Secure Embedded Living:
Towards a Self-contained User Data Preserving Framework

Somnath Mazumdar

Department of Digitalization, Copenhagen Business School,

Solbjerg Plads 3, 2000 Frederiksberg, Denmark
sma.digi@cbs.dk

Smart living represents the hardware-software co-inhabiting
with humans for better living standards and improved well-
being. Here, hardware monitors human activities (by collecting
data) specific to a context. Such data can be processed to offer
context-specific valuable insights. Such insights can further be
used for optimising the well-being, living experience and energy
cost of smart homes. This paper proposes a Secure Embedded
Living Framework (SELF) that enforces a privacy-preserving
data control mechanism by integrating multiple technologies,
such as Internet-of-thing, cloud/fog platform, machine learning
and blockchain. The primary aim of the SELF is to allow the
end-user to retain more control of its data.

I. INTRODUCTION

N recent times, technology has seamlessly integrated into

our homes. For instance, smart vacuum cleaners become
smarter thanks to home sensing Internet-of-thing (IoT) de-
vices. A smart living ecosystem consists of various heteroge-
neous [oTs connected to a local home network for communica-
tions. Such IoT devices are further connected to and controlled
by software applications. IoT devices can generate data in
various forms, such as text and video. Such data can have
asset-related information, e.g., media access control addresses
or personal features. Collected data can also be divided into
semi-structured types and unstructured types. Over time, the
amount of collected data may become huge, and managing
it in private homes can become complicated. Thus, effective
data management should be in place to stop the exploitation of
user behaviour and reduce application-usage-related sensitive
data (such as browsing histories) collection by third parties or
service providers. Su et al. showed that web browsing histories
can uniquely be linked to social media profiles using only
public auxiliary information [1].

The NIST privacy framework proposes five core func-
tionalities for achieving data privacy [2]. It includes data
control, communication, identification, governing data and
data protection. We define privacy as free from intrusion and
having the ability to control one’s data, while security refers
to data protection against unauthorised access to user data.
In some cases, privacy and security may overlap. Here, we
are focusing on data protection. Two primary goals of the
proposed Secure Embedded Living Framework (SELF) are to
help the user to control (to a certain extent) i) Which data will
be available to third parties (such as healthcare professionals,
electricity providers)? and ii) How much such data should be
delegated? To manage user data, SELF considers secure cloud

Thomas Dreibholz
Simula Metropolitan Centre for Digital Engineering,
Pilestredet 52, 0167 Oslo, Norway
dreibh@simula.no

data storage and allows access per pre-set rules to legitimate
third parties. Blockchain is used to improve trust, transparency
and security via its built-in data immutability and tamper-proof
features. Blockchain can also strictly enforce data access rules.
SELF can offer a mechanism to inform users about their data
usage patterns and uses Machine learning (ML) algorithms to
detect smart [oT device usage patterns. The main contributions
of this article are:
o A user data privacy-aware framework has been proposed.
It allows users to add their data privacy-preserving rules
to protect their data. The proposed framework aims to
stop unwanted third party access to private user data.
« We have explained the SELF architecture and elaborated
a remote health monitoring use case to show its useful-
ness.
« Finally, we have implemented the packet processing part
and presented the results while executing it in a multi-
cloud research testbed.

II. SELF OVERVIEW

Insecure IoT devices and non-secure device pairing and
discovery protocols can increase privacy risks by leaking
users’ private data. Such incidents allow remote attackers to
spy further and attack victims. It was part of our motivation
behind designing SELF as a platform that aims at improving
user data privacy.

A. Core Components

SELF can be decomposed into five primary components
consisting of three layers. The components are i) [oT devices,
ii) P4 switch, iii) Computational platform, iv) ML algorithms
and v) Blockchain. IoTs and P4 switch constitute the resource
layer, the computational platform represents the processing
layer, while the application layer consists of ML algorithms
and blockchain.

1) IoT Devices

We can find various (in terms of form factor, protocol-based,
and application) types of IoT devices in today’s smart homes.
Popular sets of IoTs include health-related, light, motion,
and temperature sensing devices. [oTs are currently equipped
with data communication technologies (such as Bluetooth low
energy, ZigBee, and WiFi) to collect and receive data at high
speeds. Data generated from these IoT devices are pushed to
the local communication network. As a next step, data arrives
at the input queue of the P4 switch.

mailto:Somnath Mazumdar <sma.digi@cbs.dk>
mailto:Thomas Dreibholz <dreibh@simula.no>

2) P4 Switch

Programming Protocol-independent Packet Processors (P4)
make full programmability on switches possible [3]. P4 is
a domain-specific language for realising the data plane of
a programmable switch. The switch itself is an off-the-shelf
hardware or can be a software implementation. P4 applies to
standard P4 hardware/software (refer to Figure 1). It avoids
vendor lock-in while allowing full flexibility for customising
the network configuration.

A P4 program defines rules to parse a packet into fields
of different protocol layers. The field information may then
be used with match-action tables to trigger custom actions,
for instance, dropping or modifying the packet at its egress
port(s). In egress, the packet data is deparsed into a packet,
and the resulting packet is sent over to the selected egress
port(s). A P4 compiler compiles the P4 program into a data
plane implementation for a specific target switch and control
plane data. As the name suggests, control plane data (p4info)
defines the interaction between the data and the control
plane. It is typically a control plane instance (P4Runtime
Client) communicating with the switch’s data plane instance
(P4Runtime Server) over a defined application programming
interface (API). The client may run on the switch hardware
or an external system. The control plane is responsible for
modifying the match-action tables of the data plane. The data
plane may also forward (or parts of) a packet to the control
plane for special handling.

P4 can identify flows by parsing header fields of multiple
protocols. Such protocols are Transmission Control Proto-
col (TCP), User Datagram Protocol (UDP), Stream Control
Transmission Protocol (SCTP), and Datagram Congestion
Control Protocol (DCCP). In a similar case, Febro et al. de-
veloped a virtualised network function written in P4 and
running on a programmable data plane [4]. P4 allows handling
packets of arbitrary new or custom protocols. To do that, P4
mark packets by rewriting information at the DiffServ Code
Point (DSCP) bits of the Type of Service (TOS)/Traffic Class
fields, or by adding additional headers to IPv4 options field,
or IPv6 extension header. In general, most work on dissecting
packet headers and making forwarding decisions is made in
the data plane, based on the match-action tables set by the
control plane. The data plane may forward information from
a packet to the control plane for further analysis and possible
modification of the match-action tables.

3) Computational Platform

Now, a user can select a data processing and storage
platform, essentially cloud-based services, at lower costs. The
cloud platform has an enormous computational and storage
capacity. Its capability can be further extended by introducing
another resource-level abstraction called fog [5]. Fog sits
between the end-user and the cloud. Fog offers low com-
putational capabilities with a faster response time. End-users
can submit applications together with relevant data sets. If
the number of connected IoT devices and the generated data
is growing very quickly, then fog resources backed by a
cloud platform can also be one viable solution. Each home
can generate different amounts of data. The data creation
process is directly impacted by the number of connected

IEEE COMMUNICATIONS MAGAZINE

smart devices and the data collection frequency. SELF aims
to support multi-cloud for latency-tolerant applications and
fog for latency-sensitive applications. The user can opt for
a cloud/fog service or a serverless computing service based
on requirements. In a serverless model, the code executes
on-demand in a stateless container, which can be ideal for
smart home applications. Due to the wide adoption of micro-
services and containers, seamless transfer from a container to a
dedicated virtual machine (VM) is also possible. A customised
P4 switch can send data directly to cloud storage via relevant
REpresentational State Transfer (REST) API calls.

4) ML Algorithms

At the application level, various data analysis tasks, such as
outlier detection, prediction, IoT devices usage pattern extrac-
tions and pattern matching, can be performed on the collected
data. Next, the relevant outcome or recommendations can be
sent back. Some of the application-specific ML algorithms
are [6]:

o Classification-based algorithms are Random Forests, K-
Nearest Neighbors, and Naive Bayes.

¢ Support vector machine can be used for data classification
and outlier detection.

o Regression-supported algorithms are linear regression,
support vector regression and random forests.

o K-means algorithm is popular for data clustering.

« Principal component analysis is used for feature extrac-
tion and dimension reduction.

Now, computation has increasingly become an off-campus
activity. Preserving in-house data privacy while processing
it on a public cloud is challenging. Data privacy can be
further enhanced by applying ML to the user data stored in
the cloud, with added encryption features by paying extra
cost [7]. In this process, the encrypted data will be moved
to the cloud for applying ML algorithms (such as Neural
Networks) to the encrypted data to make encrypted predic-
tions. Finally, it returns the output to the data owner, who
can decrypt it. Such scenarios are very relevant for health-
related applications. Training feed-forward neural networks on
encrypted data are computationally expensive due to activation
and loss functions. Furthermore, Homomorphic encryption
is a cryptographic mechanism that preserves the message
structure and primarily supports addition and multiplication
operations without data decryption. However, the efficiency
and practicality of homomorphic encryption are always open
research questions.

5) Blockchain

Blockchain is one of the implementations of distributed
ledger technology (DLT) [8]. In a distributed ledger, data can
only be appended by applying a common consensus among
participating nodes. Blocks in the blockchain are a collection
of transactions chained together using hash values of the
previous data block. SELF uses blockchain to secure data and
bring trust among users.

Figure 2 presents a canonical blockchain architecture, which
can be divided into a core layer (based on a peer-to-peer
platform), middle layer and application layer. At the bottom,
besides standard computing, storage, system management and

S. MAZUMDAR, T. DREIBHOLZ: SECURE EMBEDDED LIVING FRAMEWORK

Packet Parser P4 Compiler Co&ggiﬂgne » prog.pdinfo
I
y . * 2 v v | D
Routing Forwarding M=]
(Layer 3) (Layer 2) MR linpie Switch P4Runtime P4Runtime
o Compiler Client Server
A 4 \ 4 o /) A
Access Control Layer «% API-Based
(Drop, Re-direct) O | Simple Switch Communication
(Target)
P4 Program

Figure 1: Representation of a standard P4 switch components

~
IS [Applications]
RO |7
% EH SDK Lifecycle Manager User Data
& (Compilation/Runtime) (Storage, Privacy, Exchange)
N\ J
(‘/ N\
Data Lif le Mamnt Smart Contract Access
% o) 1asaeCL:r2?;(t:aeaCC%2 Supporting Service Delegation 'Control,
S & ‘2 Data monitorin 1. Registration Services Failure Mgmt,
= - 3. Data olomeme 2. Compilation 1.Authorization || Maintenance
’ P 3. Execution 2.Authentication
L\ | | J
_E23 (([Smart N Consensus] User)
% g T Data Storage Contract Mechanism Account SI\}//IStriT
8525+ [Distributed Ledger Mgmt g
258 N J
0 =
S ¥ DL? [Peer-to-Peer Computing] [Extendable Communication Protocol]
~ —

Figure 2: Reference building blocks of Blockchain

user management, smart contracts and consensus protocol
features are added for blockchain support. For simplicity, a
distributed ledger can be viewed as a distributed database,
where each network node will have its synchronised local
copy. In the middle layer, a data lifecycle management module
might be added to manage data throughout the lifetime. Via
smart contract services, legitimate node users add code and
can trigger it whenever required. The user access delegation
module handles the authentication and authorisation process.
The platform is also monitored together with the system state
logs. The top-level of Figure 2 primarily faces developers
who can develop the code using the platform-compatible
software development kit (SDK). Users can also specify data
management policies by calling proper REST APIs.
Currently, multiple blockchain platforms exist. Some are
cryptocurrency-based (such as Ethereum), and some are not
(such as Hyperledger Fabric). However, they primarily support
DLT features, with some variations relevant to their use cases.
It is also worth noting that network setup can be without
permission (such as Ethereum) or with permission (such
as Hyperledger Fabric). For SELF, a permission network is
preferred. Here, only specific node users can access data.

Hyperledger Fabric offers channels to support a private com-
munication tunnel between specific node users [8]. The service
provider can create one channel for each smart home user,
where third parties can access user data as per their privilege
level. It is worth noting that third parties will not be SELF
blockchain network members.

B. Proposed Architecture

Figure 3 represents the SELF architecture. It aims at users to
control and protect their data. Multiple technologies converge
to achieve this goal. The framework has four broad working
stages. The stages are described below:

1) Data Generation

It generates raw data, which is controlled by user-defined
rules together with the smartness of the IoT devices. The
data generation frequency of the IoTs is either synchronous or
asynchronous. Generated data can be represented in JavaScript
object notation (JSON) format and either be non-personal
or personal. Each device has different data collection and
filtering rules based on the implementations. SELF runs the
data filtering rules inside the customised P4 switch.

Updates From Blockchain and ML

IEEE COMMUNICATIONS MAGAZINE

Data Generation

Data Collection & Transmission

Data Storage & Execution In Cloud Smart User & Data Protection

3 ML Blockchain

>

S < gﬁ
+—$

Raw Filtered
(loT/Sensor) (loT/Sensor)
Data Data
) 4 7}
A,
= ~tx /EN
oice 4 T(;’ S
VoI 00 ‘ ﬁ
Sc e %\i”é‘ P4-switch S/W Proxy

SELF In-premise Module

Smart Living

Required Data
Access Only

r

One Container Per Device
Third Parties/Service Providers

Figure 3: Block diagrammatic representation of SELF architecture

2) Data Collection and Transmission

This stage starts when all the connected devices push their
data to the shared communication link. Next, it arrives at the
exit point, a customised P4 switch programmed with user-
specified privacy-preserving rules. Such a custom switch is
not the same as an off-the-self device but an extended one
by adding a customised P4 runtime. This runtime is based on
the P4 programming language, developed as portable switch
architecture. The primary reason for using P4 runtime is that
it can efficiently work on the data plane. User-defined data
filtering rules can process and forward the required data to
the container (hosted in the cloud). Data is passed to the
cloud using REST API supporting JSON data format. The
custom logic in the P4 runtime can forward/redirect packets
of specific flows to an application-specific proxy (can watch
flows, process data, and transmit sensitive information safely
and securely), which can then perform packet aggregations.
Such a proxy can run in a container on the software switch
itself.

3) Data Storage and Execution

It happens outside the user’s premises. The data is now
stored in the cloud. Such data can move forward and back-
wards between the storage and the containers. For simplicity,
we consider both the code and the data hosted at the same
cloud. As time passes, the data size will increase, so a simple
‘one container per device’ rule can be applied. Overall, ML
algorithms and also blockchain will be running in the cloud.
SELF primarily employs ML algorithms to receive more
insights related to IoT devices. Blockchain can ensure user
data privacy via a private communication channel and apply
customised data access control policies [8]. Primarily, all the
required data is pushed to the cloud, while IoTs are responsible
only for data collection.

4) Smart User and Data Protection

It represents the application layer, where each container
executes an ML algorithm on a particular device data to
provide better insights related to that IoT device usage patterns
or energy management. For instance, specific ML algorithms
can detect some disease patterns from health-related data.

After successful detection, it not only can update users but also
update healthcare professionals. We have presented a remote
patient monitoring scenario in Subsection III-A to show the
framework’s usefulness.

We can set the SELF user-level data access privileges using
a smart contract so third parties can get only the relevant data.
We employed two privilege levels: one holds generic data,
and the other consists of personal data. Here, ML primarily
aims to improve user well-being, while blockchain secures
processed data, allowing only authorised third parties to access
user data. The user selects data access rules, and the smart
contract encodes them into the blockchain.

III. PROPOSED SOLUTION

SELF offers an end-to-end ecosystem that encompasses
multiple technologies to preserve user privacy. It is designed
to be implemented by a service provider because of technical
complexities. The service provider can agree with the user on
which data to keep? and what kind of optimisation the user
requires? The service provider can set the rules inside the P4
runtime based on the requirements. The user can be further
consulted on where to host the data?, who should access
user data? and also about the privilege levels. Embedding the
IoTs with ML at the hardware layer is worthwhile, but due
to the limited resource capacity, the performance will also be
minimal, together with high energy costs. ML and blockchain
will run in containers hosted in the cloud to overcome such
issues.

A. Use Case: Remote Patient Monitoring

Now, we will demonstrate how SELF can delegate a user’s
health-related information based on privilege-based access
control to healthcare professionals (e.g. doctors, nurses). Sup-
pose health monitoring devices are already planted into a smart
home and employed IoT devices can collect data related to
oxygen level, heart rate, and blood pressure (to name a few).
We can see that user health-related information can be stored
in the cloud (left side of Figure 4). Next, a container running
the health-related pre-trained ML algorithm can process the

S. MAZUMDAR, T. DREIBHOLZ: SECURE EMBEDDED LIVING FRAMEWORK

pommmmmmmmmm T é; T 7 N

1 @ ! ’ User AN

' A Sending Health X K 3T
1 > L

! Data to Cloud EEE | T TS
! | ' 5 63 !
! b User Data ! L 22 o9 !
I@ﬂo Js ser Data | v 27 S8 |
! D) in Cloud 1 VD 3 >
L a \ o ’

Electricity — ,*

,

Y
3 Access
Ll

Send Credentials

=

Sends Health

. .
N Supplier .’
o -

Sem=-"

Point -
Blockchain

Network

J}:

Doctor/Nurse

o

Record

Figure 4: Representation of remote patient monitoring use case

user health data and predict if there is a trend of upcoming
health issues. For instance, predicting the blood pressure level
can help to detect the plausibility of developing cardiovas-
cular disease, kidney disease, or others. Upon detection of
such events, already-encoded rules in smart contracts can be
executed, which may inform the healthcare professional and
the patients. Smart contracts are a collection of rules and data
executed on the blockchain, and the results are recorded on
the blockchain securely. While deploying a smart contract, the
user must digitally sign it, ensuring that only relevant third
parties can access the data.

On the other hand, doctors/nurses can pull user health data
for a regular check-up by providing their relevant credentials
while making relevant REST API calls. After successful
validation, a doctor can receive the required health record,
and an alert informs the patient. Changes to one health
record can cause subsequent records to become invalid because
blockchain can easily detect unwanted changes to data blocks.

Application: We believe such usage of SELF will be-
come paramount, particularly during an epidemic/pandemic
time (such as Covid-19), when the healthcare facilities are
overloaded with patients. This way, we can provide care to
the patients in their homes. Such remote patient monitoring
should be considered a standard case, which can further be
extended for utility service providers, such as electricity-
providing companies, to adjust their services dynamically. The
stored data in the blockchain is protected by the inherent
immutability feature and underlying cryptography.

B. Vendor Lock-In

Currently, vendor lock-in is an issue while using the cloud.
Such issues arise if a cloud service provider changes its pricing
model, deploys completely different APIs, or shuts down its
old web services. Multi-cloud-supporting frameworks (such
as SELF) can mitigate such risks by adding another layer of
abstraction. It means the service uses RESTful APIs in the
framework instead of using a specific cloud provider directly.
Later, changing the underlying cloud provider becomes easy
as only the multi-cloud framework (SELF in this case) has
to take care of the details of the different cloud/fog service
providers. A smart multi-cloud framework can even work as a

broker, which allows users to use the most cost-effective cloud
service at a specific time. Such a framework can also optimise
metrics such as latency or location. In particular, location
can be a constraint for preserving privacy. Thus, SELF aims
to become an open-source multi-cloud framework that can
prevent vendor lock-in, allowing cost-effective cloud resources
and becoming more location-aware (concerning privacy) to
offload the workload into the cloud/fog ecosystem (as future
work).

C. Managing Data at Packet Level

A P4 switch can isolate the insecure IoTs from each
other and can control the communications. Unlike modern
routers with access control lists, P4 offers complete flexibility
to apply customised deep packet inspection. Depending on
the user applications, using SELF-customised rules can be
applied to handle marking, perform filtering, and create alerts.
Such customised rules can then be provided as modules and
deployed by the SELF controller plane, leading to a switch
behaviour tailored to the user’s demands. P4 is made in an
open, standardised and vendor-independent way on off-the-
shelf devices. SELF appropriately configures the physical net-
work into logical networks by defining virtual LANs (VLANSs)
and virtual private networks (VPNs). SELF can also use
the available techniques for the underlying communications
infrastructures. Hence, an insecure device cannot be compro-
mised by other devices, and a compromised device cannot
attack other devices. Overall, data cannot leak out to arbitrary
locations on the Internet. The controller can deploy a network
intrusion detection system (IDS) to spot suspicious network
activity of a device. After successful detection, the user can
be informed (e.g. if a device tries to contact unknown servers),
or the device can be blocked (e.g. if a device attempts a denial-
of-service (DoS) attack).

Suppose a smart home is fitted with temperature and
movement-related IoT devices in rooms for a smart heating/-
cooling control. These IoT devices share the same wireless
LAN with other heterogeneous devices to connect to the
Internet. With SELF, a VLAN can be configured for each
IoT devices. A separate per-VLAN VPN to a remote cloud
instance can also be configured if needed. So, each IoT device

IEEE COMMUNICATIONS MAGAZINE

Table I: Overheads of P4-switch considering both IPv4 and IPv6 while representing RTT of 900 samples

Linux Bridge SELF
Destination IPv4 IPv6 IPv4 IPv6

Mean | Qio% | Qoo || Mean | Qioy | Qooy || Mean | Qioy | Qgoy || Mean | Qioy | Qoov
HU/CERNET 341.2 | 3404 | 3419 341.2 | 3404 | 3419 3524 | 3474 | 356.2 349.5 | 3452 | 3527
HU/China Unicom || 202.2 | 190.6 | 231.9 272.1 | 258.2 | 300.0 205.7 | 198.1 | 208.5 269.8 | 2629 | 2725
KAU/SUNET 32.5 31.7 33.2 32.8 32.0 33.5 429 37.9 46.3 39.7 35.7 42.8
NTNU/PowerTech 24.2 21.1 24.3 24.5 21.4 24.1 324 26.0 35.9 29.7 24.6 32.8
NTNU/UNINETT 14.7 13.9 15.3 14.7 13.9 15.3 20.2 16.5 22.5 18.7 16.0 21.0
SRL/UNINETT 5.2 4.6 5.8 4.7 4.0 5.4 13.3 8.3 16.8 10.3 5.8 13.7
UDE/DFN 322 314 32.9 37.9 37.1 38.5 429 37.7 46.2 45.4 41.3 48.6

UiA/PowerTech 24.2 22.9 24.7 - - - 31.7 27.3 34.8 — — -
UiA/UNINETT 12.2 11.5 12.7 12.3 11.5 12.8 17.2 14.0 19.8 15.8 13.3 17.7
UiB/BKK 12.4 11.6 13.2 12.5 11.7 13.2 19.5 15.2 222 17.6 14.2 20.3
UiB/UNINETT 12.3 11.6 12.9 12.5 11.8 13.1 16.8 13.7 19.5 15.6 13.2 17.5
UiO/Broadnet 18.6 14.9 19.6 19.3 15.0 19.9 27.2 213 30.3 25.1 19.3 282
UiO/UNINETT 7.0 6.1 7.4 7.0 6.2 74 13.9 9.3 17.3 11.2 7.5 14.3

is alone in its logical network, and a security issue in one
device does not trivially provide an entry point to other IoT
devices. Internet access for data processing is also restricted
to the VPN connection with the corresponding cloud instance.

For the experiment, we have used a cloud/fog research
testbed [9]. All remote cloud VMs, routers, P4 switch and
devices are running on Ubuntu Linux. The local private cloud
setup, (termed as Home), consists of devices, a P4 switch and
a router. The P4 switch is based on the Behavioural Model ver-
sion 2 (BMv2) Simple Switch, running the SELF P4 program
in the data plane, with a corresponding Python-based control
plane [10]. In Table I, we have presented results to show the
overheads of our customised software switch. We examine the
round-trip times (RTTs). RTT measurements are performed
using the ICMP/ICMPv6 Echo Request/Reply measurement
series to record the RTTs (Ping) using HiPerConTracer [11].

We reported the impact of the P4 switch on the RTT
between a device in the home network (at SRL in Oslo,
Norway) and in four cloud locations. For both IPv4 and
IPv6, we have computed the mean values. The presented
values in Table I are in milliseconds for the P4 switch-based
SELF setup (right side) in comparison to a simple Linux
bridge (left side) without any packet marking or filtering
(i.e. no added delay overheads). Since IPv4 has a header
checksum, differentiating between IPv4 and IPv6 is important.
It needs to be verified during ingress and updated during
egress (since we changed the DSCP bits in the header for
marking packets). IPv6 does not have a checksum, so there is
no checksum handling overhead for IPv6 (compared to IPv4,
which requires additional 1.5 ms to 2.5 ms). It may be argued
that skipping the IPv4 checksum verification at ingress would
reduce the overhead. However, this would clearly violate
the IPv4 protocol: a damaged IPv4 packet would remain
undetected and get a new, valid checksum at egress. Rather
than violating the IPv4 protocol, future work will move to a
more advanced hardware/software P4 switch implementation,
which can perform the checksum computations in hardware.
Also, with IPv4 addresses becoming an increasingly scarce
resource in the exhausted IPv4 address space, the widespread
deployment of IPv6 will make this computation unnecessary.

Overall, the cost of adding the P4 Simple Switch adds
around 2 ms to 6 ms of additional RTT to the IPv4 communi-

cations. For IPv6, the difference is a bit smaller, with around
1.5 ms to 3.5 ms. It is worth noting that P4 adds complete
flexibility to the packet handling by custom P4 programming.
Such additional RTT will not impact the performance of
latency-insensitive applications (such as blockchain and ML).

IV. SECURITY CHALLENGES AND OTHERS

Generally, security issues can appear primarily at the device,
communication, and service level. The hardware encryption
and the fail-secure device design (e.g., security features) can
be installed on the IoT devices, but with higher area and energy
costs. While at the communication level, VPN and IDS can
be used in the cloud. Finally, encryption can be applied at the
service level.

A. IoT-Related Security Issues

Smart home users deploy IoT devices from different vendors
with significantly different firmware quality. Ideally, all IoT
devices should receive bug fixes and security updates from
their vendor over their lifetime. Unfortunately, this is entirely
unrealistic. It is fair to assume that many or even most of
these devices, once sold, will never receive any updates. A
user cannot install custom open-source software either, as
most devices are proprietary. It is wise to assume that such
devices are insecure. It brings software- and communication-
protocols-related technical challenges. Communication-related
issues can also lead to unstable communication. DoS and
information leakage can happen during data transfer. The IoT
device management system should be aware of the user’s rules
to protect user data from malicious activity because malicious
code can also be embedded into the IoTs by attackers. Adding
built-in anomaly and intrusion detection units can also be
helpful. Standard security mechanisms are now embedded
into most IoT devices to protect user data. Similarly, unique
hardware signatures can be introduced at the hardware level
to stop IoT device cloning.

B. ML-Related Security Issues

Multiple popular ML algorithms are not attack-resilient. For
instance, deep neural networks and support vector machines
are vulnerable to security attacks. Attacks on such algorithms

S. MAZUMDAR, T. DREIBHOLZ: SECURE EMBEDDED LIVING FRAMEWORK

lead to decreased performance or failure. It can happen due to
the injection of malicious data into the training data sets. Such
an attacking method is known as poisoning. In such instances,
attackers add malicious data with similar features to original
data and wrong labels. Sometimes, attackers might know the
training data distribution and the applied learning algorithm.

C. Standardisation and Benchmarking Issues

The ongoing standardising and benchmarking process of
ML [12] and blockchain [13] is very slow. Ming et al. showed
how people’s trust in the ML algorithm changes based on the
algorithm’s stated accuracy and observed accuracy [14]. The
effect of stated accuracy can change based on the algorithm’s
observed accuracy. Although few benchmark suites exist for
ML algorithms, this is not true for blockchain platforms. There
are no widely accepted standards for developing ML and
blockchain-based applications. Although multiple blockchain
platforms exist, unfortunately, they are incompatible. One of
the reasons behind such incompatibility is the non-existence
of global standards. However, some works are in progress in
this direction.

V. CONCLUSION AND FUTURE WORK

The proposed framework, SELF, let the user decide which
data should be stored and how third parties will access it.
IoT devices collect data here, and a custom P4 switch ensures
that relevant data is passed on to cloud storage. In the cloud,
ML algorithms are running to provide more insights, including
recommendations about user living behaviours to improve the
quality of life and device usage. Furthermore, blockchain helps
to authenticate entities to access user data and also to secure
SELF from outside attacks. We have selected the P4 Simple
Switch environment for implementation, which provides all P4
features but lacks performance. Apart from that, P4Runtime
is also vulnerable to man-in-the-middle attacks and chan-
nel flooding [15]. For SELF, we have selected P4 because
P4Runtime is a feature-complete and well-known P4 imple-
mentation. In future work, we will change SELF to a high-
performance software or hardware-based P4 implementation
such as Open vSwitch.

REFERENCES

[1] J. Su, A. Shukla, S. Goel, and A. Narayanan, “De-Anonymizing Web-
Browsing Data with Social Networks,” in Proc. of 26th Int’l Conf on
World Wide Web, 2017, pp. 1261-1269.

[2] K. Boeckl and N. Lefkovitz, “Nist privacy framework: An overview,’
2020, accessed on 2022-09-30. [Online]. Available: https://tsapps.nist.
gov/publication/get_pdf.cfm?pub_id=930470

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming Protocol-Independent Packet Processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, pp. 87-95, 2014.

[4] A. Febro, H. Xiao, J. Spring, and B. Christianson, “Edge Security for
SIP-enabled IoT Devices with P4,” Computer Networks, vol. 203, pp.
1-25, 2022.

[5] M. Mukherjee, L. Shu, and D. Wang, “Survey of Fog Computing:
Fundamental, Network Applications, and Research Challenges,” IEEE
Communications Surveys & Tutorials, vol. 20, pp. 1826-1857, 2018.

[6] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi,
and A. P. Sheth, “Machine Learning for Internet of Things Data
Analysis: A Survey,” Digital Communications and Networks, vol. 4,

Ep. 161-175, 2018.
. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and

J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in Int’l Conf. on Machine Learning.
JMLR.org, 2016, pp. 201-210.

[8] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. D. Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proc. of 13th EuroSys Conf., 2018, pp. 1-15.

[9] E. G. Gran, T. Dreibholz, and A. Kvalbein, “NorNet Core — A Multi-

Homed Research Testbed,” Computer Networks, vol. 61, pp. 75-87,

2014.

P4.0rg, “Behavioral Model Version 2,” 2022, accessed on 2022-09-30.

[Online]. Available: https://github.com/p4lang/behavioral-model

T. Dreibholz, “HiPerConTracer — A Versatile Tool for IP Connectivity

Tracing in Multi-Path Setups,” in Proc. of 28th IEEE Int’l Conf. on

Software, Telecommunications and Computer Networks. 1EEE, 2020,

pp. 1-6.

P. Malakar, P. Balaprakash, V. Vishwanath, V. Morozov, and K. Ku-

maran, ‘“Benchmarking Machine Learning Methods for Performance

Modeling of Scientific Applications,” in IEEE/ACM Performance Mod-

eling, Benchmarking and Simulation of High Performance Computer

Systems. 1EEE, 2018, pp. 33—44.

N. Drljevic, D. A. Aranda, and V. Stantchev, “Perspectives on Risks

and Standards that affect the Requirements Engineering of Blockchain

Technology,” Computer Standards & Interfaces, vol. 69, pp. 1-7, 2020.

M. Yin, J. W. Vaughan, and H. Wallach, “Understanding the Effect of

Accuracy on Trust in Machine-Learning Models,” in Proc. of the CHI

Conf. on Human Factors in Computing Systems. ACM, 2019, pp. 1-12.

A.-A. Agape, M. C. Danceanu, R. R. Hansen, and S. Schmid, “Charting

the Security Landscape of Programmable Dataplanes,” arXiv preprint,

2018, accessed on 2022-09-30.

[7]

[10]

(11]

[12]

[13]

[14]

[15]

Somnath Mazumdar is an assistant professor at the Copenhagen Business
School. His research interests focus on HPC, Blockchain, and Machine
Learning. He holds a PhD in Computing Systems from the University of
Siena, Italy, and an M.Sc. in Distributed Computing from Polytech Nice
Sophia Antipolis, France. Somnath has also worked on multiple international
research projects.

Thomas Dreibholz received his Dipl.-Inform. degree in Computer Science
from the University of Bonn, Germany in 2001. Later, he received his PhD
degree in 2007, and his Habilitation degree in 2012 from the University of
Duisburg-Essen, Germany. Now, he is a Chief Research Engineer for the
SimulaMet in Oslo, Norway.

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930470
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930470
https://github.com/p4lang/behavioral-model
https://www.cbs.dk/en/research/departments-and-centres/department-of-digitalization/staff/smadigi
https://www.simula.no/people/dreibh

	Introduction
	SELF Overview
	Core Components
	IoT Devices
	P4 Switch
	Computational Platform
	ML Algorithms
	Blockchain

	Proposed Architecture
	Data Generation
	Data Collection and Transmission
	Data Storage and Execution
	Smart User and Data Protection

	Proposed Solution
	Use Case: Remote Patient Monitoring
	Vendor Lock-In
	Managing Data at Packet Level

	Security Challenges and Others
	IoT-Related Security Issues
	ML-Related Security Issues
	Standardisation and Benchmarking Issues

	Conclusion and Future Work
	References
	Biographies
	Somnath Mazumdar
	Thomas Dreibholz

