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Abstract 

Context:	Modern large-scale software systems are highly configurable, and thus require a large number of test cases to be 
implemented and revised for testing a variety of system configurations. This makes testing highly configurable systems very 
expensive and time-consuming. 

Objective: Driven by our industrial collaboration with a video conferencing company, we aim to automatically analyze and 
implant existing test cases (i.e., an original test suite) to test the untested configurations. 

Method: We propose a search-based test case implantation approach (named as SBI) consisting of two key components: 1) 
Test case analyzer that statically analyzes each test case in the original test suite to obtain the program dependence graph for 
test case statements and 2) Test case implanter that uses multi-objective search to select suitable test cases for implantation 
using three operators, i.e., selection, crossover, and mutation (at the test suite level) and implants the selected test cases using 
a mutation operator at the test case level including three operations (i.e., addition, modification, and deletion). 

Results: We empirically evaluated SBI with an industrial case study and an open source case study by comparing the 
implanted test suites produced by SBI with the original test suite using evaluation metrics such as statement coverage (SC), 
branch coverage (BC), mutation score (MS). Results show that for both the case studies, the implanted test suites performed 
significantly better than the original test suites with on average 21.9% higher coverage of configuration variable values. For the 
open source case study, SBI managed to improve SC, BC, and MS with 4.8%, 7.5%, and 2.6%, respectively. 

Conclusion: SBI can be applied to automatically implant an existing test suite with the aim of testing untested configurations 
and thus achieving higher configuration coverage. 

Keywords—	search; multi-objective optimization; genetic algorithms, test case implantation.  

——————————   u   —————————— 

1. INTRODUCTION

Testing plays a key role to ensure that software systems can be released to market with high quality 
and more than 50% of time and budget are spent for testing [1]. It is even significantly worse when 
testing large-scale software systems (e.g., cyber-physical systems) that are usually highly configurable 
since test engineers need to spend a great deal of effort to implement and revise test cases for testing 
various configurations, which decreases the efficiency of testing [2].  

We have been working with a video conferencing company since 2009 with the aim to assist their 
current practice of testing large-scale Video Conferencing Systems (VCSs). For each VCS, there are 
more than 100 configuration variables (e.g., protocol), and each variable can be configured with a 
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number of values (e.g., protocol can be SIP and H323). Such highly configurable VCSs bring great 
challenges for test engineers to manually and systematically design and develop test cases. For 
example, the calltype indicating a particular call type can be configured as video or audio and the callrate 
that specifies the call rate to be used when placing or receiving video calls can be configured with an 
integer from 64 to 6000. For the VCSs that support these two configuration variables, there are in total 
2*5,937 =11,874 configurations that are needed to be thoroughly tested. For each configuration, a set of 
test API commands with a number of parameters has to be called (e.g., dial (calltype=video, callrate= 
64)) and a set of corresponding system status variables need to be checked (e.g., assert 
(activecalls=1,videocalls=1)). Manually implementing such test cases (e.g., specifying configurations, 
calling relevant test API commands, checking corresponding system status) to test the configurations 
require a large amount of manual work that is practically infeasible. Test engineers at the company 
usually choose to develop a certain number of test cases by including a limited number of 
configurations (e.g., video with callrate 6000) based on their experience of testing VCSs. Such practice 
may result in high chances that potential errors cannot be detected since some configurations might 
not be tested. 

With the above-mentioned challenges in mind, we argue that it is worth investigating how to 
automatically and systematically analyze and implant existing test cases to increase the overall 
configuration coverage and thereby improve the efficiency of testing. Therefore, we propose a search-
based test case implantation approach (coined as SBI) to automatically analyze and implant an existing 
test suite with the aim to test the untested configurations. More specifically, SBI includes two key 
components: 1) Test case analyzer that statically analyzes each test case in the original test suite to 
obtain the program dependence graph for the statements; and 2) Test case implanter that uses multi-
objective search to select suitable test cases for implantation using three operators, i.e., selection, 
crossover, and mutation (at the test suite level) and implants the selected test cases using a mutation 
operator at the test case level that includes three operations: addition, modification, and selection. To 
assess the quality of the implanted test suites, we define five cost-effectiveness measures: number of 

configuration variable values covered (𝑁𝐶𝑉𝑉), pairwise coverage of parameter values of test API 

commands (𝑃𝐶𝑃𝑉), number of implanted test cases (𝑁𝐼𝑇), number of changed statements (𝑁𝐶𝑆), and 

estimated execution time 𝐸𝐸𝑇 . Moreover, the test case implanter is implemented on top of a widely 
applied multi-objective search algorithm, Non-dominated Sorting Genetic Algorithm II (NSGA-II) [3].  

To evaluate SBI, we employed one industrial case study from a video conferencing company with 
a test suite including 118 test cases and one open-source case study (i.e., SafeHome [4]) with 94 test 

cases. We also applied three evaluation metrics: statement coverage (SC), branch coverage 𝐵𝐶 , and 

mutation score (𝑀𝑆) to evaluate SBI for the SafeHome case study by generating in total 1594 non-
equivalent mutants. Note that we cannot apply these metrics (i.e., SC, BC, and MS) to the industrial 
case study since we do not have access to the source code. The evaluation results showed that the 
implanted test suites produced by SBI significantly outperformed the original suite for both the case 
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studies by achieving on average 21.9% higher 𝑁𝐶𝑉𝑉  and 59.4% higher 𝑃𝐶𝑃𝑉. Moreover, for the 
SafeHome case study, the implanted test suites managed to improve SC, BC and MS with on average 
4.8%, 7.5%, and 2.6%, respectively. 

The key contributions of this paper include:  
1) A formalization of the test case implantation problem (Section 3.2);  
2) A mathematical definition of five cost-effectiveness measures to assess the quality of 

implanted test suites (Section 3.3);  
3) SBI: A novel search-based test case implantation approach with two key components, i.e., test 

case analyzer and test case implanter (Section 4);  
4) An empirical evaluation of SBI using two case studies (Section 6). 
The rest of the paper is organized as follows: Section 2 introduces a running example for 

illustrating SBI and the overall context, followed by the formalization of the problem (Section 3). 
Section 4 presents SBI in detail, followed by the experiment design (Section 5) and results of the 
empirical study (Section 6). Section 7 presents the threats to validity.  Section 8 discusses the related 
work, and Section 9 concludes the paper. 

2. RUNNING EXAMPLE AND CONTEXT 
	
The running example is an excerpt of a sanitized test case from a video conferencing company, which 
will be used to illustrate SBI throughout the paper. A typical test case at the video conferencing 
company consists of one setup class, one or more test methods, one teardown, and one teardown class 
(Table 1) as recommended in the unit testing framework in python, PyUnit [5]. A setup class is for 
initializing and setting up the system under test (SUT) (e.g., registering SUT to a registrar at line 1 in 
Table 1) to be ready for executing the test methods in the test case. The test methods are for testing SUT 
functionalities (e.g., the dial functionality for making a call from one system to another, as shown at 
line 4 in Table 1). Teardown resets the SUT (e.g., disconnect the SUT, as shown at line 7 in Table 1), and it 
is executed after each test method has been called. Lastly, teardown class is called after all the test methods 
have been executed to reset the statuses of the SUT that might have been modified at the setup class 
(e.g., disconnecting the SUT from the registrar). 

Table 1. An Excerpt of a Sanitized Test Case 
Part Line Example Comment 

Setup class 1 register SUT to a registrar Register SUT 

Test 
method 

2 packetlossresilence = off Configure SUT 
3 callrate_var = 6000 Assign variable 
4 dial(protocol=sip,  calltype= 

video, callrate=callrate_var, autoanswer=true) 
Execute test API  
command on SUT 

5 wait(4) Wait 4 seconds 
6 assert(NumberOfActiveCalls=1, NumberofVideoCalls=1) Verify statuses of SUT 

Teardown 7 disconnect call Reset statuses 
Teardown class 8 disconnect SUT from the registrar Execution completed 
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Moreover, Fig. 1 presents an overview of a typical testing process for testing VCSs, i.e., SUTs. As a 
first step, a test case makes the SUT ready for testing, e.g., registering the SUT to a registrar (line 1 in 
Table 1) as a part of setup class. Secondly, the SUT is configured if necessary. For example, the 
configuration variable packetlossresilence at the SUT is configured with off in the test method (line 2 in 
Table 1). In the third step, one or more test API command is executed on the SUT. For example, dial is 
executed, which consists of four parameters: protocol, calltype, callrate, and autoanswer assigned with 
values sip, video, 6000, and true, respectively in Table 1. Then, the statuses of the SUT are verified with 
an assertion. For example, the assertion checks if the values of NumberOfActiveCalls and 
NumberOfVideoCalls are both 1 in Table 1. Note that typically each test method consists of at least one 
test API command (e.g., dial) and an assertion. At last, the statuses of the SUT are reset to the original 
statuses, e.g., disconnect as a part of teardown. If the test case has more than one test method, the next test 
method is executed followed by the teardown, and this process is repeated until all the test methods in the 
test case are executed. At the final step, teardown class is called to reset the statuses of the SUT that 
might have been initialized at the setup class. 

 
Fig. 1. Overview of testing a VCS (SUT) 

Each VCS developed by the video conferencing company is highly configurable. For example, a 
VCS includes more than 100 configuration variables (e.g., packetlossresilence) and each configuration 
variable can take a set of values (e.g., packetlossresilence can take two values: off and on). Moreover, each 
test API command requires configuring one or more parameters (e.g., four parameters need to be 
configured for the test API command dial), and each parameter in the test API command can take a 
number of different values. For example, the test API command dial allows values audio and video for 
calltype, values between 64 and 6000 inclusive for the callrate, and values true and false for autoanswer.  

Testing all the values for the configuration variables requires a large number of test methods if each 
test method covers one configuration variable. Moreover, testing all the combinations of parameter 
values for the test API commands also requires a large number of test methods. Additionally, if one test 
method includes more than one test API command, the combinations could exponentially increase, 
which makes the manual test case development expensive and even infeasible at certain contexts. 
Developing new test cases is practically expensive since each test case should include the setup class, 
teardown, and teardown class, which cause an extra overhead in terms of test case execution. This is due 
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to the fact that the setup class (for setting up the SUT) and teardown class (for resetting the SUT) need to 
be executed for all the newly implemented test cases, which is quite time consuming. However, if the 
new test methods can be directly added to the existing test cases, the overhead for executing the setup 
class and teardown class can be reduced and thereby improving the efficiency of testing. Moreover, 
using test reduction strategies (e.g., boundary value analysis [6-8]) can further reduce the number of 
combinations of variables/parameters without significantly decreasing the effectiveness of the test 
suite. 

Additionally, some existing test cases might test the same combinations of values for the 
configuration variables and test API command parameters. For example, when different test engineers 
develop test cases that require dial, it is possible that the same values for the parameters protocol, 
calltype, callrate, and autoanswer are taken, which can decrease the efficiency of testing since a different 
combination of configuration variable or test API command parameters could have been used. 
Notably, more diverse test cases (e.g., in terms of combinations of parameter values in our context) can 
lead to higher efficiency of testing [9, 10].  

Thus, the key objective of this work is to propose a cost-effective search-based approach to 
automatically implant an existing test suite with the aim to 1) achieve a higher coverage of 
configuration variable values, 2) cover more combinations of parameter values of test API commands, 
and 3) increase the efficiency of testing by modifying or removing redundant test methods that cover 
same configuration variable values or the same combinations of parameter values of test API 
commands.  

3. PROBLEM REPRESENTATION AND MEASURES 
	
This section first defines basic notations (Section 3.1) and the test case implantation problem (Section  
3.2), followed by presenting the five cost/effectiveness measures (Section 3.3). 

3.1 Basic Notations 

We assume that a given original test suite consists of 𝑛 test cases 𝑇 = 𝑡!, 𝑡!, … , 𝑡! . Each test case is 

composed of four parts (as mentioned in in Table 1): setup class, 𝑜 number of test methods, teardown, and 

teardown class, i.e., 𝑡 = 𝑠𝑐 ∪ 𝑡𝑚!, … , 𝑡𝑚! ∪ 𝑡𝑑 ∪ 𝑡𝑑𝑐, where 𝑠𝑐, 𝑡𝑚!, 𝑡𝑑 and 𝑡𝑑𝑐 represent setup class, test 
method i, teardown, and teardown class, respectively. 

	

Table 2. Different Types of Statements in a Test Method 
Name Description Example 

Assignment Assign values to Numeric, Boolean, String variables callrate_var = 6000 

Conditional If-then statement represented 𝑝 → 𝑞, where 𝑝 is a hypothesis and 𝑞 
is a conclusion 

if (wait > 4) 
    accept 

Configuration Configure the SUT  packetlossresilence = off 
Execution Perform actions by executing test API commands on the SUT dial (protocol=SIP, calltype=video,  

callrate=6000, autoanswer=true) 
Assertion Check the statuses of the SUT assert(NumberofActiveCalls=1) 

Wait Hold the execution of the next statement(s) for a specific time wait (4) 
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Each test method 𝑡𝑚! is composed of a sequence of 𝑖, 𝑞 statements, 𝑡𝑚! = 𝑠𝑡!,!, … , 𝑠𝑡!,!  (e.g., the test 

method in Table 1 has 5 statements). Thus, the total statements in a test case is: 

𝑆𝑇 =  ⨄!"∈!𝐹(𝑡𝑚) ⨄𝐹(𝑠𝑐)⨄𝐹(𝑡𝑑) ⨄𝐹(𝑡𝑑𝑐) , where  𝐹 𝑡𝑚 , 𝐹 𝑠𝑐 ,  𝐹(𝑡𝑑)  and 𝐹(𝑡𝑑𝑐)  are functions that 

return all the statements in the test method 𝑡𝑚, setup class 𝑠𝑐 , teardown 𝑡𝑑, and teardown class 𝑡𝑑𝑐, 

respectively. Moreover, 𝑆𝑇 is a multiset, which is a collection of objects (e.g., statements in this context) 
that allows the objects to occur more than once in a set [11]. To enable the implantation, we need to get 
the statements structured, and therefore we classify them into six categories as shown in Table 2. 

Each test case covers one or more configuration variables, and each configuration variable is 
configured with a configuration value. For example, in the running example (Table 1), the test case 
covers configuration variable packetlossresilence, which is configured by using the value off. We 

represent a set of 𝑟  configuration variables for test suite 𝑇  as 𝐶𝑉! = 𝑐𝑣!, … , 𝑐𝑣! . Thus, the 

configuration variable values covered by the test suite 𝑇 are defined as:  

𝐶𝑉𝑉! = 𝐹(𝑐𝑣)!" ∈ !"!   (1) 

Each test case executes one or more test API commands, each of which has one or more 
parameters. Each parameter is configured with a specific value at a test method for a test case. For 
example, in Table 1, the test case covers the test API command dial, which has four parameters: 
protocol, calltype, callrate, and autoanswer with the values of SIP, Video, 6000, and true, respectively. We 

represent the 𝑢 number of test API commands covered by the test suite 𝑇 as 𝐴𝐶! = 𝑎𝑐!, 𝑎𝑐!, … , 𝑎𝑐! . 

Each test API command 𝑎𝑐! has 𝑖, 𝑣 parameters (i.e., 𝑎𝑐! = {𝑎𝑝!,!, … , 𝑎𝑝!,!}). Systematically considering 
interactions of parameters during testing can lead to a high chance of finding software faults [9, 10]. 
Moreover, exhaustive testing (i.e., testing all combinations of parameters) is very expensive in practice. 
Therefore, pairwise testing has been proposed to reduce the number of interactions of test API 
parameters meanwhile maintain relatively high fault detection rates, from 50% to 97% as reported in 

[12]. Thus, we employ pairwise testing [13] in SBI. A set of pairwise tests 𝑃𝑇! is required to cover all 

interactions of each pair of parameters for each test API command 𝑎𝑐!, such that each test case in 𝑃𝑇! 

contains 𝑖, 𝑣 values, one for each parameter in 𝑎𝑐!. In other words, for each pair of parameter values 

𝑎𝑝𝑣!,!  and 𝑎𝑝𝑣!,! , where 𝑎𝑝𝑣!,! ∈  𝑎𝑝!  and 𝑎𝑝𝑣!,! ∈  𝑎𝑝! , there exists at least one test in 𝑃𝑇!  that 

contains both 𝑎𝑝𝑣!,!  and 𝑎𝑝𝑣!,!  [9]. The set of pairwise tests required to cover all the pairwise 

interactions of each parameter pair for all the test API commands in the test suite is: 

 𝑃𝑇! = 𝑃𝑇!!
!!!               (2) 

where 𝑢 is the number of test API commands covered by 𝑇, and 𝑃𝑇! is the set of pairwise tests required 

for test API command 𝑖. 
Based on the above-mentioned notations, we define test case implantation as: automatically 

modifying and/or deleting existing statements from the original test suite and/or adding new 
statements to the original test suite, with the aim to construct a new test suite, which meets a set of 
predefined criteria, e.g., maximizing the pairwise coverage of parameter values of test API commands. 
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Notably, the defined test case implantation does not increase the total number of test cases as 

compared with the original test suite. We use the following function to represent implanting 𝑡! into 

𝑡!!:  𝐼𝑚𝑝𝑙𝑎𝑛𝑡(𝑡!) → 𝑡!!  (3) 

3.2 Problem Representation 

Let 𝑆 = 𝑠!, 𝑠! , … , 𝑠!"  represents a set of potential solutions, where 𝑛𝑠 = 2! − 1 and 𝑝 = 𝑛 𝑆𝑇!!∈! . 

Each solution 𝑠 = 𝑡!, 𝑡! , … , 𝑡!  has the same number of test cases as the original test suite 𝑇, and some 

of the test cases from 𝑇 are chosen for implantation. 𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡!, … , 𝑐𝑜𝑠𝑡!"#$%  refers to a set of cost 

measures (e.g., execution time of the test suite) and 𝐸𝑓𝑓𝑒𝑐𝑡 = 𝑒𝑓𝑓𝑒𝑐𝑡!, … , 𝑒𝑓𝑓𝑒𝑐𝑡!"##"$%  denotes a set 

of effectiveness measures (e.g., coverage of configuration variable values) for evaluating the quality of 
a solution.  

Problem: Search a solution 𝑠! from the total number of 𝑛𝑠 solutions in 𝑆 that can achieve the maximum 

effectiveness with minimum cost. 

∀!!! !" !"##"$%∀!!! !" !" 𝐸𝑓𝑓𝑒𝑐𝑡 (𝑠!, 𝑒𝑓𝑓𝑒𝑐𝑡!) ≥ 𝐸𝑓𝑓𝑒𝑐𝑡 𝑠!, 𝑒𝑓𝑓𝑒𝑐𝑡!  

 ⋂  ∀!!! !" !"#$%∀!!! !" !" 𝐶𝑜𝑠𝑡 (𝑠!, 𝑐𝑜𝑠𝑡!) ≤ 𝐶𝑜𝑠𝑡 𝑠!, 𝑐𝑜𝑠𝑡!  

𝐸𝑓𝑓𝑒𝑐𝑡 (𝑠!, 𝑒𝑓𝑓𝑒𝑐𝑡!) returns the 𝑖!! effectiveness measure of 𝑠!, and 𝐶𝑜𝑠𝑡 (𝑠!, 𝑐𝑜𝑠𝑡!) returns the 𝑘!! cost 

measure of 𝑠!. 

3.3 Cost and Effectiveness Measures 

This section formally defines three cost measures (Section 3.3.1) and two effectiveness measures 
(Section 3.3.2) based on the problem defined in Section 3.2. 

3.3.1 Cost Measures 

Number of implanted test cases (NIT): Since not all the test cases in the original test suite are selected 

for implantation, we define 𝑁𝐼𝑇 to measure the total number of test cases chosen by the search for 

implantation, which can be calculated as the total number of test cases that exist in 𝑠 but not in the 

original test suite 𝑇. The number of implanted test cases can be calculated as: 

𝑁𝐼𝑇 = 𝑛 𝑡 ∶ 𝑡 ∉ 𝑇! ∈ !   (4) 

Our aim is to minimize 𝑁𝐼𝑇 so that changes are introduced to a minimum number of the existing 
test cases for simplifying maintenance [14, 15]. 

Number of changed statements (NCS): A statement is called a changed statement if an existing 
statement is modified or removed or a new statement is added to the test case. The number of changed 

statements in a solution 𝑠 is the sum of the numbers of modified statements (𝑀𝑆𝑇), deleted statements 

(𝐷𝑆𝑇), and added statements (𝐴𝑆𝑇) for each test case in 𝑠, such that: 

𝑁𝐶𝑆 = ∀! ∈ !(𝑛 𝑀𝑆𝑇! + 𝑛 𝐷𝑆𝑇! + 𝑛 𝐴𝑆𝑇! : 𝑡 ∉ 𝑇)   (5) 

If  𝑡!!  is the implanted test case for the original test case 𝑡!: 
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𝑀𝑆𝑇!"! = ∀!" ∈ !!!⨄!" ∈ !"𝑠𝑡 ∉ 𝑡!,𝐷𝑆𝑇!"! = ∀!" ∈ !"⨄!"∈ !"𝑠𝑡 ∉ 𝑡!! and 

𝐴𝑆𝑇!"! = 𝑛 𝑆𝑇!"! − 𝑛 𝑆𝑇!" + 𝐷𝑆𝑇!"!. 

We aim to minimize 𝑁𝐶𝑆 to ensure that a statement is only changed when necessary (e.g., to cover 
more configuration variable values). 

Estimated execution time (EET): The execution time of a solution (i.e., an implanted test suite) refers 
to the time required for executing all its test cases. The solutions update dynamically during search 
and many solutions are produced, which makes it difficult to execute the solutions for getting their 
execution time. For example, 25000 implanted test suites produced by search have to be executed 
25000 times when the number of fitness evaluation is set as 25000, which is computationally expensive 
and infeasible. Thus, we propose to statically estimate the execution time of a test case in the solution 
based on the execution time of each statement of the test case. We measure the average execution time 

for each statement in a test case 𝑡!  (𝐸𝑇𝐸𝑆! ) using the historical execution time of the test case: 

𝐸𝑇𝐸𝑆! =  !"!
!(!"!)

, where 𝑒𝑡! is the historical execution time of the statement and 𝑛(𝑆𝑇!) is the number of 

statements included in 𝑡!. The estimated execution time of the test cases in the solution 𝑠 is: 

𝐸𝐸𝑇 =  𝑛(𝑆𝑇!)×𝐸𝑇𝐸𝑆!! ∈ !   (6) 

where 𝑛(𝑆𝑇!) is the total number of statements in a test case. Our aim is to minimize the estimated 
execution time of the test cases included in a solution. 

To ensure that EET is accurate for estimation, we conducted a pilot experiment by producing 20 
implanted test suites using our approach, executing them and comparing the real execution time with 
the estimated execution time (i.e., EET). We noticed that the difference between the real execution time 
and EET was on average 395 seconds, which has no practical differences. Therefore, we used EET to 
estimate the real execution time in our context. 

3.3.2 Effectiveness Measures  

Number of configuration variable values covered (NCVV): Based on equation 1, the set of 

configuration variable values covered by a solution 𝑠  is: 𝐶𝐶𝑉𝑉 = 𝐹(𝑐𝑣)!" ∈ !" , where 𝐹(𝑐𝑣)  is a 

function that returns the set of configuration variable values for 𝑐𝑣. The number of configuration 

variable values covered by 𝑠 can be calculated as: 𝑁𝐶𝑉𝑉 = 𝑛(𝐶𝐶𝑉𝑉) (7)  

For example, for the sanitized test case in Table 1, 𝑁𝐶𝑉𝑉 is one as it covers one configuration 
variable with one value (i.e., packetlossresilence with the value off). The goal is to achieve the maximum 
coverage of configuration variable values. 

Pairwise coverage of parameter values of test API commands (PCPV): 𝑃𝐶𝑃𝑉 is defined to measure 
how much pairwise coverage of parameter values of test API commands can be covered by a solution 

𝑠, and it is calculated as below: 

𝑃𝐶𝑃𝑉 = ∀!"∈!∀!!!
! !(!")  ∀!!!!!

! !(!") 𝑛 𝐹(𝑎𝑝!) ×𝑛 𝐹(𝑎𝑝!)      (8) 
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such that 𝑛 𝐹(𝑎𝑐) > 1, where 𝐹 𝑎𝑐  is a function that returns the set of API parameters for the test 

API command 𝑎𝑐, while 𝐹(𝑎𝑝!) and 𝐹(𝑎𝑝!) are functions that return the set of values in the test API 

parameters 𝑖 and 𝑗, respectively. For example, for a solution with only one test case (i.e., sanitized test 

case in Table 1), 𝑃𝐶𝑃𝑉 is six since the test API command dial covers six pairs of parameter values. The 
goal is to maximize the pairwise coverage of parameter values of test API commands. 

4. SBI: SEARCH-BASED TEST CASE IMPLANTATION APPROACH 
This section first provides an overview of SBI (Section 4.1) followed by the detailed presentation of test 
case analyzer (Section 4.2), and test case implanter (Section 4.3). 

4.1 Overview of SBI 

Fig. 2 presents an overview of SBI consisting of two key components: test case analyzer and test case 
implanter. The test case analyzer component ensures that implanted test cases are semantically correct 
(e.g., two new statements should be added in a correct order). For this, the test case analyzer component 
statically analyzes each test case in the original test suite to obtain the program dependence graph [16, 
17] for each test method, which is required to know dependences among statements. For example, on 
removing one statement another dependent statement(s) also need to be removed in the test method 
(see Section 4.2). Nodes in the program dependence graph represent the statements in the test method 
and edges represent the control and data dependence edges [18]. Moreover, the test case analyzer 
component automatically classifies all statements into the six categories defined in Table 2 using the 
statement information document (created one time), which is described in detail in Section 4.2. 

 
Fig. 2. Overview of SBI 

As depicted in Fig. 2, the original test suite is passed to the test case implanter component to 
generate solutions by changing the values of the configuration variables and test API parameters from 
the list of available values provided in the statement information document (detailed in Section 4.3). 
Each generated solution includes implanted test cases and remaining (unchanged) test cases in the 
original test suite that are not chosen for implantation. For implanting a test case, changes are made to 
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one or more of its classified statement (recall Table 2) using the test case implanter component and 
program dependence graph produced by the test case analyzer component is used to change the affected 
statements. 

4.2 Test Case Analyzer 

For each test case in the original test suite, the test case analyzer component automatically classifies all 
the statements of the test case into the six categories (Table 2) and constructs a program dependence 
graph for each test method. 

Statement classification. The test case analyzer component uses the statement information document 
(Fig. 2) for classifying the statements in the test case. Generally, the statement information document 
includes: 1) keywords to distinguish between the different statements (e.g., for the sanitized test case in 
Section 2, packetlossresilence, dial, wait, and assert are defined as keywords to differentiate configuration, 
execution, wait, and assertion statements, respectively), 2) allowed values for the variables/parameters 
(that the test engineers need to test), and 3) domain specific rules for identifying the dependency 
between statements (e.g., later statement(s) in a test case may use same values for the same variable as 
the preceding statement). Notice that test engineers can build such statement information document 
based on their specific testing practice in any format (e.g., XML in our case). 

In our context, the list of configuration variable names and test API commands are specified in the 
statement information document to differentiate between configuration and execution statements. 
Moreover, assertion and wait statements are classified based on whether they contain the keyword 
“assert” or “wait”, respectively. The assignment statement is classified based on if they are used as a 
value at the 1) configuration variable or 2) test API parameter/s (e.g., callrate_var at line 3 in Table 1 is 
used as a value in the parameter callrate in line 4). The program dependence graph is created using 
data and control dependences between statements, as explained below.  

Data dependence. There exists data dependence between two statements if the second statement 
refers to the data of the first statement [17]. We define two sets of data dependences: 1) general and 2) 
domain specific. General dependences apply to all contexts, whereas domain specific data 
dependences are specific to a particular domain. There exists general data dependence between two 
statements in a test method if a variable in one statement has an incorrect value when the two 
statements are reversed. For example, as shown in Table 1, the statement in line 4 is data dependent on 
the statement in line 3 as parameter callrate in dial is defined in line 4 (i.e., callrate_var). We use domain 
specific rules defined explicitly in the statement information document (as illustrated in Fig. 2) to 
create domain specific data dependence. For example, in the context of the video conferencing 
company if there exist two or more execution statements such that the test API command in the execution 
statements use one or more same parameters (e.g., the test API commands dial and call_transfer have the 
same parameter protocol) the value of the parameter in the test API command in the second execution 
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statement must take the same value as the same parameter defined in the test API command at the first 
execution statement. 

Control dependence. Similar to data dependences, there exist general and domain specific control 
dependences. There exists a general control dependence between two statements if the value of the 
first statement controls the execution of the second statement [17]. For example, in the sequence, if 
(protocol = SIP) then accept, the statement accept depends on the predicate statement if (protocol = SIP) 
since the value of protocol determines if accept is executed. As in data dependence, domain specific 
control dependence is based on domain specific rules based on the statement information document 
(as illustrated in Fig. 2). For example, in the context of the video conferencing company, if there are 
two execution statements (e.g., one with test API command dial and the other with call_transfer), the 
execution of the second execution statement (i.e., call_transfer) depends on the execution of the first 
execution statement. To capture this dependence, we keep track of the statement execution order at the 
test method in the test case. 

4.3 Test Case Implanter 

The test case implanter component includes two steps: test case selection and test case implantation. The 
first step is to select test cases from the original test suite for implantation. To this end, we use decision 
variables (Section 4.3.1) to guide the search for selecting test cases based on the defined fitness 
function. The second step is to implant the selected test cases by changing statement(s) (e.g., adding 
new statement) in test methods using a mutation operator with three operations (i.e., addition, modification, 
and deletion).  

4.3.1 Solution Representation 

We represent each solution at two different levels: test suite level and test case level, as shown in Fig. 

3. At the test suite level, test cases in solution 𝑠 are represented with an array of real variables, 

 𝑉 = 𝑣!, … , 𝑣! , where each variable 𝑣! is associated with test case 𝑡! (Fig. 3). The value of 𝑣! ranges 

from 0 to 1, and this value indicates whether 𝑡! is selected for implantation in 𝑠. A value greater than 
0.5 indicates that the test case is selected for implantation, while a value less than or equal to 0.5 

indicates otherwise. Initially, each variable in 𝑉 (i.e., 𝑣!) is assigned a random value from 0 to 1, and 
during the search, the test case implanter component of SBI returns the solutions guided by the fitness 
functions defined in the next section. 

Test Case 𝑡! 𝑡! 𝑡! … 𝑡!!! 𝑡!!! 𝑡! 
Variable 𝑣! 𝑣! 𝑣! … 𝑣!!! 𝑣!!! 𝑣! 

Test Suite Level 

Test Method 𝑡𝑚!,! … 𝑡𝑚!,! 
Statements 𝑠𝑡!!,!, … , 𝑠𝑡!!,! … 𝑠𝑡!",!, … , 𝑠𝑡!!,! 

Test Case Level for Test Case 𝑡! 
Fig. 3. Two Different Levels in a Solution 
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At the test case level, a particular test case is composed of a number of test methods and each test 

method includes a set of statements. Fig. 3 depicts a set of test methods (𝑡𝑚!,!) for test case 𝑡! with the 

total number of test methods being 𝑖, 𝑜. 

4.3.2 Fitness Function 

Recall that the goal of SBI is to cost-effectively implant existing test cases, while 1) maximizing the 

effectiveness (i.e., 𝑁𝐶𝑉𝑉 and 𝑃𝐶𝑉𝑉) and 2) minimizing the cost (i.e., 𝑁𝐼𝑇, 𝑁𝐶𝑆, and 𝐸𝐸𝑇). With this goal 
in mind, we have defined the five cost-effectiveness measures in Section 3.3. Since values of different 
cost and effectiveness measures are not comparable, we use the normalization function suggested in 
[19] to normalize the values in the same magnitude of 0 and 1 for all the five cost and effectiveness 

measures: 𝑁𝑜𝑟 𝐹 𝑥 = !(!)
! ! !!

, where 𝐹(𝑥)  is a function for 𝑁𝐼𝑇, 𝑁𝐶𝑆, 𝐸𝐸𝑇,𝑁𝐶𝑉𝑉,  and 𝑃𝐶𝑉𝑉 

(equations 4 - 8). Thus, for the five cost and effectiveness measures (equations 4 – 8), we define the 

following five objective functions: 𝐹 𝑂! = 𝑁𝑜𝑟 𝑁𝐼𝑇 , 𝐹 𝑂! = 𝑁𝑜𝑟(𝑁𝐶𝑆), 𝐹 𝑂! = 𝑁𝑜𝑟 𝐸𝐸𝑇  

𝐹 𝑂! = 1 −  𝑁𝑜𝑟 𝑁𝐶𝑉𝑉 , 𝐹 𝑂! = 1 −  𝑁𝑜𝑟(𝑃𝐶𝑉𝑉) 
Note that we define our multi-objective search problem as a minimization problem, i.e., a solution 

with a lower value for an objective implies a better performance of a solution. Therefore, we subtracted 

1 for the effectiveness measures: 𝐹 𝑂!  and 𝐹 𝑂! . 

4.3.3 Test Case Implantation 

Test case implantation occurs at the test case level (Fig. 3). For this, values of configuration variables in 
configuration statements or values of parameters in execution statements are based on their allowed 
values provided in the statement information document (Fig. 2). When changing values of parameters, 
the pairwise testing strategy is applied as explained in Section 3.1. Recall that the statement 
classification is provided by the test case analyzer component (Section 4.2). When a particular statement 
in a test method is changed, forward and backward slicing [20] is applied to obtain affected statements 
of the test method (using the program dependence graph from the test case analyzer component) that 
should be changed as well. A slice refers to a set of statements that influence the value of a variable at 
a particular program location (i.e., the location of the changed statement in this context) [21]. The 
process is described in detail in the next section. 

Search Operators at the Test Suite Level: The test case analyzer component integrates the defined 
fitness function into a multi-objective search algorithm, NSGA-II [3], which has achieved promising 
results when addressing a variety of software engineering problems [22, 23]. We chose the widely used 
tournament selector [3] as the selection operator to select individual solutions with the best fitness for 
inclusion into the next generation. The crossover operator is applied at the test suite level, which 
randomly swaps parts of two parent solutions (i.e., test suites) to produce two offspring solutions. To 
this end, we chose a single point crossover operator that randomly selects the same point in both the 
parent solutions for generating the offspring solutions as shown in Fig. 4.  
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Crossover point 
𝑡!,! 𝑡!,! 𝑡!,! 𝑡!,! 
0.3 0.4 0.1 0.6 

Parent 1 (Solution    𝑠!) 

 
𝑡!,! 𝑡!,! 𝑡!,! 𝑡!,! 
0.3 0.4 0.1 0.9 

Offspring Solution 1 
 

𝑡!,! 𝑡!,! 𝑡!,! 𝑡!,! 
0.2 0.8 0.7 0.9 

Parent 2 (Solution 𝑠!) Offspring solution 2 

𝑡!,! 𝑡!,! 𝑡!,! 𝑡!,! 
0.2 0.8 0.7 0.6 

Fig. 4. Single Point Crossover applied between Two Solutions 

The generated offspring solutions contain the test cases and the variable values associated with 
the test cases from the parent solutions as shown in Fig. 4. Note that we do not apply the crossover 
operator at the test case level since the setup class, teardown, and teardown class required for running the 
test methods may vary across test cases, which might lead to semantically incorrect test cases. 

We apply the mutation operator at both the test suite and test case levels (Fig. 3). In terms of the test 
suite level, the mutation operator is defined to randomly swap the values of two variables (Section 4.3.1) 

based on the pre-defined mutation probability (e.g., 1/(𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑠𝑢𝑖𝑡𝑒)), and recall that each 
variable represents a test case in our context. After the values of the variables have been swapped, if 
the value of the variable is greater than 0.5, the test case represented by the variable is selected for 
implantation. For example, in Fig. 4, if the mutation operator is applied to swap the values of the 

variables representing 𝑡!,! and 𝑡!,! in the offspring solution 1, the variable representing 𝑡!,! will have a 

new value 0.9 while the variable representing 𝑡!,! will have the value 0.3. This causes 𝑡!,! to be selected 

for implantation instead of 𝑡!,!. 

Mutation Operator at the Test Case Level: With respect to the test case level (Fig. 3), we defined three 
operations for the mutation operator: modification, addition, and deletion inspired from the work in [24, 

25]. Each operation is randomly chosen with a probability of 1/3 for each test case selected for the 
implantation. Therefore, on average, at least one operation is applied to the selected test case for 

implantation. Moreover, for a test case 𝑡!  with the number of test methods as 𝑜 , i.e., 

𝑡! = 𝑡𝑚!,!, … , 𝑡𝑚!,!  in Fig. 3, each test method is mutated with a probability 1/𝑜 using the chosen 

operation (e.g., addition) for the mutation operator. Note that the operation is applied to the 
configuration or execution statement in a test case (Table 2) because they determine the functionality of 

the SUT that is being tested. If 𝑡𝑚! is the test method to be changed in the test case 𝑡! with the number 

of configuration and execution statements 𝑒, each configuration or execution statement is mutated 

with a probability of 1/𝑒. Suppose 𝑠𝑡! is the statement to be changed, we explain the three operations 
for the mutation operator below. 

Modification operation. The value of the configuration variable or parameter for the test API command 

in 𝑠𝑡!  is randomly changed to cover an uncovered 1) value of the configuration variable for 
configuration statement or 2) pairwise coverage of parameter values of the test API commands for 

execution statement. After the statement 𝑠𝑡! is modified, if there exists statement(s) dependent on 𝑠𝑡! 
(Section 4.2), they are also modified using the statement dependencies obtained from the test case 
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analyzer component (Section 4.2). For example, in Table 1 if the modification operation is applied to the 
execution statement at line 4, i.e., the test API command dial, the values of the parameters are randomly 
changed to increase the pairwise coverage. If the parameter callrate in dial (pointing to callrate_var) is 
required to be modified from 6000 to 64, the variable callrate_var is modified to 64. 

Addition operation. A copy of statement 𝑠𝑡! (i.e., 𝑠𝑡!!) is created with the random uncovered 1) value of 
the configuration variable for configuration statement or 2) pairwise coverage of parameter values of the 

test API commands for execution statement. The new statement 𝑠𝑡!! is then added to a new test method 

𝑡𝑚!!, and 𝑡𝑚!! is filled with all the statements dependent on 𝑠𝑡! in 𝑡𝑚! (Section 4.2). If the values of the 

statement(s) depend upon 𝑠𝑡!!, the dependent statement (s) are also modified after adding to the new 
test method. In the running example in Table 1, if the configuration variable packetlossresilence at line 2 is 
selected for applying the addition operation, test case analyzer will add a new statement packetlossresilence 
with the uncovered value (i.e., on) in a new test method. Since the statements in lines 4, 5, and 6 are 
control dependent on line 2 (Table 1), they are also added in the new test method. Moreover, the 
statement in line 4 is also added in the new test method since it is data dependent on line 3 (Table 1). 

Deletion operation. A statement 𝑠𝑡! is deleted from test method 𝑡𝑚! if the values of the configuration 
variables or the parameters (for the pairwise coverage of parameter values of test API commands) 

tested by 𝑡𝑚! have been already covered by other test cases in solution 𝑠. For example, if the deletion 
operation is applied in line 4 at Table 1 (i.e., statement with dial) and the parameter values for dial (line 4 

in Table 1) are covered by another test case in solution 𝑠, then line 4 is removed from the test method in 
Table 1. Moreover, lines 2, 3, 5, and 6 are dependent on line 4 in Table 1, and therefore removed. 

5. EXPERIMENT DESIGN 
	
In this section, we describe the experiment design (as shown in Table 3), which includes the case 
studies (Section 5.1), research questions (Section 5.2), experiment tasks (Section 5.3), and statistical tests 
along with the experiment settings (Section 5.4).  

5.1 Case Studies 

To evaluate SBI, we chose one industrial case study from the video conferencing company referred as 

𝐶𝑆!, and the open source case study of SafeHome [4] referred as 𝐶𝑆!. The industrial case study focuses 
on automated testing of large-scale VCSs developed by the video conferencing company. Each VCS 
has an average of three million lines of embedded C code and requires a thorough testing before 
releasing them to the market. We chose a test suite containing 118 test cases for evaluation, where on 
average, each test case consists of 4 test methods and 30.8 statements (as defined in Section 2). 
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Moreover, the SafeHome case study was constructed based on the open source implementation of 

a home security and surveillance system [26], which consists of in total 13 Java classes. Each class has 
on average 263.4 lines of Java code and the detailed description of these classes can be consulted in [4]. 
Notice that the original implementation reported in [26] includes only 9 configuration variables (i.e., 6 
Boolean variables and 3 Integer variables) and lacks sufficient parameters to evaluate SBI (i.e., most of 
the test API commands have 0 or 1 parameter). Therefore, we extended the SafeHome case study by 
adding: 1) additional 19 configuration variables that include 8 String variables with on average 5 
values to configure for each, 2 Integer variables, and 9 Boolean variables and 2) in total 37 methods in 
the source code (e.g., createUser). 3,424 lines of non-comment Java source code (calculated using 
sloccount [27]) were added in total for the case study.  

To obtain the original test suite for implantation for the SafeHome case study, we applied 
EvoSuite [28] to automatically generate in total 94 test cases (as the original test suite for implantation) 
including an average of 2.4 test methods and 19 statements for each test case. Note that our aim is to 
implant the original test suite for increasing the configuration coverage rather than comparing the 
performance between SBI and EvoSuite. To make the experiment reproducible, we have made the 
extended SafeHome case study publically available at [29].  

5.2 Research Questions 

To evaluate SBI, we aim at addressing the following four research questions (RQs). 
RQ1 (Effectiveness). Can SBI significantly increase (i) the coverage of configuration variable values 
and (ii) pairwise coverage of the parameter values of test API commands (as defined in Section 3.3.2)?  
RQ2 (Acceptability). Can the implanted test suites maintain an acceptable cost without largely 
increasing the test case execution time?  

RQ3 (Coverage). Can SBI significantly increase the code coverage in terms of statement coverage (𝑆𝐶) 

and branch coverage (𝐵𝐶)?  
RQ4 (Mutation Analysis). Can the implanted test suites produced by SBI significantly improve the 
mutation score as compared with the original test suite? We performed mutation analysis to further 
assess the fault detection capability achieved by SBI [30-33]. Notice that since we do not have access to 

the source code of our industrial case study from the video conferencing company (i.e., 𝐶𝑆!) due to 

confidential concerns, RQ3 and RQ4 are only addressed using 𝐶𝑆!. 

Table 3. An Overview of the Experiment Design 

RQ Task Comparisons Case Study Evaluation 
Metrics 

Statistical 
Tests 

1 
𝐽! Coverage of configuration variable values  

𝐶𝑆!, 𝐶𝑆! 

𝑁𝐶𝑉𝑉 
𝑃𝐶𝑃𝑉 

One-sample 
Wilcoxon 

test 𝐽! Pairwise coverage of parameter values of test API commands 

2 𝐽! Estimated execution time 𝐸𝐸𝑇  
𝐽! Number of implanted test cases and changed statements 𝑁𝐼𝑇, 𝑁𝐶𝑆 

3 𝐽! Statement coverage 
𝐶𝑆! 

𝑆𝐶 One-sample 
Wilcoxon 

test 
𝐽! Branch coverage 𝐵𝐶 

4 𝐽! Mutation score 𝑀𝑆 
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5.3 Experiment Tasks and Evaluation Metrics 

As shown in Table 3, we designed seven tasks (𝐽!- 𝐽!) to answer the RQs. Tasks 𝐽! and 𝐽! are designed 

to address RQ1. More specifically, 𝐽! is designed to compare the coverage of the configuration variable 

values achieved by an implanted test suite (𝑇!) produced by SBI and the original test suite (𝑇) using 

the evaluation metric 𝑁𝐶𝑉𝑉  (equation 7). 𝐽!  was conducted to compare the pairwise coverage of 

parameter values of test API commands achieved by 𝑇 and 𝑇! for both 𝐶𝑆! and 𝐶𝑆! with the evaluation 

metric 𝑃𝐶𝑃𝑉 (equation 8).  

To address RQ2, 𝐽! and 𝐽! were performed to evaluate the acceptability of the implanted test suites 
produced by SBI in terms of execution time, number of implanted test cases, and changed statements. 

The cost measures (i.e., 𝐸𝐸𝑇,𝑁𝐼𝑇, and 𝑁𝐶𝑆) were used as the evaluation metrics for 𝐽! and 𝐽!. For RQ3, 

𝐽! and 𝐽! were conducted to measure the code coverage with the evaluation metrics 𝑆𝐶 and 𝐵𝐶. 𝑆𝐶 
measures the number of statements in the source code that are executed when executing a given test 

suite, while 𝐵𝐶 measures the number of possible branch(es) from each decision point that is executed 

[34]. Finally, RQ4 is addressed by task 𝐽! using the mutation score (𝑀𝑆) [35] as the evaluation metric, 

which is widely used [30-33] to measure the fault detection capability of the test suite. 𝑀𝑆 is the ratio 
of killed mutants out of the total number of non-equivalent mutants [35].  

5.4 Statistical Tests and Experiment Settings 

5.4.1 Statistical Tests 

To choose an appropriate statistical test, we first performed the Shapiro-Wilk test [36, 37] to assess 
whether the data samples produced are normally distributed. The results of the Shapiro-Wilk test 
showed the obtained data samples were not normally distributed, and thus we chose the one-sample 
Wilcoxon test as recommended in [38] to statistically evaluate results of RQ1, RQ3, and RQ4 (Table 3). 

We used the one-sample Wilcoxon test (𝑝-value) since the coverage of the original test suite (e.g., 

𝑁𝐶𝑉𝑉, SC) is fixed, and we chose the significance level of 0.05, i.e., there is a significant difference if the 

𝑝-value is less than 0.05. Moreover, we compare mean values for the coverage of the original test suite 
and the test suites implanted by SBI to see in which direction the results are significant, i.e., which 

approach is better when the 𝑝-value is less than 0.05. 

5.4.2 Experiment Settings 

SBI is implemented using a Java framework jMetal [39], which has been widely used for various multi-
objective optimization problems [40-42]. Recall that SBI is designed on the top of NSGA-II, and we 
used the standard settings of NSGA-II for configuring the parameters of SBI as suggested in [38], 
except for the mutation rate at the test case level (as discussed in Section 4.3.3) to be able to change 
each test case selected for implantation. More specifically, we chose 1) the population size as 100, 2) 

crossover rate as 0.9, 3) mutation rate at the test suite level as 1/(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠), 4) the 
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mutation rate at the test case level is 1/3 for each test case selected for implantation, and 5) the 
maximum number of fitness evaluation (i.e., termination criteria of the algorithm) is set as 25,000. Note 
that parameter tuning may lead to different performance of search algorithms, but standard parameter 
settings are usually recommended [38]. 

Regarding SC and BC (RQ3), we used the open source tool Eclemma [43] to measure the SC and 
BC achieved by the implanted test suites and the original one. For mutation analysis (RQ4), we used 
the Java-based mutation tool PIT [44], which has been extensively used in mutation testing research 
[45, 46]. All the seven basic mutation operators in PIT (i.e., conditionals boundary, increments, invert 
negatives, math, negate conditionals, return values, and void method calls) were applied and 1594 

non-equivalent mutants were generated for 𝐶𝑆!. In addition, we ran SBI 10 times to account for the 
random variation for each case study since SBI is built on top of NSGA-II [38]. 

6. RESULTS, ANALYSIS, AND OVERALL DISCUSSION 
	
This section presents the result and analysis of the four research questions in Section 6.1 - 6.4 and the 
overall discussion in Section 6.5. 

6.1 RQ1. Effectiveness of SBI 

Recall that RQ1 aims to assess the effectiveness of the implanted test suites produced by SBI in terms 
of the two effectiveness measures (described in Section 3.3.2): number of configuration variable values 

covered (𝑁𝐶𝑉𝑉) and pairwise coverage of parameter values of test API commands (𝑃𝐶𝑃𝑉). The mean 
difference between the values produced by the implanted test suites and the original test suite is 19.6 

and 112.2 for 𝑁𝐶𝑉𝑉 and 𝑃𝐶𝑃𝑉 respectively in 𝐶𝑆! and 11.5 and 156.9 for 𝑃𝐶𝑃𝑉 in 𝐶𝑆!. Moreover, all the 

mean differences are statistically significant since all the 𝑝-values are less than 0.001 (from the one-
sample Wilcoxon test), which shows that SBI managed to perform significantly better than the original 

test suite in terms of 𝑁𝐶𝑉𝑉 and 𝑃𝐶𝑃𝑉. 
Table 4 summarizes the values for different evaluation metrics achieved by SBI for the 1000 

implanted test suites (i.e., solutions) and the original test suites for the two case studies (i.e., CS1 and 
CS2). Recall from Section 5.4.2 that SBI is executed 10 times, and each run produces 100 optimal 

solutions. For the effectiveness measures (i.e., 𝑁𝐶𝑉𝑉 and 𝑃𝐶𝑃𝑉), we can conclude from Table 4 that on 

average SBI managed to achieve 22.8% higher 𝑁𝐶𝑉𝑉 and 52.9% higher 𝑃𝐶𝑃𝑉 for CS1 and 20.9% and 

65.9% higher 𝑃𝐶𝑃𝑉 for CS2.  

Table 4. Results of Different Evaluation Metrics for the Original Test Suites and Implanted Test Suites* 

CS Test Suite 
NCVV PCPV EET NIT NCS SC BC 
Values Values Values Values Values Values Values 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

CS1 SBI 105.6 12.3 324.2 80.1 9607s 2745.1s 42.8 16.8 674.8 819.8  Original 86 212 8222s  
CS2 SBI 66.5 6 394.9 123.5 3.8s 0.3s 32.8 14.1 760.3 832.9 71.5% 3.3% 57.4% 5.3% 

Original 55 238 3.5s  66.7% 49.9% 
*SD:	standard	deviation,	s:	seconds.	
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Since the results from CS1 and CS2  are consistent and all the implanted test suites have significantly 

higher coverage 𝑁𝐶𝑉𝑉 and 𝑃𝐶𝑃𝑉 as compared to the original test suite, we can answer RQ1 as: the 
implanted test suites produced by SBI achieved significantly higher effectiveness than the original one, 
which demonstrates that SBI is effective. 

6.2 RQ2. Acceptability of SBI 

We can observe from Table 4 that the implanted test suites produced by SBI require on average 16.8% 

(1385 seconds) and 8.6% (0.3 second) more 𝐸𝐸𝑇 for CS1 and CS2, respectively as compared to the 
original test suite. Such an increase in the execution time is practically acceptable for both the case 

studies since the effectiveness of the test suite is significantly improved (e.g., 52.9% higher 𝑃𝐶𝑃𝑉 for 

CS1, 65.9% higher 𝑃𝐶𝑃𝑉 for CS1). Therefore, we conclude that SBI can maintain acceptable cost without 
largely increasing the test case execution time indicating that SBI is cost-effective.  

6.3 RQ3. Code Coverage of Implanted Test Suite by SBI 

This RQ aims to evaluate whether SBI can increase the overall code coverage in terms of SC and BC 

using the SafeHome case study (i.e., 𝐶𝑆!). From Table 4, we can observe that the mean difference 
between the values produced by the implanted test suites and the original test suite is 4.8% and 7.5% 
for SC and BC respectively. Additionally, all the mean differences are statistically significant since the 

𝑝-values are less than 0.001 (obtained from the one-sample Wilcoxon test). Thus, we summarize that 
SBI can significantly increase the code coverage of the original test suite. 

6.4 RQ4. Mutation Score 

Recall that this RQ aims to check whether the test suites implanted by SBI has a higher mutation score 
(MS) than the original test suite. Recall from Section 5.4.2 that each execution of SBI produces 100 
optimal solutions, and it is quite expensive to perform mutation analysis for all the 1000 solutions 
(produced by executing SBI 10 times) since it takes more than four minutes to perform mutation 
analysis for one solution. Thus, we chose only two solutions produced in each run of SBI to perform 
mutation analysis. Based on the existing work [47, 48], we chose the solutions based on the following 
two ways: 1) random, referred as random solution and 2) highest average value of all the defined cost-
effectiveness measures (Section 3.3) referred as selected solution. Table 4 

Table 5 summarizes the results of MS for the original test suite, the average of 10 random solutions, 
and 10 selected solutions. Moreover, Table 5 shows the result of the mean difference and the one-sample 
Wilcoxon test between the MS produced by the original test suite and 10 random solutions and 10 
selected solutions. Based on Table 5, we can conclude for RQ4 that the solutions implanted by SBI have a 

significantly higher MS since the 𝑝-values for the random solutions and selected solutions are less than 
0.05 and the mean difference is positive (e.g., 3.1% indicating that the selected solutions improved MS on 
average 3.1% as compared to the original test suite). Thus, we can answer RQ4 as SBI can detect more 
faults (as indicated by a higher MS). 
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Table 5. Results of RQ4* 
Solution MS Mean Difference (RA/SA-Original) p-value 
Original 33.9%   

RA 36% 2.1% 0.002 
SA 37% 3.1% 0.002 

*RA: Average MS for the random solutions, SA: Average MS for the selected solutions. 

Notice that running time is an important perspective when evaluating a search-based approach 
[22, 49], and thus we report the running time of SBI.  SBI took an average of 72.3 minutes and 78.1 
minutes for CS1 and CS2 , respectively. Such running time has no practical impact on the use of our 
approach since test case implantation is a one-time effort for a given test suite. 

6.5 Overall Discussion 

For RQ1 and RQ2, we observed that SBI managed to significantly increase the effectiveness of the 

original test suite  (measured by 𝑁𝐶𝑉𝑉 and 𝑃𝐶𝑃𝑉) without significantly increasing the cost (measured 

by 𝐸𝐸𝑇). The reason behind this is because SBI modifies the original test cases by changing (i.e., 
modifying/adding/removing) the statements to maximize the effectiveness measures and minimize 
the cost measures as defined in Section 3.3. Thus, we conclude that SBI is a cost-effective approach for 
tackling the test case implantation problem.  

Regarding RQ3, the results showed that SBI did not manage to improve the SC and BC by a large 
percentage for CS2. This is because SBI cannot further increase the code coverage if the original test 
suite has already covered all the parameters of a method in the source code or some methods are not 
targeted at all by the original test suite, which can be considered as the limitation of SBI and will be 
further investigated in the future. For instance, in the class SensorTest (available in [29]), all the 
parameters in the method armMotionDetector have already been tested by the original test suite while 
the method actionPerformed in the class was not targeted by the original test suite. Thus, SBI was not 
able to increase the code coverage for the class SensorTest.  

Furthermore, Fig. 5 presents SC and BC for the original test suite and the implanted test suites by 
SBI for the 13 classes and the overall coverage (i.e., Total) that is the ratio of the total number of 
statements/branches covered and total number of statements/branches present in the source code in 
CS2. From Fig. 5, we can observe that SBI managed to improve SC and BC for 6 of the 13 classes (e.g., 
on average 15.2% higher SC and 14.9% higher BC for class User in Fig. 5), and there was no change for 
the remaining 7 classes (e.g., ControlPanel) since all the parameters in the methods have already been 
tested or the methods are not targeted by the original test suite. 
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Regarding RQ4, SBI increased MS for 4 classes (out of 13 classes) in 𝐶𝑆! as shown in Fig. 6. Note 

that MS did not increase in all the classes where SC and BC increased. For instance, MS increased in 
class User where SC and BC also grew. Class DeviceWindowSensor [29] had an increasing SC and BC, 
but MS remained similar as compared with the original test suite. Such observation is consistent with 
the findings of the state-of-the-art [30] showing that the code coverage (e.g., SC) is not strongly 
correlated with test suite effectiveness (e.g., MS). 

Finally, for the real industrial case study, SBI needs to be run only once in practice (using 72.3 
minutes) to obtain an implanted test suite (including 118 test cases). This is equivalent to modifying 
one test case using on average 0.61 minutes (72.3/118) or 37 seconds. Clearly, modifying a test case 
manually within 37 seconds is practically not possible. In addition, SBI produces the optimal 
implanted test cases that satisfy various cost and effectiveness objectives (Section 3.3). Thus, we can 
conclude SBI is beneficial in practice, at least for our industrial case study. 

7. THREATS TO VALIDITY 
This section presents some of the potential threats to the validity of the two case studies investigated in 
this paper. 

Threats to internal validity consider the internal factors (e.g., algorithm parameters) that could 
influence the obtained results [50]. In our context, internal validity threats arise due to experiment with 
only one set of configuration settings for the algorithm parameters [51]. However, these settings are in 
accordance with the guidelines from the literature [52], and previously we have achieved good results 
with these settings in different software engineering problems [53, 54]. Regarding the mutation rate 
applied on the test case level, we chose a rate that has earlier been investigated in the literature [24].  

					 	

Fig. 5. SC and BC for the Original Test Suite and Test Suites Implanted using SBI* 
 

					 	

																															Random solution                       Selected solution 
Fig. 6.  MS for the Original Solution compared with Random and Selected solutions* 

*U: user, DWS: DeviceWindowSensor, SHC: SafeHomeController, ST: SensorTest, MD: MainDemo, DC: DeviceCamera, DMD: DeviceMotionDetector,   
DCP: DeviceControlPanelAbstract, CT: CameraTest, CV: CameraView, DST: DeviceSensorTester, UI: UserInterface, CP: ControlPanel. 
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Another threat to internal validity involves instrumentation effects, i.e., the quality of the coverage 
information and mutation score measured [22]. To mitigate this threat, we used open source tools 
Eclemma and PIT that have been widely used in the literature [45, 46, 55, 56]. 

Threats to external validity are related to the factors that affect the generalization of the results [50]. 
To mitigate this threat, we chose two different case studies (i.e., industrial case study and open source 
case study) for evaluating SBI. We plan to conduct more case studies in the future to generalize the 
results. It is also worth mentioning that such threats to external validity are common in empirical 
studies [23, 57]. Another external validity threat is due to the selection of a search algorithm for SBI. To 
reduce this threat, we selected the most widely used search algorithm (NSGA-II) that has been widely 
applied in different contexts [23, 42, 57]. 

Threats to construct validity arise when the measurement metrics do not sufficiently cover the 
concepts they are supposed to measure [22]. To mitigate this threat, we compare the implanted test 
suites by SBI and the original test suite based on evaluation metrics that have been widely adopted in 
the literature: statement coverage, branch coverage, mutation score, and running time. 

Threats to conclusion validity are related to the factors that influence the conclusion drawn from the 
results of the experiments [58]. The conclusion validity threat when using randomized algorithms is 
related to random variation in the produced results. To mitigate this threat, we repeated each 
experiment 10 times for SBI to reduce the possibility that the results were obtained by chance. 
Moreover, we carefully applied statistical tests by following the guidelines of reporting results for 
randomized algorithms [38]. 

8. RELATED WORK 
	
There are a number of existing works related to code transplantation, test suite augmentation, test 
generation, and testing of highly configurable software systems that have certain similarities with our 
work (i.e., test case implantation). We discuss each of them in detail as below. 

8.1 Code Transplantation 

In recent years, there has been an increasing attention on code transplantation within/across software 
systems [59-62]. For instance, Weimer et al. [59] used genetic programming (GP) to evolve defective 
programs to fix defects while maintaining specified functionalities for automatic program repair. Petke 
et al. [61] used GP to evolve a program by transplanting code from other programs for improving 
system’s performance. Barr et al. [60] automatically transplanted functionalities of programs across 
different software systems using GP and program slicing.  

As compared with the existing work for code transplantation (e.g., [59-61]), SBI has at least two 
key differences: 1) The goal is different, i.e., we aim at automatically implanting existing test cases to 
test untested configurations rather than transplanting software code; 2) Five objectives (e.g., 
maximizing the number of configuration variable values covered) are defined to guide the search for 
selecting and implanting test cases. 
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8.2 Test Suite Augmentation 

There is a number of studies focusing on test suite augmentation that refers to identifying code 
elements affected by software changes as it evolves (e.g., new functionalities are added), and 
generating test cases to test those elements [63-67]. For instance, dependence analysis and partial 
symbolic execution were used in [65] to identify the changed test requirements when the program is 
evolved, however they do not generate test cases. In [63] a directed test suite augmentation technique 
was proposed for 1) identifying the code affected by changes in the program and 2) generating new 
test cases for testing the affected code using a concolic test case generation approach [68].  

As compared with the above-mentioned literature, SBI aims to cost-effectively increase the 
configuration coverage of the original test suite rather than generating new test cases for testing the 
modified code. Furthermore, we defined three operations (i.e., addition, modification and deletion) to 
automatically implant the test cases, which is not the case in the existing work.  

8.3 Test Generation 

Different techniques have been used for test generation such as random testing [69], symbolic 
execution [70, 71] and search techniques [24, 28, 72-74] (that is the most relevant to this work). For 
instance, Miller et al. [73] used program dependence graphs and genetic algorithm to generate test 
data for maximizing condition-decision coverage. Ali et al. [72] designed a search-based Object 
Constraint Language (OCL) constraint solver by defining branch distance functions to support test 
data generation for model-based testing. Fraser and Arcuri [24, 28] designed and implemented a tool 
(i.e., EvoSuite) to generate test cases with an aim to maximize different coverage criteria (e.g., line, 
branch) and mutation testing using search. As compared with the state-of-the-art for test generation, 
SBI focuses on automated implanting an existing test suite to test untested configurations instead of 
generating test cases from scratch.  

8.4 Testing of Highly Configurable Software Systems 

There is a large body of research with respect to the testing of highly configurable software systems 
with many configurations [75-81]. Existing works have proposed many sampling techniques to select a 
subset of representative configurations for testing [78-81]. For instance, Swanson [78] modeled a highly 
configurable system using feature model followed by applying random sampling to repeatedly 
generate a random configuration from the feature model for testing. Qu et al. [79] and Yilmaz et al. 
[80] used covering array sampling method to generate at least one t-combination configuration (to be 
tested) for representing all valid t-combination configurations in the configuration space. Cohen et al. 
[82] combined pairwise algorithms (e.g., meta-heuristic search algorithm) with Boolean satisfiability 
(SAT) solvers to handle constraints while generating configurations for interaction testing of highly 
configurable systems.  

As compared with the existing studies of testing highly configurable software systems, the focus 
of our work is totally different, i.e., we aim at implanting an original test suite to test untested 
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configurations, and thus increase the configuration coverage of the existing test suite. To achieve this 
goal, we proposed a search-based approach (i.e., SBI) for automated test case implantation (Section 4). 

9. CONCLUSION 
This paper introduced a novel search-based test case implantation approach (SBI) including two key 
components (i.e., test case analyzer and test case implanter) with the aim to automatically analyze and 
implant the existing test cases to test the untested configurations. SBI was evaluated using one 
industrial and one open source case study. The results showed that the implanted test suites produced 
by SBI performed significantly better than the original test suite for both the case studies.  More 
specifically, SBI significantly outperformed the original suite for both the case studies by achieving on 
average 21.9% higher number of configuration variables values and 59.4% higher pairwise coverage of 

parameter values of test API commands. Moreover, for the open source case study, the implanted test 
suites managed to improve statement coverage, branch coverage, and mutation score with on average 
4.8%, 7.5%, and 2.6%, respectively. 

As future work, we first plan to apply more case studies to further strengthen the applicability of 
SBI. We also want to evaluate the performance of SBI by integrating with other multi-objective search 
algorithms (e.g., Strength Pareto Evolutionary Algorithm (SPEA2) [83]). 
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