
12/11/2015

1

An overview of

Constraint-Based Testing

Arnaud Gotlieb

SIMULA RESEARCH LAB.

CRIM, Montréal, Nov. 2015

Hosted by SIMULA

Established and
awarded SFI in Oct.
2011

duration: 8 years
RCN funding: ~10MEUR

The Certus
Centre

www.certus-sfi.no

Cisco Systems Norway

ABB Robotics
Stavanger

Kongsberg Maritime

Norwegian Custom and excise

Software Testing

Execution Verdict:
pass / fail

implementation

Spec. / Model

Code-based TestingCorrect ?

Test case
generation

Test set

Model-based Testing

Constraint-Based Testing

Execution Verdict:
pass / fail

Spec. / Model

Implementation

Constraint model

Constraint
generation

Constraint
solving

Test set

Constraint-Based Testing (CBT)

Constraint-Based Testing (CBT) is the process of generating test cases
against a testing objective by using constraint solving techniques

Introduced 25 years ago by Offut and DeMillo in
(Constraint-based automatic test data generation IEEE TSE 1991)

Success stories in the context of code-based testing with code coverage
objectives (Microsoft, Thales, CEA), and Model-Based Testing (Smartesting)

Lots of Research works and tools !

http://www.certus-sfi.no/

12/11/2015

2

The automatic test data generation problem

Given a location k in a program under test, generate a test input that reaches k

 Highly combinatorial

Here, with random testing, Prob{ reack k} = 2 over 232232232 = 2-95=0.00000…1

Undecidable in general, but ad-hoc methods exist

 Loops and non-feasible paths

 Modular integer and floating-point computations

 Pointers, dynamic structures, function calls, …

f (int x1, int x2, int x3) {

if(x1 == x2 && x2 ==x3)

if(x3==x1*x2) ... }

Context of this overview

Code-based testing (not model-based testing)

Imperative programs (C, ADA, …) (neither Functionnal P., nor Logic P.)

Programs with loops and recursion (i.e., infinite-state systems)

Single-threaded programs (no concurrent or parallel programs)

Selected location in code (i.e., reachability problems)

Outline

• Introduction

• Path-oriented exploration

• Constraint-based exploration

• Further work

Path-oriented test data generation

• Select one or several paths Path selection step

• Generate the path conditions Symbolic evaluation techniques

• Solve the path conditions to generate test data that activate the selected
paths Constraint solving

Test objectives:
generating a test suite that covers a given testing criterion
(all-statements, all-decisions, all-paths…)

or a test data that raise a safety or security problem
(assertion violation, buffer overflow, …)

Main CBT tools: ATGen (Meudec 2001), EXE (Cadar et al. 2006),
ECLAIR (Bagnara Bagnara Gori 2013)

Path selection on an example

double P(short x, short y) {

short w = abs(y) ;
double z = 1.0 ;
while (w != 0)
{

z = z * x ;
w = w - 1 ;

}
if (y<0)

z = 1.0 / z ;
return(z) ;
}

w != 0

z = z * x
w = w-1

y<0

z=1.0 / z

a

b

c

d

e

f

P(short x,y)
short w= abs(y)
double z= 1.0

return(z)

Path selection on an example

all-statement coverage:

a-b-c-b-d-e-f

All-decisions coverage:

a-b-c-b-d-e-f

a-b-d-f

all-2-paths (at most 2 times in loops):

a-b-d-f

a-b-d-e-f

…

a-b-(c-b)2-d-e-f

all-paths:

Impossible

w != 0

z = z * x
w = w-1

y<0

z=1.0 / z

a

b

c

d

e

f

P(short x,y)
short w= abs(y)
double z= 1.0

return(z)

12/11/2015

3

Symbolic state: <Path, State, Path Conditions>

Path = ni-..-nj is a path expression of the CFG

State = <vi,i> vVar(P) where i is an algebraic expression over X

Path Cond. = c1,..,cn where ci is a condition over X

X denotes symbolic variables associated to the program inputs and Var(P)

denotes internal variables

Path condition generation
Symbolic execution

<a, <z,1.>, <w,abs(Y)>, true >

<a-b, <z,1.>, <w,abs(Y)>, abs(Y) != 0 >

<a-b-c, <z,X>, <w,abs(Y)-1>, abs(Y) != 0 >

<a-b-c-b, <z,X.>, <w,abs(Y)-1>,

abs(Y) != 0, abs(Y)-1 != 0 >

< a-b-c-b-c, <z,X2>, <w,abs(Y)-2>,
abs(Y) != 0, abs(Y)-1 != 0 >

<a-b-(c-b)2, <z,X2>, <w,abs(Y)-2>,
abs(Y) != 0, abs(Y) != 1, abs(Y)–2 = 0 >

<a-b-(c-b)2-d, <z,X2>, <w,abs(Y)-2>,
abs(Y) != 0, abs(Y) != 1, abs(Y) = 2, Y 0 >

<a-b-(c-b)2-d-f, <z,X2>, <w,0>, Y=2 >

Ex : a-b-(c-b)2-d-f with X,Y

w != 0

z= z * x
w= w-1

y<0

z=1.0 / z

a

b

c

d

e

f

P(short x,y)
short w= abs(y)
double z= 1.0

return(z)

X 2

Computing symbolic states

 <Path, State, PC> is computed by induction over each statement of Path

 When the Path conditions are unsatisfiable then Path is non-feasible and
reciprocally (i.e., symbolic execution captures the concrete semantics)

ex : <a-b-d-e-f,{…}, abs(Y)=0 Y<0 >

 Forward vs backward analysis:

Forward interesting when states are needed
Backward saves memory space, as complete states are not computed

Backward analysis
Ex : a-b-(c-b)2-d-f with X,Y

f,d: Y 0

b: Y 0, w = 0

c: Y 0, w-1 = 0

b: Y 0, w-1 = 0, w != 0

c: Y 0, w-2 = 0, w-1 != 0

b: Y 0, w-2 =0, w-1 != 0,w != 0

a: Y 0, abs(Y)-2 = 0,
abs(Y)-1 != 0, abs(Y) != 0

Y = 2

w != 0

z= z * x
w= w-1

y<0

z=1.0 / z

a

b

c

d

e

f

P(short x,y)
short w= abs(y)
double z= 1.0

return(z)

X 2

Problems for symbolic evaluation techniques

 Combinatorial explosion of paths

 Symbolic execution constrains the shape of dynamically allocated objects

int P(struct cell * t) {

if(t == t->next) { …

constrains t to:

(Modelling dynamic memory management in constraint-based testing.
Charreteur Botella Gotlieb JSS 09)

(Constraint-based test input generation for java bytecode.
Charreteur Gotlieb ISSRE 10)

 Floating-point computations

t

next

float foo(float x) {

float y = 1.0e12, z ;

1. if(x < 10000.0)

2. z = x + y;

3. if(z > y)

4. …

Is the path 1-2-3-4 feasible ?

Path conditions:

x < 10000.0

x + 1.0e12 > 1.0e12

On the reals : x (0,10000)

On the floats : no solution !

12/11/2015

4

float foo(float x) {

float y = 1.0e12, z ;

1. if(x > 0.0)

2. z = x + y;

3. if(z == y)

4. …

Is the path 1-2-3-4 feasible ?

Path conditions:

x > 0.0

x + 1.0e12 = 1.0e12

On the reals : no solution

On the floats: x (0, 32767.99…)

Conversely,

Solution: build a dedicated constraint solver over the floats !

(Symbolic execution of floating-point computations,
Botella Gotlieb Michel, STVR 2006
Bagnara Carlier Gotlieb Gori, ICST 2013, JoC 2015)

Dynamic symbolic evaluation

 Symbolic execution of a concrete execution (also called concolic execution)

 By using input values, feasible paths only are (automatically) selected

 Randomized algorithm, implemented by instrumenting each statement of P

Main CBT tools:

PathCrawler (Williams et al. 2005),
PEX (Tillman et al. Microsoft 2008),

SAGE (Godefroid et al.2008)
KLEE (Cadar et al. 2008)

Comes in two ingredients…

1st ingredient: path exploration
1. Draw an input at random, execute it and record path conditions

b

a

t

c

t

d

t

2. Flip a non-covered decision and solve the constraints to find a new input x

b

a

t

c

t

d

f

3. Execute with x

4. Repeat 2

b

a

t

c

t

f

de

f

t

b

a

t

c

t

f

de

f

f

…. b

a

t

c

t

f

de

fg

h

i

jk

Up to given bounds

2nd ingredient: use concrete values

 Use actual values to simplify the constraint set

Flip If(x3 == x1 * x2) … (x1 = 6, x2=7)

(1) Exact solving -- add x3 != x1 * x2 to the constraint solver

(2) Approximate solving -- add x3 != 6 * x2 && x1=6

or -- add x3 != x1 * 7 && x2=7

(3) Useless solving -- add x3 != 42 && x1=6 && x2=7

PathCrawler: (1) PEX: (2) SAGE: (3) and then (2)

Constraint solving in symbolic evaluation

• Mixed Integer Linear Programming approaches
(i.e., simplex + Fourier’s elimination + branch-and-bound)

CLP(R,Q) in ATGen (Meudec 2001)
lpsolve in DART/CUTE (Godefroid/Sen et al. 2005)

• SMT-solving (= SAT + Theories)

STP in EXE and KLEE (Cadar et al. 2006)
Z3 in PEX and SAGE (Tillmann and de Halleux 2008)

• Constraint Programming techniques (constraint propagation and labelling)

Colibri in PathCrawler (Williams et al. 2005)
Disolver in SAGE (Godefroid et al. 2008)
ECLAIR (Bagnara Bagnara Gori 2013)

Outline

• Introduction

• Path-oriented exploration

• Constraint-based exploration

• Further work

12/11/2015

5

Main CBT tools: InKa (Gotlieb Botella Rueher 1998),
GATEL (Marre 2004),
Euclide (Gotlieb 2009)

Constraint-based program exploration

- Based on a constraint model of the whole program
(i.e., each statement is seen as a relation between two memory states)

- Constraint reasoning over control structures

- Requires to build dedicated constraint solvers:
* propagation queue management with priorities
* specific propagators and global constraints
* structure-aware labelling heuristics

f(int i)

{

a. j = 100;

while(i > 1)

b. { j++ ; i-- ;}

…

d. if(j > 500)

e. …
d

b

a

f

t

t

f

A reacheability problem

…

value of i to reach e ?

e

f(int i)

{

a. j = 100;

while(i > 1)

b. { j++ ; i-- ;}

…

d. if(j > 500)

e. …

d

b

a

f

t

t

f

Path-oriented exploration

…

1. Path selection
e.g., (a-b)14-…-d-e

2. Path conditions generation (via symbolic exec.)
j1=100, i1>1, j2=j1+1, i2=i1-1, i2>1,…, j15>500

3. Path conditions solving
unsatisfiable FAIL

Backtrack !

e

f(int i)

{

a. j = 100;

while(i > 1)

b. { j++ ; i-- ;}

…

d. if(j > 500)

e. …

d

b

a

f

t

t

f

Constraint-based exploration

…

1. Constraint model generation (through SSA)

2. Control dependencies generation;
j1=100, i3 ≤ 1, j3 > 500

3. Constraint model solving
j1 j3 entailed unroll the loop 400 times i1 in 401 .. 231-1

No backtrack !

e

Viewing an assignment as a relation requires to normalize expressions
and rename variables (through single assignment languages, e.g., SSA)

i*=++i ; i2 = (i1+1)2

Assignment as Constraint

i*=++i; /* i2 = (i1+1) 2 */

i1 = 3 ?

i2 = 16

i1 in -4..2

i2 = 9 ?

i1 in -5..3

i2 in 5..16 ?i2 = 7 ?

no

Statements as (global) constraints

 Type declaration: signed long x; x in -231..231-1

 Assignments: i*=++i ; i2 = (i1+1)2

 Control structures: dedicated global constraints

Conditionnals (SSA) if D then C1; else C2; v3=(v1,v2) ite/6

Loops (SSA) v3=(v1,v2) while D do C w/5

12/11/2015

6

Conditional as global constraint: ite/6

ite(x > 0, j1, j2, j3, j1 = 5, j2 = 18) iff

if(x > 0)

3

2

0

j2 = 18;

j3 = (j1 , j2);

 (x > 0 j1 = 5 j3 = j1) (x > 0) j2 = 18 j3 = j2

 ((x > 0) j3 = j2) x > 0 j1 = 5 j3 = j1

 Join(x > 0 j1 = 5 j3 = j1 , (x > 0) j1 = 18 j3 = j2)

 x > 0 j1 = 5 j3 = j1

 (x > 0) j2 = 18 j3 = j2

j1 = 5; 1

Loop as global constraint: w/5

v3 = (v1 , v2)
while(Dec)

1

2

body
3

w(Dec, V1, V2, V3, body) iff
 DecV3V1 bodyV3V1 w(Dec, v2,vnew,v3, bodyV2Vnew)
 DecV3V1 v3=v1

 (DecV3V1 bodyV3V1) DecV3V1 v3=v1

 (DecV3V1 v3=v1) DecV3V1 bodyV3V1 w(Dec,v2,vnew,v3,bodyV2Vnew)
 join(DecV3V1 bodyV3V1 w(Dec,v2,vnew,v3,bodyV2Vnew) , DecV3V1 v3=v1)

f(int i) {

j = 100;

while(i > 1)

{ j++ ; i-- ;}

…

if(j > 500)

…

w(i3 > 1, (i,j1), (i2,j2), (i3,j3), j2 = j3 + 1 i2 = i3 - 1)

i = 23, j1=100 ?

i3 = 1, j3 = 122

no

i3 = 10 ?

i in 401..231-1

j1 = 100,

j3 > 500 ?

w(Dec, V1, V2, V3, body) :-
 DecV3V1 bodyV3V1 w(Dec, v2,vnew,v3, bodyV2Vnew)
 DecV3V1 v3=v1

 (DecV3V1 bodyV3V1) DecV3V1 v3=v1

 (DecV3V1 v3=v1)
DecV3V1 bodyV3V1 w(Dec,v2,vnew,v3,bodyV2Vnew)

 join(DecV3V1 bodyV3V1 w(Dec,v2,vnew,v3,bodyV2Vnew ,

DecV3V1 v3=v1)

Features of the w relation

 It can be nested into other relation (e.g., nested loops w(cond1, v1,v2,v3,
w(cond2, ...))

 Managed by the solver as any other constraint (its consistency is
iteratively checked, awakening conditions, success/failure/suspension)

 By construction, w is unfolded only when necessary but
w may NOT terminate !

 Join is implemented using Abstract Interpretation operators (interval
union, weak-join, widening)

(Gotlieb et al. CL’2000, Denmat Gotlieb Ducassé ISSRE’07 and CP’2007)

Outline

• Introduction

• Path-oriented exploration

• Constraint-based exploration

• Further work

CBT (summary)

• Emerging concept in code-based automatic test data generation

• Two main approaches:

Path-oriented test data generation vs constraint-based exploration

• Constraint solving:

- Linear programming
- SMT-solvers
- Constraint Programming techniques with abstraction-based
relaxations

• Mature tools (academic and industrial) already exist, but application
on real-sized industrial cases still have to be demonstrated

12/11/2015

7

CBT: Pros/Cons

Handle control and data structures (i.e., pure SAT-solving doesn’t work
well in that context !) in an efficient way

100%-coverage of testing criteria as required by standards for critical
software (e.g., DO-178, Misra, ISO 2626.2)

Fully automated test data generation methods

No semantics description, no formal proof correction is not a priority !

Unsatisfiability detection has to be improved (to avoid costly labelling), by
combining techniques (e.g., SMT/CP)

Exploration techniques do not currently keep track of previous solved
constraint systems

Pros:

Cons:

Further work

- Combining SMT-solving and /CP-based solver
(PhD Q. Plazar, joint work with CEA, France)

- Constraint optimization models for test suite execution scheduling

- Constraint-Based Testing from feature models, in the context of
Software Product Lines Testing

Thanks !

