
Computer Networks 173 (2020) 107211

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

On the usability of transport protocols other than TCP: A home gateway

and internet path traversal study

Runa Barik

a , ∗ , Michael Welzl a , Gorry Fairhurst b , Ahmed Elmokashfic , Thomas Dreibholz c ,

Stein Gjessing

a

a Institutt for informatikk, University of Oslo, Oslo, Norway
b School of Engineering, University of Aberdeen, Aberdeen, Scotland
c Simula Metropolitan Centre for Digital Engineering, Simula Research Laboratory, Oslo, Norway

a r t i c l e i n f o

Keywords:

Protocol testing

SCTP

DCCP

UDP-Lite

NAT

Internet

a b s t r a c t

Network APIs are moving towards protocol agility, where applications express their needs but not a static protocol

binding, and it is up to the layer below the API to choose a suitable protocol. The IETF Transport Services (TAPS)

Working Group is standardizing a protocol-independent transport API and offering guidance to implementers.

Apple’s recent “Network.framework ” is specifically designed to allow such late and dynamic binding of protocols.

When the network stack autonomously chooses and configures a protocol, it must first test which protocols are

locally available and which work end-to-end (“protocol racing ”). For this, it is important to know the set of

available options, and which protocols should be tried first: Does it make sense to offer unchecked payload

delivery, as with UDP-Lite? Is a UDP-based protocol like QUIC always a better choice, or should native SCTP

be tried? This paper develops answers to such questions via (i) a NAT study in a local testbed, (ii) bidirectional

Internet tests, (iii) a large scale Internet measurement campaign. The examined protocols are: SCTP, DCCP, UDP-

Lite, UDP with a zero checksum and three different UDP encapsulations.

1

v

t

f

H

i

d

a

i

t

o

n

u

G

t

s

f

t

d

c

“

T

c

c

i

r

(

i

t

p

n

n

p

I

c

p

o

o

p

h

R

A

1

. Introduction

Latency has become the dominant metric that most application de-

elopers and network designers strive to optimize today. In some cases

his has made TCP less suitable, even when data must be reliably trans-

erred. For example, multiplexing application streams over TCP with

TTP/2 can produce head-of-line blocking delay; this is one of several

ssues that the “Quick UDP Internet Connections ” (QUIC) protocol ad-

resses [1] . BitTorrent’s μTP (with LEDBAT congestion control [2]) is

nother example of a protocol that was developed to bypass a shortcom-

ng of TCP: its inability to offer a lower-than-best-effort (LBE) service

hat would suit a bulk data transfer, while limiting the delay incurred

n other traffic. Generally, applications now have much more diverse

eeds than TCP can support.

To provide a broader service set to applications while facilitating the

se of non-TCP protocols, the IETF Transport Services (TAPS) Working

roup defines an API that eliminates the static compile-time binding be-

ween applications and transport protocols [3] . This enables a network

tack to try one mechanism or protocol but fall back to a “safe ” de-

ault protocol (usually TCP or UDP) in case of failure. Such opportunis-

ic ways of using protocols and protocol mechanisms are increasingly
∗ Corresponding author.

E-mail addresses: runabk@ifi.uio.no (R. Barik), michawe@ifi.uio.no (M. Welzl

reibh@simula.no (T. Dreibholz), steing@ifi.uio.no (S. Gjessing).

ttps://doi.org/10.1016/j.comnet.2020.107211

eceived 31 October 2019; Received in revised form 10 January 2020; Accepted 11

vailable online 12 March 2020

389-1286/© 2020 Elsevier B.V. All rights reserved.
ommon; they can be seen, for example, in iOS devices, in the form of

Happy-Eyeballing ” (also called “racing ”) between IPv6 and IPv4 [4] .

he Chrome browser falls back from QUIC (over UDP) to TCP if the

onnection setup fails with QUIC, and WebRTC allows to opportunisti-

ally set the DiffServ Code Points (DSCP) [5] . Here, measurement stud-

es have shown that such DSCP usage is generally not harmful, but it is

ecommendable to fall back to DSCP zero in case of permanent failure

 “black-holing ”) [6,7] . Rather than hard-coding a specific racing method

n each application, a TAPS transport system uniformly takes care of pro-

ocol racing and configuration below the API. The NEAT library [8] is a

rototypical implementation of a fully-fledged TAPS system that elimi-

ates the static binding between applications and transport protocols or

etwork mechanisms (e.g., DSCP value).

To support this increasing protocol agility of network stacks, this pa-

er investigates how well protocols other than TCP could work across

nternet paths. Specifically, our focus is on the native transport proto-

ols SCTP, DCCP and UDP-Lite, as it is frequently assumed that these

rotocols do not work (e.g., in IETF conversations), while, to the best of

ur knowledge, no measurement study exists that could either confirm

r reject this claim. We would like to understand whether a TAPS trans-

ort system should try to make use of UDP-Lite or DCCP at all; whether,
), gorry@erg.abdn.ac.uk (G. Fairhurst), ahmed@simula.no (A. Elmokashfi),

March 2020

https://doi.org/10.1016/j.comnet.2020.107211
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2020.107211&domain=pdf
mailto:runabk@ifi.uio.no
mailto:michawe@ifi.uio.no
mailto:gorry@erg.abdn.ac.uk
mailto:ahmed@simula.no
mailto:dreibh@simula.no
mailto:steing@ifi.uio.no
https://doi.org/10.1016/j.comnet.2020.107211

R. Barik, M. Welzl and G. Fairhurst et al. Computer Networks 173 (2020) 107211

i

v

t

a

n

t

m

w

l

m

c

b

p

b

o

c

o

i

t

a

I

b

N

d

2

o

t

(

m

u

a

“

t

t

l

f

S

U

w

R

n

“

c

L

i

v

t

h

c

h

p

2

u

w

L

a

F

m

o

h

s

fl

t

t

m

p

i

U

p

m

r

2

d

m

b

t

t

i

t

u

n

t

a

h

n

U

s

w

a

f

a

m

O

a

t

w

e

a

N

h

r

i

c

1 https://www.petanode.com/blog/posts/sctp-multi-homing-in-linux.html .
n case UDP-Lite does not work, UDP with a zero checksum would be a

iable alternative; whether native or UDP-encapsulated SCTP should be

ried first, or whether SCTP is hopeless anyway, making protocols such

s QUIC or RTMFP that run over UDP without requiring a specific port

umber strictly preferable even if an application does not need all of

heir new features.

In the next section, we begin with an investigation of the potentially

ost troublesome part of an end-to-end Internet path: home gateways

ith their common NAT functionality. As we will see, there is only very

ittle explicit support for these protocols in the tested off-the-shelf equip-

ent as well as the Linux and FreeBSD Operating Systems. NAT software

ould be upgraded over time if these protocols are found to be useful,

ut this first requires a significant level of deployment and positive ex-

erience with them —which, in turn, may be prevented by current NAT

ehavior. It is therefore important to assess how these protocols would

perate through current NAT software.

After assessing how SCTP, DCCP, UDP-Lite and UDP with a zero

hecksum (which might be a possible alternative to UDP-Lite) operate

ver some NAT devices and the Linux and FreeBSD Operating Systems

n a local testbed, Section 3 presents results from bidirectional Internet

ests where we see NAT behaviors “in the wild ”. In Section 4 , we take

 further look at Internet path traversal with a large-scale one-sided

nternet measurement campaign using a customized version of Trace-

ox [9] . The latter study, while unable to traverse middleboxes such as

ATs, provides insights into the drop-or-forward behavior of ASes. We

iscuss related work in Section 5 , and Section 6 concludes.

. NAT interference: local tests

We begin this section with a brief description of NAT-relevant aspects

f the tested transport protocols; Appendix A gives a brief overview of

he general operation of NATs and Network Address and Port Translators

NAPTs).

SCTP uses port numbers just like TCP and UDP. However, SCTP is

ulti-homed, allowing connections between different IP addresses but

sing the same port number pair to jointly be controlled as part of

n “association ”. Adding and removing connections is done using an

ASCONF ” message. Each SCTP packet contains a so-called “verifica-

ion tag ” (Vtag), which identifies connections within an SCTP associa-

ion [10, Section 8.5] . The Vtag is negotiated during connection estab-

ishment with “INIT ” and “INIT_ACK ” messages. By making connections

ully identifiable, the Vtag eliminates the need for a pseudo header. The

CTP checksum is thus not affected by IP layer changes.

DCCP has the same port number and checksum fields as TCP or

DP, but incorporates a partial integrity check as in UDP-Lite (which

e discuss below). DCCP is unreliable yet connection-oriented. “DCCP-

equest ” and “DCCP-Response ” packets are used to establish a con-

ection, and connection termination is done with “DCCP-CloseReq ”,

DCCP-Close ” and “DCCP-Reset ” packets. The corresponding NAPT pro-

edures involve port number changes as well as checksum updates [11] .

ike for TCP and UDP, the checksum is calculated over a pseudo-header

ncluding the IP addresses. Since NAPT devices with DCCP support are

ery uncommon, UDP encapsulation for DCCP has been defined [12] . In

his case, a common UDP NAPT can handle encapsulated DCCP traffic.

While the UDP checksum covers the whole UDP packet (plus pseudo

eader), or nothing in case of a zero checksum, UDP-Lite provides a

onfigurable checksum coverage. The UDP-Lite header and the pseudo

eader are always covered by the checksum. Like UDP, UDP-Lite uses

ort numbers; a NAPT therefore needs to recompute the checksum.

.1. Test setup

To understand how NATs handle SCTP, DCCP and UDP-Lite, we set

p a local testbed in which we studied a number of off-the-shelf gate-

ays as well as a host configured to forward packets, running either

inux or FreeBSD. Our testbed consists of a multi-homed Linux client
nd a multi-homed Linux server, interconnected via a NAT as shown in

ig. 1 . Being multi-homed on both sides lets us emulate situations where

ultiple physical clients behind the same NAT communicate with one

r multiple servers. In addition, this set up allows us to test SCTP multi-

oming. Except for the SCTP multi-homing tests, for which we ran a

pecific SCTP test program

1 , the client and the server ran the fling tool.

ing [13] , which is available from http://fling-frontend.nntb.no , allows

o test whether an arbitrary sequence of packets can be exchanged be-

ween a client and a server using pre-defined pcap and json files. This

akes it easy to exchange sequences of packets that are crafted for a

articular measurement purpose. We will describe fling in more detail

n Section 3 , where it is used for Internet tests.

To assess how a NAT handles several end-to-end transport flows for

DP-Lite, SCTP and DCCP, we ran the following tests for each of these

rotocols:

a) A client with a single interface, communicating with a single-

interface server listening on port 443;

b) Two clients communicating at the same time with a single-

interface server listening on port 443;

c) Two clients communicating at the same time with two servers

(each listening on a different interface, on port 443).

For reference, Table 1 summarizes all NAT observations that we

ade, both in local tests and Internet tests. In the following, we will

efer to these observations by their number.

.2. Off-the-shelf equipment tests

Table 2 lists the NAT boxes used in our first set of tests. We reset each

evice and used their existing and the latest versions of firmwares in our

easurements. We also installed OpenWRT, DD-WRT and Tomato Linux

ased firmware distributions on some of these devices.

Every device consistently showed the same behavior irrespec-

ive of the transport protocol. We wanted to better understand if

his uniform per-device behavior was specific to the protocol, or if it

s generic when a protocol is unknown. To this end, we also crafted a

est where we transmitted packets with random IP payload, using the

nassigned IP protocol number 143.

In test-case (a), we observed that except dl7, js1, js3, tp1, tp2, ng1,

g2, ng3 and ls6 , all boxes perform NAT (but not NAPTing!) for all

he tested transport protocols. All transport protocols, except SCTP use

 pseudo-header in their checksum calculation and hence need their

eader checksum to be updated by the NAT. However, our NATs did

ot update this checksum, which means that they will cause DCCP or

DP-Lite packets to be dropped at the receiver. Because the SCTP check-

um does not include a pseudo-header, at this point, we do not know

hether the NATs explicitly support SCTP. The NATs dl7, js1, js3, tp1 ,

nd tp2 do not provide address translation for these protocols, i.e. they

orward packets with their private addresses. The NATs ng1, ng2, ng3

nd ls6 drop packets from any of these transport protocols. These were

anufactured by different vendors, but all were based on the VXWorks

S.

In test-case (b), we observed a similar result to test-case (a), but for

ll tested protocols, only the first client was able to successfully use

he NAT. The failure of the second client indicates IP-level NAT’ing, in

hich case the second client’s arrival causes a collision with an already

xisting entry in the NAT table. Finally, test-case (c) failed for DCCP

nd UDP-Lite, but both tests succeeded for SCTP for all cases of IP-level

ATing (observation 2 in Table 2). This means that multiple clients be-

ind a NAT could use SCTP when the clients communicate with different

emote addresses.

In principle, the functionality of UDP-Lite could be emulated by us-

ng UDP with a zero checksum, effectively disabling the checksum cal-

ulation in accordance with the standard. Checksums over a subset of

http://fling-frontend.nntb.no
https://www.petanode.com/blog/posts/sctp-multi-homing-in-linux.html

R. Barik, M. Welzl and G. Fairhurst et al. Computer Networks 173 (2020) 107211

Fig. 1. Our local testbed for NAT analysis.

Table 1

NAT observations.

Obs. Description

1 NA(P)Ting, a UDP zero checksum remains unchanged

2 IP layer NAT’ing, i.e. no transport header update

3 Forwarding of packets without NA(P)T’ing

4 Dropping

5 NAPTing, which updates the transport header checksum, but a wrong checksum remains wrong

6 Correct NAPTing, which updates the transport header checksum for protocols using a pseudo-header

Table 2

26 home gateway devices and the observed behavior with SCTP, DCCP, UDP-Lite and UDP with a zero

checksum (the table contains 31 lines to account for tested firmware updates). For UDP with a zero check-

sum, in all these tests, we saw observation 1: NA(P)Ting with a zero checksum. ∗ means no idle-timeout

due to Obs-3 and Obs-4.

Vendor Model Firmware OS Tag Obs. timeout (s)

Dlink DIR 655 (A3) v1.10EU Linux dl1 Obs-2 > 1200

v1.37NA Linux dl2 Obs-2 > 1200

DIR 655 (A2) v1.35EU Linux dl3 Obs-2 > 1200

DIR 655 (A4) v1.31EU Linux dl4 Obs-2 > 1200

DIR 655 (B1) v2.09 Linux dl5 Obs-2 50

DIR 619 (Ax) v1.00 Linux dl6 Obs-2 90

DI-614 + (B2) v3.44 ThreadX dl7 Obs-3 ∗

Jensen AL WBR 7954 v3 2.11.3 Unknown js1 Obs-3 ∗

AL 1000Gv2 (A) v1.16 Linux js2 Obs-2 90

AL WBR 7954 v2 v3.1.0 Unknown js3 Obs-3 ∗

Linksys E2500 v1.0.07 Linux ls1 Obs-2 600

v2.0.00 Linux ls2 Obs-2 600

WRT54G/

GL/GS

v1.1

v24-sp2(ddwrt) Linux ls3 Obs-2 600

v4.30.18 Linux ls4 Obs-2 600

v1.28(tomato) Linux ls5 Obs-2 600

WRT54G v7 VxWorks ls6 Obs-4 ∗

E4200 v2 Linux ls7 Obs-2 600

Netgear WGR 614v7 v1.0.13 VxWorks ng1 Obs-4 ∗

v2.0.30 ng2 Obs-4 ∗

WGR 614v9 v1.2.30 VxWorks ng3 Obs-4 ∗

WNDR3400 v1.0.0.38 Linux ng4 Obs-2 600

Topcom WBR 254G v1.3.1e Unknown tp1 Obs-3 ∗

BR 604 v1.10 tp2 Obs-3 ∗

TP-LINK TL-MR3020 v1 3.17.2 Build Linux tl1 Obs-2 600

OpenWrt Linux tl2 Obs-2 600

TL-WR703N OpenWrt Linux tl3 Obs-2 600

3G modem WR3G050-02 v4.34 Linux 3g Obs-2 600

ZyXEL P8702N 1.00(AAJX.14) Linux zy1 Obs-2 600

P-2812HNU-F3 V3.11 (BLN.21) Linux zy2 Obs-2 600

Edimax BR-6574N (A) v1.24 Linux em1 Obs-2 120

Xiaomi Router 3C v2.14.37 OpenWRT MiWiFi xi1 Obs-2 600

t

w

t

N

c

w

b

fl

u

t

N

f

S

a

b

u

t

d

a

c
he data could be implemented in the payload; in the case of IPv6, this

ould have to include additional mechanisms and/or restrictions, e.g.

o prevent leakage of traffic from one UDP application to another [14] .

ATs should not modify a zero checksum of the UDP header [15] . To

heck whether our NATs operate in line with this rule, we ran UDP tests

ith a correct checksum and a zero checksum, and found that the NAT

oxes indeed kept the zero checksum intact, and communication worked

awlessly in all three test-cases.

Table 2 summarizes our findings in the controlled measurements,

sing the observation numbers from Table 1 . There is only one observa-

ion number per line because the behavior was uniform for all protocols.
one of the NAT devices fully support SCTP, DCCP or UDP-Lite (i.e. per-

orm transport-layer functions such as port translation or, in the case of

CTP, correct mapping of connections to a table based on the Vtag). With

ll devices, the behavior appears generic, because it also matched the

ehavior observed when using an unassigned protocol number (143).

For IP layer NATing (observation 2), the chance a host suceeds to

se a protocol also depends on the idle-timeout —the time during which

he NAT retains a mapping after seeing a packet with an IP address. To

etermine the value of this timeout, we conducted an experiment where

 multi-homed client (with two IP addresses) tries to establish an SCTP

onnection to a server. First, it sends an SCTP INIT packet using its first

R. Barik, M. Welzl and G. Fairhurst et al. Computer Networks 173 (2020) 107211

Fig. 2. Idle-timeout of NAT devices that carry out IP layer NAT’ing, prohibiting

later connections from other local hosts during this interval.

s

s

o

s

b

s

a

v

d

d

d

t

a

T

c

s

2

M

W

f

n

c

s

t

o

a

i

i

p

n

a

i

l

2

b

t

p

r

w

v

m

t

2

t

c

b

c

b

p

f

w

f

p

N

a

2

t

f

N

a

N

t

s

a

t

f

c

N

s

e

2

i

C

a

t

b

N

w

o

o

p

R

c

2 pfSense : https://www.pfsense.org/ .
ource IP address. In response, it receives an ABORT message from the

erver (because there was no application listening to SCTP there). Then,

nce per second, the client sends an SCTP INIT packet using its second

ource IP address, until it receives an ABORT message. The difference

etween the two ABORT messages is the upper bound of idle-timeout,

hown in Fig. 2 .

Only four devices (from vendors Dlink, Jensen and Edimax) showed

n idle-timeout of less than two minutes. All the IP-level-NAT’ing de-

ices from Linksys have an idle-timeout of ten minutes, which is the

efault value in their Linux kernel. We also notice that most Dlink NAT

evices set a higher timeout value (greater than 1200 s). In the case of

evice ng4 , during this timeout interval, response packets for any at-

empt by later clients are wrongly delivered to the first client, causing

n update of the timer for the first client.

Table 2 shows that many of the tested NAT boxes use a Linux kernel.

o better understand how manually enabling support for these protocols

ould play out in a NAT box, we now take a closer look at the two open

ource OSes at our disposal: Linux and FreeBSD.

.3. Linux

We installed our own customized Linux kernel (version 3.18.109 for

IPS architecture) in the TP-Link TL-MR3020 NAT box, using Open-

RT. The NAT needs two modules: conntrack (connection tracking)

or creating a NAT entry, and nat , which is responsible for setting a

ew port and performing the checksum update. When a NAT box re-

eives a packet from its local network, then, if the conntrack module

upports the protocol, it knows the packet formats and tracks the state of

he connection. In this case, conntrack first verifies the packet based

n a policy (e.g., correctness of checksum or some field value) and cre-

tes a NAT entry. Then, if the NAT also supports nat for that protocol,

t can provide the port-mapping and checksum update. In the follow-

ng, we examine the effects of various combinations of support for a

rotocol X (SCTP, DCCP or UDP-Lite) by the conntrack_proto_X and

at_proto_X modules; we will simply refer to them as conntrack

nd nat . The results are summarized in Table 3 ; this table includes var-

ous cases with artificially constructed errors because they will be useful

ater, in Section 3 .

.3.1. No conntrack and no nat

In all tests (SCTP, DCCP, UDP-Lite and an unknown protocol num-

er), the NAT treated protocol X as unknown and created a NAT en-

ry, based only on the IP layer (observation 2). Thus, for packets of

rotocol X , Linux performs NAT’ing for the first IP address. Packets ar-

iving later from a different local address to the same server are dropped
hile the first client is active and during a following idle-timeout inter-

al of 10 minutes; this is consistent with RFC 4787 [16] , which recom-

ends a default value of five minutes or more. We obtained this idle-

imeout value from the source code.

.3.2. conntrack but no nat

Enabling conntrack means that the NAT knows the transport pro-

ocol format and can create a NAPT entry based on the transport proto-

ol. When the protocol is not supported X in nat no port-mapping will

e created and the checksum will not be updated. A collision of ports

an then result in packet drop. Because only IP-level NATing works, this

ehavior is also categorized as observation 2. conntrack verifies the

acket’s transport header before creating a NAT entry. If the verification

ails, no NAT entry is created and no NAT mapping is set up (the packet

ill be forwarded with a private address). NAPT entries are created

or correct initial UDP-Lite, SCTP and DCCP packets. Indicating sup-

ort for these protocols by the conntrack module, no NAPT (or even

AT!) entries were created in the following erroneous cases:

• UDP-Lite: invalid checksum coverage, zero checksum (not

permitted [17]), or an invalid checksum (but having the

nf_conntrack_checksum sysctl variable set).

• SCTP: non-zero Vtag ([10] requires INIT packets to contain a zero

Vtag).

• DCCP: invalid checksum (but having the nf_conntrack_checksum

sysctl variable set).

As expected, when the protocol was unknown, NAT’ing was the same

s without conntrack , i.e., based on only the IP layer.

.3.3. conntrack and nat

For correct initial packets from all the tested transport protocols,

he NAT correctly updates the port and checksum values. As be-

ore, for unknown protocols, it performs NAT’ing at the IP layer. The

AT appears to track the state of DCCP: unexpected incoming packets

re dropped and unexpected outgoing packets are forwarded without

AT’ing. For example, after the NAT forwards a DCCP-Reset packet from

he server to the client, it does not allow any further packets from the

erver to the client except for another DCCP-Reset packet. Similarly, in

nother case, the client sends a request packet and the NAT maintains

he state. Until it sees the response packet in the reverse direction, no

urther packets are NAT’ed, except for another request packet from the

lient, e.g., an ACK packet sent at this point, was forwarded without

AT’ing.

With SCTP, the NAT translates the ports and recomputes the check-

um. This port translation is, however, not uniformly applied across an

ntire association. This is a problem for SCTP multi-homing [18–21] .

.4. FreeBSD

We installed FreeBSD 11.2 in a x86_64 PC to make a NAT and tested

pf , pf and ipfw (the three different firewall variants of FreeBSD [22,

hapter 30]). For pf , we used the FreeBSD distribution pfSense 2 sep-

rately to study the NAT behavior. Table 4 presents the behavior of

ransport protocols with ipfw , ipf and pf .

ipf: SCTP, DCCP and UDP-Lite are considered as unknown protocols

y ipf [22, Section 30.5] . As with Linux, the NAT only performs IP layer

AT’ing, serving the first client and dropping packets from other clients

hen there is a collision (observation 4), detected within an idle-timeout

f 65 s. This short interval goes against the “five minutes or more ” rec-

mmendation in RFC 4787 [16] , but is explicitly allowed for destination

orts in the range 0–1023; thus, this behavior is also in line with this

FC. After the 65 s interval, the next communication attempt succeeds,

reating a new NAT entry and starting a new 65 second interval.

https://www.pfsense.org/

R. Barik, M. Welzl and G. Fairhurst et al. Computer Networks 173 (2020) 107211

Table 3

Linux behavior of UDP, DCCP, SCTP and UDP-Lite, with various artificially created errors; cases of correct protocol usage are shown in boldface text.

nf_conntrack_checksum is a sysctl variable that enables/disables validating the checksum.

conntrack nf_conntrack_checksum nat Test description Obs.

✗ - ✗ All tests; also: a packet with unknown proto. number in IP header Obs-2 √
✗ ✗ All tests √

✗ All tests except (UDP, UDP-Lite, DCCP) with invalid checksum

✗
√

(UDP, DCCP) with invalid checksum UDP-Lite with valid checksum coverage and invalid checksum Obs-5 √
✗ /
√

(UDP, UDP-Lite, DCCP) with invalid checksum Obs-3

✗ /
√

✗ /
√

SCTP with non-zero Vtag UDP-Lite with invalid checksum coverage or zero-checksum

✗ /
√ √

(UDP, UDP-Lite, DCCP) with correct checksum; SCTP with zero Vtag Obs-6

UDP with zero checksum Obs-1

Table 4

Behavior of transport protocols across FreeBSD NAT firewalls for first / later

clients (∗ : all response packets are forwarded to the last client).

Protocols IPFW PF IPF

UDP, zero checksum Obs-1 / Obs-1 Obs-1 / Obs-1 Obs-1 / Obs-1

DCCP, UDP-Lite Obs-2 / Obs-2 ∗ Obs-2 / Obs-4 Obs-2 / Obs-3

SCTP Obs-6 / Obs-6 Obs-2 / Obs-4 Obs-2 / Obs-3

U

c

v

3

w

m

W

f

p

(

b

h

2

w

u

t

t

t

t

i

N

e

c

N

c

N

N

t

i

v

e

c

r

t

a

t

m

p

A

t

d

t

d

A

c

i

c

i

t

v

t

e

t

t

t

L

t

c

a

o

N

o

h

p

i

2

k

pf: Similar to ipf , pf [22, Section 30.3] considers SCTP, DCCP and

DP-Lite as unknown protocols. Again, the NAT only serves the first

lient. However, after a collision it forwards the packets with their pri-

ate addresses for later clients, with an idle-timeout of 30 s (observation

).

ipfw: For ipfw [22, Section 30.4] , we loaded the ipfw_nat module,

hich loads the libalias (the in-kernel NAT support) module. The libalias

odule implements the code that supports specific transport protocols.

e observed that only SCTP support 3 is available, and enabled by de-

ault. Because ipfw is the only FreeBSD NAT module that explicitly sup-

orts SCTP, we further tested SCTP’s multi-homing capabilities with it

as we mentioned before, SCTP support in Linux re-writes port num-

ers per connection rather than association, which breaks SCTP’s multi-

oming).

.4.1. Multi-homing with IPFW

We first set up one multi-homed client and one multi-homed server

ith no NAT in between to confirm that the end-hosts successfully

se SCTP multi-homing. We refrained from testing multi-homed clients

hrough a single NAT because such a scenario requires the NAT to use

wo public IP addresses [20] . Instead, we added a second NAT box with

he same FreeBSD setup running ipfw , such that each of the two connec-

ions of the SCTP association goes through a different NAT. The client

s connected to one NAT called NAT A via address A1, and to another

AT called NAT B via address B1. The server is similarly connected to

ach NAT.

The sequence diagrams in Fig. 3 show the client uses IP address A1 to

reate the first connection of the SCTP association to the server through

AT A, with a 4-way handshake. It then attempts to set up the second

onnection of the same association with its second IP address, B1, via

AT B, to investigate the SCTP multi-homing support in the presence of

ATs. The leftmost sequence diagram shows that the current implemen-

ation of SCTP in the Linux client sends the ASCONF message to NAT A

nstead of NAT B. ipfw / libalias in NAT A forwards the packet without

erifying the IP address, B1, placed inside the ASCONF message. How-

ver, the response packet, ASCONF_ACK, will never reach the client be-

ause address B1 is a private address. We observed that the first packet

eaching NAT B is a HEARTBEAT message. NAT B directly responds to

he client with a missing state error cause message, using the Vtag and
3 SCTP Over NAT Adaptation (SONATA) [23] : http://caia.swin.edu.

u/urp/sonata/downloads/INSTALL.txt .

he destination address (as the source address) from the HEARTBEAT

essage, failing multi-homing support.

To support SCTP multi-homing, the most recent IETF pro-

osal [21] recommends that the client should add each IP address using

SCONF chunks sent via their respective NATs and wildcard addresses

o be filled in the address fields in the ASCONF message (see the mid-

le sequence diagram in Fig. 3). However, this requires an update to

he existing NAT code. Moreover the SCTP implementation in the client

oes not allow it to send ASCONF(0) via NAT B. Using fling , we tried

SCONF(0) on the second NAT, but then received a missing state error

ause message.

We explored how to perform SCTP multi-homing with the existing

pfw NAT code. Instead of the ASCONF message, another INIT message

ould be sent via the second path after the first 4-way handshake (this

dea deviates from the SCTP specification). There are two ways to make

he new path a part of the existing association and allow the server to

alidate it. The first is the client sending the internal Vtag. The second is

o use a value from an arithmetic operation (e.g. XOR) of internal and

xternal Vtags, allowing the server to validate the connection as part of

he existing association. This method (see Fig. 3) would require changes

o both the SCTP client and server. Using fling , we found our approach

o work through the ipfw / libalias NAT.

As with the other FreeBSD firewalls, support for DCCP and UDP-

ite is not implemented in ipfw . Thus, packets from these protocols are

reated as unknown by the NAT. Similar to Linux, for unknown proto-

ols, ipfw acts like a NAT (not NAPT!) for all outgoing packets from

ll clients behind it. The IP layer NAT state is kept for an idle-timeout

f 60 seconds. However, this interval does not play a role because the

AT does not correctly treat incoming traffic (it always sends all DCCP

r UDP-Lite responses to the last active client). We confirmed this be-

avior by checking the FreeBSD kernel code. This is different from ipf ,

fSense/pf and Linux, where later communication attempts during the

dle-timeout interval deterministically failed.

.5. Discussion

Before turning to Internet measurements, we briefly summarize our

ey findings from local tests with home gateways:

• Neither DCCP nor UDP-Lite are supported by any of our studied NAT

boxes —packets from these protocols are NATed at the IP layer only

(which then causes a failure of the transport checksum), forwarded

without NATing, or dropped.

• All the measured NAT boxes, as well as Linux and FreeBSD correctly

work with UDP, even when the checksum is zero. Single-homed

SCTP often works only because of a common default behaviour to

apply IP-level NAT’ing in the face of an unknown protocol.

• For IP-level NAT’ing, Linux (which appears to be the OS used by

most commercial middleboxes) and FreeBSD with ipf and pf cor-

rectly handle (i.e. reject) a second connection request when the first

connection is ongoing, and within an ensuing idle-timeout. This idle-

timeout ranges between 30 seconds (FreeBSD pf) and 10 minutes

http://caia.swin.edu.au/urp/sonata/downloads/INSTALL.txt

R. Barik, M. Welzl and G. Fairhurst et al. Computer Networks 173 (2020) 107211

Fig. 3. Sequence diagrams showing SCTP multi-homing support, using Linux end systems and a FreeBSD ipfw / libalias NAT.

u

h

t

r

T

p

N

c

i

s

o

c

a

c

a

L

a

w

t

F

i

s

c

t

t

3

u

u

a

c

a

i

a

t

t

i

W

s

t

o

e

N

m

I

A

a

N

C

s

N

S

e

w

b

n

q

t

s

p

t

d

p

c

d

t

c

t

4 NorNet : https://www.nntb.no .
5 Ark : https://www.caida.org/projects/ark/ .
6 PlanetLab : https://www.planet-lab.org .
(Linux); the latter value was a particularly common choice in our

tested NAT boxes in Table 2 as well.

Altogether, our local tests give us some hope about the occasional

sefulness of SCTP as well as UDP with a zero checksum —and little

ope about other protocols whenever a NAT with default configura-

ion is in use. This rules out DCCP and UDP-Lite from the list of

ecommendable choices for protocol racing when a NAT is in use.

his does not provide any information about whether these protocols

ass through a real Internet path, in particular using IPv6, where our

AT results may not matter. Also, we have not yet considered UDP en-

apsulations, because UDP generally works through the tested devices.

We also tested the multi-homing code in the FreeBSD ipfw / libalias

mplementation. We found that this works with a slightly altered end

ystem behavior, where an INIT (instead of ASCONF) message is sent

n the second connection of the association. A Linux NAT, however,

an also change SCTP port numbers, which breaks a fundamental SCTP

ssumption and will make multi-homing fail. In an additional test, we

onfirmed that multi-homing (following [21] , which avoids inserting

n address into the SCTP chunks) also works for one client with both

inux and FreeBSD (with IPF or PF). This is where SCTP is treated as

n unknown protocol and the NAT only operates at the IP layer. Thus,

hile turning on SCTP support in the NAT can enable multiple clients

o talk to the same server at the same time, with the current Linux and

reeBSD (ipfw / libalias) code base, it comes at the disadvantage of harm-

ng SCTP’s multi-homing support.

At this point, we note that these conclusions are derived from one-

ided connection establishment attempts because our study does not

onsider NAT traversal techniques, such as Interactive Connectivity Es-

ablishment (ICE) [24] that are common for peer-to-peer communica-

ion, e.g. for WebRTC.

. Bidirectional internet tests

We used our generic client-server reachability test tool fling to better

nderstand how the tested protocols and UDP encapsulations operate

sing Internet paths. A fling test specification consists of a json file and

 pcap file. These files are uploaded to fling servers. fling clients are pre-

onfigured to regularly pull new tests from fling servers via HTTPS/TCP

nd run the tests. Each json file describes a communication sequence (us-

ng packets in the pcap file), which is repeated three times in the case of

 failure. These repetitions enabled us to detect “random ” misbehavior
hat could occur sporadically; for instance, a drop that was caused by a

emporary outage, or was due to congestion. We consider a test to “fail ”

f any packet of the test was consistently dropped in all three iterations.

hen a test is finished (or failed), paths are probed from both sides,

imilar to Tracebox [9] , and the final client test result is submitted to

he server via the HTTPS/TCP signaling channel. A detailed description

f fling is given in [13] .

We hosted fling servers on 36 IPv4 and 19 IPv6 nodes. All of them

xcept two IPv4 nodes, belong to a subset of the NorNet 4 testbed called

orNet Core , covering 4 countries (v4/v6: 25/15 Norway, 4/2 Ger-

any, 3/1 China, 2/1 USA). The remaining two IPv4 servers were in

ndia and the USA. We ran the fling client tool from 186 IPv4 / 69 IPv6

rk 5 , PlanetLab 6 and NorNet Core nodes. 138 of the IPv4 addresses

re public and 48 addresses (14 PlanetLab and 34 Ark) are behind

AT boxes. 114 of the clients (114 IPv4 and 50 IPv6 addresses) belong to

AIDA’s Ark platform. These nodes, located in people’s homes, univer-

ities and offices, are spread across 6 geographic regions (v4/v6: 46/20

orth America, 33/15 Europe, 13/3 Africa, 9/6 Asia, 7/5 Oceania, 6/1

outh America). 36 IPv4 nodes (located in universities) belong to Plan-

tLab . With all clients connecting to all servers, our measurements,

hich were run in May 2017, covered a total of 6696 (IPv4)/1311 (IPv6)

idirectional paths. In all tests, fling ’s HTTPS/TCP based signaling chan-

el worked flawlessly, ensuring connectivity on all paths.

We tested SCTP, DCCP, UDP-Lite and UDP, using communication se-

uences that emulate client-server connection attempts. For SCTP, our

ests perform association establishment. In the DCCP test, the client

ends a DCCP Request packet, and the server answers with a Response

acket; the client then answers with an Ack and a DataAck packet con-

aining 256 bytes of data, and the server responds with an Ack . We

esigned two types of UDP-Lite tests: in test 1, we check whether the

rotocol “works ” through the path, by sending a UDP-Lite packet with

hecksum coverage = 0, containing 12 bytes of data. In test 2, we try to

educe if UDP-Lite works due to a lucky accident or genuine support of

he protocol: the client sends a UDP-Lite packet with an illegal checksum

overage (7, which is less than the allowed minimum of 8). In both tests,

he server responds with a similar UDP-Lite packet (but flipped ports).

https://www.nntb.no
https://www.caida.org/projects/ark/
https://www.planet-lab.org

R. Barik, M. Welzl and G. Fairhurst et al. Computer Networks 173 (2020) 107211

Table 5

Observed transport protocol pathologies across 48 NATs on Internet paths (∗ : The remaining 4

NATs randomly switched between computing the full checksum and keeping it unmodified).

Protocol number with transport header chksum Obs-1 Obs-2 Obs-3 / Obs-4 Obs-5 Obs-6

UDP (all UDP encapsulations) – – – – 48

UDP with zero chksum 44 ∗ – – – –

SCTP N/A 31 17 – –

DCCP with correct chksum N/A 26 17 – 5

DCCP with invalid chksum N/A 26 20 2 –

UDP-Lite with correct chksum coverage N/A 27 19 – 2

UDP-Lite with illegal chksum coverage N/A 27 21 – –

t

a

e

(

b

a

i

e

D

p

m

l

e

s

n

u

w

a

a

p

t

3

t

N

u

o

a

r

f

T

t

f

D

t

l

c

p

L

t

t

L

T

c

s

b

a

s

i

o

c

c

N

s

t

d

T

r

t

h

t

c

r

4

1

N

D

U

I

2

d

l

r

d

r

c

b

o

𝑛

N

t

f

w

I

2

T

d

s

o

o

t

r
All UDP tests consist of single-packet requests (but, as with all tests,

rying up to three times in case of a timeout) that are answered with

 single packet having flipped ports. We included three types of UDP

ncapsulations: (i) SCTP over UDP, which uses UDP port 6511 [25] ;

ii) DCCP over UDP, which uses UDP port 9899 [12] ; (iii) Four random

ytes over UDP, with destination port 443, with a normal checksum

nd with a zero checksum. This is meant to represent any protocol that

s encapsulated in UDP without requiring a specific port mapping —for

xample, QUIC [26] , RTMFP [27] , an alternate proposal to encapsulate

CCP [28] , and a proposal to use TCP over UDP [29] . Such common

orts can sometimes represent many more applications [30] .

Since we did not test different types of UDP content, our measure-

ents implicitly assume that middleboxes do not parse the UDP pay-

oad. This assumption may well be wrong, but testing this would require

xtensive measurements at the application layer, which is beyond the

cope of our measurement campaign. Since UDP packets with absolutely

o payload would be exceptionally strange, yet larger payloads would

nnecessarily increase the load on the network in our tests, for the tests

ith raw UDP and no encapsulated packet header in its payload, we

dded artificial random payload of the smallest possible size that fits in

 packet without padding (4 bytes). All tests used 48001 as the source

ort, and initial client requests used 443 as the destination port in all

he other tests above (SCTP, DCCP, UDP-Lite).

.1. NAT interference

First, complementing our local NAT measurements, we test the in-

erference of NATs with the studied transport protocols (there were 48

ATs; all the 48 clients behind NATs had different public addresses),

sing the observation numbers from Table 1 . We present an overview

f the results in Table 5 . If a packet is forwarded by a NAT box without

ddress translation (observation 3) or dropped (observation 4) before

eaching the destination, then this behavior can not be differentiated

rom the packet being dropped by that NAT box. In this case, even the

racebox-like-test in fling can not detect the location of the drop because

he ICMP responses will never arrive at the fling host. Table 5 does there-

ore not distinguish between observations 3 and 4.

Table 5 contains an interesting surprise: there were some cases of

CCP and UDP-Lite seemingly working through a NAT (as shown by

he Obs-5 and Obs-6 columns). In these cases, different from plain IP-

evel NAT’ing which ignores the transport header, the transport header

hecksum was updated by the NAT. In our local measurements in the

revious section, we have seen that Linux can enable support for UDP-

ite and DCCP. The transport header checksum update for these pro-

ocols therefore gives us a hint that the NAT may run a Linux OS. We

herefore decided to obtain a further indication of the NAT OS running

inux, as this may indicate true support for DCCP and UDP-Lite.

The result for UDP with an invalid checksum provides this hint, as

able 3 shows. The sysctl variable nf_conntrack_checksum is disabled,

ausing Linux to perform NAPT’ing on such packets, updating the check-

um but resulting in a checksum error (observation 5). We also saw this

ehavior with FreeBSD. If, however, nf_conntrack_checksum is enabled,

 Linux host will forward the packet without any form of NAT’ing (ob-
ervation 3). Therefore, the lack of a response to an invalid UDP packet

ndicates that the NAT probably runs Linux rather than FreeBSD (or any

f its derivatives).

How do NATs interfere with UDP?

All the NAT boxes performed NAPTing when sent UDP packets with a

orrect UDP checksum (observation 6). When we set packets with a UDP

hecksum of zero, 44 NATs kept this zero value intact. The remaining 4

ATs reacted strangely to the UDP packets with a zero checksum. They

ometimes passed packets with a zero checksum, but also sometimes

hey recomputed it. This was done randomly for the same source and

estination — noting that every test was carried out 3 times, plus we ran

racebox, and saw multiple different results in the ICMP responses. This

ecomputation did not use a checksum adjustment algorithm, because

hat algorithm would have produced a wrong result. To obtain a stronger

int that this behavior indeed stems from single devices, we confirmed

hat these NATs were all one TTL hop away from their fling clients and

onsistently exhibited the same MAC address in the L2 header of their

esponses to the clients (which all were Ark nodes).

Do NATs block protocols other than UDP?

DCCP, UDP-Lite and SCTP packets were either dropped (observation

), or were forwarded without address translation (observation 3) by

7 NATs, corresponding to 14 PlanetLab and 3 Ark nodes. Another 2

ATs also followed this behavior with UDP-Lite packets, but not with

CCP and SCTP packets. This leaves 29 NATs requiring further study for

DP-Lite and 31 NATs requiring a further analysis for DCCP and SCTP.

n the case of SCTP, all the the remaining NATs exhibited observation

 (IP-level NATing), which permits SCTP to work to some degree, as

iscussed in the previous section.

Are the NATs aware of DCCP?

31 NATs passed DCCP packets. 26 of the NATs (the Ark nodes) fol-

owed observation 2, which means that the DCCP packets were correctly

eceived by our fling peer, but would normally be dropped at the receiver

ue to a checksum error. 5 of the 31 NATs updated the checksum cor-

ectly along with address translation (observation 6). To obtain an indi-

ation of whether these 5 NATs run Linux or some other OS, we tested

oth DCCP and UDP with a invalid checksum. 3 of the 5 NATs obeyed

bservations 3 or 4 in this case, which matches Linux with an enabled

𝑓 _ 𝑐 𝑜𝑛𝑛𝑡𝑟𝑎𝑐 𝑘 _ 𝑐 ℎ𝑒𝑐 𝑘𝑠𝑢𝑚 variable. The remaining 2 NATs forwarded with

APT’ing with an invalid checksum (observation 5), which could mean

hat they run Linux with a disabled 𝑛𝑓 _ 𝑐 𝑜𝑛𝑛𝑡𝑟𝑎𝑐 𝑘 _ 𝑐 ℎ𝑒𝑐 𝑘𝑠𝑢𝑚 variable (de-

ault); as shown in Table 4 , FreeBSD would only forward these packets

ith IP-level NAT’ing (observation 2).

Are NATs aware of UDP-Lite?

29 NATs passed UDP-Lite packets. 27 of them forwarded them with

P-level NAT’ing, without updating the transport checksum (observation

 —as with DCCP, this would normally provoke a drop at the receiver).

he remaining 2 NATs updated the checksum correctly along with ad-

ress translation (observation 6). Another measurement explored the re-

ult when clients sent packets with an illegal checksum coverage value

f 7. This found that these two NAT boxes then exhibit observation 3

r 4. This behavior matches that of Linux in Table 3 ; however, an addi-

ional test using UDP with an invalid checksum produced no conclusive

esults (i.e., if the NATs ran Linux, the 𝑛𝑓 _ 𝑐 𝑜𝑛𝑛𝑡𝑟𝑎𝑐 𝑘 _ 𝑐 ℎ𝑒𝑐 𝑘𝑠𝑢𝑚 variable

R. Barik, M. Welzl and G. Fairhurst et al. Computer Networks 173 (2020) 107211

w

o

s

p

S

1

N

w

v

s

A

t

e

S

t

s

r

s

3

r

a

(

k

a

a

T

(

b

i

s

W

S

d

b

n

o

b

n

i

w

m

a

t

u

L

f

l

n

d

t

w

l

i

f

t

t

(

e

s

f

s

n

4

L

s

b

t

s

t

t

i

t

n

G

I

t

p

o

p

4

t

g

p

o

h

s

w

n

t

a

c

o

I

t

I

7 libcrafter : https://github.com/runabk/libcrafter .
8 Team Cymru : https://www.team-cymru.org/IP-ASN-mapping.html .
9 We used this list to identify bogons: http://data.caida.org/datasets/bogon/ .

10 AS relationships: http://data.caida.org/datasets/as-relationships/ .
as disabled). Either way, because the correct checksum coverage value

f 0 would be incorrect if the packets were interpreted as UDP, this re-

ult is a strong hint that these two NATs indeed support the UDP-Lite

rotocol.

How do these findings compare with local tests?

The previous study [31] that documented interference of NATs with

CTP and DCCP protocols examined 34 NAT devices from 15 vendors.

8 of the 34 devices (~ 53%) passed SCTP packets with only IP-level

ATing (observation 2). In our local tests in Section 2 , counting devices

ith updated firmware as new devices, 22 out of 31 devices from 10

endors passed SCTP packets with observation 2 (~ 71%). In our fling

tudy, 31 of the 48 NATs (~ 65%) passed them with observation 2.

ltogether, SCTP worked in this limited fashion in more than half of

he cases in all tests. None of the 18 devices in [31] passed DCCP pack-

ts, and we found that all of our 31 devices followed observation 2 in

ection 2 , eliminating DCCP and UDP-Lite support because they break

he transport checksum (UDP-Lite was not tested in [31]). Somewhat

urprisingly, in our Internet study, we observed that DCCP worked cor-

ectly through 5 NATs, and obtained a strong hint that 2 of these 5 NATs

upport UDP-Lite.

.2. Non-NAT middlebox interference

All but two of the fling clients with public IP addresses were able to

each the fling servers with the tested transport protocols. One of the

ffected clients only has an IPv4 address, and it belongs to AS12816

the Leibniz-Rechenzentrum network; this Autonomous System (AS) is

nown to have various restrictions [32]). We observed that SCTP, DCCP

nd UDP-Lite packets were blocked at a distance of 2 hops (the router

t 𝑇 𝑇 𝐿 = 2 responded with a “time exceeded ” ICMP error message; for

TL ≥ 3, the same router responded with a “destination unreachable ”

 “port unreachable ”) ICMP error message). The other affected client was

locked on its IPv6 interface only, and we found this blocking to occur

n its access network (AS680, an educational network in Germany).

In the reverse direction, i.e. the server responding to the client, we

aw some restrictions that were not visible in the client-server direction.

ith IPv4, we noticed that 22 PlanetLab nodes were able to receive

CTP and DCCP packets, but UDP-Lite and all UDP encapsulations were

ropped. At 6 Ark nodes, incoming SCTP and UDP-Lite packets were

locked, and DCCP was blocked for 5 of these 6 nodes. Additionally,

one of the tested protocols (including all UDP encapsulations) worked

n the reverse path for one Ark node, and this node exhibited the same

ehavior with IPv6.

With IPv6 (only available on Ark and NorNet), two more Ark

odes experienced dropping of all packets in all protocol tests, includ-

ng all UDP encapsulations. A node for which SCTP, UDP-Lite and DCCP

ere blocked in IPv4 also saw blocking of (only) SCTP with IPv6. Three

ore nodes experienced dropping with IPv6 only, affecting SCTP, DCCP

nd UDP-Lite in two cases and SCTP, and UDP-Lite in one case. For all

ests, with IPv4 and IPv6, we confirmed that packets were able to pass

p to (and including) the neighboring ASes of the client AS for Planet-

ab nodes and the client AS for all other (Ark and NorNet) nodes.

We observe that the number of clients experiencing protocol-specific

ailures that were not due to a NAT is less than 20.3% with IPv4 and

ess than 10.1% with IPv6, although the IPv6 tests exclude PlanetLab

odes where IPv6 was not available, which resulted in significant IPv4

ropping of the UDP variants. In conclusion, we now have an indica-

ion that, in the absence of NATs, even native DCCP or UDP-Lite may

ork in some special cases —and the number of paths with per-protocol

imitations, in particular along the backward path, is significant.

In the outset, we have mentioned that the IETF TAPS Working Group

s defining an API for an agile transport system [3] . Such a system of-

ers the broader set of services that applications may need, while hiding

he complexity of testing, configuring and using the various possible

ransport protocols from the application programmer. Protocol racing

testing which protocols work) is an important element of this machin-
ry which has to be backed up by an informed policy. The results in this

ection provides important insight on how to configure the racing policy

or use in the present Internet.

We now turn to measurements that will show how common protocol-

pecific behavior is in the wider Internet when we do not initiate con-

ections at the client.

. Large-scale internet path traversal tests

To carry out measurements at a larger scale for SCTP, DCCP, UDP-

ite and UDP, we implemented the packet header formats and con-

tructed the headers in libcrafter 7 . We then modified Tracebox to

uild the packets and invoke the following tests (again using destina-

ion port 443 except for the UDP encapsulations):

• TCP (as a baseline): A SYN packet.

• SCTP: A SCTP INIT packet.

• DCCP: A DCCP Request packet.

• UDP-Lite: A UDP-Lite packet.

• UDP0: A UDP packet with a zero checksum.

• UDP: A general UDP packet (e.g., QUIC).

• SCTP over UDP: A SCTP INIT packet in a UDP packet with UDP

source and destination ports set to 6511 [25] .

• DCCP over UDP: A DCCP Request packet in a UDP packet with UDP

source and destination ports set to 9899 [12] .

The goal of these measurements is to understand the path traver-

al behavior of Internet ASes regarding these packets. Thus, to iden-

ify Tracebox destinations, we obtained 52112 different ASes using

he Whois database (IP-to-AS mapping) from the dataset collected

n [33] and retrieved one IP address per AS from this dataset.

In the period from January until April 2019, we ran our Tracebox

ests from 15 IPv4 NorNet Core nodes (out of the set of NorNet Core

odes mentioned in Section 3), which were located in China, Korea,

ermany and Norway. We then collected the data and extracted all the

Pv4 addresses, the ICMP types and codes including the responses from

he destinations IPs. For IP-to-AS mapping, we used the Whois database

rovided by Team Cymru . 8 We also took care not to analyze bogons 9 in

ur dataset. We retrieved neighboring ASes and AS-relationships (peer,

rovider or customer), from a CAIDA dataset. 10

.1. AS-level analysis

In the following, we will explain how we had to gradually reduce

he number of considered paths in our dataset. For better clarity, Table 6

ives an overview of all these reductions, and presents the different total

ath numbers.

To avoid biasing the dataset due to filtering behavior in the ASes

f the vantage points, we began our study with an analysis of the first-

op AS; this includes the border link to the second-hop AS. As a re-

ult, we only found 141 paths (source- destination IP address pairs)

ith protocol-specific policies in some first-hop ASes when the desti-

ation ASes belong to peer or customer networks of the client ASes or

he second-hop ASes. For example, one first-hop AS only forwarded TCP

nd SCTP packets when the destination IP address belongs to a specific

ustomer’s AS. We removed these 141 paths from our dataset.

There was a larger number of paths that we had to remove due to

verall communication failures. On 18,376 paths, we did not receive

CMP responses after a few hops from the source for our baseline pro-

ocol, TCP. We have also observed 9393 paths where we received no

CMP responses for any of the protocols outside the source’s ASes. On

https://github.com/runabk/libcrafter
https://www.team-cymru.org/IP-ASN-mapping.html
http://data.caida.org/datasets/bogon/
http://data.caida.org/datasets/as-relationships/

R. Barik, M. Welzl and G. Fairhurst et al. Computer Networks 173 (2020) 107211

Table 6

Overview of the number of paths used throughout the paper. For reference, the total number of paths from all measurements was 625907.

Line # of paths considered Section (page) Comments

1 625766 Section 4.1 (9) 141 removed from total: protocol-specific policies observed in some first-hop ASes when the destination

ASes belong to peer or customer networks of the measurement source’s ASes or the second-hop ASes.

2 607390 Secttion 4.1 (9) 18376 removed from line 1: No ICMP responses received after a few hops from the vantage points for the

baseline protocol, TCP.

3 597997 Section 4.1 (9) 9393 removed from line 2: No ICMP responses received for any of the tested protocols outside the

measurement source’s ASes.

4 541421 Section 4.1 (10) 56576 removed from line 3: Encountered communication failures that were not related to the tested

protocols (e.g. routing errors, as indicated with an ICMP “network unreachable ” message).

5 510708 Section 4.1 (10) 30713 removed from line 4: Appeared for some but not all of the different protocol tests. This may be due

to missing ICMP messages, but it may also indicate the effects of router load balancing (e.g. ECMP).

6 510050 Sectiob 4.1 (10) Paths with three or more AS-hops.

7 456142 Section 4.1 (11) Paths with four or more AS hops.

8 289464 Section 4.2 (11) Destinations reachable with at least one protocol.

Fig. 4. The number of times an AS is contained in the 510,708 paths.

5

l

w

t

l

t

A

t

o

“

s

i

b

w

p

i

i

A

m

A

“

h

e

k

s

Fig. 5. Success of traversing different types of ASes (percentage of 510050 paths

with three or more AS-hops, covering 50,969 ASes). All protocols had a 100%

success rate of traversing the first-hop AS (“source ASes ”). The results are a

lower limit: lack of a response does not always mean that a path could not be

traversed.

c

m

t

t

3

i

v

t

O

h

i

D

r

d

A

c

a

(

t

p
6,576 paths, we encountered communication failures that were not re-

ated to the type of protocol chosen (e.g. routing errors, as indicated

ith an ICMP “network unreachable ” message). After removing all of

hese 843,45 paths, we were left with a total of 541,421 paths to ana-

yze further.

These paths include a total of 56,494 ASes. Seven of these ASes con-

ain the 15 nodes from which the tests were run; we call them “source

Ses ”. We call the 50,473 ASes that contain the destinations “destina-

ion ASes ”. Many ASes were destination ASes in one test, but appeared

n the way towards the destination AS in another test; we call them

transit ASes ”.

In 30,713 out of our 541,421 paths, we found ASes to appear for

ome but not all of the different protocol tests. This may be due to miss-

ng ICMP messages, but it may also indicate the effects of router load

alancing (e.g. ECMP), which might let us draw wrong conclusions as

e compare our results per tested protocol. We therefore removed these

aths from our dataset, leaving us with a total of 510,708 paths cover-

ng 50,969 ASes. ASes in all of these paths appear in the same sequence,

rrespective of the transport protocol. Fig. 4 shows that most of these

Ses were transit ASes —e.g., 70% of the ASes were traversed by 10 or

ore paths.

Almost all of the remaining paths (99.9%) traversed three or more

Ses. Fig. 5 shows successful AS traversal, categorizing ASes as either

destination ” or “transit ”. All protocols were able to traverse the first-

op AS in our filtered dataset. When a packet is dropped, it is not nec-

ssarily accompanied by an ICMP error message, so we cannot reliably

now the AS of the router performing the drop. However, we can ob-

erve successful traversal of an AS when the next AS is reached. Ac-
ordingly, in Fig. 5 , a case of successful traversal of the destination AS

eans that the packet reached the destination; successful traversal of

he transit AS means that the packet reached any later AS (e.g., the des-

ination AS, and possibly the destination too, in the case of a path with

 AS-hops).

We found 100% traversal for the source AS, but reduced probabil-

ty of traversal further along the path. The number of successful tra-

ersed ASes is smaller for destination ASes —50% to 60% of packets

hat reached the destination AS also verifiably reached the destination.

nly TCP and SCTP are positive exceptions, respectively with close to

alf and roughly a quarter of destinations responding.

The results in Fig. 5 present a lower limit for successful AS traversal,

ndicated by receiving a response from a node further along the path.

rops may be silent, so it is incorrect to assume that the 37% success

ate for SCTP transit AS traversal indicates that 63% of packets had been

ropped. The low fraction of successful traversal for UDP to destination

Ses could seem like a significant result for QUIC —however, these are

ases where the destination host did not respond to UDP. This may be

 natural behavior when no application is listening on UDP port 443

and our destinations did not necessarily operate a server). We also note

hat the pre-defined IP address dataset that we used (one IP address

er routable BGP prefix) may contain a large number of unreachable

R. Barik, M. Welzl and G. Fairhurst et al. Computer Networks 173 (2020) 107211

d

t

r

t

p

v

c

t

c

t

t

h

s

n

u

t

r

(

i

s

p

i

I

u

i

W

s

o

m

p

t

n

w

s

a

s

s

t

c

t

v

t

4

c

(

t

r

s

n

p

t

(

d

f

n

r

s

Fig. 6. Paths (source-destination IP address pairs) where the destination was

reachable with at least one protocol. Responses: +: TCP: SYN/ACK or RST,

SCTP: ABORT; #: ICMP port unreachable; ∗ : ICMP protocol unreachable;

&: Other ICMP error message; @: the destination was not reachable with the

specific protocol, but it was reachable with another protocol. The results are a

lower limit: lack of a response does not always mean that a path could not be

traversed.

r

k

a

s

c

s

D

n

U

e

w

T

t

w

t

t

t

U

w

S

b

(

u

A

e

w

c

c

c

n

a

t

(

T

l

l
estinations: the authors of [33] report only 75% ping reachability for

his dataset. This makes the TCP column in Fig. 5 a baseline for our tests

ather than indicating true “Internet reachability ”.

To better understand where drops occured, we took a closer look at

he transit ASes of paths that contain four or more AS hops (456,142

aths). The tests showed that 97.8% of all transit ASes could be tra-

ersed, with the exception for all protocols being the last AS. This is a

lear indication that the majority of drops were either in the des-

ination AS or the AS immediately prior to the destination . This

ould be an indication that our tested destinations do not have an ac-

ive server configured for the protocol being tested. If that is the case,

hen it would seem reasonable that when such a service is provided, the

ost may respond, and that any intervening middlebox (firewall, virus-

canner, load-balancer, etc) would have the policy updated to reflect the

ew service being offered.

To further analyze the location where a drop occurred using a partic-

lar protocol, we sought to predict the router that followed the router

hat sent a TTL-Exceeded message in the transit AS. This utilised the

outer address obtained with a successful protocol using the same path

source-destination IP address pair). For example, if SCTP was dropped

n the penultimate AS, we could observe the following router from mea-

urements using TCP. From this analysis, we found that on 72% of the

aths the following router belonged to the destination AS.

It is tricky to identify the router that drops a packet when the drop

s silent —in contrast, some routers explicitly notify the drop by sending

CMP “Communication prohibited ”, “Protocol unreachable ” and “Port

nreachable ” messages. For most protocols, we received ICMP responses

n 25–29% of cases (but only 4.2% with TCP, and 17.6% with SCTP).

ith the exception of TCP, where, according to the received ICMP mes-

ages, roughly half the drops were in the last and penultimate AS, 70%

r more of the ICMP error messages come from the destination AS, with

ost of them (79.5–89.3%) coming from the destination host. This ap-

ears to confirm our earlier result, that many drops occur in the des-

ination AS, and specifically the destination host —but, given the small

umber of returned ICMP messages, this may also only mean that these

ere the locations that were more likely to produce ICMP messages in-

tead of silently dropping packets.

The small fraction of returning ICMP messages has ramifications for

n agile transport system that would “race ” protocols: such a system

hould not be designed to heavily rely upon receiving ICMP error mes-

ages. This has analogies to the way Path MTU Discovery (PMTUD) had

o be changed to no longer rely on ICMP messages (the newer version is

alled “Packetization Layer PMTUD ” (PLPMTUD)). Generally, it seems

hat endpoints can no longer trust routers on paths to provide signaling

ia ICMP. Instead they need to actively send probes to understand what

he path supports.

.2. End system study

We received a response from the destination with at least one proto-

ol on 289464 (53.5% of all) paths. In terms of destination ASes, 25972

51.5%) were reachable with at least one protocol. Fig. 6 shows a des-

ination analysis for all of these paths. As with Fig. 5 before, the shown

esponses constitute a lower limit for path traversal —not receiving a re-

ponse does not always mean that packets of a particular protocol did

ot reach the host. Also note that, since our investigation focused on

ath traversal rather than analyzing the host software, we picked a des-

ination host per AS, giving us a mix of servers and regular client hosts

rather than servers only, which would be a more natural choice for a

estination analysis); this may further bias these results.

As one would expect, TCP won this race, with a missing response

rom the destination on only 5.3% of the paths. After TCP, surprisingly,

ot UDP but SCTP was the next best protocol when it comes to seeing a

esponse at all (50.6% of the paths). This implies that native SCTP could

ometimes be a better choice than SCTP over UDP (which provoked a
esponse across 36.2% of the paths), provided that both end hosts are

nown to support it.

DCCP and UDP-Lite packets stood the smallest chance of eliciting

 response from the destination (28.7% and 27.6% of the paths, re-

pectively), but UDP-Lite looks better in this set: first, it saw a signifi-

ant number of ICMP “port unreachable ” messages, which may indicate

upport of the protocol by the destination host. Second, different from

CCP’s connection establishment handshake, the lack of a response is

ot a definite indication of the host not supporting UDP-Lite. DCCP over

DP appears to be a good substitute for native DCCP. UDP0 performed

qual to UDP in our test, and hence was better than UDP-Lite.

Next, to derive advice for a TAPS transport system (protocol racing),

e investigate correlations between protocols per path, shown in Fig. 7 .

he three most important results (largest cake pieces) in this figure con-

ain one somewhat surprising result: On 21% of the paths, TCP and SCTP

orked, but nothing else. To better understand whether “drop every-

hing but TCP and SCTP ” was truly a policy or whether it was simply

he result of consecutive packet drops affecting different transport pro-

ocols along the path (e.g., DCCP and UDP-Lite early in the path and the

DP encapsulations later), we examined the ASes on these paths. There

ere 2955 ASes that appeared to directly drop everything but TCP and

CTP (we received responses for all of these protocols up to these ASes,

ut not beyond them). These 2955 ASes, which appeared on 53,578

86.45%) of the 61973 paths where only TCP and SCTP worked, make

p 5.23% of the total ASes in our study —a surprisingly large number of

Ses where a generally restrictive policy seems to be in place that nev-

rtheless allows SCTP, perhaps in support of telephony signaling (this it

hat SCTP was originally designed for, and it still is an important use

ase).

There were also some seemingly strange cases where several proto-

ols worked but TCP did not elicit a response —e.g., the “all except TCP ”

ategory. All of these cases make up a small fraction of the total (TCP did

ot elicit a response on only 15,342 (5.3%) out of the 289,464 paths),

nd in 97.2% of these cases, TCP worked through the transit AS. Thus,

hese failures may just be due to a limiting policy at the destination AS

or a firewall at the destination itself) which does not allow incoming

CP packets on port 443.

We remind the reader that per-protocol responses only indicate

ower limits for path traversal; even considering per-path protocol corre-

ations as in Fig. 7 , we do not have a comprehensive picture of “network

R. Barik, M. Welzl and G. Fairhurst et al. Computer Networks 173 (2020) 107211

Fig. 7. Working protocol combinations per

path. Results indicate path traversal and host

support; for example, on 1.2% of the paths, TCP

packets were dropped or (more likely) no ac-

tive service was listening on TCP port 443.

s

h

a

H

o

w

o

p

s

i

b

i

s

w

w

t

h

w

w

5

L

s

a

h

h

m

H

b

e

N

t

c

s

p

p

t

t

u

Q

t

n

D

c

i

Q

a

s

u

q

m

s

i

f

i

n

w

t

b

i

t

s

m

R

l

w

t

i

e

h

l

T

U

N

t

o

t

o

o

w

y

p

d

a

e

d

6

t

o
upport ” for a certain protocol. For example, from the results that we

ave seen so far, it appears that native SCTP has a better chance to reach

 host than UDP, which would by itself be a devastating result for QUIC.

owever, this would be a wrong interpretation. First, the apparent lack

f UDP support can point at the usage of connection-tracking firewalls

hich would allow incoming UDP packets only after seeing an outgoing

ne from a matching source port first —indeed, we saw much wider sup-

ort for UDP in the bidirectional measurement campaign in the previous

ection. Second, the lack of a response to a UDP packet may not always

ndicate that the UDP packet did not reach the host at all; it is possi-

le that many of the tested hosts simply ignored incoming UDP packets

nstead of answering with an ICMP error message.

All in all, we can not conclude from this destination analy-

is that UDP works poorly, but we can conclude that native SCTP

orks surprisingly well, and we have indications that it may even

ork in some cases where UDP does not work. Also, (keeping in mind

hat they are a mix of clients and servers) we have indications that

osts are better prepared to deal with UDP encapsulations than

ith native packets of type SCTP, UDP-Lite or DCCP (from best to

orst, in order of appearance).

. Related work

To the best of our knowledge, Internet traversal of native UDP-

ite, DCCP or SCTP has not been measured in any prior research. Be-

ides TCP, which was not our focus, related work has covered UDP,

pplication-layer interference of middleboxes and NATs. NAT studies

ave primarily examined TCP and UDP; there is only one study which

as also considered SCTP and DCCP in a local testbed, but not SCTP

ulti-homing, UDP-Lite or UDP with a zero checksum. In this study,

ätönen et al. [31] found that 53% (18 out of 34) of the measured NAT

oxes passed SCTP packets and all the 34 NATs dropped DCCP pack-

ts. 4 NAT boxes simply forwarded the SCTP and DCCP packets without

AT’ing.

UDP: our large-scale investigation could not answer question around

he cause of UDP traversal failures: were incoming packets dropped by

onnection-tracking firewalls? Did packets reach the host, but the host

imply did not answer when no application was listening on the UDP

ort? From our local tests in Section 2 , we know that —as one would ex-

ect —UDP works seamlessly through NATs; our smaller-scale bidirec-

ional study in Section 3 gives us reason to believe that UDP encapsula-

ions, including direct communication with port 443, work well when

sage is initiated by the client. This is confirmed by a recent study of

UIC [34] , which documents that QUIC already accounts for 7.8% of

he traffic seen by a European Tier-1 ISP, and even 9.1% in the mobile

etwork of a large European ISP (but somewhat less in two other traces).

espite being only an indirect indication of success in using the proto-

ol, such traffic shares can probably only be produced by payload, which

ndicates a large success rate of negotiating QUIC. The traffic share of

UIC is also discussed in [35] : a steady growth is seen from 2015 in
 traffic trace from a nation-wide ISP in Italy, culminating in a traffic

hare exceeding 12% in October 2017.

A more direct answer to the origins of UDP failures is given in [36] :

sing measurements between PlanetLab and Digital Ocean nodes, a

uite low UDP blocking rate of roughly 1–5% is identified. Comple-

enting this positive finding, a keynote at the CoNext 2018 EPIQ work-

hop [37] mentioned that Facebook saw a 93% use rate of QUIC with an

mproved racing algorithm. Most other studies on QUIC, e.g. [38] have

ocused on the operation of the protocol itself or server-side behav-

or [39] as well as observed performance [40] . Our measurements did

ot focus on performance, but this is an important direction for future

ork. For example, a decision for native or UDP-encapsulated use of a

ransport protocol should probably not only be based on reachability

ut also on the expected impact of traffic shaping (which has also been

nvestigated for UDP in [36]).

Application layer: performance can also depend on the applica-

ion layer [41] , which we have considered beyond the scope of our

tudy. However, application-layer interference by middleboxes is com-

on, and it can take various forms, e.g. HTTP header injection [42,43] .

acing itself also has a performance impact, e.g. by potentially over-

oading a busy server; this is considered for TCP and SCTP, with and

ithout TLS encryption, in [44] . Racing (“happy eyeballing ”) was fur-

her investigated for TCP over IPv4 and IPv6 in [45,46] .

NAT: as already mentioned, many other middlebox studies ex-

st, mostly focusing on TCP (e.g. [47,48]) or other forms of interfer-

nce, e.g. with values of the DiffServ Code Point (DSCP) in the IP

eader [6,7,49,50] . The body of such related work is large, yet only

oosely related to the present paper, which is specifically focused on non-

CP-protocols. An experimental evaluation of NAT traversal for TCP and

DP, with NAT devices from different vendors, is described in [51] .

AT traversal of TCP and UDP has been extensively studied in the con-

ext of peer-to-peer communication [31,52–55] . Some work has focused

n NAT detection via ICMP messages, such as Tracebox [9] and “smart

raceroute ” [56] .

One limitation of our work concerns the choice of destinations in

ur large-scale Internet study: we focused on covering a large number

f ASes, and hence we did not pick the most common Internet servers,

hich may have drawn quite a different picture for the end host anal-

sis (in related work, the Alexa top 1M list is often used, see for exam-

le [38]). Today, much of the Internet’s traffic does not traverse a long

istance, instead, Content Distribution Networks (CDN) are common,

nd the probability of success to reach a CDN server can be very differ-

nt from the data that we have presented. Analysing CDNs is therefore

efinitely recommendable as future research.

. Conclusion

The intention of this study was to arrive at some hints for a flexible

ransport system that tests (“races ”) protocols. Specifically, we focused

n SCTP, DCCP and UDP-Lite, and asked: “Should they be a part of the

R. Barik, M. Welzl and G. Fairhurst et al. Computer Networks 173 (2020) 107211

Table 7

Overview of NAT findings. “- ” cases were not tested; X/Y means a positive result for X out of Y devices.

Protocol test Off-the-shelf NAT

tests (31 devices)

[31] (34 devices) Linux FreeBSD Internet NAT tests (48 devices)

SCTP 22/31 IP layer 18/34 IP layer Full support or IP layer

only, depending on

configuration

Full support or IP layer

only, depending on

firewall used

31/48 IP layer

SCTP multi-homing – – Only when configured

for IP layer NATing

Only when configured

for IP layer NATing

-

DCCP ✗ ✗
√

✗ 5/48

UDP-Lite ✗ –
√

✗ 2/48

UDP0
√

–
√ √

44/48

UDP (encapsulations)
√ √ √ √ √

s

t

w

t

s

n

i

l

w

s

o

a

t

f

o

h

I

S

r

t

(

t

b

d

t

n

t

r

m

r

c

r

t

w

S

o

p

s

c

w

I

w

a

h

k

w

a

a

a

a

c

D

i

t

A

t

N

h

p

d

I

u

t

et of transports that are tested, and used if they are available? ” To ob-

ain an answer, this paper has described a NAT analysis with home gate-

ays, examined Linux and FreeBSD, performed bidirectional Internet

ests (some of which involved more NATs), and did a one-sided large-

cale study to better understand path traversal chances across the Inter-

et.

Table 7 provides an overview of our key findings (together with find-

ngs from Hätönen et al. [31] , the most closely related previously pub-

ished work) regarding NATs. The take-away is: all UDP encapsulations

ork, DCCP and UDP-Lite hardly ever work, UDP with a zero check-

um works quite often. Regarding SCTP, it seems common (around 2/3

f the tested devices —71 out of 113 total) that this protocol is treated

s unknown, leading to IP layer NATing. This can enable communica-

ion for one SCTP source-destination pair at a time, but it is disastrous

or DCCP and UDP-Lite due to their checksum’s pseudo-header. In our

wn tests, we found second SCTP connection attempts to fail without

arming the first ongoing SCTP communication. With (and only with)

P layer NATing, as we confirmed with the Linux and FreeBSD analysis,

CTP multi-homing also works.

Our analysis of protocol blocking considered a smaller-scale bidi-

ectional study and found only minimal limitations from the client to

he server, but more significant limitations from the server to the client

despite the fact that our emulated connections were client-initiated, i.e.

his is not the result of a connection-tracking firewall). Blockage differed

etween IPv4 and IPv6, and was larger with IPv4.

The large-scale study found that the majority of protocol-specific

rops occur (i) at the destination, (ii) in the destination AS, or (iii) in

he penultimate AS. Our analysis of ICMP messages showed that for

on-TCP protocols, the destination host itself is most likely to drop the

est message and produce an ICMP error message. We also learned that

oughly two-thirds of consistent protocol-specific drops are silent —this

eans that a protocol “racing ” system should be designed to not heavily

ely upon receiving ICMP error messages.

Finally, our destination host analysis —while limited in scope be-

ause the destination hosts were chosen to cover a large number of ASes

ather than selecting the most commonly used servers —also indicated

hat SCTP works surprisingly well, and that it could even work in cases

here UDP does not work (yet UDP generally seems to work better than

CTP, DCCP or UDP-Lite).

Putting all our findings together, we can now formulate some rec-

mmendations for a transport system seeking to race multiple transport

rotocols. Generally, we recommend trying UDP encapsulations first (all

eem to work equally well). For native use of the protocols, we can con-

lude that for the current Internet:

SCTP: With an above-average probability of working through a NAT

with IP layer NAT’ing, and given that there are (arguably rare)

cases where SCTP appears to work, but UDP does not, we rec-

ommend falling-back to SCTP after trying SCTP over UDP. Since

most NATs would apply IP layer NAT’ing, even multi-homing
may work (“true ” SCTP NAT support in Linux and FreeBSD can

in fact create problems for multi-homing).

DCCP: There are cases where DCCP works through a NAT, and we

even have a result where 22 of our PlanetLab clients saw all in-

coming UDP and UDP-Lite packets dropped but SCTP and DCCP

succeeded. However, these situations where DCCP succeeds are

so rare that they should probably be regarded at this time as cor-

ner cases, leading us to recommend against trying native DCCP

unless the goal is to prefer a native deployment of DCCP.

UDP-Lite: Our recommendation is the same as for DCCP —both pro-

tocols have low probability of traversal. For IPv4 it is possible

to emulate the functionality of UDP-Lite by using UDP with a

zero checksum. This is an attractive alternative when no pay-

load protection is needed, because traversal for UDP paths and

home gateways did not seem to be hampered by having a zero

checksum. Constraints remain on appropriate use of a zero UDP

checksum with IPv6.

IPv6 constitutes a small part of our data, but from the data available,

e saw that all tested protocols worked better across networks using

Pv6. Thus, a transport system could be designed to be more “daring ”

hen protocols operate over IPv6 —and additional IPv6 measurements

re encouraged to complete this picture.

This paper has strictly focused on the traversal of Internet paths and

ome gateways, not on performance —but now, equipped with some

nowledge about the types of protocols and encapsulations that can

ork across the Internet, it would make sense to carry out a performance

nalysis. Such an analysis should not only cover the transport layer but

lso the impact of port numbers and data at the application layer. As

 result of our findings, this research could be limited to native SCTP

nd UDP in case of IPv4, while in the case of IPv6 it probably should

onsider the whole set of SCTP, DCCP and UDP-Lite together with UDP.

eclaration of Competing Interest

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence

he work reported in this paper.

ppendix A. NAT/NAPT and their operations

The term “NAT ” commonly refers to a middlebox function that in-

erconnects a private/local network with the global Internet. Using a

AT is frequently necessary, since the public IPv4 address space is ex-

austed. A NAT usually maps many private (internal) IP addresses to

ublic (external) IP addresses. A home router could map all internal ad-

resses to a single public IP address. Carrier-grade NATs, deployed by

nternet service providers, interconnect a larger set of internal addresses

sing multiple public addresses. This can easily lead to scenarios where

here are multiple NATs on a single end-to-end path.

R. Barik, M. Welzl and G. Fairhurst et al. Computer Networks 173 (2020) 107211

s

t

f

(

a

a

t

t

r

o

t

l

t

n

t

c

a

d

p

a

g

s

t

a

s

n

[

e

(

i

t

S

t

C

F

i

M

&

p

A

T

i

R

(

I

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

NATs only work at the IP level, i.e. a NAT would only share a

et of public addresses with a limited number of simultaneously ac-

ive internal devices. To enable multiple parallel transport connections

rom different internal devices, a Network Address and Port Translators

NAPT) 11 [58] translates the local IP address and port number pair into

 global one. A NAPT needs to have higher-level protocol knowledge

nd needs to either implement a specific behavior for each supported

ransport protocol, or to implement a generic behavior that assumes

hat, e.g., port numbers always look the same.

In order for the private addresses to be reachable, the NAT box

ewrites them with an external public address (or, if there is a chain

f NATs, the last NAT rewrites to a public address). During the address

ranslation, it must validate and update the IP header checksum. Simi-

arly, incoming TCP and UDP connections to a NAPT are mapped from

he external IP address and port pairs to an internal address and port

umber, and vice versa in the return direction. When a NAPT updates

he port numbers or even only IP addresses, it needs also to update the

hecksum in the transport protocol’s header because this checksum usu-

lly includes a “pseudo header ” that protects the integrity of the IP ad-

resses [59,60] . Since the transport layer checksum usually covers the

ayload, its calculation is resource-consuming. NATs therefore often use

 checksum adjustment algorithm [15] for this update. The checksum al-

orithm is Internet-16 [61] , which can be computed efficiently in either

oftware or hardware.

NATs, by their nature, create problems for protocols or applications

hat transmit IP addresses in the IP payload. FTP is an example of an

pplication that does this [58] , prompting NAT vendors to implement

pecial support for the FTP protocol. Modern applications should not

eed to transmit IP addresses. For example, Multi-Path TCP (MPTCP)

62] is a multi-homing and multi-path transport TCP extension that

liminates the need for applications to build such functions on top

which would require them to signal IP addresses), and the MPTCP

mplementation in the Linux kernel has been found to work flawlessly

hrough NATs [63,64] .

upplementary material

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.comnet.2020.107211 .

RediT authorship contribution statement

Runa Barik: Conceptualization, Methodology, Software, Validation,

ormal analysis, Investigation, Resources, Writing - original draft, Writ-

ng - review & editing, Visualization. Michael Welzl: Conceptualization,

ethodology, Formal analysis, Writing - original draft, Writing - review

 editing, Visualization, Supervision, Resources. Gorry Fairhurst: Su-

ervision, Formal analysis, Visualization, Writing - review & editing.

hmed Elmokashfi: Writing - review & editing, Supervision, Resources.

homas Dreibholz: Writing - review & editing, Resources. Stein Gjess-

ng: Writing - review & editing, Supervision.

eferences

[1] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F. Koura-

nov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman, J. Roskind, J. Kulik, P. Westin, R. Ten-

neti, R. Shade, R. Hamilton, V. Vasiliev, W.-T. Chang, Z. Shi, The QUIC transport

protocol: design and internet-scale deployment, in: Conference of the ACM Special

Interest Group on Data Communication, in: SIGCOMM ’17, ACM, New York, NY,

USA, 2017, pp. 183–196, doi: 10.1145/3098822.3098842 . ISBN 978-1-4503-4653-5

[2] S. Shalunov, G. Hazel, J. Iyengar, M. Kuehlewind, Low Extra Delay Background

Transport (LEDBAT), (RFC 6817 (Experimental)), 2012, doi: 10.17487/RFC6817 .
11 RFC 3234 [57] calls NAPTs “NAT-PT ”, and Cisco terminology is NAT/PAT

PAT = Port Address Translation). We use the term NAPT to distinguish between

P-level NAT and NAT with port number translation.

[

[

[3] B. Trammell , M. Welzl , T. Enghardt , G. Fairhurst , M. Khlewind , C. Perkins ,

P.S. Tiesel , C.A. Wood , T. Pauly , An Abstract Application Layer Interface to Trans-

port Services, Internet-Draft draft-ietf-taps-interface-05, Internet Engineering Task

Force, 2019 . Work in Progress

[4] D. Wing, A. Yourtchenko, Happy Eyeballs: Success with Dual-Stack Hosts, (RFC 6555

(Proposed Standard)), 2012, doi: 10.17487/RFC6555 .

[5] S. Dhesikan , D. Druta , P. Jones , C. Jennings , DSCP Packet Markings for WebRTC

QoS, Internet-Draft draft-ietf-tsvwg-rtcweb-qos-18, Internet Engineering Task Force,

2017 . Work in Progress

[6] A. Custura, A. Venne, G. Fairhurst, Exploring DSCP modification pathologies in

mobile edge networks, in: Network Traffic Measurement and Analysis Confer-

ence (TMA), 2017, pp. 1–6, doi: 10.23919/TMA.2017.8002923 .

[7] R. Barik , M. Welzl , A.M. Elmokashfi, T. Dreibholz , S. Gjessing , Can WebRTC QoS

work? A DSCP measurement study, 30th International Teletraffic Congress (ITC 30),

2018 . Vienna, Austria

[8] N. Khademi, D. Ros, M. Welzl, Z. Bozakov, A. Brunstrom, G. Fairhurst, K. Grinnemo,

D. Hayes, P. Hurtig, T. Jones, S. Mangiante, M. Tuxen, F. Weinrank, Neat: a platform-

and protocol-independent internet transport api, IEEE Commun. Mag. 55 (6) (2017)

46–54, doi: 10.1109/MCOM.2017.1601052 .

[9] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, B. Donnet, Revealing middlebox

interference with tracebox, in: 13th ACM Internet Measurement Conference (IMC),

Barcelona, Catalonia/Spain, 2013, doi: 10.1145/2504730.2504757 . ISBN 978-1-

4503-1953-9

10] R. Stewart (Ed.), Stream Control Transmission Protocol, (RFC 4960 (Proposed Stan-

dard)), 2007, doi: 10.17487/RFC4960 .

11] R. Denis-Courmont, Network Address Translation (NAT) Behavioral Requirements

for the Datagram Congestion Control Protocol, (RFC 5597 (Best Current Practice)),

2009, doi: 10.17487/RFC5597 .

12] T. Phelan, G. Fairhurst, C. Perkins, DCCP-UDP: A Datagram Congestion Control Pro-

tocol UDP Encapsulation for NAT Traversal, (RFC 6773 (Proposed Standard)), 2012,

doi: 10.17487/RFC6773 .

13] R. Barik, M. Welzl, A.M. Elmokashfi, S. Gjessing, S. Islam, fling: a flexible

ping for middlebox measurements, 29th International Teletraffic Congress (ITC),

Genoa/Italy, 2017, doi: 10.23919/ITC.2017.8064349 . ISBN 978-0-9883045-3-6

14] G. Fairhurst, M. Westerlund, Applicability Statement for the Use of IPv6

UDP Datagrams with Zero Checksums, (RFC 6936 (Proposed Standard)), 2013,

doi: 10.17487/RFC6936 .

15] P. Srisuresh, K. Egevang, Traditional IP Network Address Translator (Traditional

NAT), (RFC 3022 (Informational)), 2001, doi: 10.17487/RFC3022 .

16] F. Audet (Ed.), C. Jennings, Network Address Translation (NAT) Behavioral

Requirements for Unicast UDP, (RFC 4787 (Best Current Practice)), 2007,

doi: 10.17487/RFC4787 .

17] L.-A. Larzon, M. Degermark, S. Pink, L.-E. Jonsson (Ed.), G. Fairhurst (Ed.), The

Lightweight User Datagram Protocol (UDP-Lite), (RFC 3828 (Proposed Standard)),

2004, doi: 10.17487/RFC3828 .

18] T. Stegel , J. Sterle , J. Bester , A. Kos , SCTP association between multi-homed end-

points over NAT using NSLP, Electrotech 5 (75) (2008) 27784 . ISSN 0013-5852

19] T. Stegel , J. Sterle , U. Sedlar , J. Bester , A. Kos , SCTP multihoming provisioning in

converged IP-based multimedia environment, Comput. Commun. 33 (14) (2010)

1725–1735 .

20] L. Coene, Stream Control Transmission Protocol Applicability Statement, (RFC 3257

(Informational)), 2002, doi: 10.17487/RFC3257 .

21] R.R. Stewart , M. Tuexen , I. Ruengeler , Stream Control Transmission Protocol (SCTP)

Network Address Translation Support, Internet Draft, IETF, 2019 .

22] FreeBSD Documentation Project , FreeBSD Handbook, 52404th edition, 2018 .

23] D.A. Hayes, J. But, G. Armitage, Issues with Network Address Transla-

tion for SCTP, SIGCOMM Comput. Commun. Rev. 39 (1) (2008) 23–33,

doi: 10.1145/1496091.1496095 .

24] A. Keranen, C. Holmberg, J. Rosenberg, Interactive Connectivity Establishment

(ICE): A Protocol for Network Address Translator (NAT) Traversal, (RFC 8445 (Pro-

posed Standard)), 2018, doi: 10.17487/RFC8445 .

25] M. Tuexen, R. Stewart, UDP Encapsulation of Stream Control Transmission Proto-

col (SCTP) Packets for End-Host to End-Host Communication, (RFC 6951 (Proposed

Standard)), 2013, doi: 10.17487/RFC6951 .

26] J. Iyengar , M. Thomson , QUIC: A UDP-Based Multiplexed and Secure Transport,

Internet Draft, IETF, 2019 .

27] M. Thornburgh, Adobe’s Secure Real-Time Media Flow Protocol, (RFC 7016 (Infor-

mational)), 2013, doi: 10.17487/RFC7016 .

28] M. Amend , A. Brunstrom , A. Kassler , V. Rakocevic , Lossless and overhead free DCCP

- UDP header conversion (U-DCCP), Internet-Draft draft-amend-tsvwg-dccp-udp–

header-conversion-01, Internet Engineering Task Force, 2019 . Work in Progress

29] S. Cheshire , J. Graessley , R. McGuire , Encapsulation of TCP and Other Transport Pro-

tocols over UDP, Internet-Draft draft-cheshire-tcp-over-udp-00, Internet Engineering

Task Force, 2013 . Work in Progress

30] S. Alcock, J.-P. Möller, R. Nelson, Sneaking past the firewall: quantifying

the unexpected traffic on major TCP and UDP ports, in: Internet Measure-

ment Conference, in: IMC ’16, ACM, New York, NY, USA, 2016, pp. 231–237,

doi: 10.1145/2987443.2987447 .

31] S. Hätönen, A. Nyrhinen, L. Eggert, S. Strowes, P. Sarolahti, M. Kojo, An experimen-

tal study of home gateway characteristics, in: 10th ACM SIGCOMM Conference on

Internet Measurement, in: IMC ’10, ACM, New York, NY, USA, 2010, pp. 260–266,

doi: 10.1145/1879141.1879174 . ISBN 978-1-4503-0483-2

32] C. Diekmann , Provably secure networks: methodology and toolset for configuration

management, CoRR abs/1708.08228 (2017) .

33] B.J. Goodchild, Y.-C. Chiu, R. Hansen, H. Lua, M. Calder, M. Luckie, W. Lloyd,

D. Choffnes, E. Katz-Bassett, The record route option is an option!, in: Internet Mea-

https://doi.org/10.1016/j.comnet.2020.107211
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.17487/RFC6817
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0003
https://doi.org/10.17487/RFC6555
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0005
https://doi.org/10.23919/TMA.2017.8002923
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0007
https://doi.org/10.1109/MCOM.2017.1601052
https://doi.org/10.1145/2504730.2504757
https://doi.org/10.17487/RFC4960
https://doi.org/10.17487/RFC5597
https://doi.org/10.17487/RFC6773
https://doi.org/10.23919/ITC.2017.8064349
https://doi.org/10.17487/RFC6936
https://doi.org/10.17487/RFC3022
https://doi.org/10.17487/RFC4787
https://doi.org/10.17487/RFC3828
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0019
https://doi.org/10.17487/RFC3257
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0022
https://doi.org/10.1145/1496091.1496095
https://doi.org/10.17487/RFC8445
https://doi.org/10.17487/RFC6951
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0026
https://doi.org/10.17487/RFC7016
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0029
https://doi.org/10.1145/2987443.2987447
https://doi.org/10.1145/1879141.1879174
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0032

R. Barik, M. Welzl and G. Fairhurst et al. Computer Networks 173 (2020) 107211

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

surement Conference (IMC), in: IMC ’17, ACM, New York, NY, USA, 2017, pp. 311–

317, doi: 10.1145/3131365.3131392 . ISBN 978-1-4503-5118-8

34] J. Rüth , I. Poese , C. Dietzel , O. Hohlfeld , A first look at QUIC in the wild, in: Passive

and Active Measurement Conference (PAM), 2018 . Berlin, Germany

35] M. Trevisan, D. Giordano, I. Drago, M. Mellia, M. Munafo, Five years at the edge:

watching internet from the ISP network, in: 14th International Conference on Emerg-

ing Networking EXperiments and Technologies, in: CoNEXT ’18, ACM, New York,

NY, USA, 2018, pp. 1–12, doi: 10.1145/3281411.3281433 .

36] K. Edeline, M. Kühlewind, B. Trammell, B. Donnet, Copycat: testing differential treat-

ment of new transport protocols in the wild, in: Proceedings of the Applied Network-

ing Research Workshop, in: ANRW ’17, ACM, New York, NY, USA, 2017, pp. 13–19,

doi: 10.1145/3106328.3106330 .

37] S. Iyengar , L. Niccolini , Keynote talk: moving fast at scale: Experience deploying IETF

QUIC at Facebook, Workshop on the Evolution, Performance, and Interoperability

of QUIC, EPIQ’18, ACM, New York, NY, USA, 2018 .

38] A.M. Kakhki, S. Jero, D. Choffnes, C. Nita-Rotaru, A. Mislove, Taking a long look at

QUIC: an approach for rigorous evaluation of rapidly evolving transport protocols,

in: Internet Measurement Conference, in: IMC ’17, ACM, New York, NY, USA, 2017,

pp. 290–303, doi: 10.1145/3131365.3131368 .

39] M. Piraux, Q. De Coninck, O. Bonaventure, Observing the evolution of QUIC

implementations, in: Workshop on the Evolution, Performance, and Interop-

erability of QUIC, in: EPIQ’18, ACM, New York, NY, USA, 2018, pp. 8–14,

doi: 10.1145/3284850.3284852 .

40] L. Thomas, E. Dubois, N. Kuhn, E. Lochin, Google QUIC performance over a public

SATCOM access, Int. J. Satell. Commun. Netw. (2019), doi: 10.1002/sat.1301 .

41] F. Li, A.M. Kakhki, D. Choffnes, P. Gill, A. Mislove, Classifiers unclassified: an ef-

ficient approach to revealing IP traffic classification rules, in: Internet Measure-

ment Conference, in: IMC ’16, ACM, New York, NY, USA, 2016, pp. 239–245,

doi: 10.1145/2987443.2987464 .

42] S. Huang, F. Cuadrado, S. Uhlig, Middleboxes in the Internet: a HTTP perspective,

in: Network Traffic Measurement and Analysis Conference (TMA), 2017, pp. 1–9,

doi: 10.23919/TMA.2017.8002906 .

43] T. Chung, D. Choffnes, A. Mislove, Tunneling for transparency: a large-scale

analysis of end-to-end violations in the internet, in: Internet Measurement

Conference, in: IMC ’16, ACM, New York, NY, USA, 2016, pp. 199–213,

doi: 10.1145/2987443.2987455 .

44] G. Papastergiou, K.-J. Grinnemo, A. Brunstrom, D. Ros, M. Tüxen, N. Khademi,

P. Hurtig, On the cost of using happy eyeballs for transport protocol selection, in:

Proceedings of the 2016 Applied Networking Research Workshop, in: ANRW ’16,

ACM, New York, NY, USA, 2016, pp. 45–51, doi: 10.1145/2959424.2959437 .

45] V. Bajpai, J. Schönwälder, Measuring the effects of happy eyeballs, in: Proceedings of

the 2016 Applied Networking Research Workshop, in: ANRW ’16, ACM, New York,

NY, USA, 2016, pp. 38–44, doi: 10.1145/2959424.2959429 .

46] V. Bajpai, J. Schönwälder, A longitudinal view of dual-stacked websites —failures,

latency and happy eyeballs, IEEE/ACM Trans. Netw. 27 (2) (2019) 577–590,

doi: 10.1109/TNET.2019.2895165 .

47] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, H. Tokuda, Is it still pos-

sible to extend TCP? in: ACM SIGCOMM Internet Measurement Conference (IMC),

2011, doi: 10.1145/2068816.2068834 . ISBN 978-1-4503-1013-0

48] R. Craven, R. Beverly, M. Allman, A Middlebox-cooperative TCP for a Non End-

to-end Internet, in: ACM Conference on SIGCOMM, in: SIGCOMM ’14, ACM, New

York, NY, USA, 2014, pp. 151–162, doi: 10.1145/2619239.2626321 . ISBN 978-1-

4503-2836-4

49] R. Barik, M. Welzl, A. Elmokashfi, How to say that you’re special: can we use

bits in the IPv4 header? in: Proceedings of the 2016 Applied Networking Re-

search Workshop, in: ANRW ’16, ACM, New York, NY, USA, 2016, pp. 68–70,

doi: 10.1145/2959424.2959442 .

50] R. Barik, M. Welzl, A. Elmokashfi, T. Dreibholz, S. Islam, S. Gjessing, On the utility

of unregulated IP DiffServ Code Point (DSCP) usage by end systems, Perform. Eval.

135 (2019) 102036, doi: 10.1016/j.peva.2019.102036 .

51] C. Jennings , NAT Classification Test Results, Internet-Draft draft-jennings-be-

have-test-results-04, Internet Engineering Task Force, 2007 . Work in Progress

52] S. Guha , P. Francis , Characterization and measurement of TCP traversal through

NATs and firewalls, in: 5th ACM SIGCOMM Conference on Internet Measurement,

in: IMC ’05, USENIX Association, Berkeley, CA, USA, 2005 . 18–18

53] L. Makinen, J.K. Nurminen, Measurements on the feasibility of TCP NAT traversal

in cellular networks, in: Next Generation Internet Networks, 2008, pp. 261–267,

doi: 10.1109/NGI.2008.42 .

54] G. Halkes , J. Pouwelse , UDP NAT and firewall puncturing in the wild, in: 10th Inter-

national IFIP TC 6 Conference on Networking - Volume Part II, in: NETWORKING’11,

Springer-Verlag, Berlin, Heidelberg, 2011, pp. 1–12 .

55] H. Kavalionak, A.H. Payberah, A. Montresor, J. Dowling, NATCloud: cloud-

assisted NAT-traversal service, in: 31st Annual ACM Symposium on Applied

Computing, in: SAC ’16, ACM, New York, NY, USA, 2016, pp. 508–513,

doi: 10.1145/2851613.2851640 .

56] R. Zullo, A. Pescapé, K. Edeline, B. Donnet, Hic sunt nats: uncovering address trans-

lation with a smart traceroute, in: 2017 Network Traffic Measurement and Analysis

Conference (TMA), 2017, pp. 1–6, doi: 10.23919/TMA.2017.8002924 .

57] B. Carpenter, S. Brim, Middleboxes: Taxonomy and Issues, (RFC 3234 (Informa-

tional)), 2002, doi: 10.17487/RFC3234 .

58] P. Srisuresh, M. Holdrege, IP Network Address Translator (NAT) Terminology and

Considerations, (RFC 2663 (Informational)), 1999, doi: 10.17487/RFC2663 .
59] J. Postel, Transmission Control Protocol, (RFC 793 (Internet Standard)), 1981,

doi: 10.17487/RFC0793 .

60] J. Postel, User Datagram Protocol, (RFC 768 (Internet Standard)), 1980,

doi: 10.17487/RFC0768 .

61] R. Braden, D. Borman, C. Partridge, Computing the Internet Checksum, (RFC 1071

(Informational)), 1988, doi: 10.17487/RFC1071 . Updated by RFC 1141

62] A. Ford, C. Raiciu, M. Handley, O. Bonaventure, TCP Extensions for Mul-

tipath Operation with Multiple Addresses, (RFC 6824 (Experimental)), 2013,

doi: 10.17487/RFC6824 .

63] G. Detal , C. Paasch , O. Bonaventure , Multipath in the middle(box), CoNEXT Work-

shop HotMiddlebox, 2013 .

64] O. Bonaventure, C. Paasch, G. Detal, Use Cases and Operational Experience with

Multipath TCP, (RFC 8041 (Informational)). 10.17487/RFC8041

Runa Barik is a Ph.D. candidate at the Department of Infor-

matics, University of Oslo (UiO), Norway. Mr. Barik received a

Master of Science by Research from IIT Mandi, India in 2014.

His previous research includes developing theoretical mod-

els, simulations and kernel implementations related to TCP

and MPTCP. Mr. Barik has actively involved in several EU

projects. He has submitted two IETF drafts and presented talks

at the IETF meetings. His current research includes network

measurements, detecting middleboxes and opportunistic use

of various IPv4 and IPv6 Internet Protocols.

Michael Welzl is a full professor in the Department of Infor-

matics of the University of Oslo since 2009. He received his

Ph.D. (with distinction) and his habilitation from the Univer-

sity of Darmstadt/Germany in 2002 and 2007, respectively.

His book “Network Congestion Control: Managing Internet

Traffic ”, is the only introductory book on network conges-

tion control. Michael has been active in the IETF and IRTF for

many years, e.g. by chairing the Internet Congestion Control

Research Group (ICCRG) leading the effort to form the Trans-

port Services (TAPS) Working Group. He has also participated

in several European research projects, including roles such as

coordinator and technical manager.

Gorry Fairhurst received his first degree in applied physics

and electronics from the University of Durham, UK, and a

Ph.D. in communications engineering from the University of

Aberdeen, UK. He is a professor at the University of Aberdeen,

working in Internet Engineering where he specialises in trans-

port (congestion-control, end-to-end Internet communication,

and transport interfaces), military and broadband satellite ac-

cess and large-scale Internet measurement. His research inter-

ests include protocol design, link ARQ, and Internet transport.

He is an active participant in the specification and engineer-

ing of Internet standards and chairs the IETF TSVWG working

group.

Ahmed Elmokashfi is a senior research scientist at Simula

Metropolitan Centre for Digital Engineering and Simula Re-

search Laboratory in Norway. He is currently heading the Cen-

tre for Resilient Networks and Applications (CRNA), which is

part of the Simula Metropolitan Centre that is funded by the

Norwegian government. CRNA focuses on conducting long-

term research and innovation at a high international level,

on robustness and reliability of communications networks and

applications. Dr. Elmokashfi’s research interest lies in network

Measurements and Performance. In particular, he has been fo-

cusing on studying the resilience, scalability, and evolution

of the Internet infrastructure; the measurement and quantifi-

cation of robustness in mobile broadband networks; and the

understanding of dynamical complex systems. Over the past

few years, he has been leading and contributing to the devel-

opment, operation and management the NorNet testbed in-

frastructure, which is a countrywide measurement setup for

monitoring the performance of mobilebroadband networks in

Norway. Dr. Elmokashfi received his PhD degree from the Uni-

versity of Oslo in 2011.

https://doi.org/10.1145/3131365.3131392
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0034
https://doi.org/10.1145/3281411.3281433
https://doi.org/10.1145/3106328.3106330
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0037
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0037
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0037
https://doi.org/10.1145/3131365.3131368
https://doi.org/10.1145/3284850.3284852
https://doi.org/10.1002/sat.1301
https://doi.org/10.1145/2987443.2987464
https://doi.org/10.23919/TMA.2017.8002906
https://doi.org/10.1145/2987443.2987455
https://doi.org/10.1145/2959424.2959437
https://doi.org/10.1145/2959424.2959429
https://doi.org/10.1109/TNET.2019.2895165
https://doi.org/10.1145/2068816.2068834
https://doi.org/10.1145/2619239.2626321
https://doi.org/10.1145/2959424.2959442
https://doi.org/10.1016/j.peva.2019.102036
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0051
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0051
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0051
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0052
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0052
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0052
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0052
https://doi.org/10.1109/NGI.2008.42
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0054
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0054
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0054
https://doi.org/10.1145/2851613.2851640
https://doi.org/10.23919/TMA.2017.8002924
https://doi.org/10.17487/RFC3234
https://doi.org/10.17487/RFC2663
https://doi.org/10.17487/RFC0793
https://doi.org/10.17487/RFC0768
https://doi.org/10.17487/RFC1071
https://doi.org/10.17487/RFC6824
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0063
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0063
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0063
http://refhub.elsevier.com/S1389-1286(19)31446-X/sbref0063

R. Barik, M. Welzl and G. Fairhurst et al. Computer Networks 173 (2020) 107211

Thomas Dreibholz has received his Diplom (Dipl.-Inform.)

degree in computer science from the University of Bonn in

Bonn, Germany in 2001. Furthermore, he has received his

Ph.D. degree (Dr. rer. nat.) in 2007, as well as his Habilitation

(Priv.-Doz.) degree in 2012 from the University of Duisburg-

Essen in Essen, Germany. Now, he works as Chief Research En-

gineer for the Simula Metropolitan Centre for Digital Engineer-

ing (SimulaMet) in Oslo, Norway. He has published and pre-

sented more than 70 research contributions at international

conferences and in journals, on the topics of Reliable Server

Pooling (RSerPool), the Stream Control Transmission Proto-

col (SCTP), Quality of Service (QoS), and multi-homed net-

work infrastructures. Furthermore, he has contributed multi-

ple Working Group and Individual Submission Drafts to the

IETF standardisation processes of RSerPool and SCTP. He is

also co-author of multiple RFC documents published by the

IETF. In addition, he has written the RSerPool reference im-

plementation.
Stein Gjessing is a professor of computer science in Depart-

ment of Informatics, University of Oslo. He received his the

Cand. Real. degree in 1975 and his Dr. Philos. degree in 1985,

both form the University of Oslo. He acted as Head of the

Department of Informatics for 4 years from 1987. Gjessing’s

original work was in the field of programming languages and

programming language semantics, in particular related to ob-

ject oriented concurrent programming. He has worked with

computer interconnects and computer architecture for cache

coherent shared memory, with DRAM organization, with ring

based LANs and with IP fast reroute. His current main research

interests are multipath routing and transport in IP-like net-

works.

	On the usability of transport protocols other than TCP: A home gateway and internet path traversal study
	1 Introduction
	2 NAT interference: local tests
	2.1 Test setup
	2.2 Off-the-shelf equipment tests
	2.3 Linux
	2.3.1 No conntrack and no nat
	2.3.2 conntrack but no nat
	2.3.3 conntrack and nat

	2.4 FreeBSD
	2.4.1 Multi-homing with IPFW

	2.5 Discussion

	3 Bidirectional internet tests
	3.1 NAT interference
	3.2 Non-NAT middlebox interference

	4 Large-scale internet path traversal tests
	4.1 AS-level analysis
	4.2 End system study

	5 Related work
	6 Conclusion
	Declaration of Competing Interest
	Appendix A NAT/NAPT and their operations
	Supplementary material
	CRediT authorship contribution statement
	References

