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Abstract—6G is the next generation for the communication
systems. In recent years, machine learning algorithms have been
applied widely in various fields such as health, transportation,
and the autonomous car. The predictive algorithms will be
used in 6G problems. With the rapid developments of deep
learning techniques, it is critical to take the security concern into
account when applying the algorithms. While machine learning
offers significant advantages for 6G, AI models’ security is
normally ignored. Due to the many applications in the real
world, security is a vital part of the algorithms. This paper
proposes a mitigation method for adversarial attacks against
proposed 6G machine learning models for the millimeter-wave
(mmWave) beam prediction using adversarial learning. The
main idea behind adversarial attacks against machine learning
models is to produce faulty results by manipulating trained
deep learning models for 6G applications for mmWave beam
prediction. We also present the adversarial learning mitigation
method’s performance for 6G security in millimeter-wave beam
prediction application with fast gradient sign method attack.
The mean square errors of the defended model under attack
are very close to the undefended model without attack.

Index Terms—machine learning, AI, millimeter-wave, beam-
forming, adversarial machine learning

I. INTRODUCTION

In the past 20 years, most of the physical layer technolo-
gies, i.e., modulations, multiple access waveforms, coding
techniques and time/frequency multiplexing, have flourished
over the evolution of cellular systems. However, up to 4G,
time-frequency domain technologies have been explored to
increase overall system capacity [1]. The recent developments
in 5G and beyond technologies support emerging applications
such as smart homes, vehicular networks, augmented reality
(AR), virtual reality (VR) with unprecedented rates enabled
by recent advances in massive multiple-input multiple-output
(MIMO), millimeter-wave (mmWave) communications, net-
work slicing, small cells, and Internet of things (IoT). These
complex structures of 5G and beyond technologies can be
captured by using data-driven approach machine learning
(ML) algorithms [2]. The strong learning, reasoning and
intelligent recognition abilities of ML allow the network
structure to train and adapt itself to support the diverse
demands of the systems without human intervention [3].

The extraordinary growth of data traffic on wireless com-
munication has driven the need to examine the highest fre-

quency spectrum to meet the requirements by using mmWave
communications [4]. The frequency range of mmWaves is be-
tween 30 and 300 GHz, i.e. an available bandwidth of about
250 GHz. Enabling mmWave communication faces mainly
three critical challenges [5] i) the sensitivity for atmospheric
attenuation obligates it to propagate solely by line-of-sight
paths, ii) hand over problem between base stations (BSs),
iii) adjustment of the large numbers of beamforming arrays.
In addition, due to the use of large antenna arrays and low
complexity, transceiver demands are captured by using ML
algorithms for mmWave communication.

mmWave communication systems require the pointing of
the narrow beams. The goal is to choose the best beams for
the analogue beamforming with both receiver and transmitter
having multi-antenna arrays. A beam codeword is a set of
analogue phase-shifted values applied to the antenna elements
forming an analogue beam. In [6], deep learning base beam
selection is proposed for exploiting channel state information
for the sub-6 GHz links. In addition to beam prediction,
information about the locations and sizes of vehicles in the
communication environment are used in [7] to predict the
optimal beam pair. Locational based beamforming solutions
are more suitable for line-of-sight (LOS) communication. The
same locations for the non-line-of-sight (NLOS) transmission
need different beamforming solutions.

The integration of the ML for the 6G and beyond technolo-
gies lead to potential security concerns. Especially, wireless
communication systems have security vulnerabilities due to
their nature. The studies of 6G and beyond technologies
with ML methods should be evaluated in terms of security.
Current research is mainly building the ML models for the 6G
communication problems, and security concerns are mostly
ignored in previous studies. Alkhateeb et al. [5] proposed
a feed-forward deep learning model for RF beamforming
codeword prediction with several base stations (BSs) with
multiple users. The BSs beamforming vectors are predicted
from the received signals using the omni and quasi-omni
beam patterns to enable both LOS and NLOS transmissions.
While the proposed method in [5] showed promising results
for the beamforming problem, the security of the deep
learning algorithm itself was not investigated. Based on the



shortcomings of the literature’s security concepts, we deal
with the security problem of ML application for beamforming
prediction. More specifically, in this study, we focus on
adversarial attack strategies based on loss maximisation-
based attacks against proposed ML models for 6G mmWave
communication. We consider the adversarial ML attacks to
poisoning the beamforming prediction model [5]. Thus our
main contributions for this paper are as follows:

• We show that an undefended RF beamforming codeword
deep learning model’s prediction performance will de-
crease with the craftily designed adversarial noise.

• We demonstrated that the adversarial training based
robustness approach is one of the mitigation methods
for this domain.

The rest of the paper is organized as follows: Section II de-
scribes background information about beamforming and deep
learning algorithms. Section III shows our adversarial model
and Section IV evaluates the proposed model according to
defined research questions. Finally, Section V concludes this
paper.

Notations
In this paper, we employ the following notations:

• Vectors are denoted in lowercase bold font and matrices
in uppercase bold font i.e., a and A respectively.

• For a given vector a, ai,j and ak denote the (i, j)-th
component of a and k-th component of a respectively.

II. BACKGROUND INFORMATION

A. Downlink Transmission

Consider a mmWave communication system as in Figure
1 where N is the number of the BSs with equipped M
antennas, serving for one mobile user who has a single
antenna. All the BSs are connected with a cloud processing
unit. The transmitted signal s = [s1, s2, . . . , sK ] with K
subcarriers is firstly precoded by using code vector ck =
[ck,1, ck,2, . . . , ck,N ]T and then transformed into time domain
using K-point IFFT operation. Thus, the baseband signal
from the n-th BS and k-th subcarrier is

xk,n = fnck,nsk (1)

where fn is the beam steering vector defined for each BS
antennas as [fn]m = 1√

M
ejθn,m where θn,m is a quantized

angle. RF precoding matrix FRF = blkdiag(c1, c2...,cN ) ∈
CNM×N The received signal at the k-th subcarrier is ex-
pressed as

yk =

N∑
n=1

hTk,nxk,n + vk (2)

where vk is additive white Gaussian noise (AWGN) with
variance σ2, i.e., N(0, σ2).

B. Effective Achievable Rate

Perfect channel information satisfies optimum achievable
rate, however, the channel state information requires large
training overhead due to the large number of antennas. On
the other hand, the channel information and beamforming
vector need to be updated as the user moves. These issues
can be captured with the channel coherence time TC and
channel beam coherence time TB , respectively examined in
detail in [8]. The multi-path channel and beams stay aligned
on the TC and TB duration respectively. The channel training
and beamforming design take place in the first Ttr, the rest
of it is used to the data transmission. To develop a model
with efficient channel training and beamforming design, the
effective achievable rate needs to be maximized. The final
problem formulations [5] are∏(

Ttr, {ck}Kk=1,F
R,F

)
=

argmax

(
1− TTR

TB

) K∑
k=1

log2

(
1 + SNR|

N∑
n=1

hTk,nfnck,n|2
)

s.t. fn ∈ F , ∀n
‖ck‖2 = 1 ∀k

(3)
where F is the quantized codebook for the BSs RF beam-
forming vectors. Solving these equations determine a solution
for a low channel training ahead and realize the beamforming
vector to satisfy the maximum achievable rate, R.

C. Using Deep Learning Algorithms to estimate RF beam-
forming vectors

Using the benefits of ML algorithms gives a novel solution
for a massive amount of MIMO channel training and scan-
ning a large number of narrow beams. The beams depend
on the environmental conditions like user and BSs locations,
furniture, trees, buildings e.t.c. It is too difficult to define all
these environment conditions as a closed-form equation. A
good alternative is to use omni and quasi-omni beam patterns
to predict the best RF beamforming vectors. Using these
beam patterns benefits to take into account the reflection and
diffraction of the pilot signal. The deep learning solution
consists of two states: training and prediction. Firstly, the
deep learning model learns the beams according to the omni-
received pilots. Secondly, the model uses the trained data to
predict the RF beamforming vector for the current condition.

1) Training Steps: The user sends uplink training pilot
sequences for each beam coherence time TB . BSs combine
received pilot sequences on RF beamforming vector and feed
them to the cloud. The cloud uses the received sequences
from all the BSs as the input of the deep learning algorithm
to find the achievable rate in (4) for every RF beamforming
vector to represent the desired outputs, where gp is the
channel coefficient for omni beams.

R(p)
n =

1

K

N∑
n=1

log2
(
1 + SNR|hTk,ngp|2

)
(4)



Fig. 1: Block diagram of the mmWave beamforming system.

2) Learning Steps: In this stage, the trained deep learning
model is used to predict the RF beamforming vectors. Firstly,
the user sends an uplink pilot sequence. The BSs combine
these sequences and send them to the cloud. Then, the cloud
uses the trained deep learning model to predict the best RF
beamforming vectors to maximize the achievable rate for
each BS. Finally, BSs use the predicted RF beamforming
vectors to estimate the effective channel hk,n.

To sum up, ML algorithms find diverse applications in
a wireless communication system where we consider the
RF beamforming vector prediction [5]. On the other hand,
security concerns in wireless communication are also a
problem for the ML algorithm. In the following subsection,
we will briefly describe adversarial ML, attack environments,
and adversarial training that we have used in this study.

D. Adversarial Machine Learning

Adversarial machine learning is an attack technique that
attempts to fool neural network models by supplying craftily
manipulated input with a small difference [9]. Attackers
apply model evasion attacks for phishing attacks, spams, and
executing malware code in an analysis environment [10].
There are also some advantages to attackers in misclassifica-
tion and misdirection of models. In such attacks, the attacker
does not change training instances. Instead, he tries to make
some small perturbations in input instances in the model’s
inference time to make this new input instance seem safe
(i.e. normal behaviour) [11]. We mainly concentrate on this
kind of adversarial attacks in this study. There are many
attacking methods for deep learning models, and the Fast-
Gradient Sign Method (FGSM) is the most straightforward
and powerful attack type. We only focus on the FGSM
attack, but our solution to prevent this attack can be applied
to other adversarial machine learning attacks. FGSM works
by utilizing the gradients of the neural network to create
an adversarial example to evade the model. For an input
instance x, the FGSM utilizes the gradients ∇x of the loss
value ` for the input instance to build a new instance xadv

that maximizes the loss value of the classifier hypothesis h.

This new instance is named the adversarial instance. We can
summarize the FGSM using the following explanation:

xadv = x+ ε · sign(∇x`(θ,x, y)) (5)

By adding a slowly modest noise vector η ∈ Rn whose
elements are equal to the sign of the features of the gradient
of the cost function ` for the input x ∈ Rn, the attacker can
easily manipulate the output of a deep learning model. Figure
2 shows the details of the FGSM attack.

Input: x ∈ Rn

Loss direction:
sign(∇x`(θ,x, y)) + - + · · · · · · · · · · · · +

x0 x1 x2 · · · · · · · · · · · · xn

Noise vector
η = ε · sign(∇x`(θ,x, y))

+ε −ε +ε · · · · · · · · · · · · +ε

Generated
Adversarial:
xadv ∈ Rn

x0 + ε x1 − ε x2 + ε · · · · · · · · · xn + ε

Fig. 2: FGSM attack steps. The input vector x ∈ Rn is
poisoned with loss maximization direction.

E. Adversarial Training

Adversarial training is a widely recommended defense
technique that implies generating adversarial instances using
the gradient of the victim classifier, and then re-training the
model with the adversarial instances and their respective
labels. This technique has demonstrated to be efficient in
defending models from adversarial attacks.

Let us first think of a common classification problem with
training instances X ∈ Rm×n of dimension d, and a label
space Y . We assume the classifier hθ has been trained to
minimize a loss function ` as follows:

min
θ

1

m

m∑
i=1

`(hθ(xi, yi)) (6)

Given a classifier model hθ(·) and an input instance x with
a responding output y, then an adversarial instance xadv is
an input such that:

hθ(x
adv) 6= y ∧ d(x, xadv) < ε (7)

where d(·, ·) is the distance metric between two input in-
stances, the original input x and the adversarial version xadv .
Most actual adversarial model attacks transform Equation (7)
into the following optimization problem:

argmax
x

`
(
hθ(x

adv), y
)

(8)

s.t. d(x, xadv) < ε (9)

where ` is the loss function between predicted output h(·)
and correct label y. In order to mitigate such attacks, at
per training step, the conventional training procedure from
Equation 6 is replaced with a min-max objective function



to minimize the expected value of the maximum loss, as
follows:

min
θ

E
(x,y)

(
max

d(x,xadv)<ε
`(h(xadv), y)

)
(10)

III. SYSTEM MODEL

A. Adversarial Training

Figure 3 shows the adversarial training process. After the
model is trained, adversarial inputs are created using the
model itself, combined with legitimate users information and
added to the training. When the model reaches the steady-
state state, the training process is completed. In this way,
the model will both predict RF beamforming codeword for
legitimate users while at the same time being immune to the
craftily designed noise attack that will be added as input.
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Fig. 3: The diagram of RF beamforming codeword adversar-
ial training.

B. Capability of the Attacker

We assumed that the attacker’s primary purpose is to
manipulate the RF model by applying carefully crafted noise
to the input data. In a real-world scenario, this white-box
setting is the most desired choice for an attacker that does not
take the risks of being caught in a trap. The problem is that
it requires the attacker to access the model from outside to
generate adversarial examples. After manipulating the input
data, the attacker can exploit the RF beamforming codeword
prediction model’s vulnerabilities in the same manner as in
an adversary’s sandbox environment. The prediction model
predicts the adversarial instances when the attacker can
convert some model’s outputs to other outputs (i.e. wrong
prediction).

However, to prevent this noise addition from being easily
noticed, the attacker must answer an optimization problem to
determine which regions in the input data (i.e. beamforming)
that must be modified. By solving this optimization problem
using one of the available attack methods [10], the attacker
aims to reduce the prediction performance on the manipulated
data as much as possible. In this study, to limit the maxi-
mum allowed perturbation allowed for the attacker, we used

l∞ norm, which is the maximum difference limit between
original and adversarial instances. Figure 4 shows the attack
scenario. The attacker gets an legitimate input, x, creates a
noise vector with an ε budget η = ε · sign(∇x`(θ,x, y)),
sums the input instance and the craftily designed noise to
create adversarial input xadv = x+ η.
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Fig. 4: RF Beamforming manipulation process.

IV. EXPERIMENTS

In the experiments, we tested three different scenarios

• SC1: Undefended beamforming codework prediction
model without any adversary

• SC2: Undefended beamforming codework prediction
model with FGSM attack

• SC3: Adversarial trained beamforming codework pre-
diction model with FGSM attack

The experiments were performed using the Python scripts
and ML libraries: Keras, Tensorflow, and Scikit-learn, on the
following machine: 2.8 GHz Quad-Core Intel Core i7 with
16GB of RAM. For all scenarios, two models, undefended
and adversarial trained, were built to obtain prediction results.
In the first model, the model is trained without any input
poisoning. The first model (i.e. undefended model) was used
with legitimate users (for SC1) and adversaries (for SC2).
The second model (i.e. the adversarially trained model) was
used under the FGSM attack. The hyper-parameters such as
the number of hidden layers and the number of neurons in
the hidden layers, the activation function, the loss function,
and the optimization method are the same for both models.

The model architectures are given in Table I and the hyper-
parameters selected in Table II.

TABLE I: Model architecture

Layer type Layer information
Fully Connected + ReLU 100
Fully Connected + ReLU 100
Fully Connected + ReLU 100
Fully Connected + TanH 1



TABLE II: Milimater-wave beam prediction model parame-
ters

Parameter Value
Optimizer Adam

Learning rate 0.01
Batch Size 100

Dropout Ratio 0.25
Epochs 20

A. Research Questions

We consider the following two research questions (RQs):
• RQ1: Is the deep learning based RF beamforming

codeword predictor vulnerable for adversarial machine
learning attacks?

• RQ2: Is the iterative adversarial training approach a
mitigation method for the adversarial attacks in beam-
forming prediction?

B. RF Beamforming Data Generator

We employed the generic deep learning dataset for
millimeter-wave and massive MIMO applications (Deep-
MIMO) data generator in our experiments [12]. Figure 5
shows the bird’s-eye view of a section of the O1’ ray-tracing
scenario, showing the two streets’ intersection.

Fig. 5: Original scenario [12].

In this section, we conduct experiments on the mmWave
communication and massive MIMO applications dataset from
the publicly available data set repository. We implemented
the proposed mitigation method using Keras and TensorFlow
libraries in the Python environment.

C. Results for RQ1

Figure 6 shows the original undefended deep learning
model results without any attack. According to the figure, the
deep learning model’s predictions are very close the original
value. Figure 7 shows the training history of the beamforming
prediction model with 35.000 training instances. The model
is trained with clean (non-perturbated) instances. Figure 8
shows the performance results of the beamforming prediction
model’s evaluation results under the FGSM attack. We have
used l∞ norm as the distance metric, which shows the
maximum allowable perturbation amount for each item in the
input vector x. According to the figures, the undefended RF
beamforming codeword prediction model is vulnerable for
the FGSM attack. The MSE performance result of the model
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Fig. 6: Original (Undefended) RF beamforming codeword
deep learning model results.
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Fig. 7: The beamforming prediction model history.

under attack is approximately 40 (i.e. 0.00843(Normal)
0.00021(Attacked) ≈

40.14) times higher.

D. Results for RQ2

Adversarial training is a popularly advised defense mecha-
nism that proposes generating adversarial instances using the
victim model’s loss function, and then re-training the model
with the newly generated adversarial instances and their
respective outputs. This approach has proved to be effective
in protecting deep learning models from adversarial machine
learning attacks. Figure 9 shows the adversarial trained deep
learning model results with FGSM attack. According to the
figure, the deep learning model’s predictions are very close
to the original (i.e. undefended and non-attacked) value in
Figure 6. Figure 10 shows the MSE of the performance
results for all scenarios.

E. Threats to Validity

A key external validity threat is related to the general-
ization of results [13]. We used only the RF beamforming
dataset in our experiments, and we need more case studies to
generalize the results. Moreover, the dataset reflects different
types of milimeter-wave beams.

Our key construct validity threat is related to the selection
of attack type FGSM. Nevertheless, note that this attack is
from the literature [13] and applied to several deep learning
usage domains. In the future, we will conduct dedicated
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Fig. 8: Attacked (Undefended) RF beamforming codeword
deep learning model results.
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Fig. 9: Attacked (Undefended) RF beamforming codeword
deep learning model results with adversarial training.
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Fig. 10: The performance results for all scenarios.

empirical studies to investigate more adversarial machine
learning attacks systematically.

Our main conclusion validity threat is due to finding the
best attack budget ε that is responsible for manipulating
the legitimate user’s signal for poisoning the beamforming
prediction model. To mitigate this threat, we repeated each
experiment 20 times to reduce the probability that the results
were obtained by chance. In a standard neural network
training, all weights are initialized uniformly at random.
In the second stage, using optimization, these weights are
updated to fit the classification problem. Since the training
started with a probabilistic approach, there is a possibility of

facing optimization’s local minimum problem. To eliminate
the local minimum problem, we repeat the training 20 times
to find the ε value that gives the best attack result. In each
repetition, the weights were initialized uniformly at random
but with different values. If the optimization function failed
to find the global minimum in the next experiment, it is likely
to see it as the weights have been initialized with different
values.

V. CONCLUSIONS AND FUTURE WORKS

This research discussed one of the security issues related to
RF beamforming codeword prediction models’ vulnerabilities
and solutions: (1) Is the deep learning-based RF beamform-
ing codeword predictor vulnerable for adversarial machine
learning attacks? (2) Is the iterative adversarial training
approach a mitigation method for the adversarial attacks in
beamforming prediction? We conducted experiments with the
DeepMIMO’s O1’ ray-tracing scenario scenario to answer
these questions. Our results confirm that the original model is
vulnerable to a modified FGSM attack. One of the mitigation
methods is the iterative adversarial training approach. Our
empirical results also show that iterative adversarial training
successfully increases the RF beamforming prediction per-
formance and creates a more accurate predictor, suggesting
that the strategy can improve the predictor’s performance.
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