An overview of

Constraint-Based Testing

Arnaud Gotlieb
SIMULA RESEARCH LAB.

@ertus CRIM, Montréal, Nov. 2015

The Certus
Centre

Hosted by SIMULA

Established and
awarded SFI in Oct.
2011

duration: 8 years ongsbrg artime
RCN funding: ~IOMEUR "

www.certus-sfi.no m nCANCER o

fiey

[simula.research laboratory]
- by thinking constantly about it

Constraint-Based Testing

Constraint
generation

Cons
sol

Execution Verdict:
pass / fail

@ertus sfi -

12/11/2015

@ertus

Software Testing

Model-based Testing

Test case
generation

Correct ?

Execution > Verdict: .
pass / fail

@erius sfi

/| constraint-Based Testing (CBT)

Introduced 25 years ago by Offut and DeMillo in
(Constraint-based automatic test data generation IEEE TSE 1991)

Success stories in the context of code-based testing with code coverage
objectives (Microsoft, Thales, CEA), and Model-Based Testing (Smartesting)

Lots of Research works and tools !

@ertus

http://www.certus-sfi.no/

The automatic test data generation problem
Undecidable in general, but ad-hoc methods exist
f (int xq, int X,, int x3) {

if(x == X, && X, ==x3/

if(x372%,% %) ..

v Highly combinatorial

Here, with random testing, Prob{ reack k} = 2 over 232x232x232 = 2-95=0.00000..1

¥ Loops and non-feasible paths
v Modular integer and floating-point computations
v Pointers, dynamic structures, function calls, ...

Outline

—» * Introduction
+ Path-oriented exploration

+ Constraint-based exploration

* Further work

@ertus

Path selection on an example

P(short x,y)
short w= abs(y)
double z= 1.0
double P(short x, short y) {
short w=abs(y):
double z =1.0;
while (w!=0)
{
z*x;
w-1;

z
w
}
if (y<0)

z2=10/1z:
return(z) ;

12/11/2015

Context of this overview

Code-based testing (not model-based testing)

Imperative programs (C, ADA, ..) (neither Functionnal P., nor Logic P.)

Programs with loops and recursion (i.e., infinite-state systems)

Single-threaded programs (no concurrent or parallel programs)

Selected location in code (i.e., reachability problems)

Path-oriented test data generation

+ Select one or several paths > Path selection step
« Generate the path conditions > Symbolic evaluation techniques

+ Solve the path conditions to generate test data that activate the selected
paths Constraint solving

Test objectives:
generating a test suite that covers a given testing criterion
(all-statements, all-decisions, all-paths...)
or a test data that raise a safety or security problem
(assertion violation, buffer overflow, ..)

Main CBT tools: ATGen (Meudec 2001), EXE (Cudar‘ et al. 2006),
ECLAIR (Bagnara Bagnara Gori 2013)

Path selection on an example

P(short x,y)
all-statement coverage: short w= abs(y)
double z= 1.0

a-b-c-b-d-e-f

All-decisions coverage:
a-b-c-b-d-e-f
a-b-d-f

all-2-paths (at most 2 times in loops):
a-b-d-f

B

a-b-(c-b)?>-d-e-f

all-paths:
Impossible

Path condition generation

Symbolic state: <Path, State, Path Conditions>

Path = Ny is a path expression of the CFG
State = <V,0P vevary Where g, is an algebraic expression over x
Path Cond. = ¢;,...c, where c;is a condition over X

X denotes symbolic variables associated to the program inputs and var (p)
denotes internal variables

Computing symbolic states
» <Path, State, PC> is computed by induction over each statement of Path

> When the Path conditions are unsatisfiable then path is non-feasible and
reciprocally (i.e., symbolic execution captures the concrete semantics)

ex: <a- -f,{..}, abs(Y¥)=0 A ¥<0 >

» Forward vs backward analysis:

Forward -> interesting when states are needed
Backward > saves memory space, as complete states are not computed

Problems for symbolic evaluation techniques

- Combinatorial explosion of paths

- Symbolic execution constrains the shape of dynamically allocated objects

int P(struct cell * t) { / t

if(t==t->next){ ...

constrains t to: “

(Modelling dynamic memory management in constraint-based testing.

Charreteur Botella Gotlieb JSS 09)
(Constraint-based fest input generation for java bytecode.
Charreteur Gotlieb ISSRE 10)

- Floating-point computations 2

12/11/2015

Symbolic execution

Ex: a-b-(c-b)%-d-f with XY P(short x.y)

<a, <z,1>,<w,abs(Y), frue > Zzﬂaew;afg(y)
<a-b, <z,1>, <w,abs(Y), abs(Y) = 0>

<a-b-c, <z,X>, <w,abs(Y)-1>, abs(Y) = 0>

<a-b-c-b, <z,X.>, <w,abs(Y)-1>,

abs(Y) 1= 0, abs(¥)-11=0>
<a-b-c-b-c, <2X%, <w,abs(¥)-2>,
abs(Y) 1= 0, abs(¥)-11=0>

<a-b-(c-b)?, <z X%, «w,abs(Y)-2>,
abs(Y) = 0, abs(Y) 1= 1, abs(¥)-2=0>

<a-b-(c-b)>-d, <z, X%, <w,abs(Y)-2>,
abs(Y) 1= 0, abs(Y) = 1, abs(¥)= 2,Y =0 »

<a-b-(c-b)2-d-f, <z X», w05, Y=2>

Backward analysis

Ex: ab-(c-b)-d-f with XY Pshort x)

short w= abs(y)
double z= 1.0

f.d:Y 20

b:Y 20, w=0

c:Y 20, w-1=0

b:Y 20, w-1=0,w!=0

c:Y 20, w-2=0,w-11=0

b:Y 20, w-2:=0,w-1=0w!=0

a:Y 20, abs(Y)-2 = 0,
abs(Y)-1 I= 0, abs(¥) I= 0

Y=2

float foo(float x) {
float y = 1.0el2, z ;
if(x < 10000.0)

z = x + y;

if(z > y)

NS

Is the path 1-2-3-4 feasible ?

Path conditions: On the reals: x e (0,10000) ‘

x < 10000.0
x +1.0e12 > 1.0e12 N On the floats : no solution ! ‘

Conversely, float foo(float x) {
float y = 1.0el2, z ;
if(x > 0.0)

z = x + y;

1
2.
3. if(z == y)
4

Is the path 1-2-3-4 feasible ?

Path conditions: On the reals : no solution ‘
x>0.0
x +1.0e12 = 1.0e12

On the floats: x < (0,32767.99.) |

Solution: build a dedicated constraint solver over the floats !
(Symbolic execution of floating-point computations,

Botella Gotlieb Michel, STVR 2006
Bagnara Carlier Gotlieb Gori, ICST 2013, JoC 2015)

1st ingredient: path exploration

1. Draw an input at random, execute it and record path conditions

2. Flip a non-covered decision and solve the constraints to find a new input x

t @ 3. Execute with x
° t e 4. Repeat 2 °
t

t

000

/éf 5
3 g8

Constraint solving in symbolic evaluation

* Mixed Integer Linear Programming approaches
(i.e., simplex + Fourier's elimination + branch-and-bound)

CLPﬁR Q) in ATGen (Meudec 2001;
Ipsolve in DART/CUTE (6odefroid/Sen et al. 2005
* SMT-solving (= SAT + Theories)

STP in EXE and KLE (Cadar et al. 2006)

Z3in PEX and SAGE (Tillmann and de Halleux 2008)
« Constraint Programming techniques (constraint propagation and labelling)
(Williams et al. 2005)
ECLAIR (Bagnara Bagnara Gori 2013)

Colibri in PathCrawler

12/11/2015

Dynamic symbolic evaluation

> Symbolic execution of a concrete execution (also called concolic execution)

> By using input values, feasible paths only are (automatically) selected

> Randomized algorithm, implemented by instrumenting each statement of P

Main CBT tools:

PathCrawler (Williams et al. 2005),
PEX (Tillman et al. Microsoft 2008),

SAGE (Godefroid et al.2008)
KLEE (Cadar et al. 2008)

Comes in two ingredients...?

2nd ingredient: use concrete values

» Use actual values to simplify the constraint set
Flip If(x3==x;*x,) .. (X1 =6, %=7)

(1) Exact solving --add x;3 = x; * x, to the constraint solver
(2) Approximate solving --add x3!= 6 * x, && x=6

or --add x3l=x;*7 && x,=7

(3) Useless solving --add x; =42 && x;=6 && x=7

PathCrawler: (1) PEX: (2) SAGE: (3) and then (2)

Outline

+ Introduction
—» * Path-oriented exploration

+ Constraint-based exploration

* Further work

@ertus

Constraint-based program exploration

- Based on a constraint model of the whole program
(i.e., each statement is seen as a relation between two memory states)

- Constraint reasoning over control structures

- Requires to build dedicated constraint solvers:
* propagation queue management with priorities
* specific propagators and global constraints
* structure-aware labelling heuristics

Main CBT tools: InKa (Gotlieb Botella Rueher 1998),
GATEL (Marre 2004),
Euclide (Gotlieb 2009)

Path-oriented exploration

£(dint i)
(

a. j = 100;
while(1 > 1)
b. £ 3++ 5 i-- 5}

d. if(j > 500)
e.

1. Path selection
eg., (a-b)4-...-d-e

2. Path conditions generation (via symbolic exec.)
117100, 1,51, Jy=iy+L, ip7iy-1, 1p>L,0v, 15500

3. Path conditions solving
unsatisfiable > FAIL

Backtrack!

Assignment as Constraint

Viewing an assignment as a relation requires fo normalize expressions
and rename variables (through single assignment languages, e.g., SSA)

i*=t+i g _— iy = (iy+1)?
i,=37? ipin-4.2 no i;jin-5..3

ir=tti; /% iy = (i) 2 */ ‘

|
/1 1T N

i,=16 i,=97? i,=77? i,in5.167?

12/11/2015

A reacheability problem

f(int i) a t
{
a j = 100; f
while(1 > 1)
b { J++ 7 i-- 7}
d. 1if(j > 500)
: -
U
f “«

Constraint-based exploration

f(int i)
{
a. j = 100;
while(1 > 1)
b. {++ 7 i-- ;)

d. if(j > 500)
e.

1. Constraint model generation (through SSA) 0 ¢

2. Control dependencies generation;

42100, i <1, j;>500 f e V'
3. Constraint model solving

J1# j3 entailed 9 unroll the loop 400 times = ijin 401 .. 23!-1

No backtrack !

Statements as (global) constraints

v Type declaration: signed long x; > xin-2%.2%-1
v Assignments: it=tti ;D = (1)
v’ Control structures: dedicated global constraints
Conditionnals (SSA) if D then C,, else C,; vo=0(v,,v,) > ite/6

Loops (SSA) vy=¢(v,,v,) while D do C > w/b

Conditional as global constraint: ite/6

if(x>0)

J3= (i do);

ite(x>0,jy,Jp 5 11=5, j,=18) iff
* x>0 o ;=5 A j3=j;
x>0 —> =18 Ajs=,

* (x>0 A ;=5 A js=j) > =(x>0) A j,=18 Ajs=],
¢ (x>0 A j3=j) > x>0A =5 Aj3=]

*Join(x>0Aj;=5A j3=j;, —(x>0)A j;=18A j3=];)

£C dnt 1) o W(Dec, Vy, Vy, Vy, body) -

j = 100; == * Decyzeys = bOdyyz s A WIDEC, Vo Ve V) DOV € voen)
while(i > 1) * —DeCyey; > VaTvy
(344 7 i 1) ¢ ~lDEsen A bodKaen) Despen AV

—(DeGyz s A V=)
DeCyse s A BOyp vt WIDEC, Ve B0y)
* join(Decys vy A bodyyseys A WIDEC,V; Ve, V3, D08Yy; e vnew

if(j > 500) —DeCyzey; A Vs=Vy)

i=23,j,=100 ? no

f 7

(Wiiy > 1, Giiy), (i), Gis)y Jp=ia* 1Al =0p-1) |

/ | \

i3=1,j;=122 =107 j1 =100,
jy>500 ?

iin 401..231-1

Outline

+ Introduction
+ Path-oriented exploration

—» + Constraint-based exploration

* Further work

@ertus sfi e

12/11/2015

Loop as global constraint: w/5

V3= vy, V)
while(Dec)

w(Dec, Vy, V,, V3, body) iff

¢ Decysey; = bodyyseys A WIDEC, Vo Ve, V3, bOdYys e

—Decyz¢y; —> Va=Vy

—(Decyzevs A bodyyseys) = —Decyseys A Vs=vy

—(=Decyzey; AVsVY) = Detyzeys A bOYys ey A WIDEC V2 Ve V3, DOAYyz € vnen)
join(Decys ey A bodyys vy A WIDEC, V), Ve V3, 00dYy; evnew) , ~DECz ey A V3=Vs)

EER RS

Features of the w relation

v It can be nested into other relation (e.g., nested loops w(cond, vi,v,,v3,
w(cond,, ...))

AN

Managed by the solver as any other constraint (its consistency is
iteratively checked, awakening conditions, success/failure/suspension)

v By construction, w is unfolded only when necessary but
w may NOT terminate !

AN

Join is implemented using Abstract Interpretation operators (interval
union, weak-join, widening)

(Gotlieb et al. CL'2000, Denmat Gotlieb Ducassé ISSRE'07 and CP'2007)

CBT (summary)

+ Emerging concept in code-based automatic test data generation
+ Two main approaches:

Path-oriented test data generation vs constraint-based exploration

« Constraint solving:

- Linear programming

- SMT-solvers

- Constraint Programming techniques with abstraction-based
relaxations

* Mature tools (academic and industrial) already exist, but application
on real-sized industrial cases still have to be demonstrated

Pros: Handle control and data structures (i.e., pure SAT-solving doesn't work

CBT: Pros/Cons

well in that context I) in an efficient way

100%-coverage of testing criteria as required by standards for critical

software (e.g., DO-178, Misra, ISO 2626.2)

Fully automated test data generation methods

Cons:

No semantics description, no formal proof - correction is not a priority !

Unsatisfiability detection has to be improved (to avoid costly labelling), by

combining techniques (e.g., SMT/CP)

Exploration techniques do not currently keep track of previous solved

constraint systems

@ertus

Thanks !

12/11/2015

Further work

Combining SMT-solving and /CP-based solver
(PhD Q. Plazar, joint work with CEA, France)

Constraint optimization models for test suite execution scheduling

Constraint-Based Testing from feature models, in the context of
Software Product Lines Testing

