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Abstract

Skilled developers are important to the software industry. In empirical studies in soft-

ware engineering, knowing the skill level of the participants is also important for correct

interpretation of results. The current practice in industry and research for assessing

programming skills is mostly to use proxy variables of skill, such as education, experience,

and multiple-choice knowledge tests. There is as yet no valid and e�cient way to measure

programming skill. Consequently, this thesis aimed to construct a valid instrument for

measuring programming skill, where skill is inferred from performance on programming

tasks.

The Rasch measurement model was used to construct the instrument. Sixty-five

professional developers from eight countries participated in validating the instrument,

solving 19 Java programming tasks over two days. The validity of the instrument was

theoretically investigated through commercial and research-based tests. Programming

skill, as measured by the instrument, was also investigated in terms of experience and

other background variables.

The instrument was found to have desirable psychometric properties, and the over-

all results appear well aligned with theoretical expectations. This work has shown that

acceptable measures of programming skill may be obtained with less than one day of

testing. Further work should be directed at reducing the time needed to measure pro-

gramming skill without a↵ecting the validity of the instrument. The results of the research

have already been transferred to the industry through a commercial prototype.
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Summary

1 Introduction

Software engineering involves the development, improvement, and understanding of tech-

nologies, processes, and resources that constitute software development. In the modern

society, which is driven by software, one key resource is the software developer or pro-

grammer. One way to satisfy society’s ever-increasing demand for greater productivity

is to educate and train developers to become highly skilled and, thus, productive. This

thesis investigates the extent to which programming skill can be measured.

1.1 Programming Skill Di↵erences

As in most human activities, individual performance in the development of software varies

considerably. The purpose of studying individual di↵erences is to understand, predict,

and represent such di↵erences. Variation in performance can be attributed to the di↵erent

capacities for performance that individuals possess. Such capacities, or capabilities, which

have a potential for performance, are usually expressed as abilities.

Most generally, “an ability is a [human] trait defined by what an individual can do”

(Ferguson, 1956, p. 122). While skill falls under the broad category of human“abilities”, it

is a specialized type of ability, one that improves with practice and is well adjusted (Pear,

1928), well organized, and goal oriented (Fitts & Posner, 1967). Many factors a↵ect the

performance of an individual, albeit indirectly, but there are only three direct determinants

of performance—knowledge, skill, and motivation (Campbell, McCloy, Oppler, & Sager,

1993).

Even though skill is inferred from performance (Fitts & Posner, 1967), skill cannot be

equated with performance. For example, if one observes that an individual performs well

on a specific task, one may state the obvious: “this is good performance.” However, if one



2 Summary

states that “the individual performed well because of his high level of skill”, one is making

a generalization, which in turn requires justification (Messick, 1994). High performance

is, in many occasions, most likely due to high skill. However, high performance may also

be due to luck.

When stating that someone is highly skilled, the expectation is that the person would

perform well over time for a wide range of tasks, as in a job context. In the taxonomy of

eight major components of job performance suggested by Campbell et al. (1993), one such

component is “technical skill”. In the software industry, several surveys and studies have

ranked technical skill as the most important skill for a software developer or program-

mer (see, e.g., Bailey & Mitchell, 2006; Hawk et al., 2012; Lethbridge, 2000; McGill, 2008).

A recent analysis of nearly 800,000 projects or tasks at an outsourcing provider concluded

that “the client may substantially reduce the risk of project failure by emphasizing good

provider skills rather than low price” (Jørgensen, 2014, p. 19). Moreover, according to the

US Bureau of Labor Statistics, the description of a software developer is someone who

usually holds “a bachelor’s degree in computer science and strong computer programming

skills” (2014). The programming skill level of software developers is therefore important

during sta�ng decisions, such as hiring a new employee or consultant, or assigning exist-

ing employees to a software project. At present, such decisions are based on more or less

well-founded perceptions of skill level.

Individual skill is also central to how well teams of software developers perform.

Although team performance is more complex to understand than individual performance

due to the many components that may interact in a team (see, e.g., Baker & Salas, 1992;

Volmer, 2006), individual skill or expertise is nevertheless a central component in team

performance (Land, Wong, & Je↵ery, 2003). Because team skill may be a function of

individual skill plus interactions between individuals, measuring team skill (e.g. Beaver &

Schiavone, 2006) partially depends on the understanding and measurement of individual

skill.

The technical skill of an individual is also central to research on job performance in

general; according to Campbell, Gasser, and Oswald, “a full model of the causal mecha-

nisms linking ability, personality, training, experience, and so on with [job] performance

will require valid measurement of . . . job skill” (1996, p. 276).

Variability between developers creates problems in experiments in software engineering

(Tichy, 1998). For example, in randomized experiments in software engineering, where

groups of developers are presented with di↵erent treatments to determine their e↵ect,

researchers sometimes assume that no other di↵erences exist between the two groups

that can a↵ect the outcome of the dependent variable. Di↵erences in the skill level of

the individuals in each of the groups may nevertheless exist, and can thereby confound

the interpretation of the results (see generally Shadish, Cook, & Campbell, 2002). In

quasi-experiments in particular, which are experiments without random assignment to

treatment, the problem of having groups with unequal skill is presumed to be a pervasive

confounding factor (Kampenes, Dyb̊a, Hannay, & Sjøberg, 2009).

Education is another area where programming skill di↵erences may play an important

role. For example, the goal of curriculum in software programming courses is to teach

students relevant knowledge of software development as well as the application of this
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knowledge. Particularly for vocational educations, the degree to which a newly graduated

student can immediately contribute positively to a project may be an important criterion

of whether students are su�ciently skilled to be hired for a job. The development of

skill is also a major component in the evolution of the profession of software engineering,

for example, as expressed in multi-institutional initiatives such as SWEBOK2004 (Abran,

Moore, Bourque, Dupuis, & Tripp, 2004) or SE2004 (Lethbridge, LeBlanc, Sobel, Hilburn,

& Diaz-Herrera, 2006). In addition to ensuring that students are taught relevant skills (see,

e.g., Gallivan, Truex, & Kvasny, 2004; Surakka, 2007), the level of programming skill

that groups of students acquire during their training may also indicate the quality of an

educational system.

Di↵erences in programming skill are substantial in industry, research, and educa-

tion (see, e.g., Boehm, 1981; Bryan, 1994; Card, Mc Garry, & Page, 1987; Curtis, 1981;

DeMarco & Lister, 1985, 1999). In an early experiment on programming performance,

large di↵erences in performance were found between professional developers who solved

the same tasks. Consequently, Grant and Sackman recommended that “[t]echniques mea-

suring individual programming skills should be vigorously pursued, tested and evaluated,

and developed on a broad front for the growing variety of programming jobs”(1967, p. 46).

Even though there is disagreement regarding the magnitude of these di↵erences (Dickey,

1981; Prechelt, 1999a), the di↵erences appear to be considerable, and measures of skill

therefore should be developed (Kampenes et al., 2009; Prechelt, 1999a).

1.2 Scientific versus Common Measurement

An indication of the maturity of a discipline is the extent to which standardized measure-

ment instruments are available (Ebert, Dumke, Bundschuh, & Schmietendorf, 2005). The

practices involved when measuring something may vary considerably. It is therefore im-

portant to explicate how such practices di↵er.

The gold standard in terms of rigor is that of scientific measurement used within the

physical sciences (see, e.g., Krantz, Luce, Suppes, & Tversky, 1971). According to Michell,

measurement is defined as “the estimation or discovery of the ratio of some magnitude

of a quantitative attribute to a unit of the same attribute” (1997, p. 358). Measures

of attributes may be fundamental or indirect. For example, measurement of “length” is

considered fundamental because it does not require the measurement of other attributes,

whereas measurement of “density” is indirect because it requires the measurement of both

mass and volume (Krantz et al., 1971). Nevertheless, both fundamental and indirect

measures can be obtained through measurement instruments, which are high-precision

devices or tools used to obtain measures.

In contrast, perhaps the most commonly used definition of measurement in psychology

originates from a 1940 report that addressed whether the intensity of sensory events were

measurable. Although the members of the committee “found themselves unable to agree

on the meaning of such terms as ‘measurement’ or ‘quantitative estimate”’ (Ferguson et

al., 1940, p. 332), Stevens paraphrased one of the committee member’s views and defined

measurement “in the broadest sense . . . as the assignment of numerals to objects or events

according to rules” (1946, p. 677).
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Software engineering is a multi-disciplinary field and uses both the scientific and the

more informal definition of measurement. For example, “time” is a quantitative vari-

able that can be scientifically and fundamentally measured. Conversely, variables such

as software quality (Ebert et al., 2005) and key factors of success in software process

improvement (Dyb̊a, 2000) are also variables that are indirectly measured using quite dif-

ferent methods. Thus, “measurement” can refer to two factually di↵erent practices. I will

refer to the more specific scientific definition as “scientific measurement”, in contrast to

the common, more informal definition of “measurement” throughout this summary.

For the present context, the most important distinction between scientific and common

measurement is that the two practices di↵er according to their level of rigor. Scientific

measurement involves a unit and a continuous, quantitative attribute, and it is possible

to empirically test whether a purported measurement instrument actually yields scien-

tific measures of quantitative attributes (Michell, 1997). In contrast, the rigor involved

in common measurement varies. In some instances, whether a variable is quantitative

and thus measurable is not tested. This is problematic because measurement then be-

comes a truism where nothing informative is gained by the assertion that something is

being measured. However, in other instances, partial requirements for scientific measures

are met (see Borsboom & Mellenbergh, 2004). Thus, one may surmise, first, that from

the perspective of scientific measurement, the attribute being measured must be quan-

titative (Markus & Borsboom, 2012), and second, that according to Stevens’ version of

measurement, there must exist laws about the attribute that is being measured that are

empirically testable (Luce, 1997).

Another distinction between the two views on measurement is the scales for which

the measure of some attribute is represented. Common measurement uses four scale

categories: nominal, ordinal, interval, and ratio (Stevens, 1946). However, because the

nominal scale is merely a category where no two objects are assigned the same value, only

three scales are of primary interest for representing di↵erences in skill. In increasing order

of precision, the remaining three scales can state whether a developer A di↵ers from a

developer B with respect to being (say)

• better than (ordinal scale, i.e., greater or less),

• a certain magnitude better than (interval scale, i.e., equality of di↵erences), or

• twice as good (ratio scale, i.e., equality of ratios).

For scientific measurement, only the interval and ratio scales are properly used in connec-

tion with the term measurement.

The problem of having two di↵erent practices involved in the validation of measures

has previously been pointed out by researchers within software engineering (see Fenton,

1994; Fenton & Kitchenham, 1991). This challenge appears to have been answered by

calling for pragmatism; if scientific definition of measurement were to be used, “it would

represent a substantial hindrance to the progress of empirical research in software engi-

neering” (Briand, El Emam, & Morasca, 1996, p. 61). Generally, there is nothing wrong

with being pragmatic as long as shortcomings are acknowledged. However, it is easy

to misinterpret this pragmatism as an indication that software engineering has somehow
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resolved the problems associated with measuring central concepts such as programming

skill.

1.3 Research Problem and Research Questions

A valid scientific measure of programming skill that is easily administered, scored, and

interpreted will have a wide range of applications in industry, research, and education.

However, it is uncertain whether such a measure is possible to attain. Thus, the overall

research problem in this thesis is the extent to which programming skill can be validly

measured from programming performance, using a scientific definition of measurement.

One may ask why measures of skill are required when one can use fundamental and

scientific measures of “programming performance” directly. For example, the time needed

to obtain a correct solution on a programming task can be scientifically measured, allowing

ratio comparisons to be made directly (e.g., “developer A is twice as fast as developer B”).

There are several problems associated with such a solution. First, there is no easy way

to compare the time for those problems with incorrect solutions with the time for those

with correct solutions. For example, if developer B is unable to solve a problem that

developer A solved in one hour, the ratio of performance between developers A and B

is unknown. Another problem is that programming performance not only involves time

but also software quality, which consists of many sub dimensions (McCall, 1994) that can

be di�cult to measure (see, for example, Jones, 1978 for an early paper). Researchers in

software engineering have encountered problems with the conceptualization and measures

of software quality (see Fenton & Kitchenham, 1991; Kitchenham & Pfleeger, 1996). Thus,

there are no “trivial” solutions to the overall research problem. Instead, three research

questions (RQ) will therefore be investigated in this thesis:

RQ1: How can time and quality of a task be combined as programming performance?

RQ2: How can programming skill be measured from programming performance?

RQ3: How can measures of programming skill be validated?

Concerning RQ1, the relation between time, quality, and performance may be for-

mulated as follows: First, assume that other variables remain fixed. Then, to define an

individual’s level of programming performance as high or good, quality should be as high

as possible, and time spent should be as low as possible. However, a problem is that time

and quality do not operate using the same units, and the tradeo↵ for one with the other

is therefore often unknown. Time and quality may also use di↵erent scales, depending on

what factor of quality is intended. For example, computing e�ciency, which is the amount

of resources a computer uses during a calculation, may be measured using a ratio scale

(e.g., computer clock cycles or CPU time). Furthermore, correctness may use an ordinal

scale (e.g., “incorrect”, “partially correct”, or “correct”). Thus, one must investigate how

programming tasks can be used to define performance, when time, quality, or both time

and quality may vary.
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With respect to RQ2, it should be clear that performance is a characteristic of the

actions of an individual, but it is not an attribute of the individual; that is, performance

is “something we do”, not “something we are” (see Messick, 1994). For example, for

an airplane passenger, the di↵erence between landing safely (good flying performance)

and dying in a crash (the worst possible flying performance) is probably infinitely large.

However, it is clearly wrong to infer that there are infinitely large di↵erences in the piloting

skill of the commercial airline pilots because airplanes do crash from time to time. Thus,

whereas performance is central to infer skill, performance cannot be equated with skill.

One particular issue that informs the distinction between performance and skill is the

measurement unit used to represent the two concepts. Whereas performance may use

units such as time, degree of correctness, e�cacy, reliability, etc., none of these units are

meaningful to characterize skill. For example, Ackerman (1992) studied di↵erences in skill

in an air tra�c control simulator, where the subjects were required to manage the arrival

and departure of 28 airplanes. Successful completion of the task, and thus an indicator

of the highest skill level, actually involved multiple tasks, since the airplanes must not

crash, violate flight safely regulations, or otherwise depart from their scheduled flight plan.

Within programming, Anderson, Farrell, and Sauers (1984) investigated programming

skill in LISP and used the number and type of errors that the student made during

programming to infer skill. Thus, even though an individual’s performance on a task may

be well defined in terms of capturing both time and quality in relation to skill, no single

instance of performance has been identified that can capture all aspects of a skill (Fitts

& Posner, 1967). Therefore, some way to measure programming skill from performance

is needed.

Finally, RQ3 asks why detailed distinctions in the definition, theory, and, to some

extent, the philosophy concerning measurement are important. Why is it important to

investigate the validity of instruments that purport to measure skills in programming?

The most general answer is that added precision enables well-informed decisions. A pre-

requisite for well-informed decisions is accurate knowledge. One way such knowledge is

sometimes acquired is through theories. However, as Popper states: “measurements pre-

suppose theories” (1968, p. 62). Thus, accurate knowledge about skill requires that we

are able to measure it. It is also di�cult to begin thinking about a theory or a problem

without any idea of how elements that constitute a part of the theory are actually mea-

sured (see Kyburg, 1984). Moreover, in some situations, it is not even possible to begin

to ask the right research questions until more fundamental issues are resolved, such as

whether something can be measured (Michell, 1997). Borsboom states:

“Thinking about the relation between a psychological attribute and the data

patterns that are supposed to measure it forces a deeper investigation into the

nature of the attribute and the way the measurement instrument is supposed

to work. It requires one to spell out, at least at a very coarse level, why one

is justified in treating the data patterns as measurements; i.e., it gives one

the beginnings of an argument for the validity of the measurement instrument

used” (2008, p. 50).
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1.4 Thesis Statement

My thesis statement is as follows:

For a large proportion of programming tasks in a specific programming language,

programming skill can be measured because developers display a reasonably stable

level of performance across tasks in a way that is consistent with the theory of skill

and, to some extent, scientific measurement.

That only some programming tasks can be used to measure programming skill is a

delimiting factor. Nevertheless, it will be shown that a valid measure of programming skill

can predict programming performance on tasks that cannot be used to measure program-

ming skill. Programming skill is also specific to a programming language. Although many

programming concepts are the same across programming languages (i.e., same semantics,

but di↵erent syntax), technical challenges arise when evaluating these without using a

specific programming language.

The aim is to develop scientific measures of programming skill. However, the extent to

which scientific measures of programming skill can be achieved remains an open question.

It will likely remain unresolved for some time to come. Nevertheless, what is important

is not this end goal, but rather the partial results arising from the progress towards this

goal. Many testable consequences can be derived from the theory of skill and the theory

of measurement. By systematic, empirical testing of such consequences as well as related

assumptions, it may be possible to resolve issues one at a time, thereby yielding cumulative

knowledge about the measurement of programming skill.

Finally, the level of abstraction one uses when referring to the term “programming

skill” is important. At a low level, programming skill may be both categorical and multi-

dimensional, in the same way that solving addition and solving multiplication problems

should be considered distinct skills (see van der Maas, Molenaar, Maris, Kievit, & Bors-

boom, 2011). Thus, representing programming skill along a single continuous dimension

for this low level of abstraction may therefore be inappropriate. However, the intended

level of abstraction for this thesis is that of “which of two developers A and B should

I assign to project X with a complexity of Y?” At this higher level of abstraction, an

interval scale variable may still adequately represent the actual observed di↵erences in

programming performance of the two developers.

1.5 Claimed Contribution

From the perspective of methodology in empirical software engineering, this thesis con-

tributes to

• an increased understanding of how time and quality of the solutions to programming

tasks can be analyzed as a combined variable (i.e., “programming performance”) in

a consistent manner,

• a demonstration of alternative ways to conceptualize the measurement of program-

ming skill using instruments where skill is inferred from programming performance,
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• an explication of how to validate instruments that claim to “measure programming

skill” according to generally accepted scientific standards, and

• insights from conducting a large and comprehensive study on professional program-

mers in a realistic industrial setting.1

This thesis also has research and industry applications. The measurement instrument

of programming skill that was developed in this thesis has already been used in empirical

studies to select, describe, and analyze the programming skill levels of software developers.

An industrial version of the instrument is currently undergoing evaluation in a commercial

pilot setting.

1.6 Thesis Structure

This thesis is organized in a summary and a collection of papers:

The Summary introduces the papers of the thesis. Section 2 describes the background

to the research problem of measuring programming skill and provides an overview of the

related literature and fundamental concepts. Section 3 describes the research method.

Section 4 summarizes the results of the research questions. Section 5 discusses the overall

research problem of measuring programming skill, implication for research, and the use

of the measurement instrument. Section 6 concludes.

The collection of papers consists of four published papers. Each paper has its own refer-

ences. Figure 1 shows how Papers I to III address di↵erent aspects of the thesis, discussed

in detail below. Paper IV demonstrates the use of the instrument in a replicated experi-

ment. Thus, the numbering of the papers is not in chronological order of publication.

Instead, the numbering follows a bottom-up approach to understanding the work that

ends in a demonstration.

Paper I, “Inferring skill from tests of programming performance: combining time

and quality”, shows an initial attempt, called the “Pre Study” throughout this thesis,

at reanalyzing performance data from four previous programming experiments reported

in (Arisholm & Sjøberg, 2004; Karahasanović, Levine, & Thomas, 2007; Karahasanović &

Thomas, 2007; Kværn, 2006). The paper was co-authored with Jo Hannay, Dag Sjøberg,

Tore Dyb̊a, and Amela Karahasanović and was published in the proceedings of the 5th In-

ternational Symposium on Empirical Software Engineering and Measurement (Bergersen,

Hannay, Sjøberg, Dyb̊a, & Karahasanović, 2011). The main challenge addressed was how

to combine time and quality as performance in a way that yielded consistent results across

all the tasks that each individual solved. The paper concerns the score aggregation model

in Figure 1, where task performance is defined by the variable time and one or more qual-

1In a survey of controlled experiments published in 12 leading software engineering journal and con-
ferences between 1993 and 2002, only 19% used professionals as subjects and only 3% of the experiments
used payment as reward for participation (Sjøberg et al., 2005). Moreover, with respect to study dura-
tion and the number of subjects involved, the research reported here is “large” according to both these
classifications used in the survey.
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Figure 1: Papers I, II, and III cover di↵erent aspects, using three models, whereas Paper IV
(not shown) provides a demonstration of how the instrument for measuring programming
skill could be used in a replicated experiment.

ity variables using di↵erent ways to aggregate these variables. This abstract summarizes

the published paper:

The skills of software developers are important to the success of software

projects. Also, when studying the general e↵ect of a tool or method, it is

important to control for individual di↵erences in skill. However, the way skill

is assessed is often ad hoc, or based on unvalidated methods. According to

established test theory, validated tests of skill should infer skill levels from

well-defined performance measures on multiple, small, representative tasks.

In this respect, we show how time and quality, which are often analyzed sepa-

rately, can be combined as task performance and subsequently be aggregated

as an approximation of skill. Our results show significant positive correlations

between our proposed measures of skill and other variables, such as seniority,

lines of code written, and self-evaluated expertise. The method for combining

time and quality is a promising first step to measuring programming skill in

both industry and research settings.

The “Main Study” of this thesis is presented in Papers II, III, and IV. Paper II,

“Construction and validation of an instrument for measuring programing skill”, takes the

main insights from Paper I and uses a new data set with mostly new programming tasks

(three tasks from Paper I were reused verbatim to allow comparisons across the data sets).
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The paper was co-authored with Dag Sjøberg and Tore Dyb̊a and was published in the

IEEE Transactions on Software Engineering (Bergersen, Sjøberg, & Dyb̊a, 2014). The

paper addresses the measurement model in Figure 1 where an individual’s performance

over multiple task is used to measure skill. The abstract shows how a measurement

instrument of programming skill was constructed and validated:

Skilled workers are crucial to the success of software development. The current

practice in research and industry for assessing programming skills is mostly

to use proxy variables of skill, such as education, experience, and multiple-

choice knowledge tests. There is as yet no valid and e�cient way to measure

programming skill. The aim of this research is to develop a valid instrument

that measures programming skill by inferring skill directly from the perfor-

mance on programming tasks. Over two days, 65 professional developers from

eight countries solved 19 Java programming tasks. Based on the developers’

performance, the Rasch measurement model was used to construct the instru-

ment. The instrument was found to have satisfactory (internal) psychometric

properties and correlated with external variables in compliance with theoreti-

cal expectations. Such an instrument has many implications for practice, for

example, in job recruitment and project allocation.

Paper III is entitled “Programming skill, knowledge, and working memory among pro-

fessional software developers from an investment theory perspective”, and was co-authored

with Jan-Eric Gustafsson. The paper was published in the Journal of Individual Di↵er-

ences (Bergersen & Gustafsson, 2011). The paper extends the validation of the instrument

for measuring programming skill in Paper II and investigates the overall results according

to Cattell’s investment theory (1971/1987). The paper relates to the structural model in

Figure 1, where the relation between programming skill and other related variables such

as experience and knowledge is investigated. The abstract states:

This study investigates the role of working memory and experience in the de-

velopment of programming knowledge and programming skill. An instrument

for assessing programming skill—where skill is inferred from programming

performance—was administered along with tests of working memory and pro-

gramming knowledge. We recruited 65 professional software developers from

nine companies in eight European countries to participate in a two-day study.

Results indicate that the e↵ect of working memory and experience on pro-

gramming skill is mediated through programming knowledge. Programming

knowledge was further found to explain individual di↵erences in programming

skill to a large extent. The overall findings support Cattell’s investment theory.

Further, we discuss how this study, which currently serves a pilot function, can

be extended in future studies. Although low statistical power is a concern for

some of the results reported, this work contributes to research on individual

di↵erences in high-realism work settings with professionals as subjects.

Paper IV, “Evaluating methods and technologies in software engineering with respect

to developers’ skill level”, demonstrates an application of the instrument from the Main
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Study in a replicated experiment. The paper was co-authored with Dag Sjøberg and

was published in the proceedings of the 5th International Symposium on Evaluation and

Assessment in Software Engineering (Bergersen & Sjøberg, 2012). As reflected in the

abstract, the paper emphasizes the importance of having measures of programming skill

as part of statistical and descriptive analysis when evaluating the benefit of a technology

or method:

It is trivial that the usefulness of a technology depends on the skill of the user.

Several studies have reported an interaction between skill levels and di↵erent

technologies, but the e↵ect of skill is, for the most part, ignored in empir-

ical, human-centric studies in software engineering. This paper investigates

the usefulness of a technology as a function of skill. An experiment that used

students as subjects found recursive implementations to be easier to debug cor-

rectly than iterative implementations. We replicated the experiment by hiring

65 professional developers from nine companies in eight countries. In addi-

tion to the debugging tasks, performance on 17 other programming tasks was

collected and analyzed using a measurement model that expressed the e↵ect

of treatment as a function of skill. The hypotheses of the original study were

confirmed only for the low-skilled subjects in our replication. Conversely, the

high-skilled subjects correctly debugged the iterative implementations faster

than the recursive ones, while the di↵erence between correct and incorrect

solutions for both treatments was negligible. We also found that the e↵ect of

skill (odds ratio = 9.4) was much larger than the e↵ect of the treatment (odds

ratio = 1.5). Claiming that a technology is better than another is problem-

atic without taking skill levels into account. Better ways to assess skills as an

integral part of technology evaluation are required.

All four papers present the details of the research related to the overall research prob-

lem. Each paper has, thus, a narrow focus which informs the broader discussion provided

in this summary.

2 General Background and Fundamental Concepts

This section provides a general background to fundamental concepts related to program-

ming, such as “performance”, “skill”, and “measurement”. However, all these concepts are

widely used in everyday life as well as in research literature, often with di↵erent meanings

and implications, thus presenting a challenge for the present discussion. Synonyms for

these concepts are also abundant, which in turn implies that a wide range of other related

concepts deserves to be discussed together with the key concepts of this thesis. The spe-

cific and actual details on which concepts are investigated in this thesis are provided in

Section 3.

Figure 2 shows three philosophical viewpoints on measurement in the context of pro-

gramming skill: the realist, empiricist, and pragmatist viewpoints. Section 2.1 provides
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Figure 2: The philosophical view on measurement (adapted from Maul et al., 2013).

a background for central concepts according to the empiricist viewpoint, where the main

focus concerns specific issues related to performance in the context of programming and

outcomes of the measurement procedure. Section 2.2 introduces the theory of skill, which

describes the natural reality of skilled behavior across many applied fields (i.e., realist

viewpoint). According to this viewpoint, the substantive theory of skill acts as an epis-

temic layer, which expresses the relation between observable (empirical) outcomes and

the natural reality, which may not be observed directly. Next, in Section 2.3, research on

programming skill is provided specifically in the context of the (general) theory of skill.

Finally, in Section 2.4, the last of the three epistemic layers of the realist view is dis-

cussed; the Rasch model for measurement.2 The pragmatist viewpoint, which emphasizes

the actions, decisions, and consequences of measurement outcomes, is not discussed.

2.1 Research on Programmers and Their Performance

Available research on programmers and their performance is a broad topic that covers

many research fields, including particular concepts and research traditions. At the onset,

there are challenges to provide a lucid and clearly structured overview of this related

work because the terminology in published work is often inconsistent, conflicting, and

not well defined. Nevertheless, I will provide a brief overview of related work for the

terms ability, aptitude, personality, competency, knowledge, motivation, and expertise

(including novice-expert distinctions), as well as growth-based classification of various

capabilities.

In this thesis, I use the term capability as a generic term denoting an unspecified ca-

pacity for performance. I discuss factors that influence the growth of various capabilities,

such as experience, education, and intelligence. I will also introduce performance and pro-

2Background theory, focal theory, and data theory are three types of theories that are often used in a
thesis. These theories are addressed in, respectively, Sections 2.1, 2.2–2.3, and 2.4 in this thesis.
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Figure 3: Capabilities of programmers and their performance.

ductivity, which is often discussed in relation to the terms above. Moreover, technologies,

processes, and other factors will be addressed together with the research methods and

technical assessment frameworks that are often required to study many of the involved

concepts.3

Research on programmers and their capabilities began soon after the first digital elec-

tronic computers were constructed. In the 1950s, card punch operators (McNamara &

Hughes, 1955) and the psychological traits of computer programmers (Rowan, 1957) were

investigated. In the 1960s, the use of tests in selection and training (Perry & Cantley,

1965) as well as in the general evaluation of computer programmers (Berger & Wilson,

1965; Mayer & Stalnaker, 1968; Oyer, 1969) also received increased research attention

(see Simpson, 1973 for an early overview).

Attention to the underlying psychology of computer programming came in focus in

the 1970s. Exploratory experiments were conducted on the behavior of programmers

(Shneiderman, 1976), and cognitive frameworks describing the skills and knowledge in-

volved in understanding, writing, and maintaining program code (Shneiderman & Mayer,

1979) were suggested. Theories concerning the cognitive processes (Brooks, 1977) and

comprehension of computer programs (Brooks, 1983) were also formulated and summa-

rized in books during this time by Shneiderman (1980) and Weinberg (1971).

Looking back at this field, which is more than half a century old, it is clear that research

on programmers and their performance covers many di↵erent concepts and perspectives.

Figure 3 shows one way of structuring some fundamental concepts that are often involved

when discussing programmers and their performance. In the center is the programmer

who can be characterized according to many di↵erent kinds of (1) general psychological

capabilities (e.g., intelligence) or more specific capabilities directly related to program-

ming (e.g., knowledge of a specific programming language). Each capability may, in turn,

be a↵ected by di↵erent (2) antecedents (e.g., programming experience or education may

a↵ect the acquisition of programming knowledge). The capabilities of individuals a↵ect

(3) programming performance, which in turn may be defined narrowly (e.g., only refer-

3The provided exposition is neither complete nor systematic. Instead, I emphasize research that has
influenced this thesis with a priority on publications that are based on empirical data.
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ring to, say, sorting algorithms) or broadly (e.g., encompassing not only technical, but

also process-related and administrative aspects of programming). The relation between

capabilities and performance is further a↵ected by (4) technologies, processes, and other

factors that may moderate the relationship. Moreover, the (5) research methods used

to study the concepts involved may also influence our knowledge about e↵ects that are

present in the causal chain leading to programming performance. Each of these concepts

is now addressed.

Concerning psychological capabilities (1), a number of terms may be used to charac-

terize the capabilities of an individual in addition to skill. A commonly used classification

is to distinguish those that are considered stable (or fixed) from those that are expected

to change over time—that is, they are malleable.4

Among those capabilities that are considered fixed (or relatively stable) is general

cognitive (mental) ability, which has been studied using various operationalizations of

cognitive ability (see, e.g., Cegielski & Hall, 2006; Linn & Dalbey, 1989; Mayer, Dyck,

& Vilberg, 1986). Moreover, research on programming ability has also been conducted,

for example, in relation to lab practica (Chamillard & Braun, 2000; Chamillard & Joiner,

2001) and peer ratings (Carver, Hochstein, & Oslin, 2011; see Daly & Waldron, 2004 for

an overview.) However, “programming ability” in these works is not theoretically defined

but only indicates an unspecified capability for programming.

Programming aptitude is a term that is often used to identify the reason that some de-

velopers are dispositionally better at becoming good programmers. Tests of programming

aptitude were popular in the 1970s (see, e.g., Alspaugh, 1972; Mazlack, 1980), but they

appear to have not been used to much extent later due to lack of good results from these

tests (Bornat, Dehnadi, & Simon, 2008; Curtis, 1991; Mayer & Stalnaker, 1968). For ex-

ample, in a sample of over 3,500 students, no incremental validity was found for specialized

aptitude tests for programmers over the more general aptitude tests used by the United

States Air Force (Besetsny, Ree, & Earles, 1993). Thus, when new tests of programming

aptitude are proposed (e.g., Dehnadi, 2006; Harris, 2014; Tukiainen & Mönkkönen, 2002),

the main challenge is not whether such tests predict the success in learning to program,

but rather that such tests should be better than other tests that are already available for

use and, furthermore, may be used in many more situations besides programming.

Personality is yet another relatively stable variable that may explain di↵erences in

performance (Acuña, Gómez, & Juristo, 2009; Cegielski & Hall, 2006; Turley & Bieman,

1995; Whipkey, 1984; see Pocius, 1991 for an early review). At the same time, negligible

or somewhat inconsistent associations between performance and personality have also

been reported (Bell, Hall, Hannay, Pfahl, & Acuña, 2010; Evans & Simkin, 1989; Hannay,

Arisholm, Engvik, & Sjøberg, 2010). Nevertheless, support for that conscientiousness,

which has in many other areas been found to predict performance, is still somewhat

predictive of highly capable software developers (Clark, Walz, & Wynekoop, 2003). There

are indications, however, that the personality profile of programmers may not be typical

of national norms (Hannay et al., 2010; Pocius, 1991; Whipkey, 1984). This may, in

turn, pose a challenge in using personality as an important predictor of performance, for

4Within psychology, a fixed capability is sometimes called a “trait”, whereas the a malleable one is
called a “state” (see, e.g., Carroll, 1993).
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example, in a job situation.

In contrast to the fixed variables just discussed, many malleable capabilities have been

investigated. A challenge with classifying these capabilities is that synonyms are often

used interchangeably. Furthermore, the underlying theoretical framework for the terms

used is seldom explicated, making it di�cult to ascertain what kind of capability is referred

to.5 For example, Evans and Simkin (1989) provide a summary of studies attempting to

predict student “computer proficiency” between 1972 and 1987, but they motivate their

work in relation to “programming aptitude”. Further discussions on previous work on

programming “ability” and “skill” are then provided.

Another example where programming abilities and skills are evaluated empirically is

within the evaluation of competency (see, e.g., McNamara, 2004). Dijkstra, an authority

within computer science, also referred to competence several times in his Turing Award

Lecture (1972). However, for many, competence is a “fuzzy” concept, and it therefore does

not appear to receive much research attention due to its overlap with concepts such as

knowledge, skill, and ability (see generally Le Deist & Winterton, 2005; Stoof, Martens,

van Merriënboer, & Bastiaens, 2002, but see Turley & Bieman, 1995 for a study on the

identification of important competencies for software engineers). Nevertheless, there are

several studies available about the skills and competencies needed by programmers in

industrial jobs (Bailey & Mitchell, 2006; Surakka, 2007; Turley & Bieman, 1995).

Programming knowledge is another malleable capability that is critical to the success-

ful completion of many software activities. Programming knowledge has been empiri-

cally investigated in many di↵erent contexts, such as in relation to Bloom’s taxonomy

(Buckley & Exton, 2003), and with respect to programming courses at universities (see,

e.g., Chatzopoulou & Economides, 2010). Nevertheless, programming knowledge is often

omitted, intentionally or unintentionally, when addressing what capabilities are important

for programmers. An exception is theoretically oriented studies on programming compre-

hension, where programming knowledge is central (discussed further in Section 2.2).

Motivation is an important capability because human performance cannot be studied

if people are not su�ciently motivated to perform. Motivation can also be highly variable.

In a systematic literature on motivation in software engineering (Beecham, Baddoo, Hall,

Robinson, & Sharp, 2008), 21 di↵erent motivators were identified from the literature

that positively and negatively a↵ect programming performance to various degrees (see,

generally, Latham & Pinder, 2005). In open source projects, increased status, and not

payment, may act as an important reinforcing factor of intrinsic motivation (Roberts,

Hann, & Slaughter, 2006). From the general literature in psychology it is known that

di↵erences in motivation may also be a confounding variable. For example, in their study

on intelligence testing, Duckworth, Quinn, Lynam, Loeber, and Stouthamer-Loeber (2011)

reported that incentives yielded an average increase of more than half a standard deviation.

Another type of malleable capability is expertise, which is typically classified according

to the dichotomy novice versus expert di↵erences. Although such studies use the same

terminology as theoretically oriented studies on expertise (discussed in Section 2.2), the

studies mentioned here sometimes di↵er significantly with respect to how an expert is de-

5If a theory of ”human capabilities” existed, I would be subject to the same criticism when discussing
the term “capability” in this section.
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fined. For example, when comparing developers with no prior experience in programming

(i.e., a novice), an expert may be defined as anything that deviates from a novice (i.e., a

graduate student or an individual with some experience in programming). An example of

a study on novice-expert di↵erences is provided by Doane, Pellegrino, and Klatzky (1990)

who found that experts (i.e., those with a course in Unix and more than 3 years of ex-

perience) performed better than intermediates (i.e., students in upper division computer

science courses) who, in turn, were better than novices (i.e., students who just started

education in computer science). Other studies comparing students and professionals in-

stead have found that the two groups di↵er in how they externalize information (Davies,

1993) and that professionals are generally better at focusing on the kernel of programming

tasks (Holt, Boehm-Davis, & Schultz, 1987), use exception handling (Shah, Görg, & Har-

rold, 2010) and use better (and di↵erent) comprehension strategies (Burkhardt, Détienne,

& Wiedenbeck, 2002).

Growth-based classifications describe and explain the phases an individual may move

through when a capability increases. Previous work has applied Bloom’s taxonomy to

describe the stages in the computer science curriculum(Buck & Stucki, 2001) as well as

Dreyfus and Dreyfus’ (1986) five-step model of skill acquisition in a programming context

(see Campbell, Brown, & DiBello, 1992). Related to such work is the personal software

process (PSP), which describes process elements that a professional programmer should

apply (Humphrey, 1996). PSP has also been the target for empirical evaluations (see,

e.g., Chen, Hsueh, & Lee, 2011; Prechelt & Unger, 2000). Moreover, attempts have also

been made at making a People Capability Model (Curtis, Hefley, & Miller, 1995), similar

to the more well-known Capability Maturity Model.

Turning to (2) in Figure 3, a typical antecedent that may a↵ect the acquisition of

many programming capabilities is experience. In general, experience with a specific soft-

ware domain, technology, or programming language is more often an advantage when

programming than no prior experience. Both breadth and duration of experience are of

relevance (Stanislaw, Hesketh, Kanavaros, Hesketh, & Robinson, 1994); for example, ten

years of experience with one programming language a↵ects programming capabilities dif-

ferently than one year of experience in ten di↵erent programming languages a↵ects. In

addition, a programming problem may also be construed and solved quite di↵erently by

experienced rather than inexperienced developers; see, for example, (Adelson & Soloway,

1985) for an early study on the e↵ect of domain experience in software design. Some

studies have demonstrated a positive e↵ect of having experience (e.g., Agarwal, Sinha,

& Tanniru, 1996; Arisholm & Sjøberg, 2004). Other studies have reported no e↵ect of

experience beyond the first few years (e.g., Je↵ery & Lawrence, 1979) or no e↵ect of ex-

perience (e.g., Jørgensen, 1995; Wohlin, 2002, 2004). Overall, using experience to predict

programming performance for students has resulted in mixed results (for a review, see

Feigenspan, Kästner, Liebig, Apel, & Hanenberg, 2012). For a professional setting, simi-

lar mixed results have also been found. For example, in (Arisholm & Sjøberg, 2004; Zhou

& Mockus, 2010), performance increased with experience while in (Sonnentag, 1998) it did

not. One study shows that programmers also take on more complex tasks with increased

experience (Zhou & Mockus, 2010), thereby making it more di�cult to detect the e↵ect of

experience on performance when analyzing software repositories. Nevertheless, there are
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good theoretical reasons why experience should positively a↵ect the acquisition of some

programmer capabilities, even though this e↵ect may not be found in all studies.

Education is a closely related variable to experience. Typically, the goal of education

in programming is the acquisition of knowledge of programming, as well as, to some ex-

tent, the development of programming skills. Investigations concerning education have

been conducted along the lines of general academic performance (Bergin & Reilly, 2005;

Butcher & Muth, 1985; Byrne & Lyons, 2001), e↵ect of cognitive, behavioral, and attitu-

dinal factors on learning outcomes (Fincher et al., 2005), knowledge of other programming

languages prior to starting education (Hagan & Markham, 2000; Holden &Weeden, 2004),

gender (Goold & Rimmer, 2000; Pioro, 2006), academic background (Pioro, 2006), and

ability to trace (and explain) code (Lister, Fidge, & Teague, 2009), as well as using the

exam scores of friends to predict the score of each student (Fire, Katz, Elovici, Shapira, &

Rokach, 2012). Generally, the correlation between job performance and academic grades

appear to be modest. A large meta study (Roth, BeVier, Switzer, & Schippmann, 1996)

reported an observed correlation of 0.16, which increased to 0.30 after correction for re-

search artifacts (i.e., restrictions of range and criterion unreliability). Nevertheless, an

important moderator was found to be the time between graduation and performance

measurement. Shortly after the graduation, the correlation between grades and job per-

formance was much higher (1 year, r = 0.23, n = 1,288) than a long time after the

graduation (6 years, r = 0.05, n = 866).

Related to education, one may also investigate broader antecedents to programming

capabilities, such as general mental abilities or intelligence. Often, such studies are framed

as predictors of programmer capacity or programming performance using, for example,

grades, SAT, and personality (Whipkey, 1984). Thus, the placement of a capability

(such as intelligence) in Figure 3 may sometimes be as an antecedent and sometimes as a

capability, depending on the context of a research study. In some situations, feedback loops

are also present (see, generally, Waldman & Spangler, 1989). For example, Mayer et al.

(1986) investigated whether learning programming skills also improved general intellectual

skills, but found little or no e↵ect.

Turning to (3) in Figure 3, performance in general (see, generally, Campbell et al.,

1993; Sonnentag & Frese, 2002) and programming performance specifically have been the

focus of research for many decades. Discussions on the variability in the performance of

programmers began late in the 1960s. In what may be the first study on programming per-

formance variability, Grant and Sackman (1967) reported a 1:28 ratio between the highest

and lowest performer with respect to the time used to correctly debug a problem (also

see Sackman, Erikson, & Grant, 1968). Although concerns were raised regarding both

the validity of the study (Lampson, 1967) and the reported ratio (Dickey, 1981; Prechelt,

1999a), the claim that individual di↵erences are one order of magnitude, or more, spread

through the research literature (e.g., in McConnell, 1998; Glass, 1980, 2001). Also, in

Brooks’s seminal article, “No silver bullet”, Grant and Sackman are cited when the dif-

ference between an average and great designer “approach an order of magnitude” (1987,

p. 18). Moreover, according to Glass, “[i]ndividual di↵erences between programmers are

immense” (1980, p. 48) and Soloway is quoted as “people matter BIGTIME in program-

ming” (Freeman, 1992, p. 19).
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Others also supported the claim of substantial programming performance di↵erences

with additional data (Curtis, 1981; DeMarco & Lister, 1985, 1999), reviews of data

(Trendowicz &Münch, 2009), and reanalysis of previously published experiments (Prechelt,

1999a). Overall, there were indications that the variability in individual performance was

large, and it was also larger than the variability caused by many other technologies or

methods that are used to increase productivity. For example, in the book “Software

Economics”, Boehm (1981) reported that the “people factor” was the largest of all inves-

tigated factors in the success of software projects and therefore concluded that developer

attributes are by far the best opportunity for improving software productivity. Card et al.,

who investigated the e↵ect of using di↵erent technologies for 22 projects, found a similar

result and concluded, “Use experienced, capable personnel. They are a major factor in

the productivity and reliability [of the investigated software development projects]” (1987,

p. 849). Later, Prechelt compared the variability of programmers with the variability of

the e↵ect of using di↵erent programming languages and reported that, on average, in-

dividual variability was as large, or larger, than the variability among the languages

(1999b, 2000). Moreover, Prechelt also confirmed in a more realistic, two-day experiment

that teams of developers using di↵erent programming languages displayed some degree of

variability with respect to solution completeness, product size, robustness, and security

(2011).

A concept closely related to performance is productivity, which addresses input to a

process in addition to its output (i.e., performance). During the 1970s and 1980s, much

attention was devoted to programming productivity in general (Jones, 1978; Mills, 1983),

as well as determinants of high programming productivity (Boehm, 1981; Chrysler, 1978).

The e↵ect of organizational factors (Je↵ery & Lawrence, 1985) and properties of program

code (e.g., control complexity, see Chen, 1978) were also studied in order to increase

productivity. Work focused on issues concerning the measurement of productivity (e.g.,

Jones, 1997; Walston & Felix, 1977) was often based on counting lines of code that

are produced within a given time unit. Nevertheless, it appears that a valid measure

of programming productivity has been elusive as there is no readily available way to

compare the performance of individuals across di↵erent systems. More generally, defining

job performance has also been problematic in other fields as well (Campbell, 1990).

Concerning (4) in Figure 3, many technologies, processes, and other factors moderate

the relation between programming capabilities and performance. In contrast to the present

work, most studies in software engineering focus on technical aspects and consider human

capabilities as a moderating e↵ect of the relationship between a technology, process, or

other factor and programming performance. For example, research on topics as di↵erent

as programming plans (Davies, 1989), structured programming and performance (Lucas

& Kaplan, 1976; Sheppard, Curtis, Milliman, & Love, 1979), the role of beacons (Crosby,

Scholtz, & Wiedenbeck, 2002), and goal setting (Weinberg & Schulman, 1974) have been

studied in relation to factors such as the workplace (DeMarco & Lister, 1985). Also,

the role of programming variables represent in the improvement of programming skills

(Byckling & Sajaniemi, 2006) and how di↵erent ways to implement system control (i.e.,

centralized versus delegated) a↵ect programming performance (Arisholm & Sjøberg, 2004)

have been studied. Moreover, the use of di↵erent processes during software development
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has been of much interest to researchers. For example, the benefit of pair programming (as

opposed to individual programming) have been studied from the perspective of forming

the pair based on di↵erent levels of expertise (Lui & Chan, 2006) or seniority (Arisholm,

Gallis, Dyb̊a, & Sjøberg, 2007). A systematic literature review on pair programming found

that, among students, this practice was most beneficial when the pair was comprised of

individuals with a similar level of programming skill (Salleh, Mendes, & Grundy, 2011).

Finally, regarding (5) in Figure 3, the research methods used to study the concepts

described above are sometimes also the focus of investigations. An implicit assumption

in studies involving human participants is that individual di↵erences in developer capac-

ities do not bias the results (see, e.g., Kampenes et al., 2009 for a systematic review of

current practices in quasi-experiments). For example, the use of self-ratings (as opposed

to more objective standardized tests) has been investigated. Using students, it has been

found that self-evaluations were on par, or slightly better, than university marks or pre

tests (Kleinschmager & Hanenberg, 2011). Ratings of self may work better when people

compare themselves relative to each other (which requires them to know each other be-

forehand) rather than when providing absolute ratings. For example, according to Kruger

and Dunning (1999), incompetence in a field may lead to highly inflated self-assessments,

typically because accurate metacognition about oneself requires a certain level of skill.

Also, Rasch and Tosi (1992) reported a high correlation between self-reported intellec-

tual ability and programming performance. Other methods that have been used are the

assessment of, for example, programming skill using multiple-choice knowledge questions

(Clark, 2004) and performance on programming tasks in a pretest (Arisholm et al., 2007;

Arisholm & Sjøberg, 2004; see Feigenspan et al., 2012 for a review).

Many technical support frameworks are related to the research methods involved in

the study of various programming capabilities. In such frameworks, a programmer may

implement and submit a solution to a programming problem. The framework then au-

tomatically calculates one or several numerals that characterize the individual’s solution

according to some predefined criteria. To make the tests that are supported by the frame-

works shorter, some of these frameworks have also been made computer adaptive (see,

e.g., Conejo et al., 2004).

In recent years, programming competitions have become popular where individuals

or teams compete against each other for prizes or bragging rights (see, e.g., Dagienė

& Skūpienė, 2004). In such competitions, technical support frameworks are important

because they can evaluate each submitted solution consistently and objectively on multiple

quality criteria (e.g., code e↵ectiveness, completeness, etc.) and produce the results almost

immediately. However, such automated assessment frameworks have been around for

educational purposes for at least five decades (see Hollingsworth, 1960 for early work

and Ala-Mutka, 2005; Douce, Livingstone, & Orwell, 2005; Seppälä, 2012 for reviews and

overviews).

In the educational context, the purpose of such frameworks is often to provide students

with consistent grading (e.g., in an exam situation, see Watson, Li, & Godwin, 2013; Cali↵

& Goodwin, 2002) or feedback (e.g., when learning to write programs; see Seppälä, 2012).

Many technical support frameworks have been developed for use in computer science

education (see Cheang, Kurnia, Lim, & Oon, 2003; Ellsworth, Fenwick, & Kurtz, 2004;
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English, 2002 for examples and Ala-Mutka, 2005; Daly & Waldron, 2004; Joy, Gri�ths,

& Boyatt, 2005; McCracken et al., 2001 for reviews). In particular, frameworks have been

developed to support students in learning test-driven development (see, e.g., Edwards,

2004). Overall, there are many technical challenges related to the automatic evaluation of

programming task solutions (see, e.g., Allowatt & Edwards, 2005; Saikkonen, Malmi, &

Korhonen, 2001; Truong, Roe, & Bancroft, 2004). Nevertheless, the benefits of using such

frameworks are clear, both with respect to reducing student stress and at maintaining

student motivation (Woit & Mason, 2003).

In summary, the research on programmers and their performance consists of a multi-

tude of capabilities. In much of the research, the focus has been on programming perfor-

mance as a dependent variable, rather than the capabilities themselves. Furthermore, for

a majority of the studies, the capabilities involved were not theoretically defined. I now

turn to one such capability that is of particular interest because it can be theoretically

defined, namely skill.

2.2 Theory of Skill

The concept of skill has ancient etymological origins. Skilled behavior can be traced back

to Aristotle (1999), who di↵erentiated between epistêmê (i.e., knowledge) and technê

(i.e., crafts, art). According to the Merriam-Webster dictionary, the term comes from

Old Norse/Middle English where the word skil/skilen means to separate, discern, or to

distinguish between something; further, skill is defined as

• the ability to use one’s knowledge e↵ectively and readily in execution or performance,

• dexterity or coordination, especially in the execution of learned physical tasks, or

• a learned power of doing something competently: a developed aptitude or ability.

The scientific study of skill is said to have begun in 1820 with a study of individuals’

accuracy in the recording of astronomy observations (Welford, 1968). During the 1880s,

Darwin’s cousin, Francis Galton (1883), documented other behaviors that required skill,

such as drawing, the assessment of weights, and blindfolded card playing. Over the next

half century, further investigations examined skilled activities, such as the learning of

Morse code (Bryan & Harter, 1899), typewriting (Book, 1908), and drawing while looking

in a mirror (Snoddy, 1926).

In the 1920s, the nature and definition of skill was explicated in greater detail (Bezanson,

1922; Pear, 1927, 1928). Specifically, Pear defined skill as “an integration of well-adjusted

performances” (1928, p. 611) that should be distinguished from both “ability” and “capac-

ity”. A skill may be highly specific, for example, to an occupation or a sport. An early

motivation for studying skill was the obvious benefits of having highly skilled military

personnel operate machinery during times of war. Thus, skill was studied in both the

First (Bezanson, 1922) and Second World Wars (Welford, 1968).

A theory of skill was initially formulated in the late 1960s by Fitts and Posner (1967),

based on Fitts’ earlier work on this topic (1964; see Proctor & Dutta, 1995; VanLehn, 1996
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for overviews). The theory of skill describes three overlapping phases in the acquisition

of psychomotoric skill, that is, bodily movement in relation to mental activities. In the

first (cognitive) phase, facts about the domain where the developed skill will later be

applied are initially acquired. During this phase, the behavior is error prone and slow.

During the second (associative) phase, facts required for successful completion of tasks are

connected and rehearsed. In the third (autonomous) phase, behavior is fast and almost

e↵ortlessly carried out, thus requiring less devoted attention (Shi↵rin, 1988) and controlled

processing (Shi↵rin & Schneider, 1977). Overall, an individual’s level of performance

increases monotonically through all the three phases, through the speed of performance

(i.e., decreased time required to perform), the accuracy or quality of performance (e.g.,

fewer errors), or a combination of both time and accuracy (see, e.g., MacKay, 1982; Neves

& Anderson, 1981 for more details).

Starting in the mid 1970s, Fitts and Posner’s work was extended and elaborated

within the context of cognitive skill by Anderson (1981, 1987) and colleagues (Pirolli &

Anderson, 1985). Today, the theory of skill is central to the Adaptive Control of Thought

(ACT) cognitive architecture initially proposed by Anderson (1976) and steadily refined

over multiple iterations: ACT* (Anderson, 1982, 1983), ACT-R (Anderson & Lebiere,

1998), and ACT-R 5.0 (Anderson et al., 2004). The level of detail in this cognitive

architecture is high, which makes it possible to test specific predictions. In more recent

years, functional magnetic resonance imaging (i.e., “brain scanning”) has also been used

to better understand which parts of the brain are used during the execution of skilled

behavior (see Anderson, Anderson, Ferris, Fincham, & Jung, 2009; Fincham & Anderson,

2006). The architecture proposed by Anderson and colleagues appears to mostly support

smaller tasks that can be deconstructed into steps. However, many real-world tasks

are large and complex. Therefore, e↵orts to extend Anderson’s architecture to support

such tasks have been made (see, e.g., Taatgen & Lee, 2003; Taatgen, Huss, Dickison, &

Anderson, 2008).

Other researchers have focused on the more general results that arise from theory

of skill in relation to other concepts. For example, Ackerman investigated individual

di↵erences (1987), determinants (1988), and predictors (1992) of skill acquisition. From

such viewpoints, skill is subsumed into the broader theoretical framework for research on

psychological abilities (see, e.g., Neisser et al., 1996 for an overview) or intelligence (see,

e.g., Sternberg & Kaufman, 1998 for an overview). Views on skill using a hierarchical

structure of abilities have also been o↵ered, where some abilities are broad and a↵ect (or

predict) a wide range of phenomena (e.g., intelligence) whereas others may be narrow and

only relevant to a limited number of highly specialized situations (see, e.g., Gustafsson,

1984 for an overview).

Research on expertise and expert performance provides a complementary view on

skill (see, e.g., Chi, Glaser, & Farr, 1988; Ericsson & Charness, 1994; Ericsson, Char-

ness, Feltovich, & Ho↵man, 2006; Ericsson, Krampe, & Tesch-Römer, 1993; Ericsson

& Lehmann, 1996; Ericsson & Smith, 1991). One aspect of expertise concerns reliably

superior performance on representative tasks (Ericsson, 2006). Not all types of tasks

permit reliably superior performance (Shanteau, 1992). In the study of skilled behav-

ior, Ackerman (1987) distinguishes between consistent and inconsistent tasks, where only
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consistent tasks permit improved performance as the result of extended practice. Such

consistent tasks can be used in the study of expertise and skill (see Shanteau, Weiss,

Thomas, & Pounds, 2002 for a general discussion). For example, in an early study on

chess playing (Chase & Simon, 1973), experts had superior recall of the positions of chess

pieces in well-structured games (as in a real, on-going game) but not for positions that

were random. Central to the field of expertise is the amount of deliberate practice (usually

a minimum of ten years) required to achieve expert performance (Ericsson et al., 1993).

Thus, the field of expertise emphasizes the “nurture” perspective on human capabilities,

in contrast to the “nature” perspective, which is often central to the study of (presum-

ably) stable capabilities (see Ackerman, 2014a, 2014b; Ericsson, 2014; Plomin, Shakeshaft,

McMillan, & Trzaskowski, 2014 for a recent debate on the two perspectives).

2.3 Research on Programming Skill

Using the same theoretical conceptualization of skill as described in the previous subsec-

tion, research has also been conducted on the acquisition of skill in programming. For

example, detailed analyses of the problem-solving plans by programmers have been re-

ported from a cognitive perspective (Davies, 1989, 1994; Rist, 1989, 1995). In perhaps the

most comprehensive investigation, Anderson, Conrad, and Corbett (1989) found that the

acquisition of programming skill in LISP required the learning of about 500 if-then rules,

which they call “productions”. Each production is a specific piece of knowledge required to

solve a programming problem using a defined syntax. They found that the acquisition of

these productions follows a power-law learning curve, indicating that the improvement in

performance is greatest initially. It then increases in a decelerating manner. This implies

that the relationship between amount of practice and performance is not linear. How-

ever, a linear trend can be observed if both practice and performance are logarithmically

transformed. This phenomenon occurs so widely for improvements in performance across

domains that it is often referred to as the log-log law of practice (Newell & Rosenbloom,

1981). With increasing practice, Anderson et al. (1989) found a decrease in both coding

time and programming errors, approximately following the log-log law.

Furthermore, in a study of novice LISP programmers, Anderson and Je↵ries (1985)

also found that “the best predictor of individual subject di↵erences in errors on problems

that involved one LISP concept was the number of errors on other problems that involved

di↵erent concepts” (Anderson, 1987, p. 203). Thus, one may use an individual’s current

level of programming performance on one set of tasks to predict an individual’s future level

of performance on another set of tasks. This is similar to the “conventional wisdom [that]

‘The best indicator of future performance is past performance”’ (Wernimont & Campbell,

1968, p. 372). The implication is that if past (or present) performance can be measured,

better informed decisions can be made on who is most likely to perform well in the future.

Within programming, research on conceptualizations similar to expertise can be seen as

an indirect way to gain information about an individual’s level of skill. Because it is fairly

easy to identify a programmer with little skill (just find someone who has never written a

program before), it is possible to investigate how behavior, due to skill acquisition, changes

for novice programmers (Soloway & Spohrer, 1989; see Allwood, 1986 for an early review)
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or during the teaching of programming (Lord, 1997; Soloway, 1986; see Robins, Rountree,

& Rountree, 2003 for a review). By comparing developers who are known to be novices

with more experienced programmers (i.e., often called “experts” even though the criteria

for being an expert may vary), it is further possible to gain additional information of how

skills improve. For example, Wiedenbeck (1985) investigated novice-expert di↵erences of

programmers from a psychological perspective and found that experts could automate

some of the subcomponents required to solve a programming task (cf. the third phase

of skill acquisition, Section 2.2). Koubek and Salvendy (1991) studied the di↵erences

between “experts” and “super experts” and found no di↵erence between the two groups in

terms of automation. Using a novice-expert distinction, programming-related activities

have been investigated in, for example, debugging (Chmiel & Loui, 2004) and functional

versus object-oriented programming (Wiedenbeck & Ramalingam, 1999). Emphasis on

the di↵erences in the cognitive processing (Bateson, Alexander, & Murphy, 1987) and

mental models (von Mayrhauser & Vans, 1996) for the two groups are also studied.

Generally, one can say that performance increases with higher expertise. But there are

situations where novice programmers have been found to outperform experts (see, e.g.,

Adelson, 1984; Haerem & Rau, 2007). In those situations, factors other than programming

expertise may dominate an individual’s performance on a task. For example, implementing

a calculation may pose a complex mathematical problem rather than a programming

challenge. Thus, the needed expertise is within mathematics rather than programming.

An alternative way to using various definitions of “experts” to contrast programmers

of di↵erent skill levels is to use programming tasks that by their very nature are more

frequently encountered by highly skilled programmers. Central to the field of program-

ming comprehension (see, e.g., Fix, Wiedenbeck, & Scholtz, 1993; Wiedenbeck, Fix, &

Scholtz, 1993; Wiedenbeck, Ramalingam, Sarasamma, & Corritore, 1999), programming

tasks concerning software maintenance are present where (often) large amounts of code

must be inspected to understand where and how a change to an existing system should

be performed. Thus, maintenance tasks depend to a large extent on how well an exist-

ing program is comprehended (Burkhardt et al., 2002; von Mayrhauser & Vans, 1995).

There is also evidence that strategies used in the comprehension of code change with in-

creasing skill levels (Koenemann & Robertson, 1991), which also indirectly informs how

programming skills are acquired and predicted.

Another central predictor of skill is knowledge (Chi et al., 1988). That knowledge is

central to skill follows directly from phase one of skill acquisition: Kyllonen and Woltz

(1989) name this phase “knowledge acquisition”.6 A distinction between knowledge and

skill, however, is that knowledge concern declarative facts, whereas skill typically involves

a procedural component (Kyllonen & Stephens, 1990). A similar distinction between

knowledge and skill is also central to the theory of job performance (see Campbell et al.,

1993; see also Miller, 1990).

Within the context of software development, prior research has found that experts

not only possess more knowledge, but the knowledge is also better organized (McKeithen,

Reitman, Rueter, & Hirtle, 1981; see, e.g., Robillard, 1999 for an overview). In addition,

6Some researchers further regard domain knowledge as a central part of adult intelligence (Ackerman,
2000; Rolfhus & Ackerman, 1999).



24 Summary

the experts’ representations of facts are more similar to that of other experts than that

the representation of facts for novices relative to other novices (also see Sheetz, 2002). An

individual’s level of knowledge also has an important bearing on how well code is com-

prehended and subsequently modified. For example, in an early study on programming

knowledge, Soloway and Ehrlich found that “advanced programmers have strong expecta-

tions about what programs should look like, and when those expectations are violated—in

seemingly innocuous ways—their performance drops drastically” (1984, p. 608).

Predictors of programming skill acquisition have also been studied using the theory

of skill. In a study of 260 students over seven days, Shute (1991) used a wide battery of

cognitive tests that are frequently used in the US armed forces (see (Shute, 1992; Shute

& Kyllonen, 1990; Shute & Pena, 1990) for additional details). The results confirmed

the central role of working memory capacity as an important predictor of programming

skill acquisition (also see, e.g., von Mayrhauser, Vans, & Howe, 1997), thereby supporting

earlier (Anderson, 1983; Woltz, 1988) and more recent developments in the understanding

and modeling of skilled behavior (Anderson et al., 2004). Generally, working memory

is the “temporary storage of information in connection with the performance of other

cognitive tasks such as reading, problem-solving or learning” (Baddeley, 1983, p. 311; see

also Baddeley, 1992). Furthermore, working memory is fairly well understood in terms of

how this psychological variable operates because it can be investigated through various

technologies for “brain scanning” (see, e.g., McNab & Klingberg, 2008). Generally, the

maximum number of “chunks” of information one can temporarily store is 7 ± 2 (Miller,

1956), where a chunk is “any stimulus that has become familiar, hence recognizable,

through experience” (Simon, 1990, p. 16). Because working memory is limited, one would

benefit from identifying and representing larger and more meaningful chunks when solving

a problem.

Overall, the above accounts of the theory of skill provide many theoretical expecta-

tions. According to Levin, “[t]here is nothing so practical as a good theory” (as cited in

Sandelands, 1990, p. 235). The reason for having a theory is that many expectations can

be derived from the theory and subsequently used in empirical testing of results. However,

while much is known about skill in general, and a considerable amount of research on the

acquisition of programming skill has been conducted, the aspect of skill measurement has

not been studied in as much detail. It is important to distinguish conceptually between

how skills are acquired from measuring the skill level of an individual, see (Kyllonen &

Stephens, 1990). Thus, to address the latter problem, I will now turn to what the term

“measurement” entails.

2.4 Conceptualizations of and Models for Measurement

In an early paper on measurement and software engineering, Curtis stated that “measure-

ment and experimentation are complementary processes. The results of an experiment can

be no more valid than the measurement of . . . [that which is] investigated. The develop-

ment of sound measurement techniques is a prerequisite of good experimentation” (1980,

p. 1155).
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Yet, as stated in the introduction of this thesis, the definition of “measurement” is not

the same from common to scientific measurement. The common definition is based on

the view that anything can be measured. For example, the statement “[m]easure what

is measurable, and make measurable what is not so” (Leidlmair, 2009, p. 214) is often

attributed to Galileo Galilei and emphasizes that everything is either measurable or can

be made measurable. Within psychology, a similar view is held by Cronbach: “[i]f a thing

exists, it exists in some amount. If it exists in some amount, it can be measured” (1990,

p. 34). Although Stevens regards the ratio and interval scale as the scales most properly

associated with measurement, he also acknowledges that di↵erent measures using the same

scale may not be “equally precise or accurate or useful or ‘fundamental”’ (1946, p. 680).

Thus, there are di↵erences also in the precision and accuracy, and therefore also in the

usefulness, of a measure.

Scientific measurement holds that some things cannot be measured. That is, some

things possess certain essential features that make them measurable, whereas other things

do not. This quote, often attributed to Einstein in relation to measurement, appears to

neatly sum up the definition: “not everything that can be counted counts, and not every-

thing that counts can be counted” (Cameron, 1963, p. 13). Although the counting of units

is a basic procedure in fundamental measurement (Krantz et al., 1971), counts are dis-

crete (as opposed to magnitudes of quantitative attributes) and are therefore not scientific

measures (Kyngdon, 2011). This also emphasizes the importance of quantities as far as

scientific measurement is concerned. According to Michell (1997), measurement consists

of two tasks: the scientific task is to show that the attribute being measured is quantita-

tive; the instrumental task is to determine or estimate the magnitude of an attribute that

is shown to be quantitative (see Kyburg, 1984 for a general introduction). Direct tests

of whether a variable is quantitative is, for example, available through the cancellation

axioms of conjoint measurement theory (Luce & Tukey, 1964). Furthermore, Michell crit-

icizes proponents of common measurement for failing to “explicitly discuss the empirical

commitments implicit . . . regarding the internal structure of the attributes involved. Nor

do they discuss ways in which these commitments can be tested experimentally” (1997,

p. 361, emphasis added; see Michell, 1999 generally).

The use of a single term to refer to two factually di↵erent practices is a fallacy (Kelly,

1927). According to Borsboom, the problem with common measurement (as conceptual-

ized by, for example, Classical Test Theory; see Lord & Novick, 1968) is that“measurement

occurs more or less by fiat. Consequently, it is meaningless to ask whether something is

‘really’ being measured, because the fact that numerals are assigned according to [a] rule

is the sole defining feature of measurement” (Borsboom, 2005, p. 93). In contrast, a defin-

ing feature of scientific measurement is that it is empirically testable and thus refutable.

What is therefore needed is a detailed account of how something is measured in a way

that is empirically testable. This will, in turn, inform questions about the rigor that is

present in a measurement procedure.

In this thesis, a“model for measurement” refers to the detailed account of both the em-

pirical commitments and empirical tests that one may conduct in the process of measure-

ment (see Borsboom, 2006). Together with the structural model, which reveals the con-

cepts involved and shows how they (purportedly) relate (Figure 1), the measurement
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model explains which input (i.e., programming performance on multiple tasks) results in

which output (i.e., a measure of programming skill) (see Cattell, 1988 generally).

More than 50 years ago, Rasch (1960) used tests to study the reading performance of

students. He formulated what is now known as the Rasch measurement model. Along with

with later generalizations (Andrich, 1978) and extensions (see, e.g., Mair & Hatzinger,

2007 for an overview), Rasch models have become a practical way to measure psychological

abilities according to some of the criteria associated with scientific measures. (Papers II

and IV provide additional details about the Rasch model.)

Briefly, the Rasch model conceptualizes abilities using an interval scale where the unit

of measurement is the logarithm of the odds (called a logit; see Humphry & Andrich, 2008

for a discussion on this unit in the context of the Rasch model). Both an individual’s

ability and the di�culty of an item (e.g., a task or question) are on the same interval

scale, using a process with some similarities to Thurstone’s (1927) early work on com-

parative judgment. Furthermore, the relation between ability and di�culty is expressed

stochastically in the Rasch model, so that when the level of an individual’s ability equals

the di�culty of an item, the probability of a correct answer is 50%.7 Although there is

a debate on whether measurement can be conceptualized as a stochastic (probabilistic)

process or not (see Borsboom, 2005 and Michell, 1999 for two books on opposing views),

most who write about experimentation today appear to embraces theories of probabilistic

causation (Shadish et al., 2002). Moreover, there is at present disagreement concerning

the extent to which the Rasch model can be regarded as a probabilistic version of scientific

measurement (see Borsboom & Scholten, 2008; Kyngdon, 2008 for opposing views).

A distinctive feature of the Rasch model is that it is parsimonious with respect to

how many parameters it requires. It is generally easier to fit a model to the data when

the model can use additional parameters. However, it may reduce the testability of the

model. The principle of Occam’s razor also suggests that one should strive for parsimony

to prevent, for example, statistical noise to be captured as parameters of a model.

In summary, whether something is scientifically measured or not may be of little

interest for many practitioners. Yet many important decisions may be based on measures

that are not valid. In this thesis, the measurement of programming skill uses the Rasch

model, which resembles that of scientific measurement albeit with some limitations.

3 Research Method

This section describes how measurement and programming skill are defined in this thesis

and how two measures of programming skill were constructed and validated. From the

perspective of research in computer science, Curtis (1984) recommends the following steps

as necessary for the measurement of abilities such as skill:8

7Carroll (1993) provides a general discussion on why it is better to use an individual’s quantified (or
typical) level of performance, rather than the individual’s maximal (e.g., top 1%) performance.

8Practices for constructing measures may vary across disciplines, but they often contain similar el-
ements to the three steps suggested by Curtis; see, for example, the approach used within information
systems (MacKenzie, Podsako↵, & Podsako↵, 2011) or sociology (Upshaw, 1968).
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• A clear definition of the ability that is measured

• A carefully constructed performance scale

• A sound validation of both the ability being measured and the scale

I begin by defining measurement before turning to the three above steps, each in a separate

subsection.

3.1 Definition of Measurement

The practices involved in common measurement as opposed to scientific measurement dif-

fer on many accounts (Sections 1.2 and 2.4). In particular, the two types of measurement

di↵er in their rigor. When defining measurement, common and scientific measurement

can be seen as two positions on a continuum of measurement rigor; the aim is to achieve

progress towards scientific measurement.

As a hypothetical baseline for this continuum, a measure of programming skill can be

defined as the aggregate of performance an individual displays on a set of programming

tasks. The tasks are chosen by someone who has the authority to define such things

within the field of programming (i.e., philosophical operationalism, see Bridgman, 1927).

Performance can be the time required to solve the task correctly (implying a ratio scale)

or the quality of the solution, for example, by counting the number of test cases that the

solution passes (implying an ordinal, interval, or ratio scale). Although this definition may

permit the investigation of, for example, internal consistency, the individual responsible

for the definition is not limited to choosing tasks that correlate with each other in the

definition. As such, the empirical testability may be zero. There are also other (obvious)

limitations to this baseline. For example, would a di↵erent authority within the field of

programming define the measurement of programming skill the same way, using the same

tasks and scoring of performance?

Table 1 shows the two increments to the hypothetical baseline that were investigated

in this thesis. The Pre Study, reported in Paper I, was the first increment. The Pre Study

investigated several approaches to how time and quality can be combined as program-

ming performance. If time and quality can be combined as programming performance,

programming skill can, in turn, be inferred from performance that is not constrained to

be defined solely by either time or quality. The Pre Study also used the (measurement)

model fit indices of confirmatory factor analysis (see Jöreskog, 1969) to investigate which

of the various ways to combine time and quality fit the data best. Moreover, the role

of performance for each task was changed from defining to indicating programming skill;

see Cohen (1989) for how the former constitutes a nominal definition and the latter

a denotative definition. Finally, the Pre Study demonstrated how the various ways to

combine time and quality as performance could be analyzed in terms of correlations with

those external variables with which a measure of programming skill can be expected, from

theory, to be positively correlated. Overall, the Pre Study improved the baseline defini-

tion of measurement with respect to empirical testability, but some challenges were still

unresolved.
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Table 1: Conceptualizations of measurement

�

Aspect Baseline  
(hypothetical) 

Pre Study  
(Paper I) 

Main Study  
(Papers II–IV) 

Model for measurement Sum-score Sum-score using 
confirmatory factor 
analysis 

Polytomous Rasch 
model 

Empirical testability None Low Medium 
Measurement scale Ordinal Ordinal Interval 
Task difficulty a 
parameter in the model? 

No No Yes 

Interpretable unit of 
measurement? 

No No Yes, logarithm of the 
odds (logits) 

Missing data Delete individual or 
impute 

Delete individual or 
impute 

Increase the standard 
error of measurement 

Role of performance Defines skill Indicator of skill Indicator of skill 

One challenge to both the baseline and the Pre Study, shown in Table 1, was that

both definitions of measurement rely on an uninterpretable unit (i.e., the sum score of

performance on all the tasks combined). Furthermore, the unit that is used to represent

skill uses an ordinal scale, and the measurement model does not represent di↵erences

in the di�culty of programming tasks. Moreover, because skill is inferred from multiple

observations of programming performance, any missing observation of performance makes

measurement of skill di�cult for an individual unless an algorithm is used to guess how

the individual would have performed (i.e., imputation).

The Main Study, which is reported in Papers II, III, and IV, represents the second in-

crement. By using the Rasch model, the Main Study acknowledges the non-linear relation

between performance scores and programming skill. The Rasch model also represents the

measured variable using an interval scale. Di↵erences in the di�culties of the tasks are

represented as parameters in the model. The Rasch model has previously been used to

measure programming ability in several programming languages (Pirolli & Wilson, 1998;

Syang & Dale, 1993; Wilking, Schilli, & Kowalewski, 2008). Details on Rasch analysis are

provided in Papers II and IV. Paper II provides a general discussion on measurement in

software engineering and Paper IV shows how the level of di�culty of programming tasks

is placed on the same scale as programming skill using the Rasch model. Papers II and

III provide additional details on the limitation of measurement as conceptualized by the

Rasch model.

3.2 Definition and Theoretical Model of Programming Skill

To define “programming skill”, what is implied by “skill” and “programming” must be

specified separately. When the term “skill” is used informally, it may refer to many types

of behavior. Some of these behaviors may be inconsistent with each other or rely on

circular definitions. An example of a circular definition would be to define skill as a type

of ability and define ability as type of skill. However, when skill is defined theoretically, as
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Table 2: Skill defined according to several mutually consistent perspectives

�
�
�

Perspective Description Details in 
Acquisition of skill Three phases (Fitts & Posner, 1967): cognitive, associative, 

and authonomous; power law learning function (Newell & 
Rosenbloom, 1981) 

Papers I–
IV 

Antecedents of skill The effect of working memory capacity and experience on 
programming skill acquisition is mediated by programming 
knowledge; see generally (Cattell, 1971/1987) 

Paper III 

Skill according to a 
hierarchical structure 

General mental ability at the apex, with a multitude of 
broader and then narrower factors below (Gustafsson, 1984) 

Paper III 

Consequences of skill   
In general Programming skill affects programming performance directly 

together with programming knowledge and motivation; see 
generally (Campbell et al., 1993) 

Papers II 
and III 

Expertise Programming skill as one of four aspects of programming 
expertise (“reliably superior perforamance on representative 
tasks”); see generally (Ericsson, 2006) 

Paper I 
and III 

Job performance Programming skill as similar to a hands-on test of job 
performance (i.e., a work sample); see generally (Campbell, 
1990) 

Papers II 

in Section 2.2, one may identify multiple perspectives on skill that are mutually consistent

and where each perspective highlights a di↵erent aspect of the theoretical definition.

Table 2 shows multiple theoretical perspectives for skill that are addressed in more

detail in all four papers. Theories on acquisition of skill explain in detail how skill evolves

through di↵erent phases. Such theories also explicate what skill is and is not, as well as

the ways skill can be inferred from performance. Antecedents of skill emphasize that other

variables a↵ect the acquisition of skill, such as working memory capacity and experience.

Thus, by stating the variables that one would expect to influence skill, the definition of

skill is explicated further. The antecedents of skill may also be placed in a hierarchical

structure. Broad, general factors that are placed at the apex of the hierarchy presumably

a↵ect a wide range of situations and outcomes (e.g., intelligence). Narrow, specific factors,

such as programming skill in a specific language, a↵ect only a limited set of situations

and outcomes. Skill can also be described theoretically in terms of the consequences of

having a skill. For example, skill is a central variable to the theory of performance, the

theory of expertise, and in studies of job performance. Consequently, one would expect

individuals to be highly skilled who display a high level of performance, who are experts,

and who display superior job performance. Overall, the perspectives of Table 2 add to

the testability of results because one can expect that a valid measure of skill is consistent

with multiple perspectives.

In contrast to the definition of “skill”, I know of no commonly accepted definition of

“programming”. Although programming, in its most general sense, concerns the process of

understanding some kind of computational problem and developing a machine-executable

solution, such a definition is wide and therefore di�cult to study. For example, Skiena and
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Programming 
performance  

Working 
memory 
capacity 

Experience 

Programming 
skill 

Programming 
knowledge 

Motivation 
Resources 

and 
constraints 

Figure 4: Investigated theoretical model. Concepts not directly investigated are marked
in grey.

Revilla (2003) lists 13 main topics and several hundred sub topics of di↵erent programming

problems. Providing a definition of programming that includes all conceivable activities

may therefore be di�cult because many widely di↵erent practices may be subsumed under

such a definition. To study programming in the context of skill, the meaning of the term

“programming”was therefore constrained. In Paper II, “programming”was defined as“the

activities of writing code from scratch, and modifying and debugging code”. It was also

specified that the term should refer to one specific programming language, but otherwise

be independent of any specific technologies and application domains. In this thesis, the

Java programming language was used to study the measurement of programming skills

due to the wide usage of this language in both commercial and educational settings.

Figure 4 shows the theoretical model that was investigated. Experience and working

memory capacity (a specific type of general mental ability; see Paper III) a↵ect program-

ming knowledge and skills, which in turn a↵ect programming performance. Other abilities,

such as working memory capacity and programming knowledge, also a↵ect programming

performance. Although motivation, resources, and constraints are important factors for

programming performance, controls for these factors were attempted so that they would

a↵ect the results to the least possible extent.

The chosen model is based on the theory of performance by Campbell et al. (1993),

which has previously been tested using confirmatory factor analysis (McCloy, Campbell,

& Cudeck, 1994). In my opinion, the model may be regarded as a simplified version of

Waldman and Spangler’s (1989) broader model, which outlines the determinants of job

performance. However, due to the number of components and the increased complexity

of the feedback loops present in their model, a simpler version was investigated; see, for
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example, (Locke & Lathham, 1990; Rasch & Tosi, 1992) for alternative models. The

investigated model also contains elements from Cattell’s investment theory (1971/1987),

which has also been investigated empirically (see, e.g., Wittman & Keith, 2004; Wittmann

& Süß, 1999).

3.3 Construction of Measures

Instrument construction during the Pre Study used data from four previously published

experiments (see Paper I). The construction of the measurement instrument in the Main

Study is reported in Paper II. The construction of measures for the Pre Study and Main

Study consisted of the four activities shown in Table 3, which are addressed below.

First, the construction and sampling of tasks in the Pre Study was based on previ-

ously published tasks. For the Main Study, additional tasks were constructed by two

professional developers and by two students. Additional tasks were either taken verbatim

from the literature or adapted from the literature. All the tasks di↵ered with respect

to origin and time limit, and the methods used to evaluate the quality of solutions also

di↵ered. Thus, each task was operationalized di↵erently; see Paper II for an account

of the importance of varying such properties of the tasks as well as an overview of the

actual tasks that were used. The Main Study also involved software quality aspects that

required manual evaluation of quality. The rationale for combining automatic and manual

evaluations of quality was that previous work has established that although the two types

of evaluations may yield similar results, they also have di↵erent strengths and weaknesses

that (if possible) should be combined (see Williamson, Bejar, & Hone, 1999). All task

materials were pilot tested.

Second, to establish principles to combine time and quality as performance, two data

sets were reanalyzed. Data Set 1 was reported in (Arisholm & Sjøberg, 2004) and used

only the data from the professionals in the study. Data Set 2 comprises the three data

sets in (Arisholm & Sjøberg, 2004; Karahasanović et al., 2007; Karahasanović & Thomas,

2007; Kværn, 2006). Confirmatory factor analysis, as implemented in Amos 18.0, was

used to investigate the model fit of various ways to combine time and quality across the

programming task of the two data sets.

Third, concerning the subject sampling and data collection, Table 4 shows all the in-

volved subjects and data sets. In addition to Data Sets 1 and 2, another data set (Data

Set 3) was used in the Main Study and is discussed in detail in Papers II, III, and IV. As

shown in the table, 255 developers from 9 unique countries participated in total, represent-

ing 320 person days of programming performance available for analysis. Although some of

Table 3: Activities of the construction phase

�
�

Activity Described in detail (Section) 

Construction and sampling of tasks Paper I (3.1, 3.2) and Paper II (3.2) 
Combine time and quality as performance  Paper I (2.4, 3.1, 3.2) and Paper II (3.3) 
Subject sampling and data collection Paper I (3.1, 3.2) and Paper II (3.4, 3.5) 
Construction and adjustment of scoring rules Paper I (3.1, 3.2) and  Paper II (3.6, 3.7, 3.8) 
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Table 4: The investigated data sets
       # Programming tasks 

Data set N J I S Countries Study duration Skill Treatment 
1 99 31 32 36 2 1 day 1 4 
2 91 — — — — 1 day 1 3 
3 65 19 19 27 8 2 days 12 2 
Sum 255 50 51 63 9 320 person days 14 9 

Notes. N is the number of observations; — is unknown; J = junior, I = intermediate, and S = senior
developer (as classified by the company from where the subject was hired to participate); The sum
for countries is the number of unique countries; The number of programming tasks that were used
are divided into those used to control for skill (e.g., as a pretest) and those who were given as a part
of an experimental treatment. 
�
�
�
�
�
�
�
�
�
�
�
�
�
�

the developers for Data Set 2 were students, the majority of developers were professionals.

For the Pre Study, the majority of tasks (4 of 5 for Data Set 1 and 3 of 4 for Data Set 2)

contained experimental treatments, whereas only one programming task was initially used

for representing di↵erences in programming skill. For the Main Study, this was reversed:

the majority of programming tasks (12 of 14) were used to measure programming skill.

For all data sets, data (i.e., background questionnaires and all programming tasks) was

collected through the Simula Experiment Support Environment (Arisholm, Sjøberg, Care-

lius, & Lindsjørn, 2002). For all the professionals, the data was collected at the subjects’

regular workplace, using their regular tools for software development. In addition, for

Data Set 3, about half of the developers (n = 29) took a one-hour test of working memory

capacity acquired from (Unsworth, Heitz, Schrock, & Engle, 2005). Moreover, most of

the developers (n = 60) also took a commercially available test of Java programming

knowledge purchased from an (anonymous) international test vendor.

Finally, the construction and adjustments of scoring rules according to Table 3 was

performed using confirmatory factor analysis (Data Sets 1 and 2) or Rasch analysis (Data

Set 3). There were two main requirements when combining time and quality as perfor-

mance. First, there had to be a correspondence between provided description and the

scoring rule for each of the programming tasks. For example, when the description stated

that a task had to be functionally correct before additional score points were awarded for

spending less time, the scoring rule had to implement this requirement. For Data Sets 1

and 2, the scoring rule was not explicitly stated for any of the tasks. However, the sub-

jects were allowed to leave when the study was completed, thereby imposing some time

pressure, which implicitly indicated that one should try to solve the task correctly using

as little time as possible. It is nevertheless plausible a lack of correspondence may exist

between the scoring rule used and the perceived goal for some of subjects. For example,

an individual may have spent more time than required to improve parts of the solution

that did not result in a higher score. Conversely, for Data Set 3, all scoring rules were

explicitly stated in the task descriptions.

The second requirement when combining time and quality for each of the tasks was

that all individuals should display a consistent level of performance across the tasks. The
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extent to which this occurred was determined by the fit of the available data to the model

of measurement used (see Table 1).

3.4 Internal and External Validation of Measures

The validation of measures proposed in the Pre Study and Main Study was investigated

from two perspectives. Internal validation concerned the (internal) structure of the pro-

gramming performance data with respect to each other. For example, is the level of

programming performance that an individual shows on one programming task consistent

with the level of performance on another task? Conversely, external validation inspects

correlations, or patterns in correlations, between programming performance data that is

aggregated to a measure of programming skill with other, external, variables. The choice

of which external variables to include is most frequently derived from theoretical expec-

tations or from prior research. For example, because skills are acquired through practice,

one would expect the external variable “amount of practice within programming” to be

positively correlated with programming skill.

Table 5 shows an overview of the validation conducted in the Pre Study and Main

Study. Because the aim of the Main Study was to improve the results obtained in the Pre

Study, the validation in the Main Study was the most comprehensive one. The psycho-

metric properties of measurement instruments in software engineering are frequently ad-

dressed using scree plots where the signal-to-noise ratio can be visually inspected. Factor

loadings and explained variance are also often reported together with internal consistency

reliability, such as Cronbach’s ↵, is also common to include.9 There are, however, several

limitations to the use of reliability and what can be deduced from high reliability (Green,

Lissitz, & Mulaik, 1977; Schmitt, 1996). The main problem is that high reliability is “re-

quired but not su�cient” for validity, while reliability that is too high may indicate that

some observations may be redundant. Although one can agree that there should be a

discernable “elbow” present in the scree plots, and that more explained variance is better

than less, such heuristics are somewhat informal and only provide indirect input into the

question of whether something is measured in a valid manner. Other internal validation

properties are therefore needed.

A test ofmodel fit is one opportunity to more rigorously test whether the data conforms

to the expectations of a measurement model. Using the data from the Pre Study, the Root

Mean Square Error of Approximation (RMSEA) was used as a test of model fit to evaluate

di↵erent ways to define programming performance. This approach relies on confirmatory,

rather than exploratory, factor analysis from a Structural Equation Modeling perspective;

see (Jöreskog, 1969). Additionally, for the Main Study, overall model fit, person model

fit (each person’s responses over tasks), and task model fit (each task’s responses over

persons) were investigated, using the indices of model fit available in the Rasch analysis

software, Rumm2020, used to analyze the data (Andrich, Sheridan, & Luo, 2006). Yet

another way internal validation was conducted in the Main Study was to analyze whether

any learning occurred. Learning e↵ects may be detrimental to studies (Shadish et al.,

9Concepts that may be complex to measure are also sometimes only represented using a single oper-
ationalization, which does not permit the calculations of reliability.
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Table 5: Internal and external activities for validation

�
�
�

  Details in 
Type of 
valiation What Pre Study,  

Paper (Section) 
Main Study,  

Paper (Section) 
Internal Psychometric properties I (4.2) II (4.5) 
 Model fit I (4.2) II (4.3, 4.4) 
 Model overfitting  II (4.1) 
 Unidimensionality  II (4.2) 

External Correlations with other variables I (4.1) II (5.1), III (3.1) 
 Prediction  II (5.2), IV (4.1) 
 Patterns in correlations  II (5.1), III (3.2) 

2002); see (Sheil, 1981) for a detailed discussion on problems with learning e↵ects in the

context of programming skill.

The internal validation of the measure developed in the Main Study was further ex-

tended by testing whether the tasks that were used to measure programming skill were

unidimensional. Briefly, the idea of having a set of programming tasks that all mea-

sure “the same” (i.e., they are unidimensional) is that subsets of these tasks also measure

“the same”, albeit with less precision. Unidimensionality was investigated using Smith’s

test (2002) (see Paper II for details).

Another way to perform an internal validation was to test for model overfitting. Briefly,

overfitting occurs when the adjustable parameters of a model are tweaked to better account

for idiosyncrasies in the data that may not be representative of what is studied (Chatfield,

1995). The ideal is, therefore, to build the model on one set of data and evaluate the model

on another set of data (Dahl, Grotle, Benth, & Natvig, 2008; Feynman, 1998). For the

Main Study, the data was split into two sets. Two-thirds of the data comprised the

construction data set, which was used to construct scoring rules. The remaining third,

the validation data set, was used to detect tasks that might have scoring rules that had

overfitted the data.

Turning to the external aspects used in validation, the correlation between the measure

of programming skill and other tests or background variables were investigated for both the

Pre Study and the Main Study. Because the Pre Study was based on a reanalysis of data,

only a few external variables were available to test whether the measures yielded results in

agreement with theoretical expectations. Developer category (i.e., junior, intermediate,

senior), self-assessment of programming skills, lines of code (LOC) written, and years

of experience are all examples of variables with which one would expect a measure of

programming skill to be positively correlated. The Main Study extended the number of

external available variables to inspect and included two standardized tests of programming

knowledge and working memory capacity. Several variables that should not correlate, or

should be negatively correlated, with a measure of programming skill were also included

in the external validation of the measure.

The Main Study also investigated how well the measure of skill predicts programming

performance on other tasks not used to measure programming skill. To make this compar-
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ison fair, it was important that the performance on the programming tasks being predicted

was independent of any methodical contributions present in the measure of programming

skill. Correctness and the time for correct solutions to the four tasks were used in this

prediction.

Finally, the Main Study also investigated whether the overall patterns in correlations

were consistent with theory. First, it was investigated whether variables that are concep-

tually closer to Java programming skill were also more highly correlated with the measure

of programming skill. For example, the variable “Java experience” is a specialization of

the variable “general programming experience”, which in turn is a specialization of the

variable “work experience”. One would, therefore, expect these three variables to display

a decreasing level of correlation with a measure of Java programming skill. Second, the

patterns in correlations were also tested against Cattell’s investment theory (1971/1987).

According to this theory, one would expect working memory and experience to only in-

directly influence the acquisition of programming skill through the two variables’ direct

e↵ects on programming knowledge. Programming knowledge is, thus, a mediator variable

between the two variables and programming skill (see Paper III for details).

4 Results

This section describes the results for Research Questions 1–3.

4.1 Combining Time and Quality as Performance

The first research question was, “how can time and quality be combined as performance?”

For many typical real-world tasks, performance is a combination of the time spent on the

tasks and the quality of the result. Thus, ways to define performance in terms of both

time and quality is needed.

Based on a reanalysis of programming performance data, the Pre Study shows that

neither quality alone nor time alone yields results that are consistent across tasks. Time

and quality must therefore be combined as performance. Combining time and quality

were investigated using di↵erent ways to combine the two variables. As shown in Paper I,

the most consistent results were achieved when performance was first defined in terms of

increasing levels of quality, and then in terms of time, when an acceptable level of quality

was achieved.

Table 6 shows a hypothetical example of a scoring rule for a task. The rule has four

categories for quality, which is operationalized as correctness in this example, and five

categories for time. Solutions that are attempted but not submitted, submitted outside

the time limit, or clearly do not have any progress towards the quality requirement of

the task are scored as zero. Thus, partial scores are not awarded unless the instructions

were followed and some progress was made towards the quality requirements. Increasingly

higher scores are then awarded until the solution is of “acceptable” quality, irrespective of

time. For those solutions that meet this quality requirement, increasingly higher scores

are then awarded for those who spent less time.
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Table 6: A hypothetical scoring rule for a task�
 Time 
Correctness Limit exceeded Slow Medium Fast  Very fast 

Acceptable 0 3 4 5 6 
Almost acceptable 0 2 2 2 2 
Minimal 0 1 1 1 1 
Nothing achived 0 0 0 0 0 
�
�
�

�
�
�
The scoring of time and quality according to this structure forces performance to be

represented as a categorical, ordinal-scale variable. This reduces the amount of informa-

tion available in the data, something that is generally not desired. However, there are

also clear benefits to the suggested approach: time and quality no longer need to be dealt

with as two mutually dependent variables with di↵erent scale properties and unknown

complex interactions with each other. Additionally, the theory of skill and the scoring

of performance are closely related by using this approach. Thus, the use of theory not

only guides the development of task materials but also the criteria used in the scoring of

tasks (Messick, 1995).

The flexibility of the overall approach by which time and quality are scored as a

combined variable of performance was extended in the Main Study. Combinations of

computer-based evaluation (e.g., automatic functional and regression tests) and human-

based evaluation (e.g., manual inspection of code comprehensibility and use of good

object-oriented principles) were applied in the scoring rules, producing a much more di-

verse set of tasks and scoring rules than those reported in the Pre Study. Moreover, the

scoring principle used was also found to be applicable for programming tasks that required

both single and multiple submissions (i.e., testlets). In testlet-structured tasks, each sub-

mission extends the original solution based on a new, or a slightly more challenging,

problem that can be solved incrementally. Because many real-world problems are solved

in successive steps, a scoring structure that can support such tasks is beneficial (Millman

& Greene, 1989).

The proposed solution is based on using the Guttman scale (2007) in combination with

the fundamental principle described by Thorndike and others: “the more quickly a person

produces the correct response, the greater is his [ability]” (Carroll, 1993, p. 440). To

some extent, the solution is also based on previous work by (Hands, Sheridan, & Larkin,

1999), who investigated the categorization of continuous data for use in the Rasch model.

Nevertheless, a challenge with the solution was to determine whether a particular scoring

rule was appropriate, because a scoring rule can be defined in many ways. In the Pre

Study, the appropriateness of various scoring rules were investigated using the indices of

model fit that are available in confirmatory factor analysis, such as the root mean error

of approximation. In the Main Study, the Rasch model o↵ered additional possibilities for

analyzing the scoring rules for each task, thereby increasing testability further.

In summary, the best results were achieved when time and quality were combined using

a Guttman structure. Therefore, higher performance scores should be awarded, first, to
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better quality solutions, and, second, to solutions that that use less time. However, to

award higher performance scores for time, solution quality must be at an acceptable level,

usually operationalized as “correct”. A problem with the approach is that there is little

guidance for how to decide on the number of score categories that should be used for time

and quality. For this, a criterion is needed to evaluate the applicability of a scoring rule.

This criterion is addressed in the second research question.

4.2 Measuring Programming Skill from Performance

The second research question was, “how can programming skill be measured from per-

formance?” The results of the Pre Study indicate a reasonably well-fitting model for an

ordinal-scale measure of programming skill. Measurements of programming skill using

an ordinal scale therefore appear plausible, despite a lack of criteria to use in the valida-

tion of the measure. Five other major limitations of the proposed solution for measuring

programming skill were also present in the Pre Study:

1. It used an ordinal scale.

2. It was unclear what the measurement unit represent.

3. Reliability was too low to characterize individual di↵erences.

4. Individuals with any missing data had to be removed from analysis.

5. Di↵erences in the di�culty of tasks were not accounted for.

The Main Study aimed to resolve these five limitations. For limitation one, the Main

Study conceptualized measurement according to the Rasch model, which uses an interval

rather than an ordinal scale. For limitation two, the logarithm of the odds was used

as the unit of measurement. For limitation three, additional tasks were included. This

improved the internal-consistency reliability of the Main Study. About eight hours’ worth

of tasks appeared su�cient to characterize individual di↵erences with su�cient reliability

to represent individual rather than group di↵erences. For limitation four, the problem of

missing data was resolved by the way the Rasch model can handle missing data. When

data was missing for an individual in this model, the standard error of measurement

increased, but measure of skill could otherwise be regarded as una↵ected.10 Finally, for

limitation five, by using the Rasch model, di↵erences in the di�culty of tasks could be

accounted for because such di↵erences are represented as parameters in the model.

The Main Study indicated that some types of programming tasks are less suitable for

measuring skill than others. Tasks involving concurrent programming (multi-threaded

code) could not be successfully integrated into the measure. Further, it was also found

that tasks involving debugging (finding errors in code segments) should probably not be

used to measure skill, even though such behavior was highly correlated with the measure

of skill.

In summary, the Main Study demonstrated a step in the direction of scientific measures

of programming skill, where skill is inferred from programming performance. By using

10This assumes that the performance on the task in question was not an outlier.
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the Rasch model and theory of skill, empirical commitments were made that could subse-

quently be tested during validation. However, two limitations remained. First, Borsboom

and Mellenbergh (2004) point out that successfully fitting data to the Rasch model only

indirectly tests whether a psychological variable is quantitative, that is, whether the vari-

able can be scientifically measured or not (see Borsboom & Scholten, 2008; Karabatos,

2001). Second, it is unclear whether one can regard the measure proposed in the Main

Study as valid. This issue was central to the third research question.

4.3 Validating Measures of Programming Skill

The third research question was, “how can measures of programming skill be validated?”

Papers I to III all address aspects of the validation of measures for programming skill.

Paper II additionally distinguishes between the term “validation”, which is the process

used when informing the question of validity, and “validity”, which is a property of a

measure, see (Borsboom, Mellenbergh, & van Heerden, 2004). APA (1999) lists four

aspects of validation as follows:

• Task content

• Response process

• Internal structure

• Correlations with other variables

For the Pre Study, task content and response structure could not be addressed to any

significant extent because the study was based on a reanalysis of available data rather than

a theory-driven process, as was the case in the Main Study. Nevertheless, the researchers

who designed and implemented the Pre Study probably regarded both the content of

the programming tasks and the response process used in solving these tasks relevant to

industrial programming to some extent (if they did not, their reported findings would

mainly be of academic interest).

For the Main Study, three tasks from the Pre Study were used verbatim. Additionally,

16 new tasks were sampled, constructed, or modified from available literature to further

increase the span of the task content. Five of the new tasks in the Main Study were

developed by two paid professional programmers, increasing the likelihood that the task

content and processes resemble those used when solving industrial problems. Nevertheless,

as discussed in Paper II in more detail, to establish that the task content aspect is resolved

to satisfaction, a systematic sampling of tasks from a well-defined domain of “industrial

programming tasks” should have been present. Regarding the response structure, it is a

benefit to have tasks with di↵erent origins, authors, and focus represented in the Main

Study. However, think-aloud protocols that compared the thought processes used while

solving the tasks of the Main Study with those of real industrial tasks should have been

available to better inform the validation process.

The internal structure of the data was central to both the Pre and Main Study. This

structure concerns the internal relationships between test items with respect to, for exam-
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ple, dimensionality, reliability, or whether di↵erent subgroups of subjects respond di↵er-

ently to subsets of tasks that share a common theme (APA, 1999). The Pre Study investi-

gated the extent to which a coarse aggregation—the sum of task performance scores—for

all the tasks in the reported experiments could be treated as a good approximation of skill.

The internal structure of the data required that an individual display a consistent level

of performance across tasks and, further, that task performance for each task be scored

as a combination of time and quality. Unlike the baseline model (Table 1), which regards

measurement as “anything goes”, the Pre Study used confirmatory factor analysis to in-

vestigate the internal structure of the data. According to Jöreskog, confirmatory factor

analysis may be a good way to proceed when one “has already obtained a certain amount

of knowledge about the variables measured and is therefore in a position to formulate a

hypothesis that specifies some of the factors involved” (Jöreskog, 1969, p. 183, empha-

sis added). By using the Root Mean Square Error of Approximation (see, e.g., Loehlin,

2004), the fit of data to the proposed model for measurement could be investigated to

indirectly inform the validity of the proposed measure. The overall result for the internal

structure of the data yielded somewhat conflicting results: confirmatory model fit, ex-

plained variance, and internal consistency reliability favored slightly di↵erent approaches

when combining time and quality as performance in the Pre Study. Nevertheless, some

of the internal indices of fit appeared su�ciently promising to be investigated further in

the Main Study.

The Main Study extended the available testable consequences of the internal structure

of the data by including

• two data sets, one for construction and one for validation of the proposed measure;

• a measure of programming skill by multiple distinct sets of tasks (unidimensionality);

• inspection of whether noise (residual variance) displayed systematic patterns;

• an investigation of whether performance increases for each new task; and

• other model fit statistics, where individual responses to single and sets of tasks could

be investigated.

Overall, no major discrepancies from expectations were detected, even though some minor

issues arose. Nevertheless, what was important about the research question was that

validation might consist of many perspectives that may all represent “required but not

su�cient“ conditions in the subsequent validation.

Correlations with other variables in the Pre Study were addressed for such (external)

variables as developer category, programming experience, and lines of code (LOC). All the

variables confirmed a positive association between the proposed measure of skill and each

variable. However, as Paper I illustrates, unless the absolute level of correlation is known

beforehand between a measure of programming skill and such variables, correlations can-

not be used solely to inform the question of measurement validity (see, e.g., Nunnally &

Bernstein, 1994).

For the Main Study, Paper II reports how the correlation with programming skill of

additional external variables was investigated. For example, programming knowledge is a
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concept closely related to programing skill, and it was confirmed that these two variables

were highly related. Working memory capacity is another variable that has previously

been reported as an important determinant of programming skill acquisition (Shute, 1991),

which was also confirmed in the Main Study. Moreover, it was found that the relative

patterns in the correlation for several of the other variables accorded with their presumed

strength correlation with a measure of programming skill. For example, Java experience,

programming experience, and (general) work experience were all positively associated

with a measure of Java programming skill. Furthermore, Java experience should dis-

play the highest correlation with Java programming skill, followed next by programming

experience, and then by work experience. This was also confirmed.

Paper III used the patterns in the correlations to test Cattell’s (1971/1987) invest-

ment theory. This theory describes how experience and general mental abilities a↵ect the

performance of individuals indirectly through their mediating e↵ect on the acquisition of

knowledge. The results generally accorded with the external correlations of prior research,

which adds to the plausibility of the measure. Similarities in results to prior research on

job performance were also present, as shown in Paper III.

In summary, multiple instances of support for the validity of the proposed measure of

programming skill in the Main Study was found using multiple levels of abstractions (see

Figure 1) and perspectives (see Table 2). Combined, one may say that all attempts at

validation that do not fail add to the plausibility of the claim that programming skill is

measured.

5 Discussion

Programming skills are central to the software industry. Measurement of such skills has

therefore obvious and important applications in many situations. However, as indicated

in this thesis, it is a challenge to scientifically measure programming skill. This section

examines the results in light of the overall research problem of measuring programming

skill. Implications for empirical research on programmers are also explored, as is the use

of the developed measurement instrument in practice. Limitations and recommendations

for further work conclude this section.

5.1 Measuring Programming Skill

I will start with summarizing key points for the three words that compose the main title

of this thesis: measuring programming skill.

• Measuring. The process of measuring is associated with di↵erent practices. In this

thesis, I discuss the concept of programming skill according to a scientific meaning,

which implies that certain criteria must be either met or acknowledged as limitations.

The end goal of having a scientific measure of programming skill was investigated

in two increments where each increment provided additional support for the thesis

and had fewer limitations.
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• Programming. The activity of programming consists of a wide range of languages,

technologies, and tools that are often supported by various processes and methods

used in the development of software. Thus, to investigate the measurement of skill

within the specific area of programming, many such combinations were excluded

from the definition of programming used in this investigation: “the activities of

writing code from scratch, and modifying and debugging code.”

• Skill. In the lexical definition, used in everyday speech, skill is typically a specialized

type of ability that is acquired through experience. Such a dictionary definition is

too vague to use in the measurement of programming skill. However, a theoretical

definition of skill increases the potential for finding a way to measure skill because

the detail of such a definition can be empirically tested. Thus, to measure skill one

must agree on what defines skill, even though di↵erent research fields may emphasize

di↵erent aspects of the theory of skill.

The claim of this thesis, that programming skill, to some extent, can be scientifically

measured, requires further ontological, epistemological, and methodological considera-

tions. I will address these below.

5.1.1 Ontology

Ontology deals with issues concerning the existence of things independently of our ob-

servations (Chalmers, 1999, p. 213). Borsboom et al. (2004) argue that the (ontological)

existence of an ability is a prerequisite for the subsequent process of measuring the ability.

They further regard measurement and validity as causal concepts: a change in an ability

must result in a change in the measure in order for the measure to be valid. Causality

is a topic that is often avoided because it may be di�cult to demonstrate that a relation

between two entities is causal. The problem is that a large number of competing causal

models may explain the same set of observations (i.e., the problem of underdetermina-

tion). However, there is a di↵erence between a conjecture that a relationship is causal and

treating all relationships as non-causal (e.g., by only using correlations). Causal models

that provide insight on a topic are, therefore, preferred over non-causal relationships; for

example, Porter, Siy, Mockus, and Votta (1998) also make this claim in the area of soft-

ware inspections. The basis for causality and models supporting causal interpretations

have also been improved during more recent years (see, e.g., Pearl, 2000; Glymour, 2001).

Even though the existence of programming skill is granted, there are still uncertainties

about what such a skill refers to ontologically. A unidimensional measure of an ability

requires that all the variation in the measure must be uniquely determined by the ability

(Borsboom, 2008). Thus, it would be tempting to deduce that the ontological origin of this

ability is a singleton of some kind (e.g., a single process located in the brain somewhere).

However, van der Maas et al. (2011) argue that many psychological variables are based

on several distinct (ontological) processes. Because such processes are often practiced

together, they appear as unidimensional when analyzing the data. A supporting position

for this argument has been made in the study of working memory; Unsworth, Fukuda,

Awh, and Vogel state that “working memory tasks require a complex sequence of events
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for accurate performance (i.e., encoding processes, maintenance processes, and retrieval

and decision processes) [where the] . . . neural activity during the maintenance period alone

is a powerful predictor of . . . working memory” (2015, p. 863) (also see van der Maas, Kan,

& Borsboom, 2014). The general theory of skill also describes the distinct processes that

are involved when skill increases (see e.g.,Anderson, 1982). Thus, I regard it as untenable

that the ontological basis for programming skill refers to any single psychological variable

or process in the same sense as quantitative variables such as time or length. Still, as

shown in this theses, at the abstraction level of programming performance, the measure

of these variables and processes appear unidimensional for a subset of Java programming

tasks.

A related issue to the ontological basis for programming skill concerns the distinction

that Borsboom (2008) makes when he discusses “between-subject” versus “within-subject”

di↵erences (also see Borsboom, Mellenbergh, & van Heerden, 2003). The Rasch model

expresses di↵erences in skill between individuals. But the instrument that was developed

was not devised to, for example, associate a range of skill level with a specific phase of skill

acquisition for an individual. As such, no within-subject interpretation of programming

skill is o↵ered at present. Moreover, many data patterns in programming performance

receive the same skill score in the instrument (for a discussion of this general limitation of

the Rasch model, see Borsboom, 2008). Thus, two developers with identical programming

skill, as measured by the instrument, can have used di↵erent mental processes, strategies,

and knowledge and at the same time have di↵erent patterns in programming performance

across tasks (e.g., by one individual displaying a medium level of performance across all

tasks whereas the other alternates between high and low performance). Valid methods for

identifying such di↵erences in processes, strategies, and programming performance across

task should therefore be developed in the future.

5.1.2 Epistemology

The next philosophical consideration concerns epistemology, that is—justified belief that is

based on valid knowledge, methods, or scope, as opposed to subjective opinion. In general,

one desires validity. Within psychology, validity has traditionally been seen as having

di↵erent types, such as content validity, criterion validity (predictive and concurrent),

and construct validity (Messick, 1989b). Within software engineering, Shadish et al.’s

(2002) four types of validity (i.e., construct, internal, external, and statistical conclusion

validity) are frequently addressed.

This thesis focused primarily on issues concerning construct validity. According to

Shadish et al., construct validity concerns how we can “generalize from a sample of in-

stances and the data patterns associated with them to the particular target constructs

they represent” (2002, p. 21). In this thesis, performance on multiple programming tasks

are the “sample of instances” and programming skill is the “particular target construct”.

However, I hesitate to refer to programming skill as a “construct” because of the ambi-

guity about what a construct is. Borsboom, Cramer, Kievit, Scholten, and Franić has

summarized this ambiguity:

[T]he term ‘construct’ is used to refer to (a) a theoretical term (i.e., the linguis-
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tic, conceptual, symbolic entity) that we use as a placeholder in our theories

(‘general intelligence’, ‘g’, ‘theta’, ‘the factor at the apex of this hierarchi-

cal factor model’, etc.), and (b) the property that we think plays a role in

psychological reality and of which we would like to obtain measures (i.e., a

linearly ordered property that causes the positive correlations between IQ-

tests—assuming, of course, that there is such a property) (2009, p. 150).

In relation to the first understanding of a “construct”—as a placeholder for theoretical

terms in theories—it is too easy to believe that because one factor is present in a data

set, this factor represents a physical entity (i.e., to reify according to Gould, 1996, which

was also discussed in Section 5.1.1). In relation to the second understanding—as an

active property of reality that could be measurable—I have argued in this thesis that

programming skill has an ontological basis; skills are a part of our physical reality and

they do casual work. Consequently, I could use Borsboom et al.’s definition of validity, as

stated in Paper II: “A test is valid for measuring an attribute if . . . the attribute exists and

. . . variations in the attribute causally produce variation in the measurement outcomes”

(2004, p. 1061).

One consequence of using this definition of validity was to regard each operational-

ization of programming performance as an indicator of programming skill. Cohen (1989)

distinguishes nominal from denotative definitions where the former operationally defines

the term (i.e., philosophical operationalism Bridgman, 1927). However, denotative defi-

nitions treat operationalizations as examples that partially constrain the meaning of the

term. Moreover, such examples are not exhaustive and they are therefore called indica-

tors. Programming skill is therefore not defined solely in terms of the programming tasks

of the instrument; new tasks can (and will) be used in the future without changing how

programming skill is measured.

Testability is another issue that is related to validity. In general, testability of claims is

central to science (Popper, 1968). A further common practice in science is that it the onus

is on the person making the claim to provide evidence for a claim. For example, Hitchens

formulates the proverb “Quod gratis asseritur, gratis negatur” as “[w]hat can be asserted

without evidence can also be dismissed without evidence” (2007, p. 150). Consequently,

claims about the measurement of programming skill that does not permit the display

of evidence are therefore of limited interest. In my view, many conventional analyses

may be too easily satisfied with respect to testability. One achieves increased confidence

in the claim that something is actually being measured when one uses a confirmatory

factor analysis on a parsimonious measurement model. Confidence can also be increased

further, for example, by stating prior to inspection of the data what kind of analysis will

be conducted (Wagenmakers, Wetzels, Borsboom, & van der Maas, 2011).

However, to validate measures of programming skill, one must make certain that it is

possible to be wrong about the claim that programming skill is measured to begin with.

To paraphrase Messick, to be correct about the claim that something is measured, it must

also be possible to be wrong about this claim (Messick, 1989b).11 This answer is certainly

11The original quote is: “. . . one must be an ontological realist in order to be an epistemological falli-
bilist” (Messick, 1989b, p. 26).
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not novel; according to Popper (1968), merit of a scientific claim or theory depends on

whether the claim o↵ers testable predictions or not. Thus, being explicit about testable

empirical predictions for a measure of programming skill improves the extent to which

the measure can be validated. A causal and realist interpretation of the term validity

is needed (such as proposed in Borsboom et al., 2004), simply because there are many

things one can be wrong about when defining a scientific measure of programming skill.

Despite the research in this thesis, unresolved issues remain. First, no direct tests

were conducted to inform the question of whether programming skill is a quantitative

variable that permits scientific measurement. Michell’s (1997) criticism of the field of

psychology, that, in most cases, people fail to address this primary scientific research

task, also applies to my work. Nevertheless, more pressing concerns must be resolved

before testing whether, when, and how programming skill can be scientifically measured.

Bunge captures my overall intent well when he writes about the importance of formulating

and challenging theories:

[P]remature theorizing is likely to be wrong—but not sterile—and . . . a long

deferred beginning of theorizing is worse than any number of failures because

(1) it encourages the blind accumulation of information that may turn out

to be mostly useless, and (2) a large bulk of information may render the

beginning of theorizing next to impossible” (1967, p. 384) (as cited in Sjøberg,

Dyb̊a, Anda, & Hannay, 2008).

Thus, I would rather be specific but wrong about whether programming skill can be

measured than have packaged my thesis so vaguely or made it so untestable that it would

be di�cult to refute. I concede that additional direct tests that inform the question of

the quantitative nature of skill is needed in future work.

A related, unresolved issue concerns whether one is willing to accept scientific measures

that are inherently stochastic, rather than deterministic (Borsboom & Mellenbergh, 2004)

(see Hacking, 1990 generally). The data of my work shows that developers sometimes fail

on tasks when they should have succeeded, given their combined performance on the

other tasks. A stochastic definition of measurement fits better in such situations, because

a few mistakes (e.g., misunderstanding the task requirements or experiencing a technical

problem) do not invalidate the measure. Yet results are more trustworthy when anomalies

during a test are reduced to the largest possible extent. Ideally, an individual’s skill, as

measured by an instrument, should display a deterministic relation to an individual’s

actual performance.

5.1.3 Methodology

Methodology concerns the system of principles and methods used to conduct research.

Software development is a field with rich opportunities for data collection. For example,

software repositories may contain historical data on all changes made to a system, all

keystrokes made during the development of the system, all accesses made by its users,

etc. Software repositories yield massive amounts of data, but the data is usually collected
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for a di↵erent purpose than to address a specific research question. As a consequence,

research is often retrofitted to account for the available data.

An alternative to such data-driven investigations is to use fewer, carefully selected and

instrumented variables that are collected according to expectations. Expectations may

vary in strength. At one extreme, one has no expectations (e.g., guessing next week’s

winning lottery number); at the other extreme, one is certain of the outcome (e.g., a

stone will fall to the ground when dropped). Between these extremes are many levels.

For example, at a low level, one would expect the available data from an investigation

to be internally consistent. At a higher level, stronger expectations may arise from prior

research or, better, by the use of theory.

The main methodological challenge when data is collected with no clear expectations

is as follows: that when faced with “strange” results, one is left with no other good option

than to trust one’s data. Data may contain errors from many sources and, often, does not

fully represent the concepts that a researcher wants to investigate. For example, when

studying developer productivity, productivity data based solely on lines of code written

per month is associated with many problems (e.g., di↵erences in task complexity or the

verbosity of a programming language). Thus, some prior notion of what to expect—

preferably from a specific, testable theory—makes it easier to detect situations where

data might be problematic, poorly instrumented, or otherwise faulty.

During the instrument construction, I used the Rasch model, which can be regarded

as a non-substantive theory for the measurement of abilities such as skill. Because this

model requires abilities to be measured according to a single dimension, this require-

ment may be used as an expectation against which one may evaluate the collected data.

This expectation was particularly important during the construction of the scoring rules

(Section 3, Paper II). The theory of skill also provided expectations during instrument

construction, mainly with respect to limiting the possible ways time and quality variables

could defensibly be scored as performance. Had no theory been available, the scoring

rules would most likely have been overfitted to account for idiosyncrasies in the data.

The theory of skill was also central during instrument validation. Overall, I regard the

evidence for the theory of skill as su�ciently strong to form a basis for expectations that

could be formulated prior to data collection. When there is a match between expectations

and subsequent data analyses, the plausibility of of a claim increases. Conversely, when

few or no expectations of the data exist, a study may become an exercise in model fitting

using a complex model. In such situations, explained variance can usually be increased by

reduced parsimony to the point of having an uninterpretable model. I do not argue that a

complex model of something, for example, as expressed by a neural network, is not useful

for many specific situations. However, when the aim is to express knowledge that can be

incrementally developed and generalized across situations, having expectations that can

be formulated prior to data collection beneficial.

Another methodological consideration concerns the unit for measuring programming

skill suggested in this thesis: the odds that one developer achieves a better solution than

another developer. This unit can handle performance that is operationalized as quality

given a fixed time, time given a fixed level of quality, or a mix of the two. It is also possible

to compare di↵erences between individuals where one developer succeeds at a task and
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another developer fails, a comparison that is not meaningful when using time alone. The

overall system for measurement that is suggested is not novel. For example, the Elo (1978)

rating system of chess players uses a similar approach, where the di↵erence in ratings of

two chess players is expressed as probabilities for a win, tie, and loss in each game. In

the Elo system, the rated performance in a specific tournament can be contrasted with

the individual’s rating (i.e., “chess skill”). It is also possible to develop psychometric tests

where the goal is to predict the Elo rating of chess skill, such as done by van der Maas

and Wagenmakers (2005).

5.2 Implications for Empirical Research on Programmers

This section discusses the implications of generalizability, the use of students versus pro-

fessionals, and statistical power in empirical studies on programmers.

5.2.1 Generalizability

Generalizability concerns the extent to which inferences drawn from one particular sit-

uation hold for other situations that are not studied. An issue in this thesis is whether

the results based on the specific populations of developers and programming tasks used

in the Pre Study and Main Study can be generalized to the global software industry with

its developers and complex software systems. When sampling particulars from a narrow

population (e.g., only developers from one particular company, or only tasks relating to

one particular system), it may be di�cult to generalize to other populations. A way to

increase generalizability is therefore to use heterogeneous sampling of particulars (Runkel

& McGrath, 1972; Shadish et al., 2002).

In my view, subjects and tasks are two main dimensions of generalizations of particular

interest to the constructed instrument. To what extent would the inferences in this thesis

hold if di↵erent developers and programming tasks had been investigated? Additionally,

other aspects may a↵ect generalizability, which I will collect into the dimension context.

The subjects of the Pre Study consisted of a mix of professionals from di↵erent companies

and students from di↵erent universities. However, according to the theory of skill as well

as research on expertise, one would expect students on average to have less programming

skill than professionals. Results obtained for students may therefore not generalize to

professionals.

To prevent such a limitation, only paid, professional programmers were used in the

Main Study. No attempts were made to sample the subjects as representative of the global

population of Java programmers by using, for example, stratified random sampling. Gen-

eralizations to the global population of developers are therefore di�cult to make based on

the data alone. Still, one may argue that the larger the sample size, the higher the like-

lihood that the sample approximates the target population on important characteristics.

Compared to a recent survey on Stack Overflow (2015), one of the leading online forums

for programmers globally, the developers of the Main Study had a similar mean age (28

years) as that of the survey (29 years, N = 26,086). The proportion of subjects with a

bachelor of science degree was also similar, with 34% in the Main Study and 38% in the

Stack Overflow survey. The largest di↵erence was that 63% of the subjects in the Main
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study had a master’s of science degree, compared with 18% in the survey.

Similar to the sampling of subjects, neither the Pre Study nor the Main Study sampled

representative industrial tasks from strata that previous research had established (I am

aware of no research that has identified such strata). Instead, a diverse set of tasks was

sampled, because of convenience, from the literature or constructed from scratch. The

sampled tasks involved some artificial elements (see, e.g., Hannay & Jørgensen, 2008).

This implies that, unlike the sampling of subjects who were all members of the target

population, the tasks were not actual industrial ones but rather involved similar cognitive

processes as those used in real, industrial tasks. For example, in an experiment on object-

oriented programming, a programming task may involve an artificial inheritance problem

(e.g., the eating of apples, pears, and other fruits). Although such a task is unrealistic in

an industrial setting, the abstraction mechanism used may be the same as the abstract

mechanism used in real industrial tasks that involve inheritance. The point is that when

the sampled tasks and industrial tasks share characteristics important to the subjects’ per-

formance, it may possible to infer an individual’s level of performance from the sampled

to the industrial tasks. Ferguson (1956) refers to this phenomenon as “transfer”. Gener-

alizability is further increased when the sampled tasks are heterogeneous. For example,

by only using tasks involving inheritance (i.e., homogeneous sampling), other mechanisms

of object orientation are neglected (e.g., encapsulation). It is therefore important to vary

task characteristics.

The rationale for such heterogeneity in the sampling of task origin was to increase

generalizability: If all tasks met the requirements for measurement in the Rasch model,

then there must be a large universe of tasks that could have been sampled. Conse-

quently, generalizations to other tasks would be plausible. If no two tasks met the Rasch

model requirements, however, one could probably not generalize across tasks. Overall,

the 12 tasks of the final instrument were fairly comprehensive, consisting of 135 files con-

sisting of approximately nine thousand lines of code (of which 7.1k were code and 1.8k

were comments).

A large number of contextual factors may a↵ect generalizability, such as technology,

system, and organization. Because di↵erent combinations of contextual factors may ap-

proach infinity (Dyb̊a, Sjøberg, & Cruzes, 2012), the most viable approach is to address

how such factors a↵ect generalizability to reduce the e↵ect of the most detrimental fac-

tors. For example, the availability of industrial tools may be such a factor. One study on

UML found significantly di↵erent results when using pen and paper versus a real UML

tool (Anda & Sjøberg, 2005). Therefore, subjects of the Pre Study and Main Study used

their regular tools for programming (i.e., a computer with an IDE and a web browser) to

increase the plausibility that the results generalize to an industrial setting.

One less desirable approach is to argue, with no basis in data or theory, that some

specific context factors do not negatively a↵ect generalizability. The problem is that

such arguments are speculation. Thus, without data or theory available informing the

argumentation, it is more prudent to acknowledge that there are many context factors

that one hopes do not negatively a↵ect generalizability. For example, it is unknown

whether one can generalize across companies with di↵erent sizes and in di↵erent sectors

(e.g., banking, telecom, e-commerce).
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5.2.2 Students Versus Professionals

Students are the typical subjects in empirical studies on programmers. In a survey on

experiments in software engineering between 1993 and 2002 involving 5,488 subjects,

87% were students (Sjøberg et al., 2005). A particular problem, however, is the extent

to which results that are obtained for students can be generalized to (di↵erent groups

of) professionals, an issue that concerns external validity (Shadish et al., 2002). The

distinction between students and professionals in some cases is marginal (Tichy, 2000).

For example, a group of students that are one day short of graduation do not improve their

performance over night because they start working as a professional software developer the

next day. Neither are students a homogeneous group; large di↵erences may exist within

and across universities, countries, and cultures, making generalizations di�cult. At the

same time, calls for the increased use of professional developers in empirical studies have

been around for nearly 30 years (see Curtis, 1986).

Generally, one would expect students as a group to be less skilled than professional

programmers on average. This raises two issues. First, is the benefit of a technology or

method independent of skill level? If it is, the benefit of a new technology or method

would be same for low skill levels as for high skill levels. In Paper IV, an “expertise

reversal e↵ect” was reported. The claimed benefit of recursive implementations was only

found for low-skilled subjects, whereas the high-skilled subjects had better performance

on iterative implementations. Although this result was statistically insignificant, two

prior large experiments found similar expertise reversal e↵ects. The experiment reported

in (Arisholm & Sjøberg, 2004) found that the benefit of using a “good” object-oriented

system was only present for the senior developers, whereas the junior developers displayed

better programming performance using the system developed according to “poor” object-

oriented principles. The experiment reported in (Arisholm et al., 2007) found that the

benefit of using pair programming was present only for the junior developers, whereas

the senior developers benefitted most from “solo” programming. If the e↵ect of many

processes and technologies are not independent of skill level, this raises major concerns

with respect to generalizations.

Second, in some studies students and professionals display equal levels of performance

(see, e.g., Höst, Regnell, & Wohlin, 2000; Runeson, 2003; Svahnberg, Aurum, & Wohlin,

2008), for several possible reasons. The students may have acquired some specially re-

quired knowledge or skill that helps them excel compared to the professionals (often as

a result of taking a course that is taught by the researcher who is responsible for the

study). Another possibility is that the professionals are sampled from a company that, on

average, has low-skilled employees. The students may also be sampled from a university

that, on average, has high-skilled students. Such situations can be identified by using

the instrument because the relation between programming skill and the performance on

the dependent variable can be inspected. It is also possible that skill or knowledge is not

required to display high level of dependent variable performance in the study at all. For

example, the opinions of students and professional on a topic may be highly similar, and

generalizations may therefore be permissible.
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5.2.3 Statistical Power

When conducting experiments, one generally wants to find statistically significant results.

Statistical power is a function of three elements (Cohen, 1988): the significance level that

is used (usually set at ↵ = 0.05), population e↵ect size (the e↵ect of the phenomenon being

studied), and sample size (N). Of these, the two first elements are usually fixed. The

most obvious way to increase statistical power is, therefore, to increase the sample size.

However, a problem is that additional subjects require additional resources (i.e., time,

money, e↵ort, etc.) In a systematic review of statistical power in software engineering

experiments, Dyb̊a, Kampenes, and Sjøberg (2006) suggest other recommendations for

increasing statistical power. The instrument in the Main Study was built specifically to

assist with this problem.

One recommendation to increase statistical power is to only investigate relevant vari-

ables. In most studies, many other variables besides the e↵ect of treatment may a↵ect the

outcome of the study. To obtain a better overall understanding of the phenomenon being

studied, such variables should be included. However, how to choose which such variables

to include is a problem. In studies where performance is the dependent variable, experi-

ence, seniority, and education are often used as proxies for skill. However, such proxies

may have low correlations with the dependent variable compared with skill (see Papers

II and IV). For example, in a large meta analysis (n = 16,058), McDaniel, Schmidt, and

Hunter (1988) reports a moderate correlation between job experience and job performance.

The correlation between experience and performance also decreased when experience in-

creased. Overall, the study concluded that “job experience is a better predictor of job

performance for low-complexity jobs than for high-complexity jobs”(McDaniel et al., 1988,

p. 330).

Another recommendation by (Dyb̊a et al., 2006) is to “reduce measurement error”.

Measurement error in the dependent variable will reduce statistical power. In Papers I and

II, I evaluated one of the tasks that used a score which originally had six categories (scored

0–5). By using the instrument, which allowed an empirical investigation, I found that this

task only supported four distinct categories (0–3); “nothing done on the task”and“failure,

does not compile” should be collapsed. Similarly, I found no di↵erence between having

“minor visual cosmetic anomalies” and a “perfect” solution. Such empirical evaluation

of proposed scoring rules of dependent variables in studies can be conducted using the

instrument, which in turn may reduce measurement error.

Dyb̊a et al. (2006) also suggests reducing subject heterogeneity to increase statistical

power. The instrument can also be used for this purpose by selecting developers with

similar skill levels prior to study admission or as a covariate in the study of other vari-

ables. For example, the instrument was used to select developers for study on code smells

(Sjøberg, Yamashita, Anda, Mockus, & Dyb̊a, 2013). Furthermore, the instrument was

used as a covariate in (Kjølberg & Hjorth-Johansen, 2012) to study the moderating e↵ect

of education and task complexity on expertise. Moreover, reports of the skill levels of

subjects in a study are also useful to present in the descriptive analysis.

A final recommendation by (Dyb̊a et al., 2006) is to “choose powerful statistical tests”.

Statistical power increases when, for example, matching, blocking, or paired designs (i.e.,
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two equally skilled developers are assigned to treatment and control conditions) can be

used (Shadish et al., 2002). The instrument may also be used in the design of the study

and subsequent statistical analysis of results. According to (Kampenes et al., 2009), in

a survey of 113 experiments, less than 5% of the experiments used the results of tests,

such as the instrument, in their statistical analysis to increase statistical power.

5.3 Use of the Measurement Instrument in Practice

The use of the instrument can be divided into primary and secondary applications. Pri-

mary applications concern situations where the goal is to measure di↵erences in pro-

gramming skill between individuals or group of individuals. For example, outsourcing

is increasingly becoming a central factor to the software engineering occupation (Meyer,

2006). During the last three years, a commercial version12 of the instrument was used

by two large Nordic companies to evaluate developers from di↵erent outsourcing vendors.

The companies also compared the skills of the developers from outsourcing vendors with

the skill of their own employees. The results informed which developers were hired and

allocated to which projects, by ensuring, for example, that the most complex projects had

su�ciently skilled developers.

Other primary applications of the instrument may be for in-house hiring, where the

instrument may supplement a technical interview. Another application is for external

recruiters who are not necessarily versed in computer science or software engineering.

Moreover, the instrument may be used during training to determine which developers

need to improve their programming skills prior to beginning a job for a customer. Mea-

sures of programming skill may also be requested by individual programmers (e.g., to earn

bragging rights) or companies who want justify higher prices for their senior consultants.

Finally, the instrument may be used by schools and universities for a variety of assess-

ments. This is an area with a large potential, but a further discussion on this issue is

beyond the scope of this thesis.

Secondary applications of the instrument concern situations where one wishes to un-

derstand how programming skill a↵ects or interacts with some other variable of inter-

est. An example of a secondary application is to better understand how programming

skill interacts with software cost estimation. It is also possible to study the extent to

which programming skill is a major determinant of team performance in contrast to other

teamwork quality variables (e.g., processes), and also to what extent programming skill

interacts with the quality of requirements analysis, design, testing, documentation, and

other software engineering activities.

For both primary and secondary applications, the utility of the instrument depends

on the extent to which it can predict important criteria. For example, when used in

an industrial setting, if both current or future job performance can be predicted to a

large extent, the utility of the instrument would be high. Conversely, if the instrument

12The research version of the instrument was based on several years of design and implementation and
consists of approximately 30,000 lines of code. Some early prototype development was carried out by two
master’s of science students (Salicath, 2008; Sørlie, 2007). The reworked commercial version consists of
approximately 110,000 lines of code and 20,000 lines of comments, which took approximately 3.5 years
(full-time) to develop.
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does not correlate positively with some parts of job performance, the utility would be zero.

However, for this to be true, all the programming-related variables that were studied in this

thesis would have to be unrelated to actual job performance, which is implausible. Another

requirement for utility is that there must be variability in the skill of the developers that

are being tested. For example, the utility would be zero if no variability in programming

skill exists among a set of candidates for a job or if only one candidate applies for the job

(see, e.g., Schmidt, Hunter, McKenzie, & Muldrow, 1979). For the sample of developers

in the Main Study, the variability in skill was medium to large, according to conventions

of e↵ect size in software engineering (Kampenes, Dyb̊a, Hannay, & Sjøberg, 2007) or the

behavioral sciences (Cohen, 1988). Consequently, utility may be present in situations

where a su�cient number of candidates or teams are evaluated for a position or project,

respectively.

This thesis also suggests that the utility of using measures of programming skill is

not uniform. As discussed in more detail in Paper II, low skill levels of developers were

relatively well predicted by the programming knowledge test. However, when skill in-

creases, the association between programming skill and knowledge decreases. Thus, the

instrument appears to have the highest utility when programming skill is medium or high.

At a more detailed and technical level, the utility of the instrument is also influenced

by other factors. In the early years of the psychology discipline, Thurstone (1926) stated

several requirements for psychological tests that were regarded unresolved challenges at

the time. The challenge of both operationalizing performance in di↵erent ways without

a↵ecting the measure of skill as well as having a measure that is robust to missing data

has already been addressed in RQ1 and RQ2, respectively, and will not be repeated here.

Some of Thurstone’s additional challenges can be rephrased within the context of the

present research problem:

• Invariant comparison of skill across di↵erent tasks. Even if two individuals are

not administered the same tasks, it is still possible to compare their measures of

programming skill on the same scale. This ensures that di↵erent new tasks may be

used to measure programming skill in the future when the existing tasks become

well known, irrelevant, or otherwise unusable. By the properties of the Rasch model,

the instrument can be updated with new tasks in the future. This would require

a gradual introduction of new tasks with unknown di�culty parameters that are

solved alongside some of the existing tasks with calibrated di�culty parameters.

(An individual’s skill in an actual administration of the instrument is, of course,

estimated from the tasks with calibrated di�culty parameters.)

• Increase measurement precision. In the Rasch model, a programming task that is

too easy or too di�cult does not provide the same level of information about an

individual’s level of skill as a moderately di�cult task. An individual is also not

motivated to solve a task that is too easy or too di�cult. By the properties of the

Rasch model, the instrument can support computer adaptive testing in the future.

In such testing, tasks with an optimal level of di�culty can be presented on an

individual basis to optimize measurement precision.
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• Detection of abnormal response patterns in programing performance. It should be

possible to detect when an individual, or groups of individuals, displays patterns

in performance that are inconsistent with expectations. Such anomalies should be

flagged and investigated, for example, to determine the existence of motivational

issues, cheating, or other problems. Anomalies may also be indicative of highly

specialized skills for some parts of the software development stack. At present, the

instrument can use the person fit residuals from the Rasch model to determine which

tasks have worse and which have better performance than expected.

In summary, valid measures of programming skill are useful for a wide range of appli-

cations. Having measures of programming skill available will not only increase confidence

in results, but will also a↵ect the very research questions that can be asked.

5.4 Limitations

The main limitations of this work are described in the individual papers. A summarized

version is provided below.

For the Pre Study, the data sets that were reanalyzed contained sources of unintended

systematic error variance due to the treatments of the experiments. Furthermore, the

categorization of time during the construction of scoring rules is generally undesired be-

cause information is lost. There may also be other undesirable consequences of using

cut points for variables such a correctness (see MacCallum, Zhang, Preacher, & Rucker,

2002). Such variables may vary in degree, but are often (operationally) forced into two or

more categories. Better ways to combine time and quality may also be available, such as

suggested by Maris and van der Maas (2012).

Although the Main Study is large according to the standards for software engineering

reported in (Sjøberg et al., 2002), the measurement models employed in this work are

demand a great deal of data. Authoritative work using the Rasch model with about

70 subjects has been reported (Wright & Masters, 1979), but a sample size of about

250 subjects would be needed for more conclusive results (Linacre, 1994). Due to the low

sample size, I have refrained from absolute claims about whether the data fit the Rasch

model or not. For example, no absolute test of fit was reported in Paper II. Instead, I

focused on issues that appear to improve or decrease fit, either compared with results

that can be obtained by simulated data using (Marais & Andrich, 2012) as an absolute

criterion of fit or by comparing alternative versions of the instrument with each other, as

a relative criterion of fit.

The extent to which the response processes used by subjects during the solving of

the tasks are similar to the response processes used when solving industrial tasks was

not investigated. Although this limitation is essential to inform the question of validity

according to APA (1999), the construction of measures requires both a di↵erent design

as well as subject samples (Feynman, 1998) than the validation of measures does. The

implications of the validity of the measures of skill developed in this study thus have the

same limitations as other single studies, which are strengthened mostly by independent

verification in follow-up studies. Other testable elements in the theory of skill were also

not investigated in this thesis. For example, one could have designed a study where one
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can observe and classify behavior during programming according to the three phases of

skill acquisition (Section 2.1), for example, using observation and think-aloud protocols.

For a valid measure of skill, one would expect developers with low, medium, and, high

skill to display behavior consistent with, respectively, the first, second, and third phase of

the theory of skill acquisition.

It should also be clear that measures of skill, such as described in this thesis, are of

the maximum capacity an individual can display, not necessarily the level of performance

an individual displays, or chooses to display. To illustrate this point, McClelland states

that the amount of “beer a person can drink is not related closely to how much he does

drink” (1973, p. 11).

A final limitation is that no direct test of whether programming skill is a quantifi-

able variable was investigated. Although this limitation is shared many other studies in

software engineering that employ the term “measurement” in conjunction with a concept

that is studied, acknowledging this limitation emphasizes the importance of directing at-

tention to whether the concepts that are studied can be regarded as “measurable” or not.

Indeed, as delineated by the representational theory of measurement, the measurement

instrument does not meet the requirements for scientific measures, In fact, according to

Michell (2008), if programming performance could be considered a quantitative variable,

this in itself does not demonstrate that programming skill is a quantitative variable. I

therefore reemphasize that unresolved challenges do exist that should receive more re-

search attention; these entail future work.

5.5 Further Work

In addition to improving issues related to the limitations of the previous section, further

work can go in several directions. First, attention should be devoted to joint industry-

research projects when professionals not only use the instrument for measuring skill but

also contribute to the development of new tasks.

Second, more work is needed to investigate the ethical and social responsibilities as-

sociated with the development and use of tests (APA, 1999). Using Messick’s classifica-

tion (1989a), this thesis has focused on the evidential basis of test interpretation and test

use; the, subsequent, consequential basis requires more attention. For example, when is

a fast and approximately correct solution better than a meticulously developed solution

of high quality? Furthermore, what would be the consequences of using the measure of

programming skill as part of a grade at a course at a university? Clearly, measures of

programming skill are no panacea for all the present challenges in the software industry.

However, with careful consideration and appropriate use, a test of programming skill may

positively contribute to the improvement of current practices.

A third possibility for future work regards the topic of software complexity. Generally,

programming behavior needs to be better understood before software complexity can be

measured (Kearney, Sedlmeyer, Thompson, Gray, & Adler, 1986). Software quality is also

considered di�cult to measure (Kitchenham & Pfleeger, 1996) and attempts have been

made at addressing the relation between code complexity and di�culty in maintaining

such code (Lanning & Khoshgoftaar, 1994; see Maynard & Hakel, 1997; Wood, 1986 for
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important distinctions related to task complexity). Also, if it is true that program size

is the main variable in software system complexity (see, e.g., Sjøberg, Anda, & Mockus,

2012), to reduce cost and improve deliverability of a project, the skills of employees should

be enhanced while reducing system complexity through an increased focus on reducing

system size.

A fourth avenue of investigation is how to decrease the time needed to conduct a test

without a↵ecting measurement precision. For example, for a task with a time limit of 30

minutes, no discernable progress may be made towards a solution after 15 minutes. In

this instance, it would be more time conserving to terminate this task and present a less

di�cult task instead. Further research might also investigate ways to increase the number

of data points that may be used to infer skill while keeping the time limit constant. For

example, in a study of keystroke fluency and programming performance, it was found that

for some types of operations, the best programmers are faster on the keyboard (Thomas,

Karahasanovic, & Kennedy, 2005). Implementing such multiple perspectives on the same

data may therefore yield ways to increase precision of the instrument, as long as the

methods can handle that such multiple sources of data collection for a single task are not

statistically independent observations.

Finally, it may be possible to extrapolate what constitutes no (zero) programming

skill. This may, in turn, make ratio comparisons of skill possible. The present investiga-

tion failed to integrate the famous Hello World task, it could be used as an operational

definition of zero skill (say, when one has less than 1% probability of solving this task

in ten minutes). However, direct tests of the quantitative structure of programming skill

(or other skills more generally) are also needed, for example, along the lines proposed by

Karabatos (2001). Alternatively, the purported measure of programming skill could be

degraded, perhaps using latent class analysis or nonparametric item response theory (e.g.,

Sijtsma & Molenaar, 2002).

6 Concluding Remarks

This work investigated the extent to which programming skill can be measured. Know-

ing more about the programming skill level of software developers is important to make

well-informed decisions. Increased scientific rigor in the definition, measurement, and

validation of psychological variables, such as skill, is therefore required. Using the gold

standard of scientific measurement from the natural sciences, this research shows that a

valid instrument for measuring programming skill can be achieved for use in both industry

and research.

The instrument created in the course of this research can be improved in many ways

to facilitate more widespread use. High-quality data from real use of the instrument

in the software industry is needed to help identify the most promising opportunities for

improvement. A commercial version of the instrument has already been developed and is

used in newly started industrial collaborations.
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end of construct validity. In R. W. Lissitz (Ed.), The concept of validity: Revisions,

new directions, and applications (pp. 135–170). Charlotte, NC: Information Age

Publishing.

Borsboom, D., & Mellenbergh, G. J. (2004). Why psychometrics is not pathological: A

comment on Michell. Theory & Psychology , 14 (1), 105–120.

Borsboom, D., Mellenbergh, G. J., & van Heerden, J. (2003). The theoretical status of

latent variables. Psychological Review , 110 (2), 203–219.

Borsboom, D., Mellenbergh, G. J., & van Heerden, J. (2004). The concept of validity.

Psychological Review , 111 (4), 1061–1071.

Borsboom, D., & Scholten, A. Z. (2008). The Rasch model and conjoint measurement

theory from the perspective of psychometrics. Theory & Psychology , 18 (1), 111-117.

Briand, L., El Emam, K., & Morasca, S. (1996). On the application of measurement

theory in software engineering. Empirical Software Engineering , 1 (1), 61–88.

Bridgman, P. W. (1927). The logic of modern physics. New York: Macmillan.

Brooks, F. P., Jr. (1987). No silver bullet: Essence and accidents of software engineering.

IEEE Computer , 20 (4), 10–19.

Brooks, R. (1977). Towards a theory of the cognitive processes in computer programming.

International Journal of Man-Machine Studies , 9 (6), 737–751.

Brooks, R. (1983). Towards a theory of the comprehension of computer programs. Inter-

national Journal of Man-Machine Studies , 18 (6), 543–554.

Bryan, G. E. (1994). Not all programmers are created equal. In Proceedings of the IEEE

Aerospace Applications Conference (p. 66-62).

Bryan, W. L., & Harter, N. (1899). Studies on the telegraphic language: The acquisition

of a hierarchy of habits. Psychological Review , 6 (4), 345–375.

Buck, D., & Stucki, D. J. (2001). JKarelRobot: A case study in supporting levels of

cognitive development in the computer science curriculum. ACM SIGCSE Bulletin,

33 (1), 16–20.

Buckley, J., & Exton, C. (2003). Bloom’s taxonomy: A framework for assessing pro-

grammers’ knowledge of software systems. In 11th IEEE International Workshop

on Program Comprehension (pp. 165–174).

Bunge, M. (1967). Scientific research: The search for a system. New York: Springer-

Verlag.



References 59

Burkhardt, J.-M., Détienne, F., & Wiedenbeck, S. (2002). Object-oriented program

comprehension: E↵ect of expertise, task and phase. Empirical Software Engineering ,

7 (2), 115–156.

Butcher, D. F., & Muth, W. A. (1985). Predicting performance in an introductory

computer science course. Communications of the ACM , 28 (3), 263–268.

Byckling, P., & Sajaniemi, J. (2006). Roles of variables and programming skills improve-

ment. ACM SIGCSE Bulletin, 38 (1), 413–417.

Byrne, P., & Lyons, G. (2001). The e↵ect of student attributes on success in programming.

ACM SIGCSE Bulletin, 33 (33), 49–52.

Cali↵, M. E., & Goodwin, M. (2002). Testing skills and knowledge: Introducing a

laboratory exam in CS1. ACM SIGCSE Bulletin, 34 (1), 217–221.

Cameron, W. B. (1963). Informal sociology: A casual introduction to sociological thinking.

New York: Random House.

Campbell, J. P. (1990). Modeling the performance prediction problem in industrial and

organizational psychology. In M. D. Dunnette & L. M. Hough (Eds.), Handbook

of industrial and organizational psychology (Second ed., Vol. 1, pp. 687–732). Palo

Alto, CA: Consulting Psychologists Press.

Campbell, J. P., Gasser, M. B., & Oswald, F. L. (1996). The substantive nature of job

performance variability. In K. R. Murphy (Ed.), Individual di↵erences and behavior

in organizations (pp. 258–299). San Francisco, CA: Jossey-Bass.

Campbell, J. P., McCloy, R. A., Oppler, S. H., & Sager, C. E. (1993). A theory of perfor-

mance. In N. Schmitt & W. C. Borman (Eds.), Personnel selection in organizations

(p. 35-70). San Francisco, CA: Jossey-Bass.

Campbell, R. L., Brown, N. R., & DiBello, L. A. (1992). The programmer’s burden:

Developing expertise in programming. In R. R. Ho↵man (Ed.), The psychology of

expertise: Cognitive research and empirical AI (p. 269-294). New York: Springer-

Verlag.

Card, D. N., Mc Garry, F. E., & Page, G. T. (1987). Evaluating software engineering

technologies. IEEE Transactions on Software Engineering , SE-13 (7), 845–851.

Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies.

Cambridge: Cambridge University Press.

Carver, J. C., Hochstein, L., & Oslin, J. (2011). Programming ability: Do we know it when

we see it? an empirical study of peer evaluation (Tech. Rep. No. SERG-2011-06).

Tuscaloosa, Alabama: University of Alabama.

Cattell, R. B. (1971/1987). Abilities: Their structure, growth, and action. Boston, MD:

Houghton-Mi✏in.

Cattell, R. B. (1988). The principles of experimental design and analysis in relation to the-

ory building. In J. R. Nesselroade & R. B. Cattell (Eds.), Handbook of multivariate

experimental psychology (Second ed., p. 21-130). New York: Plenum Press.

Cegielski, C. G., & Hall, D. J. (2006). What makes a good programmer? Communications

of the ACM , 49 (10), 73–75.

Chalmers, A. F. (1999). What is this thing called science? (Third ed.). Indianapolis:

Hackett Publishing Company.

Chamillard, A. T., & Braun, K. A. (2000). Evaluating programming ability in an intro-



60 Summary

ductory computer science course. Communications of the ACM , 32 (1), 212–216.

Chamillard, A. T., & Joiner, J. K. (2001). Using lab practica to evaluate programming

ability. ACM SIGCSE Bulletin, 33 (1), 159–163.

Chase, W. G., & Simon, H. A. (1973). The mind’s eye in chess. In W. G. Chase (Ed.),

Visual information processing (pp. 215–281). San Diego: Academic Press.

Chatfield, C. (1995). Model uncertainty, data mining and statistical inference. Journal

of the Royal Statistical Society, Series A, 158 (3), 419–466.

Chatzopoulou, D. I., & Economides, A. A. (2010). Adaptive assessment of student’s

knowledge in programming courses. Journal of Computer Assisted Learning , 26 (4),

258–269.

Cheang, B., Kurnia, A., Lim, A., & Oon, W.-C. (2003). On automated grading of

programming assignments in an academic institution. Computers & Education,

41 (2), 121–131.

Chen, E. T. (1978). Program complexity and programmer productivity. IEEE Transac-

tions on Software Engineering , SE-4 (3), 187–194.

Chen, W.-H., Hsueh, N.-L., & Lee, W.-M. (2011). Assessing PSP e↵ect in training

disciplined software development: A Plan–Track–Review model. Information and

Software Technology , 53 (2), 137–148.

Chi, M. T. H., Glaser, R., & Farr, M. J. (Eds.). (1988). The nature of expertise. Mahwah,

NJ: Lawrence Erlbaum.

Chmiel, R., & Loui, M. C. (2004). Debugging: from novice to expert. ACM SIGCSE

Bulletin, 36 (1), 17–21.

Chrysler, E. (1978). Some basic determinants of computer programming productivity.

Communications of the ACM , 21 (6), 472–483.

Clark, D. (2004). Testing programming skills with multiple choice questions. Informatics

in Education, 3 (2), 161–178.

Clark, J. G., Walz, D. B., & Wynekoop, J. L. (2003). Identifying exceptional application

software developers: A comparison of students and professionals. Communications

of the Association for Information Systems , 11 (1), 1–31.

Cohen, B. P. (1989). Developing sociological knowledge: Theory and method (Second ed.).

Chicago: Nelson-Hall.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (Second ed.).

Hillsdale, NJ: Lawrence Erlbaum.
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Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice

in the acquisition of expert performance. Psychological Review , 100 (3), 363–406.

Ericsson, K. A., & Lehmann, A. C. (1996). Expert and exceptional performance: Evidence



References 63

of maximal adaptation to task constraints. Annual Review of Psychology , 47 (1),

273–305.

Ericsson, K. A., & Smith, J. (1991). Prospects and limits of the empirical study of

expertise: An introduction. In K. A. Ericsson & J. Smith (Eds.), Towards and

general theory of expertise (pp. 1–38). New York: Cambridge University Press.

Evans, G. E., & Simkin, M. G. (1989). What best predicts computer proficiency? Com-

munications of the ACM , 32 (11), 1322-1327.
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. . . Vokáč, M. (2002). Conducting realistic experiments in software engineering. In

Proceedings of the International Symposium Empirical Software Engineering (pp.

17–26).

Sjøberg, D. I. K., Anda, B., & Mockus, A. (2012). Questioning software maintenance

metrics: A comparative case study. In Proceedings of the ACM-IEEE International

Symposium on Empirical Software Engineering and Measurement (pp. 107–110).

Sjøberg, D. I. K., Dyb̊a, T., Anda, B. C. D., & Hannay, J. E. (2008). Building theories

in software engineering. In F. Shull, J. Singer, & D. I. K. Sjøberg (Eds.), Guide to

advanced empirical software engineering (pp. 312–336). London: Springer-Verlag.

Sjøberg, D. I. K., Hannay, J. E., Hansen, O., Kampenes, V. B., Karahasanovic, A., Liborg,

N.-K., & Rekdal, A. C. (2005). A survey of controlled experiments in software

engineering. IEEE Transactions on Software Engineering , 31 (9), 733–753.

Sjøberg, D. I. K., Yamashita, A., Anda, B., Mockus, A., & Dyb̊a, T. (2013). Quantifying

the e↵ect of code smells on maintenance e↵ort. IEEE Transactions on Software

Engineering , 39 (8), 1144–1156.

Skiena, S. S., & Revilla, M. A. (2003). Programming challenges: The programming contest

training manual. New York: Springer.

Smith, E. V., Jr. (2002). Detecting and evaluating the impact of multidimensionality

using item fit statistics and principal component analysis of residuals. Journal of

Applied Measurement , 3 (2), 205–231.

Snoddy, G. S. (1926). Learning and stability: A psychophysiological analysis of a case

of motor learning with clinical applications. Journal of Applied Psychology , 10 (1),

1–36.

Soloway, E. (1986). Learning to program = learning to construct mechanisms and expla-

nations. Communications of the ACM , 29 (9), 850–858.

Soloway, E., & Ehrlich, K. (1984). Empirical studies of programming knowledge. IEEE

Transactions on Software Engineering , SE-10 (5), 595–609.

Soloway, E., & Spohrer, J. C. (Eds.). (1989). Studying the novice programmer. Hillsdale,

NJ: Lawrence Erlbaum.

Sonnentag, S. (1998). Expertise in professional software design: a process study. Journal

of Applied Psychology , 83 (5), 703–715.

Sonnentag, S., & Frese, M. (2002). Performance concepts and performance theory. In

S. Sonnentag (Ed.), Psychological management of individual performance (pp. 3–

25). Chichester: John Wiley & Sons.

Sørlie, L. P. (2007). Automatic and manual scoring of java tasks in programming tests:

A prototype implementation of persistence for use in skill tests [my translation].

Master’s thesis, University of Oslo. Oslo, Norway.

Stack Overflow. (2015, May 6). 2015 developer survey. Retrieved from

http://stackoverflow.com/research/developer-survey-2015



74 Summary

Stanislaw, H., Hesketh, B., Kanavaros, S., Hesketh, T., & Robinson, K. (1994). A note on

the quantification of computer programming skill. International Journal of Man-

Machine Studies , 41 (3), 351–362.

Sternberg, R. J., & Kaufman, J. C. (1998). Human abilities. Annual Review of Psychology ,

49 (1), 479–502.

Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103 (2684),

677–680.
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Abstract

The skills of software developers are important to the success of software projects. Also,

when studying the general e↵ect of a tool or method, it is important to control for in-

dividual di↵erences in skill. However, the way skill is assessed is often ad hoc, or based

on unvalidated methods. According to established test theory, validated tests of skill

should infer skill levels from well-defined performance measures on multiple, small, repre-

sentative tasks. In this respect, we show how time and quality, which are often analyzed

separately, can be combined as task performance and subsequently be aggregated as an

approximation of skill. Our results show significant positive correlations between our pro-

posed measures of skill and other variables, such as seniority, lines of code written, and

self-evaluated expertise. The method for combining time and quality is a promising first

step to measuring programming skill in both industry and research settings.

Keywords: skill, perforamance, time, quality, productivity.
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1 Introduction

The skills of individual software developers have a large impact on the success of soft-

ware projects. Also, di↵erences in programming performance reported in the late 1960s,

indicate that the authors believed levels of performance varied dramatically. Although

more recent research (DeMarco & Lister, 1999; Prechelt, 1999) is more conservative in

their assertions, companies that succeed in hiring the best people will nevertheless achieve

great economic and competitive benefits (Glass, 2003; Schmidt & Hunter, 1998; Spolsky.,

2007).

Individual di↵erences in skill also a↵ect the outcome of empirical studies. When evalu-

ating alternative processes, methods, or tools, the e↵ect of using a specific alternative may

be moderated by skill levels. For example, in an experiment on the e↵ect of a centralized

versus delegated control style, the purportedly most-skilled developers performed better

using a delegated control style than with a centralized one, while the less-skilled develop-

ers performed better with the centralized style (Arisholm & Sjøberg, 2004). In another

experiment, skill had a moderating e↵ect on the benefits of pair programming (Arisholm,

Gallis, Dyb̊a, & Sjøberg, 2007).

However, determining the skill level of software developers is far from a trivial task. In

the work life, there are common-sense guidelines from experienced practitioners on how to

distinguish the good from the bad (Spolsky., 2007). But there seems to be consensus that

this crucial human resource management task remains di�cult. Often, job recruitment

personnel use tests that purport to measure a variety of traits, such as general cognitive

abilities (intelligence), values, interests, and measures of personality, to predict job per-

formance (Campbell, 1990). Research has, however, established that work sample tests in

combination with General Mental Ability (GMA) testing are among the best predictors of

job performance (Schmidt & Hunter, 1998). GMA is a general aspect of intelligence and

is best suited for predicting performance on entry-level jobs or job-training situations. By

contrast, work sample tests are task-specific and are integrated closely with the concept

of job skill (Ericsson, Charness, Feltovich, & Ho↵man, 2006). Although the predictive

validity of standardized work samples exceed that of GMA alone, these predictors seem

to yield the best results when combined (Schmidt & Hunter, 1998).

In the context of empirical studies in software engineering, the notion of programming

skill is generally not well founded. This has led to studies that failed in adequately correct-

ing for bias in quasi-experimental studies (Kampenes, Dyb̊a, Hannay, & Sjøberg, 2009).

Often the more general concept of programming expertise is used, with little validation.

For example, in a recent study (Hannay, Arisholm, Engvik, & Sjøberg, 2010), we con-

ceptualized programming expertise as the level of seniority (junior, intermediate, senior)

of the individual programmer as set by their manager. While bearing some relevance

to the consultancy market, this conceptualization is not su�cient to capture the skill of

individual programmers. The concepts of expertise and skill are also operationalized in

questionable ways in other domains; see (Hærem, 2002) for a survey of operationalizations

in IT management.

The focus of this paper is as follows. Given a small set of programming tasks, how does

one infer the candidates’ programming skill from both the quality of the task solutions
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and the time spent performing the tasks? It is well recognized that the combination of

task quality and time is essential to define skill (Ericsson et al., 2006; Fitts & Posner,

1967), but how to combine them in practice is challenging. For example, how does one

rank programmers who deliver high quality slowly, relative to those who deliver lesser

quality more quickly? This paper addresses such challenges and proposes a method for

combining quality and solution time into a single ordinal score of performance (i.e., low,

medium, high). Multiple performance scores are then aggregated to form an ordinal

approximation of programming skill. The method is demonstrated by using data from

two existing experiments.

Section 2 gives the theoretical and analytical background for skill as a subdomain of

expertise and discusses how quality and time are currently dealt with. Section 3 describes

how time and quality were combined as programming performance on tasks. Section 4

reanalyzes two existing data sets according to the arguments given in the previous sections.

Sections 5 and 6 discuss the results and conclude the paper.

2 Background

2.1 Expertise

Expertise is one of the classic concepts of social and behavioral science. Expertise is

usually related to specific tasks within a given domain and does not in general transfer

across domains or tasks (Ericsson et al., 2006; Shanteau, 1992). Expertise has several

aspects; we present five of these in Figure 1(a). The aspects are all related. For exam-

ple, in the usual descriptions of skill acquisition (Anderson, 1982; Dreyfus, Dreyfus, &

Athanasiou, 1988; Fitts & Posner, 1967), which is a subdomain of expertise, an individual

starts by acquiring declarative knowledge, which for experts is qualitatively di↵erent in

representation and organization compared to novices (Ericsson et al., 2006; Wiedenbeck,

Fix, & Scholtz, 1993). Next, through practice, declarative knowledge is transformed into

procedural skill, which at first is slow and error-prone (Fitts & Posner, 1967). However,

though extended experience, performance improves and experts tend also to converge

on their understanding of the domain in which they are an expert as well (Shanteau,

1992; Shanteau, Weiss, Thomas, & Pounds, 2002) (i.e., consensual agreement). Experts

also regard themselves as being experts, for example, through the use of self-assessments.

Ultimately, the desired e↵ect of expertise is superior performance on the tasks in which

one is an expert. In our context, this is performance on real-world programming tasks.

However, predicting future job performance by observing actual job performance is un-

reliable and ine�cient (Campbell, 1990). It is therefore desirable to design quick tests

based on how well an individual reliably performs on representative tasks (Ericsson et al.,

2006).

2.2 Skill

We generally understand skill as performance on small representative tasks. Note, though,

that inferring skill from a reliable level of performance on representative tasks is not the
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Expertise 
Performance 
on job tasks 

Extended 
experience 

Consensual 
agreement 

Self- 
assessment 

Different know- 
ledge repr. and 
organization 

Reliability superior 
performance on  
representative tasks 

(a) 

Expertise 

Skill 

Performance 

Quality Time 

(b) 

Figure 1: Expertise (a) and skill as one aspect of expertise (b) with relations to time and
qualtiy as variables though the concept of performance. The desired e↵ect of expertise is
superior performance on job tasks.

same as defining it by performance on the job. Representative tasks in our context are

those smaller tasks which merely represent real-world tasks, and for which there are well-

defined measures of performance (Ericsson et al., 2006). Additionally, such measures are

typically regarded as situations of maximum performance, whereas behavior on the job

would constitute typical performance (Campbell, 1990). Motivation plays a central role in

predicting typical performance in a job situation (see Beecham, Baddoo, Hall, Robinson,

& Sharp, 2008 for an overview), whereas potential positive or negative consequences for

a test-taker would a↵ect a situation demanding maximum performance.

Generalizing from performance on small representative tasks to performance on the

job requires an understanding of key mechanisms at play shared between tasks in the two

settings. This is theory-driven generalization (Shadish, Cook, & Campbell, 2002), based

on the economy of artificiality (Hannay & Jørgensen, 2008). In the absence of, or as a

complement to, strong theory, it is useful to seek confirmation of how well skill measures

coincide with other aspects of expertise. This is relevant for skill in programming.
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Anderson and others (Anderson, 1982; Anderson, Conrad, & Corbett, 1989) inves-

tigated programming skill from a psychological perspective. They reported that both

coding time and the number of programming errors decreased as skill improved. Fur-

ther, programming in LISP required the learning of approximately 500 if-then rules. The

acquisition of these rules followed a power-law learning curve: the improvement in per-

formance was largest at first and then decelerated until an asymptote was reached. Thus,

the relationship between amount of practice (extended experience) and performance was

non-linear. However, if amount of practice and performance were logarithmically trans-

formed, an approximately linear trend was observed. This phenomenon is widely observed

and is often referred to as the log-log law of practice (Newell & Rosenbloom, 1981).

Fitts and Posner have extensively studied skill acquisition. Within many di↵erent

domains of expertise, they found that with increased skill, the number of errors in per-

formance decreases and the speed with which a task is executed increases. Regarding

measures of skill, they state: “[t]he measure should take into account the length of time

taken to perform a skill as well as the accuracy with which it is performed” (Fitts & Posner,

1967, p. 85). Therefore, time and quality (the latter being a generalization of accuracy)

are intimately linked to skill, and the term performance is linked to all three concepts.

Because skill a↵ects performance (Campbell, 1990), we can hierarchically structure the

five concepts expertise, skill, performance, time, and quality as shown in Figure 1(b).

From the top, expertise, which should a↵ect job performance, is a generalization of skill.

Beneath, skill is inferred from performance on multiple tasks where reliably superior per-

formance is a requirement. At the lowest level, time and quality, in combination, dictate

whether programming performance overall is, say, low or high.

2.3 Measures of Programming Performance

It is common in empirical software engineering to deal with quality and time separately

when analyzing results; that is, one studies performance first in terms of quality and

then in terms of time, often under the assumption that a solution meets some particular

criterion for correctness (see, for example, Arisholm et al., 2007; Arisholm & Sjøberg,

2004). We acknowledge that for many studies, this is acceptable. However, when the

purpose is to characterize individual di↵erences, problems may occur.

Time is a ratio variable with an inverse relation to performance (i.e., less time implies

better performance). Quality, on the other hand, may consist of a plethora of variables

where each one may have complex relations with each other and where all often cannot

be optimized simultaneously (McCall, 1994). Further, depending on how quality is op-

erationalized, these variables may have di↵erent scale properties (i.e., nominal, ordinal,

interval, or ratio). Therefore, when aiming to characterize individual di↵erences, one may

(a) disregard quality and report di↵erences only in time spent or (b) only analyze time for

observations surpassing some specific level of quality (often correctness), thereby adhering

to the basic principle delineated by Thorndike and others in the 1920s: “the more quickly

a person produces the correct response, the greater is his [ability]” (Carroll, 1993, p. 440,

emphasis added). It is also possible to (c) devise acceptance tests that force everyone to

work until an acceptable solution is achieved. Generally, we regard this as perhaps the
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most viable approach today, because variability in performance is expressed through time

spent in total. However, by using (b) or (c), large portions of the dataset may be excluded

from analysis, in particular when the proportion of correct solutions is low.

At the most fundamental level of the time/quality tradeo↵ problem, it is not clear

how to place programmers who deliver high quality slowly relative to those who deliver

lesser quality more quickly. In the datasets that are available to us, correctness and

time are often negatively correlated. This indicates that the longer it takes to submit

a solution, the lower is the likelihood of the solution being correct. Although this may

seem contrary to what may be expected—that higher quality requires more time while

lower quality requires less—there are two important distinctions to be made: First, there

is a di↵erence between quality in general and correctness specifically. Second, there is

also a di↵erence between within-subject and between-subject interpretations (Borsboom,

2005). When a correct solution can be identified, a highly skilled individual can arrive at

this solution in less time and with higher quality than a less capable individual (between-

subject interpretation). But given more time, a single individual can generally improve

an existing solution (within-subject interpretation).

Another challenge is identifying to what degree individual performance in a study is

stable at a specific level, or high/low from one time to another. One way to address such

concerns is to use multiple indicators of performance (Basilevsky, 1994; Gorsuch, 1983).

Based on the same principles for combining time and quality as performance delineated in

this paper, we have already advanced the measurement of skill using multiple indicators

of performance (Bergersen & Gustafsson, 2011). However, a more detailed discussion of

these principles involved is needed. It is to this discussion we will now turn.

2.4 Using the Guttman Structure for Time and Quality

The two-by-two matrix in Figure 2 has two possible values for quality (low, high) and two

possible values for time (slow, fast). It is easy to agree that in this simplified example,

“high performance” is represented by the upper right quadrant (fast and high quality)

whereas“low performance”is represented by the lower left quadrant (slow and low quality).

Further, it should also be straightforward to agree that the two remaining quadrants lie

somewhere between these two extremes, say, “medium performance”. However, which one

of the two alternatives one would rate as superior, or whether they should be deemed equal,

is a value judgment: in some instances, “fast and low quality”may be deemed superior to

“slow and high quality”. To address how performance should relate to di↵erent values for

time and quality, we propose to use the principles delineated by Louis Guttman.

The Guttman scale was originally developed to determine whether a set of attitude

statements is unidimensional (Guttman, 2007). In Guttman’s sense, a perfect scale exists

if a respondent who agrees with a certain statement also agrees with milder statements

of the same attitude. The Guttman-structured scoring rules that we propose utilize the

same underlying principle as the Guttman scale, although at a lower level of abstraction

(a scale is a formal aggregation of indicators, whereas the structure we employ refers

to the indicators themselves). The approach utilizes general principles as delineated
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Figure 2: An example of scoring time and quality as performance based on value judg-
ments.

by others (Andrich, 1988), but which we have only addressed somewhat informally so

far (Bergersen, 2011).

With a Guttman structure it is possible to rank combinations of quality and time

relative to each other as well as being explicit about how di↵erent tradeo↵s in time and

quality are scored. Performance on a programming task is thus determined by a series

of well-ordered thresholds. Combined, these thresholds constitute a set of monotonically

ordered response categories (i.e., an ordinal variable) in relation to performance. Surpass-

ing a given threshold implies that all thresholds below it have been passed as well. For

example, for a score of, say 2 (of 5 possible), the thresholds for obtaining scores of 1 and

2 must have been passed, while the threshold for obtaining score 3 has failed. Quality

can be deliberately emphasized over time (or vice versa) by adjusting score categories

accordingly. A task that di↵erentiates more on quality aspects may, further, be scored on

multiple quality categories and a task that also di↵erentiates more on time aspects may

have more time categories.

3 Research Methods

This section describes how time and quality were combined as task performance using

multiple indicators. Using two data sets, we show how scoring rules for tasks were oper-

ationalized and reanalyzed.

3.1 Data Set 1

The first data set we reanalyzed is from a one-day study (Arisholm & Sjøberg, 2004). In

the experiment, 99 consultants from eight software consultancy companies and 59 under-

graduate and graduate students were paid to participate. The independent (treatment)

variable in the experiment was the control style of the code (whether it is centralized or

delegated). Five programming tasks were presented in succession to the subjects during

the experiment. The first task i1 (the pretest) was identical for both experimental groups,

and the four next tasks i2–i5 involved the independent variable. We analyze only the first

four tasks here due to challenges in applying the last task to our purpose (see Arisholm

& Sjøberg, 2004 for why).
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For a Guttman-structured scoring rule, we used the following approach for each of

the tasks i1–i4: Let Q1, T1, T2 and T3 be dichotomous variables, scored as requirement

not met = 0, requirement met = 1. Let Q1 be functional correctness (as reported by the

original authors), scored as incorrect = 0 or correct = 1. Let T3 be time < 3rd quartile,

T2 be time < median, T1 be time < 1st quartile. A Guttman structure for an ordinal

performance score that applies to a single task combining quality and time is then defined

by the Cartesian product Q1⇥T3⇥T2⇥T1 as follows (x denotes either 0 or 1):

(0, x, x, x) = 0 (i.e., incorrect, time is irrelevant)

(1, 0, x, x) = 1 (i.e., correct and very slow)

(1, 1, 0, x) = 2 (i.e., correct and slow)

(1, 1, 1, 0) = 3 (i.e., correct and fast)

(1, 1, 1, 1) = 4 (i.e., correct and very fast)

The matrix representation of this scoring rule is illustrated in Table 1(a). In using this

structure, a solution must be correct before time is taken into consideration. Increasing

scores for time are, further, only awarded in order (T3 before T2 and T2 before T1).

Additionally, the precedence of quality in this type of scoring rule reflects the view that, for

this study, we do not consider an incorrect solution to reflect high or medium performance,

even when it is developed quickly.

We also constructed two alternative Guttman-based scoring rules to Q1⇥T3⇥T2⇥T1

that di↵erentiate less on time, but that are still based on the sameQ1 as above: Q1⇥T2⇥T1

uses three categories for time based on the 33rd (T2) or 67th (T1) percentile; Q1⇥T1

only uses two categories for time—above or below the median. The range of the overall

performance score in all instances is equal to the number of dichotomous score variables

plus one; for example, Q1⇥T3⇥T2⇥T1 has one variable for quality and three for time,

implying a total of five well ordered performance score categories with a range of 0–4.

The procedure described above was repeated for all four tasks. Because of di↵erent

time distribution for each task, the quartiles and medians for time are calculated on a

task-by-task basis. The resulting score vector consisted of four Guttman-structured score

variables and the sum of these, the sum score, is the ordinal skill scale.

Table 1: Score according to time and quality thresholds�
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Q1 = 1 1 2 3 4 
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�
�
Score T2 = 0 T2 = 1 T1 = 1 

Q2 = 1 2 3 4 

Q1 = 1 1 1 1 

Q1 = 0 0 0 0 

(b) Dataset 2 
�
�
�
Score T3 = 0 T3 = 1 T2 = 1 T1 = 1  Score T2 = 0 T2 = 1 T1 = 1 

Q1 = 1 1 2 3 4  Q2 = 1 2 3 4 

Q1 = 0 0 0 0 0  Q1 = 1 1 1 1 

      Q1 = 0 0 0 0 

          

          
�

Aspect Description 
Addressed in 

sections 

1: Task content Do the tasks as a whole span the dimension of the thing being 
measured? 

3.1, 3.2, 6.1 

2: Response 
process 

Are the mental processes involved when solving the tasks 
representative of the psychological variable being measured? 

2.1, 3.2, 6.1 

3: Internal 
structure 

Does the structure of the response data (in dimensionality and 
reliability) conform to expectations?  

2.5, 4.1–4.5, 
6.1 

4: Correlations 
with other 
variables 

Does the measure yield patterns in correlations with other 
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aspect is beyond the scope of this article. 
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For comparison, we also devised two alternative scoring rules that combined qual-

ity and time for tasks by addition (additive scoring rules). On a task-by-task basis, we

standardized quality and time (mean 0 and standard deviation 1) before adding the stan-

dardized variables as a composite score of performance. This implements treating “slow

and high quality” as roughly equal to “fast and low quality” (as in Figure 2), but where

the continuous property of time is not forced into discrete categories. We name these

scoring rules Q + T and Q + lnT . Here, time was negated in both instances, and for

the latter variable, time was also logarithmically transformed before negation. Finally,

we constructed scoring rules on the four quality variables alone (Q) and the four time

variables alone (T ).

It should be noted that the relationship between the score vector and the overall skill

score is a many-to-one (surjective) function. For example, an individual with correct

but very slow solutions for all four tasks when using Q1⇥T3⇥T2⇥T1 receives the sum

score of 4. An individual with a single correct solution with very fast time but the other

three tasks incorrect would also receive the same sum score. Obviously, it is incorrect to

characterize the latter instance as“reliably (superior) performance”because the individual

exhibits superior performance on only a single task. We return to this issue in Section 3.3.

3.2 Data Set 2

The second data set stems from three quasi-experiments which all used the same pro-

gramming tasks. During a one-day study, the subjects were required to perform three

di↵erent change tasks in a library application system of 3600 LOC, containing 26 Java

classes. Two of the studies used students as subjects; one study used professionals. The

study in (Karahasanović & Thomas, 2007) investigated the e↵ects of di↵erent comprehen-

sion strategies using 38 subjects; the study in (Karahasanović, Levine, & Thomas, 2007)

compared feedback collection and think-aloud methods for 34 subjects; and the study

in (Kværn, 2006) studied the e↵ects of expertise and strategies on program comprehen-

sion for 19 subjects. Additionally, the same pretest task as in Dataset 1 (i1) was used.

However, one of the studies had missing data for the last change task, thereby reducing

the number of available tasks for analysis from four to three. Human graders scored the

quality of each task on the following scale:

0: nothing done on the task (no code changes)

1: failure, does not compile or no discernible functional progress toward solution

2: functional anomalies, one or more subtasks are achieved

3: functionally correct, major visual anomalies

4: functionally correct, only minor cosmetic anomalies

5: functionally correct, visually correct, i.e. “perfect solution”

We defined a Guttman structure Q1⇥Q2⇥Q3 for the dimension of quality as follows:

The original scoring categories 0 and 1 should be collapsed into a single category, because
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neither might be preferred over the other. Thus, variable Q1 was defined as “one or more

subtasks achieved” (category 2 above). Next, the Q2 variable was “functionally correct,

but with major visual anomalies allowed” (category 3). Finally, we regarded the level of

detail used for separating functionally correct with minor visual anomalies (category 4)

and a “perfect solution” (category 5) as somewhat arbitrary; these two categories were

therefore combined for Q3. For the time dimension, we used T1⇥T2 to partition the time

for those individuals who passed Q3 into three groups. The matrix representation of this

scoring rule, denoted Q1⇥Q2⇥Q3⇥T2⇥T1, is provided in Table 1(b).

We also devised alternative scoring rules using one and two dichotomous quality vari-

ables: Q1⇥Q2⇥T2⇥T1 does not separate between major and minor visual anomalies

when the solution is otherwise correct. And finally, Q1⇥T2⇥T1 only separates between

functionally correct solutions and those that are not functionally correct, with no atten-

tion given to visual anomalies. Finally, we devised scoring rules for Q+T, Q+lnT, Q, and

T using the same procedure as in Dataset 1, but using three tasks instead of four.

3.3 Analysis Method and Handling of Missing Data

The analysis method for the two data sets, each using seven di↵erent score operational-

izations, included the same four basic steps. All time variables were negated (for T and

Q+T ) or logarithmically transformed and then negated (for Q+lnT ) in order to increase

interpretability so that high values indicate high performance.

3.3.1 Using Exploratory Factor Analysis

We extracted the main signal in the data for each scoring rule by Principal Component

Analysis (PCA) using the analysis software PASW™ 18.0. We used listwise deletion of

missing variables, regression for calculating the factor score, and an unrotated (orthogonal)

factor solution to maximize interpretability of each factor.

3.3.2 Inspecting External and Internal Results

Operationalizations of the scoring rules were compared with several experience variables.

We report non-parametric correlations (Spearman’s ⇢, “rho”) unless otherwise noted. We

assumed that a valid scoring rule should correlate moderately and positively with relevant

background variables such as developer category and length of experience. Because such

variables are not influenced by our investigated score operationalizations, we refer to this

analysis as external results.

Conversely, all the reported internal results are influenced by how each scoring rule

was constructed. For internal results, we used the proportion of explained variance for

the first Principal Component (PC), which is analogous to the sum score, as the signal-

to-noise ratio for each scoring rule. Cronbach’s ↵ was used as an estimate of the internal

consistency of the scores. To ascertain the applicability of each score operationalization,

we used confirmatory factor analysis. We report the Root Mean Square Error of Ap-

proximation (RMSEA) using Amos™ 18.0. RMSEA is a parsimony-adjusted index, as

it favors models with fewer parameters. Further, RMSEA will be influenced negatively
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if level of performance is not consistent over multiple tasks (see Section 3.1). We used

a tau-equivalent reflective measurement model with multiple indicators (Loehlin, 2004).

This implies that all tasks receive the same weight when calculating the sum score. All

scoring rules are further regarded as ordinal scale approximations of skill.

3.3.3 Handling of Missing Data

Each dataset contain some missing data. For solutions that were not submitted, we

applied the same basic principle as the authors of Dataset 2: “non-working solutions or

no improvements in code” were equated with “nothing submitted at all” and scored as

incorrect. Additionally, Dataset 2 had some missing values for time. We did the same as

the owners of this dataset and removed these observations altogether. Since missing data

poses a threat to validity if data are not missing at random, we analyzed our results using

data imputation as well. However, because we found that the same substantive results

apply with or without data imputation, the results are reported without imputation.

4 Results

In this section, we first report the correlations between the investigated scoring rules and

the subjects’ background experience variables. Next, we report several indices that must

be inspected together, such as explained variance, internal consistency and how well the

scoring rules fit confirmatory factor analysis. Finally, we highlight some selected details

about the scoring rules we investigated.

4.1 External Correlations

Table 2 shows correlations between experience variables and the proposed score opera-

tionalizations for both datasets. Developer category was only available for Dataset 1. In

the initial classification scheme (i.e., undergraduate = 1, intermediate = 2, junior = 3,

intermediate = 4, senior = 5), insignificant and low correlations were present between de-

veloper category and results (rho = 0.05–0.12). However, because many graduate students

performed at levels comparable to seniors, it is questionable whether this operationaliza-

tion of expertise is a monotonically increasing function of performance. When removing

the two student categories (1 and 2) from the analysis, the company-assigned developer

category complied with expectations to some extent: all correlations were significant and

positive around 0.3.

The other experience variables were self-assessed. Years of programming experience

(lnProfExp) is an aspect of extended experience. In general, the correlations for this

variable were low and insignificant for all scoring alternatives, but were slightly improved

having been logarithmically transformed (a justifiable transformation given the log-log

law of practice). Java programming expertise (SEJavaExp) is a Likert scale variable

ranging from novice = 1 to expert = 5. This variable was significantly and positively

correlated around 0.3 with all of the scoring alternatives for Dataset 1. However, for

Dataset 2, the correlations were lower and less systematic; caution should be shown when
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interpreting this result due to the low number of observations (n). Overall, self-assessed

Java programming expertise seems to have a non-linear but monotonically increasing

relation to the proposed score operationalizations. Lines Of Code (lnLOCJava) written

in Java is a self-estimated variable with positive skew and kurtosis, but approximates a

normal distribution after logarithmic transformation. All scoring operationalizations were

significantly and positively correlated with LOC (around rho = 0.3) with two exceptions:

Q in Dataset 1 and T in Dataset 2.

4.2 Internal Fit Indices

Table 2 shows the fit indices of the investigated scoring rules. We used PCA to extract

the main signal in the data, as represented by the first PC. The number of factors (#f )

suggested by PCA indicates to what degree our expectations are present empirically. Q in

Dataset 1 indicates a problem, because two factors are indicated by PCA.

The proportion of explained variance by the first PC (%E ) indicates the signal-to-noise

ratio for each score operationalization. The additive scoring rules (Q+T, Q+lnT ) have

the highest proportion of explained variance: logarithmic transformation before standard-

ization of time produces additional explained variance.

Internal consistency is one way to investigate whether an individual’s performance

is stable over multiple tasks. High values for Cronbach’s (↵) are better than low values

(0.60 for group di↵erences and 0.85 for individual di↵erences are sometimes used). The two

additive scoring rules do well in this respect, followed by the Guttman-structured scoring

rules. Further, Q in Dataset 1 and T in Dataset 2 have lower ↵than other alternatives.

Finally, we report how the di↵erent scoring alternatives fit according to confirmatory

factor analysis. Lower RMSEA values signify better fit: values less than or equal to 0.05

indicate close approximate fit, values between 0.05 and 0.08 indicates reasonable error

of approximation, and values above 0.10 suggest poor fit (Kline, 2005). For Dataset 1,

Q1⇥T2⇥T1 and Q1⇥T3⇥T2⇥T1 display reasonable model fit (< 0.08) whereas T and Q

have poor fit. The additive scoring rules alternatives lie somewhere in between, and the

logarithmically-transformed version (Q+lnT ) has better overall fit than the untransformed

version. Q for Dataset 2 has poor fit as well, even though this dataset has better overall

confirmatory fit, despite the lower statistical power as can be seen by the wider 90%

Confidence Intervals (CI).

Nevertheless, upon inspecting the lower CI of Dataset 1, there is su�cient statistical

power to state that T fits poorly. However, as is evident by the upper CI of all alternatives,

there is not su�cient statistical power to claim support for a close model fit for any of these

alternatives either; Q1⇥Q2⇥T2⇥T1 in Dataset 2 is overall the best fitting alternative with

upper CI slightly above 0.10.

In summary, an analysis of Q and T separately seems problematic in terms of some

correlations, relatively low explained variance, and problematic confirmatory fit in three

out of four instances. The additive scoring rules show the highest levels of explained vari-

ance and internal consistency, but they display some problems with confirmatory model

fit. Overall we found the best-fitting score operationalizations to be Q1⇥T3⇥T2⇥T1 for

Dataset 1 and Q1⇥Q2⇥T2⇥T1 for Dataset 2.
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4.3 Details for Factors in Data Sets 1 and 2

Table 3 shows the correlations between all but one of the investigated scoring rules (Q+lnT

was found to be a better alternative than Q+T and the latter is therefore not reported).

Correlations below the diagonal are in terms of (non-parametric) Spearman’s rho, which

does not assume linearity between factors and may therefore be used. Parametric cor-

relations (Pearson’s r) are given above the diagonal for comparison. All correlations are

significant at the 0.01 level (two-tailed).

In both datasets, T and Q have the lowest correlation with each other. For all

Guttman-structured alternatives in Dataset 1, we may further observe how these scoring

rules migrate from closeness with Q to closeness with T when additional time categories

are added. Similarly, the Guttman-structured alternatives in Dataset 2 migrate from

closeness with T to closeness with Q when additional quality categories are added. All

proposed scoring alternatives also have more shared variance with T and Q separately,

than Q and T have with each other. Further, the additive and Guttman-structured scoring

alternatives are also somewhat similar in their rank ordering of individuals for Dataset 2

(rho > 0.6). For Dataset 1, in fact, they are highly similar in their rank ordering of

individuals (rho > 0.9).

To verify that the scoring rules predict performance on other programming tasks,

we used the Q1⇥T2⇥T1 scoring rule of Dataset 1 to separate individuals into low and

high skill groups. Using the results for task i5, which is not a part of the investigated

scoring rules, as a dependent variable and above/below mean sum score of tasks i1–i4
as the independent variable, we found that the high group performed much better than

Table 3: Correlations for dataset 1 and 2
Scoring rule (1) (2) (3) (4) (5) (6) 

Q (1) — 0.36 0.76 0.82 0.75 0.71 
T (2) 0.33 — 0.82 0.64 0.73 0.74 

Q+lnT (3) 0.72 0.85 — 0.92 0.95 0.94 

Q1×T1 (4) 0.80 0.70 0.92 — 0.96 0.96 

Q1×T2×T1 (5) 0.75 0.78 0.96 0.95 — 0.98 

Q1×T3×T2×T1 (6) 0.72 0.81 0.97 0.96 0.98 — 

(a) Dataset 1 
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Q (1) — 0.42 0.83 0.68 0.85 0.95 
T (2) 0.41 — 0.83 0.53 0.56 0.50 

Q+lnT (3) 0.84 0.80 — 0.70 0.83 0.85 

Q1×T2×T1 (4) 0.64 0.49 0.62 — 0.86 0.75 

Q1×Q2×T2×T1 (5) 0.81 0.52 0.79 0.83 — 0.89 

Q1×Q2×Q3×T2×T1 (6) 0.96 0.45 0.84 0.70 0.87 — 
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the low group: 67.1% had correct solutions for i5 while the corresponding results for the

low group was 27.8% correct (time could not be analyzed this way for i5; see Arisholm

& Sjøberg, 2004 for an explanation). We could further confirm that the high group had

written significantly more LOC in Java and had more programming and Java experience

as well. Moreover, by using three groups instead of two (i.e., low, medium and high) in

terms of overall skill, similar results were obtained: the groups are well ordered according

to external background variables, as well as on performance for i5. For Dataset 2, we

performed the same analysis, using the quality of task i4 as the dependent variable and

the sum score of i1–i3 as the independent variable. All correlations between the Guttman-

structured scoring rules and the quality of i4 were large (n = 52, rho = 0.51–0.53) and

significant (p < 0.001).

We were also able to identify the treatment e↵ect of Dataset 1. The dichotomous

treatment variable was significantly and moderately correlated with the second PC of

Q1⇥T3⇥T2⇥T1 (rho = 0.42) and for the two additive scoring rules as well (rho = 0.36).

Further, the treatment e↵ect was not correlated with any of the first PC of the proposed

scoring rules, suggesting that the e↵ect of the treatment in this study is less than the

individual variability. This implies that unless some degree of experimental control is

available for individual variability—for example, through the use of pre-tests (Kampenes

et al., 2009; Shadish et al., 2002)—an experimenter would require many more subjects in a

study to achieve the same statistical power. Perhaps worse, e↵ects of practical importance

might go undetected in the early phases of a research project.

5 Discussion

We begin by discussing the implications for research and practice when combining time

and quality in empirical studies on programmers. Next, we discuss limitations and address

how this work can be expanded in the future.

5.1 Implications for Research and Practice

In this reanalysis, we have presented a method for combining time and quality as an

ordinal variable of performance. Results show that when programming performance on

multiple tasks were aggregated, significant and positive correlations with skill could be

obtained with several relevant expertise-related background variables. The strongest and

most consistent correlations were obtained for LOC (around 0.3), which is highly similar

to the value (of 0.29) reported in (Bergersen & Gustafsson, 2011). Seniority and self-

evaluated expertise indicated more mixed results. For seniority in Dataset 1, statistical

significant positive correlations could only be obtained when students were removed from

analysis. For general programming experience, low and insignificant correlations were

present. However, (Bergersen & Gustafsson, 2011) reports a correlation of 0.29 between

skill and months of Java programming experience; this may indicate that more precision

(months instead of years) as well as specificity (Java experience as opposed to general

programming experience) is required to yield higher correlations for this variable.
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Nevertheless, using correlations as the only criteria for evaluating tests poses a prob-

lem; what the actual correlation is between a test score and a background variable will

never be known for certain (Borsboom, 2005). We therefore used confirmatory factor

analysis to investigate whether performance on multiple tasks could be considered as “re-

liable (superior) performance” according to established literature on expertise and skill.

We found unacceptable model fit in three of four instances when analyzing quality or time

as separate variables. Furthermore, the only well-fitting variable (T in Dataset 2) did not

accord with expectations of correlations with expertise background variables. Therefore,

some concerns seem to exist when performance as a dependent variable is operational-

ized as time alone, or quality alone, in programming experiments. Such a problem will,

however, remain undetected unless multiple tasks are present to be compared.

This study also demonstrates the importance of considering experiment constraints

when analyzing individual variability of performance. For example, when loose time limits,

or no limits, are used in a study and most subjects solve a task correctly, it is entirely

plausible that, when analyzing correct solutions, between-subject variability is mostly

present in the time variable. Conversely, if strict time limits are used and few subjects

are able to finish on time, variability will mainly reside in the quality variable. Hence, the

scoring of time and quality as a combined variable is dependent on the instrumentation

as well as upon empirical results. This also implies that no universal scoring rule exists

that applies equally well to all tasks in all situations.

For time as a variable, we generally obtained stronger and more consistent correlations

when using non-parametric correlations and untransformed experience variables or para-

metric correlations with logarithmically-transformed experience. We concede that other

transformations may be applicable as well, such as 1/time. Nevertheless, variables ana-

lyzed in this manner should almost always be plotted first and verified against theoretical

expectations; there is often little theoretical rationale for expecting a priori that variables

have a linear relation, even if each variable displays an approximate normal distribution.

A similar caution should be observed when analyzing variables of quality. For example,

for Dataset 2, it is problematic to assume that an increase in score from 2 to 3 (a di↵er-

ence of 1) amounts to the same increase as from 3 to 4; improving a correct solution from

“major” to “minor visual anomalies” may require negligible time, whereas the improve-

ment from one functionally correct subtask to a fully functionally correct solution may

require substantial e↵ort. Hence, quality variables should be treated as ordinal when in

doubt and they are, further, most likely to have non-linear relations to other variables.

Therefore, non-parametric correlations should be the first, not last, resort.

For the scoring rules that combine time and quality, we see two main competing

alternatives in the present analysis: the additive scoring rules treated “slow and high

quality” and “fast and low quality” (Figure 2) as “medium performance”. The Guttman-

structured alternatives treated “fast and low quality” di↵erently; quality had to be at an

(operationally defined) acceptable level, before additional score points were awarded for

time. Both alternatives demonstrated highly similar results in terms or correlations as well

as rank order of individuals in terms of skill. Specifically, the two alternatives were highly

similar in terms of the rank ordering of individuals in Dataset 1. It is therefore interesting

to note that confirmatory model fit was much stronger in favor of the Guttman-structured
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scoring rules in Dataset 2 where less agreement between the Guttman-structured and

additive scoring rules exist.

Some challenges are also present with using the additive scoring rules; partial scores of

performance are awarded for fast solutions even though no improvement may be present.

This implies that an individual who chooses not to participate seriously in a study will

receive a higher score than an individual who seriously attempts all tasks, but fails.

Finally, given that some merit for the use of Guttman structures is established at this

point, a practical issue arises around the number of score categories for time and quality.

Because neither quality alone, nor time alone, fits the data particularly well in most in-

stances, a sensible choice is to start at the extremes and work towards a compromise using

the indices and recommendations reported here. Based on our experience, each score op-

erationalization will usually display a peak of overall fit at some point; for example, when

adding Q3 to Q1⇥Q2⇥T2⇥T1 in Dataset 2, confirmatory model fit began to decrease

while the proportion of explained variance only marginally improved.

5.2 Limitations

The weaknesses in the present analysis have to do with the two sources of data as well as

the methods we have used to analyze time and quality as an aggregated variable.

The experimental treatments in both datasets add noise to the data, which probably

entails that all investigated scoring rules show worse fit than they would in data sets

without such treatment. However, for this issue, it is at least true that the conditions

were equal throughout our comparisons. There are also statistical independency problems

between tasks. When a new task expands upon the solution of the previous task (i.e.,

a testlet-structure), this is still held to constitute one observation. Furthermore, perfor-

mance in both studies is a↵ected by motivational components; some peer pressure was

present for most subjects in Dataset 1, whereas we believe motivation was more variable

in Dataset 2. Finally, we used factor analysis on discrete ordinal variables as well as on

dichotomous variables for quality. Optimally, one should use Bayesian estimation (Lee,

2007) or polychoric correlation matrices if the aim is to conclude more strongly. It is

nevertheless somewhat common to see, for example, Likert scale variables analyzed using

factor analysis, with a claim that the resulting factor score has interval-scale properties.

A potential objection to our confirmatory analysis using tau-equivalence is that relative

weights for each task may be more appropriate for calculating the sum score. We investi-

gated RMSEA from such a perspective as well (i.e., a congeneric factor model). Although

slightly better fit could be obtained for all scoring alternatives, the same substantive re-

sults nevertheless continue to apply when comparing alternative ways of combining time

and quality.

Other, perhaps, justifiable objections to our approach may be that multiple-factor

(e.g., two rotated factors) or simplex-structured models should have been investigated.

For Dataset 1, we have already done these analyses, but with inconclusive overall results

and poor confirmatory fit. Therefore, we have chosen not to report these here. We could

also have used non-linear regression or neural networks to maximize explained variance.

However, by doing so, it would have been more di�cult to interpret the results and the
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implied models for measurement would lack parsimony. Better, and more recent, models

for measurement exist than the one we have used here. We now turn to such improvements

where patterns in the score vector impose additional constraints on what scoring rules can

be considered well-fitting overall.

5.3 Reccomendations for Future Research

In software engineering it is somewhat common to read about di↵erences in programming

performance ranging in an order of magnitude or more. However, as illustrated in Fig-

ure 1, these di↵erences pertain to performance per se, and not necessarily to individuals.

For ratio comparisons of individuals, a quantitative scale is required in which units are

separated by equal distances and where zero is well defined. This may be attempted

though axiomatic measurement, which is measurement in a stricter sense than the puta-

tive measures discussed here. But it is unlikely that advances in this direction will happen

in the near future (see Borsboom, 2005 for present challenges). Nevertheless, we consider

Rasch analysis (Andrich, 1988) as a useful intermediary step for obtaining interval-scale

approximations of programming skill. In this model, task di�culty is also an integral part

of the measurement process, something the current model for measurement we employ

(i.e., classical test theory) is lacking.

We have identified some additional directions for future work. For example, two or

more internally consistent scoring perspectives based on the same data could be devised

in which more score points are awarded either to quality or to time. By estimating skill

for an individual based on these two approaches separately, it may be possible to make

inferences about an individual’s preferred working style during a test. If an individual is

ranked higher on one score operationalization than the other, the relative di↵erence may

provide information about the value system an individual has for “fast and low quality”

versus “slow and high quality” solutions. Further, di↵erent scoring rules on a task-by-task

basis should be investigated as well. Although we applied the same scoring principle to

all tasks in this study, there should be no a priori reason for requiring that a scoring rule

must fit all tasks equally well to be valid.

Future work using Guttman-structured scoring rules for time and quality may also

be directed at how to avoid the degradation of time as a continuous variable into dis-

crete categories. However, any solution to this problem must somehow account for the

likelihood that time will have skewed distributions. Although the additive scoring rule

partially solves this problem by logarithmically transforming time, we would like to see

more alternatives in the future that di↵er in how quality and time is combined as well as

how measurement is conceptualized.

6 Conclusion

In a reanalysis of two existing studies, we have shown through multiple score opera-

tionalizations how time and quality for programming task solutions may be meaningfully

combined as an ordinal variable of performance. By aggregation of multiple performance

variables into an ordinal skill score approximation, we obtained significant and positive



References 97

correlations with relevant experience variables for all score alternatives that combined

time and quality. Some degree of internal consistency was present, but only at a level

high enough to roughly characterize group di↵erences. We also showed that from cor-

relations alone, it was di�cult to choose what the so-called “best” scoring alternative

might be. However, by using confirmatory factor analysis, we found some support for

the Guttman-structured scoring rules over other alternatives, such as analyzing time or

quality independently. Statistical power in our reanalysis was, however, not su�cient to

conclude strongly, even though upper confidence intervals for some scoring alternatives

almost indicate reasonable model fit for some alternatives.

This study implies that if time or quality is analyzed separately as a dependent vari-

able, and experiment results are contrary to theoretical expectations, a reanalysis using

the principles delineated here may be warranted. Threats to validity may further be

present if the dependent variable of a study is not a monotonically increasing function of

expertise or if multiple operationalizations of the same treatment do not indicate similar

interpretations of the results. How individual variability in a study a↵ects time, quality,

or the two variables in combination also warrants closer scrutiny; instrumentation issues,

such as time limits or task di�culty match with subject population, may also influence

results in unexpected directions. Finally, we recommend the use of scoring rules that

converge in terms of measurement while being parsimonious and interpretable.

Alternative score operationalizations in which time and quality are combined often

were more similar to each other than they were to time or quality analyzed separately.

Therefore, more attention is required to analyze how “performance” is operationalized in

programming studies. We call for others to reanalyze their existing datasets where time

and quality variables have been collected, and to score time and quality as a combined

variable of performance. Such new datasets might even contain relevant background

variables that can be further used to inform the strength of relations with performance

and background variables, thereby making meta-analytic studies feasible in the future.
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Abstract

Skilled workers are crucial to the success of software development. The current practice in

research and industry for assessing programming skills is mostly to use proxy variables of

skill, such as education, experience, and multiple-choice knowledge tests. There is as yet

no valid and e�cient way to measure programming skill. The aim of this research is to

develop a valid instrument that measures programming skill by inferring skill directly from

the performance on programming tasks. Over two days, 65 professional developers from

eight countries solved 19 Java programming tasks. Based on the developers’ performance,

the Rasch measurement model was used to construct the instrument. The instrument

was found to have satisfactory (internal) psychometric properties and correlated with

external variables in compliance with theoretical expectations. Such an instrument has

many implications for practice, for example, in job recruitment and project allocation.

Keywords: skill, programming, performance, instrument, measurement.
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1 Introduction

Software engineering folklore states that the skill of programmers is crucial to the success

of software projects (Brooks, 1987; Curtis, 1984). Consequently, being able to measure

skill would be of great interest in such work as job recruitment, job training, project

personnel allocation, and software experimentation. In such contexts, an individual’s

capacity for programming performance is usually evaluated through inspection of their

education and experience on resumes and through interviews. Sometimes standardized

tests of intelligence, knowledge, and personality are also used. Even though such methods

may indicate an individual’s level of skill, they do not measure skill per se.

Skill is one of three factors that directly a↵ect the performance of an individual

(Campbell, McCloy, Oppler, & Sager, 1993). The two other factors are motivation and

knowledge. Motivation is the willingness to perform. An overview of studies on motivation

of software developers can be found in (Beecham, Baddoo, Hall, Robinson, & Sharp, 2008).

Knowledge is the possession of facts about how to perform. Much research on program-

ming knowledge can be found in the novice-expert literature of the 1980s (Soloway &

Ehrlich, 1984; Wiedenbeck, 1985). Other factors, such as experience, education, and per-

sonality, also indirectly a↵ect individual performance through their influence on motiva-

tion, knowledge, and skill (Schmidt, Hunter, & Outerbridge, 1986; Waldman & Spangler,

1989). In contrast, we are interested in how skill can be measured directly from program-

ming performance. Consequently, our research question is, to what extent is it possible to

construct a valid instrument for measuring programming skill?

In accordance with the most commonly used definition of skill, from the field of psy-

chology (Fitts & Posner, 1967), we define programming skill as the ability to use one’s

knowledge e↵ectively and readily in execution or performance of programming tasks. Con-

sistent with this definition, we constructed and validated an instrument for measuring

programming skill by adhering to general principles of instrument construction (Messick,

1994; Nunnally & Bernstein, 1994; Pedhazur & Schmelkin, 1991). The implicit assump-

tion was that the level of performance a programmer can reliably show across many tasks

is a good indication of skill level. This approach is also commonly used within research

on expertise (Ericsson, Charness, Feltovich, & Ho↵man, 2006). In the construction of the

instrument, we sampled 19 programming tasks of varying degrees of di�culty, taken from

prior experiments or developed by ourselves. To determine the di�culty of the tasks, we

hired 65 developers from eight countries to solve the tasks.

The construction and validation of the instrument has not been reported before. How-

ever, the instrument has already been used to investigate whether a psychological theory

of cognitive abilities can be applied to programmers (Bergersen & Gustafsson, 2011)

and to investigate how skill moderates the benefit of software technologies and meth-

ods (Bergersen & Sjøberg, 2012). It has also been used to select programmers as research

subjects in a multiple-case study (Sjøberg, Yamashita, Anda, Mockus, & Dyb̊a, 2013).

Moreover, the instrument is at present used in commercial pilot setting to measure the

skill of employees and candidates from outsourcing vendors.

This research concerns an instrument for measuring programming skill. However, the

paper may also guide the construction and validation of instruments for measuring other
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aspects of software engineering.

The remainder of this paper is structured as follows. Section 2 describes the theoretical

background and fundamental concepts. Section 3 describes the steps involved in the

construction of the instrument. Sections 4 and 5 describe, respectively, the internal and

external validation of the instrument. Section 6 discusses the answer to the research

question, contributions to research, implications for practice, limitations, and future work.

Section 7 concludes.

2 Fundamental Concepts

This section describes the theory of skill, models for measurement, operationalizations

of performance, and instrument validity. Figure 1 shows how the fundamental concepts

involved are related. The skill measure is indicated by the performance of an individual

on a set of tasks. Each task is thus an indicator (Cohen, 1989), which in turn is defined

by a scoring rule that is applied to the time and quality of task solutions (i.e., a “response”

Task n 
 
 

Skill measure 

Task 1  
performance 

Scoring rule 
for Task 1 

is approximated together 
with reliability and random 
error variance by 

“True” 
skill 

is indicated by 

defines 

are input to 

           1m            …            12 

Task 1 
 
 Time1 Quality11 

           nm            …            n2 Timen Qualityn1 

… 

… 

… Task n  
performance 

Scoring rule 
for Task n 

Response  
to Task 1 

is evaluated  
by 

… Response  
to Task n 

Figure 1: The relations between variables of skill, task performance, and time and quality.
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in the figure). The arrows show the direction of reading and causality. The part of the

model with arrows pointing downwards constitutes a reflective model. The part with

arrows pointing upwards constitutes a formative model (Edwards & Bagozzi, 2000).

2.1 Theory of Skill

In this work, skill is considered as a specific type of ability, albeit with some distinguishing

features. Generally, all human abilities are “defined in terms of some kind of performance,

or potential for performance” (Carroll, 1993, p. 4). “The term ability . . .may refer to mea-

sures of . . . an underlying latent variable, which is presumed to be a continuous monotonic

increasing function of the observed measures of performance” (Ferguson, 1956, p. 122).

Thus, skill has—together with concepts such as aptitude, achievement, capacity, compe-

tence, expertise, and proficiency—a monotonic relation to performance.

This positive relation is also an assumption in research on expertise, where reliably

superior performance on representative tasks is one of several extended aspects of exper-

tise (Ericsson & Smith, 1991). According to Ericsson, “[a]s long as experts are given rep-

resentative tasks that capture essential aspects of their expertise, they can rely on existing

skill and will exhibit the same stable performance as they do in everyday life” (Ericsson,

2003, p. 52).

Unlike some abilities, skill is a psychological variable that can be defined theoretically.

Over 80 years ago, Pear (1928) recommended using the term for higher levels of perfor-

mance and then only in conjunction with well-adjusted performance. According to Fitts

and Posner (1967), the acquisition of skill consists of three overlapping phases. During

the initial, cognitive phase, an individual uses controlled processing of information to ac-

quire facts on how to perform a task successfully. This phase is sometimes referred to

as the knowledge acquisition phase, where declarative facts (i.e., knowledge) “concerned

with the properties of objects, persons, events and their relationships” (Robillard, 1999,

p. 88) are acquired. In the second, associative phase, facts and performance components

become interconnected and performance improves, with respect to both number of errors

and time. In the third, autonomous phase, tasks are accomplished fast and precisely with

less need for cognitive control.

Although much of the earlier research on skill was conducted on motor skills, Ander-

son and other researchers devoted much attention to the research on cognitive skills in

general during the 1980s (e.g., Anderson, 1982) and programming skills in particular

(e.g., Anderson, 1987; Anderson, Conrad, & Corbett, 1989; Shute, 1991) using Fitts and

Postner’s (1967) early work. Anderson (1987) noted that the errors associated with solv-

ing one set of programming problems was the best predictor of the number of errors on

other programming problems. We now examine how such insights can be used in the

development of a model for measuring skill.

2.2 Model for Measurement

A model for measurement explicates how measurement is conceptualized in a specific

context (Fenton, 1994; Messick, 1989). The choice of a measurement model also exposes
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the assumptions that underlie one’s e↵ort to measure something (Borsboom, Mellenbergh,

& van Heerden, 2003).

It is common in software engineering to use the term “measurement” according to

Stevens’ broad definition from 1946: “the assignment of numerals to objects or events ac-

cording to rules”(Stevens, 1946, p. 667); see, for example, the early paper by Curtis (1980).

However, Stevens’ definition of measurement is irreconcilable with scientific measurement

as defined in physics: “scientific measurement is . . . the estimation or discovery of the ratio

of some magnitude of a quantitative attribute to a unit of the same attribute” (Michell,

1997, p. 358). More generally, Stevens’ definition is not universally accepted (Pedhazur

& Schmelkin, 1991) because even meaningless rules can yield measurements, according to

this definition (Borsboom, 2005), also see (Fenton, 1994).

A challenge is that Stevens’ definition is commonly used in software engineering, while

scholars (Fenton, 1994; Fenton & Kitchenham, 1991) advocate that measurement in soft-

ware engineering should adhere to the scientific principles of measurement (i.e., Krantz,

Luce, Suppes, & Tversky, 1971; Kyburg, 1984). This call for increased rigor was answered

by calls for pragmatism; if the stricter definition of measurement was applied, it “would

represent a substantial hindrance to the progress of empirical research in software engineer-

ing” (Briand, El Emam, & Morasca, 1996, p. 61). Consequently, the term “measurement”

is used according to varying levels of rigor in software engineering. At one extreme, a re-

searcher merely asserts that measurement is achieved, or else the researcher is silent about

this issue altogether. At the other extreme, a researcher may rigorously test whether a

quantitative measure has been obtained for a phenomenon, for example, through testing

whether the data conforms to the requirements of additive conjoint measurement (Luce

& Tukey, 1964).

In this work, we chose the Rasch measurement model, which resembles additive con-

joint measurement, albeit from a probabilistic viewpoint (Borsboom & Scholten, 2008).

Although this viewpoint is still being debated (Kyngdon, 2008), the use of probability is

central to science in general (Hacking, 1990) and experimentation in particular (Shadish,

Cook, & Campbell, 2002). Nevertheless, for the present work, it su�ces to point out

that the Rasch model allows more and better tests of whether measurements are achieved

according to a rigorous definition of measurement.

2.3 Rasch Measurement Model

Many types of models are available to assess psychological abilities such as skill. These

models often present questions or tasks (called items) to an individual and then an esti-

mate (preferably, a measure) of an individual’s ability can be calculated from the sum-

score of the item responses. In item response theory (IRT) models, estimates of item

di�culty and consistency of responses across people and items are central.

The original Rasch model (1960) is a type of IRT model by which skill can be measured.

The ability of a person j is denoted �

j

, and the di�culty of an item i is denoted �

i

. X
ij

is a random variable with values 0 and 1 such that X
ij

= 1 if the response is correct and

X

ij

= 0 if the response is incorrect when person j solves item i. The probability of a

correct response is:
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Pr (X
ij

= 1 | �
j

, �

i

) =
e

�j��i

1 + e

�j��i
. (1)

The Rasch model typically uses some form of maximum likelihood function when esti-

mating � and �. The model uses an interval-logit scale as the unit of measurement. A

logit is the logarithmic transformation of the odds. Humphry and Andrich (2008) discuss

the use of this unit of measurement in the context of the Rasch model.

The original Rasch model is classified as a unidimensional model; that is, ability is

measured along only one dimension. Furthermore, the model is called the dichotomous

Rasch model because only two score categories are available (e.g., incorrect and correct).

Andrich derived the polytomous Rasch model (Andrich, 1978) as a generalization of the

dichotomous model. The polytomous model permits multiple score categories 0, . . . ,M
i

,

where M

i

is the maximum score for an item i. A higher score category indicates a

higher ability (and therefore also an increased di�culty in solving correctly), which enables

evaluations of partially correct solutions. This is an attractive feature for our work and

we therefore used the polytomous Rasch model.

A requirement of the polytomous, unidimensional Rasch model is that score categories

must be structured according to a Guttman-structured response subspace (Andrich, 2010).

For example, a response awarded a score of“2”for an item i indicates that the requirements

for scores 0, 1, and 2 are met and that the requirements for scores 3 to M

i

are not met.

The Rasch model has been used in many large-scale educational testing programmes,

such as OECD’s Programme for International Student Assessment (Bond & Fox, 2001).

The Rasch model has also been used to measure programming ability in C (Wilking,

Schilli, & Kowalewski, 2008), Lisp (Pirolli & Wilson, 1998), and Pascal (Syang & Dale,

1993), and to explain software engineering practices that are based on CMM (Dekleva &

Drehmer, 1997).

2.4 Operationalization of Performance

When inferring skill, only performance that is under the complete control of the individual

is of interest (Campbell et al., 1993). Performance may be evaluated with respect to time

and quality. A challenge in software engineering is that software quality is not a unitary

concept. For example, McCall (1994) lists 11 software quality factors along with their

expected relationships. Thus, to answer which of two di↵erent solutions are of higher

quality, one must know which quality factors should be optimized given the purpose of

the task. To illustrate, a calculator that supports division is of higher quality than one

that does not. Further, a solution that gracefully handles an exception for division by

zero is better than a solution that crashes when such an exception occurs.

In addition to dealing with di↵erent levels of quality when evaluating performance, it

is a challenge to deal with the tradeo↵ between quality of the solution and the time spent

on implementing the solution. Generally, for two solutions of equal quality, the solution

that took the least time to implement denotes higher performance. It is also trivial to

classify an incorrect solution that took a long time to implement as lower performance
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than a correct solution that took a short time. However, whether a high-quality solution

that took a long time to implement is of higher performance than a low-quality solution

that took a short time is not a simple question. In general, there are two main strategies

for combining time and quality to define performance (Bergersen, Hannay, Sjøberg, Dyb̊a,

& Karahasanović, 2011):

• Time fixed, quality = performance: Use a brief time limit and let subjects solve

tasks in predetermined incremental steps; the number of successful steps within the

time limit defines performance.

• Quality fixed, negated time = performance: Use a relaxed time limit with a high,

expected chance of a correct solution; the less time used, the higher the performance.

A mix of the two main strategies is also possible. In (Bergersen et al., 2011), we rean-

alyzed previously published experiments and combined time and quality as performance

using a Guttman structure. Higher scores on task performance were first assigned ac-

cording to the time fixed description described above. Correct solutions were additionally

assigned higher scores according to the quality fixed description given above.

In addition to tasks that require a single solution, the Guttman structure can also be

used for testlets, that is, for tasks where solutions are solved in multiple steps and where

each step builds upon the previous step. A core issue in this paper is the extent to which

programming performance on a set of tasks that are scored using a Guttman structure

can be used to measure programming skill using the Rasch model.

2.5 Instrument Validity

According to Shadish, Cook, and Campbell, the use of measurement theory is one of

several ways to make generalized causal inferences: “[r]esearchers regularly use a small

number of items to represent more general constructs that they think those items mea-

sure, and their selection of those items is rarely random” (Shadish et al., 2002, p. 349).

Therefore, it is important to address when and how performance on a combined set of

programming tasks can be regarded as a valid measure of programming skill. We use

Borsboom, Mellenbergh, and Van Heerden’s definition of validity: “A [psychological] test

is valid for measuring an attribute if (a) the attribute exists and (b) variations in the

attribute causally produce variation in the measurement outcomes” (Borsboom, Mellen-

bergh, & van Heerden, 2004, p. 1061).

We distinguish validity from the process of evaluating validity, that is, validation

(Borsboom et al., 2004). According to the American Psychological Association, sup-

port for or evidence against validity may be addressed according to the aspects shown in

Table 1 (1999).

When multiple observations of task performance are used as indicators of skill (Fig-

ure 1), it is possible to address what is shared across observations. After the common

variance for skill is extracted from the task performance data, what remains is error vari-

ance (Figure 2). This error, or residual, variance can be divided in two: Random error

variance is noise, which should be reduced to the largest possible extent, but does not
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Table 1: Addressing validity aspects recommended by the APA guidelines

�
�
�

Aspect Description Addressed in 
sections 

1: Task content Do the tasks as a whole span the dimension of the thing being 
measured? 

3.1, 3.2, 6.1 

2: Response 
process 

Are the mental processes involved when solving the tasks 
representative of the psychological variable being measured? 

2.1, 3.2, 6.1 

3: Internal 
structure 

Does the structure of the response data (in dimensionality and 
reliability) conform to expectations?  

2.5, 4.1–4.5, 
6.1 

4: Correlations 
with other 
variables 

Does the measure yield patterns in correlations with other 
variables that are consistent with what is expected from theory 
or previous research? 

5.1, 5.2, 6.1 

Notes. APA also includes “consequences of testing”, which addresses social policies of testing. This 
aspect is beyond the scope of this paper. 

in itself invalidate a measure. However, systematic error variance indicates systematic

patterns in the variance that are not a part of the intended measure.

According to Messick (1989), systematic error variance is one of the two major threats

to (construct) validity. This threat occurs when something other than the variable being

measured systematically influences observations in unintended ways; it is therefore called

construct-irrelevant variance.

The second major threat to validity is construct underrepresentation, which occurs

when central aspects of the thing being measured are not captured (Messick, 1994). For

example, if only one type of programming task is represented in the instrument, mono-

operation bias may occur; that is, other categories of programming tasks are not captured.

Similarly, if only type of evaluation of task quality is used (e.g., unit test cases), mono-

method bias may occur; that is, other categories of evaluation are not captured. Thus,

even if the tasks share a large proportion of common variance, they may still not fully

represent what one intends to measure.

Reliability may be calculated in several ways (Nunnally & Bernstein, 1994), but we

Total variance 

Common variance  Error variance 

Random Systematic 

Internal consistency reliability 

Figure 2: Variance components (adapted from Rummel, 1970).
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will only focus on internal consistency reliability, of which Cronbach’s coe�cient alpha (↵)

is one instance where reliability is represented as the average inter-correlations of tasks.

As shown in Figure 2, internal consistency reliability comprises both common variance

and systematic error variance. A high ↵ is therefore insu�cient to conclude with respect

to validity, because the magnitude of the systematic error variance is unknown.

3 Instrument Construction

The activities that we conducted to construct the measurement instrument are shown in

Table 2. Each activity occurred chronologically according to the subsection structure.

3.1 Definition of Programming and Scope of Instrument

We define programming as the activities of writing code from scratch, and modifying and

debugging code. In particular, the last two activities also include code comprehension as

a central activity. Although other life-cycle activities such as analysis, design, testing, and

deployment are important, programming is the dominant activity of software development.

Table 2: Activities of the construction phase

�
�

Activity Description Purpose 

Definition of 
programming and 
scope of instrument 

Defined and explained the area that the 
concept of programming skill was 
meant to capture. 

Clarify the area in which the 
instrument should be used. 

Task sampling and 
construction  

Obtained 19 tasks with heterogeneous 
operationalizations across dimensions. 

Obtain a set of tasks that span 
the intended scope of the 
instrument. 

Scoring rules for tasks 
 

Developed preliminary scoring rules 
based on different quality attributes for 
the 19 tasks. 

Decide how combinations of 
time and quality as 
performance should be scored. 

Subject sampling  Hired 65 subjects from nine companies 
in eight countries to participate. 

Obtain a sample of industrial 
programmers with widely 
different backgrounds. 

Data collection  The subjects solved the tasks over two 
days using individual randomized task 
order. 

Obtain programming 
performance data to be used in 
the evaluation of scoring rules. 

Data splitting  Split the subject data into one 
construction (n = 44) and one 
validation (n = 21) data set. 

Establish two independent data 
sets for instrument 
construction and validation. 

Determining criterion 
for evaluating scoring 
rules 

Used the fit of task performance data as 
the criterion in the Rasch model. 

Evaluate scoring rules that 
combine time and quality as 
task performance. 

Constructing and 
adjusting scoring rules 
using Rasch analysis  

Combined time and quality using the 
scoring rules for 17 tasks. Scoring rules 
for two tasks could not be obtained and 
these tasks were removed. 

Obtain a well-defined measure 
of task performance. 
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In a study of four software projects (Anda, Sjøberg, & Mockus, 2009), the proportion

of programming constituted 44 to 49 percent of all the development activities, which is

similar to what was found in a survey of software developers conducted at a programming-

related forum (50%, n = 1,490).1

Programming skill is related to performance on programming tasks. The universe of

tasks consists of many dimensions, such as application domains, technologies, and pro-

gramming languages. To increase generalizability, we limited the scope of the instrument

to tasks that belonged neither to any particular application domain nor to any particular

software technology. However, we are not aware of how to measure programming skill in-

dependent of a programming language. Therefore, we limited the scope of our instrument

to the widely used programming language, Java.

3.2 Task Sampling and Construction

To obtain generalizable results, one would ideally use random sampling of tasks (Shadish

et al., 2002). However, there is no such thing as a pool of all programming tasks that have

been conducted in the last, say, five years from which we could randomly sample tasks.

Alternatively, one could construct or sample tasks that varied across all relevant dimen-

sions and characteristics. A programming task may have many characteristics, including

the comprehensiveness and complexity of the task, the required quality of the solution,

and the processes, methods, and tools used to support the fulfillment of the task. Addi-

tionally, characteristics of the system on which the task is performed will also a↵ect the

performance, for example, size and complexity of the system, code quality, and accompa-

nying artifacts (requirement specifications, design documents, bug reports, configuration

management repositories, etc.). However, the number of possible combinations of such

characteristics is almost infinite (Dyb̊a, Sjøberg, & Cruzes, 2012). Therefore, one has to

use convenience sampling.

To help achieve generalizability into an industrial programming setting, we purposively

sampled typical instances (Shadish et al., 2002). Thus, the set of tasks were selected or

constructed to capture a range of aspects of industrial programming tasks to increase

realism (Sjøberg et al., 2002).

We also included some “toy tasks” to measure low-skilled subjects. Another purpose

was to investigate whether the use of such tasks yields the same measure of skill as the one

yielded by using industrial tasks. See Kane et al. (Kane, Crooks, & Cohen, 1999) for a

discussion on the use of tasks with various degrees of realism in educational measurement.

More generally, whether tasks with di↵erent characteristics yield the same measure of

skill, is an open question. In our case, we varied task origin, lifecycle, time limit, presence

of subtasks, and evaluation type to reduce their potential confounding e↵ect as follows:

• Task origin was varied across previous experiments (verbatim or modified), problems

formulated in books, general programming problems, or tailored new tasks (we paid

two professionals to develop new tasks).

• Lifecycle was varied across write, maintain and debug phases.

1www.aboutprogrammers.org
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• Time limit was varied across a mix of short (⇠10 minutes), medium (⇠25 minutes),

and long tasks (⇠45 minutes).

• Subtasks, which require multiple submissions (i.e., testlet structure; see Section 2.4),

were used for some of the tasks.

• Evaluation type was automatic, manual, or a combination of automatic and manual

(e.g., automatic regression and functional testing combined with manual evaluations

of code quality).

Table 3 summarizes all characteristics of the 19 tasks that were sampled or constructed

for the instrument.

3.3 Scoring Rules for Tasks

The decision on how to combine time and quality into a single variable of task performance

for a specific task is operationalized in terms of scoring rules (Bergersen et al., 2011).

Each scoring rule is uniquely associated with a specific task. An example of a scoring

rule that we constructed is shown in Table 4. Three subtasks extend the functionality of

the Library Application described in Table 3: add an e-mail field to “create new” book

lender (Subtask A), allow an entry for e-mail and make it persistent (Subtask B), and

update all other dialogue boxes for e-mail functionality in the application correspondingly

(Subtask C). The three subtasks were to be implemented incrementally, where a correct

solution for Subtask B required a correct solution for Subtask A, and a correct solution

for Subtask C required correct solutions for Subtasks A and B.

Quality was operationalized as correct (Q = 1) or incorrect (Q = 0) implementation of

each of the subtasks. Incorrect solutions for Subtask A (Q
A

= 0) or solutions submitted

after the time limit of 38 minutes (T38 = 0) received a score of “0”. Solutions submitted

within the time limit (T38 = 1) received a score of “1” if only Subtask A was correct

(Q
A

= 1), “2” if both Subtasks A and B were correct (Q
B

= 1), and “3” if Subtasks A,

B, and C (Q
C

= 1) were correct. Additionally, if Subtasks A, B, and C were correct, the

score was “4” if time was below 31 minutes (T31 = 1) and “5” if time was below 25 minutes

(T25 = 1).

For most of the tasks, functional correctness was the main quality attribute, which was

evaluated automatically using test cases in JUnit and FitNesse. For five of the tasks, the

quality attributes were manually evaluated to some extent. Examples of such attributes

were code readability, good use of object-oriented principles, and redundancy of code.

A challenge with manual evaluation is that it may be hard to perform consistently.

Therefore, we refrained from using subjective evaluations of quality, such as “poor” or

“good”. Instead, we used scoring rubrics where each score was uniquely associated with a

requirement that could be evaluated consistently, for example, “is an abstract base class

used in X?”Using scoring rubrics this way helps achieve objective assessments given that

the rater has su�cient knowledge in the area. In the example above, the rater must know

how to identify an abstract base class.
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Table 4: The scoring rule for the Library Application task
�
 Time 
Correctness T38 = 0 T38 = 1 T31 = 1 T25 = 1 

QC = 1 0 3 4 5 
QB = 1 0 2 2 2 
QA = 1 0 1 1 1 
QA = 0 0 0 0 0 
�
�
�
�
�
�

Activity Description Purpose 

Definition of 
programming and 
scope of instrument 

Defined and explained the area that the 
concept of programming skill was 
meant to capture. 

Clarify the area in which the 
instrument should be used. 

Task sampling and 
construction  

Obtained 19 tasks with heterogeneous 
operationalizations across dimensions. 

Obtain a set of tasks that span 
the intended scope of the 
instrument. 

Scoring rules for tasks 
 

Developed preliminary scoring rules 
based on different quality attributes for 
the 19 tasks. 

Decide how combinations of 
time and quality as 
performance should be scored. 

Subject sampling  Hired 65 subjects from nine companies 
in eight countries to participate. 

Obtain a sample of industrial 
program-mers with widely 
different backgrounds. 

Data collection  The subjects solved the tasks over two 
days using individual randomized task 
order. 

Obtain programming 
performance data to be used in 
the evaluation of scoring rules. 

Data splitting  Split the subject data into one 
construction (n = 44) and one 
validation (n = 21) data set. 

Establish two independent 
data sets for instrument 
construction and validation. 

Determining criterion 
for evaluating scoring 
rules 

Used as the criterion the fit of task 
performance data to the Rasch model. 

Evaluate scoring rules that 
combine time and quality as 
task performance. 

Constructing and 
adjusting scoring rules 
using Rasch analysis  

Combined time and quality using the 
scoring rules for 17 tasks. Scoring rules 
for two tasks could not be obtained 
and these tasks were removed. 

Obtain a well-defined measure 
of task performance. 

For all tasks, the time limits used were either based on empirical data from earlier

studies (see Table 3) or results from pilot tests. Some strategies for deciding on time

limits in the scoring of performance are provided in our previous work (Bergersen et al.,

2011).

Each task description specified which quality focus should be emphasized to help

reduce potential confounding e↵ects of having subjects working towards di↵erent perceived

goals. All the task descriptions also stated that a solution was required to be correct, or

of acceptable quality, in order for a more quickly submitted solution to be scored as being

of higher performance.

3.4 Subject Sampling

We contacted 19 companies in 12 countries with a request to submit quotes for participa-

tion. We hired 65 developers from nine of the companies for two full days. The companies

were located in Belarus, Czech Republic, Italy, Lithuania, Moldova, Norway, Poland, and

Russia. Company size was a mix of small (less than 50 developers) and medium (less than

250 developers). According to the categorization by the companies themselves, there were

27 senior, 19 intermediate, and 19 junior developers. We requested a fixed hourly price for

each developer and paid each company additionally for six hours of project management,

including recruiting subjects and setting up infrastructure. The total cost for hiring the

subjects was approximately 40,000 euros.

We requested that individuals volunteer to participate, be allowed to terminate the

participation, be proficient in English, and have experience with programming in Java for

the last six months. All the subjects and companies were guaranteed anonymity and none

were given results. Therefore, no clear motivation for individual cheating or company

selection bias (e.g., by selecting the most skilled developers) was present.

3.5 Data Collection

An experiment support environment (Arisholm, Sjøberg, Carelius, & Lindsjørn, 2002)

was used to administer questionnaires, download task descriptions and code, and upload

solutions. Additionally, we developed a tool to run automatic and semi-automatic test

cases for quality and to apply the scoring rules. A pilot test was conducted on the task

materials. All descriptions, tasks, and code were written in English.

The subjects filled in questionnaires both before beginning the programming tasks
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and upon completion. After solving an initial practice task, each subject received the

19 tasks in an individually randomized order. The subjects used their regular integrated

development environment (IDE) to solve the tasks. Those who finished all the tasks

early were allowed to leave, which ensured some time pressure (Arisholm, Gallis, Dyb̊a,

& Sjøberg, 2007; Arisholm & Sjøberg, 2004). Without time pressure, it is di�cult to

distinguish among the performance of the developers along the time dimension.

To reduce the confounding e↵ect of the subjects’ reading speed on their programming

skill, they were given 5 to 10 minutes to familiarize themselves with the task description

and documentation prior to downloading code. The time used for the analysis began when

the code was downloaded and ended when the solution was submitted.

3.6 Data Splitting

The true test of any model is not whether most of the variance in the data can be accounted

for but whether the model fits equally well when new data becomes available (Feynman,

1998). Overfitting occurs when adjustable parameters of a model are tweaked to bet-

ter account for idiosyncrasies in the data that may not represent the population stud-

ied (Chatfield, 1995). Because the ways to combine time and quality variables into a

single performance variable are potentially infinite (Bergersen et al., 2011), a concern was

whether we would overfit the scoring rules during instrument construction.

A common strategy to account for this problem is to construct the model using one

data set and subsequently use another data set to test hypotheses (Dahl, Grotle, Benth, &

Natvig, 2008) or other claims. Using generalizability theory (Shavelson & Webb, 1991),

we first investigated the magnitude of di↵erent sources of variance for the experiment

reported in (Arisholm & Sjøberg, 2004). This analysis confirmed that variability between

persons and tasks was large, which was also reported in (DeMarco & Lister, 1999; Prechelt,

1999). Therefore, we decided to use about two-thirds of the available data (44 persons,

19 tasks) to construct the instrument and the remaining one-third to check for potential

overfitting (21 persons, 19 tasks). We randomly sampled two-thirds of the developers

within each company for the instrument construction data set. The remaining one-third

of the data was saved for (and not looked at before) the validation phase (Section 4).

3.7 Determining the Criterion for Evaluating Scoring Rules

We measure skill from programming performance on multiple tasks. As mentioned in

Section 2.3, the polytomous Rasch model uses multiple score categories for each task. The

scores for each task (item) i are determined as a function X

i

on the set of individuals, that

is, for an individual j, X
ij

= X

i

(j). The function rule for X
i

is determined by the time

used to solve a specific task T

i

and m quality variables Q

ik

, k = 1, . . . ,m
i

that describe

the task solution (see Figure 1). This rule is called a scoring rule for the item i:

X

i

= scoringrule

i

(T
i

, Q

i1, . . . , Qim

). (2)

To measure skill, one must determine both the maximum allowed score and a sensible

scoring rule for each of the tasks. However, which criteria should be used to make such a
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decision? In some situations, external criteria may be used. For example, the parameters

in a model for measuring skill in sales can be adjusted according to the actual net sales

(external criterion) (Campbell et al., 1993). However, within most other fields, it is di�-

cult to obtain a suitable external criterion (Nunnally & Bernstein, 1994). For example, it

is problematic to use a supervisor’s rating of overall performance as the external criterion

for the job performance of individuals (Campbell, Gasser, & Oswald, 1996). More gener-

ally, the idea of using an “ultimate criterion” has also been described as “an idea that has

severely retarded personnel research” (Campbell, 1990, p. 713) and as “truly one of the

most serious mistakes ever made in the theory of psychological measurement” (Borsboom

et al., 2004, p. 1065).

Given the lack of a valid external criterion for determining programming skill, we

used the fit of task performance data to the Rasch measurement model as an internal

criterion to determine the maximum number of score points for any task and to evaluate

each scoring rule. Rasch analysis can determine whether performance on each of the

combinations of available tasks and persons is mutually consistent. For all n tasks, the

question is whether the set of n�1 other tasks are consistent with the current task. Each

task is thus evaluated analogously to Neurath’s bootstrap process:

. . . in science we are like sailors who must repair a rotting ship while it is afloat

at sea. We depend on the relative soundness of all of the other planks while

we replace a particular weak one. Each of the planks we now depend on we

will in turn have to replace. No one of them is a foundation, nor a point of

certainty, no one of them is incorrigible (Campbell, 1969, p. 43).

3.8 Constructing and Adjusting Scoring Rules Using Rasch

Analysis

Figure 3 shows the steps involved in constructing and adjusting scoring rules (cf. Neu-

rath’s metaphor). In Step 1, an initial set of scoring rules must be established using

bootstrapping. This set serves as the basis for the evaluation of subsequent rules. To

identify the initial set of scoring rules in our case, we used Tasks 8, 9, and 17 (Table 3),

More 
tasks? 

Adjust rule(s) 
according to 

current model  

Construct new scoring 
rule and adjust according 

to current model 

Bootstrap: 
construct 

3 scoring rules 

No 

Yes 

Yes 

Delete task 

No 

Model 
fit ok? 

Step 1 Step 2 Step 3 

Current model 
Done, proceed 
to validation 

Figure 3: Constructing and adjusting scoring rules prior to instrument validation.
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for which we already had extensive programming performance data available (Arisholm

et al., 2007; Arisholm & Sjøberg, 2004; Karahasanović, Levine, & Thomas, 2007; Kara-

hasanović & Thomas, 2007; Kværn, 2006). We had determined a set of scoring rules based

on this data for these three tasks (Bergersen et al., 2011), which became the initial set of

scoring rules in the construction of the instrument.

In Step 2, scoring rules are adjusted relative to each other so that the pattern of perfor-

mance of available tasks is consistent according to Rasch analysis. In our case, we adjusted

the scoring rules to achieve good overall model fit, as indicated by Pearson’s chi-square

test. We then had to check that each new task increased measurement precision, that no

task displayed a misfit to the model, and that other model fit indices were acceptable (see

Section 4). A frequent reason for misfit was too few or too many score categories for a

task (i.e., parameter M
i

in Equation 2). Space limitations prevent us from describing the

details of the analyses we performed using the Rumm2020 software (Andrich, Sheridan,

& Luo, 2006). (See, for example, Bond & Fox, 2001; Wilson, 2005; Wright & Masters,

1979 for an introduction to Rasch analysis.)

In Step 3, the current model (i.e., the minimally “floating ship”) is built upon by

including one additional task at a time. Each new task, with its corresponding scoring

rule, has to yield consistent empirical results with the current model, similar to Step 2.

If an acceptable fit to the current model can be obtained for the new task, it is imported

into the current model, and Step 2 is repeated. Otherwise, the task is deleted.

The process is repeated until no more tasks are available. In our case, the two tasks

that involved concurrent programming (Tasks 18 and 19) were excluded because we could

not identify well-fitting scoring rules, leaving 17 tasks with acceptable model fit for the

construction data set. The two excluded tasks were originally included to contrast mea-

sures of programming skill based on tasks that involved concurrent programming with

tasks that did not involve concurrent programming. However, a problem we encountered

was that the two concurrent tasks were both di�cult to solve and di�cult to score con-

sistently. With only two tasks constituting a single sub dimension, it is di�cult to know

whether they could not be integrated into the instrument due to problems arising from the

di�culty of the tasks, or problems with the scoring rules or task descriptions. Therefore,

at present, the relation between concurrent programming and the existing tasks of the

instrument should be considered an unanswered question.

4 Internal Instrument Validation

We investigate aspects that may indicate a lack of instrument validity according to the

activities in Table 5.

4.1 Test of Overfitting

We investigate whether a model based on the task performance scores of one group of

subjects fits equally well the performance scores of another group of subjects. The instru-

ment was constructed using data from 44 subjects. Another set of data from 21 subjects
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Table 5: Activities of the internal validation phase�
Activity Description Purpose 

Test for 
overfitting  

Compared model fit with task difficulty 
parameters of the two data sets. Two 
tasks were excluded. 

Identify whether the scoring rules 
for the construction data set were 
overfitted. 

Test for 
unidimensionality  

Compared the two maximally different 
subsets of the tasks to check for 
unidimensionality. Three tasks were 
excluded. 

Determine whether various 
subsets of the tasks yield the 
same measure of skill. 

Test for task 
model fit  

Investigated the residual variance and 
match between model values and 
empirical data. 

Determine whether each task 
displays consistent and well-
fitting performance across 
subjects. 

Test for person 
model fit  

Investigated residual variance and 
determined whether subjects’ response 
patterns across tasks are too random or 
too deterministic. 

Determine whether each subject 
displays consistent and well-
fitting performance across tasks. 

Check psycho-
metric properties  

Checked for reliability and targeting. Determine the final version of 
the instrument. 

�

was used for validation. If there were no overfitting of the scoring rules created on the

basis of the task performance of the subjects in the construction data set, the task perfor-

mance scores of the validation subjects would fit the Rasch model equally well. Tasks for

which there are di↵erences between the two groups of subjects should be removed from

the instrument to reduce the risk of model overfitting.

First, we verified that the two sets of subjects had similar programming skill as mea-

sured by the instrument: only negligible di↵erences in mean skill (�� = 0.02 logits) and

distribution (�SD� = 0.10 logits) were found. This indicates that the random allocation

of subjects to the two data sets was successful.

Second, a di↵erential item functioning (DIF) analysis (Nunnally & Bernstein, 1994)

was performed to investigate measurement bias. Task 17 (see Table 3) showed statistically

significant DIF for the two data sets. By removing this task, the overall model fit was

significantly better (��2 = 5.42,�df = 1, p = 0.02), as indicated by a test of nested model

di↵erences (Loehlin, 2004). Consequently, the task was removed from the instrument.

Third, Task 13, the “Hello World” task, also contributed negatively to model fit. In

the debriefing session after data had been collected, several subjects expressed confusion

about why this task had been included. Even highly skilled individuals used up to 10

minutes to understand what “the trick”was with this task. It was therefore removed from

the instrument, thereby leaving 15 tasks to be validated.

We have now removed all the tasks that either indicated overfitting during the con-

struction process (Section 3) or contained other problems that we became aware of when

we compared model fit for the construction and validation data sets. To increase statistical

power in the subsequent validation activities, we joined the two datasets.
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4.2 Test of Unidimensionality

Many di↵erent processes and factors are usually involved when an individual performs

a task. From the perspective of the Rasch measurement model, unidimensionality refers

to whether it may still be su�cient to only use one variable, programming skill, for each

individual to account for all non-random error variance in the performance data (see

Figure 2).

It is a challenge to decide on an operational test for determining unidimensionality. In

the physical sciences, two valid rulers must yield the same measure of length within the

standard error of measurement. In contrast, the large standard errors of measurement as-

sociated with single tasks make it implacable to use this approach. A solution is therefore

to first combine tasks into subsets of tasks to reduce the standard error (by increasing the

common variance in Figure 2), and then evaluate whether the subsets of tasks measure

the same (i.e., are unidimensional). However, how does one determine the allocation of

tasks into the distinct subsets?

Smith (2002) proposed a test that uses principal component analysis (PCA) on stan-

dardized item residuals (here: task residuals) to determine the two sets of subtasks that

will yield the most di↵erent estimates of ability. A task residual is the di↵erence between

the actual (observed) and expected task performance score. For example, an individual

may score “2” on one task, whereas the expected score from the Rasch model would be

“2.34” based on the individual’s performance on the other tasks. Smith’s test is based

on each task’s loading on the first residual principal component. In terms of unexplained

variance, all the tasks that explain the largest part of the residual variance in one direction

comprise one subset used to measure skill; all the tasks that explain the largest part in

the opposite direction comprise the contrasting subset to measure skill. If the di↵erence

between the two measures of skill deviates significantly from what one would expect from

a normal distribution, the test is not unidimensional.

The result of Smith’s test for the 15 tasks showed that the instrument was not uni-

dimensional. The correlations between the task residuals indicated that the three debug-

ging tasks (Tasks 14–16 in Table 3) contributed negatively to instrument unidimension-

ality. By removing these three tasks, Smith’s test indicated acceptable unidimensionality

(p = 0.046, low 95% CI = 0.00).

Even though unidimensionality was acceptable, the tasks loading on the first residual

principal component revealed that this component contained some systematic error vari-

ance. The most di↵erent estimates of skill by the two subsets were obtained by assigning

six relatively easy tasks (“Easy”) and six relatively di�cult tasks (“Di�cult”) to the two

subsets. This indicates that a slight di�culty factor is the source of the systematic error

variance. The two subsets of tasks are indicated in Table 6, which reports the performance

scores of all 65 subjects.

4.3 Test of Task Model Fit

In Section 4.1, we used overall model fit to determine which tasks to remove. In this

section, we inspect that part of overall model fit that relates to tasks and their residuals.
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Table 6: Task performance scores for the subjects in the final instrument

6 10 9 4 1 8 3 12 11 7 2 5
1 C -4.12 1 0 1 0 0 0 0 0 0 0 0 0
2 V -3.89 1 — 0 1 0 0 0 0 0 0 0 0
3 C -3.53 0 1 1 1 0 0 0 0 0 0 0 0
4 C -3.53 1 1 1 0 0 0 0 0 0 0 0 0
5 V -3.03 1 1 1 1 0 — 0 0 0 0 0 0
6 C -2.70 1 2 1 0 1 0 0 0 0 0 0 0
7 C -2.37 1 2 2 1 0 0 0 0 0 0 0 0
8 C -2.37 2 1 1 0 1 1 0 0 0 0 0 0
9 V -2.08 1 1 2 1 1 0 0 0 0 1 0 0
10 V -2.08 1 1 2 2 0 1 0 0 0 0 0 0
11 V -2.03 1 1 3 0 1 0 — 0 0 1 0 0
12 V -1.82 1 2 3 1 0 1 0 0 0 0 0 0
13 C -1.82 2 1 3 0 0 1 0 1 0 0 0 0
14 C -1.82 1 1 1 2 0 1 0 1 0 1 0 0
15 C -1.82 1 1 3 1 1 1 0 0 0 0 0 0
16 V -1.82 1 1 2 1 0 2 1 0 0 0 0 0
17 C -1.58 2 2 1 2 0 1 0 0 1 0 0 0
18 V -1.58 1 3 3 2 0 0 0 0 0 0 0 0
19 C -1.58 2 0 1 1 0 1 1 0 1 1 1 0
20 C -1.58 1 2 3 1 0 1 1 0 0 0 0 0
21 C -1.51 2 1 2 3 0 0 — 0 0 0 1 0
22 C -1.36 1 2 2 1 0 1 2 0 1 0 0 0
23 C -1.36 1 1 3 1 1 1 0 0 1 0 1 0
24 C -1.36 2 2 2 1 1 1 0 1 0 0 0 0
25 V -1.16 1 2 3 1 0 1 1 2 0 0 0 0
26 V -0.97 2 2 3 1 1 0 2 0 0 1 0 0
27 C -0.97 2 2 2 1 1 0 1 0 0 2 1 0
28 C -0.97 2 2 1 2 1 0 1 0 1 1 0 1
29 C -0.97 3 2 4 1 0 0 1 0 0 1 0 0
30 C -0.97 2 1 3 2 0 0 1 0 1 0 2 0
31 C -0.79 2 2 3 1 1 1 1 0 1 0 1 0
32 C -0.79 1 1 3 2 2 1 0 0 2 0 1 0
33 C -0.79 1 2 3 2 2 2 0 0 0 1 0 0
34 C -0.61 2 2 2 1 0 2 1 1 1 1 0 1
35 C -0.61 2 2 2 2 1 0 2 1 1 1 0 0
36 V -0.61 2 2 4 1 0 1 2 0 1 0 1 0
37 C -0.61 2 2 3 2 0 0 1 0 1 2 1 0
38 V -0.45 2 3 3 2 3 0 0 0 1 0 0 1
39 C -0.45 2 3 3 2 0 2 0 1 2 0 0 0
40 C -0.28 2 2 3 2 1 1 1 1 1 1 1 0
41 V -0.28 2 2 3 1 3 1 0 1 2 0 0 1
42 C -0.12 1 2 3 1 2 2 1 0 2 1 1 1
43 V  0.04 2 3 3 2 1 1 3 0 1 1 1 0
44 V  0.04 2 2 4 1 2 0 0 2 1 2 1 1
45 C  0.04 2 2 4 2 2 1 0 0 1 2 1 1
46 C  0.04 1 3 4 2 2 2 0 1 1 2 0 0
47 C  0.04 2 2 4 2 2 1 1 1 1 1 1 0
48 C  0.04 3 3 3 2 1 2 2 0 0 2 0 0
49 C  0.04 2 3 4 2 1 2 1 2 1 0 0 0
50 C  0.20 2 3 5 3 2 0 0 0 1 1 1 1
51 V  0.20 1 0 4 1 2 2 0 2 2 2 2 1
52 C  0.25 3 2 3 2 2 0 — 1 2 1 1 1
53 C  0.35 3 3 3 1 2 1 1 1 2 1 1 1
54 C  0.35 2 3 4 2 2 1 0 0 2 2 1 1
55 V  0.35 2 3 5 2 2 0 1 2 1 1 1 0
56 C  0.35 1 3 4 2 1 2 3 1 2 0 1 0
57 V  0.35 1 3 4 1 2 1 2 1 3 1 1 0
58 C  0.51 2 3 5 2 1 2 1 0 3 1 1 0
59 C  0.51 3 3 4 2 1 2 2 1 0 1 1 1
60 V  0.68 3 3 3 2 2 2 2 1 1 2 1 0
61 C  1.01 2 3 3 2 2 2 2 0 2 3 2 1
62 V  1.19 1 3 4 2 3 3 1 2 1 3 1 1
63 V  1.19 1 3 5 2 3 2 2 1 1 2 2 1
64 C  1.58 3 2 3 3 3 3 2 1 1 3 2 1
65 C  1.58 2 3 5 0 3 3 3 2 1 2 1 2

Subject 

ID
Dataset Skill Task ID

Notes. Missing observations are denoted as —. C is the instrument construction

and V the instrument validation data set; see Section 3.6. Tasks are sorted in in-

creasing order of difficulty. Tasks 3, 4, 6, and 8–10 is the Easy subset described in

Section 4.2; the remaining tasks is from the Difficult subset. 
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Similar to the two types of error variance, residuals can display systematic patterns or

be random noise. Ideally, there should be no systematic patterns, and the residuals

should approximate a random normal distribution (Smith, 1988). We now describe three

standard Rasch analyses of the residuals.

First, if the residuals for two tasks are both random noise, they should not covary. By

convention in the Rasch community,2 correlations larger than ±0.3 may be problematic.

For the 66 correlations investigated (those below the diagonal of the 12 ⇥ 12 correla-

tion matrix of tasks) we found only four correlations outside the acceptable region. We

investigated the corresponding tasks and found no substantive reason for the residual cor-

relations. We also ran five simulations with data simulated to perfectly fit the model and

found a similar low frequency of unacceptable correlations for all 65 persons and 12 tasks.

Therefore, we did not regard residual correlations as a major threat for the instrument.

Second, to detect whether residual variance was shared between tasks, we analyzed the

residuals using PCA. For the 12 tasks, 12 factors were extracted using Varimax rotation

(unlike Smith’s test, which uses a solution where all the factors are orthogonal to each

other). For all the tasks, we found that the residual variance loaded above ±0.91 on one,

and only one, factor and that no task loaded higher than ±0.31 upon factors that were

unique to other tasks. Consequently, the residual variance was mostly unique for each

task, which in turn indicated independence among the tasks.

Third, we investigated the extent to which there was a match between the expected

performance (according to the Rasch model) on a task given a certain skill level and

the actual performance of an individual (or group) with this skill level. The Rasch model

calculates estimates of person skill and task di�culty using the available task performance

data (see Table 8). Based on the estimated task di�culty, the expected task performance

score for any skill level can be calculated (e.g., if � = � = 1 in Equation 1, the expected

task performance score is 0.50).

The actual performance on a task is calculated using individuals that are divided into

two (or more) groups based on their skill level as calculated on the basis of their perfor-

mance on all the other tasks. The mean task performance of such groups, for example,

below-average versus above-average skill, are then contrasted with what is expected from

the Rasch model given the same skill levels as those of the two groups, respectively.

A task residual is the di↵erence between the expected and actual performance of all

subjects on a specific task. Using Rumm2020, positive task residuals indicate under-

discrimination; that is, below-average skill subjects perform better than expected and

above-average skilled subjects perform worse than expected. Negative task residuals in-

dicate over-discrimination, which is the reverse of under-discrimination. Figure 4 shows

the standardized task residual and the estimated di�culty for all the tasks. The size of

the bubbles indicates the standard error of measurement of each estimate. By conven-

tion in the Rasch community, task residuals between �2.0 and 2.0 are acceptable (i.e.,

±2 SD or roughly a 95% confidence interval) and all the task residuals had acceptable,

non-significant values. Overall, this indicates a reasonable match between the expected

and actual performance on the tasks.

2Online resources, such as www.rasch.org, can provide insight of such conventions and how they are
applied. Nevertheless, many conventions lack a documented rationale.
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Figure 4: Task fit to the model.

4.4 Test of Person Model Fit

Similar to task model fit, the analysis of person model fit also involves the inspection of

standardized residuals. The Rasch model assumes that people perform according to a nor-

mal distribution around their true level of skill (i.e., some randomness is assumed). Using

Rumm2020, negative person residuals (here: skill residuals) indicate too little variation in

the performance scores, whereas positive skill residuals indicate too much variation (Bond

& Fox, 2001).

Figure 5 shows that the individual’s response pattern in general fits the model; five

of the 65 subjects have unacceptable skill residuals, which is close to the proportion

of acceptable values by chance (3.25 persons) given the sample size. The bubble size

indicates the standard error of measurement for the skill estimate of each individual.

Less skilled individuals have higher standard errors of measurement than the more skilled

ones, because the measurement precision of the Rasch model is not uniform; it is the

smallest when the di�culty of items matches the ability of the subjects (Embretson, 1996).

Figure 5 also shows that, on average, less skilled subjects are also more associated with

negative residuals than more skilled subjects who, to some extent, are more associated

with positive skill residuals. An explanation is that it is more likely that a highly skilled

person completely fails a task by accident than a lower-skilled person achieves the highest

possible score by accident (see MacKay, 1982, generally).
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Figure 5: Person fit to the model.

Another concern is whether the subjects increased their performance throughout the

two days they solved the tasks. Figure 6 shows a box plot of the skill-task residuals

(actual minus expected performance for each task for each individual) according to task

order; that is, the first box plot shows the distribution of the first task solved by the

subjects, the second box plot shows the second task, etc.3 The subjects received the

tasks in individual randomized order (Section 3.5). Therefore, if a systematic learning

e↵ect (Shadish et al., 2002) or other improvements in performance (Ericsson, 2003) were

present, negative skill-task residuals would be overrepresented during the first tasks, and

positive skill-task residuals would be overrepresented during the final tasks. There is a

slight tendency toward more negative skill-task residuals during the first three tasks, which

may be due to a few negative outliers and no positive outliers. A plausible explanation

for the negative outliers is that developers are more likely to make mistakes when they

are new to the programming environment.

Still, this e↵ect appears to be small. When comparing these results with simulated

data, the e↵ect size of this “warm-up”was estimated to be 0.5 logits, at maximum, which

translates to an odds ratio of e0.5 = 1.65. A standardized e↵ect size is a scale-free estimate

that enables relative comparisons of e↵ect size estimates based on di↵erent representa-

tions (e.g., correlation, mean di↵erences, and odds). By using a formula (Chinn, 2000)

for converting logits into a standardized e↵ect size combined with software engineering

3There are 19 locations for task order because 19 tasks were originally given to the subjects, even
though seven tasks were removed later.
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Figure 6: Skill-task residuals depending on task order.

conventions for “small”, “medium”, and “large” e↵ect sizes (Kampenes, Dyb̊a, Hannay, &

Sjøberg, 2007), the warm-up e↵ect can be classified as a small e↵ect size.

4.5 Psychometric Properties of the Instrument

The internal consistency reliability (Section 2.2) of the instrument was calculated using

the person separation index (PSI) (Streiner, 1995). PSI expresses the ratio of the “true”

variance to the observed variance and can be calculated even with missing data. PSI was

0.86. Cronbach’s ↵ was 0.85 for the subjects that had no missing data for tasks (n = 61).

Values for ↵ above 0.70 are usually considered as su�cient for use (Schmitt, 1996).

The targeting of an instrument expresses to what extent there is a good match between

the di�culty of the tasks and the skill of the developers who were used to construct the

instrument. The targeting can be inspected by comparing the distribution of the task

di�culty with that of skill. The mean task di�culty is set at 0 logits by Rumm2020.

The standard deviation was 1.12 logits. In contrast, the mean skill of the subjects was

�0.83 logits with a standard deviation of 1.30 logits, which is much larger than that found

in a study of students (SD = 0.65 logits; Syang & Dale, 1993). That the mean skill of the

subjects is lower than the mean di�culty of the tasks implies that the tasks at present are

too di�cult for a low-skilled developer. Therefore, the existing tasks of the instrument

are at present best suited to measure skill for medium to highly skilled subjects.
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5 External Instrument Validation

Section 4 showed that the instrument has desirable internal psychometric properties. This

section compares and contrasts programming skill, as measured by the instrument, with

variables external to the instrument.

5.1 Correlations Between Programming Skill and External

Variables

Convergent validity is that variables that from theory are meant to assess the same con-

struct, should correlate in practice (Campbell & Fiske, 1959). Conversely, divergent va-

lidity is that variables that, in theory, are not meant to assess the same construct, should

not correlate in practice.

Table 7 shows the descriptive statistics for skill and the external variables that we

investigated.4 Our main concept, programming skill, was operationalized in the instru-

ment using Java as the programming language; the variable is denoted javaSkill. The

operationalization of the other, external variables is described throughout this section.

The four experience variables and lines of code use ratio scale. JavaSkill uses interval

scale. The remaining variables of the table are all ordinal scale.

Table 8 shows the Spearman correlation ⇢ between javaSkill and the external vari-

ables, sorted in descending order. For variables where no theory or prior research has

established in what direction the correlations with skill should go, we used two-tailed

tests of significance. For the other variables, we used one-tailed tests because the vari-

ables were investigated in a confirmatory manner.

A commercially available test of Java knowledge (javaKnowledge) was purchased from

an international test vendor for $7,000 and administered to 60 of the 65 developers one

to four months after they solved the programming tasks. From this test, we sampled

30 multiple-choice questions that covered the same domain as the tasks used in the skill

instrument. Table 8 shows that javaKnowledge was the variable with the highest corre-

lation with javaSkill. Because knowledge and skill should be close to unity for developers

currently learning how to program, but should diverge as skill evolves through the second

and third phase of skill acquisition (Section 2.1), we split the individuals into two groups.

For those with javaSkill below the mean (see Table 7), javaKnowledge and javaSkill were

highly correlated (⇢ = 0.52, p = 0.003, n = 30). For those with javaSkill above the mean,

there was no correlation (⇢ = 0.002, p = 0.990, n = 30). Thus, the relation between

programming skill and knowledge was best represented using a cubic trend line, as shown

in Figure 7. Overall, this result is consistent with theoretical expectations and implies

that the instrument captures something other than javaKnowledge as operationalized by

the multiple-choice test, thus demonstrating convergent and divergent validity for the two

groups, respectively.

Working memory is a system of the human brain that temporarily stores and manages

4Researchers interested in obtaining the raw data or using the instrument may contact the first author.
Agreements adhering to the protocol described in Basili et al. (Basili, Zelkowitz, Sjøberg, Johnson, &
Cowling, 2007) will be required.
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Table 7: Descriptive statistics for Java skill and external variables
Variable 
type Variable N Mean SD Min Max Unit 

Test based 
(objective) 

Java skill 65 –0.8 1.3 –4.1 1.6 Logit 
Java knowledge 60 21.7 4.8 7 29 Sum of correct answers 

 Working memory 27 0.1 2.2 –3.3 3.6 Sum of three standardized testsa 

Test based 
(subjective) 

Technical skills  65 11.5 1.9 5 15 Sum of 3 Likert scale questionsb 
Managerial skills 65 26.9 4.2 17 34 Sum of 8 Likert scale questionsb 

 People skills 65 2.2 2.9 16 29 Sum of 6 Likert scale questionsb 

Reported 
by others 

Developer category 65 2.1 0.8 1 3 Junior, intermediate or seniorc 

Self-
reported 

Experience       
   Recent Java  65 26.6 21.4 0 75 Months 
   Java  65 40.0 25.2 2 130 Months 
   Programming  65 45.9 37.8 4 160 Months 
   Work 65 63.6 65.3 4 360 Months 

Expertise       
   Java  65 3.5 0.9 1 5 5-category Likert scaled 
   Programming  65 3.7 0.7 2 5 5-category Likert scaled 

Java LOC 64e 136k 253k 0.5k 1000k Lines of code 
Motivation 65 8.4 1.1 6 10 10-category Likert scalef 
Learned new things 65 3.5 0.9 1 5 5-category Likert scaleg 

a The sums of perfectly recalled sets for each of the three tests were standardized and added. 
b Unsatisfactory = 1; marginal = 2; average = 3; good = 4; excellent = 5. c Scored 1–3; assigned by 
closest supervisor or project manager. d Novice = 1; expert = 5. e One observation was removed as 
an extreme outlier according to Grubbs’ test. f Maximum = 10 (minimum = 1 is implied). 
g Strongly disagree = 1; disagree = 2; neither = 3; agree = 4; strongly agree = 5. 
�
�
�

information. In general, working memory capacity is central to theories of skill acquisi-

tion (Anderson, 1982; Chase & Ericsson, 1982). In particular, working memory has been

found to predict technical skill acquisition (Kyllonen & Stephens, 1990) and programming

skill acquisition to a large extent (Shute, 1991). In our study, three tests of working mem-

ory were acquired from Unsworth et al. (Unsworth, Heitz, Schrock, & Engle, 2005). In the

tests, the developers were required to memorize letters or locations while being distracted

by math (Ospan), symmetry (Sspan), or English reading (Rspan) questions (Unsworth et

al., 2005). The tests were administered to 29 of the developers using the E-prime soft-

ware (workingMemory). The reason for the low N for this variable is that the software was

not available for the first half of the companies visited. Furthermore, the software crashed

for two of the developers, which reduced N to 27. Table 8 shows that workingMemory

was significantly and positively correlated with javaSkill, as expected. The distribution of

workingMemory was similar to that of the US student population reported by Unsworth

et al. (Unsworth, Redick, Heitz, Broadway, & Engle, 2009).

In this study, experience was represented using four variables. Total Java experience

(javaExperience) is the amount of time for which an individual has been programming in

Java. Recent Java experience (recentJavaExperience) is the amount of time for which an
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Figure 7: The relation between Java skill and knowledge. Note: The data are jittered to
show overlapping observations.

individual has been programming in Java consecutively up until present. Both variables

correlated significantly with javaSkill. Recent practice is not commonly included as a

variable in software engineering experiments, but it should nevertheless be central to per-

formance because skills decrease over time when they are not practiced. Table 8 also shows

a small correlation of 0.15 between javaSkill and general programming experience (pro-

grammingExperience), which may include exposure to languages other than Java. This is

consistent with the correlations between programming experience and performance found

in two other large datasets, 0.11 and 0.05, respectively (Bergersen et al., 2011). Gen-

eral work experience (workExperience), which may not involve programming, had only

0.09 correlation with javaSkill. Consequently, the order of the correlations for these four

experience variables with javaSkill is consistent with their closeness to Java programming.

Because javaExperience and recentJavaExperience are specializations of programmingEx-

perience, which in turn is a specialization of workExperience, not obtaining this order of

correlations would have indicated validity problems.

Lines of code written in Java (javaLOC ), which is another experience-related variable,

was also significantly correlated with javaSkill (⇢ = 0.29). This result is consistent with

the correlations between LOC and programming performance found for two other large

datasets, 0.29 and 0.34, respectively (Bergersen et al., 2011).

Among the self-reported variables in Table 8, Java expertise (javaExpertise), which

uses a 5-point Likert scale from “novice” = 1 to “expert” = 5 (see Table 7), had the

highest, significant correlation of 0.46 with javaSkill. This is similar to the correlation

reported in (Ackerman & Wolman, 2007) between self estimates and objective measures

for math (r = 0.50) and spatial abilities (r = 0.52). General programming expertise (pro-

grammingExpertise), which in this context is non-Java specific, was also self-reported and

used the same scale as did javaExpertise. The correlation between programmingExpertise
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and javaSkill was 0.36. This indicates that the two correlations were also well ordered

with respect to their closeness to Java programming, similarly as for the four experience

variables.

The mean within-company correlation between javaExpertise and javaSkill was 0.67

(range 0.36–1.00, n = 9). This indicates that comparative self-rating of expertise is better

than absolute ratings, which is consistent with people’s ability to judge in comparative

versus absolute terms in general (Nunnally & Bernstein, 1994).

We also administered a questionnaire, published in (Chilton & Hardgrave, 2004), for

rating the behavior of information technology personnel within the three dimensions of

technical skills (technicalSkills), people skills (peopleSkills), and managerial skills (man-

agerialSkills). This questionnaire has previously been used by managers to rate employees,

but we adapted the questions to be applicable in ratings of self. Table 8 shows that only

technicalSkills was significantly correlated with javaSkill.

An individual’s motivation to spend as much e↵ort and energy during the study was

self-reported using a 10-point Likert scale (motivation). Table 8 shows an insignificant, low

correlation between motivation and javaSkill (0.05). A strong positive correlation would

have been detrimental to validity because this would have indicated that motivation is

confounded with the measure of skill. Nevertheless, those with high skill are still more

adversely a↵ected by low motivation (Kanfer & Ackerman, 1989) because an individual

with high skill and low motivation would be measured at low skill (i.e., a large di↵erence),

whereas an individual with low skill and low motivation would still be measured at low

skill (i.e., a small di↵erence). Therefore, motivation continues to be a confounding factor

in javaSkill, although this limitation is not unique to us because most empirical research

is based on the assumption of cooperative subjects.

Finally, the subjects were asked about the extent to which they learned new things

while solving the 19 tasks (learnedNewThings). Table 8 shows a statistically significant

negative correlation between learnedNewThings and javaSkill. This demonstrates diver-

gent validity, because people with high skill will likely not learn new things when carrying

out well-practiced behavior.

5.2 Predicting Programming Performance

Predictive validity is traditionally regarded as an integral part of instrument valida-

tion (Nunnally & Bernstein, 1994). We investigated how well the instrument predicted

programming performance on a set of tasks compared with alternative predictors, such as

the external variables reported in the previous section. To reduce bias in the comparison,

the tasks of that being predicted must be independent from the instrument. For conve-

nience, we used the performance data from four of the seven tasks that were removed from

the instrument (Tasks 14–17 in Table 3). The tasks were selected because they were easy

to score with respect to correctness and the subjects’ solutions varied in both quality and

in time (a variable that contain no variance cannot be predicted). The remaining three

tasks either had little variance to be predicted (Task 13 “Hello World”) or would have

required scoring rules to be available (Tasks 18 and 19 both used subtasks with quality

attributes that varied in multiple dimensions).
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One may question why tasks that were previously excluded from the instrument can be

used in the external validation process. As we have described, there are strict requirements

for a task to be included in an instrument for measuring programming skill. Prediction,

on the other hand, only requires that solving the task should involve some degree of

programming skill.

Figure 8 shows the correlation between the investigated predictors and task perfor-

mance with respect to correctness and time on the four tasks, yielding a total of eight

correlations (circles) for each predictor. Correctness was analyzed using point-biserial cor-

relation and time for correct solutions was negated and analyzed using Spearman’s ⇢. The

vertical lines divide between small (S), medium (M), and large (L) correlations according

Figure 8: Java skill and alternative predictors of task performance. Note: The data are
jittered to show overlapping observations.
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to the e↵ect size guidelines stated in (Kampenes, Dyb̊a, Hannay, & Sjøberg, 2009). The

trend line shows the mean of the correlations for each predictor and confirms that the

instrument (i.e., javaSkill) was the best predictor, ahead of javaKnowledge.

Figure 8 also shows that the correlation between task performance and the four experi-

ence variables was small. A similar result was also found in an early study of programming

productivity across three organizations (Je↵ery & Lawrence, 1979). That study found no

association between performance and experience for two of the organizations, which em-

ployed developers with one to nine years of programming experience. However, in the

third organization, which consisted of developers with only one to three years of expe-

rience, performance and experience were related. Based on these findings the authors

conjectured that either developers “learn their craft in a year and from thereon additional

experience makes little di↵erence [or] large individual di↵erences in programming skill

[exist] but these are not related to number of years of experience” (Je↵ery & Lawrence,

1979, p. 376). We found a similar result (not shown): The correlation between experience

and skill was largest during the first year of experience, but then gradually diminished

and disappeared completely after about four years. That these two variables display

a monotonically increasing but deaccelerating relationship is expected from the log-log

law of practice (Newell & Rosenbloom, 1981), as well as research on expertise (Ericsson,

Krampe, & Tesch-Römer, 1993).

6 Discussion

This section discusses the answer to the research question, contributions to research,

implications for practice, limitations, and future work.

6.1 Measuring Programming Skill

Our research question was“to what extent is it possible to construct a valid instrument for

measuring programming skill?” We now discuss the validity of the instrument according

to the aspects of Table 1.

Task content regards the extent to which the 12 tasks of the final instrument adequately

represent the scope we defined in Section 3.1. Only a few of the tasks required the

developer to optimize software quality aspects other than functional correctness. For

example, many of the quality aspects in ISO 2196/25010 are underrepresented. We focused

on functional correctness because it is a prerequisite for the other quality aspects. For

example, it is di�cult to evaluate the e�ciency of two task solutions if they are not

functionally equivalent.

Nevertheless, the tasks combined are more comprehensive than in most experiments on

programmers. Both sample size and study duration are large compared with experiments

in software engineering in general (Sjøberg et al., 2005). Compared with (Syang & Dale,

1993) and (Wilking et al., 2008), who also used the Rasch model to study “programming

ability”, our tasks are also more realistic—but also time consuming—in the sense that

developers must submit code as their solution. Furthermore, our tasks were structured
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around a programming problem that may involve many programming concepts simulta-

neously, whereas (Syang & Dale, 1993) and (Wilking et al., 2008) focused on “narrow”

problems, where one programming concept is evaluated per question. Thus, answering the

question of whether the tasks as a whole span the dimension that one is trying to measure

is di�cult. One may argue that adding yet another task (ad infinitum) would better span

the dimension one is aiming to measure. There is no stop criterion; the choice of when to

stop is subjective. The universe of potential programming tasks is infinite (Dyb̊a et al.,

2012).

Response process concerns whether the mental processes involved when solving the

tasks are representative of programming skill. The processes involved during software

development are clearly more demanding than selecting (or guessing) the correct answer

to a short programming problem in multiple-choice questions, such as in (Syang & Dale,

1993). The open response format (e.g., used in Wilking et al., 2008) alleviates this prob-

lem, but we regard questions such as “What kind of data structure can be stored with

this definition?” as akin to assessing programming knowledge. In contrast, many of the

tasks were selected or constructed to capture a range of aspects of industrial program-

ming tasks. For example, the tasks were solved in the developers’ regular programming

environment, and many of the tasks contained code that was too extensive to understand

in full. This increased the likelihood that the developers used response processes similar

to those that they use in their daily work.

The internal structure of the data concerns the dimensionality and reliability of the

measure of programming skill (Section 4). Fundamental to statements such as “developer

A is more/less skilled than developer B” is the assumption that one dimension exists

along which one can be more or less skilled. Although programming has many facets,

we found that programming skill could be represented as a unidimensional, interval-scale

variable for the majority of the programming tasks we investigated. That performance

on di↵erent programming problems may essentially be regarded as a single dimension

was also found in a study of students in a C++ course (Freedman, 2013). This indi-

cates that programming skill accounts for the major proportion of the large di↵erences

observed in programming performance (i.e., the “common variance” in Figure 2) reported

elsewhere (Curtis, 1980; DeMarco & Lister, 1999; Grant & Sackman, 1967; Prechelt,

1999). However, there may be other explanations. Therefore, we investigated other

potential sources of construct-irrelevant variance, but found only a slight warm-up and

task-di�culty e↵ect. Furthermore, the ratio of random error variance to common variance

plus systematic error variance (i.e., internal consistency reliability) was found to be sat-

isfactory. Compared with (Syang & Dale, 1993), who used factor analysis to investigate

unidimensionality, the eigenvalue of our first factor was larger (4.76) than the eigenvalue

of their first factor (2.81). This implies a greater proportion of common variance to error

variance in our study.

Programming skill, as measured by the instrument, correlated with external variables

in accordance with theoretical expectations. More specifically, as shown in Section 5.1,

programming skill and programming knowledge appeared to be strongly related for low

to medium skill levels, whereas they were largely unrelated for medium to high skill

levels. We also found that experience and expertise variables were both well ordered
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with respect to their closeness to Java programming. Convergent validity was found for

variables such as developer category, lines of code, and technical skills, where divergent

validity was present for managerial and people skills, as well as motivation. Moreover, as

we have previously reported (Bergersen & Gustafsson, 2011), we found that five of the

variables in Table 7 display a pattern in the correlations that is consistent with Cattell’s

investment theory, see (Cattell, 1971/1987). This psychological theory describes how the

e↵ect of intelligence (in our context, working memory) and experience on skill is mediated

by knowledge. Previous work by Anderson (1987) showed that the best predictor of

programming errors on tasks was the amount of error on other programming problems.

Similarly, we showed in Section 5.2 that performance on a set of programming tasks

was best predicted by performance on another set of programming tasks, that is, the

instrument.

The APA (1999) also regards validity generalization as related to “correlations with

other variables”. From an analytical perspective, the generalizability of the instrument

is based on its connection to theory about essential features (Locke, 1986), in which the

concept of transfer (Ferguson, 1956) is central when generalizing between instrument and

industry tasks. For example, Anderson et al. used a software-based tutor that trained stu-

dents in 500 productions (i.e., “if-then”rules) that comprise the components of programing

skill in LISP. They reported that “[t]here is transfer from other programming experience

to the extent that this programming experience involves the same productions” (Anderson

et al., 1989, p. 467). Thus, when a programming language such as C# is semantically

similar to Java on many accounts, one would expect that skill in either language would

transfer to a large extent to the other language. We believe that the principle of transfer

also informs the generalizability of tasks of the instrument, because these tasks involve

many concepts central to programming that are also present in real-world tasks.

Concerning the generalizability across populations, one would ideally randomly sam-

ple from the world’s population of professional developers. In practice, this is impossible.

However, we managed to sample professional developers from multiple countries and com-

panies. The extent to which the results generalize to other populations of professionals

(e.g., di↵erent countries or types of companies) is an empirical question that must be

addressed in follow-up studies.

Overall, our investigation of validity indicates that our instrument is a valid measure

of programming skill, even though a single study cannot answer this conclusively. This

inability to make conclusions is similar to the challenge of confirming a theory. A theory

cannot be proved. Instead, it is only strengthened by its ability to escape genuine attempts

at falsification (Popper, 1968).

6.2 Contributions to Research

Theory-driven investigations are rare in empirical software engineering (Hannay, Sjøberg,

& Dyb̊a, 2007), even though theory is often required to interpret and test results (Popper,

1968; Shadish et al., 2002). In (Sjøberg, Dyb̊a, Anda, & Hannay, 2008), we described how

theories can enter software engineering: unmodified, adapted, or built from scratch. We

applied an unmodified version of the theory of skill and interpreted and tested expectations
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from this theory “as is”, using professional software developers (most other researchers use

students). We also applied the Rasch model, which can be regarded as a non-substantive

theory of how item di�culty and person abilities interact, without modification. However,

to use programming performance data as input to the Rasch model, we adapted the scoring

principles described in (Hands, Sheridan, & Larkin, 1999) to account for the time-quality

problems when scoring performance on programming tasks (Bergersen et al., 2011).

Scoring rules are rarely justified or evaluated. In (Dyb̊a, 2000), we justified, but did

not evaluate, the use of a five-point Likert scale for each indicator of key factors of success

in software process improvement. In contrast, through the use of the Rasch model, we

have shown in this paper how to evaluate the number of score points and the scoring rule

for each indicator.

We demonstrated methods for internal validation through tests of overfitting, uni-

dimensionality, and person and task fit to the measurement model. For example, we

investigated whether practice e↵ects were a confounding factor (Sheil, 1981) by analyzing

residual variance. Moreover, we demonstrated that by requiring that residual variance

be uncorrelated, the testability of the proposed model is enhanced. In (Dyb̊a, 2000), we

used PCA to identify the factor structure of multiple scales, but we did not investigate

whether residual variance between indicators for each factor was uncorrelated.

In (Dyb̊a, Moe, & Arisholm, 2005), we showed that the meaning of a construct can

easily change as a result of variations in operationalizations. In the present study, we

extended this work to include empirical testing of whether operationalizations internally

are mutually consistent and derivable expectations from theory are met. By using a

convergent-divergent perspective (Campbell & Fiske, 1959), we showed that the closer

the variables were to programming skill, the higher was the correlation.

The validity of empirical studies in software engineering may be improved by using

the instrument to select subjects for a study, assign subjects to treatments, and analyze

the results. When selecting subjects for a study, one should take into account that the

usefulness of a technology may depend on the skill of the user (Bergersen & Sjøberg, 2012).

For example, representativity is a problem when students are used in studies for which

one wishes to generalize the results to (a category of) professional developers (Sjøberg et

al., 2002). The instrument can be used to select a sample with certain skill levels. For

example, the instrument was used to select developers with medium to high programming

skills in a multiple-case study (Sjøberg et al., 2013).

When assigning subjects to treatments, a challenge is to ensure that the treatment

groups are equal or similar with respect to skill. A threat to internal validity is present

when skill level is confounded with the e↵ect of the treatments. In experiments with a large

sample size, one typically uses random allocation to achieve similar skill groups. However,

in software engineering experiments, the average sample size of subjects is 30 (Sjøberg et

al., 2005) and the variability is usually large. Even in an experiment with random alloca-

tion of 65 subjects, we found an e↵ect (although small) in the di↵erence in skill (Bergersen

& Sjøberg, 2012). By using the instrument for assigning subjects to equally skilled pairs

(instead of groups), more statistically powerful tests can be used, which in turn reduces

threats to statistical conclusion validity (Dyb̊a, Kampenes, & Sjøberg, 2006; Shadish et

al., 2002).
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Quasi-experiments are experiments without random allocation of subjects to treat-

ments. Randomization is not always desirable or possible; for example, “the costs of

teaching professionals all the treatment conditions (di↵erent technologies) so that they

can apply them in a meaningful way may be prohibitive” (Kampenes et al., 2009, p. 72).

To adjust for possible di↵erences in skill level between treatments groups, and thus to

reduce threats to internal validity, a measure of skill provided by the instrument may be

used as a covariate in the analysis of the results.

Similar to controlling for the level of skill, the instrument may also be used to control

for task di�culty in software engineering experiments. Task di�culty may both be a con-

founding factor and a factor across which it may be di�cult to generalize the results. For

example, in an experiment on pair programming with junior, intermediate and senior Java

consultants (Arisholm et al., 2007), pair programming was beneficial for the intermediate

consultants on the di�cult tasks. On the easy tasks, there was no positive e↵ect.

6.3 Implications for Practice

According to (Campbell et al., 1993), job performance consists of eight major compo-

nents. One of them concerns job-specific task proficiency, which is “the degree to which

the individual can perform the core substantive or technical tasks that are central to

the job” (Campbell et al., 1993, p. 46). In a meta-analysis with over 32,000 employ-

ees (Schmidt & Hunter, 1998), work sample tests had the highest correlation with job

performance (0.54), followed by tests of intelligence (0.51), job knowledge (0.48), and job

experience (0.18). A benefit of work sample tests is that they possess a high degree of

realism and thus appear more valid to the individual taking the test, see generally (Braun,

Bennett, Frye, & Soloway, 1990). However, they are more costly to develop and score

and more time-consuming to administer (Kane et al., 1999). Like a work sample test, our

instrument uses actual performance on tasks as the basis for inferring job-specific task

proficiency in the area of programming and, consequently, would be useful for recruiting

or project allocation.

Work samples and our instrument may complement each other. Work sample tests

may include programming tasks that are tailored for a highly specific job. The result

an individual receives on a work sample test may be a composite of many factors, such

as domain-specific or system-specific knowledge. In contrast to most work-sample tests,

as well as other practical programming tests used in-house in a recruiting situation, our

instrument aims to provide a measure of programming skill based on a scientific definition

of measurement, that is, the claim that “something is measured” can be falsified. Fur-

thermore, the construction of the instrument is theory-driven and the validation has been

performed according to the aspects as reported above.

Many other criteria than correlations are involved when comparing alternative predic-

tors of job-specific task proficiency. For example, work sample tests may require relevant

work experience to be applicable in a concrete setting (Schmidt & Hunter, 1998). Time

is also an important factor: Grades from education or work experience can be inspected

within minutes, standardized tests of intelligence or programming knowledge may be ad-

ministered within an hour, and the use of standardized work samples, or our instrument,



6 Discussion 135

may require a day. For example, exploratory work on a model for assessing program-

ming experience based on a questionnaire that can be quickly administered is outlined

in (Feigenspan, Kästner, Liebig, Apel, & Hanenberg, 2012).

If we had had only one hour available, time would allow the use of a couple of tasks

that fit the model well and (combined) have a good span in task di�culty. We chose

Tasks 9 and 12 in Table 3 to be used as a one-hour version of the instrument. Although

the measurement precision of the instrument is greatly reduced by having only two tasks

to measure skill instead of 12, the validity of the instrument should be una↵ected be-

cause all the tasks still measure “the same”, that is, programming skill. When calculating

programming skill based solely on those two tasks, the instrument was still as good as

the knowledge test (which took approximately one hour to complete) in predicting pro-

gramming performance (cf. Figure 8). Consequently, the instrument requires more time

to predict programming performance better than the alternatives. Therefore, future work

includes ways to retain the reliability and validity of the instrument while reducing the

time needed to administer it.

As determined by the scope we defined, the instrument’s measure of programming skill

is independent of knowledge of a specific application domain, software technology, and

the concrete implementation of a system. A developer with extensive knowledge in any of

these areas may perform better on a new task within any of these areas than a developer

with higher programming skill but with less knowledge in these areas. Creating a tailored

version of the instrument that combines programming skill with specific knowledge within

one or more of these areas would require access to experts within each field that must

assist in the construction of new tasks for the instrument. A pragmatic alternative to

creating such a tailored instrument, which must follow the steps outlined in this paper,

is to use our instrument for measuring programming skill and combine it with knowledge

tests for a given domain, technology, or implementation.

Furthermore, the instrument appears to be best for testing medium to highly skilled

developers. To make the instrument more suitable for less skilled developers, one would

need easier tasks. However, it is a challenge to create an easy task that at the same time

resembles an industrial problem. In an industrial system, even an apparently easy change

of code may have unintended consequences. Thus, making a small change may require an

understanding of a wider part of the system, which in turn makes the task more di�cult

to solve than originally indented.

The description of the tasks of the present instrument is language independent. The

program code for each task is written in Java but can easily be translated into other object-

oriented languages. Tailoring the instrument to non-object-oriented languages would be

more challenging, because what is considered a high-quality solution might di↵er between

language paradigms. Concerning the test infrastructure, automatic test cases would gener-

ally be easy to translate into new programming languages, even though it would be easier

to modify the instrument to support languages that can use the Java virtual machine.

Note that any major changes to the instrument due to tailoring will require a new sample

of developers to be used to calibrate new task di�culty parameters. We also recommend

that di�culty parameters are verified even though only minor changes to the instrument

are present, for example, if the tasks are translated into another object-oriented language.
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6.4 Limitations

The sample size of 65 subjects in this study is low. An ideal sample size for the polytomous

Rasch model is around 250 subjects (Linacre, 1994), even though authoritative work on

Rasch modeling has previously been conducted on a sample size similar to ours (see Wright

& Masters, 1979). An increased sample size would have resulted in lower standard errors

of measurement in the estimated skill and di�culty parameters (the parameters are shown

in Figures 4 and 5). Increased measurement precision due to larger sample size would

have enabled the detection of more cases of statistically significant di↵erences in skill level

between developers.

Four of the twelve tasks in the final instrument required manual evaluation of quality,

which was performed only by the first author. To reduce the likelihood of bias, we used

non-subjective scoring rubrics (see Section 3.3). Still, multiple raters would have increased

confidence in results.

In the validation process, the three debugging tasks were excluded because they con-

tributed negatively to unidimensionality, even though the contribution was small. We do

not know whether the negative contribution to unidimensionality is because debugging

represents something slightly di↵erent than “programming”, as we defined it, or because

these three tasks were atypical. For example, all the tasks were small, had short time

limits, and represented an “insight problem” (Schooler, Ohlsson, & Brooks, 1993); that is,

one struggles for some time until one obtains the insight needed to solve the problem. In

practice, however, there are virtually no di↵erences: The correlation between program-

ming skill as measured by the instrument with the debugging tasks present (15 tasks) and

programming skill as measured by the instrument without the debugging tasks present

(12 tasks) was r = 0.995.

Finally, we do not know to what extent the response processes used when solving the

tasks of the instrument were representative of real-world programming. This limitation

could have been addressed by comparing think-aloud protocols (APA, 1999) from indus-

try programming tasks with our instrument tasks. However, we have previously found

that such methods are intrusive (Karahasanović, Hinkel, Sjøberg, & Thomas, 2009) and

therefore would have been a serious threat to the internal validity of the instrument if

used during instrument construction.

6.5 Future Work

In addition to addressing the limitations just described, this work yields several directions

for future work. One topic is how much developers di↵er in their programming perfor-

mance (Curtis, 1980; DeMarco & Lister, 1999; Grant & Sackman, 1967; Prechelt, 1999).

The standard deviation of skill in our sample of developers was 1.3 logits. To illustrate

this variability, if two developers are drawn from this sample at random, one of the de-

velopers would display better programming performance than the other one in almost

four out of five programming tasks on average.5 The instrument is used at present in an

5Our observed variability in skill, 1.3 logits, equals an odds ratio of e1.3 = 3.7; that is, the more skilled
developer of the pair would perform better with odds of 3.7:1, which is 3.7 out of 4.7 tasks.
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industrial context, which gives us an opportunity for studying variability in programming

skill across various populations of subjects and tasks.

We would also like to increase the understanding of the conditions that are required to

achieve high skill levels. For example, to what extent is experience important to achieve

a high skill level? In our sample, skill and experience covaried only for the first four years

of experience. Additional experience was not associated with higher skill level on average.

However, the variability in skill level increased for those with extensive experience. A

deeper analysis of these data is needed. In particular, we would like to contrast our data

with the 10,000 hours of deliberate practice required to reach the highest levels of expert

performance, as stated in (Ericsson et al., 1993).

The use of the instrument in research and industry will make the tasks known to a

wider audience over time, which, in turn, will reduce the usefulness of the instrument.

Therefore, it is important that new tasks are continuously being developed and calibrated

to be included in the instrument. Thus, in the future, new tasks will be used to measure

skill the same way as do the 12 existing tasks today.

To make the instrument more attractive for industrial use, we aim to reduce the time

needed to measure skill while retaining precision. A benefit of the Rasch model is that

it facilitates computer adaptive testing, which means that the di�culty of the next task

given to the subject depends on the score of the previous task. This procedure maximizes

measurement precision, thereby reducing the number of tasks required.

The use of our instrument in an industrial setting also gives us an opportunity for

investigating how measures of programming skill complement experience, education, peer-

ratings, and other indicators as predictors of job performance.

7 Conclusion

We constructed an instrument that measures skill based on an individual’s performance

on a set of programming tasks. From a theoretical perspective, the combination of theory-

driven research and a strict definition of measurement enabled rigorous empirical testing

of the validity of the instrument. From a practical perspective, the instrument is useful

for identifying professional programmers who have the capacity to develop systems of high

quality in a short time. This instrument for measuring programming skill is already being

used as the basis for new prototypes and for further data collection, in collaboration with

industry.
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Paper III:

Programming Skill, Knowledge,
and Working Memory among
Professional Developers from an
Investment Theory Perspective

Gunnar R. Bergersen and Jan-Eric Gustafsson

Journal of Individual Di↵erences, Vol. 32, No. 4, pp. 201–209, 2011.

Abstract

This study investigates the role of working memory and experience in the development of

programming knowledge and programming skill. An instrument for assessing programming

skill—where skill is inferred from programming performance—was administered along

with tests of working memory and programming knowledge. We recruited 65 professional

software developers from nine companies in eight European countries to participate in

a two-day study. Results indicate that the e↵ect of working memory and experience on

programming skill is mediated through programming knowledge. Programming knowl-

edge was further found to explain individual di↵erences in programming skill to a large

extent. The overall findings support Cattell’s investment theory. Further, we discuss

how this study, which currently serves a pilot function, can be extended in future stud-

ies. Although low statistical power is a concern for some of the results reported, this

work contributes to research on individual di↵erences in high-realism work settings with

professionals as subjects.

Keywords: programming, investment theory, knowledge, working memory.
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1 Introduction

Software production is a highly competitive and globalized industry focused on delivering

high-quality software at low cost. One important way to stay competitive is to recruit

and retain highly productive software developers. Although companies often use di↵erent

methods for assessing competence when recruiting developers, tests of cognitive abilities

are frequently utilized.

Generally, cognitive abilities can be organized into a hierarchical structure (Carroll,

1993; Gustafsson, 2002). At the apex, general mental ability (g) exerts influence over all

lower factors. At the next stratum there are a handful of broad abilities such as crystallized

g (Gc, acquired knowledge) and fluid g (Gf, novel and abstract problem solving), while

the lowest stratum specifies a large number of narrow abilities.

According to Cattell’s investment theory (1971/1987), Gf is involved in all new learn-

ing. This, in turn, implies that Gf is to some extent related to individual di↵erences

in all domains of knowledge and skills, because they have all been new to the learners.

This ubiquitous presence of Gf variance is what makes it closely related to g. Gustafs-

son (1984) demonstrated that Gf and g are perfectly correlated, and Valentin Kvist and

Gustafsson (2008) showed that this perfect relation holds true only for homogeneous pop-

ulations in which the individuals have had reasonably similar opportunities to acquire

the knowledge and skills tested. Thus, Gf (and g) has a wider breadth of influence than

other factors of intelligence, but it does not necessarily exert a stronger influence on per-

formance on any single task (Coan, 1964; Gustafsson, 2002; Humphreys, 1962; Valentin

Kvist & Gustafsson, 2008).

Based on the investment theory, as well as on later extensions to this theory (see

Ackerman, 2000), we expect the influence of Gf and experience on skill, as well as job

performance, to be mediated through knowledge. That a mediating relationship exists

is supported by theories of skilled behavior and skill acquisition (Anderson, Conrad,

& Corbett, 1989; Neves & Anderson, 1981), in which knowledge is a key component.

For example, Anderson states that knowledge initially “comes in declarative form and

is used by weak methods to generate solutions [which] . . . form new productions . . . [and

a] key step is the knowledge compilation process, which produces the domain specific

skill” (Anderson, 1987, p. 197). Further, knowledge is also a central component of adult

intelligence (Ackerman, 2000) and can therefore be an important factor in the acquisition

of new knowledge and skills (Ackerman, 2007).

Constructs close to the apex of the hierarchical model can be described as having

high referent generality, and constructs that are highly specific to a limited situation

have low referent generality (see, e.g., Coan, 1964). For example, programming skill in

a single programming language can be regarded as a narrow construct with low referent

generality. It is well-suited for predicting the outcomes of an individual for a specific

programming language, but there may be limited transfer of knowledge and skills to, for

example, other kinds of programming languages. Therefore, when assessing constructs

with low referent generality, it is important also to assess constructs with high referent

generality (Gustafsson, 2002).

It is also possible to conceptualize criteria using a hierarchical model. Using Brunswik



1 Introduction 149

symmetry, Wittmann and Süß (1999) demonstrated how an aggregated performance mea-

sure was best predicted by an aggregated knowledge measure. Furthermore, they found

independent paths leading from intelligence and personality to knowledge, but not to

performance. Moreover, working memory was central in their investigation; this con-

struct was placed at the apex of their model with significant direct paths to intelligence,

knowledge, and performance.

Working memory is a construct that has a close relationship to Gf and g, and can

further be regarded as a construct with high referent generality. Although the relationship

is complex (Ackerman, Beier, & Boyle, 2002), several researchers have reported a large

degree of overlap between working memory and g (Ackerman et al., 2002; Colom, Rebollo,

Palacios, Juan-Espinosa, & Kyllonen, 2004; Unsworth, Heitz, Schrock, & Engle, 2005).

Furthermore, limitations of working memory, which are revealed in theories of skilled

behavior, are an important source of errors in skilled performance (Anderson, 1987).

Computer programming is sometimes described as one of several archetypes of complex

cognitive behavior; overall, programming requires the programmer to have a high level of

declarative knowledge, as well as much practice to perform well. Working memory has

previously been found to be a good predictor of programming skill acquisition (Shute,

1991), as has experience, at least to some extent (Arisholm & Sjøberg, 2004).

It has, however, been noted that performance on tasks that operate under skill con-

straints can be good predictors of other tasks. For example, for programming in the

LISP programming language, Anderson states that “the best predictor of individual sub-

ject di↵erences in errors on problems that involved one LISP concept was number of

errors on other problems that involved di↵erent concepts” (Anderson, 1987, p. 203). Fur-

ther, the amount of errors was correlated with the amount of programming experience

(see Anderson et al., 1989 for further details).

Skill as a latent construct is inferred from observed performance that varies in both

time and accuracy (or quality) (Anderson, 1987; Fitts & Posner, 1967). Together with

knowledge and motivation, skill is one of three direct antecedents of performance (Campbell,

McCloy, Oppler, & Sager, 1993). Skill is sometimes also referred to as procedural knowl-

edge, and its acquisition consists of three overlapping phases. During each phase, di↵er-

ent abilities (as antecedents) are hypothesized to exert di↵erent levels of influence on the

acquisition of skill (Ackerman, 1988): General mental ability is predominant during the

first cognitive phase, perceptual speed during the second associative phase, and psycho-

motor ability during the final and autonomous phase. Kyllonen and Woltz (1989) refer to

the first phase as the “knowledge acquisition phase”, while phases two and three are the

skill acquisition and skill refinement phases, respectively.

Related to the view of how di↵erent abilities may exert di↵erent levels of influence

during the skill acquisition phases is the concept of transfer (Ferguson, 1956). As practice

on specific tasks increases, relations with previously strong determinants may diminish in

favor of more task-specific factors due to limited opportunities for transfer. However, rela-

tions may also remain stable (after some decrease in correlation with initial performance)

or even increase (Ackerman, 1987). This would be somewhat dependent, however, on how

task performance is sampled together with what subject population is investigated. Never-

theless, research on the stability of predictions for high referent generality constructs are
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important, as they apply to a wide range of novel situations that may occur in a specific

job.

Much of the research on the prediction of job performance has relied on a construct

of general mental ability indexed by test batteries, which measure a mixture of Gf and

Gc (Valentin Kvist & Gustafsson, 2008). To distinguish this conception of general mental

ability from the apex factor g, we will refer to it as G. A comprehensive meta-analysis

by Schmidt and Hunter (1998) showed G to be a strong predictor of job performance,

but they also showed that the predictive validity of work sample tests exceeds that of

G. Also, in another meta-analysis (Schmidt, Hunter, & Outerbridge, 1986), the strongest

determinant of job sample performance was job knowledge (0.74), much higher than the

direct path from experience (0.08) or general mental ability (0.04). These results bear

a close resemblance to what would be expected from the investment theory, despite the

obvious conceptual and theoretical di↵erences between G and working memory as well as

job performance and skill.

Although research has been conducted on group di↵erences in the acquisition of pro-

gramming skill, individual di↵erences in already acquired skill have not been adequately

quantified. One reason for the lack of research on the quantification of skills is that the con-

struct validity of programming performance is currently unresolved (Hannay, Arisholm,

Engvik, & Sjøberg, 2010); indeed, the construct validity of work samples in general seems

unresolved (Campbell, 1990). Programming usually operates under a time-quality trade-

o↵, making any single score assigned to a solution an aggregate tradeo↵, where the relative

weight of the quality of the solutions becomes important with respect to the time used

to obtain that solution. In addition, to what degree observed programming performance

can be generalized to other tasks, systems, people or countries is uncertain.

This study investigates the relationship between programming skill and its main an-

tecedents, using Cattell’s investment theory (1971/1987) as a conceptual framework. We

predict that, in accordance with skilled behavior theory, investment theory, and previous

research on work samples, programming knowledge is the main causal antecedent of pro-

gramming skill. Further, programming knowledge is expected to mediate the relationship

between programming skill and the causal variables of working memory and experience.

2 Method

2.1 Participants

Sixty-five professional software developers were hired from nine companies located in

eight Central/Eastern European countries: Belarus, Czech Republic, Italy, Lithuania,

Moldova, Norway, Poland, and Russia. Each participant received their base salary for

participation, but they were not compensated beyond and above this. The overall cost of

hiring the developers was approximately EUR 50,000 including travel (EUR 10,000). All

companies and subjects were guaranteed anonymity, and subjects were free to terminate

participation at any time without loss of compensation. Although we requested voluntary

participation, this was di�cult to guarantee, as negotiations were conducted with company

project leaders, not the subjects themselves. All developers were required to be proficient
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in English and to have at least 6 months of consecutive programming experience in the

Java programming language prior to participating in the study.

The mean age of participants was 28 years (SD = 5.66, range = 21–53) with a mean

professional working experience of 5.3 years (SD = 4.94, range = 0.3–30). Of this group,

63.1% had a master’s degree, 33.8% a bachelor’s degree, and 3.1% a high-school degree;

10.8% were female.

2.2 Tests Administered

All materials and instructions were in English, which is today the de facto business lan-

guage of software developers working in the global IT industry. Some minor language

problems occurred during the study for a few of the subjects.

2.2.1 Java Programming Skill

As a proxy for a job sample test of programming performance, we used an instrument

for assessing programming skill (Bergersen, in preparation). The instrument contains 12

programming tasks (items) in the Java programming language, which has become one

of the most common programming languages during the last decade. All tasks required

either implementation or modification of programming code; the duration of each task

was between 10 and 50 minutes. Between 5 and 10 minutes was also allowed for reading

the task instructions before code was downloaded.

Performance on each task was scored as an aggregate of both the time required to

implement a correct solution and the quality of the solution, following principles delineated

in (Bergersen, Hannay, Sjøberg, Dyb̊a, & Karahasanović, 2011). Starting from incorrect

tasks (or tasks submitted too late), increasingly higher (ordinal) scores were assigned to

more correct solutions. Further, even higher scores were given to tasks of acceptable

quality (or correctness), but with less time used. This scoring procedure follows the

maxim recognized in the 1920s by Thorndike and others: “[S]peed measurements should

properly be taken only for correct responses if they . . . [are] to be studied in relation to

[ability]” (Carroll, 1993, p. 442).

The time versus quality tradeo↵ function of tasks cannot be calculated because of

the many di↵erent and noncomparable operationalizations of programming tasks in the

skill instrument. However, in general, a negative correlation is frequently observed in

empirical studies of programmers (Bergersen et al., 2011). The instrument consists of

both automatically and semi-automatically scored tasks, as some programming quality

aspects can only be evaluated by humans. The scoring scheme for these kinds of tasks

used objective criteria (such as, “is functionality x present for attribute y?” 0 = no,

1 = partially, 2 = yes). Some tasks were testlets, implying that multiple requirements

were to be solved in consecutive steps until time ran out.

For subject scaling, task scores were fitted to the polytomous Rasch model (Andrich,

1978). This is a generalization of the Rasch model (1960), where interval scale estimates

of person abilities can be obtained, provided certain conditions are met. In particular, the

ability investigated must be a quantifiable variable (Michell, 1997)—an assumption that

is tested only indirectly by the Rasch model.



152 Paper III: Programming skill, knowledge, and working memory

2.2.2 Programming Knowledge

A 30-item multiple choice knowledge test of Java programming was purchased from a large

international (anonymous) test vendor. Items were selected from a large pool of existing

items currently used for assessing software professionals globally. All items were specifi-

cally selected to cover the same content present in the programming skill instrument so

that both skill and knowledge operate on the same level of generality. The knowledge test

imposes a 3-minute time limit per item, but is not speeded. The test takes approximately

1 hour to complete and is scored according to the number of correct items within each

item’s time limit.

2.2.3 Working Memory

Three 20-minute tests of working memory (Operation Span, Symmetry Span, and Reading

Span) were acquired from Unsworth et al. (2005). Each test requires the memorization

of letters or locations while simultaneously having to solve simple math problems, deter-

mining whether a figure is symmetrical, or determining whether an English sentence is

correctly formulated. For the distracting task, subjects were informed that accuracy must

be kept over 85% to limit memorization of letters or locations. However, for Reading

Span, we informed each subject that accuracy below 85% would be acceptable as none of

the subjects were native English speakers. Each test was scored according to the number

of perfectly recalled sets.

2.3 Procedure

The programming skill test was administered at each company’s o�ce location during two

full work days (16 hours). The first author was present during the study to answer ques-

tions, but the test was administered online through a specially built experiment support

environment (Arisholm, Sjøberg, Carelius, & Lindsjørn, 2002). Subjects were free to use

whatever software development tools they normally used in their job. All subjects were

given instructions and a practice task before the instrument was administered. All pro-

gramming tasks were administered in random order, and the subjects were only allowed

to take breaks between tasks. The working memory tests were, furthermore, administered

during these individual breaks. The working memory tests were, however, not available

for the first four companies visited, implying fewer subjects (n = 29) for these tests. The

knowledge test was administered online, 1 to 4 months after the programming skill test,

on a subsample of the subjects (92.3%, n = 60). Missing developers in this subsample

had either changed employer, did not want to participate, or were currently involved in

other projects.

2.4 Statistical Analysis and the Model Tested

The hypothesized causal relationship between the variables investigated is as follows:

Working memory and experience are hypothesized to a↵ect programming knowledge di-
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rectly. Furthermore, direct paths from working memory and experience to skill should

not be present as the causal e↵ect of these two constructs should be mediated through

knowledge. Finally, programming knowledge a↵ects programming skill.

In the model, programming skill was represented as a latent variable with a single

indicator, following the procedure described by Jöreskog and Sörbom (as cited in Mathieu,

Tannenbaum, & Salas, 1992, p. 837):

[T]he path from a latent variable to its corresponding observed variable (lambda)

is equal to the square root of the reliability of the observed score. In addition,

the associated amount of random error variance (theta) is equal to one minus

the reliability of the observed score times the variance of the observed score.

We used person separation index (PSI) as a reliability estimate (see e.g., Streiner,

1995), because PSI can be calculated with missing data. However, results are virtually

identical to those obtained when using Cronbach’s ↵.

Programming knowledge was represented as a latent variable by two indicators with

equal loadings and variances. The 30 items were divided randomly into two parcels, each

with the same average di�culty (items were delivered by the test provider in increasing

order of di�culty based on data from their existing item bank). Working memory was

represented by the three working memory tests, and neither factor loadings nor error

variances were constrained.

Programming experience consists of two indicators. The first indicator, mJava, is the

total number of months the individual has programmed in Java, both during training (if

applicable) and professionally. The second indicator is the subject’s estimate of how many

lines of code (LOC) that person has written in the Java programming language in total

(during training and professional career). This variable is right skewed (skew = 2.70),

something which poses a statistical problem in the analysis. However, lnLOC approxi-

mates a normal distribution after log transformation (skew = �0.06).

The model reported was estimated with Amos 16.0, using maximum likelihood esti-

mation for missing data which is implemented in this program. The raw and transformed

correlation matrix for the variables investigated is shown in Table 1.

3 Results

3.1 Descriptive Statistics and Reliability Estimates

Descriptive results are shown in Table 2. The Java skill instrument was su�ciently reliable

to assess individual di↵erences (PSI = 0.86 and ↵ = 0.85). As mentioned, results on the

working memory test were available only for approximately half the subjects, while for

the other variables few data are missing.

The programming skill instrument is unidimensional according to the dependent sam-

ple t-test for unidimensionality (Smith, 2002), a procedure also implemented in the soft-

ware used to carry out the Rasch analysis, RUMM2020 (Andrich, Sheridan, & Luo, 2006).
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Table 2: Descriptives of all variables used
Variable Score N Min Max Mean SD 1KS 
Programming skill in logits* 65 –4.12 1.58 –0.83 1.30 0.489 
Programming knowledge NC 60 7 29 21.72 4.80 0.013 
Working memory        
   Symmetry span  NR 28 10 42 25.11 8.36 0.979 
   Operation span NR 29 21 75 52.14 15.33 0.945 
   Reading span NR 28 25 75 54.25 14.48 0.750 
Experience        
   Total lines of code written  ln(LOC) 64 6.21 13.82 10.46 1.76 0.806 
   Total programming experience months 65 2 130 39.98 25.21 0.627 
Notes. * 0 logits is defined in the Rasch model as the mean difficulty of items. NC = number of 
correct responses, NR = number of perfectly recalled sets.  
�
�
�The programming knowledge test had acceptable reliability (↵ = 0.81), but was not uni-

dimensional. We did not calculate reliability of the working memory tests; these have pre-

viously been reported to have acceptable levels of reliability (Unsworth et al., 2005). Also,

although ceiling e↵ects were present for all the working memory tests, the mean and SD

of our population was comparable to results reported elsewhere (Unsworth, Redick, Heitz,

Broadway, & Engle, 2009). All variables used in the analysis except programming knowl-

edge can be regarded as normally distributed by the one-sample Kolmogorov-Smirnov

Test (1KS).

3.2 The Investigated Model According to the Investment

Theory

The model investigated and shown in Figure 1 had a close model fit (�2[19] = 15.2, ns,

RMSEA = 0.000, LO90 = 0.000, HI90 = 0.084). Because of the wide confidence interval

for RMSEA, the statistical power to reject a poor-fitting model is relatively low. However,

the confidence interval was almost entirely within the range that indicates a well-fitting

model (RMSEA < 0.08). We also tested adding direct paths from working memory and

experience to skill, something that should not be present according to investment theory.

The loadings were �0.02, ns and �0.06, ns, respectively, with a slightly reduced model

fit (�2[17] = 15.0, ns, RMSEA = 0.000, LO90 = 0.000, HI90 = 0.100).

The high latent correlation between skill and knowledge merits further considera-

tions as to whether in the current study these two constructs di↵er only in method vari-

ance. In a posthoc analysis, we first tried to combine knowledge and skill data as a

unidimensional measure. However, this operationalization displayed clear signs of misfit

as well as departure from unidimensionality. We therefore attempted to model knowledge

separately by using Rasch analysis again. By dropping three items that contributed nega-

tively to model fit as well as unidimensionality, we obtained a reasonably well-fitting, uni-

dimensional, and internally consistent (↵ = 0.81) representation of programming knowl-

edge that was normally distributed. Nevertheless, the overall results were highly similar

to those already reported.
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Figure 1: Results for the investigated model.

One explanation for the high latent correlation between these two constructs therefore

probably lies elsewhere. For theoretical reasons alone, we would expect knowledge and skill

to be close to unity for individuals who currently are in the first phase of skill acquisition

(i.e., currently acquiring knowledge). However, this relationship should begin to diverge

in the second and third phase of skill acquisition. In the programming skill instrument,

the programming tasks can be regarded as consistent, something that makes automatic

processing (see Ackerman, 1988) possible. However, developers who do not have su�cient

programming experience would be forced to use controlled processing, which would lower

their estimated level of programming skill, as the controlled processing would be much

slower and prone to errors. Conversely, the score on the knowledge test would not benefit

from automatic processing as items were presented with leisure time limit.

There are also other important di↵erences between these two tests. For the knowledge

test, guessing is possible, and the test requires only the identification of the correct re-

sponse among a set of alternatives. In contrast, the skill test has severe time limits and

requires maximal performance over extended periods of time. This performance is further

constrained by limitations in perceptual and psychomotor speed. Moreover, subjects use

their normal tools and programming environment and benefit from knowing these well in

the skill instrument. Finally, many of the tasks in the skill instrument are too compre-

hensive to comprehend in whole; instead subjects must use their experience to quickly

identify areas where modifications should be implemented, using a suitable strategy for

this.
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4 Discussion

The good fit of our data to the investigated model supports Cattell’s investment theory:

The e↵ect of working memory capacity and experience on programming skill is mediated

by programming knowledge, which in turn accounts for a large degree of variance in

programming skill. Furthermore, as elaborated in theories of skill acquisition (Ackerman,

2000; Anderson, 1987; Fitts & Posner, 1967), there are good theoretical reasons why skill

is mediated by knowledge; i.e., knowing what to do is prior to improved performance. We

now turn to how the findings can be interpreted in more specific terms.

Our results show several similarities to the study by Wittmann and Süß (1999), who

also addressed the investment theory. In both studies, working memory was placed at

the apex, whereas knowledge was best placed as a mediator variable between higher-order

constructs and performance. There are, however, several noticeable di↵erences in results.

First, their knowledge construct, which operated at a higher level of generality, had a

weaker path (0.54) to performance compared to our results. Further, they reported weaker

paths from working memory to knowledge (0.24), and working memory furthermore had

a direct path to performance as well (0.27). We believe the latter might be attributed to

their studying students on novel tasks where su�cient time may not have been available

to develop a high level of skill. Alternatively, results may be di↵erent when studying skills

that take years to evolve compared to systems where the last stage of skill acquisition is

reached within a short duration (their study lasted 3 days).

Our research also reveals at least three important similarities with the meta-analysis

by Schmidt et al. (1986), bearing in mind that Schmidt et al. reported on di↵erent types of

jobs as well as di↵erent job-related constructs. First, knowledge was found in both studies

to be the most important antecedent of skill/job sample performance. Second, the direct

e↵ect on skill/job sample performance from working memory/G and experience was small

in Schmidt et al. and insignificant and close to zero in our study. Finally, Schmidt et al.

reported a path between G and job knowledge of 0.65 for civilian data when excluding

experience, while the path from working memory to knowledge in our study is 0.77 when

experience is excluded.

The most obvious di↵erence between our results and those of Schmidt et al. (1986),

is the high correlation we observed between working memory and experience; G and

experience were not correlated in their study. However, when we inspect Table 1, we see

that lnLOC is clearly the variable responsible for this positive latent correlation. One

reason for this may be that programmers with a low working memory capacity may not

continue to program over many years, due to the continuous learning required to stay

updated on the programming language they use for development.

Further, in the Schmidt et al. (1986) meta-analysis, the impact on knowledge from

experience was 0.57, which is somewhat larger than for G (0.46). In our study, working

memory explained most of the variance, although a lot of this variance was shared with

experience. However, the path from experience to knowledge increased to 0.54 when we

omitted working memory, indicating a similar result.

One possible reason for these di↵erences is that Schmidt et al. (1986) used the number

of months on the present job for the experience variable, while we used both the number



158 Paper III: Programming skill, knowledge, and working memory

of months programming in Java (irrespective of job changes) and number of lines of code

previously written in Java. As programming should be seen as a high-complexity job,

it would be expected that the e↵ect of experience on knowledge would be less than for

low-complexity jobs (McDaniel, Schmidt, & Hunter, 1988). The reason for this is that

initial experience with programming is often obtained through the educational system

rather than on the job (in our subject sample, 96.9% had a bachelor’s degree or higher).

Other questions remain. We do not know how well the instrument predicts program-

ming performance “on the job”. Also, we do not know if skill inferred from programming

performance and attested by a unidimensional instrument can partially resolve the poorly

understood construct validity of work samples (see Campbell, 1990). However, this study

does meet Campbell, Gasser, and Oswald’s criticism (1996) that using ratings of overall

job performance as the dependent variable in SEM models is inadequate; we used instead

a unidimensional measure of programming skill. Further, we acknowledge that working

memory as a construct with high referent generality is used as a proxy for g/Gf measures,

which, ideally, should both have been included in the study as well. Moreover, the use of

SEM to investigate purportedly causal relations (such as those expressed in Cattell’s in-

vestment theory) does not provide a test of causality per se. Instead, the path coe�cients

express the strength of between-construct relations under the assumption that the causal

model is true. More advanced research designs that are longitudinal or experimental are

required in the future to directly test whether these causal relationships hold true or not.

The main limitation of this study is low statistical power, in particular the number

of observations for working memory. Because of the low power, the confidence intervals

for RMSEA were wide. Additionally, the standard errors associated with correlations and

loadings for working memory as well as the path from working memory to knowledge were

large. Calculating Bayesian posterior distribution estimates in AMOS, our model seldom

converged according to conventional criteria (Gelman, Carlin, Stern, & Rubin, 2004).

Although the path coe�cients from knowledge to skill were acceptable, the standard errors

for loadings and path coe�cient for working memory were not. Therefore, the loadings

for working memory as well as influence on knowledge should be regarded as preliminary

and interpreted with caution. Another concern was the wide age range of subjects with

respect to working memory. However, there were only insubstantial di↵erences when older

developers were removed from the sample.

Another possible concern was the parceling procedure used for the knowledge test.

We also investigated other approaches to representing knowledge, but found only insub-

stantial di↵erences for regression weights. However, RMSEA estimates were somewhat

more a↵ected—both for better and for worse—by di↵erent combinations of items in each

parcel, but well within the reported 90% confidence limits.

Clearly, there are several loose ends requiring further work. In addition to including

more subjects, we want to include a purer g measure, such as Ravens. Further, to better

test the investment theory, we should also require Gc measures that are applicable for

use in heterogeneous samples of nonnative English-speaking software professionals from

multiple countries. We initially attempted to represent Gc by self-reported grades for

middle school, high school, and postgraduate studies. However, these results were in-
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conclusive as correlations with programming skill were near zero and insignificant, and

further detrimental to model fit.

We should additionally require measures of motivation and personality. However, for

the latter, we have so far met with limited success when using personality to predict

programming performance in studies carried out at Simula Research Laboratory (see,

e.g., Hannay et al., 2010). Nevertheless, if personality is viewed from the perspective of

Brunswik symmetry as a construct of high referent generality (Wittmann & Süß, 1999),

we would most likely benefit from obtaining higher referent generality measures of “job

performance” as well. One such representation could be peer or supervisor ratings of

performance, which may yield interesting results when inspected together with the tests

already employed in this study.

Our overall results support Cattell’s investment theory. The results are also similar to

those reported by others, albeit with some di↵erences in operationalizations. Although the

statistical power of this study is low, the results show reasonably close fit to an investment

theory model framed within a high-realism setting of software developers from multiple

countries.
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Abstract

Background : It is trivial that the usefulness of a technology depends on the skill of the

user. Several studies have reported an interaction between skill levels and di↵erent tech-

nologies, but the e↵ect of skill is, for the most part, ignored in empirical, human-centric

studies in software engineering. Aim: This paper investigates the usefulness of a technol-

ogy as a function of skill. Method : An experiment that used students as subjects found

recursive implementations to be easier to debug correctly than iterative implementations.

We replicated the experiment by hiring 65 professional developers from nine companies in

eight countries. In addition to the debugging tasks, performance on 17 other programming

tasks was collected and analyzed using a measurement model that expressed the e↵ect

of treatment as a function of skill. Results : The hypotheses of the original study were

confirmed only for the low-skilled subjects in our replication. Conversely, the high-skilled

subjects correctly debugged the iterative implementations faster than the recursive ones,

while the di↵erence between correct and incorrect solutions for both treatments was neg-

ligible. We also found that the e↵ect of skill (odds ratio = 9.4) was much larger than the

e↵ect of the treatment (odds ratio = 1.5). Conclusions : Claiming that a technology is

better than another is problematic without taking skill levels into account. Better ways

to assess skills as an integral part of technology evaluation are required.

Keywords: programming skill, pretest, experimental control, debugging, performance,

replication.
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1 Introduction

When studying the e↵ects of software processes, products, or resources, a researcher is

often forced to keep constant or control for factors that may influence the outcome of

the experiment. Because previous studies have shown large variability in programming

performance, it is important to control for this. However, it is not a simple task to control

for programming skill (Basili, Shull, & Lanubile, 1999; Brooks, 1980; Kampenes, Dyb̊a,

Hannay, & Sjøberg, 2009; Sjøberg et al., 2002), which is one of several factors that a↵ect

programming performance (Bergersen & Gustafsson, 2011; Bergersen, Hannay, Sjøberg,

Dyb̊a, & Karahasanović, 2011).

Individual di↵erences may also moderate the claimed benefit of di↵erent technologies.

In a one-day experiment on professionals maintaining two di↵erent implementations of

the same system, seniority had an e↵ect on which system was better: The system that

used a “poor” object-oriented design was better for juniors, whereas the system that used

a “good” design was better for seniors (Arisholm & Sjøberg, 2004). The e↵ect of pair

programming on the same system was also investigated in (Arisholm, Gallis, Dyb̊a, &

Sjøberg, 2007); overall, the juniors benefitted from working in pairs whereas the seniors

did not. Such results are clearly problematic if one aims to generalize from the study

population to a target population specified only as “software developers”.

When an independent variable, such as skill or seniority, is correlated with the de-

pendent (outcome) variable of a study, it is relevant to address this variable in relation

to the experimental results (Shadish, Cook, & Campbell, 2002). Improved control can

be achieved during experiment design (e.g., through blocking or matching) or in analysis

(e.g., as a covariate). In both instances, the statistical power increases (Maxwell, 1993).

Another way to increase statistical power in studies is to reduce subject variabil-

ity (Shadish et al., 2002). However, the individual di↵erences of developers are, perhaps,

some of the largest factors that contribute to the success or failure of software development

in general (Brooks, 1995; Glass, 2001). Several studies report an “individual-di↵erences”

factor (e.g., due to di↵erences in skill) that is highly variable across individuals (Brooks,

Daly, Miller, Roper, & Wood, 1996), teams (Prechelt, 2011), companies (Anda, Sjøberg,

& Mockus, 2009), and universities (Krein, Knutson, Prechelt, & Juristo, 2012), thereby

complicating analysis and adding uncertainty to the results. Meta-analysis has also con-

firmed that individual variability in programming is large, even though it may appear

less than the 1:28 di↵erences reported in the early days of software engineering (Prechelt,

1999). Nevertheless, large variability in skill levels implies that one should be meticulous

when defining the sample population as well as the target population in empirical studies

in software engineering.

An indicator of programming skill that is easy to collect is months of experience or lines

of code written by the subjects. Large meta-analyses have indicated that biographical

measures, such as experience, generally have low predictive validity in studies on job

performance (Schmidt & Hunter, 1998). At the same time, work sample tests that involve

actual (job) tasks have the highest degree of validity.

Using one set of tasks to predict performance on another set of tasks is not new:

Anderson studied the acquisition of skills in LISP programming and found that “the best
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predictor of individual di↵erences in errors on problems that involved one LISP concept

was number of errors on other problems that involved di↵erent concepts” (1987, p. 203).

Therefore, pretests appear to be better measures of skill than biographical variables, even

though they require a lot more instrumentation.

Calls for better pretests for programmers can be traced back to at least 1980 (Brooks,

1980). Yet, in a 2009 literature review on quasi experiments in software engineering,

only 42% of the reported 113 studies applied controls to account for potential selection

bias (Kampenes et al., 2009). Among the studies that applied controls, only three exper-

iments involved actual pretest tasks. (The remaining studies used covariates such as lines

of code, exam scores, or years of experience.) The authors therefore restated previous

calls (see Basili et al., 1999; Brooks, 1980) for initiatives where the interaction between

di↵erent types of technologies and software developer capabilities could be investigated.

This paper reports a replication of a debugging study where a measure of program-

ming skill is available using a pretest. Unlike (Arisholm et al., 2007; Arisholm & Sjøberg,

2004), where a small pretest and a comprehensive experiment were used, we conducted

a comprehensive pretest and a small replication. Our overall research question is: what

are the moderating e↵ects of skill levels on the purported benefit of di↵erent technologies

or methods? In this study, we investigated whether the usefulness of recursive imple-

mentations in debugging is invariant of skill level. Further, we also aimed to assess the

individual variability in skill, which is potentially a confounding factor, with respect to

di↵erent implementations of two small debugging tasks.

To do so, we analyzed the e↵ect of using di↵erent debugging implementations in a

specific measurement model (the Rasch model) where the e↵ect of treatment is expressed

as a function of skill. Moreover, we use professional software developers, thereby address-

ing the common criticism that researchers habitually use students in experiments (see,

e.g., Basili et al., 1999; Brooks, 1980; Sjøberg et al., 2002). Although debugging studies

and replications are interesting in their own right, the focus here is on methodical issues:

Specifically, we investigate the e↵ect of skill levels on the generalizability of the main

conclusions of two earlier studies.

Section 2 describes method and materials. Section 3 reports results and Section 4 ana-

lyzes these results using programming skill as a covariate. Section 5 discusses implications,

limitations, and suggestions for further work. Section 6 concludes the study.

2 Methods and Materials

Section 2.1 describes the material, experimental procedure and results of the original

study. Section 2.2 describes the material and experimental procedure of our replication.

Section 2.3 introduces the Rasch measurement model, which is used in the analysis in

Section 4.

2.1 The Original Study

The original study involved 266 students who took a course on data structures (Benander,

Benander, & Sang, 2000). The students were presented with two C implementation tasks:
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(1) a small (< 25 lines of code) search program for a linked list (“Find” task) and (2) a

linked list that was to be copied (“Copy”task). Each task had either a recursive or iterative

implementation (the treatment of the study). Both tasks contained a bug that had to

be correctly identified and corrected. The study found that significantly more subjects

identified the bug for the recursive versions than they did for the iterative version. A

similar result was also found for one of the tasks in an earlier comprehension study using

PASCAL (Benander, Benander, & Pu, 1996). Regarding correcting the bug, recursion

also gave significantly better results with respect to the proportion of correct solutions

for the Copy task (p = 0.019). However, the results for the Find task were in weak

(non-significant) favor of iteration. When the results of the two tasks were combined, the

recursive versions had 4.1% more correct solutions overall, a result that was not significant

(p = 0.311). For the time required to correctly debug the tasks, the original study was

not significantly in favor of any of the treatments.

The original study used a randomized within-subject (repeated measures) crossover

design. Both treatments were presented to all subjects. Either one of them used the

iterative treatment first and the recursive treatment second or vice versa. However, the

Find task was always presented before the Copy task. Therefore, it is unknown to what

extent an ordering e↵ect is present (see generally Shadish et al., 2002), for example,

whether iterative Find and then recursive Copy is an easier order to solve the tasks than

recursive Find and then iterative Copy. The tasks were debugged manually using “hand

tracing”.

2.2 This Replication

Our replication is part of an ongoing work for constructing an instrument for assessing

programming skill. We conducted a study with sixty-five professional software developers

who were hired from nine companies for approximately e40,000. The companies were

located in eight di↵erent Central or Eastern-European countries. All the subjects were

required to have at least six months of recent programming experience in Java. The

subjects used the same development tools that they normally used in their jobs. The

programming tasks, which included code and descriptions, were downloaded from an

experiment support environment (Arisholm, Sjøberg, Carelius, & Lindsjørn, 2002) that

was responsible for tracking the time spent on implementing each solution. Neither the

developers nor their respective companies were given individual results.

The study lasted two days and consisted of 17 Java programming tasks in total. A

subset of 12 of these tasks had previously been found to adequately represent a program-

ming skill as a single measure that is normally distributed and su�ciently reliable to

characterize individual di↵erences (Bergersen & Gustafsson, 2011). Further, this measure

was also significantly positively correlated with programming experience, a commercially

available test of programming knowledge, and several tests of working memory, which is

an important psychological variable in relation to skill (see Shute, 1991; Woltz, 1988). The

overall results accorded with a previous meta-analysis on job performance (see Schmidt

& Hunter, 1998) and Cattell’s investment theory, which describes how the development

of skills in general is mediated by the acquisition of knowledge (Cattell, 1971/1987).
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Table 1: The design of the replicated study�
Find Copy  

Recursive Iterative Recursive Iterative n 

X   X 22 
 X X  21 

X  X  9 
 X  X 12 

Note. Which of the two tasks were presented first was randomized  

�
�
�

�
�
�

In this replication, the subjects received the two debugging tasks described above in

addition to the 17 Java programming tasks. Allocation to treatment version (recursive or

iterative) for both tasks was random. One subject was removed because the subject was

an extremely low outlier regarding skill.

This resulted in 64 pairs of Find and Copy tasks in a crossover design, as shown

in Table 1. To reduce the risk of an ordering e↵ect (see, e.g., Shadish et al., 2002), we

improved the design of the original study by randomizing on task order (Find versus Copy

first) and including the recursive-recursive and iterative-iterative designs. Further, all the

19 tasks were allocated to the subjects in random order on a subject-by-subject basis.

The subjects were given 10 minutes to solve each debugging task. They were also

allowed three additional minutes to upload the solution. Up to five minutes were allowed

for reading the task description prior to downloading the code task. It was explicitly

explained to the subjects that the time they spent reading task descriptions was not in-

cluded in the time recorded for solving the tasks. Tasks that were submitted too late (i.e.,

more than 13 minutes in total) were scored as incorrect. This procedure was explained

to the subjects prior to the start of the study. Time was only analyzed and reported for

correct solutions.

In our replication, we focus only on di↵erences for whether a bug was corrected or not.

Our study design and available resources did not enable us to identify whether a bug was

correctly identified (see Section 2.1) and then incorrectly corrected. The time to correctly

debug a task in our study was not comparable to the original study because of di↵erences

in how the tasks were presented to the subjects.

We used R (R Development Core Team, 2008) for statistical analysis. Unless other-

wise noted, Fisher’s exact test was used to test di↵erences in correctness, Welch’s t-test

for di↵erences in time, and Spearman’s rho to report (non-parametric) correlations. A

common feature of all these statistics is that they do not make strong assumptions about

the distribution of the data. We use Fisher’s test, which can report exact probabilities,

in the presence of few observations rather than the Chi-squared di↵erences test that cal-

culates approximate p-values. Welch’s t-test is similar to the Student’s t-test, but it does

not assume that the compared variables have equal variance.

We use two-tailed tests for di↵erences when reporting p-values. For standardized e↵ect

sizes, we use Cohen’s d and follow the behavioral science conventions in (Cohen, 1992)

when reporting the magnitude of an e↵ect (see Kampenes, Dyb̊a, Hannay, & Sjøberg, 2007

for software engineering conventions). We use (Chinn, 2000) for e↵ect size conversions
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from odds ratio (OR) to d and report arithmetic means.

2.3 The Rasch Measurement Model

A measurement model explicates how measurement is conceptualized. Within psychologi-

cal testing, the choice of measurement model establishes how abilities, such as intelligence

or skills, are related to a person’s responses on items (Nunnally & Bernstein, 1994). An

item is a generic term for any question, essay, task, or other formulated problem presented

to an individual to elicit a response. The choice of measurement model dictates how pat-

terns in responses to items should and should not appear. Failure to detect expected

patterns and the presence of unwanted patterns may invalidate a researcher’s claims to

what is measured by a psychological test (Andrich, 1988).

The original Rasch model (1960) was published in 1960 and conceptualizes measure-

ment of abilities according to a probabilistic framework. The model has similarities to

conditional logistic regression and is sometimes referred to as a one-parameter Item Re-

sponse Theory (IRT) model (see e.g., Nunnally & Bernstein, 1994; Ostini & Nering, 2006).

The use of IRT models has increased in last half century. Nowadays, IRT models are

central to large, multi-national testing frameworks, such as the PISA test (Bond & Fox,

2001), which is used to measure educational achievement of students across approximately

40 OECD countries.

The Rasch model belongs to a class of models that assumes unidimensionality, that

is, the investigated ability can be represented by a single numerical value (Andrich,

1988; Nunnally & Bernstein, 1994). Central to the Rasch model is the invariant es-

timation of abilities and item di�culties (Andrich, 1988). This is consistent with the

general test-theory requirements set forth by pioneers in psychology nearly a century ago

(see Thurstone, 1928).

The original Rasch model only permits two score categories when a person solves a

task: incorrect = 0 or correct = 1. Therefore, it is called the dichotomous Rasch model.

In this model, the probability of a person with skill � to correctly answer a task with

di�culty � can be expressed as

Pr =
e

���

1 + e

���

. (1)

The parameters � and � are represented in log odds (i.e., logits). When � equals �,

the probability for a correct response is 0.50. The relative distance between skill and task

di�culty follows a logistic (sigmoid) function that is S-shaped.

A generalization of the dichotomous Rasch model, derived by Andrich (1978), allows

the use of more than two score categories. It is therefore called the polytomous Rasch

model. Although this model is more complex to express mathematically than the dichoto-

mous model shown above (1), the general principles are the same for both models.

Even though the Rasch model uses discrete score categories, continuous variables such

as time have previously been adapted to the scoring structure of the polytomous Rasch

model. In (Bergersen, 2011; Bergersen et al., 2011), we explicated the requirements for

including programming tasks that vary in both time and quality dimensions simultane-
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ously in the polytomous Rasch model. We now use the same model to express the e↵ect

of recursive versus iterative treatments for the two debugging tasks conditional on skill.

The Rasch analysis was conducted using the Rumm2020 software package (Andrich,

Sheridan, & Luo, 2006). A di↵erence of x logits has uniform implications over the whole

scale and is equal to an OR of ex.

3 Results

Table 2 shows the proportion of correct solutions in the original study and the replicated

one. There are three clear di↵erences. First, the professionals in the replicated study

clearly have a larger proportion of correct solutions than the students of the original

study when comparing the mean of both tasks combined for the two studies (OR = 7.6,

d = 1.12, p < 0.001).

Second, the probability of a correct solution for the Find task was higher in both

studies (i.e., it is an easier task). For our replication, the di↵erence in mean correctness

between Find and Copy is large as well (OR = 4.5, d = 0.83, p = 0.001).

Third, our prediction that recursion would have a larger proportion of correct re-

sponses was disproved on a task-by-task basis compared with the original study. Our

study supports the conclusion of the original study only for the recursive Find task: we

found a larger proportion of correct solutions (OR = 6.5, d = 1.03, p = 0.106) with a

95% confidence interval (95CI) for the OR that ranges from 0.72 to 316. However, for

the Copy task, the result was in favor of iteration because the odds ratio is less than

1 (OR = 0.94, 95CI = [0.30, 3.0], d = �0.03, p = 1.0).

In the original study, the mean time required to fix the debugging problem correctly

yielded mixed and not significant results that were slightly in favor of recursion. (Mean

time was in favor of recursion for the Find task and in favor of iteration for the Copy task.)

In this replication, the mean time, which were measured in minutes, were not in favor of

any of the treatments (recursive Find = 5.48, SD = 2.48; iterative Find = 5.65, SD = 2.82;

recursive Copy = 6.30, SD = 2.58; iterative Copy = 5.95, SD = 2.68). However, the mean

does not adequately represent the central tendency of the data in the presence of outliers

or when the distribution is skewed.

Figure 1 shows boxplots of the time for correct solutions. As indicated by the whiskers,

Table 2: Proportion of correct solutions for both studies�
Task Treatment Original study (n) Original study (n) 

Find Recursive 34.1% (132) 96.1% (31) 
Find Iterative 38.1% (134) 81.8% (33) 
Copy Recursive 29.9% (134) 63.3% (30) 
Copy Iterative 17.6% (131) 64.7% (34) 

Mean of Find Both 36.1% (266) 89.1% (64) 
Mean of Copy Both 23.8% (265) 64.0% (64) 
Mean of both tasks Both 30.0% (531) 76.6% (128) 
�
�
�

�
�
�
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Figure 1: Distribution of time for correct solutions in the replication.

the spread of the data is somewhat wider for both iterative treatments. Further, the

median is much closer to the first quartile than the third quartile, which indicates a

positively skewed distribution. The original study only reported mean di↵erences for time

without referring to the distribution, standard deviation or median values; it is therefore

unclear whether the mean is a good representation of the central tendency of their data

or not.

Within-subject designs permit pair-wise comparisons that may limit the confounding

e↵ect of individual variability (Shadish et al., 2002). In our replication, the recursive-

recursive and iterative-iterative designs (Table 1) cannot be used in such an analysis,

because the same treatment is used for both tasks. Nevertheless, two-thirds of our subjects

(n = 43) were given both treatments using a randomized crossover design. There are two

relevant outcomes to analyze: those who had a correct recursive and incorrect iterative

solution (i.e., in favor of recursion) and vice versa (i.e., in favor of iteration). Eleven

subjects displayed results in favor of recursion and six subjects in favor of iteration. (A

total of 26 subjects performed identically across treatments and are thus excluded from

this analysis.) A null hypothesis of “equal probability in favor of either treatment” (i.e., in

favor of recursion = in favor of iteration = 0.5) can then be tested against the alternative

hypothesis of a higher probability in favor of recursion, using a binomial test. However,

11 successes in favor of recursion over 17 trials (11+6) give a p-value of only 0.167. Hence,

the null hypothesis could not be falsified. Only weak support in favor of recursion was

therefore present.

We have previously shown that the proportion of correct responses is higher for Find

than for Copy (Table 2). It is therefore interesting that 15 of the same 17 individuals who
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were in favor of one of the treatments were also in favor of the same treatment that they

received for the (easiest) Find task. A null hypothesis of “no di↵erences between tasks”

using a binominal distribution could be falsified (p = 0.001). Hence, there is support for

that the e↵ect of di↵erences in the di�culty between tasks appears larger than the e↵ect

of treatment across both tasks in an analysis using pair-wise comparisons.

In summary, only for the Find task, our replication supported the overall finding of

the original study that recursion is associated with a larger proportion of correct answers.

This result is contrary to the findings of the original authors who only found a significant

di↵erence in favor of recursion for the Copy task.

4 Results Using Rasch Model Analysis

This section expands upon the previous section by including results for skill di↵erences

(Section 2.2). Section 4.1 gives justification as to why the measures of skill should be

included in the analysis. Section 4.2 addresses to what extent random assignment to

treatment was successful in our replication. Finally, while Sections 4.1 and 4.2 treat skill

estimates as a “black box”, Section 4.3 shows how the preference for iterative or recursive

debugging tasks changes when the results (Section 3) are reanalyzed as a function of skill.

4.1 Justification for Using Skill in the Analysis

In order to include a covariate such as skill in an analysis, the covariate must be correlated

with the outcome of the experiment (Shadish et al., 2002). Table 3 shows the correlations

between skill and the dual experiment outcomes of correctness and time to correctly debug

the two tasks irrespective of treatment. All four correlations were large and significant

with p-values below 0.003.

Correlations alone do not illustrate to what extent di↵erences in skill accounts for

practical di↵erences in debugging performance on the two tasks. We therefore split the

study population into two groups: The more skilled (variable MoreSkill) and the less

skilled (variable LessSkill) groups consist of individuals with skill above and below the

mean respectively. For the proportion of correct solutions for the Find task irrespective of

treatment, MoreSkill had all tasks correct (100%), whereas LessSkill had 75.8% correct

(OR cannot be computed, 95CI = [2.0,1], p = 0.003). For the Copy task,MoreSkill had a

higher mean proportion of correct answers as well (85.7% correct, LessSkill : 37.9% correct,

OR = 9.4, 95CI = [2.6, 41], d = 1.24, p < 0.001).

For the time to correctly debug the tasks irrespective of treatment, LessSkill spent

73.1% more time thanMoreSkill on correctly solving the Find task, t(40) = 5.05, p < 0.001,

Table 3: Dependent variable correlations with skill in the replication�
Task Correctnessa (N) Time (N) 

Find 0.51 (64) –0.56 (57) 
Copy 0.55 (64) –0.44 (41) 
Note. a Point-biserial correlation�

�
�
�

�
�
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d = 1.38. Further, this group also spent 36.8% more time on correctly solving the Copy

task, t(21) = 2.32, p = 0.030, d = 0.80, than MoreSkill. For Find, the mean time for

LessSkill was 7.21 minutes (SD = 2.59, n = 25) and 4.16 minutes (SD = 1.75, n = 32) for

MoreSkill. For Copy, the mean time for LessSkill was 7.49 minutes (SD = 2.69, n = 13)

whereas MoreSkill used 5.47 minutes (SD = 2.36, n = 28). Moreover, when the results

for Find and Copy were combined, MoreSkill was faster in correctly debugging as well

(p < 0.001).

Hence, we can regard measures of skill as a relevant predictor of the debugging per-

formance in the replication that may be used in the further analysis.

4.2 Random Assignment in the Replication

An implicit assumption in randomized designs is that randomization limits systematic

e↵ects of unequal groups with respect to factors that can significantly influence the experi-

ment outcome (Shadish et al., 2002; Kampenes et al., 2009). Although this holds true for

large samples, when sample size is small it may pose a serious threat to the validity of

inferences.

The subjects who were assigned to the recursive Find task had slightly higher mean

skills than those who were assigned to the iterative version. The di↵erence in mean skill,

as estimated by the Rasch model, was 0.35 logits (OR = 1.42, d = 0.19). For the Copy

tasks, the e↵ect of randomized assignment to treatment was reversed; the iterative group

had slightly higher skills than the recursive group on average (� = 0.13 logits, OR = 1.14,

d = 0.07). We now turn to the more detailed analysis where the e↵ect of recursive and

iterative treatments for the two tasks can be analyzed conditional on skill.

4.3 Results

In this section, we use Rasch analysis to expand the previously reported results. Informa-

tion about each individual’s skill is now used to estimate the di�culty of four treatment

pairs : recursive Find, iterative Find, recursive Copy and iterative Copy. The procedure

uses the principles of di↵erential item functioning (DIF) that is commonly is used to in-

vestigate whether questions in a psychological test are biased towards subgroups such as

non-native speakers of a language or ethnic minorities (see Borsboom, 2006). However, we

perform some adaptations to traditional DIF analysis along the lines discussed in (Chang

& Chan, 1995).

We will use the term item to denote one of the four treatment-task pairs above. The

estimation process uses a conditional maximum likelihood function where residual (unex-

plained) variance is minimized. Further, unlike the di↵erences in mean skill we reported

in Section 4.2, the Rasch model accounts for skill di↵erences on a person-by-person level.

This implies that even if a group of individuals is more skilled on average, individual

response patterns that yield more relevant information in determining the di�culty of

tasks are used. Nevertheless, the inequality of treatment groups with respect to skill

(as reported in Section 4.2) is now taken into consideration in determining the di�culty

estimates for the four items.
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All the four items were scored identically using three score categories: Incorrect = 0,

correct and slow = 1, and correct and fast = 2. This score structure is a monotonic

function of what “high performance” implies and uses an ordinal scale (Bergersen et al.,

2011). We (operationally) defined six minutes as the di↵erence between “slow” and “fast”

solutions, thereby roughly splitting the observations of Figure 1 in half. Although this

procedure degrades time into a dichotomous variable, it allows time and correctness to be

co-located on the same scale for more detailed analysis. This, in turn, makes it possible

to express the di�culty of all four items as a function of skill.

Each individual’s aggregated debugging score over both tasks (i.e., a sum score from

0–4) appeared normally distributed according to the Kolmogorov-Smirnov statistic (p =

0.058). Further, this sum score was also well predicted by skill (rho = 0.673, 95CI1 =

[0.484, 0.806], p < 0.001).

The Rasch model places item di�culty and a person’s ability on the same interval

scale (Andrich, 1978). An interval scale implies that additive transformations are permit-

ted but not multiplicative transformations. Further, ratio interpretations are not mean-

ingful because the number zero is not defined (Stevens, 1946).

Figure 2 shows the expected probabilities for the recursive Find item using the three

score categories (0–2) above. The mean population skill is transformed to be located at 5

logits and has a standard deviation of 1.3 logits (not shown) on the x-axis. Starting from

the left, the figure shows that the incorrect (score = 0) response category has the highest

probability for individuals with less skill than about 1.2 logits. Further, the probability

of an incorrect solution decreases as skill increases, and the probability of an incorrect

response becomes negligible at about 5 logits and above. Between 1.2 and 5.2 logits,

the most probable response category is 1 (correct and slow). Above 5.2 logits, the most

probable response category is 2 (correct and fast). The sum of the probability for the

three score categories always equals 1.0 for any level of skill.

The dotted line that departs upwards from the “score = 1” category shows the cumu-

lative distribution function for this score category. Because a score of 2 also implies that

the first threshold has been passed (see, e.g., Andrich, 1988; Bergersen et al., 2011), the

probability of not achieving at least a correct and slow solution when skill is above about

5 logits is also negligible.

A threshold is the location on the logit scale where one response category replaces

another one as being the most likely response. This is indicated in Figure 2 by two

vertically dotted lines. There, the number of thresholds for each item equals the number

of score categories minus 1: The first threshold is where score 0 and 1 intersect, and the

second threshold is where score 1 and 2 intersect.

Figure 3 shows the most likely response category for all four items as a function

skill. Although the exact category probability curves for each item is not shown (as in

Figure 2), the di↵erences in the location of thresholds provide the needed information

about di↵erences in di�culty between the four items. (The two thresholds in Figure 2

can be found for “recursive Find” row in Figure 3.) The standard error of measurement

for each threshold is represented by a horizontal bar. Overall, the lower di�culty of the

first threshold for both recursive tasks compared with their iterative alternatives supports

1Calculated using PASW™18.0 for 2500 bootstrapped samples.
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Figure 2: Category probability curves for di↵erent scores as a function of skill for the
recursive Find task.

the findings of original study: the recursive versions of the two tasks are easier to debug

correctly. The e↵ect is much larger for the Find task (� 2.1 logits) than for the Copy

task (� 0.6 logits).

The second threshold represents the di�culty of debugging an item correctly in a“slow”

versus“fast”manner. As expected, it is more di�cult to achieve a correct and fast solution

than a correct and slow solution. The results for the second thresholds were reversed with

respect to what the better treatment was for both tasks; the iterative versions were easier

to debug correctly and fast than the recursive versions of the tasks. However, inspecting

the width of the standard errors in Figure 3 shows that none of the di↵erences in threshold

locations are significant; a 95% confidence interval for item thresholds can be obtained by

roughly doubling the width of each standard error bar.

Based on the information contained in the threshold map in Figure 3, it is now possible

to turn to a concrete example of how “what is the better treatment” varies as a function

of skill. We first define three (hypothetical) groups: the low-skilled group has a skill of 3

0 1 2 3 4 5 6 7 

iterative Copy 

recursive Copy 

iterative Find 

recursive Find 

Person location (logits) 

  

incorrect (score = 0) 
correct and slow (score = 1) 
correct and fast (score = 2) 

Figure 3: Estimated task di�culty thresholds by the Rasch model (threshold map).
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Figure 4: Expected score category probabilities for Find and Copy combined depending
on skill and treatment.

logits (at 7th percentile), the average-skilled group has the mean skill of the investigated

population and the high-skilled group has a skill of 7 logits (at 93rd percentile). (The

low- and high-skilled groups are about ±1.5 standard deviations below or above the mean

skill.)

In Figure 4 we have combined the probabilities for the Find and Copy tasks. For the

low-skilled group, the recursive implementations appear best because the probability of

incorrectly debugging these tasks (0.45) is lower than for the iterative versions (0.69). At

the same time, the di↵erence in probability between the treatments for a correct and fast

implementation also appears negligible (0.05 for recursive versus 0.06 for iterative). For

the high-skilled group, the iterative versions appear best. The expected probability of a

correct and fast implementation for the iterative versions of the tasks combined is 0.88,

whereas the corresponding probability for the recursive versions is 0.77. At the same time,

the probability for an incorrect solution for both recursion and iteration is only 0.01.

For the average-skilled group, the results are inconclusive, because a choice must be

made with respect to preference in a time-quality tradeo↵ (see, e.g., Fitts & Posner, 1967).

For example, the iterative versions have a slightly higher probability of being incorrect

(0.20 versus 0.15), whereas the probability of a correct and fast solution is also slightly

higher (0.44 versus 0.33). Whether recursion or iteration is the better treatment for this

group cannot be decided because there are no negligible di↵erences for any of the score

categories.

5 Discussion

This section discusses and contrasts the results from the original and replicated study,

first with respect to implication for research and then with respect to implications for

practice. We then address limitations of our replicated study and discuss issues for future

work.
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5.1 Implications for Research

In this study, the largest e↵ect on debugging performance was neither the treatment

nor the task complexity; it was the skill of the subjects. Overall, the two recursive

implementations were slightly easier to debug correctly (OR = 1.50) than the iterative

implementations. The original study had a similar result, although the e↵ect size was

smaller (OR = 1.21). By pooling the data from both studies (Table 2), the e↵ect of

recursion being easier to debug correctly is marginal (OR = 1.18, 95CI = [0.85, 1.63],

d = 0.09, p = 0.34).

Both studies show that the di↵erence in di�culty between the tasks is larger than the

e↵ect of treatment. Combining the studies, the standardized e↵ect size of task di�culty

irrespective of treatment is between small and medium (OR = 1.87, 95CI = [1.34, 2.6],

d = 0.35, p < 0.001).

However, in our replication, these e↵ect sizes are dominated by the e↵ect of individ-

ual di↵erences in skill: When correctness for Find and Copy was merged and analyzed

irrespective of treatment, the more skilled group had 92.9% correct solutions and the less

skilled group had 56.9% correct solutions. This di↵erence represents a large standardized

e↵ect size (OR = 9.4, 95CI = [2.6, 41], d = 1.25, p < 0.001) that ranks in the top 25th per-

centile of 284 software engineering experiments (see Kampenes et al., 2007). Di↵erences

in skill must therefore be controlled for in empirical studies of programmers.

Generalization over tasks usually requires that the results be consistent across several

tasks. The original study had only two tasks. Consider Segal’s law: “a man with a watch

knows what time it is. A man with two watches is never sure.” Only by having multiple

operationalizations is it possible to make more qualified inferences on the extent to which

a result can be generalized. When expressing the e↵ect of treatment as a function of

skill by using the Rasch model, we obtained results that were consistent across two tasks

despite the challenge that a large task di�culty factor presented.

The combined results of three studies now support the conclusion of the authors of

the original study. Table 4 shows the overall results for the comprehension, original, and

replicated studies, where “+” denotes positive support of the original authors’ conclusion

with respect to debugging correctness. Yet, their large study still failed to yield results

in support of the recursive version of the Find task as being easier to debug. Although

the di↵erence of the e↵ect size of recursion versus iteration for the two tasks is relatively

small and di�cult to detect, the sample size of the original study requires us to conjecture

why they did not find that the recursive Find task was easier than the iterative one.

A practice e↵ect is when performance increases for each new task in a study when

the performance is supposed to be stable in order not to bias the study (Sheil, 1981).

Practice e↵ects are common threats to validity in within-subject designs (Shadish et al.,

2002) and are known to increase individual variability and thereby decrease the statistical

power to detect di↵erences. In the skill instrument, we have previously reported the

presence of a small “warm-up” e↵ect for the first three tasks (1–2 hours), but it is not

present afterwards (Bergersen & Hannay, 2011). It is therefore tenable that the original

study, which only involved two small tasks, is influenced by a similar practice e↵ect (any

potential practice e↵ect in our replication is averaged over 19 tasks using randomization).
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Table 4: Support for recursion being more easy to debug correctly�

Study 
# Responses 
(both tasks) Debugging phase 

Task 
Find Copy 

Comprehensiona 275 
Identification 

+ (–) 

Originalb 531 
+ + 

Correction 
(–) + 

This replication 128 (+) (+) 
Notes. a see (Benander, Benander, & Pu, 1996); b see (Benander, Benander, & 
Sang, 2000); + denote positive support and – denote negative support for the 
original author’s conclusion; ( ) represents non-significant results. 

�
�
�

�
�
�

The mean degree of correctness for Find and Copy for the students in the original

study and the professionals in the replicated study (Table 2) deserves to be addressed in

order to address a potential practice e↵ect. The student’s probability of correct solutions

for their first (Find) task was 0.53 lower than that for the professionals, but only a

di↵erence of 0.40 separated the two populations for the second (Copy) task. This indicates

that the students improved their performance on their second task more than did the

professionals. Typically, professionals are more skilled than students and therefore learn

less from practice (see Fitts & Posner, 1967). Nevertheless, a systematic improvement in

performance during a study is problematic, because it implies that the subjects are not

well versed in using the technology; hence the results cannot be generalized (Sheil, 1981).

An improvement of 0.13 (i.e., 0.53� 0.40) in the proportion of correct responses is almost

equal in size to the di↵erence in mean di�culty of the two tasks (0.16). Hence, it may

appear that that a practice e↵ect, in addition to the e↵ect of skill and task di�culty, may

also be larger than the e↵ect of treatment in the original study.

5.2 Implications for Practice

We found weak results in favor of iteration being easier to debug fast and correctly than

recursion. Although this result was not significant, it was consistent over both tasks.

It is self-evidently true that a technology is better when it is easier and faster to use

than when it is not. However, what if a “faster” technology comes at the price of added

complexity, which makes the technology harder to use properly? Then the faster technol-

ogy would require more training to be used successfully. Without training, the faster and

more complex technology would be associated with a higher proportion of incorrect uses,

thereby making the faster technology appear worse than the existing alternative that is

slow but easy to use correctly already.

There are several examples of occasions when a faster technology is more di�cult to

use. For example, a bicycle is a faster means of transportation than walking, but one

must know how to ride it. Similarly, a typewriter is easier to use than a computer, but

the computer is faster for text editing when used correctly. More complex technologies

frequently require more training than less complex technologies; at the same time, more

complex technologies are adopted because they add to productivity.

Fundamental to our reported results that the potential advantage of di↵erent debug-
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ging implementations may depend on skill levels are two basic assumptions. First, a

correct solution is better than an incorrect solution. Second, a fast solution is better

than a slow solution if both solutions are correct (Carroll, 1993). As previously shown in

Figure 4, when the probabilities for an incorrect solution is high, it is normal to take steps

to improve the degree of correctness before less time becomes an important factor. This

seems to be the case for our (hypothetically defined) low-skilled subjects. An opposite

situation was present for the high-skilled subjects: because the proportion of incorrect

and correct answers was negligible whereas the di�culty of a fast and correct solution

was lower for the iterative versions, the preference for what treatment was better was

reversed. The tradeo↵ between quality and time is certainly present when practitioners

evaluate the benefits of new software engineering technologies.

5.3 Limitations

A limitation of this replication is low statistical power. Although we had su�cient power

to detect large and systematic di↵erences in the skills of the subjects and the di↵erences

in the di�culty of the tasks, our results with respect to the treatments were not signifi-

cant. Further, even though the study magnitude of our replication is large according to

the conventions of (Sjøberg et al., 2005) (the professionals spent more than 1000 hours

combined), the Rasch model can be data intensive when the purpose is to characterize

individual di↵erences (see Linacre, 1994). Because our research question considers group

di↵erences (rather than individual di↵erences), fewer than the recommended number of

subjects for using the Rasch model is therefore acceptable. We also regard the limita-

tion of only having two debugging tasks to generalize from as a greater concern than the

statistical power at present.

In this replication, there was only one response for the “incorrect” score category for

the recursive Find task. This implies that the standard error associated with the first

threshold for this task is not adequately represented. Ideally, all response categories

should be well populated to obtain accurate item thresholds in the Rasch model. For the

two tasks investigated here, a new sample of less skilled subjects is needed to obtain lower

standard errors of measurement in the item di�culty thresholds.

5.4 Future Work

To measure the skill of the subjects in this study we used a specifically tailored research

prototype. We are now working on making the skill instrument industry strength. New

or replicated experiments may then be administered as part of ongoing assessments of

professionals and students, something that facilitates the use of more statistically powerful

experimental designs (e.g., matching or pairing, see Shadish et al., 2002). Such designs are

particularly relevant for studies where few subjects are available, within-subject designs

are not feasible, or where random assignment to treatment is not possible. We will also

conduct more studies where skill is taken into account when investigating the e↵ect of a

technology. We welcome future collaborations.
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6 Conclusion

An implicit assumption in many research studies in software engineering is that the benefit

of a new technology or method is invariant of skill levels. The study reported in this paper

illustrates why such an assumption is problematic. Using a measurement model where

the e↵ect of recursive versus iterative implementations of two small debugging tasks was

expressed as a function of skill, we provided additional evidence that “what is the better”

of two competing technologies requires the additional qualifier “for whom?”

We found that for the low-skilled subjects, the results were in favor of recursive im-

plementations, which supports the original study. An opposite result was found for the

high-skilled subjects; the iterative versions were debugged faster while the di↵erence in the

proportion of correct answers compared to the recursive version was negligible. Hence, the

benefit of debugging the iterative versions (less di�cult to debug fast but more di�cult to

debug correctly), is based on an important principle: The probability of incorrectly using

both debugging alternatives must be low and negligible before the faster technology can

be assumed to be better.

This study does not stand in isolation; previous large-scale experiments have reported

similar interaction e↵ects between skill levels and the technology or method being inves-

tigated. Still, there is often a gap between researcher expectations and empirical results

because one fails to acknowledge that potentially more powerful technologies may be more

complex to use, or may require new skills in order to use correctly. The community must

raise its awareness of how skill levels, which in this study was much larger than the dif-

ference between treatments, a↵ect the claimed benefits of alternatives being evaluated.

Consequently, we need better ways to measure relevant skills with respect to the product

or process being investigated.
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