
Semantic Analysis of Soccer News for Automatic
Game Event Classification

1st Aanund Jupskås Nordskog
Simula

University of Oslo
Oslo, Norway

aanundjn@ifi.uio.no

2nd Pål Halvorsen
SimulaMet

Oslo Metropolitan University
Oslo, Norway

paalh@simula.no

2nd Steven Hicks
SimulaMet

Oslo Metropolitan University
Oslo, Norway

steven@simula.no

3rd Håkon K. Stensland
Simula

Oslo, Norway
haakons@simula.no

3rd Hugo L. Hammer
Oslo Metropolitan University

Oslo, Norway
hugoh@oslomet.no

3rd Dag Johansen
University Tromso
Tromso, Norway

dag.johansen@uit.no

3rd Michael A. Riegler
SimulaMet

Oslo, Norway
michael@simula.no

Abstract—We are today overwhelmed with information, of
which an important part is news. Sports news, in particular, has
become very popular, where soccer makes up a big part of this
coverage. For sports fans, it can be a time consuming and tedious
to keep up with the news that they really care about. In this paper,
we present different machine learning methods applied to soccer
news from a Norwegian newspaper and a TV station’s news site
to summarize the content in a short and digestible manner. We
present a system to collect, index, label, analyze, and present
the collected news articles based on the content. We perform
a thorough comparison between deep learning and traditional
machine learning algorithms on text classification. Furthermore,
we present a dataset of soccer news which was collected from
two different Norwegian news sites and shared online.

Index Terms—News, Soccer, Sport, Machine Learning, Natural
Language Processing, Text Document Classification.

I. INTRODUCTION

The world wide web is nearly an endless source of in-
formation, of which a lot comes in the form of text. From
2015 to 2018, the total number of websites have doubled,
reaching a total number of 1.63 billion different websites
in 2018 [1]. With this amount of data available, the need
to categorize, index and label information is more critical
than ever. Along with the increase in data, the popularity
of machine learning has also increased. Based on Google
search results, the search terms ”machine learning” and ”deep
learning” have grown significantly over the past five years [2].
This rise in popularity is not without reason, as it has shown
extraordinary results in numerous different use-cases. A few
examples include image classification using convolutional neu-
ral networks (CNNs) [3], language translation using recurrent
neural networks (RNNs) [4], and natural language processing
where both RNNs and CNNs have seen much use and showed
state-of-the-art performance [5].

The main purpose of this paper is to evaluate how deep
learning and traditional machine learning algorithms perform

on text classification. Furthermore, we explore how these
methods perform when classifying paragraphs in soccer ar-
ticles. The goal is to train a wide range of deep learning and
traditional machine learning models in order to see how they
compare against each other. The models will be compared on
classification performance, training time and setup complexity.
Two methods will be used to determine the classification
performance of the different models. The first method will
compare the performance during training, i.e., metrics will be
calculated during training and analyzed. The second method
uses the models created in method one and test how they
perform in a real-world application on new and unseen data.

In addition to the study, this paper also presents a dataset
and an application which were used to conduct the various
experiments. The dataset consists of soccer articles extracted
from VG.no and TV2.no (two large Norwegian newspapers).
Paragraphs from these articles are labeled, stored in a database
and used for all experiments. The application was used to
make the labeling of the paragraphs easier. Furthermore, it
also displays a visual representation of the paragraphs that
have been classified by the different algorithms.

Deep learning based methods have mainly been applied
to sentiment analysis. In this paper, we instead focus on
news classification where the performance of deep learning
methods has been far less studied. Therefore, the research
question for this work is: How does deep learning compare
to traditional machine learning on soccer news classification
when it comes to classification performance, training time, and
setup complexity? Thus, the main contributions of this paper
to provide an answer to the research question are:

• A thorough comparison between deep learning and tradi-
tional machine learning algorithms on text classification.

• A dataset for soccer news is collected from two newspa-
pers and is shared online for public use.

• An application that can help extend the dataset and
provides a visual representation of how different models
perform on the data.978-1-7281-4673-7/19/$31.00 ©2019 IEEE

II. RELATED WORK

Over the last few years, natural language processing has
seen state-of-the-art performance in many applications such
as document classification and sentiment analysis [5]. Much
research has been performed on different text-based datasets
using different deep learning and traditional machine learning
approaches. In this section, we present two datasets commonly
used for text classification. Then, we discuss some previous
works which used these datasets to evaluate their methods.

The Stanford Sentiment Treebank dataset (SST-1)1 dataset is
a collection of movie reviews where the main goal is to detect
sentiment. There are five labels: very positive, positive, neutral,
negative and very negative. One thing to note is that the
training set is provided at the parse-level, meaning that it con-
sists of phrases and sentences. The test set, however, consists
only of sentences [6]. The Text REtrieval Conference question
dataset (TREC)2 is made up of a collection of questions.
The goal of this dataset is to classify questions into different
question types. For example, questions about a location belong
to the location class. There are six labels: Abbrev., Entity,
Description, Human, Location, and Numeric [7].

In 2014, Kim et al. [8] performed a comparison of different
CNN models on a variety of text-based datasets (among them
being SST-1 and TREC). The CNN-rand model is the only
model which does not use pre-trained vectors with word2vec.
The vectors are instead randomly initialized and modified
during training. This model is chosen because word2vec is
beyond the scope of this study and relayed to future work.
Zhou et al. [9] presented a comparison between a Bi-LSTM
model and the C-LSTM model evaluated on the SST-1 and
TREC datasets. The Bi-LSTM is a one layered bidirectional
recurrent neural network using the long short-term memory
(LSTM) architecture.

Socher et al. [6] presents a support vector machine (SVM)
and Naive Bayes based model used on the SST-1 dataset. They
are both implemented with bag-of-words features. Zhang et
al. [10] present an SVM and Naive Bayes model used on
the TREC dataset for question classification. Both models are
implemented with bag-of-words features and default values
for the parameters (e.g., C value in SVM). The SVM model
uses a linear kernel, but the same results were achieved for the
polynomial, Radial Basis Function (RBF) and sigmoid kernel.
Another work that needs to be mentioned is from Silva et.
al. [11]. They managed to get 95% accuracy on the TREC
dataset using an SVM. However, that implementation of the
SVM model had highly engineered features.

As we can see from the results of the previous works
(Table I), deep learning models outperform the traditional
machine learning models by a good margin. The bidirectional
LSTM has the highest performance closely followed by the
CNN model; there is a small jump down to SVM and Naive
Bayes. They perform about the same on the SST-1 dataset, but
the SVM model has higher performance on the TREC dataset.

1http://nlp.stanford.edu/sentiment
2http://cogcomp.cs.illinois.edu/Data/QA/QC/

Model SST-1 Accuracy TREC Accuracy
Naive Bayes [6] 41.0 77.4
SVM [10] 40.7 85.8
Bi-LSTM [9] 47.8 93.0
CNN-rand [8] 45.0 91.2

TABLE I: Related work accuracy scores for the different
models on the SST-1 and TREC datasets.

article id content order content html type class
yvdVOJ 0 To mål av Espen Ruud

- og Sarpsborg gikk på
sitt fjerde strake tap

h1 Goal/Assist

yvdVOJ 1 (Sarpsborg-Odd 12)
Odd-backen Espen
Ruud (34) har laget
fem mål på de

p Goal/Assist

TABLE II: Example of how the data is stored in the database.

III. DATA

A. Retrieving Data

To collect data from our selected news sources, we created a
python program which fetches and processes raw HTML code
from the web sites of VG and TV2. First, the program uses
Request to fetch the HTML code from all the soccer articles
on ’www.vg.no/fotball’ and ’www.tv2.no/fotball’. Next, the
relevant information from the HTML code is extracted using
Beautiful Soup (python package for parsing HTML and XML
files) and the result is stored in the database. There are
four columns in the database table containing the extracted
information and one containing the class label (see Table II):

• article id - This is the id of the article given by TV2
and VG.

• content order - This is the order of the paragraphs in
the article. Zero is the headline, and the highest number
is the last paragraph.

• content - The content in the paragraph.
• html type - The type of the HTML tag used by VG

and TV2. For example p for paragraph and h1 for the
headline.

• class - the label of the paragraph.

In total, the database consists of approximately 1, 000
articles, 20, 000 paragraphs and 1, 000 labeled paragraphs from
each class.

B. Labeling Data

After the data was stored in the database, we created a web
app called Arx to label the collected data. The purpose of
Arx was to help with the labeling, making the process much
quicker. Arx displays the content of each article in a structured
way with a labeling option for each paragraph (see Figure 1).
It is also possible to fetch all paragraphs or articles containing
keywords (see Figure 2). For example, one can fetch all articles
or paragraphs containing the word ”målscorer” (goal scorer),
”overgang” (attack after a break) or ”vinnermålet” (winning
goal). This option is beneficial since there are a lot of soccer

Class Label Number of Samples
Goal/Assist 1117

Quotes 975
Transfer 887
Irrelevant 812

Ignore 663
Player Detail 340
Club Detail 315

Chances 300

TABLE III: Number of data samples per class from the dataset
created for this paper.

Component Model Description

CPU Intel i7-8700K 3
Cores: 6
Clock spees: 3.7-4.7GHz
Catch: 12MB

GPU Nvidia GTX1070 Ti 4
Memory: 8GB DDR5
Cuda cores: 2432
Boost clock: 1683 MHz

RAM n/a 16 GB DDR4
OS Ubuntu 18.04 n/a

TABLE IV: The computer hardware specifications of the
machine used to train the machine learning algorithms.

articles that do not contain relevant paragraphs. Labeling is
possible on both computers and mobile devices.

Arx was built using Django for the RESTful API server
and React for the front-end web page. There are two possible
HTTP request methods to the Django API; GET and PUT.
React uses GET to fetch the articles and paragraphs from
the database, and PUT to update a paragraph with the correct
labels. There are in general only five labels, however, to make
the labeling easier there are several more options to choose
from than just five, e.g., club detail, player detail and chances,
to name a few.

C. The Dataset

The dataset contains 5, 526 labeled data samples and is
freely available online [12]. The labeling was performed by a
person who is familiar with soccer. In Table III, there is an
overview of how many data samples there are for each class.
There are eight classes, but only five will be used because the
last three classes have too few samples. The dataset is split
with stratified 10-fold cross-validation during training.

IV. EXPERIMENTS

The soccer articles are collected from Norwegian newspa-
pers, and there are no libraries for pre-processing Norwegian
text. As a result, there will be no pre-processing of the text
in the dataset, except for removing special characters. In
Table IV, there is an overview of the hardware used to train
different machine learning algorithms.

The traditional machine learning algorithms Navie Bayes,
support vector classification (SVC) and Linear SVC were all
implemented using the python library Scikit-learn [13]. With
Scikit-learn, the algorithms are imported and initiated using
the relevant hyperparameters. All algorithms choose between
two vectorizers to transform the paragraphs into vectors of

numbers. The first method is term frequency-inverse document
frequency (TFIDF), and the other method is a count vectorizer.

The deep learning models, RNN and CNN, are both created
with the python library Keras. Keras [14] is a high-level
neural network API written in python, that runs on top of
TensorFlow [15], Theano [16] or CNTK [17]. We use the
tokenizer from Keras to convert words into numbers. The input
to the models is fixed, and the paragraph with the most words
determine the input length. All other paragraphs are padded
to match the max size.

The RNN model is a composition of the following layers:
embedding layer, dropout layer, bidirectional LSTM layer,
and a dense layer. To find the optimal RNN model, we run
three different experiments. The first experiment will find the
optimal embedding dimension for four different LSTM layers,
with the other parameters set to the Keras’ default values.
For the second experiment, the optimal embedding dimension
will be used to find the optimal number of LSTM neurons in
the LSTM layer, with the other parameters set to the default
value. The third experiments will use the optimal embedding
dimension and the optimal number of LSTM neurons, to find
the optimal dropout rate when the dropout layer is before and
after the LSTM layer.

The CNN model is a composition of these seven layers:
embedding layer, convolutional layer, dropout layer, pooling
layer, flattening layer and two dense layers. To find the optimal
CNN model four experiments will be run. The first experiment
will find the optimal embedding dimension with different filter
sizes, pooling sizes, and kernel sizes. The second experiment
will use the optimal embedding dimension, kernel size, and
pooling size to find the optimal filter size. The third experiment
will use the optimal values found in experiment one and two
to find the optimal number of neurons in the dense layer. The
fourth experiment will find the optimal dropout rate when the
optimal values are used for all parameters.

After the training experiments, each model will use the
optimal parameters and train on the entire dataset. The models
will then be used in the application to classify articles about
soccer players. The result of the models will be compared and
analyzed. The articles used in the application is collected in
the period between December 2018 and February 2019, three
months after the training set was made.

Figure 3 shows the user interface of the classification
program. The application takes a player name and a machine
learning type as input. It then searches the database for all
articles where that player is mentioned. The paragraphs in
these articles are run through the machine learning algorithm,
and the result is presented in five different tags shown in
Figure 3.

For the evaluation, each model will classify articles for five
players. Two players will test the models on how well they
classify the ”Goal/Assist” paragraphs. The two players are
”Lucas Moura” and ”Marcus Rashford”, i.e., both of these
players scored goals and performed well in the period from
December 2018 to February 2019. Two players will test the
models on how well they classify ”Transfer” paragraphs. The

Fig. 1: Example of how the labelling is done with Arx. The first step is to click an article, the second step is to locate a
paragraph, and the third step is to determine which label to give the chosen paragraph.

Fig. 2: Example of how to fetch articles and paragraphs with
a keyword in Arx. The left figure finds all articles that contain
”Lionel Messi”. The right figure finds all paragraphs that
contain the word ”Målscorer”.

two players are ”Higuain” and ”Morata”. These players were
sold in the 2019 January transfer window. The last player to
test the models is ”Martin Ødegaard”, who performed well and
was speculated in the transfer marked in the period December
2018 to February 2019.

Metric values and confusion matrix are calculated for each
player on all the different models. In addition, for Lucas Moura
and Morata, the paragraphs will be shown and the result will
be analyzed. Five articles will be classified for Lucas Moura.

The following metrics are used to determine the perfor-
mance of a classifier: Accuracy, recall, precision, f-measure,
and matthews correlation coefficient (MCC). To get the result

Fig. 3: An example of the classification of Lionel Messi with
the CNN model. Each paragraph in articles about Lione Messi
will be classified in one of the five tabs.

of the classifiers as general as possible, the metrics are
calculated as an average over 10-fold cross-validation.

A. Results

The performance of Linear SVC, SVC RBF and SVC poly
are almost identical during training, with an MCC of 82%
and an accuracy of 85.5%. The Naive Bayes model performs
4% lower than the others. All the algorithms have the same
pattern, where the f1 score of the ”Irrelevant” class has low
performance, and the other classes have high performance.
Especially for Naive Bayes the f1 score of the ”Irrelevant”
class is 17% lower than the other algorithms, but for the other

Parameter Metrics f1 score for each class
Model Name Acc MCC Rec F1 Prec Go/As Tr Qu Ir Ig

RNN 0.887 0.859 0.887 0.885 0.892 0.907 0.884 0.982 0.740 0.912
CNN 0.879 0.849 0.879 0.876 0.882 0.900 0.879 0.979 0.732 0.888

SVM RBF 0.859 0.823 0.859 0.857 0.864 0.903 0.876 0.903 0.701 0.900
SVM Poly 0.859 0.822 0.859 0.855 0.861 0.904 0.882 0.903 0.694 0.891

Linear SVM 0.853 0.815 0.853 0.848 0.854 0.907 0.877 0.893 0.680 0.883
Naive Bayes 0.818 0.775 0.818 0.798 0.814 0.873 0.868 0.870 0.528 0.851

TABLE V: The result of the training experiments.

four classes, the performance is only 2% lower. The training
time for SVC poly and SVC RBF is 2.7 seconds, that is 30
times higher than what it is for Naive Bayes and Linear SVC.
And the prediction time is 0.4 ms per paragraph, and that
is 25 times higher than what it is for Linear SVC and Naive
Bayes. When running the optimal model for all the algorithms
in the application, the results show a 20% drop in MCC for
all the models. The SVC poly and SVC RBF have the best
performance, with an MCC of 62%, beating Linear SVC with
2% and Naive Bayes with 6%. Then Naive Bayes classifier
has a 5-7% higher f1 score on the ”Transfer” class than the
others. On the other hand, the f1 score of the ”Ignore” class
is 13-15% lower than the other models.

The performance of the RNN and CNN classifier is very
similar during training. The RNN model has an MCC of 85.3%
and an accuracy of 88.3%, which is 1% better than CNN. The
two models have the same pattern, where the f1 score of the
”Irrelevant” class is low, and the other classes f1 score is high.
The training time for CNN is between 4 and 11 seconds, and
for RNN it is between 7 and 15 seconds. The predictions time
for CNN is 0.22 ms per paragraph, which is about half of what
it is for RNN. When running the optimal model for RNN and
CNN in the application, the results show a 20% drop in MCC
score. The RNN classifier has the best performance, with an
MCC of 64.7%, which is 2% higher than that of the CNN.
The f1 score of the different classes is very similar between
the two models.

V. DISCUSSION

The performance of the algorithms during training was
overall very high. There is an overview of the top results in
Table V. Naive Bayes is at the low end with an MCC of
75% and RNN at the high end with an MCC of 85.3%. The
MCC of the deep learning models was around 85%, while
for the SVM models the MCC was around 82%. Thus, the
performance is overall better for the deep learning algorithms,
but not with a large margin. After training, each model was
used in the application with the optimal parameters. The first
thing to note from the results in the application is that all the
algorithms suffered a ∼ 20% drop in MCC. This drop might
indicate that the models are overfitting, or that the training
set is not representative of the entire domain. Since all the
algorithms are affected the same, the problem most likely lies
with the training set. The results from the application show that
the deep learning models have a better performance than the
traditional machine learning models; there is an overview of
the results in table VI. As for training, an RNN has the highest
MCC with 64.7%, and Naive Bayes has the lowest MCC
with 56.4%. The SVM model with polynomial kernel was
closest with an MCC of 62.4%. The difference in performance

Parameter Metrics f1 score for each class
Model Name Acc MCC Rec F1 Prec Go/As Tr Qu Ir Ig

RNN 0.733 0.647 0.733 0.717 0.778 0.611 0.672 0.936 0.718 0.650
CNN 0.703 0.625 0.703 0.696 0.776 0.558 0.684 0.881 0.699 0.659

SVM Poly 0.703 0.624 0.703 0.720 0.768 0.567 0.661 0.868 0.667 0.835
SVM RBF 0.697 0.618 0.697 0.711 0.767 0.563 0.650 0.872 0.663 0.809

Linear SVM 0.690 0.609 0.690 0.704 0.758 0.566 0.633 0.850 0.657 0.813
Naive Bayes 0.613 0.564 0.613 0.645 0.738 0.515 0.711 0.855 0.467 0.677

TABLE VI: The result of the application experiments.
Model Name Expression Total Training Time (minutes)
Naive Bayes 4 ∗ 80 ∗ 0.063 ∗ 10 3
Linear SVM 3 ∗ 80 ∗ 0.084 ∗ 10 3.36
SVM RBF 4 ∗ 80 ∗ 2.7 ∗ 10 144
SVM Poly 6 ∗ 80 ∗ 2.6 ∗ 10 207.6

RNN 7 ∗ 80 ∗ 11 ∗ 10 1020
CNN 27 ∗ 80 ∗ 8 ∗ 10 2880

TABLE VII: The total training time for each algorithm calcu-
lated in minutes.

is marginal, with RNN performing slightly better than SVM
models. The training time can be divided into three brackets,
where Naive Bayes and linear SVM have a very low training
time, SVM with polynomial and RBF kernel have a high
training time, and RNN and CNN have a very high training
time. In Table VII, there is an overview of the approximate
time for the different models. Where the time is calculated
with the function 1 and where the different parameters are as
follow:

• Experiments (exp) - Number of experiments that were
executed.

• Parameters per experiment (ppe) - Number of values that
were tested for each experiment.

• Average training time (att) - The average training time
for each model.

• Number of folds in cross-validation (fcv) - Number of
folds that were used during training.

Total training time = exp · ppe · att · fcv (1)

SVM with RBF and polynomial kernel have a lower training
time compared to what is shown in Table VII. The implemen-
tation from Scikit-learn does not support multi-threading, so
each of them only ran on one processor core. However, during
training, the task was split up to use the six cores available.
Therefore, the time shown in the table can roughly be divided
by six. The linear SVM model has a lower training time than
the other SVM models because Scikit-learn uses a different
multi-class implementation. For linear SVM, Scikit-learn uses
one-vs-rest, and for the other two, it uses one-vs-one, which
is more computationally expensive. The total training time is
much higher for the deep learning algorithms than it is for the
traditional machine learning models. One reason for the high
training time is that there are more parameters to optimize
for the deep learning models, combined with higher training
time in general. Despite the high training time compared to
the other models, it is not unreasonably high and still very
manageable.

A. Failure Analysis
Based on our results, we see that the ”Irrelevant” class has

a low f1 score compared to the other classes. Furthermore,

”Goal/Assist” paragraphs are often mistaken for ”Irrelevant”
paragraphs. There is also a significant drop in performance
when applying the models to the application. The ”Irrelevant”
class contains many different types of paragraphs, for example,
goal chances, team lineups, and other trivial information. Thus,
the ”Irrelevant” class is many classes put into one which makes
it difficult for the models to generalize what belongs to this
class. One solution to this problem may be to change the
”Irrelevant” class. For example, one of the main issues in the
application is that paragraphs about goal chances get classified
to the ”Goal/Assist” class instead of to the ”Irrelevant” class.
Renaming the ”Goal/Assist” class to ”Situation” class, and
changing the content from being about goals and assists to
goals, assists and chances would simplify the ”Irrelevant”
class. Another problem in the application is that paragraphs
about team line-ups get classified to the ”Ignore” class instead
of the ”Irrelevant” class. Moving these paragraphs to the
”Ignore” class makes sense, maybe that is where they should
have been from the start. These two measures would reduce
the size of the ”Irrelevant” class without complicating the
”Goal/Assist” and ”Ignore” class.

One possible reason for the big difference between the
training experiment result and the application result can be
the labeling method used on the training set and the test
set. There are three ways to label data samples (1) label
paragraphs in random articles, (2) label paragraphs in articles
that contain a keyword, for example, articles that contain a
certain player name, or (3) label paragraphs from a list of
paragraphs containing a keyword, for example, a list of all
paragraphs that contain the word ”Målscorer”. When making
the training set, all three methods were used, but the third
method was used the most. On the other hand, when making
the test set, only the second method was used, which means
that the training set has a less diverse set of paragraphs
compared to the test set.

RNN and CNN are data-hungry algorithms compared to
Naive Bayes and SVM. The training set used in this research
contains approximately 5,500 data samples, which is consid-
ered to be few when it comes to deep learning. However, even
with a limited training set, the deep learning algorithms out-
performed the traditional machine learning algorithms. Such
datasets are a work in progress, meaning that they will grow
over time. It is, therefore, reasonable to think that CNNs and
RNNs will benefit more from this than SVM and Naive Bayes.

VI. CONCLUSION AND FUTURE WORK

The research question raised in Section I was: ”How does
deep learning compare to traditional machine learning
on text classification when it comes to classification
performance, training time and setup complexity?”. To
answer this question, different machine learning and deep
learning models were created and then compared against each
other. Based on the research done in this paper, there is no
clear answer to whether deep learning or traditional machine
learning algorithms are preferred for text classification. On
the one hand, the deep learning models did perform slightly

better overall compared to the traditional machine learning
algorithms. However, on the other hand, the training time for
the deep learning models is much higher, and the setup is more
complex. Moreover, if the dataset is limited as it is in this
work, the traditional machine learning models are the better
choice. They are easy setup, low training time and limited
maintenance outweigh the small performance gain given by
deep learning. However, if the dataset is growing over time
and has the potential of becoming much bigger than it is now,
the deep learning models are the better choice. The overhead
would then be worth the potential performance gain that is
given by deep learning.

For future work, we plan the following improvements. First,
to get a more thorough comparison between deep learning and
traditional machine learning, more algorithms can be tested,
e.g., decision trees and k-nearest neighbours. Additionally,
we aim to test different architectures for RNNs and CNNs.
Furthermore, pre-processing of the dataset was almost non-
existent in this research; only special characters were removed.
Therefore, more advanced pre-processing could be tested on
the dataset. One way to do this is to use the Google Translate
API, and translate the dataset into English for so to apply
pre-processing tools available in English.

REFERENCES

[1] Total number of websites - internet live stats. [Online]. Available:
http://www.internetlivestats.com/total-number-of-websites/

[2] Google trends. [Online]. Available:
https://trends.google.com/trends/explore?date=today

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[4] G. Lewis-Kraus, “The great ai awakening,” NYT, vol. 14, 2016.
[5] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in

deep learning based natural language processing,” ieee Computational
intelligenCe magazine, vol. 13, no. 3, pp. 55–75, 2018.

[6] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and
C. Potts, “Recursive deep models for semantic compositionality over a
sentiment treebank,” in Proc. of EMNL, 2013, pp. 1631–1642.

[7] X. Li and D. Roth, “Learning question classifiers,” in Proc. of CL.
Association for Computational Linguistics, 2002, pp. 1–7.

[8] Y. Kim, “Convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1408.5882, 2014.

[9] C. Zhou, C. Sun, Z. Liu, and F. Lau, “A c-lstm neural network for text
classification,” arXiv preprint arXiv:1511.08630, 2015.

[10] D. Zhang and W. S. Lee, “Question classification using support vector
machines,” in Proc. of RDIR. ACM, 2003, pp. 26–32.

[11] J. Silva, L. Coheur, A. C. Mendes, and A. Wichert, “From symbolic
to sub-symbolic information in question classification,” Artificial Intel-
ligence Review, vol. 35, no. 2, pp. 137–154, 2011.

[12] A. Nordskog, “Text classification project,” original-date: 2019-05-
16T06:12:33Z. [Online]. Available: https://github.com/Halflingen/Text-
Classification-Project

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[14] F. Chollet et al., “Keras,” 2015. [Online]. Available: https://keras.io/
[15] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[16] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: A cpu and
gpu math compiler in python,” in Proc. of PIS, vol. 1, 2010.

[17] F. Seide and A. Agarwal, “Cntk: Microsoft’s open-source deep-learning
toolkit,” in Proc. of SIGKDD. ACM, 2016, pp. 2135–2135.

