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Constraint-Based Testing (CBT)

Constraint-Based Testing (CBT) is the process of generating test cases
against a testing objective by using constraint solving techniques 

Introduced 25 years ago by Offut and DeMillo in
(Constraint-based automatic test data generation IEEE TSE 1991)

Success stories in the context of code-based testing with code coverage
objectives  (Microsoft, Thales, CEA), and Model-Based Testing (Smartesting)                            

Lots of Research works and tools !

http://www.certus-sfi.no/
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The automatic test data generation problem

Given a location k in a program under test, generate a test input that reaches k

 Highly combinatorial

Here, with random testing,  Prob{ reack k} = 2 over  232232232 = 2-95=0.00000…1

Undecidable in general, but ad-hoc methods exist

 Loops and non-feasible paths

 Modular integer and floating-point computations

 Pointers, dynamic structures, function calls, …

f (int  x1, int  x2, int  x3)   { 

if(x1 == x2  && x2 ==x3) 

if(x3==x1*x2)  ...        }

Context of this overview

Code-based testing                                    (not model-based testing)

Imperative programs (C, ADA, …) (neither Functionnal P., nor Logic P.)

Programs with loops and recursion              (i.e., infinite-state systems)

Single-threaded programs                          (no concurrent or parallel programs)   

Selected location in code                            (i.e., reachability problems)

Outline

• Introduction

• Path-oriented exploration

• Constraint-based exploration

• Further work

Path-oriented test data generation

• Select one or several paths  Path selection step

• Generate the path conditions  Symbolic evaluation techniques

• Solve the path conditions to generate test data that activate the selected
paths  Constraint solving

Test objectives:
generating a test suite that covers a given testing criterion
(all-statements, all-decisions, all-paths…) 

or a test data that raise a safety or security problem
(assertion violation, buffer overflow, …)

Main CBT tools: ATGen (Meudec 2001), EXE (Cadar et al. 2006), 
ECLAIR (Bagnara Bagnara Gori 2013)

Path selection on an example

double P(short x, short y) {

short w = abs(y) ;
double z  = 1.0 ;
while ( w != 0 )
{

z  = z * x ;
w = w - 1 ; 

}
if ( y<0 ) 

z = 1.0 / z ;
return(z) ; 
}

w != 0

z = z * x
w = w-1

y<0

z=1.0 / z
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P(short x,y)
short w= abs(y)
double z= 1.0

return(z)

Path selection on an example

all-statement coverage: 

a-b-c-b-d-e-f 

All-decisions coverage: 

a-b-c-b-d-e-f

a-b-d-f

all-2-paths (at most 2 times in loops):  

a-b-d-f

a-b-d-e-f

…

a-b-(c-b)2-d-e-f

all-paths:

Impossible
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double z= 1.0

return(z)
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Symbolic state: <Path, State, Path Conditions>

Path          = ni-..-nj is a path expression of the CFG

State        = <vi,i> vVar(P) where i is an algebraic expression over X

Path Cond. = c1,..,cn where ci is a condition over X

X denotes symbolic variables associated to the program inputs and Var(P)

denotes internal variables

Path condition generation
Symbolic execution

<a,                      <z,1.>, <w,abs(Y)>,                                true >

<a-b,                   <z,1.>,  <w,abs(Y)>,                     abs(Y) != 0 >

<a-b-c,                <z,X>, <w,abs(Y)-1>,                   abs(Y) != 0 >

<a-b-c-b,             <z,X.>,  <w,abs(Y)-1>, 

abs(Y) != 0, abs(Y)-1 != 0 >

< a-b-c-b-c,         <z,X2>,  <w,abs(Y)-2>, 
abs(Y) != 0, abs(Y)-1 != 0 >

<a-b-(c-b)2,         <z,X2>,  <w,abs(Y)-2>,
abs(Y) != 0, abs(Y) != 1, abs(Y)–2 = 0 >

<a-b-(c-b)2-d,     <z,X2>,  <w,abs(Y)-2>,
abs(Y) != 0, abs(Y) != 1, abs(Y) = 2, Y  0 >

<a-b-(c-b)2-d-f,      <z,X2>,  <w,0>,                                 Y=2 >

Ex : a-b-(c-b)2-d-f  with   X,Y

w != 0

z= z * x
w= w-1

y<0

z=1.0 / z
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f

P(short x,y)
short w= abs(y)
double z= 1.0

return(z)

X 2

Computing symbolic states

 <Path, State, PC> is computed by induction over each statement of Path

 When the Path conditions are unsatisfiable then Path is non-feasible and 
reciprocally (i.e., symbolic execution captures the concrete semantics)

ex : <a-b-d-e-f,{…}, abs(Y)=0  Y<0 >

 Forward vs backward analysis:

Forward    interesting when states are needed
Backward  saves memory space, as complete states are not computed 

Backward analysis
Ex : a-b-(c-b)2-d-f  with X,Y

f,d: Y 0

b: Y 0, w = 0 

c: Y 0, w-1 = 0

b: Y 0, w-1 = 0, w != 0 

c: Y 0, w-2 = 0, w-1 != 0 

b: Y 0, w-2 =0, w-1 != 0,w != 0 

a: Y 0, abs(Y)-2 = 0, 
abs(Y)-1 != 0, abs(Y) != 0

Y = 2

w != 0

z= z * x
w= w-1

y<0

z=1.0 / z

a
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f

P(short x,y)
short w= abs(y)
double z= 1.0

return(z)

X 2

Problems for symbolic evaluation techniques

 Combinatorial explosion of paths

 Symbolic execution constrains the shape of dynamically allocated objects

int P(struct cell * t) { 

if( t == t->next ) { …

constrains t to:

(Modelling dynamic memory management in constraint-based testing.
Charreteur Botella Gotlieb  JSS 09) 

(Constraint-based test input generation for java bytecode.    
Charreteur Gotlieb  ISSRE 10)

 Floating-point computations 

t

next

float foo( float x) {

float y = 1.0e12, z ;

1. if( x < 10000.0 )

2. z = x + y;

3. if( z > y)

4. …

Is the path 1-2-3-4  feasible ?

Path conditions:

x < 10000.0 

x + 1.0e12 > 1.0e12

On the reals : x  (0,10000)

On the floats :  no solution    !



12/11/2015

4

float foo( float x) {

float y = 1.0e12, z ;

1. if( x > 0.0 )

2. z = x + y;

3. if( z == y)

4. …

Is the path 1-2-3-4  feasible ?

Path conditions:

x > 0.0 

x + 1.0e12 = 1.0e12

On the reals :  no solution

On the floats:  x  (0, 32767.99…)

Conversely,

Solution: build a dedicated constraint solver over the floats !

(Symbolic execution of floating-point computations, 
Botella Gotlieb Michel, STVR 2006
Bagnara Carlier Gotlieb Gori, ICST 2013, JoC 2015)

Dynamic symbolic evaluation

 Symbolic execution of a concrete execution  (also called concolic execution)

 By using input values, feasible paths only are (automatically) selected

 Randomized algorithm, implemented by instrumenting each statement of P

Main CBT tools:

PathCrawler (Williams et al. 2005),  
PEX (Tillman et al. Microsoft 2008), 

SAGE (Godefroid et al.2008)
KLEE (Cadar et al. 2008)

Comes in two ingredients…

1st ingredient: path exploration
1. Draw an input at random, execute it and record path conditions

b
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2. Flip a non-covered decision and solve the constraints to find a new input x

b
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4. Repeat 2
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Up to given bounds

2nd ingredient: use concrete values

 Use actual values to simplify the constraint set

Flip     If( x3 == x1 * x2) …                                   (x1 = 6, x2=7) 

(1)     Exact solving -- add  x3 != x1 * x2 to the constraint solver

(2)   Approximate solving -- add  x3 != 6 * x2 &&  x1=6

or     -- add  x3 != x1 * 7 && x2=7

(3) Useless solving -- add  x3 != 42       &&  x1=6 && x2=7

PathCrawler: (1)          PEX: (2)       SAGE: (3) and then (2)

Constraint solving in symbolic evaluation

• Mixed Integer Linear Programming approaches
(i.e., simplex + Fourier’s elimination + branch-and-bound)

CLP(R,Q) in ATGen (Meudec 2001)
lpsolve in  DART/CUTE (Godefroid/Sen et al. 2005)

• SMT-solving (= SAT + Theories)

STP in EXE and KLEE                  (Cadar et al. 2006)   
Z3 in PEX and SAGE      (Tillmann and de Halleux 2008)

• Constraint Programming techniques (constraint propagation and labelling)

Colibri in PathCrawler (Williams et al. 2005)
Disolver in SAGE (Godefroid et al. 2008)
ECLAIR (Bagnara Bagnara Gori 2013)

Outline

• Introduction

• Path-oriented exploration

• Constraint-based exploration

• Further work
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Main CBT tools:  InKa (Gotlieb Botella Rueher 1998),  
GATEL (Marre 2004),
Euclide    (Gotlieb 2009)

Constraint-based program exploration

- Based on a constraint model of the whole program 
(i.e., each statement is seen as a relation between two memory states)

- Constraint reasoning over control structures

- Requires to build dedicated constraint solvers:
* propagation queue management with priorities
* specific propagators and global constraints 
* structure-aware labelling heuristics

f(  int i  )

{

a.    j = 100;

while( i > 1)

b.        { j++ ; i-- ;}

…

d. if( j > 500)

e. …
d

b

a

f

t

t

f

A reacheability problem

…

value of i to reach e ?

e

f(  int i  )

{

a.    j = 100;

while( i > 1)

b.        { j++ ; i-- ;}

…

d. if( j > 500)

e. …

d

b

a

f

t

t

f

Path-oriented exploration

…

1. Path selection
e.g., (a-b)14-…-d-e      

2. Path conditions generation (via symbolic exec.)
j1=100, i1>1, j2=j1+1, i2=i1-1, i2>1,…, j15>500

3. Path conditions solving
unsatisfiable  FAIL

Backtrack !

e

f(  int i  )

{

a.    j = 100;

while( i > 1)

b.        { j++ ; i-- ;}

…

d. if( j > 500)

e. …

d

b

a

f

t

t

f

Constraint-based exploration

…

1. Constraint model generation (through SSA)

2. Control dependencies generation;
j1=100,  i3 ≤ 1,  j3 > 500

3. Constraint model solving
j1  j3 entailed  unroll the loop 400 times  i1 in   401 .. 231-1

No backtrack !

e

Viewing an assignment as a relation requires to normalize expressions 
and rename variables (through single assignment languages, e.g., SSA)

i*=++i ; i2 = (i1+1)2

Assignment as Constraint

i*=++i;     /* i2 = (i1+1) 2 */

i1 = 3  ?

i2 = 16

i1 in -4..2

i2 = 9 ?

i1 in -5..3

i2 in 5..16 ?i2 = 7 ?

no

Statements as (global) constraints

 Type declaration:                    signed long x;  x in -231..231-1

 Assignments:                                   i*=++i ;  i2 = (i1+1)2

 Control structures:  dedicated global constraints

Conditionnals (SSA) if D then C1; else C2; v3=(v1,v2)  ite/6

Loops (SSA) v3=(v1,v2) while D do C  w/5
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Conditional as global constraint: ite/6

ite( x > 0, j1, j2, j3,    j1 = 5,   j2 = 18 )   iff

if( x > 0 )

3

2

0

j2 =  18;

j3 = ( j1 , j2 );

 ( x > 0   j1 = 5   j3 = j1 )   (x > 0)  j2 = 18  j3 = j2

 ( (x > 0)  j3 = j2 )    x > 0  j1 = 5   j3 = j1

 Join( x > 0  j1 = 5  j3 = j1 ,   (x > 0)  j1 = 18  j3 = j2 )

 x > 0        j1 = 5    j3 = j1 

 (x > 0)    j2 = 18    j3 = j2

j1 =  5; 1

Loop as global constraint: w/5     

v3 = ( v1 , v2 )
while( Dec )

1

2

body
3

w(Dec, V1, V2, V3, body) iff
 DecV3V1   bodyV3V1  w(Dec, v2,vnew,v3, bodyV2Vnew)
 DecV3V1  v3=v1

 (DecV3V1  bodyV3V1 )  DecV3V1  v3=v1

 (DecV3V1  v3=v1)    DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew)
 join(DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew) ,  DecV3V1  v3=v1)

f(  int i  ) {

j = 100;

while( i > 1)

{ j++ ; i-- ;}

…

if( j > 500)

… 

w(i3 > 1, (i,j1), (i2,j2), (i3,j3),  j2 = j3 + 1  i2 = i3 - 1)

i = 23, j1=100  ?

i3 = 1, j3 = 122

no

i3 = 10 ?

i in 401..231-1

j1 = 100,

j3 > 500  ?

w(Dec, V1, V2, V3, body) :-
 DecV3V1   bodyV3V1  w(Dec, v2,vnew,v3, bodyV2Vnew)
 DecV3V1  v3=v1

 (DecV3V1  bodyV3V1 )  DecV3V1  v3=v1

 (DecV3V1  v3=v1) 
DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew)

 join(DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew , 

DecV3V1  v3=v1)

Features of the w relation

 It can be nested into other relation (e.g., nested loops  w( cond1, v1,v2,v3, 
w(cond2, ...))

 Managed by the solver as any other constraint (its consistency is 
iteratively checked, awakening conditions, success/failure/suspension)   

 By construction, w is unfolded only when necessary but 
w may NOT terminate !

 Join is implemented using Abstract Interpretation operators (interval 
union, weak-join, widening)

(Gotlieb et al. CL’2000, Denmat Gotlieb Ducassé ISSRE’07 and CP’2007)

Outline

• Introduction

• Path-oriented exploration

• Constraint-based exploration

• Further work

CBT (summary)

• Emerging concept in code-based automatic test data generation

• Two main approaches:

Path-oriented test data generation vs constraint-based exploration

• Constraint solving:

- Linear programming
- SMT-solvers
- Constraint Programming techniques with abstraction-based 
relaxations

• Mature tools (academic and industrial) already exist, but application 
on real-sized industrial cases still have to be demonstrated
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CBT: Pros/Cons         

Handle control and data structures (i.e., pure SAT-solving doesn’t work 
well in that context !) in an efficient way 

100%-coverage of testing criteria as required by standards for critical 
software (e.g., DO-178, Misra, ISO 2626.2)

Fully automated test data generation methods

No semantics description, no formal proof  correction is not a priority !

Unsatisfiability detection has to be improved (to avoid costly labelling), by 
combining techniques (e.g., SMT/CP)

Exploration techniques  do not currently keep track of previous solved 
constraint systems

Pros:

Cons:

Further work

- Combining SMT-solving and /CP-based solver
(PhD Q. Plazar, joint work with CEA, France)

- Constraint optimization models for test suite execution scheduling

- Constraint-Based Testing from feature models, in the context of 
Software Product Lines Testing

Thanks !


