Saga: An Open Source Platform for Training
Machine Learning Models and Community-driven
Sharing of Techniques

Rune Johan Borgli, Hakon Kvale Stensland
Simula Research Laboratory, Norway
University of Oslo, Norway

Abstract—With the increasing popularity of machine learn-
ing in areas such as multimedia indexing and social media
analysis, comes an increasing number of tools for developing
and training the machine learning models. These tools assist in
the selection and optimization of hyperparameters, but the user
becomes locked into the platform’s built-in solutions. Therefore,
this demo presents an open-source, community-driven platform
for sharing machine learning models, training techniques, and
datasets. The platform, called Saga, provides a machine learning
training pipeline such as those found in machine learning services
provided by cloud providers. However, Saga also provides a store
where users can upload and share their machine learning training
methods. Additionally, the store allows users to rate and comment
on other users’ uploaded methods, as well as download and
run them without any additional setup. In our demo, we will
run a scenario where a user wants to train an image classifier
using Saga. The demonstration will involve downloading methods
from the store and displaying the pipeline provided by the Saga
platform.

Index Terms—machine learning; training pipeline; platform;
plugin store; method sharing

I. INTRODUCTION

The field of machine learning has expanded rapidly after
deep learning started producing impressive results. In the
multimedia community, machine learning is now one of the
most commonly used tools [1]-[4], and is used in applica-
tions such as social media analysis [5], image analysis and
generation [6], and multimedia data indexing [7]. As part
of this expansion, frameworks have been developed, making
machine learning more accessible. These frameworks, such as
PyTorch [8] and TensorFlow [9], are complex but try to retain
a simple application programming interface (API). However,
in-depth knowledge of machine learning and programming
is needed for advanced functionality. While one can get a
classifier trained relatively quickly with a framework such as
Keras [10], adding, for instance, hyperparameter optimization
requires special programming and knowledge.

Working with these frameworks alone can limit a user
as they often mainly focus on the creation and training of
machine learning models. The reason why this is limiting is
that a full machine learning workflow should include data pre-
processing and analysis of the training in order to improve

978-1-7281-4673-7/19/$31.00 (©2019 IEEE

Pal Halvorsen, Michael Alexander Riegler
SimulaMet, Norway

the machine learning model. Many opt for a solution where
they create their own tools for these jobs. As a response, in
recent years, several tools and services covering a full machine
learning training pipeline have been created for the public.

Cloud computing providers, such as Amazon Web Ser-
vices [11], Google Cloud Platform [12], and Microsoft
Azure [13], have invested heavily into tools and services
for developing and deploying machine learning applications.
These tools cover the entire pipeline, and one of the major
selling points is their access to powerful GPUs and other
hardware useful for large machine learning tasks such as
pre-processing or training. However, these services can be
expensive, and they are often bound to vendors and specific
tools. There is room for an open source solution which can
be deployed both in the cloud and locally.

As part of their pipelines, the major cloud computing
providers have automated training of machine learning models
implemented in their platforms. Automated training allows
users to optimize their models by, for example, using hyperpa-
rameter optimization [14], [15]. However, you are bound to the
cloud providers implementation of the automated training and
training tools and have to trust that they use the best solution.
Aside from that, creating and training machine learning models
involves a lot more than what the automated machine learning
tools can cover. Different techniques for machine learning are
invented all the time. Sharing the implementation of these
techniques are often done through Git repositories or using
Docker. Allowing methods to be shared without any additional
setups and requirements would not only be a significant
contribution to the development of machine learning methods,
but also to the applications in where we see machine learning
used today, such as in media processing, content adaptation,
and multimedia data indexing.

In this demo, we present the Saga platform. Saga is an open
source, community-driven platform for sharing and running
methods of training machine learning models. The platform’s
store allows users to download community-created methods
for training models, analyzing and pre-processing datasets,
and analyzing, visualizing, and evaluating trained models. The
plugin store also allows users to upload their methods and rate
and comment on others’ work. Each method contains source
code and Docker images, allowing the method to be used in a

plug-and-play fashion. Saga also allows each plugin to provide
a user interface to compliment their method optionally. Thus,
Saga allows for training of models using both a web-interface
and a terminal interface.

The platform introduces a three-step pipeline where each
step uses plugins for its features. The pipeline has two types
of data flowing through it, datasets and models. The step
decides what data is taken as input and what is given as output.
Datasets can be converted to different formats, which are also
available as plugins. Our ambitions for Saga is not only to be a
platform for training your own models but to be an ecosystem
for sharing ideas and testing and giving feedback on the ideas
of others. It is built on the idea of open software and open
ideas, and with it, we hope users can more easily understand
the state-of-the-art and be inspired to create new ideas while
creating more powerful machine learning models.

This paper is structured as follows: First, we introduce ser-
vices that are similar to Saga in that they allow for a workflow
for training machine learning models. We also discuss the
differences between Saga and these systems. Next, we describe
the platform and its implementation, and we discuss design
decisions. Lastly, we describe the demo.

II. RELATED WORK

In the tool space for the training of machine learning
models, we find a myriad of different tools: There are the
cloud providers, such as Google [12], Amazon [11], and
Microsoft [13], who provides a streamlined tool for training
and deploying machine learning methods. With all the heavy
competition in this space, these tools are rapidly improving and
claimed to be state-of-the-art. In addition to cloud services,
we have platforms created by smaller companies such as
Valohai [16] and Determined AI [17]. These platforms allow
the users to deploy similar services like those provided by the
cloud providers on a local resource. Also, smaller companies
often provide extra features, such as a focus on reproducible
results. Lastly, there exist several tools at a lower level for
training. An example of this is Auto-Keras [18] and other,
similar automated training approaches [14].

While these tools are excellent and powerful for their
purposes, Saga separates from them by allowing community-
created features such as automated machine learning, while
still providing a robust pipeline for developing and training
machine learning models. By using the store, advanced and
experimental methods not found in conventional tools could
be deployed. To the best of our ability, we could not find
a platform allowing for the same sharing capability as Saga
while also providing a pipeline for running and training
machine learning models.

III. THE SAGA PLATFORM

Saga is a platform based on the web-framework Re-
actjs [19], communicating using WebSockets to a Python
back-end. The back-end provides an API for plugins to en-
able them to access datasets and models. Additionally, the
API facilitates the communication between the front-end of

plugins to their back-end. We have opted for a WebSocket
based solution because of its full duplex communication. This
communication type is useful for our use case as the server can
push updates to the clients without the need for the clients to
poll the server. The communication is done through the JSON
format to a single endpoint, where a plugin identifier redirects
the request to the correct plugin.

When using Saga, the user is met with a dashboard, includ-
ing categories and plugins. Each category has enabled plugins
displayed underneath. A plugin can have a 64x64 pixel icon, a
name, and a description. The description can include links to
relevant sources. By clicking a plugin’s title or icon, the view
of the dashboard is substituted with that of the selected plugin.
However, the navigation bar at the top and the menu-bar to
the left will still be displayed.

A. Datasets and models

The Saga platform supplies users with two types of input
and output, datasets and models. A user can add datasets to
the platform by either uploading a dataset through the user
interface, by copying a dataset into the designated dataset
folder, or by running a plugin from the pre-processing category
which outputs a dataset. Datasets can be accessed by plugins
in the training category and the analysis category, but these
categories cannot create new datasets.

Datasets in the Saga platform are accessed through API
calls. From these API calls, the user can specify a converter.
Converters are plugins separate from categories, where their
sole intent is to convert a given dataset into a requested format.
We separate between converters and pre-processing although
they could be merged. The reason is to make it possible for
plugin creators to get the expected format without additional
user interactions.

Models in the Saga platform refer to machine learning
models. These models hold the weights of a model, infor-
mation about its structure, and information about its training.
Additional information from the training is stored in log-
files, and the format of the log-file is up to the creator of
the plugin. This means that different plugins in the training
and analysis category might be incompatible. We hope to
remedy this with proper documentation and a few required
fields such as the number of epochs trained, iterations, and
specific hyperparameters. However, if this configuration proves
problematic, we will have to change it in the future.

B. The Pipeline

Saga provides three-stage pipeline covering pre-processing
of datasets, training of machine learning models, and analy-
sis and visualization of training models. There are no hard
restrictions on what the contents of each category are, but
each category has different access to the API. The pipeline is
designed as follows, and shown in Figure 1:

1) Pre-processing: The first step of the pipeline is pre-
processing. Plugins in this category take datasets as input
and produce new datasets based on the functionality
of the selected plugin. Plugins in this category should

Input ‘ Category ‘ Output

Datasets Datasets

Preprocessing

——
Training
[———————

Analysis

Datasets
Models

Models

Datasets
Models

Fig. 1. Visualization of the Saga pipeline.

Hyperparameter Optimizer

A program for achieving the best Keras configuration.

Basic Options

Model Options

Select Delimiting Layer
‘‘‘‘‘‘‘ > —

,,,,,

Optimizer Options s

Select Block Optin

Viow Block Optons.

Advanced Options

Select Batch Size Select Number of GPUs.

Select Metric To Use For Evaluating Models

Bayesian Optimization Options

Select Initial Distribution Select Number of Max lterations

o

Fig. 2. Plugin-example from the training category performing hyperparameter
optimization as described in [15].

be focused on dataset preparation, including sanitation,
estimating the difficulty of predicting given classes for
a dataset [20], and augmentation [21].

2) Training: The second step of the pipeline is the training
of machine learning models. Plugins in this category
take datasets, as well as optional models as their in-
put. Models are optional because plugins can choose
to retrain certain models or make intelligent decisions
based on previous runs. Plugins in this category can
also create new models from scratch. In this category,
plugins should focus only on the creation of models
and training of these. This spans from fully automated
training to very basic framework-specific code. Figure 2
shows an example of a training plugin doing automatic
hyperparameter optimization.

3) Analysis: The final step of the pipeline is the analy-
sis and visualization of the previous machine learning
model training. Plugins in this category take datasets
and models as their input. This category is focused on
understanding the behavior of the trained model and
the effects of the training. Plugins should focus on
visualization and analytics, and can include for example
visualization of network activation per layer per image
as described in [3].

C. Plugins

Plugins in Saga have an optional front-end and a back-
end. The front-end of Saga utilizes the HyperText Markup
Language (HTML) tag iframe to show a plugin. The iframe tag

embeds an HTML document into the front-end. This approach
allows plugins full freedom in their choice of styling and
JavaScript without colliding with the styling and JavaScript
already present in the Saga user interface. The back-end is
written using Python and has access to an APIL. The API allows
plugins access to datasets and models based on their category.
The front-end of the plugin can only communicate directly to
the back-end of the plugin. For instance, if the front-end wants
a list over available datasets, it must communicate directly with
its back-end, where the back-end can make an API request for
the list and send it to the front-end.

All the features of Saga used for the training of machine
learning models are provided through plugins. There are
several reasons for this approach:

1) Plugins allows for community-created features, which
would allow for more advanced and varied features than
the platform creators could create themselves.

2) Plugins can be created by the user, allowing users to add
their own features and prototype new functionality in a
simple manner.

3) Plugins can be added and removed as needed, allowing
users to customize the experience to only show func-
tionality they actually use.

4) With a community creating plugins, users can find new
and interesting features they otherwise would not find.
These features are ready for the platform and can be run
with no additional setup, in contrast to features found on
the web where the user must make changes to the code
to make it fit into their application.

Saga includes a plugin store. The plugin store is an online
service where users can upload their own plugins and down-
load and run community-created plugins. A plugin consists
of the method, an optional front-end, and a Docker file or
hosted Docker image containing the run time environment.
This approach allows users to download and run plugins
without any additional setup or requirements.

The store can also be used for managing all currently
installed plugins, their descriptions, and their settings. Ad-
ditionally, the user can enable or disable a plugin without
uninstalling it. Each plugin has its own entry with a download
button, where descriptions and screenshots of the plugin can
be viewed. Additionally, users can rate and comment on each
plugin. The plugin store will include search functionality and
browsing based on popularity, new, and top rated. We have
ambitions of keeping the plugins in the plugin store open
source and free.

D. Processing

Saga supports scaling processing over different architectures
and configurations. The user of the platform can configure
what hardware is being used. This hardware includes cloud
computing resources, remote hardware, and local hardware.
These resources can be combined, but there are limitations
on the available concurrency. Processing nodes cannot work
together, but a processing node can contain multiple resources
which can work together. A job manager takes jobs from the

Saga React.js Saga Plugin
Front-End Store

Websocket

Saga Python
Back-End

Job Manager

Fig. 3. Overview of the whole Saga platform, including how jobs are
distributed for processing.

plugin back-end and distributes it to the requested available
resources. If no processing node with the requested resource
is available, the job manager adds the job to a queue.

Figure 3 gives an overview of the Saga system, including an
overview of how the Saga back-end communicates with the
job manager, which in turn communicates with its assigned
processing nodes. Jobs can be managed in the Saga user
interface from a dedicated job manager page. On this page,
a user can see the status of jobs. The five statuses a job can
have are:

1) Running - the job is running as normal.

2) Queued - the job manager is waiting for an available
processing node.

3) Stopped - the user has cancelled the job.

4) Finished - the job has finished successfully.

5) Error - the job has been cancelled because of some
error.

Besides seeing the statuses of jobs, the user can cancel, move
priority, and read descriptions of the job. Additionally, plugins
can run while a job is running and spawn additional jobs.
Accessing the plugin is useful because the plugin can provide
the user with a visualization of the job and detailed updates
on the progress.

1V. DEMO

In our demo, we will demonstrate the platform from a user’s
perspective, where the user wants to train an image classifier
based on an eight-class dataset containing images of findings
from the gastrointestinal tract called Kvasir [22]. First, we
activate the plugins we want to demonstrate through the plugin
store. We use one plugin from each category. After adding the
plugins, we show how a user can upload the image dataset into
the platform and augment the dataset with a pre-processing
plugin. Then, we show an example of a training plugin to
create and train the image classifier. The training plugin is
an implementation of automated hyperparameter optimization
based on previous work [14], [15]. Finally, we analyze the
training through a plugin from the analysis category, which
will show a table of predictions and visualize the weights of
the model. We can from this plugin see how the classifier
performs per image. This information can be used to under-
stand the training and dataset better and help make informed
improvements to the classifier training.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]

[12]

[13]
[14]

[15]

[16]
[17]
(18]

[19]

[20]

[21]

[22]

REFERENCES

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. leee, 2009, pp. 248-255.
K. Pogorelov, M. Riegler, S. L. Eskeland, T. de Lange, D. Johansen,
C. Griwodz, P. T. Schmidt, and P. Halvorsen, “Efficient disease detection
in gastrointestinal videos - global features versus neural networks,”
Multimedia Tools and Applications, vol. 76, no. 21, pp. 22493-22525,
2017.

S. Hicks, M. Lux, T. de Lange, K. R. Randel, M. Jeppsson, K. Pogorelov,
P. Halvorsen, and M. Riegler, “Mimir: An automatic reporting and
reasoning system for deep learning based analysis in the medical
domain,” 2018, pp. 369-374.

R. Mekuria, M. J. McGrath, V. Riccobene, V. Bayon-Molino, C. Tselios,
J. Thomson, and A. Dobrodub, “Automated profiling of virtualized
media processing functions using telemetry and machine learning,” in
Proceedings of the ACM Multimedia Systems Conference, 2018, pp. 150—
161.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehen-
sive survey on graph neural networks,” arXiv preprint arXiv:1901.00596,
2019.

T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
for generative adversarial networks,” arXiv preprint arXiv:1812.04948,
2018.

L. Liu, Y. Yang, M. Hu, X. Xu, F. Shen, N. Xie, and Z. Huang,
“Index and retrieve multimedia data: Cross-modal hashing by learning
subspace relation,” in International Conference on Database Systems for
Advanced Applications. Springer, 2018, pp. 606-621.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in py-
torch,” in Proceedings of Conference on Neural Information Processing
Systems, 2017.

M. Abadi and et. al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: http://tensorflow.org/

F. Chollet et al., “Keras,” https://keras.io, 2015.

Amazon, “Compute Services - Overview of Amazon Web
Services,” 2019. [Online]. Available: https://docs.aws.amazon.com/
aws-technical-content/latest/aws-overview/aws-overview.pdf

Google Cloud, “Google Cloud including GCP & G Suite,” accessed:
2019-02-25. [Online]. Available: https://cloud.google.com/

H. Li, Introducing Windows Azure. Berkely, CA, USA: Apress, 2009.
R. J. Borgli, H. K. Stensland, M. A. Riegler, and P. Halvorsen, “Auto-
matic hyperparameter optimization fortransfer learning on medical im-
age datasets usingbayesian optimization,” in In Proceedings of the 13th
International Symposium on Medical Information and Communication
Technology, 2019.

R. Borgli, P. Halvorsen, M. Riegler, and H. K. Stensland, “Automatic
hyperparameter optimization in keras for the mediaeval 2018 medico
multimedia task.” CEUR Workshop Proceedings (CEUR-WS.org),
2018.

Valohai, “Deep Learning Management Platform — Valohai,” accessed:
2019-02-25. [Online]. Available: https://valohai.com/

D. Al, “Determined AI Platform,” accessed: 2019-05-21. [Online].
Available: https://determined.ai/

H. Jin, Q. Song, and X. Hu. (2018) Auto-keras: Efficient neural
architecture search with network morphism.

F. Inc, “React - A JavaScript library for building user interfaces,” 2016,
accessed: 2019-02-25. [Online]. Available: https://reactjs.org/https:
//facebook.github.io/react/index.html

F. Scheidegger, R. Istrate, G. Mariani, L. Benini, C. Bekas, and A. C. L.
Malossi, “Efficient image dataset classification difficulty estimation for
predicting deep-learning accuracy,” CoRR, vol. abs/1803.09588, 2018.
[Online]. Available: http://arxiv.org/abs/1803.09588

M. Kirkergd, V. Thambawita, M. Riegler, and P. Halvorsen, “Using
preprocessing as a tool in medical image detection.” CEUR Workshop
Proceedings (CEUR-WS.org), 2018.

K. Pogorelov, K. R. Randel, C. Griwodz, S. L. Eskeland, T. de Lange,
D. Johansen, C. Spampinato, D.-T. Dang-Nguyen, M. Lux, P. T. Schmidt,
M. Riegler, and P. Halvorsen, “Kvasir: A multi-class image dataset for
computer aided gastrointestinal disease detection,” in Proceedings of the
ACM Multimedia Systems Conference, 2017.

