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Abstract—Reinforcement Learning (RL) agents have great
successes in solving tasks with large observation and action spaces
from limited feedback. Still, training the agents is data-intensive
and there are no guarantees that the learned behavior is safe and
does not violate rules of the environment, which has limitations
for the practical deployment in real-world scenarios. This paper
discusses the engineering of reliable agents via the integration of
deep RL with constraint-based augmentation models to guide
the RL agent towards safe behavior. Within the constraints
set, the RL agent is free to adapt and explore, such that its
effectiveness to solve the given problem is not hindered. However,
once the RL agent leaves the space defined by the constraints,
the outside models can provide guidance to still work reliably.
We discuss integration points for constraint guidance within the
RL process and perform experiments on two case studies: a
strictly constrained card game and a grid world environment
with additional combinatorial subgoals. Our results show that
constraint-guidance does both provide reliability improvements
and safer behavior, as well as accelerated training.

I. INTRODUCTION

Autonomous systems with self-adaptive or learned com-
ponents have applications in a variety of tasks due to the
increasing interest in industrial automation, industry 4.0, or
cognitive robotics. However, for the trustful application of
these systems reliability and safety are crucial factors.

Reinforcement Learning (RL) has been successfully applied
to control a variety of applications [1], such as game play-
ing [2], robotics control [3], or combinatorial optimization [4].
The RL agent explores its environment by trying random
actions and learns through reward signals about its dynam-
ics. Through sufficient exploration and discovering successful
strategies, it converges towards an optimal policy and solves
the problem that is defined by the environment and its reward
function. As an RL agent learns from trial-and-error, there is
no possibility to employ the agent with hard rules or safety
guidelines from the beginning on. And also after training, there
are no given guarantees for the safe and reliable behavior of the
agent. Furthermore, training RL agents is often data-inefficient
and takes many iterations of training runs in sometimes
computation-intensive simulations or even more costly on
actual physical devices. These properties of RL agents make it
challenging to deploy them, either as stand-alone agents or as
trainable components within a larger system architecture [5].

This work has received funding from the European Union under grant
agreement no. 825619 (AI4EU).

Their integration requires handling uncertainties and to ensure
they are applied within their designated environment in a more
strict way than common software components. The RL agent
is not aware that it is receiving inputs that it is not sufficiently
trained for and will be select an action in any case even without
having been in the same or similar state before. An exception
to this is Bayesian RL [6] where uncertainty estimations are
considered, but these algorithms have not yet reached the
same level as the more common model-free RL algorithms
we consider.

Contrary to RL, symbolic AI, such as expert systems or
constraint solving, can make decisions based on an explicit
constraint model of the environment, but depending on its
complexity, it is often infeasible to model and solve the
environment for every decision. Still, constraint models are
data-efficient, as there is no training, and always avoid unsafe
behaviors as defined by the model.

In this work, we make an argument for the integration of
both techniques, such that the RL agent, also the learner, is
guided by an encapsulating constraint model that describes
safety constraints for the agent’s task. We refer to this integra-
tion as constraint-guided reinforcement learning (CGRL) and
it has the goal to design a reliable and safe agent. Within this
hybrid agent, safety models are used to augment the interaction
of the RL agent with its environment to avoid unsafe or
undesired actions and behaviors. More specifically, we discuss
three interfaces to augment the agent-environment interaction:
1) the interface between environment and agent, where exter-
nal state information about the environment is observed; 2)
the external interface between agent and environment, where
selected actions are transferred to the environment; 3) the
internal decision-making within the agent, to directly adjust
which actions are taken.

Encapsulating RL agents within an outside model for safety
or training purposes has been explored before [7], e.g. in
the context of shielding reinforcement learning agents [8] or
imitation learning, where the agent is shown the behavior of
experts and tries to mimic them [9], [10]. Our focus for the
integration within the scope of this work lies on the different
interfaces for augmentation and their effects on the system’s
design and reliability. We further discuss constraint solving
techniques to model acceptable behavior or to define how to
act in case of bad decisions from the RL agent.



Developing dedicated encapsulation techniques, represented
by the different constraint models on the interfaces, allows
setting strict rules and guidelines, while not prohibiting the
free exploration and decision making of the agent within the
set boundaries. To underline the relevance and motivate further
research in this direction, we discuss the general working
mechanisms of reinforcement learning as well as the potential
integration points for an external constraint model. The im-
plementation of CGRL and its effectiveness is shown in two
case studies. Our results confirm that constraint-guidance is
beneficial for both faster training and better final performance
than pure model-free reinforcement learning.

The main contributions of this paper are: 1) We integrate
safety models in the RL process at the intersection between
agent and environment to guide the decision-making. 2) We
present an architecture to implement these models by using
both satisfaction and optimization techniques. 3) We perform
an experimental evaluation of the presented method on two
case studies: a card game and a grid world with a combinato-
rial puzzle goal.

The remainder of the paper is structured as follows: After
reviewing the necessary background on RL and constraint
solving as well as existing works on their intersection in
Sections II and III, we discuss their integration for constraint-
guided RL in-depth in Section IV. In Section V, we implement
CGRL in two environments and evaluate its effects. Before
concluding the paper in Section VII, we discuss the impact
and current challenges for CGRL as well as opportunities for
future research in Section VI.

II. BACKGROUND

A. Reinforcement Learning

In reinforcement learning (RL) an agent interacts with an
environment by observing the environment’s state st at time
step t and selecting an action at. From the effect of the action,
a reward rt+1 is received and a new state st+1 is reached.
The goal of the RL agent is to maximize the expected return,
described as the cumulative discounted reward at time t, that is,
Gt =

∑inf
k=0 γ

krt+k+1, where γ ∈ [0, 1) is the discount factor.
More formally, the environment is characterized by the tuple
〈S,A, T,R〉, with S being the set of states in the environment,
A being the set of actions. T : S × A → S is the transition
function from the execution of an action in one state leading
to another state and R is the reward function, which assigns
a numerical feedback to an action in a state r : S ×A→ R.

The agent follows a trainable policy π from which it chooses
the action in each state π : S × A → [0, 1]. The policy
assigns each action a a probability to be taken and from
this probability distribution either the action with highest
probability is picked greedily or it is randomly sampled to
encourage exploration. This general agent-environment inter-
action process is shown in Figure 1, including extensions
for CGRL which we will discuss at a later point. The agent
interacts with the environment in finite episodes, which means
that some states are terminal states and once these states are
reached, the episode is over and a new episode starts. Terminal

states can represent both desired goal states, e.g. in a maze
where a certain location has to be reached, but also undesired
states, e.g. the agent performs illegal or unsafe behavior. For
a detailed introduction to RL, we refer the interested reader
to the book by Sutton and Barto (2018).

Over the recent years, deep RL, where the action selection
policy is approximated by deep neural networks, has received
large attention and many RL algorithms have been proposed in
the literature [1], for example, Proximal Policy Optimization
(PPO) [11] which we use throughout the experiments in this
paper. These algorithms share, that they represent the state
as input to the neural network and receive a vector of action
scores as output. These scores are interpreted as probabilities
and the action is randomly sampled or greedily chosen by
the highest score. The state representation is usually problem-
specific. For problems where the state resembles a form of
spatial information, e.g. images, convolutional neural networks
(CNN) are commonly used, whereas otherwise fully-connected
feed-forward neural networks are common.

We use PPO in an actor-critic way [12], where the agent
is modeled by two neural networks. The first network, the
actor, outputs the scores for each action as described above.
The second network has only a single output that predicts
the expected reward for the current state. Both networks
usually share the same architecture and also the weights of the
initial layers with the only difference being the final layers,
where the actor has as many outputs as actions, the critic
only has a single real-valued output. Using a critic network
helps to stabilize and accelerate the learning process since it
allows to compare the current policy against the earlier made
experiences and supports the improvement of the policy.

B. Constraint Solving

Throughout this paper, we refer to constraint solving in the
context of modeling the acceptable behavior of a learner, like
the RL agent, which is either a satisfaction problem, when ask-
ing ”Does the learner behave according to the specification?”,
or an optimization problem when asking ”What is the state
representation or action that complies with the specification
with only minimal changes?”. Modeling a satisfaction problem
allows to identify undesired states and actions, but does not
guide the learner, except when designing each individual
action as separate problems. The optimization model instead
allows augmenting the state or action towards specification
compliance, according to its constraints.

Formally, we define a constraint satisfaction problem (CSP)
as a triple 〈X , C, D〉 where X = {x1, . . . ,xn} is a set of
variables, C is a set of constraints C = {c1, . . . , cm}, where
each constraint ci involves a subset of the variables. Each
variable xi is also associated with a finite integer domain
D(xi) of all its possible values. A variable assignment θ
satisfies the CSP 〈X , C, D〉, if each variable x has a value
assigned from its domain D(xi), such that none of the
constraints C are violated. A constraint optimization problem
(COP) extends the CSP formulation by an objective function
fz , which is calculated over a subset of the variables, with an



objective value z, which, in our context, is to be minimized,
while the variable assignment θ still satisfies the constraints
C. For a detailed overview on constraint solving, we refer the
interested reader to [13].

The constraint model can be modelled and solved by ded-
icated constraint solving libraries, e.g. MiniZinc or Essence.
This has the advantage of having solver-provided guarantees
for the correctness of results - under the assumption of a
correct model - and tools optimized for the task, but with
the disadvantage of increasing system complexity due to
additional libraries and related dependencies. The alternative
would therefore be to implement the constraint model within
the programming paradigm of the autonomous system. In this
case, there are no additional external dependencies, but the
implementation is potentially more error-prone since constraint
modeling languages are usually more expressive for the tasks
than general-purpose programming languages. We will come
back to the discussion between these two alternatives in the
discussion part of the paper in Section VI.

III. RELATED WORK

The main areas of related work are safe, ethical, or social
reinforcement learning and the design of autonomous systems.
The work closest to ours is the method of Shielded Reinforce-
ment Learning by Alshiekh et al. [8] . The authors propose a
safety framework where a shielding component is deployed
either between the environment and the agent or after the
agent has made its action selection. The shield represents a
safety specification, based on temporal logic, that assures the
correctness of the system. This is related to our method, which
also considers integrating a constraint-guidance component at
the same interfaces.

Similar works have been based on using barrier func-
tions [14] or provable formal theories of the acceptable behav-
ior specifications of the RL agent [15], or focus on specifics of
the RL environment, e.g. stochastic dynamics in robotics [16].
These approaches focus mostly on the provable aspects of
the formalization, and strongly motivate the necessity and
feasibility of hybrid approaches, but focus less on the aspects
of how they are implemented and expressed. A further avenue
is the design of RL methods that have safety inherently in their
functional methodology, e.g. [17], [18]. Unlike these methods,
we provide safety extensions to any form of RL agent, even
without inherent safety notion. We see an advantage in a
modular approach, however, we do not argue that one or the
other is necessarily better. Finally, for an in-depth overview on
safe reinforcement learning, we refer to the survey by Garcı́a
and Fernández [7].

Understanding and steering how agents behave and learn
in unknown environments also affects ethical concerns and
is an aspect of active research to include ethical standards
as boundaries for the agents’ behavior [19]. For example,
Noothigattu et al. explore the effects of imposing ethical
constraints on a Pacman agent, such that it is prohibited to eat
ghosts [20]. The consideration of ethics for learning agents
is of relevance and imposing constraint-guidance, based on
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Fig. 1. The Agent-Environment Process with constraint-guidance integration:
(1) Environment-Agent, (2) External Agent-Environment, (3) Internal Agent-
Environment.

models that capture ethical constraints, proposes an approach
towards this challenge. Another area of interest is to let the
agent learn which actions are either not safe, not desired, or
just unfeasible in a given state. Zahavy et al. [21] propose a
method where the agent learns which actions not to choose
in a given state. Learning when an action is infeasible and
should be avoided or when it is just not available has been
part of teaching an agent’s policy, where the agent learns which
actions to avoid, but without an explicit specification of wrong
and forbidden actions.

IV. INTEGRATING CONSTRAINTS AND RL

To achieve constraint-guided reinforcement learning, the
constraint model needs to be integrated within the agent-
environment process. In this section, we identify and discuss
the three interfaces for constraint-guidance (Figure 1) and
their impacts on the functionality and the autonomy of the
encapsulated RL agent (Figure 2).

One integration point lies at the interface between the
environment and the agent, where observations and rewards
are received. The second integration point addresses the in-
teraction from the agent to the environment, i.e., when an
action is issued by the agent. These two interfaces wrap the RL
agent as a black-box and manipulate the inputs and outputs of
the agent. The third integration point, on the other hand, lies
within the agent and allows to apply constraint-guidance in the
internal mechanisms of the RL agent. Relating to the existing
literature, the first two interfaces are similar to the work by
Alshiekh et al. [8] when their proposed shielding is introduced
either before or after the action selection part. The constraint
models for each of the interfaces are modeled based on a risk-
and safety-analysis of the system. The approach is to formalize
the most essential boundaries for the agent’s behavior without
restricting the agent’s freedom within these boundaries more
than necessary. We discuss each of the three integration types
in the following and consider the interfaces that have to be
implemented by a constraint-guidance mechanism.

A. Environment-Agent Interface

The Environment-Agent Interface augments the transfer of
state information from the environment to the agent in a form
of state preprocessing. By augmenting the state information,
either additional information can be added to the state, or
parts of the state can be masked or modified to avoid unsafe
decisions. One application of this is to reduce the decision
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space for the RL agent. Aspects of the state, which would lead
the agent to act in a specific, but potentially dangerous way, are
replaced by safe dummy values or a representation that does
not lead to a certain action, but also does not misrepresent the
actual state space. For example, when having an agent with
an inventory of items, those items which are dangerous to be
used in the current state can be omitted from the augmented
state that is given to the agent.

Definition 1 (Environment-Agent Interface). The interface
function f : S → S augments the observed state, such that
the difference diff(st, s′t) is minimized while following side
constraints CEnv , and returns a modified state s′t.

Technically, the augmentation component is based on a con-
straint model c(st) = s′t, that specifies potentially dangerous
states, and can make modifications c(s) receives a state st and
returns a state s′t, which can be identical to the original state
if st is not considered dangerous, or modified to exclude or
mask the undesired parts of the state.

To implement this interface in an Observation Mask model,
that augments the observed state for the agent, a constraint
optimization model can be used. The instance parameters are
the observed state, the decision variables are the augmented
state, and the objective function measures the changes between
the observed and augmented state. During optimization, the
augmented state is adjusted such that the state complies with
the modeled specification, e.g. unusable items from an agent’s
inventory are masked while making as few modifications as
possible. Making only minimal changes is relevant to keep the
augmented state close to the actual observation because large
changes can lead the agent to make an unsuitable decision
for the actual state and thereby hinder the success within the
environment.

B. External Agent-Environment Interface

Once the agent selected an action, this action is passed back
to the environment to be executed. At this point, the Agent-
Environment Interface augments the selection and can interfere
by observing both the most recent state and the selected action
in order to decide whether the chosen action is acceptable
or violates some guidance criterion, e.g. being unsafe or
potentially harmful. In case the action is not accepted, the
interface can replace the selected action following a heuristic

procedure. This replacement action might not be optimal as
it does not follow the learned strategy but can avoid unsafe
outcomes instead.

Definition 2 (External Agent-Environment Interface). The in-
terface function f : S×A→ A receives the last observed state
st and the taken action at as input and returns a, probably
modified, action a′t. Action a′t must obey the constraints CEnv

for the environment and the last observed state.

An Action Replacement model can be implemented either as
a satisfaction model, that validates whether an action follows
the specification and replaces invalid actions by a default
action or as an optimization model that has a notion of
distance between actions and can optimize the action change
to be minimal while following the specification. The Agent-
Environment Interface forms thereby a fallback strategy that
monitors the RL agent’s behavior and only if it does not behave
according to the specified acceptable behavior, its decisions are
overruled.

C. Internal Agent-Environment Interface

The first two augmentation interfaces are decoupled from
the RL agent and see it as a black-box. The third interface,
Internal Agent-Environment Interface, is integrated within the
action selection mechanism of the RL agent.

While augmenting the observation and checking the selected
action against a constraint model allow to prohibit undesired or
unsafe behavior, the RL agent is not aware of this constraint-
guidance and does not learn that its action was overruled by
an external mechanism. That means the agent does not learn
to avoid this action the next time the same state is encountered
and the observed reward does not match the selected action.
The internal integration into action selection overcomes this,
but at the cost of requiring access inside the agent, unlike the
previous interfaces.

Definition 3 (Internal Agent-Environment Interface). The
interface function f : S → Rn where n is the number
of available actions: f(st) = m. Each action is assigned
a masking score, which is inserted into the policy π and
multiplied with the network outputs before selecting an action.
From the masked output, the action selection is continued with
a bias towards actions favored by f .



Using constraint-guidance, the scores of the individual ac-
tions can be adjusted to either discourage unwanted actions
by decreasing their score or to encourage the selection of
desired actions by increasing their score. In the simplest
case, m is a boolean vector where each action is masked as
allowed/available or unavailable for the current state. Any of
these adjustments steer the RL agent towards selecting desired
actions for which then a reward is received and the policy is
trained with the normal training procedure.

An Action Mask model, that implements the internal agent-
environment interface, can be interpreted as a constraint sat-
isfaction model with one decision variable per action, where
a solution enables all allowed actions for the given state.

D. Deriving Constraint Models

All interfaces require the existence of a constraint model
for augmentation. There are different ways to derive these
constraint models and how to formulate them. The first option,
which we consider mostly in this paper and for the experi-
mental evaluation, is to have the constraint model handcrafted
from expert knowledge. This knowledge can either stem from
precisely analyzing error causes and avoiding these situations
or setup generic rules for unsafe states and actions that are
known to cause unrecoverable error situations.

The second option targets to iteratively refine the constraint
model through a dedicated learning process, for example
using constraint acquisition or learning [22]. This process
would require access to a safe simulation environment as
the initial set of rules cannot be expected to be safe. Over
subsequent iterations, the RL agent can act using the initial
constraint model, and, in case of unsafe situations and error
cases, the provoking states and actions are used to refine the
constraint model via a constraint learning step. We do not
further consider this option in this work, but leave it as a
promising direction for future work on CGRL.

V. EXPERIMENTS

In the following section, we apply constraint-guided rein-
forcement learning in two environments. The structure for each
case study environment follows the same approach. At first, we
introduce the problem setting, the available state information
for the RL agent, and the reward structure. Afterwards, we
discuss the constraint-guidance models to integrate with the
RL agent. In each environment, we consider three constraint-
guidance models, one for each of the integrations previously
discussed, and a vanilla RL agent without constraint-guidance
as a baseline for comparison.

The RL algorithm is PPO (Proximal Policy Optimization)
[11].1 All runs use the same hyperparameters, which closely
follow the defaults proposed by the authors, except for the
network architecture, which is adjusted for each environment.

1The PPO implementation is available here: github.com/lcswillems/torch-ac
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Fig. 3. Architecture: The constraint-guidance model acts as a wrapper and
has first access to observations and final control over the selected actions.

A. Environment I: Card Game

1) Scenario & Rules: In the first experiment, we focus on
a card game, modeled after “The Game”.2 The goal of the
game is to distribute 98 unique cards, ranging from 2 – 99,
onto four card piles. Two of these card piles are to be filled
in increasing order from 1 – 100, the other two in decreasing
order from 100 – 1. It is only allowed to place cards with
a higher respectively lower card value on each of the piles,
otherwise the action is invalid. There is one exception to this
rule. A lower respectively higher card value can be played if
the difference in card value is exactly 10, i.e. if the increasing
pile has card 42 on top, card 32 is allowed on top of it.

The game ends when all cards have been distributed or there
is no further move possible. The original card game can be
played with 1–5 players, in this case study we focus on the
single player version, where the player has 8 cards on their
hand and refills their hand from the stack after having played
two cards.

2) Environment & Agent: The state is represented by a 12-
dimensional vector, consisting of the four card piles and the
eight hand cards, sorted in increasing order. If a slot for a
hand card is empty, because a card was played and no new
cards were drawn yet, it is replaced by a placeholder value of
−1. The agent can place any hand card on any of the card
piles, leading to a total of 8 × 4 = 32 possible actions. The
agent’s policy is represented by a feed-forward neural network
with three fully connected layers of each 32 hidden nodes with
tanh activations. Both the actor and the critic network share
the weights of the initial layers.

The agent receives a positive reward of r = 0.1 for each
valid move it plays and a negative reward of r = −0.1 for
each invalid move. At the end of the round the final reward
equals the number of played cards, i.e. at most 98.

3) Constraint-Guidance Models: We define the CGRL
models such that invalid actions are avoided, but do not impose
are restrictions on the inner RL agent. If an action has to
be selected through constraint-guidance, it greedily picks that
action which has the smallest difference between the card piles
and the hand card value.

Observation Mask The Environment-Agent Interface is
implemented such that cards with only negative effects, i.e.

2The Game: Are you ready to play The Game? (2015). Created by Steffen
Benndorf. Published by Nürnberger-Spielkarten-Verlag.
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and without masking. We show the mean and std. dev. over 10 training runs.

they cannot be played on any of the card piles, are hidden
from the RL agent by showing that these card slots are empty.
If all cards can be placed on at least one of the piles, no
changes are made.

Action Replacement The External Agent-Environment In-
terface monitors the selected action for invalid card place-
ments, which would result in a negative reward penalty. These
actions are heuristically replaced by that action which incurs
the smallest step on any of the card piles, i.e. that card which
the minimum difference between card and pile value.

Action Mask The internal environment-agent interface be-
haves similar to action replacement, but instead of replacing
the action after it has been selected, it masks those actions
which are invalid. This enforces the agent to always select a
valid action and focuses the exploration towards understanding
good game strategies without having to learn about the validity
of actions. Further variants can be considered, for example, it
is possible to enforce playing cards where the special rule of
decreasing/increasing the card pile in the ”wrong” direction
can be used. But, this goes beyond the usage of constraint-
guidance for safety aspects and enforces a particular playing
strategy upon the agent, which would be less comparable to
the other models.

4) Results: The reward curves of the four different agents
over a training time of 50 million frames are shown in
Figure 4. We train the RL agent such that it runs multiple
environments in parallel to collect experiences for training.
This rollout both allows to run the training in parallel on
multiple CPU cores as well as it stabilizes it, because more
diverse states and rewards are available. We show both the
best and the average rewards of 64 training environments.

The results show a strong impact of constraint-guidance
over the RL-only agent, but they also show differences be-
tween the different integration techniques. The best perfor-
mance is reached with Action Mask model, which implements
the internal agent-environment interface, and manipulates the
available actions by removing invalid actions. Its performance
surpasses that of the other agents from the beginning and
quickly reaches a high level.

Fig. 5. Grid World Puzzle: The agent (red arrow with observable space
highlighted) has to collect 16 items (circles and keys in 8 colors) before
reaching the goal (green square).

The other models follow a similar learning curve but are
shifted in their base performance, which we attribute to the
effects of the different augmentation models. Augmenting the
observations, i.e. removing hand cards that are not possible to
be played in the current state, is the least beneficial mask in
this scenario, and also causes instability in the training process
visible by the high fluctuation at around 49 million frames.
This is caused by the game mechanics, where only in few
cases a card is actually invalid to be played on all four card
piles. It is much more common that a card is only invalid
for a few piles, but this cannot be modeled in our setup by
augmenting only the observation, but requires adjusting the
actions, like the Action Mask does it. Still, it can be helpful
and performs better than RL only.

Regarding the training duration until the agent’s perfor-
mance converges and does no longer improve by a large
margin, we observe faster convergence when using the action
mask model compared to the external augmentation. The RL
only and the Observation Mask models steadily improve over
a longer time, but their main performance level is reached in
a similar time than the others.

B. Environment II: Grid World Puzzle

1) Scenario & Rules: The second environment is a puzzle
variant of the grid world problem. The agent is placed in a
random 2D grid world environment, consisting of four rooms,
and has the goal to collect a number of distinct items before
finding the exit door of the grid world (see Figure 5). It can
move forward, turn left or right, or pickup an item that is in
front of the agent. Every item is described by its shape (key
or circle) and its color. The goal is to pick one item of each
type and reach the exit door in as few steps as possible.

This environment poses two challenges for the agent: 1)
The visible state of the grid world is limited to the eight
surrounding tiles next to the agent’s position, which requires
exploration of the environment; 2) the agent needs to learn
to avoid items that it has already collected. The inventory of
already collected items is part of the agent’s state and given
to the agent at each step.

2) Environment & Agent: The total grid world environment
is 32×32 tiles, divided into four equally sized rooms connected



with open doors. Both the placement of doors and the items is
randomly generated for each new environment. The state of the
environment is represented by the agent’s field of view, 7× 7
fields, and its current inventory, listing all collected items. Grid
world tiles can be either a plain field, a field with an item, or
the exit door, all of which can be accessed by the agent at any
time, or a wall, which blocks the agent and cannot be accessed.
The set of actions is a ∈ {forward, left, right, pickup}. The
agent’s policy is represented by a small convolutional neural
network with three 2D convolutional layers followed by two
fully connected layers. Each layer is connected with ReLU
activation functions. Again, both the actor and the critic
network share the weights of the initial layers.

The reward function is modeled such that the agent receives
a positive reward of 1/16 for each distinct object it collects.
Collecting a duplicate item, that is already in the inventory,
causes a negative reward of −1 and ends the episode. The
maximum length of an episode are 8192 steps, once this
number of steps is reached, the episode is also terminated.
When the exit door is reached, the agent receives an additional
reward of 1 − 0.8 × Number of steps/8192. This reward
function does only return sparse rewards at specific events
instead of continuously giving feedback to the agent, which is
contrary to the card game environment, where every action of
the agent is rewarded by the environment. The implementation
of this environment is based on the MiniGrid project [23] with
extensions for the additional puzzle objective.

3) Constraint-Guidance Models: The goal of the
constraint-guidance models for the grid world puzzle
environment is to avoid collecting duplicate items, i.e. the
undesired behavior.

Observation Mask The model for augmenting the observed
states from the environment hides any duplicate item from the
observed state and masks it as a wall. This signals to the agent,
that the masked tile is not of interest and encourages the agent
to further explore or focus on another, unmasked item.

Action Replacement When the agent decides to move to a
tile with a duplicate item, this model observes this specification
violation and replaces the move by turning right.

Action Mask To avoid picking duplicate items, the action
mask disables the action to pick an item as long there is no
distinct new item in front of the agent. Thereby the agent can
either move, as long as there is no new item in front of it, or it
is set to pick a new item, which disables the movement. This
guidance model removes the logic for picking items from the
learned agent, which is then only concerned with navigation
towards distinct items.

4) Results: The results, in form of training curves, are
shown in Figure 6. As in the previous experiment, we trained
the agents with 64 environments and parallel and report both
the best and average performance over time, repeated with 10
different random seeds.

Models using constraint-guidance perform better than the
RL-only agent, with the average CGRL performance being
competitive to the best rewards of the RL-only. These results
show the general difficulty of the environment for a standard
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Fig. 6. Grid World Puzzle: Maximum (solid lines) and average (dotted)
rewards with and without masking. Shown is the mean and standard deviation
over 10 training runs.

RL algorithm. The average reward is close to the minimum
reward that is received for successfully reaching the exit
door, but does not show signs for increased attention towards
successfully collecting unique items. The CGRL models on
the other hand achieve higher rewards, with the Observation
Mask model, which excludes already collected items from
the observed state, performing best before the Action Mask
and Action Replace models. We further observe a faster
performance increase in the Action Mask model than in
the eventually better Observation Mask model. While the
observation mask excludes already collected items from the
observed state by presenting them as walls, the agent still can
walk towards them and collecting them, as the selected action
is not augmented. As the agent needs to learn that walls cannot
be accessed, the observation mask is not as effective as the
action mask in the beginning. The action mask, which was
most effective in the card game, disallows the agent to access
fields with already collected items, but only when the agent
stands directly in front of the item. Before that state is reached,
the agent can still plan to collect the item, if it has not learned
to avoid duplicates. This can cause the lower performance of
this mask.

VI. DISCUSSION

Both performed experiments showed the effectiveness of
CGRL for guiding an RL agent in complex environments. This
result confirms our expectations since we introduce external
domain knowledge into the training process and the agent’s
behavior. However, we also observe a better data-efficiency of
the training and the avoidance of unsafe behavior, as confirmed
by higher rewards. Better data-efficiency is important when
a single step of the RL agent is more costly than in the
small and computationally cheap environments used here, e.g.
when running a complex physical simulation or even using
physical components, there it is especially useful to model the
acceptable behavior via a constraint model. In addition to the
physical environment, where unsafe behavior might be harmful
to the machine or the physical environment, the avoidance of



unsafe behavior is crucial for the application and deployment
to either safety-critical or ethically challenging environments.

A challenge in the application of CGRL can occur from
the additional runtime overhead added from the constraint
solving for augmentation. As the model has to be run for every
step of the RL agent a small overhead can accumulate to a
longer runtime. However, this limitation mostly applies only
in cases where the overhead is significant in relation to the
general computational cost of one step in the environment. In
an environment where every step is already costly, the benefits
of faster training and less undesired behavior will exceed the
disadvantage of a runtime overhead.

As future work on CGRL, besides the challenges raised, we
plan to extend the method to environments with more complex
state representations. Here it can be necessary to additionally
preprocess the observation before constraint reasoning can be
applied. Another direction is to adopt principles from imitation
learning, where expert behavior can be observed, to learn
augmentation rules, e.g. via constraint acquisition [22], as
addressed in Section IV-D. This way, CGRL would first learn
a static constraint model for guidance and then allow an RL
agent to learn a strong policy within its specification.

VII. CONCLUSION

We presented Constraint-Guided Reinforcement Learning
(CGRL), a method to combine constraint solving and rein-
forcement learning into a hybrid agent that behaves according
to a specification, but is otherwise free to explore and learn
the best policy for the problem. CGRL augments the interfaces
between the RL agent and the environment through constraint
models, which specify acceptable behavior that the agent
should comply with. Constraint solving acts here as a safety
fallback for the encapsulated RL agent.

Augmentation can happen by changing the state observation
from the environment to exclude certain aspects in order to
encourage the agent towards accepted behavior, but it can
also observe the actions made by the agent and adjust to
avoid behavior that violates the specification. Finally, a third
potential interface for constraint-guidance is to augment the
action selection process within the agent – unlike the first two
approaches, which consider the RL agent as black-box – and
mask actions that would violate the specification.
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