
Information and Software Technology 146 (2022) 106844

A
0

F
D
a

b

A

K
M
V
I
S
S

1

i
f
i
e
s
v
a
o
b
1
p
e
a

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

eatherweight assisted vulnerability discovery
avid Binkley a,∗, Leon Moonen b, Sibren Isaacman a

Loyola University Maryland, 4501 N. Charles St., Baltimore, MD 21210-2699, USA
Simula Research Laboratory, Oslo, Norway

R T I C L E I N F O

eywords:
odel interpretability
ulnerability prediction

dentifier splitting
ource code vocabulary
oftware security

A B S T R A C T

Predicting vulnerable source code helps to focus the attention of a developer, or a program analysis technique,
on those parts of the code that need to be examined with more scrutiny. Recent work proposed the use of
function names as semantic cues that can be learned by a deep neural network (DNN) to aid in the hunt for
vulnerability of functions.

Combining identifier splitting, which we use to split each function name into its constituent words, with
a novel frequency-based algorithm, we explore the extent to which the words that make up a function’s name
can be used to predict potentially vulnerable functions. In contrast to the lightweight prediction provided by
a DNN considering only function names, avoiding the need for a DNN provides featherweight prediction. The
underlying idea is that function names that contain certain ‘‘dangerous’’ words are more likely to accompany
vulnerable functions. Of course, this assumes that the frequency-based algorithm can be properly tuned to
focus on truly dangerous words.

Because it is more transparent than a DNN, which behaves as a ‘‘black box’’ and thus provides no insight
into the rationalization underlying its decisions, the frequency-based algorithm enables us to investigate the
inner workings of the DNN. If successful, this investigation into what the DNN does and does not learn will
help us train more effective future models.

We empirically evaluate our approach on a heterogeneous dataset containing over 73 000 functions labeled
vulnerable, and over 950 000 functions labeled benign. Our analysis shows that words alone account for a
significant portion of the DNN’s classification ability. We also find that words are of greatest value in the
datasets with a more homogeneous vocabulary. Thus, when working within the scope of a given project, where
the vocabulary is unavoidably homogeneous, our approach provides a cheaper, potentially complementary,
technique to aid in the hunt for source-code vulnerabilities. Finally, this approach has the advantage that it
is viable with orders of magnitude less training data.
. Introduction

Security vulnerabilities in source code are a key quality concern
n software development. Exploitation of vulnerabilities may cause
inancial damage, decrease users’ trust, and, depending on the domain,
ntroduce personal risks. This makes identifying vulnerabilities in the
arly stages of software development useful. Automated software in-
pections have proven effective at identifying certain classes of security
ulnerabilities in source code [1–4], but at the same time suffer from
considerable number of false positives [5–7]. Manual code reviews,

r software inspections [8], have fewer problems with false positives,
ut suffer from the sheer volume of code that must be inspected [9–
1]. Thus, methods that help focus the attention of a developer or
rogram analysis technique on those parts of the code that should be
xamined with more scrutiny have the potential to lower false positives
nd overall workload.

∗ Corresponding author.
E-mail address: binkley@cs.loyola.edu (D. Binkley).

Li et al. recently proposed LAVDNN as a lightweight approach that
uses function names as semantic cues that can be learned by a Deep
Neural Network (DNN) [12]. To be clear, LAVDNN is not intended as
a replacement for more involved techniques that use a multitude of
code features from various levels of code granularity, both for general
defect prediction [13–15], and vulnerability specific methods [16–19].
Instead, it is used to triage the code and thus assist a developer in de-
ciding where to manually inspect the code or apply more sophisticated
techniques.

In a similar vein, the goal of our work is not to outperform the
state of the art in defect prediction. Instead, we have two goals related
to a complementary approach. First, we seek to study the viability of
a novel word-frequency-based approach, and second we aim to use
this approach to provide a level of interpretability to the LAVDNN
vailable online 22 January 2022
950-5849/© 2022 The Authors. Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.infsof.2022.106844
eceived 4 August 2021; Received in revised form 4 December 2021; Accepted 9 J
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

anuary 2022

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:binkley@cs.loyola.edu
https://doi.org/10.1016/j.infsof.2022.106844
https://doi.org/10.1016/j.infsof.2022.106844
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2022.106844&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Information and Software Technology 146 (2022) 106844D. Binkley et al.

0
a
a
i
o
f
h
f
w
t
a
C
e

b
d
e
L
L

2

c
r
C

3

v

a

model. If, after tuning, the frequency-based approach manages rea-
sonable performance, it then suggests future opportunities to improve
vulnerability predictors such as LAVDNN by augmenting them with in-
formation gleaned from what we refer to as dangerous words. Though
a ‘‘dangerous word’’ is not in and of itself a danger, the word may be
a red flag, much in the same way that a code smell is not a problem
in and of itself, but suggests a point of potential concern. If successful,
the frequency-based approach provides a featherweight alternative that
avoids the need to construct a DNN, which, among other things, finds
the approach viable using orders of magnitude less training data.

The paper also investigates the degree to which LAVDNN is lever-
aging the presence of dangerous words. If the frequency approach
provides similar performance, then it suggests that we have succeeded
in interpreting the learning of the DNN as we have evidence that
LAVDNN learns to identify dangerous words. On the other hand, a
difference in performance indicates that LAVDNN learns something
orthogonal to the words. Thus a contribution of our work includes
its exploration of model interpretability. For example, although Li
et al. claim impressive results (with 𝐹2-scores reaching 0.910 and
.915 for, respectively, C/C++ and Python programs), our experiments,
s well as the data presented in their work [12, Table 11], show
steep drop-off in efficacy on real-world systems. Nevertheless, the

mpressive published performance of LAVDNN both raises the question
f ‘‘what makes it tick’’ and also makes it a prime candidate for
urther study. Understanding why and when LAVDNN is successful may
ave implications for understanding how to better discover vulnerable
unctions universally. It is therefore instructive to try and understand
hat LAVDNN is actually learning, either to improve LAVDNN itself, or

o develop complementary techniques. For example, are certain words,
bbreviations, or other language patterns indicative of vulnerabilities?
ontributions: We investigate how the individual words that make up
ach function name affect vulnerability predictions:

∙ We present a featherweight approach, FAVD (Featherweight As-
sisted Vulnerability Discovery), that uses the notion of dangerous
words as semantic cues. The underlying idea is that when devel-
opers choose semantically sensible names, a vulnerable function
is more likely to be given a name that contains dangerous words.

∙ We explore two methods for identifying dangerous word: the
first, FAVD𝐿, uses LAVDNN [12] as classifier to determine if
a word should be considered dangerous. FAVD𝐿’s performance
provides insights into the role that dangerous words play in
the LAVDNN model. The second method for identifying dan-
gerous words, FAVD𝐹 , identifies dangerous words based on the
frequency of the words in the names of known vulnerable and
benign functions.
Comparing these two with LAVDNN enables us to provide insight
into what is learned by the otherwise black-box approach used
by LAVDNN. To begin with, the comparison of LAVDNN and
FAVD𝐿 tells us about the use of words by LAVDNN, but tells
us nothing about the absolute value of those words in the pre-
diction. FAVD𝐹 provides that baseline. For example, if FAVD𝐹
performs worse than FAVD𝐿 then we can assert that LAVDNN is
making use of features beyond words.

∙ We empirically evaluate the predictive ability of FAVD𝐿 and
FAVD𝐹 using nine datasets ranging in vocabulary diversity.
Our analysis shows that words alone account for a significant
portion of the DNN’s classification ability especially with more
homogeneous vocabularies. Hence, it is feasible to train a feath-
erweight ‘‘triage predictor’’ using the function names associated
with past vulnerabilities of a mature project to gain an initial
focus. Furthermore, this technique requires orders of magnitude
less training data, and can thus easily complement existing
2

techniques for vulnerability prediction.
The paper is organized as follows: Sections 2 and 3 present the back-
ground and the approach itself. Sections 4 and 5 introduce our research
questions and experimental design, followed by a discussion of results
in Section 6. We survey related work in Section 7 and conclude in
Section 8.

2. Background

2.1. LAVDNN

The LAVDNN model was trained on an (undisclosed1) dataset of
8 525 vulnerable function names extracted from the Common Vulner-
abilities and Exposures (CVE) database, and 8 000 benign function
names extracted from open-source projects [12]. Each name was one-
hot encoded into a matrix of 66 rows (for the allowed alphanumeric
characters) and 50 columns (for the allowed maximum function-name
length), which together with its label as benign or vulnerable, was
used to train a multi-layer Bidirectional Long Short Term Memory
(LSTM) network for classification. LAVDNN concludes with two densely
connected output nodes whose values are run through a softmax func-
tion. Thus, the network outputs the likelihoods that a function is
‘‘vulnerable’’ or ‘‘benign’’ as values in the range 0.0–1.0. The authors
experimentally determine that a threshold value of 0.55 for the ‘‘vulner-
able’’ class provides the best performance. Thus, function names with a
score of 0.55 or greater in the ‘‘vulnerable’’ output node are classified
as vulnerable and the rest benign.

Care must be taken when referring to the paper that introduced
LAVDNN [12]. While the paper claims very impressive 𝐹2 values, com-
puting 𝐹2 values using data from the paper’s Table 11 produces much
lower 𝐹2 values for real-world systems (e.g., 0.683 for LibTIFF and
0.746 for FFmpeg). These values cannot be reproduced, because the
paper’s limited replication package, which only includes the function
names from these two systems, does not label them as vulnerable or
enign. Fortunately, Lin et al. [20] independently provide the necessary
ata, albeit for slightly newer versions of LibTIFF and FFmpeg. How-
ver, as shown in the last column of Table 4, discussed later, applying
AVDNN to this data results in the notably lower 𝐹2 scores of 0.292 for
ibTIFF and 0.083 for FFmpeg.

.2. Identifier splitting

Identifier splitting [21] splits an identifier into its constituent parts,
alled terms. For example, the identifier read_file includes the terms
ead and file. Splitting algorithms range from conservative (looking for
amel and Snake case) to aggressive (e.g., able to separate maxstrlen

into max, str, and len) [22].

. Approach

This section describes FAVD, our algorithm for featherweight assisted
ulnerability discovery, the core of which is given as Algorithm 1.

The algorithm takes as input three parameters and outputs the set
of identifiers predicted to be vulnerable,  . The output is a subset
of the first input parameter, , which is the set of identifiers being
tested. The second input parameter is the training data,  , which is

set of identifiers each labeled as vulnerable if it is the name of a
function with a vulnerability and benign otherwise. The final input
parameter, min_score, is the minimum score that an identifier must
receive to be returned by Rank as a dangerous word. The algorithm
first conservatively splits each function name from the training data
into its constituent terms. The resulting set of terms is used as the source
of potential dangerous words:

1 We have requested this data from the authors but could not obtain it.

Information and Software Technology 146 (2022) 106844D. Binkley et al.

d
a

e

Definition 1. A word is a dangerous word if its presence in a function’s
name correlates with the function being more likely to include a
vulnerability.

For example, functions that accept user input are often vulnerable
to various stack attacks. The names of such functions often include
words such as read or input. Thus, we may classify read and input
as ’’dangerous,’’ marking functions using those terms as potentially
vulnerable.

FAVD’s primary goal is converting a set of terms into a ranked
list of dangerous words. This is done by the function Rank, which
takes the set of terms and a minimum (dangerousness) score. This
function first assigns a dangerousness score to each term and then
discards those terms whose score is less than the given minimum,
min_score. It returns a list of the remaining terms in decreasing order
of dangerousness.

FAVD next calls the function FindBest, which takes the list of
angerous words and the training data, and outputs two values: cutoff
nd threshold. The cutoff determines how many of the dangerous

words are retained when predicting the vulnerability of the test data
found in . If the percentage (see Algorithm 1) of a function-name’s
terms that are dangerous is greater than threshold, then the function
is predicted to be vulnerable.

FindBest searches for a winning combination of these two. For exam-
ple, having a small cutoff means a short list of dangerous words, which
often works better with a low threshold, because with few dangerous
words, most identifiers will have at most a few dangerous terms. On the
other hand, when cutoff is large, there are lots of dangerous words, and
a higher threshold often works better.

As mentioned in Section 1, we experiment with two different vul-
nerability discovery algorithms, FAVD𝐿 and FAVD𝐹 . These two differ
only in the implementation of the function Rank. In the ideal case,
Rank returns exactly those words that will identify the vulnerable
identifiers in the test data, . We approximate this ideal using two
different ranking functions, 𝐿 and 𝐹 . The first, 𝐿, uses LAVDNN
to determine each term’s dangerousness. Here, each term found in a
function name is fed into LAVDNN in isolation, thereby producing a
score for the term between 0.00 and 1.00.

The second ranking function, 𝐹 , is based on term frequency, and
is thus entirely independent of LAVDNN. This enables us to better un-
derstand the value that the words that make up a function’s name play
in LAVDNN’s assessment. It produces integer term scores as follows:
for each vulnerable identifier in the training data it increments the
dangerousness score of all of the identifier’s terms by the constant plus,
while for each benign identifier it decrements this score by the constant
minus. Using different pairs of constants, referred to as weights, allows
𝐹 to place more or less emphasis on terms frequently found in the
vulnerable or benign training data.

4. Research questions

RQ1 What is the result of being excessively conservative and declaring all
functions vulnerable? – While simplistic, this is the lightest-weight
of approaches and is guaranteed to have high recall, so it sets a
good baseline.

input : test identifiers , labeled training data  , min_score
output : set of vulnerable identifiers, 
terms ← Unique (Split ())
dangerous ← Rank (terms, min_score))
cutoff, threshold ← FindBest (dangerous, )
for id ∈  do

terms ← Unique (Split (id))
percentage ← |terms ∩ dangerous[1..cutoff]|∕|terms|
 ←  ∪ { id } if percentage > threshold

nd
Algorithm 1: FAVD vulnerability prediction.
3

Table 1
Overview of the nine datasets used in the study. Note that the ninth dataset, within,
aggregates the first six.

Dataset Vulnerable Benign % vuln. Overlap

w
ith

in

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Asterisk 49 10 102 0.5% 2
FFmpeg 184 4 379 4.2% 18
LibPNG 31 491 6.3% 0
LibTIFF 75 522 13.6% 8
Pidgin 26 6 722 0.3% 0
VLC 37 2 699 1.4% 3

loo 402 24 906 1.6% 33

VDISC 72 612 932 741 7.2% 11 970

RQ2 Can LAVDNN be used to construct a list of dangerous words that
can effectively predict vulnerable functions? – In other words, can
LAVDNN predict which terms are associated with vulnerable
functions?

RQ3 Does direct construction of a list of dangerous words provide insight to
what LAVDNN learns? – In order to investigate the potential value
that terms might bring to the DNN, we use term frequency as an
alternative method of determining the list of dangerous words.

5. Experimental design

5.1. Datasets and ground truth

We consider the nine datasets shown in Table 1 (note that the ninth
dataset, within, aggregates the first six datasets). For each dataset, we
work exclusively with lists of benign and vulnerable function names.
We clean each list by removing ‘‘internal’’ duplicates (caused when two
or more functions share the same name). For each dataset, we make the
lists of benign and vulnerable names disjoint, taking the conservative
stance that names appearing on both lists are potentially vulnerable. A
replication package with our data is available on GitHub and Zenodo.2

The first six datasets in Table 1 come from data shared by Lin
et al. [20]. They extracted 457 vulnerable functions from six open-
source projects based on CVE reports [23] and added 32 531 benign
functions from each project’s source code repository. Table 1 shows
the sizes for each after cleaning. Asterisk is a C++ library for PBX
integration and Pidgin is a library for developing chat clients. The other
four projects are from more closely related domains, with FFmpeg and
VLC being well-known video applications, and LibPNG and LibTIFF
providing image manipulation. The main programming language for
all projects is C, with small amounts of C++, Python, HTML, Shell, and
Assembly. Table 2 summarizes demographic details of the six projects
of the within dataset.

We first consider these six in isolation, performing 𝑘-fold cross-
validation separately, per project. That is, we use the names from each
project independent of the other projects. Given the identifiers in these
experiments are coming from a single project, they are expected to have
the least diversity in their vocabulary. By the diversity of a vocabulary,
we mean the variety of words used. For example, the vocabulary
built from the identifiers remove_node and remove_edge show less
diversity than the one built from the identifiers remove_node and
delete_edge. This gives us an indication of how well a proposed
algorithm performs when applied to a mature system, where there
exists vulnerability data from exploits found in older versions of the
system to train against. When comparing these six to the loo and VDISC
datasets, we often aggregate them by taking means. We refer to this
aggregate as the within dataset.

The next dataset, loo, makes use of the same six open-source
projects. However, this time we perform leave-one-out cross-validation

2 https://github.com/secureIT-project/FAVD doi: 10.5281/zenodo.5957264

https://github.com/secureIT-project/FAVD
https://doi.org/10.5281/zenodo.5957264

Information and Software Technology 146 (2022) 106844D. Binkley et al.

o
o
v
n
h
d

b
o
y
i
B
d
t
e
i
t

5

W
f
t
a
b

c
n
𝑇
b
𝑇

p
v
𝐹
c

i
a
b
a
r

𝐹

Table 2
Demographic details characterizing the projects in our dataset (src: OpenHub [24]).

Features Asterisk FFmpeg LibPNG LibTIFF Pidgin VLC

number of contributors 302 1 968 58 64 790 924
total LOC 2 529k 1 248k 462k 267k 224k 717k
estimated effort (years) 741 356 122 68 52 197
number of commits 96 265 102 835 10 679 6 447 40 605 88 567
files modified 17 777 10 082 4 724 1 830 12 199 16 012
lines added 14 051k 4 292k 2 378k 1 229k 8 321k 4 989k
lines removed 9 996k 2 316k 1 696k 938k 7 549k 3 991k
security confidence 97.84% 95.14% 85.41% 91.35% N/Aa N/Aa

vulnerability exposure 1.1‰ 4.3‰ 27.0‰ 21.8‰ N/Aa N/Aa

aThere were no vulnerabilities reported for Pidgin and VLC in OpenHub.
u
t
o
b

d
i
r
d
v

o
e
g
L
O
t
e
w
L
n
t
w

i
t
p
n
e

6

6

c
p
p
w
o
d

n the set of six. Leave-one-out cross-validation uses the vulnerability
f function names from all but one of the projects to predict the
ulnerability of function names from the one left out. The names are
ot expected to be as similar as in the first six datasets (i.e., they have
igher diversity), but because a number of the projects are from similar
omains, we expect some similarity.

The largest dataset, VDISC, was extracted from the data published
y Russell et al. [25]. It contains 1.27 million functions mined from
pen-source software, labeled for potential vulnerability by static anal-
sis tools. After cleaning, we end up with 1 005 353 function names,
ncluding 72 612 marked as vulnerable and 932 741 marked as benign.
ecause some of this data is likely included in the within and loo
atasets, we never combine it with either of the two, however studying
hem separately improves the external validity of our analysis. For
xample, one interesting difference is that the percentage of vulnerable
dentifiers in the loo dataset is only 1.6%, which is a notably smaller
han the 7.2% of the VDISC dataset.

.2. Performance measures

Our goal is to classify function names as either vulnerable or benign.
e define true positives, 𝑇𝑃 , as the correctly identified vulnerable

unctions, true negatives, 𝑇𝑁 , as the correctly identified benign func-
ions, false positives, 𝐹𝑃 , as any benign function identified as vulner-
ble, and false negatives, 𝐹𝑁 , as any vulnerable function identified as
enign.

The evaluation of the quality of this classification is based on a
ombination of precision and recall. Precision is the fraction of function
ames determined to be vulnerable that actually are. In other words,
𝑃∕(𝑇𝑃 + 𝐹𝑃). 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑃) Recall is the fraction of all vulnera-
le functions correctly determined to be vulnerable. In other words,
𝑃∕(𝑇𝑃 + 𝐹𝑁).

Precision and recall often oppose each other. For example, high
recision is often possible by choosing only those cases that you are
ery sure of, but this necessarily lowers recall. The balanced F-score,
1, is the mean of precision and recall, and thus provides a balanced
ombination of the two.

However, as Li et al. observe, ‘‘in vulnerability detecting systems, it
s first necessary to detect as many vulnerabilities as possible. When an-
lyzing the source code, the false reporting may increase the workload,
ut failing to identify a vulnerable function is costly and unaccept-
ble’’ [12]. To support this position, they use the 𝐹2-score, which values
ecall over precision. In general

𝛽 =
(1 + 𝛽2)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

(1 + 𝛽2)𝑇𝑃
(1 + 𝛽2)𝑇𝑃 + 𝛽2𝐹𝑁 + 𝐹𝑃

For consistency, we follow Li et al. and use 𝛽 = 2, and thus focus
the evaluation on the 𝐹 score, 5𝑇𝑃∕(5𝑇𝑃 + 4𝐹𝑁 + 𝐹𝑃).
4

2 i
5.3. Procedure

The surface goal of both 𝐿 and 𝐹 is to retain only high-impact
dangerous words. However, too high a minimum (too high a value
of min_score in Algorithm 1) can starve the algorithm of sufficient
vocabulary. Therefore, we consider a range of minimum scores in the
experiments. For 𝐿, we initially consider values between 0.00 and
1.00 stepping by 0.05. We later add a few additional values to zoom in
on points of interest. For 𝐹 , we consider only two minimums: none,
where all terms are considered dangerous, and zero, which eliminates
terms of low dangerousness. This is sufficient for 𝐹 , because we can
se the relative values of plus and minus to impact the number of
erms that receive a positive score. Note that when including all words
n the list of dangerous words, their relative position is still impacted
y the values of plus and minus.

Beneath the surface, we are interested in forming a better un-
erstanding of the role that the terms found in function names play
n LAVDNN’s ability to identify dangerous functions. Thus, while the
esults include some direct comparisons, we are more interested in the
eeper understanding that the relative performance and the relative
alue of dangerous words bring to the prediction.

To provide some intuition for the words ranked as the most danger-
us and the least dangerous, Table 3 lists the top ten examples from
ach category as identified by 𝐹 . Over 90% of the top ten most dan-
erous words occur in more vulnerable names than benign names. The
ibPNG name handle is a classic example of the expected behavior.
f the fifteen function names that include the word handle, ten are on

he vulnerable list. In extreme cases all the names are vulnerable. For
xample, in Pidgin the word mxit is found in six names, all vulnerable,
hile the VLC word AVI is found in two names, both vulnerable. In
ibPNG the word read occurs in five vulnerable names and 19 benign
ames. In all five vulnerable names (e.g., png_push_read_chunk) the
op scoring word png also appears. None of the ten least dangerous
ords from LibPNG occur in a vulnerable name.

Considering the least dangerous words, most occurrences are found
n benign names. With the exception of FFmpeg there are only zero
o six occurrences of all ten words in the vulnerable names for each
rogram. While for FFmpeg the least vulnerable names occur in 97
ames, each is counter balanced by numerous benign occurrences. For
xample, frame occurs in 33 vulnerable names, but 293 benign ones.

. Results

.1. RQ1

Our first research question considers the results of being excessively
onservative by predicting that all functions are vulnerable. This ap-
roach provides intuition for the meaningful range of 𝐹2 scores. A
erfect predictor attains the highest possible 𝐹2 score of 1.0, while the
orst-case 𝐹2 score is 0.0. The 𝐹2 score for a random predictor depends
n the percentage of vulnerable functions. For example, the VDISC
ataset, with its 72 612 vulnerable functions and 932 741 benign ones,
s 7.2% vulnerable, meaning a random predictor will generate 𝑇𝑃 =

Information and Software Technology 146 (2022) 106844D. Binkley et al.

d

a
b
d
d
p

i
m
p
e
a
p

v
t
v
f
m
t

Table 3
Examples of the most and least dangerous words.
Asterisk FFmpeg LibPNG LibTIFF Pidgin VLC

Most Dangerous
invite avi png JPEG mxit MP
retrans 264 handle pdf msn AVI
pkt vp CCP Checked httpconn Html
unpacksms old CAL readwrite slp Strip
aocmessage avcodec PLT LZWDecode emoticon Tags
milliwatt ivi do Into silc ASF
astman tile PLTE Entry slplink vcd
sipsock mjpeg read Strips yahoo skcr
action hdr filter cvt idn LOADSparse
ha gif chunks readgitimage untar Recieve

Least Dangerous
asn ff image Samples purple Get
ast get transform Handler cb vlc
254 write store Fax get Callback
PD init init Error pidgin vlclua
PE frame standard Check set Control
225 read gpc Image jabber Set
get parse 16 Swab add Add
channel mov gp Set account Out
handel tag gamma Proc blist test
to mxf display Warning media rtp
b
a

u
r
d
a
e
i
W
s
e

6

i
o
s
N
1
w
s
c

i
(
t
p
e
w
a
s
r
w
g
v

p
p
t
z
f
F

Table 4
Performance of the all-vulnerable predictor with performance of the LAVDNN model for
comparison.

Dataset Vulnerable Benign Empirical Theoretical Fold LAVDNN
𝐹2 score 𝐹2 score 𝐹2 score

Asterisk 9.8 2 020.4 0.024 0.024 meana 0.013
FFmpeg 36.8 875.8 0.173 0.174 meana 0.083
LibPNG 6.2 98.2 0.234 0.240 meana 0.137
LibTIFF 15.0 104.4 0.410 0.418 meana 0.292
Pidgin 5.2 1 344.4 0.019 0.019 meana 0.019
VLC 7.4 539.8 0.064 0.064 meana 0.089

loo 49.0 10 102.0 0.042 0.075 Asterisk 0.013
loo 184.0 4 379.0 0.274 0.075 FFmpeg 0.083
loo 31.0 491.0 0.362 0.075 LibPNG 0.137
loo 75.0 522.0 0.564 0.075 LibTIFF 0.292
loo 26.0 6 722.0 0.034 0.075 Pidgin 0.019
loo 37.0 2 699.0 0.110 0.075 VLC 0.089

VDISC 14 522.4 186 548.2 0.280 0.280 meana 0.148

aFor brevity, we present the mean values for 5-fold cross-validation. 10-fold
cross-validation showed no statistically significant differences.

𝐹𝑁 = 3.6% and 𝐹𝑃 = 𝑇𝑁 = 46.4%, yielding an 𝐹2 score of 0.228.
When only 1.6% of the functions are vulnerable, the resulting 𝐹2 score
rops to 0.071.

Assuming that all functions are vulnerable, there are no false neg-
tives or true negatives, and thus 𝐹𝑁 and 𝑇𝑁 are both zero. In part
ecause 𝐹2 favors recall, the all-vulnerable assumption will yield pre-
icted 𝐹2 scores slightly higher than random. For example, the VDISC
ataset with its 7.2% vulnerable functions, results in an all-vulnerable
redicted 𝐹2 score of 0.280.

Conversely, given our imbalanced dataset, a high-accuracy strategy
s to classify all functions as being in the dominant class. In our case,
ost functions are benign. Predicting that all functions are benign
roduces very high accuracies (e.g., 0.928 for the VDISC dataset). How-
ver, other than highlighting a potential misinterpretation, classifying
ll functions as benign makes little sense in the context of vulnerability
rediction; thus, we consider it no further.

In support of RQ1, Table 4 shows the empirical and theoretical 𝐹2
alues for each dataset. These two scores provide some intuition for
he performance of the simple all-vulnerable predictor. The empirical 𝐹2
alue for each fold is based on the number of vulnerable and benign
unctions in that fold. For the 𝑘-fold validations this leads to some
inor variation that we summarize in the table using the mean. For

he loo dataset the empirical values deviate from the theoretical values
5

ecause the distribution of vulnerable names is far less uniform. Table 4
lso shows performance of LAVDNN for comparison.

Thus, in summary for RQ1, Table 4 shows that the 𝐹2 scores for this
ltra-conservative approach range from 0.034 to 0.564 in line with the
elative number of vulnerable and benign functions in each fold of each
ataset. While its 100% recall may be the most redeeming quality, the
ll-vulnerable predictor sets a baseline for the minimum performance
xpected of a more sophisticated predictor. In RQ2 and RQ3, our goal
s to provide an interpretability viewpoint for the LAVDNN model.

e accomplish this by replacing all words being dangerous with more
ophisticated techniques that we then compared to all-vulnerable and to
ach other.

.2. RQ2

RQ2 investigates using 𝐿 as the Rank function in Algorithm 1, that
s, it studies how well LAVDNN can predict dangerous words. We begin
ur analysis with the two graphs shown in Fig. 1. The upper graph
hows the minimum score on the 𝑥-axis and the 𝐹2 score on the 𝑦-axis.
ote that the 𝑥-axis is not to scale because values between 0.90 and
.00 are more interesting. The line colors represent the three datasets
ithin, loo, and VDISC. For comparison, the three horizontal lines

how the 𝐹2 scores from the ultra-conservative all-vulnerable predictor
onsidered in RQ1 when applied to the three datasets.

The lower chart in Fig. 1 shows how increasing the required min-
mum score decreases the number of words considered dangerous
variable dangerous in Algorithm 1). With this decrease, the expec-
ation is that the remaining, higher scoring, words will be better
redictors, but apply to fewer vulnerable functions. This pattern is just
vident in the very slight increase in the 𝐹2 values for the loo and
ithin datasets in the top chart. However the pattern is not strong

nd the trend for VDISC actually declines (reflecting the dataset being
tarved for useful vocabulary). However, the fact that the 𝐹2 scores are
elatively flat suggests that the reduction in the number of dangerous
ords is not providing greater discrimination, and thus that words
iven higher scores by 𝐿 are not necessarily better predictors of
ulnerable functions.

Objectively, for VDISC, 𝐿 always underperforms the all-vulnerable
redictor (top two lines in the top chart of Fig. 1). However, 𝐿 out-
erforms the all-vulnerable predictor on the other two datasets. Omitting
he minimum score of 1.00, where all three 𝐹2 scores plummet to near
ero, all three differences are statistically significant (t-test 𝑝 < 0.0001
or VDISC and within, and 𝑝 = 0.0011 for loo, using the data shown in
ig. 1).

Information and Software Technology 146 (2022) 106844D. Binkley et al.
Fig. 1. Using 𝐿 to select dangerous words.
o
o
a
b

6

s
p
t
p
T
s
u
p

t
s
4
l
i

t
t
v
f

In summary, LAVDNN finds limited success at identifying dangerous
words. 𝐿 works better with the smaller, more focused, datasets of
within and loo. However, we note two caveats: first, the data clearly
show that using too high a minimum score leads to too few dangerous
words, which dramatically lowers the 𝐹2 score, and second, it must be
pointed out that on an absolute scale, the resulting 𝐹2 scores are all on
the low side.

Looking ahead to the comparison with 𝐹 , we note that numerically
the best performance for VDISC is with a minimum score of 0.05, while
for loo it is 0.90, and for within 0.99. These values, which are all
evident in Fig. 1, reflect artifacts of the vocabularies. For example, for
VDISC, finding the best performance with such a low minimum score
indicates that the search is starved for high-quality vocabulary, while
at the other end of the spectrum, for within, the very high minimum
excludes all but the most suspect words.

6.3. RQ3

Our third research question explores replacing 𝐿’s use of LAVDNN
with 𝐹 ’s frequency-based approach. If the performance of 𝐹 is
similar, it suggests that LAVDNN also captures notions related to word
frequencies. Interestingly, if the alternative shows better performance,
then it suggests the use of dangerous words to augment the training
of next generation of predictors. While the range of alternatives is
virtually limitless, because we are interested in the contribution of the
terms, we consider a family of algorithms that use term frequencies
to determine potentially dangerous words. For example, a straight-
forward algorithm would assert that all terms found in vulnerable
function names in the training data are dangerous. More sophisticated
approaches would consider as negative evidence terms (frequently)
occurring in benign function names.

The family we consider increases a term’s dangerousness when the
term appears in function names from the vulnerable training data and
6

decreases it when the term appears in names from the benign training o
data. Thus, the algorithm assigns higher scores to terms that have high
frequency in the vulnerable training data and low frequency in the
benign training data. We refer to this as a family because we consider
𝐹 with a range of different weights (a pair of the amount added to,
and the amount subtracted from, a term’s score).

Algorithm 1’s performance is impacted by the cutoff and thresh-
ld values returned by FindBest. This section first explores the cut-
ff/threshold search space. It then considers a range of fixed weights,
nd finally considers an algorithm that determines the best weight
ased on the training data.

.3.1. Exploration of cutoff and threshold
The exploration starts by considering the collection of ROC graphs

hown in Figs. 2–4. These graphs are for the optimal weights, which
rovide greater discrimination and thus make visual patterns easier
o observe. A ROC graph plots the true-positive rate against the false-
ositive rate at various settings of a parameter (in our case threshold).
hey are useful for comparing classifiers with each other and with a ‘‘no
kill’’ classifier. An ideal model produces a ROC curve that goes straight
p and then straight over to the right, while the no-skill classifier
roduces a 45-degree line from the origin to the upper right.

When producing these graphs, we increment cutoff in steps of 100
o reduce visual clutter. The cutoff search landscape is reasonably
mooth because, for example, in the step from 4100 to 4200, the first
100 words are the same. Increments of 100 help speed up analysis and
imit the size of the charts, while having no meaningful impact on their
nterpretation.

The graphs help us understand the interplay between cutoff and
hreshold. When threshold is 0.00, all function names are predicted
o be vulnerable, and thus, performance degenerates to that of the all-
ulnerable classifier. At this point, both the true-positive rate and the
alse-negative rate are 1.00 and the ROC curve ends at the upper right

f the chart. With the exception of Fig. 2 we suppress this threshold

Information and Software Technology 146 (2022) 106844D. Binkley et al.

(
i

u
w
d
o
t

c
H
T
u
t
s
t
c
R
h
f

c
d
u
s
o
w
f

a
w
u
w
c
t

6

w

Fig. 2. ROC curves exploring the search space for cutoff and threshold.
b
t
s
a
b
F
a

a

t
t
o
w

T
d
v
t
d
t
e
w

o
v
p
i
w

a
w
t
f
F
b
o
f
o
d
r

o
t
t
n
d
f

because it causes considerable visual clutter (explaining the absence of
lines to (1,1) in the other ROC charts).

To begin with, we consider the ROC graph for FFmpeg shown in
Fig. 2 where each ROC curve shows threshold going from 1.00 to 0.00,
while curve color shows cutoff going from small (red shift) to large
blue shift). Increasing cutoff can be seen to have two effects: first,
t tends to flatten the curve, and second early on when cutoff goes

from 1 to 101 the true-positive rate increases dramatically (from about
0.40 to about 0.65). Here the true-positive rate increases much more
than the false-positive rate. However, by the time cutoff includes most
of the words, the performance has degraded below that of a no-skill
classifier. Therefore, in practice, a user might choose to increase cutoff
ntil the false-positive rate reaches some tolerance (i.e., patience for
rong answers). Taken together, these two effects imply that the list of
angerous words has its most dangerous words first. Hence, we have
ur first interesting difference between 𝐹 and 𝐿, because 𝐿 failed
o effectively rank the dangerous words.

Fig. 3 illustrates minimum score’s impact. These graphs show ROC
urves for LibPNG, which is one of the datasets where 𝐹 excels.
ence, the ROC curves are all closer to the ideal ‘‘up and over’’ curve.
he ROC curves in these two charts show one of 10-sample cutoff’s. The
pper chart in Fig. 3 shows F-all, which uses no minimum score, and
hus includes all words as potentially dangerous words. The lower chart
hows F-0, where a minimum score of zero is used. F-0’s restriction
o only high-scoring words clearly causes the ROC curves to more
losely resemble the ideal ‘‘up and over’’ curve than the flatter (inferior)
OC curves of F-all. Finally, the comparison again indicates that the
igh-scoring words are more likely to be associated with vulnerable
unctions.

Fig. 4 shows the VDISC dataset (the loo curves are similar). The
urves reinforce the pattern seen above where larger values of cutoff
egrade performance. Because this dataset has the least useful vocab-
lary all cutoff’s except for the smallest, 1, and the largest, 130 001,
how very similar overlapping performance. However, the patterns
bserved above are still evident. For example, performance improves
hen using more of the vocabulary up until the very end where, for the

inal cutoff value, performance dips below that of the no-skill classifier.
To summarize, there is a sweet-spot at rather small values of cutoff

nd threshold. Smaller cutoff values include only the highest scoring
ords: as seen in the ROC curves as cutoff increases there is a ubiq-
itous flattening of the curve. Having a limited number of dangerous
ords works best when combined with a low threshold because this

ombination requires only a few of a function name’s terms to be on
he dangerous words list.

.3.2. Exploring the impact of weight
Initially, we explore the impact of a range of fixed weights, and later

e apply an algorithm that dynamically determines the best weight
7

ased on the training data. Fig. 5 shows the performance of 𝐹 for
he three datasets within, loo, and VDISC. In this graph, the 𝑥-axis
hows a range of weights. Each pair, plus--minus, shows the amount
dded to the score for each term in a vulnerable function name followed
y the amount subtracted for each term in a benign function name.
or reference, the graph also includes the performance of 𝐿, which
ppears as a horizontal line because it is not affected by the weights.

Each line in the graph shows the performance of a specific ranking
lgorithm, which we refer to using a tag including three things: ‘L’ for
𝐿 or ‘F’ for 𝐹 , the dataset involved: ‘within ‘, ‘loo’, or ‘VDISC’, and

he minimum score, where ‘all’ denotes that there is no minimum, and
hus all words are included (in which case the ranking affects only the
rder of the words). For example, the tag F-within-0 is the top line,
hich applies 𝐹 to the within dataset using a minimum score of 0.

Minimum score can help focus the analysis on high-scoring words.
his effect is evident in the two lines for 𝐹 applied to the within
ata set, F-within-0 and F-within-all. It can also limit the available
ocabulary, which can hurt performance. This can be seen clearly in
he case of VDISC where, on the left of the figure, F-VDISC-0 performs
ramatically worse than F-VDISC-all, then, moving to the right as
he weights favor inclusion, the performance gap disappears. Thus,
nforcing a minimum can help focus the algorithm on high-scoring
ords, but it does so at the expense of limiting the available vocabulary.

Big picture, 𝐹 performs best with the more focused vocabulary
f the within dataset, which shows the impact of having the right
ocabulary. In this case cross-validation within each project clearly
rovides relevant vocabulary. The top two curves also illustrate the
mpact of applying a minimum score to the list of dangerous words,
hich accounts for the gap between them.

For the loo dataset, 𝐹 struggles to outperform 𝐿. When including
ll words, the performance clearly degrades moving from left to right,
hich indicates that the list is loosing focus. The implication here is

hat it is more important to reduce the importance of terms from benign
unction names than to reinforce terms from vulnerable function names.
or example, with a weight of 1–10, a word has to be very rare in the
enign data to maintain a high score. When using a minimum score
f 0, this pattern is eventually seen at the far right. However, at the
ar left the 𝐹2 score suffers because the minimum limits the number
f dangerous words to the detriment of the algorithm. This improves
ramatically from 3-4 to 3-2 and levels off until it plummets at the far
ight where unwanted words do not get enough negative weight.

Finally, for the VDISC dataset 𝐹 is rarely able to outperform 𝐿. It
nly truly does so at the far right where the weight finally concentrates
he truly dangerous vocabulary. Note that despite the positive slope on
he right side of the graph, running the weights out to 1000-1 shows
o further improvement. The left of the graph parallels that of the loo
ataset with F-VDISC-0 being starved for vocabulary. One interesting
eature of F-VDISC-all is that to the left of 3-2, the training data leads

Information and Software Technology 146 (2022) 106844D. Binkley et al.

t
H
s

1
t
w
0
o
𝐵
i
c
1
a
t

Fig. 3. Impact of minimum score.
Fig. 4. ROC curves for VDISC.
d
o
t
n

c
i
H
t
(
t
a
3

he algorithm to include all of the terms as potential dangerous words.
ere the performance is similar to L-VDISC-0.05, where the minimum

core of 0.05 includes all but the lowest-scoring words.
For the F-VDISC-all data, it is interesting that the weights 1-10 and

0-1 have similar performance (one might see 1-10 as all the unin-
eresting words ‘‘taking a step back’’ while 10-1 as all the interesting
ords ‘‘taking a step forward’’). More formally, on the left for F-VDISC-
only words that are absent from the benign list are included because

f the large minus value in the weights. Using 𝑉 for vulnerable and
for benign this is the set 𝑉 − 𝐵. At the far right the influence of 𝐵

s negligible and the resulting set is effectively 𝑉 . Digging deeper and
omparing the values of cutoff used, for 1-10 each fold uses all of the
30 thousand unique words available. In contrast, for 10-1, only 14%
re used. Thus, the important vocabulary is effectively concentrated by
he weight 10-1 better than the weight 1-10. That this concentration
8

a

oes not give notably better performance is an indication of the lack
f useful vocabulary in the VDISC dataset. Therefore, we can percolate
ruly dangerous words to the beginning of the list, but lack a sufficient
umber of them to improve the 𝐹2 score.

To objectively consider the vocabulary patterns, we statistically
ompare the models used to construct Fig. 5. We also consider the
mpact of vocabulary size. Table 5 summarizes the results of Tukey’s
onestly Significant Difference (HSD) applied to each dataset. This

est identifies specific treatment means that differ from each other
those that do not share a letter). For the within dataset, 𝐹 is clearly
he more successful. Of particular interest is that for F-within-0, an
verage of only 49 words are deemed dangerous, which is a mere
% of the 1613 words used by F-within-all. This is the frequency
lgorithm at its best. The same pattern is seen with the loo dataset

Information and Software Technology 146 (2022) 106844D. Binkley et al.

V
t
d

Fig. 5. Comparison of 𝐹 performance with fixed weights.
Table 5
Tukey’s HSD for performance.

model-dataset-filter 𝐹2 HSD group DWC averagea

F-within-0 0.372 a 49
F-within-all 0.333 a 1 613
L-within-0.99 0.179 b 234
L-within-0.90 0.172 b 462
L-within-0.05 0.157 b 1 081

(𝑝 < 0.0001)

L-loo-0.90 0.173 a 1 898
F-loo-0 0.163 a 202
L-loo-0.05 0.159 a 4 374
L-loo-0.99 0.154 a 976
F-loo-all 0.138 a 6 618

(𝑝 = 0.9446)

L-VDISC-0.05 0.271 a 85 383
L-VDISC-0.90 0.246 a 38 199
L-VDISC-0.99 0.223 a 21 905
F-VDISC-all 0.218 a 129 966
F-VDISC-0 0.115 b 10 782

(𝑝 < 0.0001)

aDWC = Dangerous Word Count.

where F-loo-0 selects only 3% of the dangerous words used by F-
loo-all (202 versus 6618). However, none of the numeric differences
for the loo dataset are statistically significant. Still, it is interesting
that F-loo-0 has better numeric performance while using only 3% of
the dangerous words. Finally, for VDISC, the opposite is true. For
example, comparing F-VDISC-all and F-VDISC-0, the use of a larger
vocabulary is accompanied by better performance. The data in Table 5
reinforces the general pattern where 𝐹 shines when given a more
focused vocabulary.

Finally, in the table, higher standard deviation is the reason that no
statistically significant differences are seen with the loo dataset despite
some of the numeric differences in the 𝐹2 scores being on par with
those attained using the VDISC dataset. This is not unexpected as the
DISC dataset is a large uniform dataset where, as shown in Table 1,

he projects of loo have very different characteristics. Summarizing the
ata shown in Table 5: with the right well-focused vocabulary, 𝐹

performs quite well indicating that words valuable to the prediction
exist. The challenge can be finding this vocabulary.

6.3.3. Determining the best weights using training data
In production, 𝐹 determines the best weight based on the training

data. Our current algorithm uses a simple brute-force search through
the list of weights used to create in Fig. 5, and selects the weight
providing the best performance. The result is shown in Fig. 6, which
compares 𝐹 using all words and a minimum score of zero with the
best performing minimum scores for 𝐿 for the within, loo, and VDISC
9

datasets (0.99, 0.90, and 0.05, respectively). The 𝑥-axis shows the
Table 6
Comparing 𝐹 with the maximum 𝐿 performance (bold shows statistically significant
improvement).

Dataset 𝐹 𝐹2 max(𝐿 𝐹2) p-value limit(𝐹 𝐹2)

al
lw

or
ds
(F

-a
ll
)

overall 0.355 0.182 <0.0001 0.442
Asterisk 0.000 0.038 0.0264 0.060
FFmpeg 0.375 0.230 <0.0001 0.386
LibPNG 0.651 0.275 0.0003 0.850
LibTIFF 0.434 0.450 0.7046 0.542
Pidgin 0.629 0.011 <0.0001 0.667
VLC 0.247 0.082 0.0111 0.410
loo 0.196 0.173 0.9767 0.314
VDISC 0.311 0.271 <0.0001 0.330

m
in
im
um

sc
or
e
0
(F

-0
) overall 0.345 0.182 <0.0001 0.416

Asterisk 0.000 0.038 0.0264 0.000
FFmpeg 0.361 0.230 <0.0001 0.381
LibPNG 0.639 0.275 0.0004 0.868
LibTIFF 0.434 0.450 0.7051 0.503
Pidgin 0.601 0.011 <0.0001 0.678
VLC 0.247 0.082 0.0419 0.388
loo 0.193 0.173 0.9814 0.221
VDISC 0.311 0.271 <0.0001 0.330

dataset while the 𝑦-axis shows the 𝐹2 score. Note that in the following,
we look at the individual datasets of within separately.

From an interpretability viewpoint, there is clear evidence in Fig. 6
that LAVDNN is not exploiting terms to the extent possible. Specifically,
Pidgin, and to a lesser extent LibPNG, showcase 𝐹 ’s advantage over
𝐿 at exploiting a focused vocabulary. While less pronounced, the
same is true of FFmpeg and VLC. Of the remaining two projects from
the within dataset Asterisk proves universally hard to predict while
LibTIFF is comparatively easy to predicted for both 𝐿 and 𝐹 .

Table 6 shows the results of ANOVAs separately comparing the two
𝐹 models (F-all and F-0) with the three top-performing 𝐿 models.
𝐹 ’s performance shows that terms have unexploited value in six of
the nine datasets where 𝐹 performs better than 𝐿. Furthermore, its
performance is inferior on only one (where the 𝑝-value of 0.0264 is
not a strong endorsement). These results reinforce the general pattern
seen in the previous analysis, where the frequency models excel when
using smaller and less diverse vocabularies. The only within dataset
that 𝐹 truly struggles with is Asterisk, which, as seen in Table 1, has
the largest vocabulary and lowest percentage of vulnerable functions.

While it is easy to get drawn into the relative comparison of the 𝐹2
scores, we are also interested in the relative contribution that terms
make to the discrimination of vulnerable functions. To provide an
indication of how much room there is for improvement, the last column
of Table 6 shows the best 𝐹2 score that 𝐹 attains on the training data.
While not a hard limit on its performance with the test data, typically,
for the given list of dangerous words, the 𝐹2 score on the training data
provides an upper bound for a value seen using the test data. Thus,
this column provides an indication of the best that one might expect to

Information and Software Technology 146 (2022) 106844D. Binkley et al.

o

6

w
‘

Fig. 6. Dataset comparison (formally a bar graph is appropriate, but lines make the values visually easier to compare).
(
b
c
a
t

b
a
b

p

Table 7
Comparison of dangerous words counts.

Dataset 𝐹2 score dangerous words count

min 0 all min 0 all percent

Asterisk 0.000 0.000 22 3184 0.70%
FFmpeg 0.361 0.375 126 2111 5.96%
LibPNG 0.639 0.651 31 327 9.42%
LibTIFF 0.434 0.434 61 434 14.11%
Pidgin 0.601 0.629 28 1886 1.47%
VLC 0.247 0.274 38 1738 2.16%
loo 0.193 0.196 213 6618 3.22%
VDISC 0.311 0.311 18478 129966 14.22%

attain using only the terms found in the function names. While some
projects such as LibPNG and LibTIFF show room for improvement,
projects such as Pidgin and FFmpeg are within 0.038 and 0.011 of
their maximum 𝐹2 score.

Finally, Table 7 shows the number of dangerous words used by 𝐹
for each dataset found on the 𝑥-axis of Fig. 6. What is quite striking
in the table is how well the small vocabularies perform when using
a minimum score of zero (e.g., with LibPNG and LibTIFF). While the
smaller vocabularies never produce a numerically higher 𝐹2 score, none
f the differences is statistical significant (the smallest 𝑝-value is 0.729).

.3.4. Summary
Returning to RQ3’s ‘‘Does direct construction of the dangerous

ords list provide insight into LAVDNN?’’ The answer is a resounding
‘yes.’’ As seen in Table 6, 𝐹 outperforms 𝐿 for most datasets. While
on an absolute scale the 𝐹2 values are not high, the important take
home message here is that there is utility in the terms that LAVDNN is
failing to exploit. Hence, the training of future Deep Neural Networks
aimed at vulnerability prediction should include features based on the
terms in the hope of better exploiting their potential. Furthermore, the
relative performance on within where the vocabulary is more focused,
suggests two additional things. First, considered in the context of an
evolving system where past data from the same system can be used in
the prediction, 𝐹 alone provides a lightweight pre-filter to activities
such as manual code review. The second interesting implication comes
from 𝐹 attaining respectable performance on some of the datasets
(i.e., Pidgin’s 𝐹2 score of 0.651 and LibPNG of 0.629). Specifically,
these results are achieved using vanishingly little training data from
the neural net training perspective (e.g., only 26 and 31 vulnerable
function names exist in the data for Pidgin and LibPNG, respectively).

6.4. Threats to validity

We identify potential threats to the validity of our experimental
design and evaluation. One such threat is that the source of our
10
VDISC dataset is a collection of functions extracted from open-source
projects [25] that are unknown to us, both in scope, demographics, and
domain. This may have resulted in an unknown bias effect regarding
our results for VDISC. Furthermore, we evaluate on only six project-
based datasets. It would mitigate this threat to external validity if
the number of such datasets was increased. We continue to look for
additional datasets to use in our experiments. The external validity of
our diversity observations could also be improved by access to more
data with a known heterogeneity.

Moreover, the greedy search used by FindBest trades precision
finding a global maximum) for speed. Thus, we prioritize performance,
ut internal validity could improve using techniques with a lower
hance of getting stuck in local maxima. While this search is an
pproximation because local maxima exist, exhaustive searches using
he smaller datasets found the error was only a few percent.

A further threat arises from the tools used in our study. There may
e defects in the implementation that escaped our testing, thereby
ffecting our results. The same is true of LAVDNN, which was provided
y its authors.

Finally, the statistical tests used are all well established and their im-
lementations publicly available in R, and thus well vetted. However,

it is possible that more appropriate tests unknown to us might provide
more appropriate evidence. We also endeavored to follow the most up-
to-date information from the statistics community when interpreting
the models [26].

7. Related work

A source code vulnerability is a weakness in the source code that
can be exploited into a security issue. Publicly known vulnerabilities
are organized by common identifiers in the Common Vulnerabilities
and Exposures (CVE) database [23], where they are classified using
the Common Weakness Enumeration (CWE) [27], and ranked using the
Common Vulnerability Scoring System (CVSS) [28].

Over the last two decades, various methods have been presented
to identify potential security vulnerabilities in code based on static
program analysis [3,4]. The recent advances and successes in machine
learning (ML) have resulted in an increased interest in adapting these
techniques to the vulnerability prediction problem [29–33]. However,
the choice of feature types, classifiers, and data balancing techniques
has a large impact on the prediction’s performance [34]

The naturalness hypothesis [35] states that source code exhibits
similar statistical properties as other forms of human communication.
This means that corpus-based statistical learning can capture the local
regularity in source code, i.e., such models can predict with high
accuracy what code to expect in a given context, or what properties
such code should have. One application of this idea is the use of deep
feature representation learning on lexed C and C++ source code for

automatic function-level vulnerability detection [25].

Information and Software Technology 146 (2022) 106844D. Binkley et al.

F
F
t
n

D
i
n
p
g
c
i
a
a

t
t
L
i
p
i
l
t
w
n
s

w
m
s
t
t

C

t
W
i
F
o
i
a
r

D

c
i

A

t

R

Recurrent Neural Networks (RNN) and Long Short Term Memory
networks (LSTM) have been successfully applied for code reviews and
vulnerability detection [36–38], for example by training a Bidirectional
LSTM on so-called code gadgets, which are collections of semantically
related lines [19]. Semantic properties of code can be predicted us-
ing code2vec [39], which represents code snippets as a fixed-length
code vector, very similar to how word2vec [40] represents sentences.
Harer et al. find that ML-based vulnerability prediction trained di-
rectly on C and C++ source code performs better than alternative
approaches that were trained using semantic (build-time) information
for the same source code (such as control flow information and def-use
relations) [41].

One of the main challenges to all of these approaches is that they
are computationally expensive to develop, as well as to keep up to
date with newly discovered vulnerability patterns. The LAVDNN re-
search [12] that inspired this paper is an example of a more lightweight
approach with more modest goals. By using function names as semantic
cues for training a Deep Neural Network (DNN), the model aims to
predict potential vulnerability of a function based on its name, with
the goal of helping a developer (or analysis technique) focus on those
functions that should be scrutinized more carefully.

8. Concluding remarks

LAVDNN [12] attempts lightweight function vulnerability predic-
tion based solely on the function’s name. This paper takes that idea
a step further and explores featherweight prediction based solely on
the terms that make up function names. In doing so, this paper aims
to provide an interpretability viewpoint for better understanding of an
otherwise ‘‘black box’’ DNN. We find that LAVDNN has limited ability
to identify dangerous words, and generally cannot provide an effective
ranking of those words.

Comparing the relative performance of FAVD𝐿 and FAVD𝐹 allows
us to probe whether LAVDNN learns ‘‘dangerous words’’ or attempts
classification in other ways. Generally, FAVD𝐿 provides much more
consistent (though not very good) performance. When faced with a
diverse dataset such as VDISC, the performance is generally better than
AVD𝐹 . However, with the more focused vocabulary of a single system,
AVD𝐹 dramatically outperforms FAVD𝐿. From this, we can conclude
hat LAVDNN has some ability to identify dangerous words, but does
ot generally provide an effective ranking of those words.

The performance difference suggests that there is room to augment
NN’s with networks that directly learn dangerous words, particularly

n more mature projects with more stable vocabularies. It is also worth
oting that there are many cases in which FAVD𝐹 outperforms the
ublicly available implementation of LAVDNN. This improvement sug-
ests two things. First, augmentation with a dangerous words predictor
an improve predictions if appropriate context is detected. The second
mplication is that for a mature project, FAVD𝐹 might replace LAVDNN
s an even lighter weight predictor. In this case, FAVD𝐹 has the
dvantage that it needs orders of magnitude less training data.

Future work includes qualitative analysis that uses the ground
ruth to assess to what extent the vulnerability predictions by the
wo approaches overlap, are in conflict, or are complementary. When
AVDNN is to be augmented by other word finding algorithms, it
s critical to understand what words LAVDNN already finds. Another
ossibility is to try to determine if the DNN picks up on patterns
nvolving various n-grams (e.g., 3-grams composed of three consecutive
etters from an identifier) and also on non-adjacent letter patterns in
he identifiers. With respect to the technique itself, one area for future
ork is to consider alternative sources of dangerous words. These need
ot all be code-based. For example, issues noted during requirements
olicitation might provide a source of additional dangerous words.

As a possible LAVDNN augmentation, we plan to investigate heavier-
eight vocabulary possibilities. For example, we plan to train a similar
odel to LAVDNN on our own data, and investigate the value of

plitting identifiers during the DNN model training phase. We also plan
o consider sources of vocabulary beyond function names to improve
he prediction, such as, formal parameters, called functions, and alike.
11
RediT authorship contribution statement

David Binkley: Conceptualization, Methodology, Software, Valida-
ion, Formal analysis, Investigation, Resources, Writing – original draft,

riting – review & editing, Visualization, Supervision, Project admin-
stration. Leon Moonen: Conceptualization, Methodology, Validation,
ormal analysis, Investigation, Resources, Data curation, Writing –
riginal draft, Visualization, Supervision, Project administration, Fund-
ng acquisition. Sibren Isaacman: Methodology, Validation, Formal
nalysis, Investigation, Resources, Writing – original draft, Writing –
eview & editing, Visualization, Supervision, Project administration.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgment

Dr. Moonen’s work is supported by the Research Council of Norway
hrough the secureIT project (RCN contract #288787).

eferences

[1] P. Anderson, T. Reps, T. Teitelbaum, M. Zarins, Tool support for fine-grained
software inspection, IEEE Softw. 20 (4) (2003) 42–50.

[2] A. Bessey, D. Engler, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, A few billion lines of code later, Commun. ACM
53 (2) (2010) 66–75.

[3] M. Pistoia, S. Chandra, S.J. Fink, E. Yahav, A survey of static analysis methods
for identifying security vulnerabilities in software systems, IBM Syst. J. 46 (2)
(2007) 265–288.

[4] M. Kulenovic, D. Donko, A survey of static code analysis methods for secu-
rity vulnerabilities detection, in: International Convention On Information And
Communication Technology, Electronics And Microelectronics, MIPRO, 2014, pp.
1381–1386.

[5] P. Anderson, 90% Perspiration: engineering static analysis techniques for indus-
trial applications, in: International Working Conference On Source Code Analysis
And Manipulation, SCAM, 2008, pp. 3–12.

[6] A. Austin, L. Williams, One technique is not enough: a comparison of vulnera-
bility discovery techniques, in: International Symposium On Empirical Software
Engineering And Measurement, IEEE, 2011, pp. 97–106.

[7] D. Baca, B. Carlsson, K. Petersen, L. Lundberg, Improving software security with
static automated code analysis in an industry setting, Softw. Pract. Exp. 43 (3)
(2013) 259–279.

[8] M. Fagan, Design and code inspections to reduce errors in program development,
IBM Syst. J. 15 (3) (1976) 182–211.

[9] B. Freimut, L.C. Briand, F. Vollei, Determining inspection cost-effectiveness by
combining project data and expert opinion, IEEE Trans. Softw. Eng. 31 (12)
(2005) 1074–1092.

[10] C. Wohlin, A. Aurum, H. Petersson, F. Shull, M. Ciolkowski, Software inspection
benchmarking - a qualitative and quantitative comparative opportunity, in:
International Software Metrics Symposium, METRICS 2002, IEEE, 2002.

[11] A.A. Porter, H. Siy, A. Mockus, L.G. Votta, Understanding the sources of variation
in software inspections, ACM Trans. Softw. Eng. Meth. 7 (1) (1998) 41–79.

[12] R. Li, C. Feng, X. Zhang, C. Tang, A lightweight assisted vulnerability discovery
method using deep neural networks, IEEE Access 7 (2019) 80079–80092.

[13] J. Nam, W. Fu, S. Kim, T. Menzies, L. Tan, Heterogeneous defect prediction,
IEEE Trans. Softw. Eng. 44 (9) (2018) 874–896.

[14] X.-Y. Jing, F. Wu, X. Dong, B. Xu, An improved SDA based defect prediction
framework for both within-project and cross-project class-imbalance problems,
IEEE Trans. Softw. Eng. 43 (4) (2017) 321–339.

[15] S. Wang, T. Liu, L. Tan, Automatically learning semantic features for defect
prediction, in: International Conference On Software Engineering, ICSE, 2016,
pp. 297–308.

[16] G. Lin, S. Wen, Q.-L. Han, J. Zhang, Y. Xiang, Software vulnerability detection
using deep neural networks: a survey, Proc. IEEE (2020) 1–24.

[17] K.Z. Sultana, V. Anu, T.-Y. Chong, Using software metrics for predicting vulner-
able classes and methods in java projects: A machine learning approach, 33 (3)
(2020) e2303.

[18] H.K. Dam, T. Tran, T.T.M. Pham, S.W. Ng, J. Grundy, A. Ghose, Automatic
feature learning for predicting Vulnerable software components, IEEE Trans.
Softw. Eng. 47 (1) (2018) 67–85.

http://refhub.elsevier.com/S0950-5849(22)00020-9/sb1
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb1
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb1
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb2
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb2
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb2
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb2
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb2
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb3
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb3
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb3
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb3
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb3
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb4
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb4
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb4
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb4
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb4
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb4
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb4
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb5
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb5
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb5
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb5
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb5
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb6
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb6
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb6
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb6
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb6
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb7
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb7
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb7
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb7
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb7
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb8
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb8
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb8
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb9
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb9
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb9
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb9
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb9
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb10
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb10
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb10
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb10
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb10
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb11
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb11
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb11
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb12
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb12
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb12
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb13
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb13
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb13
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb14
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb14
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb14
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb14
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb14
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb15
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb15
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb15
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb15
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb15
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb16
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb16
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb16
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb17
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb17
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb17
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb17
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb17
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb18
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb18
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb18
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb18
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb18

Information and Software Technology 146 (2022) 106844D. Binkley et al.
[19] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, Y. Zhong, VulDeePecker:
a deep learning-based system for vulnerability detection, in: Network And
Distributed System Security Symposium, 2018, arXiv:1801.01681.

[20] G. Lin, J. Zhang, W. Luo, L. Pan, Y. Xiang, O. De Vel, P. Montague, Cross-project
transfer representation learning for vulnerable function discovery, IEEE Trans.
Ind. Inform. 14 (7) (2018) 3289–3297.

[21] C. Caprile, P. Tonella, Nomen est omen: Analyzing the language of function
identifiers, in: Working Conference On Reverse Engineering, WCRE, 1999, pp.
112–122.

[22] E. Hill, D. Binkley, D. Lawrie, L. Pollock, K. Vijay-Shanker, An empirical study
of identifier splitting techniques, Emp. Softw. Eng. 19 (6) (2014) 1754–1780.

[23] MITRE, Common Vulnerabilities and Exposures (CVE), https://cve.mitre.org/.
[24] SYNOPSYS, Open Hub, the Open Source Network, https://www.openhub.net/.
[25] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir, P. Ellingwood,

M. McConley, Automated vulnerability detection in source code using deep
representation learning, in: International Conference On Machine Learning And
Applications, ICMLA, IEEE, 2018, pp. 757–762.

[26] R.L. Wasserstein, A.L. Schirm, N.A. Lazar, Moving to a world beyond ‘‘p < 0.05’’,
Am. Stat. 73 (sup1) (2019) 1–19.

[27] MITRE, Common Weakness Enumeration (CWE), https://cwe.mitre.org/.
[28] Forum of Incident Response and Security Teams (FIRST), Common Vulnerability

Scoring System (CVSS), https://www.first.org/cvss.
[29] Y. Pang, X. Xue, H. Wang, Predicting vulnerable software components

through deep neural network, in: International Conference On Deep Learning
Technologies, ICDLT, ACM, 2017, pp. 6–10.

[30] S.M. Ghaffarian, H.R. Shahriari, Software vulnerability analysis and discovery
using machine-learning and data-mining techniques: a survey, ACM Comput.
Surv. 50 (4) (2017) 1–36.

[31] A. Handa, A. Sharma, S.K. Shukla, Machine learning in cybersecurity : A review,
Data Min. Knowl. Discov. 9 (4) (2019) e1306.
12
[32] Z. Li, D. Zou, J. Tang, Z. Zhang, M. Sun, H. Jin, A comparative study
of deep learning-based vulnerability detection system, IEEE Access 7 (2019)
103184–103197.

[33] J. Jiang, X. Yu, Y. Sun, H. Zeng, A survey of the software vulnerability discovery
using machine learning techniques, in: Artificial Intelligence And Security, in:
Lecture Notes in Computer Science, 11635, Springer, 2019, pp. 308–317.

[34] A. Kaya, A.S. Keceli, C. Catal, B. Tekinerdogan, The impact of feature types,
classifiers, and data balancing techniques on software vulnerability prediction
models, J. Softw. Evol. Process 31 (9) (2019) e2164.

[35] M. Allamanis, E.T. Barr, P. Devanbu, C. Sutton, A survey of machine learning
for big code and naturalness, ACM Comput. Surv. 51 (4) (2018) 81:1–81:37.

[36] A. Gupta, N. Sundaresan, Intelligent code reviews using deep learning, in: KDD
Deep Learning Day, 2018, p. 9.

[37] G. Fan, X. Diao, H. Yu, K. Yang, L. Chen, Software defect prediction via
attention-based recurrent neural network, Sci. Program. (2019).

[38] A. Xu, T. Dai, H. Chen, Z. Ming, W. Li, Vulnerability detection for source code
using contextual LSTM, in: International Conference On Systems And Informatics,
ICSAI, 2019, pp. 1225–1230.

[39] U. Alon, M. Zilberstein, O. Levy, E. Yahav, Code2vec: Learning distributed
representations of code, in: Principles Of Programming Languages, POPL, ACM,
2019, pp. 1–29.

[40] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed repre-
sentations of words and phrases and their compositionality, in: International
Conference On Neural Information Processing Systems, NIPS, Curran Associates
Inc. 2013, pp. 3111–3119.

[41] J.A. Harer, L.Y. Kim, R.L. Russell, O. Ozdemir, L.R. Kosta, A. Rangamani,
L.H. Hamilton, G.I. Centeno, J.R. Key, P.M. Ellingwood, E. Antelman, A.
Mackay, M.W. McConley, J.M. Opper, P. Chin, T. Lazovich, Automated Software
Vulnerability Detection with Machine Learning, Tech. rep., 2018, CoRR e-print,
arXiv:1803.04497.

http://arxiv.org/abs/1801.01681
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb20
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb20
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb20
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb20
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb20
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb21
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb21
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb21
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb21
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb21
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb22
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb22
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb22
https://cve.mitre.org/
https://www.openhub.net/
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb25
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb25
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb25
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb25
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb25
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb25
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb25
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb26
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb26
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb26
https://cwe.mitre.org/
https://www.first.org/cvss
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb29
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb29
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb29
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb29
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb29
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb30
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb30
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb30
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb30
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb30
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb31
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb31
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb31
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb32
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb32
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb32
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb32
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb32
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb33
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb33
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb33
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb33
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb33
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb34
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb34
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb34
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb34
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb34
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb35
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb35
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb35
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb36
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb36
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb36
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb37
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb37
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb37
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb38
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb38
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb38
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb38
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb38
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb39
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb39
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb39
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb39
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb39
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb40
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb40
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb40
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb40
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb40
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb40
http://refhub.elsevier.com/S0950-5849(22)00020-9/sb40
http://arxiv.org/abs/1803.04497

	Featherweight assisted vulnerability discovery
	Introduction
	Background
	
	Identifier splitting

	Approach
	Research questions
	Experimental design
	Datasets and ground truth
	Performance measures
	Procedure

	Results
	RQ1
	RQ2
	RQ3
	Exploration of and
	Exploring the impact of weight
	Determining the best weights using training data
	Summary

	Threats to validity

	Related work
	Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References

