
12/11/2015

1

An overview of

Constraint-Based Testing

Arnaud Gotlieb

SIMULA RESEARCH LAB.

CRIM, Montréal, Nov. 2015

Hosted by SIMULA

Established and
awarded SFI in Oct.
2011

duration: 8 years
RCN funding: ~10MEUR

The Certus
Centre

www.certus-sfi.no

Cisco Systems Norway

ABB Robotics
Stavanger

Kongsberg Maritime

Norwegian Custom and excise

Software Testing

Execution Verdict:
pass / fail

implementation

Spec. / Model

Code-based TestingCorrect ?

Test case
generation

Test set

Model-based Testing

Constraint-Based Testing

Execution Verdict:
pass / fail

Spec. / Model

Implementation

Constraint model

Constraint
generation

Constraint
solving

Test set

Constraint-Based Testing (CBT)

Constraint-Based Testing (CBT) is the process of generating test cases
against a testing objective by using constraint solving techniques

Introduced 25 years ago by Offut and DeMillo in
(Constraint-based automatic test data generation IEEE TSE 1991)

Success stories in the context of code-based testing with code coverage
objectives (Microsoft, Thales, CEA), and Model-Based Testing (Smartesting)

Lots of Research works and tools !

http://www.certus-sfi.no/

12/11/2015

2

The automatic test data generation problem

Given a location k in a program under test, generate a test input that reaches k

 Highly combinatorial

Here, with random testing, Prob{ reack k} = 2 over 232232232 = 2-95=0.00000…1

Undecidable in general, but ad-hoc methods exist

 Loops and non-feasible paths

 Modular integer and floating-point computations

 Pointers, dynamic structures, function calls, …

f (int x1, int x2, int x3) {

if(x1 == x2 && x2 ==x3)

if(x3==x1*x2) ... }

Context of this overview

Code-based testing (not model-based testing)

Imperative programs (C, ADA, …) (neither Functionnal P., nor Logic P.)

Programs with loops and recursion (i.e., infinite-state systems)

Single-threaded programs (no concurrent or parallel programs)

Selected location in code (i.e., reachability problems)

Outline

• Introduction

• Path-oriented exploration

• Constraint-based exploration

• Further work

Path-oriented test data generation

• Select one or several paths  Path selection step

• Generate the path conditions  Symbolic evaluation techniques

• Solve the path conditions to generate test data that activate the selected
paths  Constraint solving

Test objectives:
generating a test suite that covers a given testing criterion
(all-statements, all-decisions, all-paths…)

or a test data that raise a safety or security problem
(assertion violation, buffer overflow, …)

Main CBT tools: ATGen (Meudec 2001), EXE (Cadar et al. 2006),
ECLAIR (Bagnara Bagnara Gori 2013)

Path selection on an example

double P(short x, short y) {

short w = abs(y) ;
double z = 1.0 ;
while (w != 0)
{

z = z * x ;
w = w - 1 ;

}
if (y<0)

z = 1.0 / z ;
return(z) ;
}

w != 0

z = z * x
w = w-1

y<0

z=1.0 / z

a

b

c

d

e

f

P(short x,y)
short w= abs(y)
double z= 1.0

return(z)

Path selection on an example

all-statement coverage:

a-b-c-b-d-e-f

All-decisions coverage:

a-b-c-b-d-e-f

a-b-d-f

all-2-paths (at most 2 times in loops):

a-b-d-f

a-b-d-e-f

…

a-b-(c-b)2-d-e-f

all-paths:

Impossible

w != 0

z = z * x
w = w-1

y<0

z=1.0 / z

a

b

c

d

e

f

P(short x,y)
short w= abs(y)
double z= 1.0

return(z)

12/11/2015

3

Symbolic state: <Path, State, Path Conditions>

Path = ni-..-nj is a path expression of the CFG

State = <vi,i> vVar(P) where i is an algebraic expression over X

Path Cond. = c1,..,cn where ci is a condition over X

X denotes symbolic variables associated to the program inputs and Var(P)

denotes internal variables

Path condition generation
Symbolic execution

<a, <z,1.>, <w,abs(Y)>, true >

<a-b, <z,1.>, <w,abs(Y)>, abs(Y) != 0 >

<a-b-c, <z,X>, <w,abs(Y)-1>, abs(Y) != 0 >

<a-b-c-b, <z,X.>, <w,abs(Y)-1>,

abs(Y) != 0, abs(Y)-1 != 0 >

< a-b-c-b-c, <z,X2>, <w,abs(Y)-2>,
abs(Y) != 0, abs(Y)-1 != 0 >

<a-b-(c-b)2, <z,X2>, <w,abs(Y)-2>,
abs(Y) != 0, abs(Y) != 1, abs(Y)–2 = 0 >

<a-b-(c-b)2-d, <z,X2>, <w,abs(Y)-2>,
abs(Y) != 0, abs(Y) != 1, abs(Y) = 2, Y  0 >

<a-b-(c-b)2-d-f, <z,X2>, <w,0>, Y=2 >

Ex : a-b-(c-b)2-d-f with X,Y

w != 0

z= z * x
w= w-1

y<0

z=1.0 / z

a

b

c

d

e

f

P(short x,y)
short w= abs(y)
double z= 1.0

return(z)

X 2

Computing symbolic states

 <Path, State, PC> is computed by induction over each statement of Path

 When the Path conditions are unsatisfiable then Path is non-feasible and
reciprocally (i.e., symbolic execution captures the concrete semantics)

ex : <a-b-d-e-f,{…}, abs(Y)=0  Y<0 >

 Forward vs backward analysis:

Forward  interesting when states are needed
Backward  saves memory space, as complete states are not computed

Backward analysis
Ex : a-b-(c-b)2-d-f with X,Y

f,d: Y 0

b: Y 0, w = 0

c: Y 0, w-1 = 0

b: Y 0, w-1 = 0, w != 0

c: Y 0, w-2 = 0, w-1 != 0

b: Y 0, w-2 =0, w-1 != 0,w != 0

a: Y 0, abs(Y)-2 = 0,
abs(Y)-1 != 0, abs(Y) != 0

Y = 2

w != 0

z= z * x
w= w-1

y<0

z=1.0 / z

a

b

c

d

e

f

P(short x,y)
short w= abs(y)
double z= 1.0

return(z)

X 2

Problems for symbolic evaluation techniques

 Combinatorial explosion of paths

 Symbolic execution constrains the shape of dynamically allocated objects

int P(struct cell * t) {

if(t == t->next) { …

constrains t to:

(Modelling dynamic memory management in constraint-based testing.
Charreteur Botella Gotlieb JSS 09)

(Constraint-based test input generation for java bytecode.
Charreteur Gotlieb ISSRE 10)

 Floating-point computations 

t

next

float foo(float x) {

float y = 1.0e12, z ;

1. if(x < 10000.0)

2. z = x + y;

3. if(z > y)

4. …

Is the path 1-2-3-4 feasible ?

Path conditions:

x < 10000.0

x + 1.0e12 > 1.0e12

On the reals : x  (0,10000)

On the floats : no solution !

12/11/2015

4

float foo(float x) {

float y = 1.0e12, z ;

1. if(x > 0.0)

2. z = x + y;

3. if(z == y)

4. …

Is the path 1-2-3-4 feasible ?

Path conditions:

x > 0.0

x + 1.0e12 = 1.0e12

On the reals : no solution

On the floats: x  (0, 32767.99…)

Conversely,

Solution: build a dedicated constraint solver over the floats !

(Symbolic execution of floating-point computations,
Botella Gotlieb Michel, STVR 2006
Bagnara Carlier Gotlieb Gori, ICST 2013, JoC 2015)

Dynamic symbolic evaluation

 Symbolic execution of a concrete execution (also called concolic execution)

 By using input values, feasible paths only are (automatically) selected

 Randomized algorithm, implemented by instrumenting each statement of P

Main CBT tools:

PathCrawler (Williams et al. 2005),
PEX (Tillman et al. Microsoft 2008),

SAGE (Godefroid et al.2008)
KLEE (Cadar et al. 2008)

Comes in two ingredients…

1st ingredient: path exploration
1. Draw an input at random, execute it and record path conditions

b

a

t

c

t

d

t

2. Flip a non-covered decision and solve the constraints to find a new input x

b

a

t

c

t

d

f

3. Execute with x

4. Repeat 2

b

a

t

c

t

f

de

f

t

b

a

t

c

t

f

de

f

f

…. b

a

t

c

t

f

de

fg

h

i

jk

Up to given bounds

2nd ingredient: use concrete values

 Use actual values to simplify the constraint set

Flip If(x3 == x1 * x2) … (x1 = 6, x2=7)

(1) Exact solving -- add x3 != x1 * x2 to the constraint solver

(2) Approximate solving -- add x3 != 6 * x2 && x1=6

or -- add x3 != x1 * 7 && x2=7

(3) Useless solving -- add x3 != 42 && x1=6 && x2=7

PathCrawler: (1) PEX: (2) SAGE: (3) and then (2)

Constraint solving in symbolic evaluation

• Mixed Integer Linear Programming approaches
(i.e., simplex + Fourier’s elimination + branch-and-bound)

CLP(R,Q) in ATGen (Meudec 2001)
lpsolve in DART/CUTE (Godefroid/Sen et al. 2005)

• SMT-solving (= SAT + Theories)

STP in EXE and KLEE (Cadar et al. 2006)
Z3 in PEX and SAGE (Tillmann and de Halleux 2008)

• Constraint Programming techniques (constraint propagation and labelling)

Colibri in PathCrawler (Williams et al. 2005)
Disolver in SAGE (Godefroid et al. 2008)
ECLAIR (Bagnara Bagnara Gori 2013)

Outline

• Introduction

• Path-oriented exploration

• Constraint-based exploration

• Further work

12/11/2015

5

Main CBT tools: InKa (Gotlieb Botella Rueher 1998),
GATEL (Marre 2004),
Euclide (Gotlieb 2009)

Constraint-based program exploration

- Based on a constraint model of the whole program
(i.e., each statement is seen as a relation between two memory states)

- Constraint reasoning over control structures

- Requires to build dedicated constraint solvers:
* propagation queue management with priorities
* specific propagators and global constraints
* structure-aware labelling heuristics

f(int i)

{

a. j = 100;

while(i > 1)

b. { j++ ; i-- ;}

…

d. if(j > 500)

e. …
d

b

a

f

t

t

f

A reacheability problem

…

value of i to reach e ?

e

f(int i)

{

a. j = 100;

while(i > 1)

b. { j++ ; i-- ;}

…

d. if(j > 500)

e. …

d

b

a

f

t

t

f

Path-oriented exploration

…

1. Path selection
e.g., (a-b)14-…-d-e

2. Path conditions generation (via symbolic exec.)
j1=100, i1>1, j2=j1+1, i2=i1-1, i2>1,…, j15>500

3. Path conditions solving
unsatisfiable  FAIL

Backtrack !

e

f(int i)

{

a. j = 100;

while(i > 1)

b. { j++ ; i-- ;}

…

d. if(j > 500)

e. …

d

b

a

f

t

t

f

Constraint-based exploration

…

1. Constraint model generation (through SSA)

2. Control dependencies generation;
j1=100, i3 ≤ 1, j3 > 500

3. Constraint model solving
j1  j3 entailed  unroll the loop 400 times  i1 in 401 .. 231-1

No backtrack !

e

Viewing an assignment as a relation requires to normalize expressions
and rename variables (through single assignment languages, e.g., SSA)

i*=++i ; i2 = (i1+1)2

Assignment as Constraint

i*=++i; /* i2 = (i1+1) 2 */

i1 = 3 ?

i2 = 16

i1 in -4..2

i2 = 9 ?

i1 in -5..3

i2 in 5..16 ?i2 = 7 ?

no

Statements as (global) constraints

 Type declaration: signed long x;  x in -231..231-1

 Assignments: i*=++i ;  i2 = (i1+1)2

 Control structures: dedicated global constraints

Conditionnals (SSA) if D then C1; else C2; v3=(v1,v2)  ite/6

Loops (SSA) v3=(v1,v2) while D do C  w/5

12/11/2015

6

Conditional as global constraint: ite/6

ite(x > 0, j1, j2, j3, j1 = 5, j2 = 18) iff

if(x > 0)

3

2

0

j2 = 18;

j3 = (j1 , j2);

 (x > 0  j1 = 5  j3 = j1)  (x > 0)  j2 = 18  j3 = j2

 ((x > 0)  j3 = j2)  x > 0  j1 = 5  j3 = j1

 Join(x > 0  j1 = 5  j3 = j1 , (x > 0)  j1 = 18  j3 = j2)

 x > 0  j1 = 5  j3 = j1

 (x > 0)  j2 = 18  j3 = j2

j1 = 5; 1

Loop as global constraint: w/5

v3 = (v1 , v2)
while(Dec)

1

2

body
3

w(Dec, V1, V2, V3, body) iff
 DecV3V1  bodyV3V1  w(Dec, v2,vnew,v3, bodyV2Vnew)
 DecV3V1  v3=v1

 (DecV3V1  bodyV3V1)  DecV3V1  v3=v1

 (DecV3V1  v3=v1)  DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew)
 join(DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew) , DecV3V1  v3=v1)

f(int i) {

j = 100;

while(i > 1)

{ j++ ; i-- ;}

…

if(j > 500)

…

w(i3 > 1, (i,j1), (i2,j2), (i3,j3), j2 = j3 + 1  i2 = i3 - 1)

i = 23, j1=100 ?

i3 = 1, j3 = 122

no

i3 = 10 ?

i in 401..231-1

j1 = 100,

j3 > 500 ?

w(Dec, V1, V2, V3, body) :-
 DecV3V1  bodyV3V1  w(Dec, v2,vnew,v3, bodyV2Vnew)
 DecV3V1  v3=v1

 (DecV3V1  bodyV3V1)  DecV3V1  v3=v1

 (DecV3V1  v3=v1) 
DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew)

 join(DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew ,

DecV3V1  v3=v1)

Features of the w relation

 It can be nested into other relation (e.g., nested loops w(cond1, v1,v2,v3,
w(cond2, ...))

 Managed by the solver as any other constraint (its consistency is
iteratively checked, awakening conditions, success/failure/suspension)

 By construction, w is unfolded only when necessary but
w may NOT terminate !

 Join is implemented using Abstract Interpretation operators (interval
union, weak-join, widening)

(Gotlieb et al. CL’2000, Denmat Gotlieb Ducassé ISSRE’07 and CP’2007)

Outline

• Introduction

• Path-oriented exploration

• Constraint-based exploration

• Further work

CBT (summary)

• Emerging concept in code-based automatic test data generation

• Two main approaches:

Path-oriented test data generation vs constraint-based exploration

• Constraint solving:

- Linear programming
- SMT-solvers
- Constraint Programming techniques with abstraction-based
relaxations

• Mature tools (academic and industrial) already exist, but application
on real-sized industrial cases still have to be demonstrated

12/11/2015

7

CBT: Pros/Cons

Handle control and data structures (i.e., pure SAT-solving doesn’t work
well in that context !) in an efficient way

100%-coverage of testing criteria as required by standards for critical
software (e.g., DO-178, Misra, ISO 2626.2)

Fully automated test data generation methods

No semantics description, no formal proof  correction is not a priority !

Unsatisfiability detection has to be improved (to avoid costly labelling), by
combining techniques (e.g., SMT/CP)

Exploration techniques do not currently keep track of previous solved
constraint systems

Pros:

Cons:

Further work

- Combining SMT-solving and /CP-based solver
(PhD Q. Plazar, joint work with CEA, France)

- Constraint optimization models for test suite execution scheduling

- Constraint-Based Testing from feature models, in the context of
Software Product Lines Testing

Thanks !

