1.28 −
CHU115 94.81 5.19 − − −
CHU116 86.84 10.53 − 2.63 −
CHU119 83.54 16.46 − − −
CHU128 48.98 44.9 − 6.12 −

UNIPD202 89.19 8.11 − 2.7 −
UNIPD203 76 21.33 − 2.67 −
Average 83.51 14.5 − 1.99 −

TABLE II
PERCENTAGE OF POINTS IN EGA-ZONES FOR ABBOTT FREESTYLE

NAVIGATOR

Accurate Erroneous
Abbott Freestyle

Navigator 4 8
Regularized

estimator 9 3

TABLE III
QUANTIFICATION OF BLOOD GLUCOSE READINGS IN HYPO ZONE FOR

ALL SUBJECTS IN TOTAL (12 HYPOGLYCEMIC EVENTS)

IV. CONCLUSION

These results allow a conclusion that on average the
proposed approach for reading blood glucose levels from
subcutaneous electric current is more accurate than esti-
mations given by the Abbott Freestyle Navigator on the
basis of the standard calibration procedure. The proposed
approach can be seen as an answer to the request [3] for
“more sophisticated calibration procedure.” We would like to
stress that no recalibrations of regularized glucose estimators
have been made during the assessment period. At the same
time, recalibrations of the Abbott Freestyle Navigator should
sometimes be made several times per day. Moreover, the
proposed algorithm can provide the estimated glucose at any
requested time unlike the existing CGM sensors which have

Subject A B C D E
CHU102 84.55 15.45 − − −
CHU105 52.72 45.45 − 1.82 −
CHU111 77.78 22.22 − − −
CHU115 39.25 60.75 − − −
CHU116 60.29 38.24 − 1.47 −
CHU119 85.32 14.68 − − −
CHU128 45.57 54.43 − − −

UNIPD202 86.54 13.46 − − −
UNIPD203 37.38 57.94 1.87 2.81 −
Average 63.27 35.85 0.21 0.68 −

TABLE IV
PERCENTAGE OF POINTS IN EGA-ZONES FOR THE ESTIMATOR

CONSTRUCTED WITH THE USE OF THE KERNEL (16) AND THE TRAINING

SET OF ONLY ONE SUBJECT CHU102. THE EXHIBITED PERFORMANCE

WAS DEMONSTRATED IN A 3-DAY TEST WITHOUT ANY CALIBRATION TO

OTHER SUBJECTS

fixed sampling frequency.
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