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Abstract—We are witnessing the emergence of a myriad of
hardware and software systems that quantifies sport and physical
activities. These are frequently touted as game changers and
important for future sport developments. The vast amount of
generated data is often visualized in graphs and dashboards,
for use by coaches and other sports professionals to make
decisions on training and match strategies. Modern machine-
learning methods has the potential to further fuel this process
by deriving useful insights that are not easily observable in the
raw data streams.

This paper tackles the problem of deriving peaks in soccer
players’ ability to perform from subjective self-reported wellness
data collected using the PMSys system. For this, we train a long
short-term memory recurrent neural network model using data
from two professional Norwegian soccer teams. We show that our
model can predict performance peaks in most scenarios with a
precision and recall of at least 90%. Equipped with such insight,
coaches and trainers can better plan individual and team training
sessions, and perhaps avoid over training and injuries.

Index Terms—Machine learning, interdisciplinary sport appli-
cation, medical documentation, performance prediction

I. INTRODUCTION

International sport is undergoing a revolution, fueled by
the rapidly increasing availability of athlete quantification
data, sensor technology, and advanced analytic software. Al-
gorithmic analysis of this data might provide vital insights
for individual training personalization and injury prevention.
Key sport governance organizations like Fédération Interna-
tionale de Football Association (FIFA) have approved certain
wearables and electronic performance and tracking systems in
official football matches, providing a foundation for evidence-
based decisions and team performance improvements [1, 2]. In
Brazil 2014, the German national soccer team used wearable
technology to profile the players, and with these statistics it is
believed that coach Joachim Löw made the crucial substitute
of Mario Götze who scored the winning goal in the world cup
final.1 Although success stories certainly exist, many important
areas of sports quantification remain unexplored.

In our case, we are interested in methods for preventing
sport injuries. Over two decades with development of player
tracking technologies has given us high-fidelity data streams

1https://www.verdict.co.uk/world-cup-wearables/

capturing athlete’s movements during on field session and
matches in minute detail [3]. Some existing tools, like our
PMSys system [4], also capture athlete performance met-
rics off-field using subjective standard self-reporting schemes.
Coaches can consume this data from detailed dashboards and
plots visualizing trends and statistics in the captured data; both
on the individual level, as shown in Figure 1(b), or as aggregate
team data, as shown in Figure 1(a). Still, effective screening
programs and methods to predict athletes that are at high risk
of suffering a sport injury remain largely missing [5].

In this paper, we propose that data from systematic longi-
tudinal monitoring of individual athletes’ phenotypic and self-
reported parameters, like those collected by PMSys, can be
used to predict peaks in readiness to train and ultimately pre-
vent injuries. Subjective and self reported data are influenced
by individual interpretation and preferences, which can vary
over time. As such, there might not exist an exact mapping
from reported values to an universal scale common to all play-
ers. Self reporting is, however, commonly used and a widely
accepted methodology for producing meaningful insights in
other fields of research, such as in psychology [6, 7, 8].

Based on collected subjective self-reported data from two
professional soccer teams in Norway, we show the effective-
ness of using a Long Short-Term Memory (LSTM) recurrent
neural network, a common machine learning technique [9],
to predict reported training load. With such data, coaches can
adjust training load to avoid over training, which is key to
keep individual athletes fit.

Our findings are promising. From a small amount of data,
the system can predict the future very well. On prediction of
a player’s readiness to train on a scale from 1 to 10, we were
able to predict positive peaks (values above 8) and negative
peaks (values below 3) with a precision and recall above 90%,
for both datasets used in the paper. Based on these results, the
main contributions of this paper are:

• A novel system to collect, index and visualize data
collected from sport professionals.

• Analysis of self reports collected from soccer players
using the system to perform prediction of future states,
which can be used by coaches.

https://www.verdict.co.uk/world-cup-wearables/


(a) Example of a team plot highlighting one of the players

(b) Example of individual plots

Fig. 1. Dashboard from the PMSys system illustrating athlete and team status

• A method to conduct readiness to train peak prediction
using LSTM.

We start by describing the method used in this paper to
capture training and testing data, followed by a description
of the datasets. Next, experiments and our main results are
presented, before we finally conclude.

II. METHOD

For this paper, we are using data collected with PMSys [4]:
our tool for longitudinal studies on subjective daily pa-
rameters in athlete cohorts. The PMSys system consists of
a modern smartphone application coupled with our own
Open mHealth [10] compliant Data Storage Unit (DSU),
running on the Amazon AWS cloud service. The smartphone
application is designed to accommodating most in-use smart-
phone systems, and is currently available for iOS and Android
systems. This limits potential selection bias when favouring
certain brands.

Using PMSys, athletes can submit new reports every day
with little effort, both after training and after matches. For
example, the interactive flow for reporting wellness, show in
Figure 2, involves seven quick clicks. To ease the process of

choosing the correct values for the players, each step on the
reporting scales has a defined description. For example, for
mood the value 4 is a players normal value. To move up or
down the scale, one would have to meet certain criteria. In
order to qualify for a value of 2 for mood, a player would
have to be more annoyed and easily irritated than usual. The
interaction and layout is predictable, and scrolling is avoided
on most modern sized screens. With some experience, user
will be able to complete this interactive flow in seconds.

Data captured by PMSys is owned by the user who reports
it, and is by default not accessible by anyone else. Explicit
data sharing policies must be set in our Policy Server Unit
(PSU) component, which is a separate process from the
DSU. Policies can include coach/trainer access, aggregation
functions, time limited access, and are managed centrally by
the data owner. Player reports are stored on one or more
DSU servers, depending on the level of isolation or replication
required. The DSU servers does not contain player names and
requires profile information from the PSU to obtain an identity,
allowing policies for sharing pseudonymous player data in real
time to aggregate functions and deep learning. An overview
of the PMSys architecture can be seen in Figure 3.



Fig. 2. Entering wellness data into the PMSys smartphone application
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Fig. 3. Architectural overview of the PMSys data storage system

Data collected from player activities routinely measured
during the competitive season, it is not subject to approval
by an institutional or regional ethics committee [11]. Nev-
ertheless, this project was approved by the Institutional Re-
view Board at UIT–The Arctic University of Norway and by
the Norwegian Centre for Research Data. Participation was
furthermore based on informed consent from the individual
soccer players. Team and player confidentiality was ensured
by anonymizing the data.

III. DATASET

Using the data acquisition method outlined in Section II,
we created two separate datasets: Team 1 and Team 2. Each
dataset consists of self-reported wellness parameters from a
Norwegian high-division soccer team. The frequency of the
PMSys reporting was on a daily basis, for all participating
players. The records contain the players’ reported mood, stress
levels, sleep duration, sleep quality, fatigue, soreness, and
readiness to train (i.e., how fit a player feels). An overview
of relevant wellness variables and descriptions captured by
PMSys can be found in Table I. All features are measured on
a scale from one to five, except sleep duration and readiness.
These are reported as time value and on a scale from one to
ten, respectively. For all scales, low values are considered least
desirable and the higher the better. For example, a mood value
of 1 means the player was in a bad mood compared to a mood
of 5 that would be a very good mood. Examples on how the
scale are presented to the user can be found in Figure 2.

Neither of the datasets were without missing values, mean-
ing not all days from start to finish contained reports from all
players. For the initial experiments the missing values were
not replaced or removed to get a realistic use case (in reality,
the data will always contain some missing values from the
players due to for example vacation time, etc.). The Team 1
dataset stretches back from January 2017 to late August 2017
and contains data for 19 different players. The Team 2 dataset
contains values from February 2018 to mid June 2018 for 22
players. In total, we have just above 6,000 days of reports
included in both datasets. Seen in the context of machine
learning this is not much, but we are still able to see some
promising results.

IV. RESULTS

The purpose of our experiments was to discover if modern
machine-learning methods can be applied to predict future
health and fitness states of players. Such predictions can be
used by coaches to select the set of players that are to attend
a game or a training, and adjust the duration and intensity
of their activities. Using the self reported data collected by
PMSys, as described above, we attempt to predict the players
readiness to train the next day based on the self reported
variables mood, stress, sleep quality, fatigue, and soreness.

To train our model, we used Long Short-Term Memory
(LSTM): a variation of recurrent neural networks that can
memorize certain parts of the data. LSTMs are state-of-the-art
for time-series analysis and can also handle missing values
quite well, which is a good fit for our task [12]. The LSTM
model was designed to take as input a player’s reported
readiness values, and then output a predicted value for that
particular player. The model operates on a day-by-day basis,
using one day’s values to predict the next. To explore the
possibilities inherent in the data, we kept the model small and
simple, making it easier to reproduce and interpret the results.
Additional data collected in the future might lead to a more
complex model.



TABLE I
VARIABLES IN THE DATASET AND THE REPORTED VALUES MEANING

Variable 1 2 3 4 5
Mood Very bad mood Bad mood Normal Good mood Very good mood
Stress Highly stressed Somewhat Stressed Normal Relaxed Very relaxed
Sleep quality Insomnia Restless sleep Normal Good Very restful
Fatigue Very tired More tired than normal Normal Fresh Very fresh
Soreness Very sore A bit sore Normal Feeling good Feeling great

As hyper parameters for training the LSTM model, we
used a sequence number of 36, 30 epochs, batch size of
4, number of layers 4 (input layer, 2 hidden layers, output
layer), and as optimizer rmsprop [13]. We also tested more
traditional machine-learning approaches with the dataset, such
as Random Forrest and linear regression, but could not achieve
a statistically significant better results. Therefore we only
report the LSTM results in this paper. Even though the dataset
size seems small for a deep-learning based approach, we have
sufficient data points in the dataset to train the LSTM. The
LSTM architecture used in this paper is not very complex
having only two hidden layers.

For training and validation, we use two different methods.
First, training on all other players on the team, then predicting
the readiness of the chosen player. Second, use most of
a player’s data to train and then predict on the rest. The
drawback of the first method is that the results might be
skewed since individuals might have differing behaviour in
their patterns. However, the model does get a lot more data
to train on. The second method trains the model with the
same player it is trying to predict, thus perhaps getting more
representative training data, though a lot less.

We also wanted to see what combination of features gave
the closest prediction. By trying all possible combinations of
features as input, we found that the best result was achieved
by using all inputs and differences between the subsets were
negligible. Noteworthy though, is that the only feature more
or less possible to control is the amount of sleep a player gets.
Therefore, this input is of particular interest in trying to predict
the players’ readiness.

A. Training on one

Training and predicting on same player seemed unfeasible
considering the network would only have between 100 to 200
time steps to train on. Intuitively the ideal training data would
be a much larger set of data from the same person, but this
was not the case with any of the players. Surprisingly, the
model still performed fairly well despite the scarceness of
training data. The values were off by a visible amount, but
the prediction was able to roughly follow the shape of the
actual data. In Figure 4(a) and Figure 4(c), we can see the
performance of training on single players. As can be seen,
the method is not very accurate, but peaks are in general
observable.

B. Training on all

In training on all players but one, predicting the behavior
of that player‘s readiness achieved the best results. Already

early in the experiments the model was effectively producing
a plot fairly similar in shape as the actual graph. However, the
predictions values were off. By tweaking the hyper-parameters
of the model we were able to get a closer fit, however still off
by a visible amount. Despite this, how closely the prediction
follows the general shape of the actual curve were considered
as an acceptable preliminary result. Figures 4(b) and 4(d)
depict the performance of the model trained on all the players
in the team. It can be observed that the prediction is quite
accurate and all peaks are clearly visible in the predictions.

C. Peak detection

Using the LSTM model and the different methods of
training described previously, we ended up with four different
models: two for each team. These models lead to reasonable
results in predicting future values but, most probably due to
the lack of training data, precise predictions are not possible.
Therefore we extended the experiments to negative or positive
peak detection for the readiness to train of a player. Being
able to predict peaks in a players perceived readiness to train
can be of large interest for a number of reasons. For example,
coaches want this information as early as possible so that they
can individually fit an exercise program to specific athletes.
Being able to predict negative peaks can also be of benefit for
a number of reasons. Knowing the day before a match which
players will feel down can ease the process of choosing which
players should be preferred for a match.

1) Positive Peaks: A positive peak is defined as a readiness
to train above 8. As one can see from Figure 5, the prediction is
reasonably good at recognizing peaks of eight, nine, and tens.
With this specific player, in each instance, a positive deviation
of 20% from the average of the entire prediction, meant an
actual value of 8, 9 or 10. A good start, however, distinguishing
these high values from each other seems to be slightly more
difficult for the model. In general, the definite peaks of the
prediction align with the definite peaks of the actual values.
Unfortunately, the peaks of the prediction are of only slightly
higher value than other lower peaks that correspond to lower
actual values. The difficulty of differentiating high values from
each other greatly diminishes if a player has a higher average
value for readiness to train. Players with curves that on average
stay high have a larger variation in their positive peaks, thus
easier to accurately differentiate 8, 9 and 10s. Being able
to differentiate predicted 8s from predicted 9s, is of course
desirable, and a requisite in mapping the predicted values to a
discrete 0-10 scale. However, in these early experiments, this
seemed too difficult for the simple model used.



(a) Team 1, training using one specific player.

(b) Team 1, training using all players in the team.

(c) Team 2, training using one specific player.

(d) Team 2, training using all players in the team.

Fig. 4. Example predictions compared to real data for the two different
training methods of the LSTM. Subfigure a and b show the player wise and
all players model for Team 1 and subfigures c and d the same for Team 2.
Each plot shows both the actual data and predictions for a random player
from the specified team. The x-axis is a time index per report, and the y-axis
is the 0–10 scale of readiness to play.

2) Negative Peaks: A negative peak for readiness to train
is a value below 3. As with the positive peaks the prediction
effectively predicted negative peaks from the base model.

Fig. 5. Example graph for actual and detected positive and negative peaks
for readiness to train in the dataset. The x axis is a time index per report, and
the y-axis is the 0-10 scale of readiness to train.

From Figure 5, one can observe that the prediction closely
follows the drops of the actual graph. Moreover, the prediction
was able to differentiate well between low extremes. With
this specific player for example, the average corresponding
values to the 10s and 9s were 7.434 and 7.278, respectively;
a difference of only 0.156, but also the range of the predicted
values for the two actual values overlaps. Whereas with the
average corresponding values for the negative peaks of 2 and
1 were at 2.952 and 2.001, respectively. Moreover, there was
no overlap between the values, meaning the highest values
predicted for a 1, was still lower than the lowest predicted
value for 2. This makes it a lot easier to create ranges of
predicted values that map to actual values of the discrete 0-10
scale.

3) Peak detection methods: To determine if the prediction
was a positive or negative peak from the LSTM model predic-
tion, we performed two different post processing methods. For
the first methods, we simply defined a value as a positive or
negative peak if it was below or above a certain margin of the
defined maximum. For this method, we tested three different
values 1, 2, and 3. For the second method, we calculated the
average of all time steps and classified a predicted value as
a positive or negative peak if the value were above or below
a certain percentage of the average. Both methods are very
simple, and for future work, it might be interesting to apply
another step of machine learning on the peak detection part
itself. Nevertheless, as the results show, peak detection using
this methods works very well.

4) Peak Detection Results: For the peak results, we are
reporting weighted averages of the standard metrics precision,
recall, and F1 score. In addition, we also provide the number
of true positives, false positives, true negatives and false
negatives. Table II lists the results for the different models
and different post processing methods for peak detection. In
general, we can observe that models trained on the whole
team data lead to better results than the models trained on
individual players (0.993 vs. 0.864 for Team 1 and 0.987 vs.
0.92 for Team 2). This is very interesting and can be explained
either by the fact that a model trained on the whole team has
more data and secondly that dynamics within the teams are



TABLE II
RESULTS FOR NEGATIVE AND POSITIVE PEAK DETECTION. (THE POST

PROCESSING METHOD SETTING AS DESCRIBED IN SECTION IV-C3,
TRAINED IS TRAINING MODEL, TOTAL PEAKS IS THE TOTAL NUMBER

PREDICTIONS TO MAKE, POSITIVES IS THE NUMBER OF POSITIVE PEAKS,
NEGATIVES IS THE NUMBER OF NEGATIVE PEAKS, WPREC IS THE

WEIGHTED PRECISION, WREC IS THE WEIGHTED RECALL AND WF1 IS
THE WEIGHTED F1 SCORE.)
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Team 1 3,3 all 1366 506 860 503 854 6 3 0.993 0.993 0.993
Team 1 2,2 all 1366 506 860 503 854 6 3 0.993 0.993 0.993
Team 1 1,1 all 1366 506 860 316 721 139 190 0.756 0.759 0.756
Team 1 3,3 player 484 227 257 177 242 15 50 0.872 0.866 0.864
Team 1 2,2 player 484 227 257 174 239 18 53 0.86 0.853 0.852
Team 1 1,1 player 484 227 257 87 198 59 140 0.591 0.589 0.572
Team 2 3,3 all 685 554 131 549 127 4 5 0.987 0.987 0.987
Team 2 2,2 all 685 554 131 549 127 4 5 0.987 0.987 0.987
Team 2 1,1 all 685 554 131 493 84 47 61 0.849 0.842 0.845
Team 2 3,3 player 144 126 18 118 14 4 8 0.926 0.917 0.92
Team 2 2,2 player 144 126 18 81 4 14 45 0.756 0.590 0.656
Team 2 1,1 player 144 126 18 9 3 15 117 0.331 0.083 0.11
Team 1 ave all 1366 506 860 503 784 76 3 0.949 0.942 0.943
Team 1 20,10 all 1366 506 860 272 723 137 234 0.722 0.728 0.721
Team 1 40,20 all 1366 506 860 149 623 237 357 0.543 0.565 0.55
Team 1 60,30 all 1366 506 860 50 448 412 456 0.352 0.365 0.358
Team 1 ave player 484 227 257 227 218 39 0 0.931 0.919 0.919
Team 1 20,10 player 484 227 257 19 156 101 208 0.302 0.362 0.318
Team 1 40,20 player 484 227 257 19 96 161 208 0.217 0.238 0.226
Team 1 60,30 player 484 227 257 19 79 178 208 0.191 0.202 0.196
Team 2 ave all 685 554 131 549 127 4 5 0.987 0.987 0.987
Team 2 20,10 all 685 554 131 213 127 4 341 0.846 0.496 0.528
Team 2 40,20 all 685 554 131 0 115 16 554 0.033 0.168 0.055
Team 2 60,30 all 685 554 131 0 85 46 554 0.025 0.124 0.042
Team 2 ave player 144 126 18 102 14 4 24 0.888 0.806 0.832
Team 2 20,10 player 144 126 18 0 3 15 126 0.003 0.021 0.005
Team 2 40,20 player 144 126 18 0 3 15 126 0.003 0.021 0.005
Team 2 60,30 player 144 126 18 0 2 16 126 0.002 0.014 0.003

also influencing the performance of the players and therefore
taking the whole teams’ data into account lead to a better
understanding (this is also visible in Figure 4).

Furthermore, it can be observed that the team that collected
data for a longer period (Team 1) achieves better performance
than the one with less data (0.993 vs. 0.987). Nevertheless, this
difference is minimal and might not be statistical relevant.

In terms of the two different post-processing methods and
their margins, we can observe that the method taking the
average into account performs worse than the method looking
at a fixed margin. For Team 1, the difference is around 4
percent and for Team 2 they perform equally good. For both
methods, increasing the margins or percentage leads to worse
results and for the player based method fixed margins work
better. The reason for that is most probably the fact that
for using the average in a precise way more training data is
required, otherwise the average is not very accurate (depicted
in the difference between the results for Team 1 and Team 2).

V. CONCLUSION

In this paper, we have made a contribution to the silent
revolution in international sports having an increasing avail-
ability of athlete quantification data by developing an advanced
analytic components over various data types. As a first step
to validate the potential of our innovative idea, we chose to
focus on the subjective wellness reports of soccer players.

Because we study time ordered discrete data-points, we
opted to use Long Short-Term Memory (LSTM) recurrent
neural network technique for this paper: a state-of-the-art
machine-learning method for time series analysis. Using data
from two professional soccer teams, we show that LSTM
can be applied to predict future peeks in a soccer player’s
readiness-to-train. Overall, the performance of our models are
promising. Based on a small amount of training data, the
system can predict the future very well. For both datasets,
we predict positive and negative peaks with a precision and
recall above 90%.
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