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a b s t r a c t

In this paper we present a new scheme of a kernel-based regularization learning algorithm, in which the
kernel and the regularization parameter are adaptively chosen on the base of previous experience with
similar learning tasks. The construction of such a scheme is motivated by the problem of prediction of
the blood glucose levels of diabetic patients. We describe how the proposed scheme can be used for this
problem and report the results of the tests with real clinical data as well as comparing themwith existing
literature.
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1. Introduction

In this paper we present a meta-learning approach to choosing
the kernels and regularization parameters in regularized kernel-
based learning algorithms. The concept of meta-learning presup-
poses that the above-mentioned components of the algorithms are
selected on the base of previous experience with similar learn-
ing tasks. Therefore, selection rules developed in this way are
intrinsically problem-oriented. Moreover, meta-learning is very
much dependent on the quality of data extracted from previous
experience. In the literature (Gomes, Prudencio, Soares, Rossi, &
Carvalho, 2012) it is usually difficult obtaining good results since
such data (meta-examples, meta-features) are, in general, very
noisy. This gives a good reason for using regularization methods
(Engl, Hanke, & Neubauer, 1996) in meta-learning, because these
methods are aimed for treating noisy data. Despite the natural-
ness of this approach, the idea of a combination of meta-learning
and regularization seems to be new, and its implementation in the
form of the algorithm (14)–(17) below is one of the novelties of the
present study. In this paper we demonstrate the proposed meta-
learning approach on a problem from diabetes technology, but it
will be also seen how its main ingredients (e.g., Theorem 1) can be
exploited in other applications.
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The massive increase in the incidence of diabetes is now a
major global healthcare challenge, and the treatment of diabetes
is one of the most complicated therapies to manage, because of
the difficulty in predicting blood glucose (BG) levels of diabetic
patients.

Recent progress in diabetes technology is related to the so-
called Continuous Glucose Monitoring (CGM) systems which
provide, almost in real-time, an indirect estimation of current
blood glucose that is highly valuable for the insulin therapy
of diabetes (Klonoff, 2005). However, it would be much more
preferable to use CGM for predicting dangerous episodes of hypo-
and hyperglycemia, when BG-concentration goes outside the
normal range. At this point it should be noted that the definition
of the normal rangemay vary. For example, the American Diabetes
Association suggests to keep pre-meal blood glucose in range 70-
130 (mg/dL), while post-meal blood glucose is recommended to be
less than 180 (mg/dL).

In this paper the clinical accuracy of the blood glucose
prediction is measured in terms of the metrics (Clarke, Cox,
Gonder-Frederick, Carter, & Pohl, 1987; Sivananthan et al., 2011)
originated from the Clarke Error Grid Analysis, which is accepted as
one of the ‘‘gold standards’’ for determining the accuracy of blood
glucose meters. Since in this analysis the normal blood glucose
range (euglycemia) is defined as 70–180 (mg/dL), we will follow
this definition throughout the paper.

In its simplest form, diabetes therapy is based on rules that
are used to estimate the necessary amount of insulin injection to
prevent hyperglycemia or possibly of additional snacks to prevent
hypoglycemia. Keeping inmind (Snetselaar, 2009) that the onset of
insulin occurs within 10–30 min, and the onset of meal responses
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on glucose levels occurs approximately within 5–10 min, it is
important to know future BG-level at least 10–30 min ahead of
time.

On the other hand, it should be noted that CGM technologies
report interstitial glucose (IG) concentration, and a time lag of
approximately 10–15 min exists between real BG-concentrations
and IG-values obtained via CGM (Kovatchev, Shields, & Breton,
2009). Therefore, to mitigate effects of this time lag and increase
therapeutic benefit, a prediction of glucose with a prediction
horizon (PH) of 60–75 min is also of great interest, especially for
automation of glucose control (Pappada et al., 2011).

From the literature we know that nowadays there are mainly
two approaches to predict the future blood glucose based upon
patient’s current and past blood glucose values. One of them
uses the time-series methodology (Eren-Oruklu, Cinar, Quinn,
& Smith, 2009; Palerm & Bequette, 2007; Reifman, Rajaraman,
Gribok, & Ward, 2007; Sparacino, Zanderigo, Corazza, & Maran,
2007), while another one employs artificial neural networks
techniques (Pappada, Cameron, & Rosman, 2008; Pappada et al.,
2011; Perez-Gandia et al., 2010).

But time-series predictors seem to be too sensitive to gaps in the
data, which may frequently appear when available blood glucose
meters are used. As to neural networks predictors, they need long
training periods and much more information to be set up.

Therefore, in this paper we describe a novel approach that
is based on the idea of using regularized learning algorithms in
predicting blood glucose. These algorithms are well understood
now (Bauer, Pereverzev, & Rosasco, 2007; Cucker & Smale,
2002; De Vito & Caponnetto, 2007; Evgeniou, Pontil, & Poggio,
2000; Ku̇rková & Sanguineti, 2008), and it is known that
their performance essentially depends on the choice of the
regularization parameters and, which is even more important, on
the choice of the kernels generating Reproducing Kernel Hilbert
Spaces (RKHS), in which the regularization is performed (Chapelle,
Vapnik, Bousquet, & Mukherjee, 2002; De Vito, Pereverzyev, &
Rosasco, 2010; Micchelli & Pontil, 2005a; Naumova, Pereverzyev,
& Sivananthan, 2011a; Solo, 2005). As it was realized (Pereverzev
& Sivananthan, 2009), in the context of blood glucose prediction
these algorithmic instances cannot be a priori fixed, but need to be
adjusted to each particular prediction input.

Thus, a regularized learning based predictor should learn
how to learn kernels and regularization parameters from input.
Such a predictor is constructed as a result of a process of
learning to learn, or ‘‘meta-learning’’ (Schaul & Schmidhuber,
2010). In this way we have developed the Fully Adaptive
Regularized Learning (FARL) approach to the blood glucose
prediction. This approach is described in the patent application
(Pereverzyev, Sivananthan, Randløv, & McKennoch, 2011) filed
jointly by the Austrian Academy of Sciences and Novo Nordisk
A/S (Denmark). The developed approach allows the construction
of blood glucose predictors which, as it has been demonstrated
in the extensive clinical trials, outperform the state-of-the-art
algorithms. Moreover, it turns out that in the context of the blood
glucose prediction the FARL approach is more advanced than other
meta-learning technologies such as k-Nearest Neighbors (k-NN)
ranking (Soares, Brazdil, & Kuba, 2004).

To facilitate further discussion, this paper is structured into
4 additional sections. Section 2 explains the details of the
regularized learning approach to BG-prediction and indicates
its issues and concerns. Section 3 specifies the framework of
meta-learning for kernel-based regularized learning algorithms
and three different types of operations required for performing
meta-learning, in particular, how these operations are processed
within the proposed FARL approach. In Section 4 we present a
performance comparison of the FARL-based predictors with the
current state-of-the-art BG-prediction methods and k-NN meta-
learning. The paper concludes with Section 5 on current and future
developments.
2. A traditional learning theory approach: Issues and concerns

Throughout this paper we consider the problem of blood glu-
cose prediction. Mathematically this problem can be formulated
as follows. Assume that at the time moment t = t0 we are
givenm preceding estimates g0, g−1, g−2, . . . , g−m+1 of a patient’s
BG-concentration sampled correspondingly at the time moments
t0 > t−1 > t−2 > · · · > t−m+1 within the sampling horizon SH =

t0 − t−m+1. The goal is to construct a predictor that uses these past
measurements to predict BG-concentration as a function of time
g = g(t) for n subsequent future time moments {tj}nj=1 within the
prediction horizon PH = tn − t0 such that t0 < t1 < t2 < · · · < tn.

At this point, it is noteworthy to mention that CGM systems
provide estimations {gi} of BG-values every 5 or 10 min, such that
ti = t0 + i∆t, i = −1, −2, . . . , where ∆t = 5 (min) or ∆t = 10
(min). For mathematical details see Naumova et al. (2011a).

Thus, the promising concept in diabetes therapy management
is the prediction of the future BG-evolution using CGM data
(Sivananthan et al., 2011). The importance of such predictions
has been shown by several applications (Buckingham et al., 2010;
Palerm & Bequette, 2007).

From the above discussion, one can see that the CGM
technology allows us to form a training set z = {(xµ, yµ), µ =

1, 2, . . . ,M}, |z| = M , where

xµ = ((tµ
−m+1, g

µ

−m+1), . . . , (t
µ

0 , gµ

0 )) ∈ (R2
+
)m,

yµ = ((tµ1 , gµ

1 ), . . . , (tµn , gµ
n )) ∈ (R2

+
)n,

and tµ
−m+1 < tµ

−m+2 < · · · < tµ0 < tµ1 < · · · < tµn

(1)

are the moments at which patient’s BG-concentrations were
estimated byCGMsystemas gµ

−m+1, . . . , g
µ

0 , . . . , gµ
n .Moreover, for

any µ = 1, 2, . . . ,M the moments {tµj }
n
j=−m+1 can be chosen such

that tµ0 − tµ
−m+1 = SH, tµn − tµ0 = PH , where SH and PH are the

sampling and prediction horizons of interest respectively.
Given a training set it is rather natural to consider our problem

in the framework of supervised learning (Cucker & Smale, 2002;
Evgeniou et al., 2000; Ku̇rková & Sanguineti, 2008; Schölkopf &
Smola, 2002; Vapnik, 1998), where the available input–output
samples (xµ, yµ) are assumed to be drawn independently and
identically distributed (i.i.d.) according to an unknown probability
distribution. Originally, in Kovatchev and Clarke (2008) it is stated
that the consecutive CGM readings {gi} taken from the same
subject within a relatively short time are highly interdependent. At
the same time, CGM readings that are separated by more than 1 h
in time could be considered as (linearly) independent (Kovatchev&
Clarke, 2008). Therefore, using the supervised learning framework
we are forced to consider vector-valued input–output relations
xµ → yµ instead of scalar-valued ones tµi → gµ

i . Moreover, we
will assume that (tµi , gµ

i ), µ = 1, 2, . . . ,M , are sampled in such a
way that |tµi − tµ+1

i | > 1 (h).
In this setting, a set z is used to find (a vector-valued) function

fz : (R2
+
)m → (R2

+
)n such that for any new BG-observations

x = ((t−m+1, g−m+1), . . . , (t0, g0)) ∈ (R2
+
)m (2)

with t−m+1 < t−m+2 < · · · < t0, t0 − t−m+1 = SH , the value
fz(x) ∈ (R2

+
)n is a good prediction of the future BG-sample

y = ((t1, g1), . . . , (tn, gn)) ∈ (R2
+
)n, (3)

where t0 < t1 < · · · < tn, tn − t0 = PH.
Note that in such a vector-valued formulation the problem still

can be studied with the use of the standard scheme of supervised
learning (De Vito & Caponnetto, 2007; Micchelli & Pontil, 2005b),
where it is assumed that fz belongs to an RKHS HK generated by a
kernel K .
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Then fz = f λ
z ∈ HK is constructed as the minimizer of the

functional

1
|z|

|z|
µ=1

∥f (xµ) − yµ∥
2
(R2)n

+ λ∥f ∥2
HK

, (4)

where λ is a regularization parameter.
Recall De Vito and Caponnetto (2007) and Micchelli and Pontil

(2005b) that a Hilbert space H of vector-valued functions f : X →

(R2)n, X ⊂ (R2)m, is called an RKHS if for any x ∈ X the value f (x)
admits a representation f (x) = K ∗

x f , where K ∗
x : H → (R2)n is a

Hilbert–Schmidt operator, which is the adjoint of Kx : (R2)n → H .
Similar to the scalar case the inner product ⟨·, ·⟩ = ⟨·, ·⟩K can be
defined in terms of the kernel K(x, t) = K ∗

x Kt for every x, t ∈ X .
The standard scheme (4) raises two main issues that should

be clarified before its usage. One of them is how to choose a
regularization parameter λ and another one, which is even more
important, is how to choose the spaceHK , where the regularization
should be performed, or, which is the same thing, the kernel K that
generates this space. Several approaches to address these issues
have been proposed in the past few years (Chapelle et al., 2002;
De Vito et al., 2010; Lanckriet, Christianini, Ghaoui, Bartlett, &
Jordan, 2004; Micchelli & Pontil, 2005a; Rückert & Kramer, 2008;
Xu, Zhang, & Zhang, 2009).

All of them attempt to choose a kernel K ‘‘globally’’ for the
whole given training set z, but they do not account for particular
features of input xµ. As the result, if some new input–output pair
(xµ, yµ) is added to the training set z, then, in accordance with the
known approaches, a kernel selection procedure should be started
from scratch, which is rather costly. In essence, known techniques
(Chapelle et al., 2002; De Vito et al., 2010; Lanckriet et al., 2004;
Micchelli & Pontil, 2005a; Xu et al., 2009) do not learn how to select
a kernel K and a regularization parameter λ for each new input x
in question.

In the next section we introduce a meta-learning approach
which is free from the above-mentioned shortcoming and allows
us to adjust K and λ ‘‘locally’’ to each new input x on the basis of
the previous learning experience with the examples (xµ, yµ) from
a given training set z.

3. Meta-learning approach to choosing a kernel and a regular-
ization parameter

First of all, let us note that the choice of the regularization
parameter λ completely depends on the choice of the kernel. For
a fixed kernel K , there are a variety of strategies that can be
used to select a regularization parameter λ. Among them are the
discrepancy principle (Morozov, 1966, 1984; Phillips, 1962), the
balancing principle (De Vito et al., 2010; Lepskij, 1990), and the
heuristically motivated quasi-optimality criterion (Kindermann &
Neubauer, 2008; Tikhonov & Glasko, 1965). Thus, keeping in mind
this remark, we will think about λ as a functional of K , i.e. λ =

λ(K).

This observation motivates us to focus mainly on the choice of
the kernel K as it can make a significant difference in performance
(Brazdil, Giraud-Carrier, Soares, & Vilalta, 2009, Section 2.4).

As we already mentioned in the previous section, in most
of the known approaches (Chapelle et al., 2002; De Vito et al.,
2010; Lanckriet et al., 2004; Micchelli & Pontil, 2005a; Xu et al.,
2009) the chosen kernel K and the regularization parameter λ
are ‘‘reasonable’’, in some sense, for the whole training set z =

{(xµ, yµ)}, but they are not necessarily optimal for a particular pair
(xµ, yµ) ∈ z. In this section, as a way to overcome this drawback,
we describe our approach to the kernel choice problem, which is
based on the concept of meta-learning.
According to this approach, the meta-learning process can be
divided into three phases/operations.

In the first phase, which can be called optimization, the aim is
to find for each input–output pair (xµ, yµ), µ = 1, 2, . . . ,M , a
favorite kernel K = Kµ and a regularization parameter λ = λµ,
which in some sense optimize a prediction of yµ from xµ. This
operation can be cast as the set of M search problems, where for
each pair (xµ, yµ) we are searching over some set of admissible
kernels.

Note that in the usual learning setting a kernel is also sometimes
found as the solution of some optimization operation (Chapelle
et al., 2002; De Vito et al., 2010; Lanckriet et al., 2004; Micchelli &
Pontil, 2005a; Xu et al., 2009), but in contrast to our meta-learning
based approach, the problem is formulated for the whole training
set. As a result, such a kernel choice should be executed from
scratch each time when a new input–output pair (xµ, yµ) is added
to the training set. Moreover, as it was already mentioned several
times, the kernel chosen in this way is not necessarily optimal for
a particular input–output pair.

The second phase of ourmeta-learning based approach consists
in choosing and computing the so-called meta-features {uµ} of
inputs {xµ} from the training set. The design of adequate meta-
features should capture and represent the properties of an input xµ

that influence the choice of a favorite kernel Kµ used for predicting
yµ from xµ. This second phase of meta-learning is often driven by
heuristics (Brazdil et al., 2009, Section 3.3). In Soares et al. (2004)
the authors discuss a set of 14 possible input characteristics, which
can be used as meta-features. In our approach, we use one of
them, namely a two-dimensional vector uµ = (u(1)

µ , u(2)
µ ) of the

coefficients of ‘‘least squares regression line’’ g lin
= u(1)

µ t + u(2)
µ

that produces the ‘‘best linear fit’’ linking the components t =

(tµ
−m+1, t

µ

−m+2, . . . , t
µ

0 ) and g = (gµ

−m+1, g
µ

−m+2, . . . , g
µ

0 ), which
form the input xµ. Heuristic reasons for choosing such a meta-
feature will be given below.

Note that in the present context one may, in principle, choose
an input xµ itself as a meta-feature. But, as it will be seen below,
such a choice would essentially increase the dimensionality of
the optimization problem in the final phase of the meta-learning.
Moreover, since the inputs xµ are formed by potentially noisy
measurements (tµi , gµ

i ), the use of low dimensional meta-features
uµ = (u(1)

µ , u(2)
µ ) can be seen as a regularization (denoising) by

dimension reduction and as an overfitting prevention.
The final phase of the meta-learning consists of constructing

the so-called meta-choice rule that explains the relation between
the set of meta-features of inputs and the parameters of
favorite algorithms found in the first phase of the meta-learning
(optimization). This phase is sometimes called learning at the
meta-level. If above mentioned meta-choice rule is constructed,
then for any given input x the parameters of a favorite prediction
algorithm can be easily found by applying this rule to the meta-
feature u calculated for the input x in question.

Recall that in the present context, the first two phases of the
meta-learning result in the transformation of the original training
set z = {(xµ, yµ)} into new ones, where the meta-features uµ are
pairedwith the parameters of favorite kernelsKµ andλµ = λ(Kµ).

Then, in principle, any learning algorithm can be employed on
these new training sets to predict the parameters of the favorite
kernel K and λ = λ(K) for the input x in question. For example,
in Rückert and Kramer (2008) these parameters are predicted
by means of a least squares method that is performed in RKHS
generated by the so-called histogram kernel. Note that such an
approach can be used only for sufficiently simple sets of admissible
kernels K (only linear combinations of some a priori fixed kernels
are considered in Rückert and Kramer (2008)). Moreover, as it
has been also noted by the authors (Rückert & Kramer, 2008), in
general, the histogram kernel does not take into account specific
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Fig. 1. Meta-learning approach to choosing K and λ for the regularized kernel-
based prediction: optimization phase (a-arrows), meta-features choice (b-arrows),
learning at meta-level (c-arrows) and meta-choice of (K , λ) for prediction.

knowledge about the problem at hand. So, the approach (Rückert
& Kramer, 2008) can only loosely be considered as ameta-learning.

At the same time, one of the most popular algorithms for
learning at the meta-level is the so-called k-Nearest Neighbors
(k-NN) ranking (Brazdil et al., 2009; Soares et al., 2004). The
algorithm can be interpreted as a learning in the space of piecewise
constant functions.

One of the novelties of our approach is that a regularization
in RKHS is used not only in the first phase, but also in learning
at the meta-level. Of course, in this case the kernel choice issue
arises again, and it will be addressed in the same manner as in the
first phase. But, what is important, the corresponding optimization
needs to be performed only once and only with the transformed
training set (uµ, Kµ) from just one patient. This means that the
blood glucose predictor based on our approach can be transported
frompatient to patientwithout any additional re-adjustment. Such
a portability is desirable and will be demonstrated in experiments
with real clinical data. Moreover, it will be shown that the use of
k-NN ranking at themeta-level results in a blood glucose predictor,
which is outperformed by the predictor based on our approach.

In general, the meta-learning approach is schematically il-
lustrated in Fig. 1. The following subsections contain a detailed
description of all the operations needed to install and set ourmeta-
learning based predictor.

3.1. Optimization operation

The ultimate goal of the optimization operation is to select
such a kernel K and regularization parameter λ that allow us to
achieve a good performance for the given data. To describe the
choice of favorite K and λ for each input–output pair (xµ, yµ) ∈

(R2
+
)m × (R2

+
)n from the training set z we rephrase vector-valued

formalism in terms of ordinary scalar-valued functions similar to
how it was done in De Vito and Caponnetto (2007). Moreover, we
will describe the optimization operation in general terms, since, as
it has beenmentioned above, in our approach this operation should
be performed at the first and at the last phases ofmeta-learning. As
a result, a nature of training sets of input–output pairs involved in
the optimization process will be different at different phases.

Let input and output environments U and V be compact sets in
Rd and R respectively.

Let us also assume that we are given two sets of input–output
pairs W1,W2 ⊂ U × V governed by the same input–output
relation. The first set can be used for constructing regularized
approximations of the form

Fλ = Fλ(·; K ,W1) = argmin Tλ(f ; K ,W1), (5)

Tλ(f ; K ,W1) =
1

|W1|


(ui,vi)∈W1

|f (ui) − vi|
2
+ λ∥f ∥2

HK
, (6)
where K is a kernel defined on U , and, as before, λ is a
regularization parameter, which is chosen in dependence on K , so
that we can write λ = λ(K) and

Fλ = Fλ(K)(·; K ,W1) =


(ui,vi)∈W1

cλ
i K(·, ui).

Due to the Representer Theorem (Wahba, 1990), a real vector cλ
=

(cλ
i ) of coefficients is defined as cλ

= (λ|W1|I + K)−1v, here
v = (vi) and K = (K(ui, uj)), I are the corresponding Gramm
matrix and the unit matrix of the size |W1| × |W1| respectively.

The second set W2 is used for estimating the performance of a
particular approximation Fλ, which is measured by the value of the
functional

P(Fλ;W2) =
1

|W2|


(ui,vi)∈W2

ρ(Fλ(ui), vi), (7)

where ρ(·, ·) is a continuous function of two variables. We note
that the function ρ(·, ·) can be adjusted to the intended use of the
approximations Fλ.

Finally, we choose our favorite K 0 and λ0 as minimizers of the
functional

Qθ (K , λ,W1,W2) = θTλ(Fλ(·; K ,W1); K ,W1)

+ (1 − θ)P(Fλ(·; K ,W1);W2) (8)

over a given set of admissible kernels K and over an interval
[λmin, λmax] of possible λ-values. Note that the parameter θ here
takes the values from [0, 1] and can be seen as a performance
regulator on the sets W1 and W2. Taking θ > 1

2 , we put
more emphasis on the ability to mimic the input data from W1,
while for θ closer to zero, we are more interested in making a
generalization from those data. Theminimization of the functional
(8) is performed in the first and the last phases of the meta-
learning. In the first case we minimize (8) with θ = 0, while in
the second case we put θ =

1
2 .

The existence of the kernel K 0 and the regularization parameter
λ0 minimizing the functional (8) has been proven inNaumova et al.
(2011a). We formulate this theorem here again for the sake of self-
containedness and also because it describes requirements for the
set of admissible kernels K that need to be checked.

Theorem 1 (Kernel Choice Theorem (Naumova et al., 2011a)). Let
K(U) be the set of all kernels defined on U ⊂ Rd. Let also Ω be a
compact metric space and G : Ω → K(U) be a continuous map in
the sense that for any u, û ∈ U the function

ω → Kω(u, û) ∈ R

is continuous on Ω , where for ω ∈ Ω the kernel Kω ∈ K(U) is given
as Kω = G(ω) and Kω(u, û) is the value of the kernel Kω ∈ K(U) at
u, û ∈ U .

Define

K = K(Ω,G) = {K : K = G(ω), K ∈ K(U), ω ∈ Ω}

be the set of kernels parameterized via G by elements of Ω.
Then for any parameter choice rule λ = λ(K) ∈ [λmin, λmax],

λmin > 0 there are K 0
= K 0(W1,W2) and λ0

∈ [λmin, λmax] such
that

Qθ (K 0, λ0,W1,W2) = inf{Qθ (K , λ(K),W1,W2), K ∈ K(Ω,G)}.

Note that, as it has been pointed out in Naumova et al.
(2011a), in contrast to usual approaches, the technique described
by Theorem 1 is more oriented towards the prediction of the value
of the unknown function outside of the scope of available data. For
example, in Micchelli and Pontil (2005a) it has been suggested to
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choose the kernel K = K(W , λ) as the minimizer of the functional
Tλ(Fλ(·; K ,W ); K ,W ), whereW = W1∪W2 and λ is given a priori.

Thus, the idea of Micchelli and Pontil (2005a) is to recover
the kernel K generating the space where the unknown function
of interest lives from given data, and then use this kernel for
constructing the predictor Fλ(·; K ,W ).

Although feasible, this approach may fail in the prediction
outside of the scope of available data as it was shown in Naumova
et al. (2011a). In contrast, the approximant Fλ based on the kernel
chosen in accordance with Theorem 1 exhibits good prediction
properties, see Naumova et al. (2011a) for more details.

To illustrate the assumptions of the Kernel Choice Theorem 1,
we consider two cases, which are needed to set up our meta-
learning predictor. In both cases the quasi-balancing principle
(De Vito et al., 2010) is used as a parameter choice rule λ = λ(K) ∈

[10−4, 1].
In the first case, we use the data (1), and for any µ =

1, 2, . . . ,M define the sets

W1 = W1,µ = xµ = ((tµ
−m+1, g

µ

−m+1), . . . , (t
µ

0 , gµ

0 )),

tµ0 − tµ
−m+1 = SH,

W2 = W2,µ = yµ = ((tµ1 , gµ

1 ), . . . , (tµn , gµ
n )),

tµn − tµ0 = PH.

In this case, the input environment U is assumed to be a time
interval, i.e. U ⊂ (0, ∞), while the output environment V =

[0, 450] is the range of possible BG-values (in mg/dL).
For this case, we choose Ω = {ω = (ω1, ω2, ω3) ∈

R3, ωi ∈ [10−4, 3], i = 1, 2, 3}, and the set of admissible kernels
is chosen as

K(Ω,G) = {K : K(t, τ )

= (tτ)ω1 + ω2e−ω3(t−τ)2 , (ω1, ω2, ω3) ∈ Ω}. (9)

For such a choice, the continuous map G parametrizing the
admissible kernels is defined as G : ω = (ω1, ω2, ω3) →

Kω(t, τ ) = (tτ)ω1 + ω2e−ω3(t−τ)2 , where t, τ ∈ U . It is easy
to see that for any ω = (ω1, ω2, ω3) ∈ [10−4, 3]3, the kernel
Kω(t, τ ) = G(ω)(t, τ ) is positive definite and for any fixed t, τ ∈ U
its value continuously depends on ω.

To apply the Theorem 1 in this case, we modify the functional
P(·,W2,µ) involved in the representation of (8) as in Naumova,
Pereverzyev, and Sivananthan (2011b) with the idea to penalize
heavily the failure in detection of dangerous glycemic levels.

As a result of the application of Theorem 1, we relate
input–output BG-observations (xµ, yµ) to the parameters ω0

=

ω0
µ = (ω0

1,µ, ω0
2,µ, ω0

3,µ) of our favorite kernels K 0
= K 0,µ

= Kω0
µ

and λµ = λ0
µ. As we already mentioned, the corresponding

optimization is executed only for the data set of one particular
patient. Thus, the operation in this case does not require
considerable computational effort and time.

The second case of the use of Theorem 1 corresponds to the
optimization, that should be performed at the final phase of
the meta-learning. We consider the transformed data sets zi =

{(uµ, ω0
i,µ), µ = 1, 2, . . . ,M}, i = 1, 2, 3, obtained after

performing the first two meta-learning operations.
In this case the input environment U is formed by two-

dimensional meta-features vectors uµ ∈ R2 computed for the
inputs xµ, i.e. U ⊂ R2, whereas the output environment V =

[10−4, 3] is the range of parameters ωi of the kernels from (9).
Recall that at the final meta-learning phase the goal is to assign

the parameters ω0
= (ω0

1, ω
0
2, ω

0
3), λ0 of the favorite algorithm

to each particular input x, and such an assignment should be made
by comparing the meta-feature u calculated for x with the meta-
features uµ of inputs xµ, for which the favorite parameters have
been already found at the first meta-learning phase.
Table 1
The parameters of the kernels from (10), which are selected for learning at meta-
level.

γ1 γ2 ω1 ω2 ω3 ω4

K 0
1 1 0 1.6 5 0.001 0.016

K 0
2 1 0 1.2 0.001 3 0.01

K 0
3 1 0 0 1 0.001 0.003

K 0
4 1 1 0.2 0.02 0.1 0.2

In the meta-learning literature one usually makes the above
mentioned comparison by using some distance between meta-
feature vectors u and uµ. For two-dimensional meta-features u =

(u(1), u(2)), uµ = (u(1)
µ , u(2)

µ ) one of the natural distances is the
weighted Euclidean distance

|u − uµ|γ := (γ1(u(1)
− u(1)

µ )2 + γ2(u(2)
− u(2)

µ )2)
1
2

that potentiallymay be used in themeta-learning rankingmethods
in the same way as the distance suggested in Soares et al. (2004)
(see also Section 3.3 below). Here we refine this approach by
learning the dependence of parameters λ0, ω0

i , i = 1, 2, 3, on the
meta-feature u in the form of functions

F(u) =

M
µ=1

cµϕω(|u − uµ|γ ),

where ω = (ω1, ω2, ω3, ω4) ∈ Ω = [0, 2] × [0, 15] × [0, 2] ×

[0, 15], ϕω(τ ) = τω1 +ω2e−ω3τ
ω4 , and corresponding coefficients

cµ for λ0, ω0
i , i = 1, 2, 3, are defined in accordance with the

formula (15) below.
Itmeans that the finalmeta-learning phase can be implemented

as the optimization procedure described in Theorem 1, where the
set of admissible kernels is chosen as follows

K = Kγ (Ω,G) =


K : Kω,γ (u, û)

= M−1
M

µ=1

ϕω(|u − uµ|γ )ϕω(|û − uµ|γ ), ω ∈ Ω


. (10)

It is well known (see, e.g. Evgeniou et al., 2000) that for
any continuous and linearly independent functions gi, i =

1, 2, . . . ,M, the sum M−1 M
i=1 gi(u)gi(û) is positive-definite. It

means that all functions Kω,γ (u, û) from (10) are really scalar-
valued kernels. Moreover, it is clear that for any fixed τ the value
ϕω(τ ) depends continuously on ω. Therefore, in the case of the set
(10) the conditions of Theorem 1 are satisfied.

To apply the optimization procedure above, we rearrange the
sets zi, so that zi = {(uµk , ω

0
i,µk

)}, where ω0
i,µk

< ω0
i,µk+1

, k =

1, 2 . . . ,M − 1, and define the setsW1,W2 as follows:

W1 = W1,i = {(uµk , ω
0
i,µk

), k = 3, . . . ,M − 2},
W2 = W2,i = zi \ W1,i,

so that the performance estimation sets W2 = W2,i contain the
two smallest and the two largest values of the corresponding
parameters.

Moreover, for the considered caseweuse the functional (7)with
ρ(f , v) = |f − v|

2.
Then for i = 1, 2, 3, using the optimization procedure described

in Theorem 1 one can find the kernels K 0
= K 0

i ∈ Kγ (Ω,G)
determined by the values of parameters that are presented in
Table 1. In addition, using in the same way the set {(uµ, λ0

µ)} one
can obtain the kernel K 0

4 ∈ Kγ (Ω,G) for which parameters are
also given in Table 1.

Summing up, as the result of the optimization operations we, at
first, find for each input–output pair (xµ, yµ), µ = 1, 2, . . . ,M ,
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the parameters of the favorite kernel K 0
= K 0,µ from (9) and

λ0
= λ0

µ ∈ [10−4, 1]. Then using these found parameters we
construct the kernels K 0

= K 0
i , i = 1, 2, 3, 4, from (10) that will

relate (K 0,µ, λ0
µ) with corresponding meta-features uµ.

In both cases theminimization of the corresponding functionals
(8) was performed by a full search over grids of parameters
ω determining the kernels from (9) and (10). Of course, the
application of the full search method is computationally intensive,
but, as we alreadymentioned, in our application this minimization
procedure should be performed only once and only for one
particular patient.

Remark 1. From the above discussion, it is obvious that the
approach described in Theorem 1 requires splitting available data
into two sets of input–output pairs W1,W2 ⊂ U × V . Note that
in the recent paper (Rückert & Kramer, 2008) data splitting has
been also used for identifying the favorite kernel from the set of
admissible ones. In our terms, the approach (Rückert & Kramer,
2008) suggests choosing the kernel as follows

K 0
= argmin

K∈K
Tλ(Fλ(·; K ,W1); K ,W1 ∪ W2), (11)

where in contrast to Theorem 1, the value of the regularization
parameter λ is assumed to be a priori given.

Using the same example as in De Vito et al. (2010), Micchelli
and Pontil (2005a) and Naumova et al. (2011a), one can show that
the approach (11) may not be suitable for the prediction outside of
the scope of available data. Indeed, following Micchelli and Pontil
(2005a), we consider the target function

f (u)

= 0.1

u + 2


e−8


4π
3 −u

2
− e−8( π

2 −u)
2
− e−8


3π
2 −u

2
(12)

and the training set z = {(ui, vi), i = 1, 2, . . . , 14} consisting
of points ui =

π i
10 and vi = f (ui) + ξi, where ξi are random

values sampled uniformly in the interval [−0.02, 0.02]. Note
that the function (12) belongs to an RKHS generated by the
kernel K(u, û) = uû + e−8(u−û)2 , and we are interested in the
reconstruction of its values for u > 1.4π , i.e. outside of the scope
of available data.

To illustrate the approach (11), at first, we define the sets
W1,W2 similar to Naumova et al. (2011a):

W1 = {(ui, vi), i = 1, 2, . . . , 7},
W2 = z \ W1 = {(ui, vi), i = 8, 9, . . . , 14}.

(13)

In our experiment, we explore the influence of the regular-
ization parameter λ on the performance of the approximation
Fλ(·; K 0,W1 ∪ W2) with the kernel K 0 chosen in accordance with
(11) for several λ fixed independently of K . The favorite kernel
K 0 is chosen from the set (9) with Ω = {ω = (ω1, ω2, ω3) ∈

R3, ω1, ω3 ∈ [10−4, 3], ω2 ∈ [10−4, 8]}. Note that this set con-
tains the kernel K generating the target function (12). Here, as in
Micchelli and Pontil (2005a), the value of the regularization param-
eter λ is taken from the set {10−4, 10−3, 10−2, 0.1, 1}.

It is instructive to note that for all considered values of the
regularization parameter λ the approximants based on the kernels
(11) do not allow an accurate reconstruction of the values of the
target function f (u) for u > 1.4π . Typical examples are shown in
Figs. 2 and 3.

At the same time, fromNaumova et al. (2011a)weknow that the
approximant Fλ(K0)(·; K

0,W1 ∪W2) based on the kernel K 0 chosen
in accordance with the Theorem 1 provides us with an accurate
reconstruction of f (u) for u > 1.4π.
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Fig. 2. The performance of the approximant Fλ(·; K 0,W1 ∪W2) (dotted line) based
on the kernel K 0(u, û) = (uû)1.74+1.26e−5.54(u−û)2 , chosen in accordancewith (11)
for λ = 10−4 .
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Fig. 3. The performance of the approximant Fλ(·; K 0,W1 ∪W2) (dotted line) based
on the kernel K 0(u, û) = (uû)1.89 + 3e−8(u−û)2 , chosen in accordance with (11) for
λ = 0.1.

3.2. Heuristic operation

The goal of this operation is to extract special characteristics
{uµ} called meta-features of inputs {xµ} that can be used for
explaining the relation between {xµ} and the parameters of
optimal algorithms predicting training outputs {yµ} from {xµ}.
Note that it is common belief (Brazdil et al., 2009, Section 3.3) that
such meta-features should reflect the nature of the problem to be
solved.

Keeping in mind that practically all predictions of the future
blood glucose concentration are currently based on a linear
extrapolation of glucose values (Kovatchev & Clarke, 2008), it
seems to be natural to consider the vector uµ = (u(1)

µ , u(2)
µ ) of

coefficients of a linear extrapolator g lin
µ (t) = u(1)

µ t+u(2)
µ , producing

the best linear fit for given input data xµ = ((tµ
−m+1, g

µ

−m+1), . . . ,

(tµ0 , gµ

0 )), as a good candidate for being a meta-feature of xµ.

Then for any given input x = ((t−m+1, g−m+1), . . . , (t0, g0)) the
components of the correspondingmeta-feature u = (u(1), u(2)) are
determined by the linear least squares fit as follows

u(1)
=

0
i=−m+1

(ti − t̄)(gi − ḡ)
0

i=−m+1
(ti − t̄)2

, u(2)
= ḡ − u(1) t̄, (14)

here ā is an average.
Note that in principle the linear extrapolator g lin(t) = u(1)t +

u(2) can be used for predicting the future BG-concentration from
x. But, as it can been seen from Sivananthan et al. (2011), for
prediction horizons of clinical interest (PH > 10 min) such
a predictor is outperformed by more sophisticated algorithms.
Therefore,we are going to use the coefficient vector u = (u(1), u(2))
only as a meta-feature (label) of the corresponding prediction
input.
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3.3. Learning at the meta-level

The goal of the final phase of the meta-learning approach,
which is also called learning at the meta-level, is the construction
of the so-called meta-choice rule for selecting the vector ω =

(ω1, ω2, ω3) of the parameters of the favorite algorithm that will
be applied to input x in question labeled by ameta-feature u. Recall,
at this stage the above mentioned meta-choice rule is constructed
on the basis of the transformed training sets zi = {(uµ, ω0

i,µ)}, i =

1, 2, 3.
In this section, we describe two meta-choice rules. The first

one, the k-Nearest Neighbors (k-NN) ranking, is one of the most
popular methods in meta-learning literature. This method has
been suggested in Soares et al. (2004) and the idea behind it is to
identify a set of k meta-features {uµ} containing the ones that are
most similar to the considered meta-feature u, and then combine
the corresponding {ω0

µ} to select the vector ω for the new input
x. In their numerical experiments the authors (Soares et al., 2004)
observed the clear tendency for the accuracy of k-NN ranking to
decrease with increasing number of k neighbors. Therefore, we
consider only 1-NN ranking method as one that produces more
accurate results than other k-NN rankings.

Using Soares et al. (2004) we describe how the 1-NN ranking
can be adjusted to the task of the blood glucose prediction, in
particular, to deal with the transformed training sets zi. The use
of 1-NN rankingmeta-learning involves the three following steps:

1. Calculate the distances between the meta-feature u =

(u(1), u(2)) of the input x in question and all other uµ =

(u(1)
µ , u(2)

µ ), µ = 1, 2, . . . ,M as follows:

dist(u, uµ) =

2
i=1

|u(i)
− u(i)

µ |

max(u(i)
µ ) − min(u(i)

µ )
.

2. Find µ∗ ∈ {1, 2, . . . ,M} such that

dist(u, uµ∗
) = min{dist(u, uµ), µ = 1, 2, . . . ,M}.

3. For the input x in question take the vector ω = ω0
µ∗

that results
in the choice of the kernel K 0

= Kω0
µ∗

from the set (9) and
λ = λ0

µ∗
.

The second meta-choice rule, which is proposed by us, is based
on the Kernel Choice Theorem 1, or more specifically, on the
kernels K 0

1 (u, û), . . . , K 0
4 (u, û) obtained in the second case of its

application. This rule can be executed as follows:

1. Using the transformed training sets zi = {(uµ, ω0
i,µ)}, i =

1, 2, 3 and {(uµ, λ0
µ)}, we define the following functions ω0

i =

ω0
i (u), i = 1, 2, 3, λ0

= λ0(u) of ameta-feature vector u ∈ R2:

ω0
i = argmin


1
M

M
µ=1

(ω(uµ) − ω0
i,µ)2 + αi∥ω∥

2
H

K0i


,

i = 1, 2, 3,

λ0
= argmin


1
M

M
µ=1

(λ(uµ) − λ0
µ)2 + α4∥λ∥

2
H

K04


, (15)

where the regularization parameters αi = αi(K 0
i ) ∈ [λ0, 1],

λ0
= 10−4 are chosen in accordance with the quasi-balancing

principle (De Vito et al., 2010).
2. Calculate the meta-feature u = u(x) ∈ R2 for a prediction

input x in question and choose the kernel and the regularization
parameter as follows:

K(t, τ ) = Kω0(u)(t, τ ) = (tτ)ω
0
1(u)

+ ω0
2(u)e

−ω0
3(u)(t−τ)2 ,

λ0
= λ0(u).

(16)
Once any of the above mentioned meta-choice rules are
employed, the prediction g(t) of the future BG-concentration for
the time moment t ∈ [t0, t0 + PH] can be constructed from the
past BG-estimates

x = ((t−m+1, g−m+1), . . . , (t0, g0)), t0 − t−m+1 = SH

as follows.
At first, we calculate a meta-feature vector u = u(x) =

(u(1), u(2)) as the result of the heuristic operation (14). Then using
the employed meta-choice rule, we specify a kernel K = Kω0(u)

from the set (9) and λ = λ0(u).
Finally, the prediction g = g(t) is defined by means of the

regularization performed in the spaceH = HK . Here onemay use,
for example, two iterations of the Tikhonov regularization, defined
as follows:

g(0)
= 0,

g(ν)
= argmin


1
m

0
i=−m+1

(g(ti) − gi)2 + λ∥g − g(ν−1)
∥
2
HK


,

ν = 1, 2,

g(t) = g(2)(t), (17)

where λ is chosen from [λ0(u), 1] bymeans of the quasi-balancing
principle (De Vito et al., 2010).

4. Case-study: Blood glucose prediction

In this section,we compare the performance of the state-of-the-
art BG-predictors (Pappada et al., 2011; Reifman et al., 2007) with
that of meta-learning based predictors described in Section 3 and
schematically illustrated in Fig. 4. It is remarkable, in retrospect,
that in all cases the meta-learning based predictors outperform
their counterparts in terms of clinical accuracy. Even more,
for some prediction horizons BG-predictors based on the FARL
approach perform at the level of the clinical accuracy achieved by
CGM systems, providing the prediction input. Clearly, in general
such accuracy cannot be beaten by CGM-based predictors.

The performance assessment has been made with the use of
two different assessment metrics known from the literature. One
of them is the classical Clarke Error Grid Analysis (EGA) (Clarke
et al., 1987). It uses a Cartesian diagram, in which the predicted
values are displayed on the y-axis,whereas the reference values are
presented on the x-axis. This diagram is subdivided into 5 zones:
A, B, C, D and E. The points that fall within zones A and B represent
sufficiently accurate or acceptable glucose results, points in zone
C may prompt unnecessary corrections, points in zones D and E
represent erroneous and incorrect treatment.

Another assessmentmetric is the Prediction Error Grid Analysis
(PRED-EGA) (Sivananthan et al., 2011) that has been designed
especially for BG-prediction assessment. PRED-EGA uses the
same format as the Continuous Glucose Error Grid Analysis
(CG-EGA) (Clarke et al., 2005), which was originally developed
for an assessment of the clinical accuracy of CGM systems.
To be precise, PRED-EGA records reference glucose estimates
paired with the estimates predicted for the same moments
and looks at two essential aspects of clinical accuracy: rate
error grid analysis and point error grid analyses. As a result, it
calculates combined accuracy in three clinically relevant regions,
hypoglycemia (<70 (mg/dL)), euglycemia (70–180 (mg/dL)),
and hyperglycemia (>180 (mg/dL)). In short, it provides three
estimates of the predictor performance in each of the three
regions: Accurate (Acc.), Benign (Benign) and Erroneous (Error). In
contrast to the original CG-EGA, PRED-EGA takes into account that
predictors provide a BG-estimation ahead of time, and it paves a
new way to estimating the rates of glucose changes.
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Fig. 4. Meta-learning approach to BG-prediction: Fully Adaptive Regularized Learning algorithm.
Since the developed BG-predictors are more dedicated to
patients with high glucose variability, including a significant risk
of hypoglycemia, the performance testswere performedmainly on
type 1 diabetic patients. The lack of residual insulin secretion in
these patients is considered as a determining factor for the higher
glucose variability and poorer blood glucose predictability.

The performance tests have been made with the use of clinical
data from two trials executed within EU-project ‘‘DIAdvisor’’
(DIAdvisor: personal glucose predictive diabetes advisor, 2008) at
the Montpellier University Hospital Center (CHU), France, and at
the Institute of Clinical and ExperimentalMedicine (IKEM), Prague,
Czech Republic.

In general, patients that meet the following inclusion criteria
were enrolled into the study: male or female between 18 and
70 years old, diagnosed with type 1 or type 2 diabetes according to
theWorld Health Organization criteria for at least one year prior to
study entry; with HbA1C between 7.5% and 10.5% and body mass
index lower than 35 (kg/m2).

In the first trial (DAQ-trial), each clinical record of a diabetic
patient contains nearly 10 days of CGM data collected with the
use of CGM systemAbbott’s Freestyle Navigator R⃝ (Abbott Diabetes
Care, 2010), having a sampling frequency ∆t = 10 (min), while
in the second trial CGM data were collected during three days
with the use of the system DexCom R⃝ SEVEN R⃝ PLUS (DexCom:
Continuous Glucose Meter, 2011) that has a sampling frequency
∆t = 5 (min).

For comparison with the state-of-the-art, we consider two BG-
predictors described in the literature, such as the data-driven
autoregressive model-based predictor (AR-predictor) proposed
in Reifman et al. (2007) and the neural network model-based
predictor (NNM-predictor) presented in Pappada et al. (2011).
It is instructive to see that these predictors require more
information to produce a BG-prediction than is necessary for our
approach. More precisely, AR-predictors use as an input past CGM-
measurements sampled everyminute. As to NNM-predictors, their
inputs consist of CGM-measurements sampled every 5min, aswell
as meal intake, insulin dosage, patient symptoms and emotional
factors.

On the other hand, the FARL-based predictor uses as an input
only CGM-measurements from the past 25min (in case of DexCom
devices), or 30 min (in case of Abbott sensors) and, what is more
important, these measurements do not need to be equi-sampled.

Recall that in Section 3 we already mentioned such an
important feature of our algorithm as portability from individual
to individual. To bemore specific, for learning at themeta-level we
use CGM-measurements performed only with one patient (patient
ID: CHU102). These measurements were collected during one day
of the DAQ-trial with the use of an Abbott sensor.

The training data set z = {(xµ, yµ), µ = 1, 2, . . . ,M}, M =

24, was formed from the data of the patient CHU102 with the
sampling horizon SH = 30 minutes and the training prediction
horizon PH = 30 minutes. The application of the procedure
described in Theorem 1 in the first case transforms the training set
z into the values ω0

µ = (ω0
1,µ, ω0

2,µ, ω0
3,µ), λ0

µ, µ = 1, 2, . . . ,M ,
defining the favorite kernel and regularization parameters.

Then, the transformed training sets {(xµ, yµ)} → {(uµ, ω0
µ)},

{(uµ, λ0
µ)}, µ = 1, 2, . . . , 24, were used for learning at the meta-

level with the FARL method, as well as with the 1-NN ranking
method.

At first, the obtained fully trained BG-predictors have been
tested without any readjustment on the data that were collected
during 3 days in hospital and 5 days outside the hospital under
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Table 2
Performance of FARL-predictors for PH = 30 (min).

Patient ID A (%) B (%) C (%) D (%) E (%)

CHU101 85.07 14.93 – – –
CHU102 94.38 5.62 – – –
CHU105 93.26 6.74 – – –
CHU107 91.69 8.03 – 0.28 –
CHU108 87.31 12.69 – – –
CHU115 96.18 3.05 – 0.76 –
CHU116 93.26 6.74 – – –
IKEM305 89.88 9.29 – 0.83 –
IKEM306 89.81 10.19 – – –
IKEM309 92.12 7.88 – – –

Average 91.3 8.51 – 0.19 –

Table 3
Performance of 1-NN ranking predictors for PH = 30 (min).

Patient ID A (%) B (%) C (%) D (%) E (%)

CHU101 82.84 17.16 – – –
CHU102 92.13 7.87 – – –
CHU105 90.64 9.36 – – –
CHU107 86.9 12.25 – 0.85 –
CHU108 88.43 11.57 – – –
CHU115 92.75 6.49 – 0.76 –
CHU116 90.64 9.36 – – –
IKEM305 89.55 9.95 0.17 0.33 –
IKEM306 90.78 9.22 – – –
IKEM309 89.16 10.84 – – –

Average 89.38 10.41 0.02 0.19 –

Table 4
Performance of AR-predictors for PH = 30 (min).

Patient ID A (%) B (%) C (%) D (%) E (%)

6–6 85.3 13.3 – 1.4 –
6–8 84.4 14.2 – 1.4 –
8–6 82.2 15 – 2.8 –
8–8 90 9.8 – 0.2 –
Average 85.48 13.07 – 1.45 –

real-life conditions from 10 other patients taking part in the DAQ-
trial. Since the goal of the trial was to see a faithful picture
of blood glucose fluctuation and insulin–glucose interaction in
different environmental conditions, no specific intervention on
usual diabetic treatment of the patients was done.

The number of patients is comparable with those used for
testing AR- and NNM-predictors, but testing periods for those
predictors were shorter than ours. Moreover, a portability from
patient to patientwas demonstrated only for the AR-predictor, and
only for 2 patients (Reifman et al., 2007). As to NNM-predictors
(Pappada et al., 2011), they were trained with the use of data from
17 patients and tested on data from 10 other patients.

To assess the clinical accuracy of compared predictors we
employ EGA since this performance measure was used in Pappada
et al. (2011) and Reifman et al. (2007) to quantify the accuracy of
AR- and NNM-predictors.

In the case of the prediction horizons PH = 30 (min) and
PH = 60 (min), the clinical accuracy of the FARL-predictors
is demonstrated in Tables 2 and 6. For the same prediction hori-
zons the comparison of the FARL-predictors with AR-predictors
(Reifman et al., 2007), as well as with the predictors based on
1-NN ranking, can bemade by using Tables 3–5 and 7 respectively.

Tables 8–10 can be used for the comparison of the FARL-
predictors against the predictors based on neural networks
modeling and on 1-NN ranking. These tables display the prediction
accuracy for PH = 75 (min), since only this horizon was discussed
in Pappada et al. (2011).

From the comparison of Tables 2–10 one can expect that the
proposed FARL-predictors have higher clinical accuracy than their
Table 5
Performance of AR-predictors for PH = 60 (min).

Patient ID A (%) B (%) C (%) D (%) E (%)

6–6 66.2 31.1 0.6 2.1 –
6–8 64.2 32.5 0.2 3.1 –
8–6 60.7 32.9 0.8 5.4 –
8–8 72.9 25.1 – 2.0 –
Average 66 30.4 0.4 3.15 –

Table 6
Performance of FARL-predictors for PH = 60 (min).

Patient ID A (%) B (%) C (%) D (%) E (%)

CHU101 70.15 29.85 – – –
CHU102 76.03 23.97 – – –
CHU105 78.28 21.72 – – –
CHU107 73.24 26.48 – 0.14 1.14
CHU108 69.4 30.6 – – –
CHU115 77.48 20.61 – 1.91 –
CHU116 76.4 22.1 0.75 0.75 –
IKEM305 79.27 18.57 0.33 1.66 0.17
IKEM306 75.73 22.82 0.49 0.97 –
IKEM309 75.37 24.63 – – –

Average 75.14 24.13 0.16 0.54 0.13

Table 7
Performance of 1-NN ranking predictors for PH = 60 (min).

Patient ID A (%) B (%) C (%) D (%) E (%)

CHU101 63.06 36.57 – – 0.37
CHU102 56.93 43.07 – – –
CHU105 50.19 49.81 – – –
CHU107 41.13 54.79 – 3.66 0.42
CHU108 73.13 26.87 – – –
CHU115 51.15 43.89 – 4.96 –
CHU116 34.46 62.55 – 3 –
IKEM305 66.83 31.01 0.33 1.66 0.17
IKEM306 48.06 47.57 – 4.37 –
IKEM309 41.38 52.22 – 6.4 –
Average 52.63 44.84 0.03 2.4 0.1

Table 8
Performance of FARL-predictors for PH = 75 (min).

Patient ID A (%) B (%) C (%) D (%) E (%)

CHU101 68.28 31.72 – – –
CHU102 68.91 30.71 – 0.37 –
CHU105 70.41 29.59 – – –
CHU107 72.83 27.17 – – –
CHU108 64.55 35.45 – – –
CHU115 67.18 31.3 – 1.53 –
CHU116 71.91 25.09 1.5 1.5 –
IKEM305 71.64 25.04 – 2.82 0.5
IKEM306 67.96 28.16 2.43 1.46 –
IKEM309 64.04 35.47 – 0.49 –
Average 68.77 29.97 0.39 0.82 0.05

Table 9
Performance of 1-NN ranking predictors for PH = 75 (min).

Patient ID A (%) B (%) C (%) D (%) E (%)

CHU101 61.19 38.43 – – 0.37
CHU102 46.82 52.81 – 0.37 –
CHU105 36.7 49.81 – – –
CHU107 30.7 62.96 – 5.49 0.85
CHU108 66.04 33.96 – – –
CHU115 41.98 51.53 – 6.49 –
CHU116 26.22 68.91 – 4.87 –
IKEM305 58.87 37.98 0.33 2.32 0.5
IKEM306 36.41 58.25 – 5.34 –
IKEM309 35.96 52.71 – 11.33 –

Average 44.09 50.73 0.03 3.62 0.17
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Table 10
Performance of NNM-predictors for PH = 75 (min).

Patient ID A (%) B (%) C (%) D (%) E (%)

1 57.2 38 1.5 3.3 –
2 38.7 40.3 1.2 19 7
3 58.2 37.3 0.5 3.9 –
4 58.8 28.4 0.2 12.2 0.4
5 68.2 24.4 1.2 6.2 –
6 64.9 30.4 0.3 4.5 –
7 42.4 37.7 – 19.4 0.5
8 71.8 28.2 – – –
9 71.9 23.7 – 4.4 –

10 78.6 18.6 – 2.8 –

Average 62.3 30 0.4 7.1 0.1

counterparts based on data-driven autoregressive models or on
neural networks models.

One more interesting observation can be made from the
comparison of Tables 8 and 10, where the clinical accuracy of
FARL- and NNM-predictors is reported. As we already mentioned,
the input for NNM-predictors is much more informative than
the one for FARL-systems. In addition to CGM-measurements
it also contains meal intakes and insulin dosages, which, of
course, directly influence BG-levels. At the same time, FARL-
systems need only past CGM-values to produce predictions.
Nevertheless, comparing Tables 8 and 10 one may conclude that
even without the use of above mentioned additional information
FARL-predictors have higher clinical accuracy than NNM-models.
A possible explanation for this is that in the considered case
FARL-predictors use BG-estimations from the past 30 min, and
since the onsets of insulin and meal responses on BG-levels are
independent (Korsgaard, 2011) and occur within a shorter time
frame (Snetselaar, 2009), the influence of these factors, if they take
place during collecting a prediction input, may already be seen in
the data. In this way information about them is indirectly taken
into account by FARL-predictors. We are grateful to an anonymous
referee who inspired us to make this remark.

Note that the accuracy reported in Tables 2–10 was measured
against the estimates of the blood glucose given by a commercial
CGM system, which, in fact, reads the glucose in the interstitial
fluid and is not always accurate in reporting the glucose
concentration in the blood (see, for example Naumova et al.,
2011a). Although such CGM systems provide the inputs for
predictors, the goal is to predict the real blood glucose.

Therefore, it is interesting to estimate the prediction accuracy
against the blood glucose measurements. We can do this with
the use of clinical data from another ‘‘DIAdvisor’’ trial (1F-trial)
performed at IKEM, where the objective was to check whether a
predictor based on the described approach can provide accurate
BG-predictions during provocation of hypo- and hyperglycemia.
In that trial, during a 3-day admission, 6 patients were served
standardized meals at 8:00, 13:00 and 19:00, containing 40, 70
and70gramsof carbohydrates, respectively. During this visit, three
situations were scheduled in order to challenge the BG-prediction
algorithm: a 30-minute exercise on a cycloergometer, lower dose
of insulin (minus 30% of usual dose) andhigher dose of insulin (plus
30% of usual dose) before two lunches.

In contrast to the previous study, DexCom sensors were used
for providing the prediction input. Besides CGM-measurements,
a special blood sampling schedule was adopted to measure real
blood glucose concentration by a Yellow Springs Instrument
(YSI) analyzer during the provocation periods. Blood samples
were collected every five to ten minutes during at least 2.5 h
from the beginning of each test. Overall, for each patient 120
blood samples are available for performing the comparison. Such
frequently sampled BG-measurements can be used as references
in PRED-EGA, which is proven to be a very rigorous metric for the
Fig. 5. CGM readings collected from the patient ID 326 during the third day of
DIAdvisor 1F-trial (solid line); predictions produced by FARL-systemwith PH = 20
(min) (thin line); YSI blood glucose values (star points).

assessment of the clinical accuracy of the predictors (Sivananthan
et al., 2011).

For the considered trial it is important to note that the tested
FARL glucose prediction system was not specifically readjusted
for performing during provocation of hypo- and hyperglycemia.
Moreover, the tested system was not readjusted for receiving
prediction inputs from the DexCom CGM system, which has
a different sampling frequency than Abbott used previously.
Therefore, the tested system reports the prediction profiles for
time moments / horizons PH = 0, 10, 20, 30 (min),
determined by Abbott’s Freestyle Navigator sampling frequency
∆t = 10 (min), while new prediction profiles are produced every
5 min, since DexCom systems provide prediction inputs with this
frequency.

But what is probably even more important, is that, as in
the previous trial, the tested FARL glucose prediction system
was not readjusted to any of the patients participating in the
trial. More precisely, the prediction process was performed in
accordance with (14), (15), (16) and determined with the data of
the patient CHU102. Nevertheless, the tested prediction system
performed quite well, as it can be seen in Tables 11–13, displaying
the assessment results produced by PRED-EGA with reference
to YSI blood glucose values. The assessment has been made for
predictions with the horizons PH = 0, 10, 20 (min) respectively.

PRED-EGA with reference to YSI blood glucose measurements
can be also used to assess a CGM sensor, which in such a context
could be viewed as an oracle knowing the future prediction input,
or as a predictorwith the horizon PH = 0 (min). The results of such
an assessment are shown in Table 14.

The comparison of Tables 11–14 shows that during provocation
of hypo- and hyperglycemia the predictions provided by the
tested system for PH = 0, 10 (min) are in average clinically
more accurate than the corresponding BG-estimations given by
the employed CGM device. For PH = 20 (min) the accuracy
of the tested system is at the level of CGM accuracy, except for
one patient (Patient ID: 311). The effect that for some horizons
the tested prediction system can outperform the CGM device,
providing prediction inputs, may be explained by the fact that the
system takes into account a history of previous measurements and
a training in the behavior of CGM to be predicted.

Typical graph of CGM readings for one day are plotted as
the solid line in Fig. 5. These readings were collected from the
patient ID 326 during the third day of the 1F-trial. Note that in
contrast to some other studies (Eren-Oruklu et al., 2009; Gani et al.,
2010; Reifman et al., 2007; Sparacino et al., 2007) no CGM data
preprocessing / smoothing was made before applying the tested
FARL blood glucose prediction system. The values of BG-levels
predicted by this system frompast raw CGMdata of the considered
patient for PH = 20 (min) are plotted as the thin line in Fig. 5.
Observe that in fact this line is not seen by the patient, because, as
we explained before, new prediction profiles containing predicted
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Table 11
Performance of FARL-predictors with reference to YSI for PH = 0 (min).

Patient ID BG ≤ 70 (mg/dL) (%) BG 70–180 (mg/dL) (%) BG > 180 (mg/dL) (%)
Acc. Benign Error Acc. Benign Error Acc. Benign Error

305 75 – 25 98.61 1.39 – 94.44 5.56 –
308 100 – – 92.65 5.88 1.47 100 – –
310 100 – – 91.67 3.33 5 95.56 2.22 2.22
311 84.62 15.38 – 69.84 20.63 9.52 70.97 16.13 12.9
320 85.71 14.29 – 75.68 18.92 5.41 87.1 3.23 9.68
326 100 – – 93.2 5.83 0.97 100 – –

Avg. 90.89 4.94 4.17 86.94 9.33 3.73 91.35 4.52 4.13
Table 12
Performance of FARL-predictors with reference to YSI for PH = 10 (min).

Patient ID BG ≤ 70 (mg/dL) (%) BG 70–180 (mg/dL) (%) BG > 180 (mg/dL) (%)
Acc. Benign Error Acc. Benign Error Acc. Benign Error

305 84.21 – 15.79 100 – – 96.97 – 3.03
308 100 – – 81.82 13.64 4.55 93.94 6.06 –
310 100 – – 91.38 3.45 5.17 95.74 2.13 2.13
311 75 16.67 8.33 58.33 31.25 10.42 75 16.67 8.33
320 85.71 14.29 – 72.97 24.32 2.7 81.48 – 18.52
326 100 – – 93.26 5.62 1.12 100 – –

Avg. 90.82 5.16 4.02 82.96 13.05 3.99 90.52 4.14 5.34
Table 13
Performance of FARL-predictors with reference to YSI for PH = 20 (min).

Patient ID BG ≤ 70 (mg/dL) (%) BG 70–180 (mg/dL) (%) BG >180 (mg/dL) (%)
Acc. Benign Error Acc. Benign Error Acc. Benign Error

305 78.95 – 21.05 91.3 8.7 – 96.77 – 3.23
308 81.82 – 18.18 80.65 19.35 – 100 – –
310 100 – – 92.45 7.55 – 96.08 – 3.92
311 58.33 16.67 25 60.42 31.25 8.33 68 8 24
320 71.43 14.29 14.29 76.92 20.51 2.56 84 – 16
326 100 – – 90.91 9.09 – 100 – –

Avg. 81.75 5.16 13.09 82.11 16.08 1.81 90.81 1.33 7.86
Table 14
Performance of DexCom sensors with reference to YSI.

Patient ID BG ≤ 70 (mg/dL) (%) BG 70–180 (mg/dL) (%) BG > 180 (mg/dL) (%)
Acc. Benign Error Acc. Benign Error Acc. Benign Error

305 75 – 25 100 – – 89.19 2.7 8.11
308 91.67 8.33 – 91.78 8.22 – 94.74 5.26 –
310 100 – – 86.57 11.94 1.49 95.74 – 4.26
311 85.71 14.29 – 86.57 11.94 1.49 77.14 20 2.86
320 85.71 14.29 – 78.95 15.79 5.26 76.47 5.88 17.65
326 100 – – 91.89 6.31 1.8 100 – –

Avg. 89.68 6.15 4.17 89.29 9.03 1.67 88.88 5.64 5.48
values of BG-levels for PH = 0, 10, 20, 30, . . . (min), are
produced every 5 (min). Therefore, for a particular time moment
t = 2880, 2885, . . . , 4320 (min) the corresponding point on the
thin line of Fig. 5 was taken from the graph of the prediction profile
that was produced at time t − 20 (min); on that profile the taken
point was seen as a prediction with PH = 20 (min).

The star points in Fig. 5 correspond to YSI blood glucose values.
It is interesting to see, for example, that hyper- and hypoglycemia
at time t = 3000 (min) and t = 4000 (min) were correctly
predicted by the tested FARL-system, but not recognized by the
employed CGM system.

Thus, the performance tests highlight such important features
of the presentedmeta-learning based approach as portability from
individual to individual, as well as from sensor to sensor, without
readjustment, the possibility to use data with essential gaps in
measurements, and the ability to perform at the level of the clinical
accuracy, achieved by approved CGM systems.
5. Conclusions and future developments

We have presented a meta-learning approach to choosing the
kernels and regularization parameters in kernel-based regulariza-
tion learning algorithms. This approach allows the development
of a new design of a blood glucose predictor for diabetic patients
that has been successfully tested in several clinical trials and has
demonstrated attractive features, which are not inherent to the al-
gorithms known from the literature.

At the same time, as can be seen from Tables 2, 6 and 8, the
accuracy of the prediction decreases with increasing prediction
horizons. Of course, such a decrease should be expected, and can
be seen as a natural limitation of the approach. But one may try to
relax the decrease of accuracy by incorporating more information
into prediction inputs.

In Pereverzyev et al. (2011) it has been described how the
new design can be naturally extended to the prediction from
other types of inputs containing not only past BG-estimations but
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also information about special events, such as meals or physical
activities. After such events the predictors based on the extended
design allow an improvement of the prediction accuracy for long
horizons such as PH = 60 (min), and it gives a hint that the main
ingredients of the proposed approach can be exploited in other
applications.

More specifically, the optimization procedure described in
Theorem 1 can at first transform a given training data set into
a set of parameters defining the favorite kernels, and then the
analogous procedure can be performed for learning at the meta-
level to construct a rule that allows the choice of a favorite kernel
for any prediction input in question.

The present paper shows that the meta-learning approach
based on this two-step optimization is rather promising and
deserves further development.

One of the development directions has been already indicated
in the presentation (Naumova, Pereverzyev, & Sivananthan,
2012), where a possibility of the use of kernel-based learning
algorithmswith adaptively chosen kernels for predicting nocturnal
hypoglycemia from only a few YSI-measurements made during
the day has been discussed. This discussion opens a way for
the application of the above mentioned algorithms in managing
diabetes of those patients, who do not use CGM-devices.
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