
Application of Combinatorial Testing to
Quantum Programs

Xinyi Wang
Nanjing University of Aeronautics and Astronautics

Nanjing, China
wangxinyi125@nuaa.edu.cn

Paolo Arcaini
National Institute of Informatics

Tokyo, Japan
arcaini@nii.ac.jp

Tao Yue
Nanjing University of Aeronautics and Astronautics, China

Simula Research Laboratory, Norway
taoyue@ieee.org

Shaukat Ali
Simula Research Laboratory, Norway

Fornebu, Norway
shaukat@simula.no

Abstract—The capability of Quantum Computing (QC) in
solving complex problems has been increasingly recognized.
However, similar to classical computing, to fully exploit QC’s
potential, it is important to ensure the correctness of quantum
programs. Doing so via software testing is, however, very chal-
lenging because of QC’s inherent properties: superposition and
entanglement. Towards the direction of ensuring the correctness
of quantum programs, we propose an approach called QuCAT
(QUantum CombinAtorial Testing) for systematic and automated
testing of quantum programs by benefiting from combinatorial
testing, which has been proven to be cost-effective in testing
classical programs. QuCAT supports two combinatorial test suite
generation scenarios, i.e., generating combinatorial test suites of
a given strength, and incrementally generating and executing
combinatorial test suites of increasing strength until a fault is
found. The approach employs two types of test oracles to assess
test results. We performed an empirical study with 18 faulty
versions of quantum programs to evaluate QuCAT with strengths
of two, three, and four in the two test generation scenarios. We
compare the cost-effectiveness of combinatorial testing of various
strengths and random testing (taken as baseline approach).
Results show that combinatorial testing always performs better
than random testing with the same cost and finds faults more
quickly (in terms of required number of test cases). In addition,
in most cases, combinatorial testing with a higher strength
outperforms the lower strength in terms of effectiveness.

Index Terms—quantum programs, quantum software testing,
combinatorial testing

I. INTRODUCTION

Quantum programming enables the development of Quan-
tum Computing (QC) applications. These days, several pro-
gramming languages are available for quantum programming,
e.g., IBM’s Qiskit, Google’s Cirq, and Microsoft’s Q#. Al-
though there exists programming support, there is still a lack of
systematic and automated techniques for cost-effective testing
of quantum programs [1], [2] such that correct and reliable
QC applications can be developed. The lack of such testing

This work is supported by the National Natural Science Foundation of
China under Grant No. 61872182 and Qu-Test (Project#299827) funded
by Research Council of Norway. Paolo Arcaini is supported by ERATO
HASUO Metamathematics for Systems Design Project (No. JPMJER1603),
JST; Funding Reference number: 10.13039/501100009024 ERATO.

techniques is due to the fact that quantum programs possess
characteristics that are different from classical programs, such
as being probabilistic, performing computations in superposi-
tion, and supporting entanglement. These characteristics make
testing quantum programs very challenging.

Due to the increasing awareness of the importance of quan-
tum software testing, recently researchers have started propos-
ing some specific testing techniques. Examples include the
definition of testing coverage criteria [3], leveraging property-
based testing [4], handling the assertions at runtime [5], and
applying search method to generate test suites for quantum
programs [6].

In a quantum program, a fault could be related to a faulty
gate which is directly (or indirectly) connected to the input
qubits; a failure could be triggered by particular values of these
qubits. However, no testing approach for quantum programs
exists that directly targets these input values combinations.

Combinatorial testing (CT) is a testing technique, aiming
to deal with various combinations of input variables. For in-
stance, a commonly applied CT technique is pair-wise testing,
i.e., testing all pairs of input variable values. Motivated by
the successful application of CT in different domains [7],
[8], in this paper, we present a testing approach, QuCAT,
for automated and systematic testing of quantum programs
with CT. The approach supports two combinatorial usage
scenarios for test generation. For the first usage scenario
(UsageScenario1), it supports generating combinatorial
test suites of a given strength (e.g., pair-wise, 3-wise, etc.).
For the second usage scenario (UsageScenario2), it imple-
ments an incremental algorithm for generating and executing
combinatorial test suites of increasing strength, which stops
once a fault is found, or a maximum strength is reached. To
assess the passing and failing of test suites, we employed two
types of test oracles defined for testing quantum programs [3].

To assess the cost and effectiveness of QuCAT, we per-
formed an empirical evaluation with 18 faulty versions of
quantum programs. We assessed the combinatorial approach
with the strengths of two, three, and four for the first usage

Fig. 1. Swap Test – Circuit diagram

scenario, and with maximum strength four for the second
usage scenario. For both scenarios, we used random testing as
the comparison baseline. Results showed that in most cases,
CT with high strength, along with high cost, can outperform
CT with low strength. In addition, CT is significantly better
than random testing in terms of effectiveness with the same
cost, and CT can find faults more quickly.
Paper structure. Sect. II presents the background and illus-
trates it with an example, followed by a comparison with
related works in Sect. III. We describe the proposed approach
in Sect. IV. The experimental design and results are presented
in Sect. V and Sect. VI, respectively. In Sect. VII we discuss
some threats that may affect the validity of our evaluation and
how we tried to mitigate them. Finally, we present conclusion
and future works in Sect. VIII.

II. BACKGROUND AND RUNNING EXAMPLE

Classical computers work on bits, represented by 0 and
1. During a computation, each bit can only be either 0
or 1 at every point in time. Quantum programs work on
qubits, which is an extension of bits according to quantum
mechanics. However, each qubit, before getting measured, is in
superposition, which means that it can be both 0 and 1. During
the computation, the probabilities of being 0 or 1 change.

For each qubit q, we can define its quantum state as follows:

|q〉 = α0 |0〉+ α1 |1〉

The Dirac notation |q〉 refers to the quantum state of q and
α0 and α1 are the amplitudes, which are complex numbers
defining two elements [9]. The first one is the magnitude: when
we measure the qubit, the probability of being in the |0〉 state
is |α0|2 while the probability of being in the |1〉 state is |α1|2,
which satisfy |α0|2+ |α1|2 = 1. The second one is the relative
phase, i.e., the angle of the complex number in polar form.

Table I shows some common quantum gates and their
description. According to the table, a HAD gate puts a qubit
into superposition. A control qubit implements a kind of
condition for the quantum circuit. A phase gate changes the
relative phase of one qubit. A measure gate is for reading
values of qubits as the outcomes of a quantum program.

Fig. 1 shows the circuit of a three-qubit program (Swap
Test taken from [10]). The program uses the swap test to
compare the similarity of two input qubits: input qubit 0 and
input qubit 1. If the two qubits are initialized with the same
states, the probability of getting value 1 as outcome after
measuring qubit output qubit is 100%. However, the prob-
ability will decrease when the initialized values of these two
input qubits get increasingly different: e.g., if input qubit 0

TABLE I
DEFINITIONS OF SOME GATES OF QUANTUM CIRCUITS

Name Description

Hadamard (HAD) It places a qubit into a superposition, such that the qubit
has an equal chance of being in state |0〉 or |1〉.

NOT The NOT gate negates a qubit, i.e., turning from state
|0〉 into state |1〉, or turning from state |1〉 to state |0〉.

Controlled-NOT
(CNOT)

A two-qubit gate consisting of one control qubit and
one target qubit. If the control qubit is in state |1〉, the
target qubit will get flipped.

Controlled-
Controlled-NOT
(CCNOT)

It is a three-qubit version of CNOT which has two
control qubits. If both of these control qubits are in
state |1〉, the target qubit will get flipped.

SWAP It is a two-qubit gate, which swaps two qubits.
Controlled-SWAP
(CSWAP)

It is a three-qubit gate, which swaps two target qubits
under the condition that the control qubit is in state |1〉.

Phase (P) It rotates the relative phase of a qubit.

Controlled-Phase
(CP)

It is a two-qubit gate. The target qubit will change its
relative phase, under the condition that the control qubit
is in state |1〉.

Measure This gate can store a measurement into a classical bit,
which can be either 0 or 1.

1 # Initialization statements
2 input qubit = QuantumRegister(2, ’input qubit’)
3 output qubit = QuantumRegister(1, ’output qubit’)
4 c = ClassicalRegister(1, ’c’)
5 qc = QuantumCircuit(input qubit, output qubit, c)
6
7 # Implementation statements
8 qc.h(output qubit)
9 qc.cswap(output qubit, input qubit[0], input qubit[1])

10 qc.h(output qubit)
11 qc.x(output qubit)
12 qc.measure(output qubit, c)

Listing 1. Swap Test – Qiskit Code

is initialized with |1〉 and input qubit 1 is initialized with |0〉,
the probability of getting outcome value 1 will be 50%.

Listing 1 shows the code of this program in the Qiskit
framework [11] in Python. We have marked each operation in
the circuit shown in Fig. 1 with the corresponding line number
in the code. Lines 2 and 3 create two quantum registers, which
initialize two input qubits (input qubit[0] and input qubit[1]
of array input qubit) with state |0〉, and one output qubit
(output qubit) with state |0〉. Line 4 creates a classical register
(c) which will store the result after measuring output qubit.
Line 5 creates the quantum circuit of swap test. Line 8 applies
a HAD gate on output qubit, thereby putting this qubit into
superposition. Line 9 applies a CSWAP gate, which is a condi-
tional operation with one control qubit (output qubit) and two
target qubits (input qubit[0] and input qubit[1]). If the control
qubit is in state |1〉, the two target qubits will be exchanged.
Instead, if the control qubit is in superposition, there will be a
certain probability for the two target qubits to get exchanged,
depending on the state of the control qubit. Line 10 applies
the second HAD gate and due to the reversibility of gates in
quantum computing, output qubit returns to the original state.
Line 11 applies a NOT gate to output qubit, which flips a
qubit from state α0 to α1 or from α1 to α0. Line 12 measures

output qubit and stores the result into the classical bit c. Since
in this example the initialized values of the two input qubits
are both 0, we will get the result 1 at the end.

III. RELATED WORK

We here discuss literature on quantum software testing
(Sect. III-A) and CT in classical computing (Sect. III-B).

A. Quantum Software Testing

The Quito method [3], along with its accompanying
tool [12], were defined based on inputs and outputs of quantum
programs; the approach has two types of testing oracles and
three coverage criteria. Moreover, Quito judges failing and
passing of test suites with one-sample Wilcoxon signed ranked
test. To assess the effectiveness of its three coverage criteria,
an empirical study with five quantum programs was conducted,
in addition to mutation analyses with four types of mutation
operators.

Mendiluze et al. [13] proposed Muskit, a quantum mutation
analysis tool. It defines mutation operators on gates of quan-
tum programs, generates faulty versions of quantum programs
automatically to execute, and produces results for test analyses.

Liu et al. [14] proposed quantum circuits for runtime
assertions with the help of ancilla qubits (additional qubits
for obtaining information of qubits of interest without affecting
them), to overcome the challenge that qubits can not be copied
and measured directly during testing.

Li et al. [5] proposed Proq, a runtime assertion scheme for
testing and debugging quantum programs based on projections
(i.e., closed subspaces of the state space). Only a small number
of projective measurements are sufficient for checking the
satisfaction of a projection by a quantum state. They conducted
experiments to compare Proq with the approaches proposed
in [15] and [14]. Results show that their assertions perform
better in terms of high expressive power, flexible assertion lo-
cation, few execution times, and low implementation overhead.

QuSBT [6] is a search-based method for generating test
suites that can maximize the number of failing test cases within
a given testing budget. The paper presents the problem encod-
ing, a classification of failures, statistical tests for assessing test
results, and, most importantly, the fitness function for search.
The authors applied GA, compared with random search, to
solve the test optimization problem, and evaluated QuSBT
through mutation analysis with 30 carefully designed faulty
programs of six quantum programs. Results show that QuSBT
achieved a significant improvement over random search in
more than 80% of the faulty programs.

B. Combinatorial Testing

Combinatorial testing (CT) aims to find faults due to inter-
actions among inputs of a program, such as 2-ways and 3-ways
interactions [7], [8], [16]. The concept behind CT was initially
developed in the 1980s [16]. Since then, it has been extensively
applied in testing various software systems. For example, a
popular repository [17] lists 783 publications relevant to CT
as of January 2021. Nie and Leung [7] made an extensive

survey up to 2011, while a more recent survey by Tzoref-
Brill [8] covers works up to 2018; Wu et al. [16], instead,
made a survey specific to constrained CT.

A line of research in CT consists in the development of
test generation algorithms producing test suites of a given
strength, such as greedy algorithms [18], [19], [20] and search
algorithms [21], [22].

CT has been successfully applied in different domains. For
example, Tao et al. [23] apply CT for validating autonomous
driving systems; they build an ontology for describing the
environment in which the autonomous driving system is op-
erating, and apply CT over the ontology to generate tests for
the system. Ma et al. [24] investigate the use of CT for Deep
Neural Networks. They first propose different coverage criteria
requiring that different t-way combinations of Deep Neural
Network neurons are activated. Then, they also propose a
test generation approach for generating tests achieving these
criteria.

IV. COMBINATORIAL TESTING FOR QUANTUM PROGRAMS

We here first provide some definitions about quantum pro-
grams in Sect. IV-A. We then introduce, in Sect. IV-B, the
notions of test and test assessment for quantum programs.
Finally, we introduce our proposed approach to use combi-
natorial testing (CT) for quantum programs in Sect. IV-C.

A. Definitions for quantum programs

Definition 1 (Inputs, outputs, and quantum program). Let Q
be the set of qubits of a quantum program QP. A subset of
qubits I ⊆ Q identifies the input, while a subset O ⊆ Q
identifies the output.1 DI = B|I| are the input values, and
DO = B|O| are the output values. A quantum program QP
can be described as a function QP : DI → 2DO .

The definition shows that, given an input value, a quantum
program can return different output values. The program
specification, if available, specifies the expected probability
distribution followed by the output values.

Definition 2 (Program specification). Given a quantum pro-
gram QP : DI → 2DO , we identify with PS the program
specification, i.e., the expected behavior of the program. For
a given input assignment i ∈ DI , the program specification
states the expected probabilities of occurrence of all the output
values o ∈ DO, i.e.,:

PS(i) = [p0, . . . , p|DO|−1]

where ph is the expected probability (with 0 ≤ ph ≤ 1) that,
given the input value i, the value h is returned as output. It
holds

∑|DO|−1
h=0 ph = 1. We introduce the following notation

to identify the probabilities of outputs that can actually occur:

PSNZ (i) = [p ∈ PS(i) | p 6= 0]
= [pj1 , . . . , pjk] with j1, . . . , jk ∈ DO

1I and O do not need to be disjoint. Moreover, some qubits could be neither
inputs nor outputs, i.e., I ∪O ⊆ Q.

B. Testing of quantum programs

Before introducing CT for quantum programs, we provide
general definitions regarding testing of quantum programs.

Definition 3 (Test input). A test input is a pair 〈i, n〉, where i
is an assignment to qubits (i.e., i ∈ DI), and n indicates how
many times QP must be run with i.

A test needs to be executed multiple times to get an estimate
of the probability distribution followed by the output values.
The number of repetitions must be sufficient to be repre-
sentative enough. To this aim, we here follow the approach
proposed in [6]. The idea of the approach is that different
inputs require different numbers of repetitions to get repre-
sentative results; namely, the number of required repetitions
is proportional to the number of possible output values, as
specified by the program specification. Given an input i, the
number of required repetitions is defined as follows:

numReps(i) = |PSNZ (i)| × 100

Definition 4 (Test execution and test result). Given a test input
〈i, n〉 for a quantum program QP, the test execution consists
in running QP n times with input i. We identify with res =
[QP(i), . . . ,QP(i)] = [o1, . . . , on] the test result, where oj is
the output value of the jth execution of the program.

1) Test assessment: The notion of failure in quantum pro-
grams is very specific, as it takes into account the stochastic
nature of quantum computing. Following [3], [6], we identify
two types of failures: unexpected output failure and wrong
output distribution failure. Test assessment of a test result res
is done by checking whether these two failures occurred, as
explained in the following.

a) Unexpected Output Failure (uof): Such failure occurs
when the output o returned by the program for a given input i,
is not allowed by the program specification PS, i.e., PS(i, o) =
0. To check uof , it is enough to check if some produced output
is unexpected, i.e.,

failuof := (∃oj ∈ res : PS(i, oj) = 0)

In case a failure of this type occurred, the test assessment is
stopped, as we can already assess that the test is not passing.
Otherwise, the checking for the other type of failure is done
as follows.

b) Wrong Output Distribution Failure (wodf): Such fail-
ure occurs when the output values returned by multiple ex-
ecutions for a given input i follow a probability distribution
significantly different from the one specified by the program
specification. We assess this with a goodness of fit test using
the Pearson’s chi-square test [25]: the test compares the
observed frequencies of the values of the categorical variable
with the expected distribution. For our purposes, given a test
input 〈i, n〉 and its test result res = [o1, . . . , on], we apply the
chi-square test as follows:
• we retrieve, from the program specification, the expected

probabilities of the outputs that can occur given the input

i, i.e., PSNZ (i) = [pj1 , . . . , pjk], with j1, . . . , jk ∈ DO

(see Def. 2);
• we build the one-dimensional contingency table [cj1 , . . . ,
cjk] of the chi-square test, by counting the number of
occurrences of each possible output j1, . . . , jk in the test
result, i.e., cjh = |{o ∈ res | o = jh}|. Note that it
is guaranteed that each returned output is considered in
one of the counts cj1 , . . . , cjk ; indeed, wodf is checked
only if uof did not reveal any failure, meaning that the
program returned outputs only from j1, . . . , jk;

• we apply the chi-square test over the contingency table
[cj1 , . . . , cjk] and the expected occurrence probabilities
[pj1 , . . . , pjk].

If the p-value is less than a given significance level α (α =
0.01 in our experiments), we can reject the null hypothesis
that there is no statistical significant difference. We record the
assessment with the following predicate:

failwodf := (p-value < α)

In the end, the test is considered failed if one of the two
failures has been observed:

fail := failuof ∨ failwodf

C. Combinatorial testing for quantum programs

CT assumes that faults are triggered by particular combina-
tions, of a given strength (2, 3, etc.), of input parameters of
the program. In a quantum program, faults may be related
to the use of wrong gates in the quantum circuit, or to a
wrong connection between gates. The faulty gate is directly
or indirectly connected with some of the input qubits. There-
fore, our research hypothesis is that some particular values
combinations of some of the input qubits can trigger the fault.

Therefore, CT seems to be a viable solution for the testing
of quantum programs. We here introduce the notion of CT
tailored for quantum programs.

Value schema [7] is a key concept in CT: it specifies a
combination of input values that must be observed in a test.

Definition 5 (Value schema). Given a quantum program QP
with input qubits I , a k-value schema (k > 0 and k ≤ |I|)
is a combination of values (. . . , vi1 , . . . , vik , . . .) for k input
qubits. We identify with ’−’ the values of qubits that are not
fixed by the schema.

An example of 2-value schema for a quantum program with
4 qubits could be (−, 1,−, 0).

Definition 6 (Combinatorial Test Suite). Given a quantum
program QP with input qubits I , a combinatorial test suite T
of strength k guarantees that each k-value schema is contained
in the input values of at least a test t ∈ T .

The required strength k defines the type of testing: pairwise
testing (when k = 2), 3-wise testing (when k = 3), etc.

Different generation algorithms have been proposed to gen-
erate combinatorial test suites, such as AETG [19], IPO [20],
IPOG [26], search-based approaches [22], etc. Also different

Algorithm 1 Incremental Combinatorial Test Generation
Require: the quantum program QP under test
Require: the set of input qubits I
Require: the program specification PS
Require: maximum required strength K

1: T ← ∅ . to collect executed tests
2: for k = 2, . . . ,K do
3: Tk ← GENCOMBTESTSUITE(I, k)
4: for i ∈ Tk do
5: n← numReps(i) . required number of repetitions
6: res ← [QP(i), . . . ,QP(i)] . test executed n times
7: T ← T ∪ {〈i, n〉}
8: failuof ← EVAL uof (res, PS, i)
9: failwodf ← false

10: if failuof = false then
11: failwodf ← EVAL wodf (res, PS, i)
12: if failuof ∨ failwodf then
13: return 〈T, failure〉
14: return 〈T, pass〉

tools have been developed, such as ACTS [27], CASA [28],
CITLAB [29], CTwedge [30], PICT [31], etc.

In this paper, we evaluate the effectiveness of using CT for
quantum programs. We consider two different usage scenarios
of CT for quantum programs.

In the first usage scenario (UsageScenario1), we as-
sume that the tester specifies a strength k, and generates a test
suite Tk for that strength. They can then assess the passing
and failing of tests, as explained in Sect. IV-B1.

In the second usage scenario (UsageScenario2), in-
stead, we propose an incremental test generation approach that
keeps on generating test suites of incremental strength, till a
failure is detected, or a maximum k is reached. The approach
is shown in Alg. 1. At Line 1, the approach initializes a set
to collect the tests that are actually executed. Then, for each
possible strength k till a maximum value K (Line 2):
• it generates a test suite Tk of strength k (Line 3);
• for each test i in Tk:

– it runs the program with the test i (Line 6) (see Def. 4),
and collects the test in the set of executed tests (Line 7);

– it checks whether a failure of type uof occurred
(Line 8);

– if no uof occurred (Line 10), it checks whether a failure
of type wodf occurred (Line 11);

– if at least one of the two failures occurred (Line 12),
it returns the set of executed tests with the information
that a failure was found (Line 13);

At the end, if no failure has been found, the executed tests are
returned with the information that all tests passed (Line 14).

V. EXPERIMENT DESIGN

We here present our experimental design. First, in Sect. V-A,
we provide the set of research questions that we will answer.
In Sect. V-B, we present the list of benchmark programs
used in the experiments. We show the experimental settings in
Sect. V-C and discuss the evaluation metrics and employed sta-
tistical tests in Sect. V-D. Code to reproduce the experiments,
benchmarks, and experimental results are available online [32].

TABLE II
BENCHMARK PROGRAMS*

Program |I| # gates depth Injected faults (position: right after the inputs)

AS 6 25 22 AS1: CCNOT AS2: CCCNOT AS3: CCCCNOT
BV 7 21 3 BV1: CCNOT BV2: CCCNOT BV3: CCCCNOT
CE 11 25 26 CE1: CCHAD CE2: CCCHAD CE3: CCCCHAD
IQ 10 60 56 IQ1: CCHAD IQ2: CCCHAD IQ3: CCCCHAD
QR 9 15 12 QR1: CCNOT QR2: CCCNOT QR3: CCCCNOT
SM 5 40 5 SM1: CCNOT SM2: CCCNOT SM3: CCCCNOT

|I| and # gates are the number of input qubits and gates in the program
(e.g., H, X), and circuit depth is the length of the longest sequence of
quantum gates. One unit of the length is determined by the output of a gate
given as the input to another gate. We use the Qiskit command depth.

A. Research Questions

We will answer the following research questions (RQs):
• RQ1 How do applications of CT with different strengths

compare to each other in terms of cost and effectiveness?
This RQ helps us study whether various strengths have an
effect on the effectiveness (i.e., finding faults), and cost
in terms of size of the generated test suite.

• RQ2 How is the effectiveness of CT with different
strengths as compared to random testing?
This RQ studies whether CT can outperform a simple
baseline; thereby, warrant the need for the systematic CT.
We do not study the cost explicitly here, since we let
random testing have the same test suite size as CT; thus,
the cost is the same for both approaches.

• RQ3 How quickly can CT find a fault as compared to
random testing?
This RQ assesses the cost of applying CT in terms of
finding a fault. Given that executing test cases on quantum
programs can be computationally very expensive, an
approach that can find a fault with a lower number of
executed test cases is preferred.

Note that RQ1 and RQ2 are related to UsageScenario1,
while RQ3 to UsageScenario2 (see Sect. IV-C).

B. Benchmark Programs and Faulty Programs

For our experimentation, we chose the following six quan-
tum programs to assess the cost and effectiveness of CT for
quantum programs. Our selection criterion is to pick quantum
programs with different characteristics (e.g., the number of
gates, the depth of quantum program). We summarize various
characteristics of the selected quantum programs in Table II,
and we provide their brief descriptions below.
• Add Squared (AS): It performs a mathematical addition

of a squared quantum integer b and another quantum
integer a (i.e., a+b∗b), both of which are in superposition.
This program demonstrates how this mathematical opera-
tion is performed according to the superposition principle.

• Conditional Execution (CE): It performs a conditional
addition on one quantum integer b, which is in superpo-
sition. The condition is based on another quantum integer
a, which is also in superposition.

• Bernstein-Vazirani (BV) and Simon (SM) algorithms:
These two quantum programs implement two cryptogra-
phy programs. Consult [33], [34] for more details;

• invQFT (IQ): it implements inverse quantum Fourier
transform. With a given frequency as input, it produces
a signal that has periodically varying magnitude [10];

• QRAM (QR): This program manages an increment with
QRAM, which can dynamically store and read values
in the memory address with the help of superposition,
differently from a conventional RAM [10].

Note that we extended the implementation of these pro-
grams provided in [10] to handle a higher number of qubits.
In addition, these programs have also been used in [6].

To assess whether tests generated with CT can find faults
in quantum programs, we needed a set of faulty versions of
the programs. To this end, we created three faulty versions of
each benchmark program described in Table II by introducing
one fault at a time in the program. These faulty programs will
be referred to as by the name of their original program with
fault number in subscript, e.g., three faulty versions of AS are
referred to as AS1, AS2, and AS3, respectively. Thus, in total,
we have created 18 faulty programs. Fault number 3 is the
most difficult one followed by fault 2 and then fault 1.

C. Experiment Settings

We wrote quantum programs in Python in the Qiskit
framework 0.27.0 [11]. We executed the quantum programs
on the ideal quantum computer simulator shipped with the
framework. By “ideal”, we mean that hardware errors are not
simulated during program execution. To generate test suites
of varying strengths, we use the PICT tool [31]. For our
experiments, we chose strengths 2, 3, and 4.

To answer RQ1 and RQ2 (corresponding to UsageScena-
rio1 in Sect. IV-C), for each strength k and each benchmark
program, we generated and executed 500 k-wise test suites.
Moreover, to compare the performance of CT with a random
approach, we randomly generated and executed 500 test suites
of the same size of the combinatorial test suites.

To answer RQ3 (corresponding to UsageScenario2 in
Sect. IV-C), we have executed, for each benchmark pro-
gram, the incremental combinatorial test generation reported
in Alg. 1 using, as maximum strength, K = 4. We have also
executed a random version of the approach in which tests are
generated randomly. Both the combinatorial and the random
approach have been executed 500 times.

D. Evaluation Metrics and Statistical Tests

Table III describes a set of metrics that we used to answer
the RQs. For each RQ, we describe metric types (i.e., cost, or
effectiveness), the metrics themselves, and statistics used.

1) Metrics and Statistics for RQ1: To answer RQ1 in terms
of cost, we calculate the size of the generated test suite
corresponding to each strength (i.e., k = 2, 3, 4), i.e., |Tk|.
Regarding the effectiveness, for each faulty program and each
strength k, we calculate success rate (sr), i.e., the number of
times a test suite found a fault out of the total number of runs.

TABLE III
EVALUATION METRICS AND STATISTICAL TESTS

RQ metric type metrics statistical tests

RQ1 effectiveness srck Mann-Whitney U
cost |Tk| test, Â12

RQ2 effectiveness srck, sr
r
k, fd

c
k, fd

r
k Fisher’s Exact

cost |Tk| test, Odds Ratio (OR)

RQ3 cost |T c |, |T r | Mann-Whitney U test, Â12

This metric was chosen based on the guide [35]. We will refer
to the success rate corresponding to each strength k as sr ck,
where c represents the combinatorial testing approach.

To assess the statistical significance of the two metrics for
CT of various strengths, we chose the Mann–Whitney U test as
the statistical test, as suggested by the guide [35]. Furthermore,
as also suggested by [35], we also calculated the effect size
with the Vargha and Delaney’s Â12 statistics. When comparing
the application of CT with two strengths (e.g., k1 and k2) for a
given metric (i.e., cost or effectiveness), if p-value is less than
0.05, then there is a significant difference between k1 and k2.
If Â12 is 0.5, then it means that there is no difference between
the two strengths. An Â12 value higher than 0.5 suggests that
the values of the metric for k1 are highly likely to be higher
than those of k2, and the higher the value of Â12, the higher
the likelihood. An Â12 value less than 0.5 suggests otherwise.

2) Metrics and Statistics for RQ2: For RQ2, the cost for
a given strength k is calculated in the same way as in RQ1.
Note that, for the random approach, the size of the test suite
corresponding to a strength k is the same as the size of the test
suite generated by CT of strength k. In terms of effectiveness,
for a given strength k, in addition to sr ck, we also calculate the
success rate of random for the same k, i.e., srrk. In addition,
for CT and random, we calculate the overall percentage of
fault detection (fd), which is the average success rate across
all the 18 faulty programs. We will refer to the percentage
of fault detection corresponding to each strength k and its
corresponding random as fdc

k and fdr
k, respectively.

To assess the statistical significance of success rates of CT
of various strengths as compared to the random approach, we
employed the Fisher’s exact test to calculate p-values, and
used odds ratio (OR) as the effect size measure, based on the
guide [35]. A p-value less than 0.05 means that the difference
between the success rates of CT and random is statistically
significant. A value of OR equals to 1.0 means no difference
between the success rates, whereas a value greater than 1.0
means that CT is highly likely to be better than random. The
higher the value of OR, the higher the likelihood of CT to be
better than random. A value less than 1.0 means vice versa.

3) Metrics and Statistics for RQ3: For RQ3 (UsageSce-
nario2), we calculate the cost, i.e., the number of test cases
needed to find a fault with CT (i.e., |T c |) and random (i.e.,
|T r |). Moreover, to determine the statistical significance of the
results, we compare CT with random using the Mann-Whitney
U test and Â12 statistic in a similar way as described in RQ1.

TABLE IV
USAGESCENARIO1 (RQ1 AND RQ2) – EXPERIMENTAL RESULTS – COST
|Tk|, AND EFFECTIVENESS srck AND srrk FOR COMBINATORIAL AND

RANDOM

k = 2 k = 3 k = 4

|T2| src2 srr2 |T3| src3 srr3 |T4| src4 srr4

AS1 6.3 100.0% 82.6% 13.3 100.0% 97.6% 26.2 100.0% 100.0%
AS2 6.3 72.4% 59.4% 13.3 100.0% 83.2% 26.2 100.0% 96.0%
AS3 6.3 43.0% 37.4% 13.3 77.4% 65.4% 26.2 100.0% 85.8%
BV1 7.0 100.0% 88.6% 14.6 100.0% 98.0% 30.2 100.0% 100.0%
BV2 7.0 73.8% 64.8% 14.6 100.0% 85.4% 30.2 100.0% 99.0%
BV3 7.0 41.0% 39.0% 14.6 87.8% 61.6% 30.2 100.0% 87.8%
CE1 8.5 100.0% 91.6% 19.3 100.0% 100.0% 45.2 100.0% 100.0%
CE2 8.5 82.4% 69.8% 19.3 100.0% 94.6% 45.2 100.0% 99.8%
CE3 8.5 54.6% 47.0% 19.3 76.0% 74.2% 45.2 100.0% 96.6%
IQ1 8.0 100.0% 93.0% 17.2 100.0% 99.6% 38.5 100.0% 100.0%
IQ2 8.0 80.0% 67.0% 17.2 100.0% 91.2% 38.5 100.0% 99.6%
IQ3 8.0 50.4% 43.2% 17.2 85.6% 76.0% 38.5 100.0% 96.0%
QR1 8.3 100.0% 91.2% 18.3 100.0% 99.8% 42.0 100.0% 100.0%
QR2 8.3 76.8% 68.2% 18.3 100.0% 91.2% 42.0 100.0% 100.0%
QR3 8.3 48.8% 49.4% 18.3 85.4% 73.4% 42.0 100.0% 93.8%
SM1 6.0 100.0% 80.2% 12.0 100.0% 96.8% 18.2 100.0% 98.6%
SM2 6.0 71.4% 55.6% 12.0 100.0% 81.0% 18.2 100.0% 93.2%
SM3 6.0 43.6% 37.0% 12.0 74.2% 58.0% 18.2 100.0% 71.4%

fdk 13.4/18 11.7/18 16.9/18 15.3/18 18.0/18 17.2/18

VI. RESULTS

In this section, we answer the three research questions
(RQs) reported in Sect. V-A.

A. RQ1: Comparing CT with Various Strengths

Experimental results for UsageScenario1 (RQ1 and
RQ2) are reported in Table IV. For each benchmark program
and each strength k, we report the average size |Tk| of
the generated test suites (across the 500 repetitions) as cost
measure, and the success rates sr ck and srrk (i.e., percentage of
test suites triggering a failure) of the combinatorial and random
approaches as effectiveness measure. In the table, we also
report the overall fault detection fd across all the programs,
both for the combinatorial and the random approaches.

To answer RQ1, starting from the results of Table IV,
we have compared the effectiveness and cost of different
applications of CT of various strengths. For each pair of
strengths k1 and k2, we have compared their success rates
sr ck1

and sr ck2
(i.e., effectiveness) with the Fisher’s exact test,

and their test suite sizes |Tk1
| and |Tk2

| (i.e., cost) with the
Mann-Whitney U test and with the Â12 statistic, for each of
the 18 benchmark programs. Table V reports the results, in
terms of p-value and Odds Ratio (OR) for the effectiveness,
and p-value and Â12 for the cost. Values highlighted in green
in the table indicate the cases in which sr ck2

is significantly
better than sr ck1

. Note that |Tk1
| is always significantly better

than |Tk2 | and so we do not highlight it in the table.
As expected, we observe that CT with a lower strength

has significantly less cost (in terms of size of the generated
test suite) than CT with a higher strength. This can also be
observed from Table IV where |Tki | < |Tkj | for ki < kj . This
is well known in CT research, and lower bounds on the size

TABLE V
USAGESCENARIO1 (RQ1) – COMPARISON OF EFFECTIVENESS srck AND

COST |Tk| BETWEEN CT APPLICATIONS WITH SIGNIFICANTLY STRENGTHS

2 vs 3 2 vs 4 3 vs 4

srck |Tk| srck |Tk| srck |Tk|
p-value OR p-value Â12 p-value OR p-value Â12 p-value OR p-value Â12

AS1 1.00 - <0.01 0.00 1.00 - <0.01 0.00 1.00 - <0.01 0.00
AS2 <0.01 0.00 <0.01 0.00 <0.01 0.00 <0.01 0.00 1.00 - <0.01 0.00
AS3 <0.01 0.22 <0.01 0.00 <0.01 0.00 <0.01 0.00 <0.01 0.00 <0.01 0.00
BV1 1.00 - <0.01 0.00 1.00 - <0.01 0.00 1.00 - <0.01 0.00
BV2 <0.01 0.00 <0.01 0.00 <0.01 0.00 <0.01 0.00 1.00 - <0.01 0.00
BV3 <0.01 0.22 <0.01 0.00 <0.01 0.00 <0.01 0.00 <0.01 0.00 <0.01 0.00
CE1 1.00 - <0.01 0.00 1.00 - <0.01 0.00 1.00 - <0.01 0.00
CE2 <0.01 0.00 <0.01 0.00 <0.01 0.00 <0.01 0.00 1.00 - <0.01 0.00
CE3 <0.01 0.17 <0.01 0.00 <0.01 0.00 <0.01 0.00 <0.01 0.00 <0.01 0.00
IQ1 1.00 - <0.01 0.00 1.00 - <0.01 0.00 1.00 - <0.01 0.00
IQ2 <0.01 0.00 <0.01 0.00 <0.01 0.00 <0.01 0.00 1.00 - <0.01 0.00
IQ3 <0.01 0.17 <0.01 0.00 <0.01 0.00 <0.01 0.00 <0.01 0.00 <0.01 0.00
QR1 1.00 - <0.01 0.00 1.00 - <0.01 0.00 1.00 - <0.01 0.00
QR2 <0.01 0.00 <0.01 0.00 <0.01 0.00 <0.01 0.00 1.00 - <0.01 0.00
QR3 <0.01 0.16 <0.01 0.00 <0.01 0.00 <0.01 0.00 <0.01 0.00 <0.01 0.00
SM1 1.00 - <0.01 0.00 1.00 - <0.01 0.00 1.00 - <0.01 0.00
SM2 <0.01 0.00 <0.01 0.00 <0.01 0.00 <0.01 0.00 1.00 - <0.01 0.00
SM3 <0.01 0.27 <0.01 0.00 <0.01 0.00 <0.01 0.00 <0.01 0.00 <0.01 0.00

For k1 vs k2, values of srck highlighted in green show the cases in which
srck2

is significantly better than srck1
. In the rest of the cases, there is no

significant difference between the two approaches in terms of srck . Note that
|Tk1
| is always significantly better than |Tk2

|; thus, we do not highlight it.

of a generated test suite can also be theoretically assessed [7]2

and also upper bounds can be estimated [36]. The question is
whether a higher cost for a higher strength can be justified in
terms of effectiveness (i.e., success rate sr ck).

As shown in Table V, when comparing sr ck between applica-
tions of CT with strength k = 2 and k = 3, 12 programs show
that 3-wise CT is significantly better than pairwise testing,
and there is no difference in the rest of 6 programs (all with
fault number 1) whose sr ck, for both CT applications, is 100%
(see Table IV). Also, in columns 2 vs 4 and 3 vs 4, the
comparison results indicate that, except for programs in which
both versions of CT always trigger the failures, CT with higher
strength always outperforms that with lower strength.

According to success rate sr ck in Table IV, the six faulty
programs with fault number 1 (the easiest fault to detect, e.g.,
AS1) can always be caught by all 500 test suites, even with
the pairwise CT. At the same time, the six programs with fault
number 2 (e.g., AS2) are always detected by applying CT with
strength three and four. The rest of the programs (e.g., QR3),
which are the most difficult ones, are always detected only by
applying CT with strength four.

Based on the analyses above, we can conclude that applying
CT with a higher strength can indeed lead to the increase in
effectiveness. But for some programs with faults easy to detect,
CT with a lower strength (e.g., pairwise) can still achieve good
results (i.e., sr ck = 100%).

B. RQ2: Comparing Combinatorial Testing with Random

In this RQ, we are interested in assessing the effectiveness
of CT with various strengths, when compared to the random

2For quantum programs, we need at least 2k tests for strength k. However,
more tests are needed with the increasing number of input qubits.

TABLE VI
USAGESCENARIO1 (RQ2) – COMPARISON OF THE EFFECTIVENESS srck

BETWEEN CT AND RANDOM TESTING – P-VALUE AND ODDS RATIO (OR)
OF THE FISHER’S EXACT TEST

k = 2 k = 3 k = 4

p-value OR p-value OR p-value OR

AS1 <0.01 INF <0.01 INF 1.00 -
AS2 <0.01 1.79 <0.01 INF <0.01 INF
AS3 0.08 1.26 <0.01 1.81 <0.01 INF
BV1 <0.01 INF <0.01 INF 1.00 -
BV2 <0.01 1.53 <0.01 INF 0.06 INF
BV3 0.56 1.09 <0.01 1.97 <0.01 INF
CE1 <0.01 INF 1.00 - 1.00 -
CE2 <0.01 2.03 <0.01 INF 1.00 INF
CE3 0.02 1.36 <0.01 2.50 <0.01 INF
IQ1 <0.01 INF 0.50 INF 1.00 -
IQ2 <0.01 1.97 <0.01 INF 0.50 INF
IQ3 0.03 1.34 <0.01 1.88 <0.01 INF
QR1 <0.01 INF 1.00 INF 1.00 -
QR2 <0.01 1.54 <0.01 INF 1.00 -
QR3 0.90 0.98 <0.01 2.12 <0.01 INF
SM1 <0.01 INF <0.01 INF 0.02 INF
SM2 <0.01 1.99 <0.01 INF <0.01 INF
SM3 0.04 1.32 <0.01 2.08 <0.01 INF

Values of srck highlighted in purple indicate the cases in which CT is
significantly better than random testing. In the rest of the cases, there is no
significant difference between CT and random testing.

approach (see Sect. V-C).
From Table IV, we observe that, with increasing strengths,

the effectiveness of CT increases, to the point of always
triggering the failures with strength 4. We can also observe
that, as expected, the effectiveness of the random approach
increases. However, when we consider the average percentage
of the fault detection of all the 18 programs in the last row of
Table IV, we can clearly see that the value of fdc

k of CT is
larger than that of fdr

k for each strength k.
To draw more definitive conclusions, we compare the results

reported in Table IV with the Fisher’s exact test. Table VI
reports, for each strength k and each faulty program, the results
of the comparison between effectiveness values sr ck and srrk of
CT and random. The table reports the p-values of the Fisher’s
exact test and odds ratio (OR) values. The cases in which CT
is significantly better are highlighted in purple. Recall that,
for the same strength k, CT and random approaches have the
same cost, i.e., the same test suite size |Tk|.

From Table IV, we observe that, both CT with strength 2
and random can not always trigger a failure; however, from
Table VI, we observe that CT with strength 2 is almost always
significantly better in terms of sr ck (for 15 out of 18 programs),
showing that it produces more useful tests than random.

When comparing random with CT with strength 3, from
Table VI we observe that again, for 15 out of 18 programs,
CT performed better than random. From Table VI, we also
observe that CT with strength 4 is still significantly better
than random for half of the programs.

These results show that CT is more effective than random
in terms of generating test suites that are more likely to expose

TABLE VII
USAGESCENARIO2 (RQ3) – AVERAGE NUMBER OF EXECUTED TESTS
|T c |, |T r | – COMPARISON RESULTS BETWEEN CT AND RANDOM TESTING

– P-VALUE OF MANN-WHITNEY U TEST AND Â12 STATISTIC

AS1 AS2 AS3 BV1 BV2 BV3

average |T c | 2.9 5.7 11.0 2.9 6.0 12.5
average |T r | 3.8 7.5 14.5 3.9 7.5 16.0

p-value <0.01 <0.01 <0.01 <0.01 0.04 0.21
Â12 0.45 0.45 0.44 0.44 0.46 0.48

CE1 CE2 CE3 IQ1 IQ2 IQ3

average |T c | 2.9 5.9 10.8 3.0 5.8 11.7
average |T r | 4.0 7.3 13.2 3.8 7.3 12.7

p-value <0.01 0.01 0.01 0.04 <0.01 0.68
Â12 0.42 0.46 0.45 0.46 0.45 0.49

QR1 QR2 QR3 SM1 SM2 SM3

average |T c | 2.9 6.2 11.5 2.7 5.5 10.3
average |T r | 3.9 7.5 14.3 3.7 6.9 14.3

p-value <0.01 0.04 <0.01 <0.01 0.02 <0.01
Â12 0.45 0.46 0.44 0.45 0.46 0.42

Values of srck highlighted in purple indicate the cases in which CT is
significantly better than random testing. In the rest of the cases, there is no
significant difference between CT and random testing.

failures of quantum programs.

C. RQ3: Combinatorial Testing’s Quickness in Finding Faults

In this section, we evaluate how quickly CT can find faults.
So, we consider UsageScenario2, as described in Alg. 1
and Sect. V-C; namely, CT generates and executes test suites
by incrementally increasing its strength until a failure is
observed. To have a fair comparison, we also implemented
a random approach, which keeps on generating test inputs
randomly and executing them until a failure is detected. We
use the number of executed tests as the evaluation metric. For
each faulty program, both CT and random approaches have
been repeated 500 times. Table VII reports, for each faulty
program, values of the average number of executed tests |T c |
and |T r | of 500 runs, and results of the Mann-Whitney U test
and Â12 statistic. Cases in which CT significantly outperforms
random testing are highlighted in purple.

From Table VII, we can observe that, for each program, the
average number of test cases needed to find a fault with CT
is consistently smaller than that of random, and the results of
CT are significantly better than random in 16 of the 18 faulty
programs. For all the 12 faulty programs of AS, CE, QR and SM,
CT works better than random. Among the six faulty programs
of BV and IQ, for four of them, CT significantly outperformed
random. Thus, we can conclude that CT can find faults more
quickly than random.

D. Overall Discussion

As discussed in the results of the RQs, as expected, CT
with a higher strength performed better than CT with a lower
strength in terms of fault detection (RQ1); the CT approaches

with the three different strengths performed significantly better
than random using the same number of tests (RQ2); and less
test cases are needed to find a fault with CT than with random
(RQ3). In the rest of this section, we would like to discuss
some of our additional observations, which we consider inter-
esting and important for future further investigation.

Methodology-wise, our approach, in the context of Usage-
Scenario2, can be optimized by reusing test cases generated
by CT with a lower strength. For instance, when applying
CT with strength 3, the approach can avoid to try to cover
triples that have been coincidentally already covered by the
tests generated by CT with strength 2. Doing so will save the
time cost required for both the generation and execution.

In our empirical study, we employed 18 faulty programs
of 6 quantum programs. These quantum programs are of
various complexity in terms of the number of input qubits, the
number of gates, and the circuit depth (see Table II). Although
our current design of the experiment does not allow us to
study and draw a conclusion on whether the complexity of a
quantum program has any influence on the effectiveness of the
CT approaches, we can still observe from Table IV that the
CT approaches can outperform random testing for quantum
programs of various complexity. In addition, still looking at
Table IV, we do not observe noticeable differences in terms
of the effectiveness of CT across the quantum programs with
various complexity. For instance, the pairwise CT achieved
100%, 82.4% and 54.6% effectiveness for CE1, CE2, and CE3,
respectively, which are comparable with that for the three SM

programs; notice that SM is the simplest program and CE is the
most complex one, in terms of the number of input qubits.

As we discussed in Sect. V-C, in our experiments, we
intentionally controlled the difficulty of faults being introduced
into the six quantum programs. For instance, AS3 is more
difficult to be detected than AS2, which is more difficult to
be detected than AS1. Therefore, when looking at Table IV,
we can observe that the faulty programs with more difficult
injected faults (e.g., AS3) obtained less effectiveness than those
with easier faults seeded (e.g., AS2), unless when CT reaches
100% fault detection for the quantum programs of all levels
of difficulty (e.g., with strength 4). This is easy to understand,
because, in quantum programs, to detect a difficult faulty
gate naturally requires test cases with particular combinations
involving a higher number of qubits.

VII. THREATS TO VALIDITY

Similar to any other experiment, our experiments can also
be affected by some threats to their validity.

In terms of external threats to validity, we conducted our
experiments with only six quantum programs and 18 (faulty)
benchmark programs. Therefore, the results of our experiments
and conclusions drawn based on these results can only be
generalized to quantum programs with similar characteristics.
Similar to many other experiments conducted in the software
engineering domain, more experiments with diverse character-
istics of quantum programs are definitely required to further
generalize the conclusions we obtained.

To assess the passing and failing of tests with wodf , we
employed the Pearson’s Chi-square test. It could be that there
are other better means of doing that, which forms a threat to
the construct validity of our experiment. However, the Chi-
square test has been used for this purpose in existing related
quantum software testing literature [15], [4].

Another threat to the construct validity is about the selection
of faults that were introduced in the quantum programs to
create the 18 faulty benchmark programs. We chose a set of
arbitrary faults to be seeded in quantum programs, which could
potentially affect our results. However, currently, there does
not exist any bug repository for quantum programs that we
could use to seed realistic faults in quantum programs.

Empirical evidence for classical programs [37] suggests that
combinatorial test suites of strength 4 can find more than
90% of the faults for most of the programs; therefore, in our
experiment, we selected 4 as the maximum strength of CT.
However, we understand that dedicated empirical studies are
needed, supported with more complex quantum programs with
more difficult faults, to understand whether test suites of higher
strengths may be needed in some cases, and to provide solid
evidence and guideline on how to select a CT strength.

In order to obtain coverage of a given strength t, generation
algorithms as those employed by PICT can generate different
test suites, depending on the initial seed. To account for this
randomness in the generation, we repeated, for each faulty
program, our experiments 500 times to ensure that the results
were not obtained by chance; this, to a certain extent, reduces
threats to the conclusion validity. Moreover, in order to draw
significant conclusions, we compared the results of CT with
different strengths and those of the random approach, with
suitable statistical tests as suggested by an established guide
on conducting experiments with randomized algorithms [35].

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed QuCAT for the systematic and
automated testing of quantum programs with combinatorial
testing (CT). The approach supports two test generation
scenarios. The first one generates a combinatorial test suite
of a given strength, whereas the second one incrementally
generates and executes combinatorial test suites of increasing
strengths till a fault is detected, or the maximum allowed
strength is reached. In order to assess the cost and effec-
tiveness of QuCAT, we performed an empirical study using
six quantum programs with 18 faulty versions in total. We
compared test results of CT with strength 2, 3, and 4. Also,
we compared CT with random testing. Results showed that
in terms of effectiveness (i.e., ability to detect faults), CT
performed significantly better than random testing with the
same cost, and CT with higher strength (and so higher cost)
outperformed that with lower strength (and so lower cost).
Moreover, experiments showed that CT can find faults more
quickly than random testing.

As future work, we will develop a fault localization ap-
proach for quantum programs by analyzing test results. Also,

we will conduct experiments on more complex quantum pro-
grams with more qubits and gates, and higher circuit depth. In
addition, we will increase the number of benchmark programs.
Besides, we will test quantum programs on a real quantum
computer (e.g., provided by IBM) to assess the effectiveness
of our approach in the presence of hardware errors, which we
have not taken into consideration in this paper.

REFERENCES

[1] A. Miranskyy and L. Zhang, “On testing quantum programs,” in Pro-
ceedings of the 41st International Conference on Software Engineering:
New Ideas and Emerging Results, ser. ICSE-NIER ’19. IEEE Press,
2019, pp. 57–60.

[2] J. Zhao, “Quantum software engineering: Landscapes and horizons,”
CoRR, vol. abs/2007.07047, 2020.

[3] S. Ali, P. Arcaini, X. Wang, and T. Yue, “Assessing the effectiveness
of input and output coverage criteria for testing quantum programs,”
in 2021 14th IEEE Conference on Software Testing, Verification and
Validation (ICST), 2021, pp. 13–23.

[4] S. Honarvar, M. R. Mousavi, and R. Nagarajan, “Property-based testing
of quantum programs in Q#,” in Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering Workshops, ser. IC-
SEW’20. New York, NY, USA: Association for Computing Machinery,
2020, pp. 430–435.

[5] G. Li, L. Zhou, N. Yu, Y. Ding, M. Ying, and Y. Xie, “Projection-based
runtime assertions for testing and debugging quantum programs,” Proc.
ACM Program. Lang., vol. 4, no. OOPSLA, Nov. 2020.

[6] X. Wang, P. Arcaini, T. Yue, and S. Ali, “Generating failing test
suites for quantum programs with search,” in Search-Based Software
Engineering, U.-M. O’Reilly and X. Devroey, Eds. Cham: Springer
International Publishing, 2021, pp. 9–25.

[7] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM Comput.
Surv., vol. 43, no. 2, Feb. 2011.

[8] R. Tzoref-Brill, “Chapter two - advances in combinatorial testing,” ser.
Advances in Computers, A. M. Memon, Ed. Elsevier, 2019, vol. 112,
pp. 79–134.

[9] P. A. M. Dirac, “A new notation for quantum mechanics,” Mathematical
Proceedings of the Cambridge Philosophical Society, vol. 35, no. 3, pp.
416–418, 1939.

[10] M. Gimeno-Segovia, N. Harrigan, and E. Johnston, Programming Quan-
tum Computers: Essential Algorithms and Code Samples. O’Reilly
Media, Incorporated, 2019.

[11] R. Wille, R. Van Meter, and Y. Naveh, “IBM’s Qiskit tool chain:
Working with and developing for real quantum computers,” in 2019
Design, Automation Test in Europe Conference Exhibition (DATE), 2019,
pp. 1234–1240.

[12] X. Wang, P. Arcaini, T. Yue, and S. Ali, “Quito: a coverage-guided test
generator for quantum programs,” in The 36th IEEE/ACM International
Conference on Automated Software Engineering, Tool Demonstration.
IEEE/ACM, 2021.

[13] E. Mendiluze, S. Ali, P. Arcaini, and T. Yue, “Muskit: A mutation
analysis tool for quantum software testing,” in The 36th IEEE/ACM
International Conference on Automated Software Engineering, Tool
Demonstration. IEEE/ACM, 2021.

[14] J. Liu, G. T. Byrd, and H. Zhou, “Quantum circuits for dynamic runtime
assertions in quantum computation,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 1017–1030.

[15] Y. Huang and M. Martonosi, “QDB: From Quantum Algorithms To-
wards Correct Quantum Programs,” in 9th Workshop on Evaluation
and Usability of Programming Languages and Tools (PLATEAU 2018),
ser. OpenAccess Series in Informatics (OASIcs), vol. 67. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, pp.
4:1–4:14.

[16] H. Wu, C. Nie, J. Petke, Y. Jia, and M. Harman, “A survey of constrained
combinatorial testing,” CoRR, vol. abs/1908.02480, 2019.

[17] “Combinatorial testing repository,” https://gist.nju.edu.cn/ct repository/,
2021.

[18] R. C. Bryce and C. J. Colbourn, “A density-based greedy algorithm
for higher strength covering arrays,” Software Testing, Verification and
Reliability, vol. 19, no. 1, pp. 37–53, 2009.

[19] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The
AETG system: An approach to testing based on combinatorial design,”
IEEE Trans. Softw. Eng., vol. 23, no. 7, pp. 437–444, Jul. 1997.

[20] Y. Lei and K. Tai, “In-Parameter-Order: a test generation strategy
for pairwise testing,” in Proceedings Third IEEE International High-
Assurance Systems Engineering Symposium (Cat. No.98EX231), 1998,
pp. 254–261.

[21] S. Ghazi and M. Ahmed, “Pair-wise test coverage using genetic algo-
rithms,” in The 2003 Congress on Evolutionary Computation, 2003. CEC
’03., vol. 2, 2003, pp. 1420–1424 Vol.2.

[22] Y. Jia, M. B. Cohen, M. Harman, and J. Petke, “Learning combinatorial
interaction test generation strategies using hyperheuristic search,” in
2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1, 2015, pp. 540–550.

[23] J. Tao, Y. Li, F. Wotawa, H. Felbinger, and M. Nica, “On the industrial
application of combinatorial testing for autonomous driving functions,”
in 2019 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), 2019, pp. 234–240.

[24] L. Ma, F. Juefei-Xu, M. Xue, B. Li, L. Li, Y. Liu, and J. Zhao, “DeepCT:
Tomographic combinatorial testing for deep learning systems,” in 2019
IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2019, pp. 614–618.

[25] A. Agresti, An introduction to categorical data analysis, 3rd ed. Wiley-
Blackwell, 2019.

[26] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “IPOG:
A General Strategy for T-Way Software Testing,” in 14th Annual
IEEE International Conference and Workshops on the Engineering of
Computer-Based Systems (ECBS’07), 2007, pp. 549–556.

[27] ACTS, “Automated combinatorial testing for software,” https:
//csrc.nist.gov/Projects/automated-combinatorial-testing-for-software/
downloadable-tools, 2021.

[28] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “An improved meta-
heuristic search for constrained interaction testing,” in 1st International
Symposium on Search Based Software Engineering, 2009, pp. 13–22.

[29] A. Gargantini and P. Vavassori, “CITLAB: A laboratory for combina-
torial interaction testing,” in 2012 IEEE Fifth International Conference
on Software Testing, Verification and Validation, 2012, pp. 559–568.

[30] A. Gargantini and M. Radavelli, “Migrating combinatorial interaction
test modeling and generation to the web,” in 2018 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), 2018, pp. 308–317.

[31] PICT, “Pairwise independent combinatorial testing,” https://github.com/
microsoft/pict, 2021.

[32] X. Wang, P. Arcaini, T. Yue, and S. Ali, “Qucat: Application of
combinatorial testing to quantum programs – supplementary material,”
https://github.com/Simula-COMPLEX/qucat-paper, 2021.

[33] E. Bernstein and U. Vazirani, “Quantum complexity theory,” in Pro-
ceedings of the Twenty-Fifth Annual ACM Symposium on Theory of
Computing, ser. STOC ’93. New York, NY, USA: Association for
Computing Machinery, 1993, p. 11–20.

[34] D. R. Simon, “On the power of quantum computation,” SIAM J.
Comput., vol. 26, no. 5, p. 1474–1483, Oct. 1997.

[35] A. Arcuri and L. Briand, “A practical guide for using statistical tests to
assess randomized algorithms in software engineering,” in Proceedings
of the 33rd International Conference on Software Engineering, ser. ICSE
’11. New York, NY, USA: ACM, 2011, pp. 1–10.

[36] K. J. Nurmela, “Upper bounds for covering arrays by tabu search,”
Discrete Applied Mathematics, vol. 138, no. 1, pp. 143–152, 2004,
optimal Discrete Structures and Algorithms.

[37] R. Kuhn, R. N. Kacker, Y. Lei, and D. Simos, “Input space coverage
matters,” Computer, vol. 53, no. 1, pp. 37–44, 2020.

https://gist.nju.edu.cn/ct_repository/
https://csrc.nist.gov/Projects/automated-combinatorial-testing-for-software/downloadable-tools
https://csrc.nist.gov/Projects/automated-combinatorial-testing-for-software/downloadable-tools
https://csrc.nist.gov/Projects/automated-combinatorial-testing-for-software/downloadable-tools
https://github.com/microsoft/pict
https://github.com/microsoft/pict
https://github.com/Simula-COMPLEX/qucat-paper

