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Abstract

The Newton radius of a code is the largest weight of a uniquely correctable error. The covering
radius is the largest distance between a vector and the code. In this paper, we use the modular
representation of a linear code to give an e.cient algorithm for computing coset leaders of
relatively high Hamming weight. The weights of these coset leaders serve as lower bounds on
the Newton radius and the covering radius for linear codes.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

When using a linear [n; k]q-code to communicate over a noisy channel, maximum
likelihood decoding is used to remove errors introduced during transmission. If the
number of errors is less than or equal to t = �(d − 1)=2�, where d is the minimum
distance, the transmitted codeword will always be the codeword closest to the received
vector. If the number of errors is more than t, the codeword closest to the received
vector may or may not be the transmitted codeword, depending on the error pattern
and the code.

In [2], the term Newton radius was introduced as the largest weight of a uniquely
correctable error. In that paper, some general bounds on the Newton radius for binary
linear codes are given with some improved bounds on the Newton radius for binary
;rst-order Reed–Muller codes. The paper also determines the Newton radius exactly
for binary equidistant codes.
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The idea of using modular representation of a code for studying the Newton and
covering radii was introduced in [3]. The work in our paper generalizes the methods
used in [3]. In [1], general lower and upper bounds on the Newton radius for q-ary
linear codes are given.

When trying to compute the Newton radius of a code, it is necessary to improve on
these bounds, and narrow the interval where the Newton radius can be found. In this
paper, we give an algorithm for computing uniquely correctable vectors of high weight
for any q-ary linear code. This algorithm makes it possible to improve on the lower
bounds, by exhibiting a uniquely correctable vector of higher weight than the known
lower bound. One nice feature of this algorithm is that its complexity does not depend
on n, the length of the code, but only on the dimension k. The algorithm can also be
used to give lower bounds on the covering radius of a code.

Using this algorithm we have been able to improve some of the lower bounds for
the Newton radius for binary ;rst-order Reed–Muller codes given in [2].

2. Newton radius and covering radius using modular representation

Let C be an [n; k]q code, that is, a linear code of length n and dimension k over
the ;nite ;eld Fq. An error e is (uniquely) correctable if and only if

w(e) = d(e; 0)¡d(e; c)

for all non-zero code words c, that is, it is the unique coset leader in its coset. The
Newton radius �(C) of C is the largest weight of a uniquely correctable error

�(C) = max{w(x) |w(x)¡d(x; c) for all c∈C\{0}}:
The covering radius r(C) is the maximal distance of a vector from the code

r(C) = max{w(x) |w(x)6d(x; c) for all c∈C\{0}}:
From the de;nitions of the Newton and covering radii, it immediately follows

that �(C)6 r(C). A simple proof (see e.g. [2]) shows that if an [n; k]q code has
a zero-position (that is, all code words are zero in this position) and the code is short-
ened to an [n−1; k]q code by removing the zero-position, then both the Newton radius
and the covering radius decrease by one. Therefore, we will assume from now on that
the codes do not have zero-positions.

Two [n; k]q codes C1 and C2 are equivalent if one is obtained from the other by some
permutation of the columns of the generator matrix and multiplication of columns with
non-zero scalars. Since equivalent codes have the same covering radii and the same
Newton radii, it is convenient for our purpose to look at classes of equivalent codes.

2.1. Modular representation

To represent an equivalence class of codes we will use modular representation
(see [4]).

By multiplying by non-zero scalars if necessary, we will assume that all columns
in the generator matrix G of C has a 1 as the ;rst non-zero entry. Thus, there are
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(qk − 1)=(q− 1) vectors of length k that may appear in G. Let A= {1; 2; : : : ; (qk − 1)=
(q − 1)}, order the columns in some order, and denote a column as ga = (ga;1;
ga;2; : : : ; ga;k)T for a∈A. Let u= (ua)a∈A be a vector of length (qk − 1)=(q− 1), where
ua is the number of times ga appears as a column in G. Then the vector u speci;es
the code C up to equivalence.

For vectors a = (a1; a2; : : : ; am) and b = (b1; b2; : : : ; bm) of real numbers, we de;ne
the relations a6 b, a¡ b, etc. to be component-wise.

a6 b ⇔ ai6 bi; i = 1; : : : ; m;

a¡ b ⇔ ai ¡bi; i = 1; : : : ; m;

etc.
Let Ia(G) be the set of positions where ga appears in G:

Ia(G) = {i | column no: i of G = ga}:
For a vector x∈ Fnq, let v(x) = (va;�(x))(a;�)∈A×Fq where

va;�(x) = va;�(G; x) = |{i∈ Ia(G) | xi = �}|:
Clearly, we have∑

�∈Fq
va;�(x) = ua: (1)

In this notation, the weight of x can be written as

w(x) =
∑
a∈A

(ua − va;0(x)): (2)

We are interested in measuring the distance between a vector x and the codewords of
C. For m∈ Fkq, let cm = m · G. In our notation we then have

d(x; cm) =
∑
a∈A

(ua − va;m·ga(x)); (3)

where m · ga = m1ga;1 + · · · + mkga;k is the usual inner product.
Let M = Fkq\{0}, and let d(x) = (dm(x))m∈M , where

dm(x) = d(x; cm) − w(x):

In other words, dm tells us how much closer x is to the all-zero codeword than to cm.
Translating this into modular representation using (2) and (3) we get

dm(x) =
∑
a∈A

(ua − va;m·ga(x)) −
∑
a∈A

(ua − va;0(x))

=
∑
a∈A

(va;0(x) − va;m·ga(x)): (4)

If x is a coset leader, we know that 06d(x; cm)−w(x) for all m∈M . If x is a unique
coset leader we have 16d(x; cm) − w(x) for all m∈M . Using d(x) we can say that
x is a coset leader if and only if d(x)¿ 0, and that x is a unique coset leader if and
only if d(x)¿ 1.
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Thus we are interested in ;nding v(x) that, by using (4), yields d(x)¿ 0 or d(x)¿ 1.
With this notation the Newton radius and the covering radius can be described as

�(C) = max

{∑
a∈A

(ua − va;0(x)) | d(x)¿ 1

}
;

r(C) = max

{∑
a∈A

(ua − va;0(x)) | d(x)¿ 0

}
:

We proceed to show that for a given code there is a 1–1 correspondence between
v(x)-vectors and d(x)-vectors. Assume that d(x) and u are given, and that the va;�(x)
are unknown. Then (1) gives us (qk − 1)=(q − 1) equations, and (4) gives us qk − 1
equations. Together this is q · (qk−1)=(q−1) equations in q · (qk−1)=(q−1) unknown.
We prove that these equations are independent and, therefore, uniquely determine the
unknown v(x).

We can write the equation set as a vector/matrix equation. To this end, we ;rst ;x
some order for the elements of Fq={�0 =0; �1 =1; : : : ; �q−1}. Next, we ;x some order
of the variables (columns) and equations (rows). The variables (columns) are indexed
by (a; �) and are listed in the following order:

(1; �0); (1; �1); (1; �2); : : : ; (1; �q−1); (2; �0); (2; �1); (2; �2); : : : ; (2; �q−1); : : : ;

(
qk − 1
q− 1

; �0

)
;
(
qk − 1
q− 1

; �1

)
;
(
qk − 1
q− 1

; �2

)
; : : : ;

(
qk − 1
q− 1

; �q−1

)
:

The rows (equations) are indexed by a or m and are listed in the following order:

1; 2; 3; : : : ;
qk − 1
q− 1

;m1;m2;m3; : : : ;mqk−1;

where mi is the q-ary representation of the integer i with the digits �0; : : : ; �q−1. The
equations indexed by A correspond to Eq. (1), and the equations indexed by M corre-
spond to Eq. (4). We denote the coe.cient matrix by B= (bz; (a;�)), where z ∈A ∪M ,
a∈A and �∈ Fq.

Using the same indexing as with B, de;ne the matrix H as follows:

ha; (a;�) = qk−2 − 1 for all �∈ Fq; a∈A;

ha; (a′ ;�) = 0 for all a; a′ ∈A; a �= a′; �∈ Fq;

hm; (a;0) = q−1 − 1 for all m∈M; a∈A;

hm; (a;�) = q−1 for all m∈M; a∈A; �∈ Fq\{0}:
Then

B−1 = (q1−k(B+ H))T:
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To show this, we ;nd it convenient to introduce some extra notations

bz;a = (bz; (a;�0); bz; (a;�1); : : : ; bz; (a;�q−1));

bz = (bz;1; bz;2; bz;3; : : : ; bz; (qk−1)=(q−1)):

In this notation, bz is the row of B indexed with z. In the following, we will call a
segment bz;a of the row bz a block. Note that

ba;a is all one for all a∈A;
ba;a′ is all zero for all a; a′ ∈A; a �= a′;

bm; a is all zero for all m∈M such that m · ga = 0:

In all other cases, bm; a contains a 1 in the ;rst position, a −1 in position i, where
m · ga = �i, and zero in the remaining positions.

Lemma 2.1. For all m∈M , the number of all-zero blocks in bm is (qk−1−1)=(q−1).

Proof. We get an all-zero block every time m · ga = 0. This can be seen as a lin-
ear equation in the k unknown ga;1; : : : ; ga;k , and thus has qk−1 solutions. After re-
moving the all-zero solution and normalizing (only keeping those solutions that have
a one as the ;rst non-zero element), we are left with (qk−1 − 1)=(q − 1) solutions
in {ga | a∈A}.

We consider some inner products:

Lemma 2.2. We have

(a) ba · ba = q for all a∈A;
(b) ba · ba′ = 0 for all a; a′ ∈A; a �= a′;

(c) bm · ba = 0 for all m∈M; a∈A;
(d) bm · bm = 2qk−1 for all m∈M;
(e) bm · bm′ = qk−1 for all m;m′ ∈M; m �= m′:

Proof. Parts (a) and (b) are trivial. For part (c), we only need to observe that the
sum of the numbers in one block of bm;m∈M is always 0. For the inner product
in part (d), we get a contribution of 2 from the blocks that contain a 1 and a −1,
and a contribution of 0 from the all-zero blocks. By Lemma 2.1, we have ((qk − 1)=
(q − 1)) − ((qk−1 − 1)=(q − 1)) = qk−1 blocks that have a 1 and a −1. For part (e),
we ;rst ;nd in how many blocks bm and bm′ are equal. They are equal in the block
corresponding to a if m · ga =m′ · ga. As in Lemma 2.1, the equation (m−m′) · ga = 0
has (qk−1 − 1)=(q− 1) solutions in {ga | a∈A}. Let t be the number of blocks where
bm and bm′ are both all-zero. For the inner product we then get a contribution of
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2 from (qk−1 − 1)=(q − 1) − t of the blocks, and we get a contribution of 0 from
2 · (qk−1 − 1)=(q − 1) − t blocks. For the rest of the blocks we get a contribution of
1, since every block that is not all-zero has a 1 in the ;rst position. Summing up
we get

bm · bm′ = 1 ·
(
qk − 1
q− 1

−
(

2 · q
k−1 − 1
q− 1

− t
)
−
(
qk−1 − 1
q− 1

− t
))

+ 2 ·
(
qk−1 − 1
q− 1

− t
)

= qk−1:

Lemma 2.3. Let hz be de5ned similarly as bz for z ∈A ∪M . We then have

(a) ba · ha = qk−1 − q for all a∈A;

(b) ba · ha′ = 0 for all a; a′ ∈A; a �= a′;

(c) ba · hm = 0 for all a∈A; m∈M;

(d) bm · ha = 0 for all a∈A; m∈M;

(e) bm · hm′ = −qk−1 for all m;m′ ∈M:

The proof is a straightforward check of the stated equalities from the de;nitions of
B and H , where part (e) also makes use of Lemma 2.1. Combining Lemmas 2.2 and
2.3 we get the following result.

Theorem 2.4. q1−k(B + H)BT is the identity matrix of order q · (qk − 1)=(q − 1), in
particular B is non-singular.

Theorem 2.4 proves that for a given code there is a 1–1 correspondence between
v(x)-vectors and d(x)-vectors. Searching for v(x)’s that give d(x)¿ 0 or d(x)¿ 1
is equivalent to searching for x’s that are coset leaders, respectively, unique coset
leaders. In the following, we will let d denote any vector of length qk − 1 with integer
components.

Instead of searching for v(x)’s, we will turn the problem around and search for d(x)’s
among the vectors with components in the non-negative integers. For a given d¿ 0
or d¿ 1, we can use Theorem 2.4 to compute the corresponding v. If the resulting v
only has non-negative integers as components we have d=d(x) and v= v(x) for some
coset leader x (unique if d¿ 1). In other words, the strategy is to specify the distance
properties we want our coset leader to have, and then use B−1 to show us what this
coset leader is.

Of course, it is very easy to specify distance properties which no coset leader has,
in which case we will get a v with negative or non-integer components. In this case
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d �∈ {d(x) | x∈ Fnq} and v �∈ {v(x) | x∈ Fnq}. The next sections are concerned with how
to choose d such that with high probability, d = d(x) for some coset leader x.

3. Constraints on the selection of d

First we need to introduce some more notation. For a d-vector, let !(d) be the sum
of all components of d:

!(d) =
∑
m∈M

dm:

Let !a;�(d) be the sum of all elements of d with coordinates corresponding to points
in the hyperplane in Fkq given by ga ·m = �:

!a;�(d) =
∑

{m∈M |ga·m=�}
dm:

By using Theorem 2.4 we can now compute each va;� in terms of d.

Lemma 3.1. For each (a; �)∈A× Fq we have

va;� =
ua
q

+
!(d)
qk

− !a;�(d)
qk−1 : (5)

Proof. In matrix notation, the set of equations is given as B · v(x) = ( u
T

dT ). Multiplying
by B−1 on both sides and transposing we get

vT = q1−k((u; d) · B+ (u; d) · H):

We focus on the calculation of one entry va;�, and break the proof into two cases.
Case 1: � �= 0. In the product of (u; d) with column (a; �) of B, the u-part will meet

a vector that contains a 1 in position a and zero otherwise. Since � �= 0 the d-part will
meet a vector that contains −1 in the positions where m · ga = �, and zero otherwise.
The inner product of (u; d) with column (a; �) of B will therefore be ua − !a;�(d).
In the product of (u; d) with column (a; �) of H , the u-part will meet a vector that
contains qk−2 − 1 in position a, and zero otherwise. Since � �= 0, the d-part will meet
a vector with all entries q−1. This inner product will be ua(qk−2 − 1) + q−1!(d), and
all together we get

va;� = q1−k(ua − !a;�(d) + ua(qk−2 − 1) + q−1!(d)) =
ua
q

+
!(d)
qk

− !a;�(d)
qk−1 :

Case 2: � = 0. The calculation of the u-part in the inner products is the same as
above. In the product of (u; d) and column (a; 0) of B, the d-part will meet a vector
that contains a 1 in all positions where m · ga �= 0, and zero otherwise. So this inner
product will be ua + !(d) − !a;0(d). In the product of (u; d) and column (a; 0) of H ,
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the d-part will meet a vector that has q−1 − 1 in all coordinates, so this inner product
will be ua(qk−2 − 1) + (q−1 − 1)!(d). Summing up we get

va;0 = q1−k(ua + !(d) − !a;0(d) + ua(qk−2 − 1) + (q−1 − 1)!(d)

=
ua
q

+
!(d)
qk

− !a;0(d)
qk−1 :

As explained earlier, we want to choose d-vectors such that d=d(x) for some x∈ Fnq.
The following two propositions give us two constraints on the selection
of d.

Proposition 3.2. If each va;� ∈Z, then !(d) ≡ 0 (mod qk−1).

Proof. Using (4) we get the following:

!(d) =
∑
m∈M

∑
a∈A

(va;0 − va;m·ga) =
∑
a∈A

∑
m∈M

(va;0 − va;m·ga):

For any given ga and � �= 0, there are qk−1 solutions in M to the equation m ·
ga = �. When m · ga = 0, the term va;0 − va;m·ga vanishes. The equation can then be
written as

!(d) =
∑
a∈A

∑
�∈F∗q

qk−1(va;0 − va;�) = qk−1
∑
a∈A

∑
�∈F∗q

(va;0 − va;�);

where F∗
q = Fq\{0}.

In other words, we only need to consider those d’s for which !(d) is a multiple of
qk−1.

Proposition 3.3. If each va;� ∈Z, then !b;"(d) ≡ 0 (mod qk−2) for all (b; ")∈A× Fq.

Proof.
Case 1: " = 0. We sum (4) over those m∈M for which m · gb = 0. This set has

qk−1 − 1 elements.

!b;0(d) =
∑
a∈A

∑
m·gb=0

(va;0 − va;m·ga)

= (qk−1 − 1)
∑
a∈A

va;0 −
∑

a∈A\{b}

∑
m·gb=0

va;m·ga −
∑

m·gb=0

vb;m·gb :

When a �= b, the number of vectors in M that satisfy m · gb = 0 and m · ga = 0 is
qk−2 − 1, and the number of vectors in M that satisfy m · gb = 0 and m · ga = � �= 0 is
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qk−2. The equation above can then be written as

!b;0(d) = (qk−1 − 1)
∑
a∈A

va;0 −
∑

a∈A\{b}
(qk−2 − 1)va;0

−
∑

a∈A\{b}

∑
�∈F∗q

qk−2va;� − (qk−1 − 1)vb;0

= (qk−1 − qk−2)
∑

a∈A\{b}
va;0 − qk−2

∑
a∈A\{b}

∑
�∈F∗q

va;�:

Case 2: " �= 0. We sum (4) over those m∈M that have m · gb = ". This set has
qk−1 elements. We get

!b;"(d) =
∑
a∈A

∑
m·gb="

(va;0 − va;m·ga)

= qk−1
∑
a∈A

va;0 −
∑

a∈A\{b}

∑
m·gb="

va;m·ga −
∑

m·gb="
vb;m·gb :

When a �= b, the number of solutions in M to the equations m · gb = " and m · ga = �
is qk−2. We can then write the equation as

!b;"(d) = qk−1
∑
a∈A

va;0 − qk−2
∑

a∈A\{b}

∑
�∈Fq

va;� − qk−1vb;":

By Proposition 3.2 we see that if d=d(x) for some x∈ Fnq, it is necessary that !(d)
is a multiple of qk−1. Proposition 3.3 says that the sum of all coordinates of d indexed
by the points of a hyperplane must be a multiple of qk−2. We proceed to show how
one can construct d’s that give va;� ∈Z for each (a; �)∈A× Fq.

4. Creating d-vectors

In this section, we will show how one can construct d-vectors that meet the require-
ments from Propositions 3.2 and 3.3. In the following, if d∈{d(x) | x∈ Fnq} we will
say that d is good. In this section, we will show how one can construct a d such that
the corresponding v only has integer components.

To facilitate the analysis, we will from now on let d be indexed by all the points
in Fkq. However, we shall always insist that d0 = 0 as it should be according to the
de;nition given by (4), so that this slight abuse of notation will not invalidate any
results from earlier sections. In particular, there will still be a 1–1 correspondence
between d-vectors and v-vectors, and !(d) and !a;�(d) will be the same regardless
of whether d0 is included or not. When writing d¿ 1 it will be understood that this
condition does not apply to d0.

The analysis will be explained in the language of hyperplanes and linear spaces of
codimension 2 in Fkq, so we start by introducing some notation for this.
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For (a; �)∈A× Fq, let #a;� be the hyperplane de;ned by ga ·m= �. For e �= f, let
he;fi; j be the a.ne subspace of Fkq of dimension k − 2 de;ned by he;fi; j =#e;�i ∩#f;�j .

For given e and f in A, we denote the class of all the q2 spaces he;fi; j by He;f:

He;f = {he;fi; j | 06 i; j6 q− 1}:
We can write the equations for he;fi; j ∩#a;� in matrix notation



ge;k ge;k−1 · · · ge;1

gf;k gf;k−1 · · · gf;1

ga;k ga;k−1 · · · ga;1







mk

mk−1

...

m1




=



�i

�j

�


 :

Let the coe.cient matrix of the above equations be Z . Since he;fi; j is a space of dimen-

sion k − 2, the rank of Z is either 2 or 3. If rank(Z) = 3, #a;� ∩ he;fi; j will be a linear
space of dimension k − 3 for any i; j and any �.

If rank(Z) = 2, then either #a;� ∩ he;fi; j = ∅ or he;fi; j ⊆ #a;�, depending on i; j and �.

All the q2 diLerent he;fi; j in one He;f cover all of Fkq. Because of this, and the fact that

the he;fi; j have dimension one lower than #a;�, there will be exactly q indices (i; j) such

that he;fi; j ⊆ #a;� for a given � when rank(Z) = 2. Likewise, given a pair of indices

(i; j), there will be exactly one � such that he;fi; j ⊆ #a;�. We will use the notation
He;f‖#a;� to mean that e; f and a are chosen such that rank(Z) = 2.

Given e and f, to have He;f‖#a;�, ga must be a non-zero linear combination of
ge and gf, normalized to have ;rst non-zero entry 1. There are, therefore, (q2 − 1)=
(q− 1) = q+ 1 diLerent ga’s that give He;f‖#a;� for a given e and f. We denote this
set of indices as Pe;f:

Pe;f = {a |He;f‖#a;�}:
Whenever He;f‖#a;�, we de;ne the set of indices (i; j) such that he;fi; j ⊆ #a;� to be

J e;fa;� = {(i; j)|he;fi; j ∈He;f and he;fi; j ⊆ #a;�}:

Notice that |J e;fa;� | = q, and that a∈Pe;f if and only if He;f‖#a;�.
For each class He;f, let de;f be a vector indexed the same way as d. In particular,

de;f shall have the value 0 in the component corresponding to 0. Let de;f have the
value te;fi; j in the coordinates indexed by points in he;fi; j , where

q−1∑
i=0

q−1∑
j=0

te;fi; j = qTe;f (constraint 1):

Lemma 4.1. !(de;f) ≡ 0 (mod qk−1) and !a;�(de;f) ≡ 0 (mod qk−2) for any (a; �)∈
A× Fq.
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Proof. Each he;fi; j contains qk−2 points, so we get

!(de;f) = qk−2
q−1∑
i=0

q−1∑
j=0

te;fi; j :

Since
∑q−1

i=0

∑q−1
j=0 t

e;f
i; j is a multiple of q we get that !(de;f) ≡ 0 (mod qk−1).

For !a;�(de;f) we get two cases to consider.
Case 1: He;f , #a;�. In this case #a;� ∩ he;fi; j will consist of qk−3 points for each

i; j. We then get

!a;�(de;f) = qk−3
q−1∑
i=0

q−1∑
j=0

te;fi; j :

Again, since
∑q−1

i=0

∑q−1
j=0 t

e;f
i; j is a multiple of q we get !a;�(de;f) ≡ 0 (mod qk−2).

Case 2: He;f‖#a;�. For indices (i; j) not in J e;fa;� we have he;fi; j ∩#a;� = ∅. We then
get

!a;�(de;f) = qk−2
∑

(i; j)∈J e;fa;�

te;fi; j ≡ 0 (mod qk−2):

The lemma above shows us how we can choose de;f’s that meet the requirements
given in Propositions 3.2 and 3.3. There is one general constraint on the selection of
te;fi; j in addition to constraint 1. Since we require that the component in de;f indexed
by 0 has the value 0, we also get the constraint

te;f0;0 = 0 (constraint 2):

We give now an algorithm for selecting each te;fi; j . In this algorithm we need a new
set of vectors. For a∈A and 16 r6 ua, let ya; r be a vector indexed in the same
manner as te;f.

Algorithm 1.

For each a∈Pe;f:
For each 16 r6 ua:

Randomly choose +∈ Fq, but make sure that when the algorithm is
;nished, the number of times += 0 has been chosen is a
multiple of q.
Let ya;ri; j have the value q− 1 when (i; j)∈ J e;fa;+ ,
and the value 0 when (i; j) �∈ J e;fa;+ .

Let te;fi; j =
∑

a∈Pe;f
∑ua

r=1 y
a;r
i; j (mod q).

Notice that (0; 0)∈ J e;fa;+ if and only if + = 0. Since the number of times + = 0 is
chosen is a multiple of q, the vector te;f will satisfy constraint 2.
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We know that |J e;fa;+ |=q, so we get that
∑q−1

i=0

∑q−1
j=0 y

a;r
i; j =q(q−1) for any a∈Pe;f

and 16 r6 ua. We can then check that a te;f-vector chosen according to Algorithm
1 also meets constraint 1:

q−1∑
i=0

q−1∑
j=0

te;fi; j ≡
q−1∑
i=0

q−1∑
j=0

∑
a∈Pe;f

ua∑
r=1

ya;ri; j

≡
∑
a∈Pe;f

ua∑
r=1

q(q− 1) ≡ 0 (mod q):

We need two more lemmas before we are ready to prove that a de;f constructed
using a te;f from Algorithm 1 is useful for constructing a good d.

Lemma 4.2. Given e; f∈A, let a; a′ ∈Pe;f, a �= a′. For any �∈ Fq we then have
∑

(i; j)∈J e;fa;�

ya
′ ; r
i; j = q− 1 and

∑
(i; j)∈J e;fa;�

ya;ri; j ≡ 0 (mod q):

Proof. The two hyperplanes given by ga and ga′ are not parallel, and so they will
intersect in a subspace of dimension k − 2. Since both of them can be written as
unions of spaces from He;f, they must intersect in exactly one of the he;fi; j in He;f.

From this we see that one of the terms in
∑

(i; j)∈J e; fa; � y
a′ ; r
i; j will be q− 1 and the others

will be 0.
From the construction of ya; r in Algorithm 1, we get that the sum

∑
(i; j)∈J e; fa; � y

a;r
i; j

will be either 0 or q(q−1), depending of the choice of + made when constructing ya; r .
In either case the sum is 0 mod q.

We need to de;ne one ;nal variable before the next lemma. For given e; f∈A, let
Xe;f ≡∑a∈Pe;f ua (mod q).

Lemma 4.3. Let e; f∈A be given, and let te;f be chosen according to Algorithm 1.
Then for any �∈ Fq

∑
(i; j)∈J e;fa;�

te;fi; j ≡ ua − Xe;f mod q:

Proof. Substituting for te;fi; j and changing the order of summations we get

∑
(i; j)∈J e;fa;�

te;fi; j ≡
∑
a′∈Pe;f

ua′∑
r=1

∑
(i; j)∈J e;fa;�

ya
′ ; r
i; j (mod q):
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Splitting the outer sum into the cases a= a′ and a �= a′, and using Lemma 4.2 we get∑
(i; j)∈J e;fa;�

te;fi; j ≡
ua∑
r=1

∑
(i; j)∈J e;fa;�

ya;ri; j +
∑

a′∈Pe;f\{a}

ua′∑
r=1

∑
(i; j)∈J e;fa;�

ya
′ ; r
i; j

≡ 0 + (q− 1)(Xe;f − ua) ≡ ua − Xe;f (mod q):

Notice that adding a multiple of q to a component of a te;f-vector constructed by
Algorithm 1 will not change the validity of Lemma 4.3, since all computations are
done mod q. However, adding q to some te;fi; j will increase Te;f by one.

4.1. Constructing d

The idea now is to take a set H of classes He;f, construct a de;f for each class, and
let d be the sum of the de;f’s. However, the set H must be chosen carefully. In order
to get a good d, it turns out to be necessary that

|{He;f ∈H | a∈Pe;f}| ≡ 1 (mod q) for each a∈A (constraint 3):

We construct H as follows. Start with H = ∅ and select e∈A at random. Choose
f1 ∈A\{e}, and put He;f1 in H . Continue recursively: Given He;f1 ; : : : ; He;fl−1 , select
fl ∈A\(

⋃l−1
i=1 Pe;fi) and put He;fl in H . The process stops when A=

⋃l
i=1 Pe;fi . Creating

H this way we will have Pe;fi ∩ Pe;fj = {e} when i �= j. At the start of the recursion
there will be (qk − 1)=(q − 1) − 1 elements in A to choose from. Since |Pe;fl | = q +
1, for each new He;fl that gets added to H , the set from which the next fl+1 can
be chosen from is reduced by q elements. We, therefore, get |H | = (1=q)(((qk − 1)=
(q−1))−1)=(qk−1 −1)(q−1). When a �= e we then have |{He;f ∈H | a∈Pe;f}|=1,
and when a = e we get |{He;f ∈H | e∈Pe;f}| = (qk−1 − 1)(q − 1) ≡ 1 (mod q). This
construction will then give us a set H satisfying constraint 3.

We sum this up in a second algorithm:

Algorithm 2.

Compute H such that constraint 3 is satis;ed
For each He;f ∈H :

Select te;f according to Algorithm 1.
Compute Te;f and Xe;f.
While Te;f �≡ −Xe;f (mod q):

Randomly select (i; j)∈ Fq × Fq\{(0; 0)}.
Let te;fi; j = te;fi; j + q.

Construct de;f using te;f.
Let d =

∑
de;f.

Lemma 4.4. Let e; f and a be given such that He;f , #a;�. Then
!(de;f)
qk

− !a;�(de;f)
qk−1 = 0:



226 H. Raddum /Discrete Mathematics 274 (2004) 213–231

Proof. Since He;f , #a;�, the hyperplane #a;� will meet each he;fi; j in qk−3 points.

This gives us !a;�(de;f)= qk−3∑q−1
i=0

∑q−1
j=0 t

e;f
i; j . The lemma follows from the fact that

!(de;f) = qk−2∑q−1
i=0

∑q−1
j=0 t

e;f
i; j = q!a;�(de;f).

We are now ready to prove the main result in this section.

Theorem 4.5. Construct d according to Algorithm 2. Then

va;� =
ua
q

+
!(d)
qk

− !a;�(d)
qk−1 ∈Z:

Proof. Collecting the fractions we get

va;� =
qk−1ua + !(

∑
He;f∈H de;f) − q!a;�(

∑
He;f∈H de;f)

qk
:

By Lemma 4.4 we only need to include the terms where a∈Pe;f in the sum. By
substituting !(de;f) and !a;�(de;f) with the expressions given in Lemma 4.1 we get

va;� =
qk−1ua +

∑
{He;f∈H |a∈Pe;f}(q

k−2 · qTe;f − q · qk−2∑
(i; j)∈J e; fa; � t

e;f
i; j )

qk

=
ua +

∑
{He;f∈H |a∈Pe;f}(Te;f −∑(i; j)∈J e; fa; � t

e;f
i; j )

q
:

To prove the theorem it is therefore su.cient to show

ua +
∑

{He;f∈H |a∈Pe;f}


Te;f −

∑
(i; j)∈J e;fa;�

te;fi; j


 ≡ 0 (mod q):

Since each de;f is constructed using Algorithm 2, we know that Te;f ≡ −Xe;f, and by
Lemma 4.3 that∑

(i; j)∈J e;fa;�

te;fi; j ≡ ua − Xe;f (mod q):

Substituting this into the expression above we get

ua +
∑

{He;f∈H |a∈Pe;f}
− ua (mod q):

The number of terms in the sum is congruent to 1 modulo q since H satis;es constraint
3. Finally, the expression can then be written as

ua +
∑

{He;f∈H |a∈Pe;f}
− ua ≡ ua − ua ≡ 0 (mod q):
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5. Adjusting d

Theorem 4.5 solves one part of the problem on how to ;nd good d’s. However,
several components in the corresponding v may still be negative, in which case d is
not good. This section is concerned with how to alter d to remove negative numbers
in the corresponding v.

For (a; �)∈A × F∗q , let za;� be a vector indexed by the points in Fkq. Let za;� have
the value q in all components corresponding to points in #a;�, and have the value 0
otherwise.

The vector v is given by d and u, where we consider u to be a given constant vector.
In the remainder of this section we will write va;�(d) to mean the value va;� gets using
d in (5). The following lemma explains how v changes when adding or subtracting a
za;� to d.

Lemma 5.1. Let a; b∈A and "; �∈ Fq. We then have
(a) va;�(d ± zb;") = va;�(d) for b �= a;

(b) va;�(d ± za;") = va;�(d) ± 1 for " �= �;

(c) va;�(d ± za;�) = va;�(d) ∓ (q− 1):

Proof. For any b and " we have !(zb;")=qk = q · qk−1=qk = 1.
(a) We isolate the terms involving zb;".

va;�(d ± zb;") =
ua
q

+
!(d ± zb;")

qk
− !a;�(d ± zb;")

qk−1

=
(
ua
q

+
!(d)
qk

− !a;�(d)
qk−1

)
± !(zb;")

qk
∓ !a;�(zb;")

qk−1

= va;�(d) ± !(zb;")
qk

∓ !a;�(zb;")
qk−1 :

Since a �= b, the hyperplane #a;� will meet #b;" in qk−2 points and so we have
!a;�(zb;") = q · qk−2. The two last terms in the expression above will then cancel out,
and so va;� will remain unchanged.

(b) Separating as above we get

va;�(d ± za;") = va;�(d) ± !(za;")
qk

∓ !a;�(za;")
qk−1 :

The two hyperplanes #a;� and #a;" are parallell, and so we get !a;�(za;") = 0.
(c) Separating we get

va;�(d ± za;�) = va;�(d) ± !(za;�)
qk

∓ !a;�(za;�)
qk−1 :

We have !a;�(za;�) = q · qk−1 = qk , so the last term of the expression is q.
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From Lemma 5.1 we see that adding and/or subtracting any number of za;�’s to a
d constructed using Algorithm 2, will not change the property that all components of
the corresponding v will be integers.

It is possible to use Lemma 5.1 to change d so that some or all negative components
of the corresponding v are changed to non-negative integers. However, in order to keep
d0 = 0 we cannot use za;0 for any a∈A. Unfortunately, we have not been able to ;nd
an algorithm based on Lemma 5.1 that is guaranteed to leave v¿ 0.

There are basically two ways one can change d to remove negative components of v,
but certain conditions must be met in order not to introduce new negative components
in v, and to keep d¿ 0 or d¿ 1.

Lemma 5.2. Assume −l6 va;�(d)¡ 0, and that there exists �1; : : : ; �l ∈ F∗q , such that
va;�i(d)¿ (q − l), i = 1; : : : ; l. Then the number of negative components in {vb;"(d +∑l

i=1 za;�i) | (b; ")∈A×Fq} is less than the number of negative components in {vb;"(d)
| (b; ")∈A× Fq}.

Proof. By part (a) of Lemma 5.1 only the components va;�0 ; : : : ; va;�q−1 will change
when going from d to d +

∑l
i=1 za;�i . Since � �= �i, 16 i6 l, part (b) of Lemma 5.1

gives us

va;�

(
d +

l∑
i=1

za;�i

)
= va;�(d) + l¿ 0;

so there is at least one negative component that has been changed to non-negative.
From part (c) of Lemma 5.1 it follows that each va;�i will decrease by (q − 1) when
za;�i is added, but we also get from part (b) that va;�i will increase by 1 when each of
the l− 1 other za;�j ’s are added. We then get for i = 1; : : : ; l

va;�i

(
d +

l∑
i=1

za;�i

)
= va;�i(d) − (q− 1) + (l− 1)

¿ (q− l) − (q− 1) + (l− 1) = 0;

so no new negative components have been introduced.

In the next lemma, we let l = q if we require d¿ 0 (searching for coset leaders),
and we let l= q+ 1 if we require d¿ 1 (searching for unique coset leaders).

Lemma 5.3. Assume that (1− q)6 va;� ¡ 0 for one �∈ F∗q , and that va;"¿ 1 for all
"∈ Fq\{�}. Assume also that min{dm |m∈#a;�}¿ l. Then the number of negative
components in {vb;"(d − za;�) | (b; ")∈A × Fq} is less than the number of negative
components in {vb;"(d) | (b; ")∈A× Fq}.

Proof. By part (a) of Lemma 5.1, only the components va;�0 ; : : : ; va;�q−1 will change
when going from d to d− za;�. By part (c) of Lemma 5.1 va;� will increase by (q−1)
when going from d to d − za;�. This gives va;�(d − za;�) = va;�(d) + q − 1¿ 0, so
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at least one of the negative components in v becomes non-negative when subtracting
za;�. By part (b) of Lemma 5.1, all the other va;", "∈ Fq\{�} will decrease by 1. We
then have va;"(d − za;�) = va;"(d) − 1¿ 0, so no components in v have been changed
from non-negative to negative. Since min{dm |m∈#a;�}¿ l, we still have d¿ 0 or
d¿ 1.

In the implementation of the ideas presented in this paper, after d was constructed
using Algorithm 2, the corresponding v-vector was checked to see if the conditions in
Lemmas 5.2 or 5.3 were met. This was repeated until v¿ 0, or until neither lemma
could be used to construct a better d.

We want the eventual coset leaders we ;nd to have high weight. Recall that if we
;nd a good d, producing coset leader x, we have dm(x) = d(x; cm) − w(x). We can
expect that at least a few of the codewords have large distance to x. In other words,
if max{dm(x) |m∈ Fkq} is small, then w(x) must be large, relatively speaking.

This means that before the process using Lemmas 5.2 and 5.3 was started, we
subtracted as many za;�’s from d as possible, all the time keeping d¿ 0 or d¿ 1. The
order in which the za;� are subtracted turns out to be very important. Several methods
were tested. One was to always make sure that the largest value in d was decreased with
each subtraction, another was to subtract za;� when min{dm |m∈#a;�} was the largest.
In practice, it turned out that subtracting za;� when !a;�(d)=max{!b;"(d) | (b; ")∈A×
Fq} works best. In light of Lemma 5.1, this is equivalent to always increase the smallest
value in v by q− 1.

6. Test results and further work

The algorithms for ;nding coset leaders with high weight for a given code described
in this paper have been implemented on a computer. So far we have only concentrated
on some codes for q = 2 and 3. This paper describes how to construct one d-vector
that hopefully will be a good d. There are many random choices done in Algorithms
1 and 2, so iterating the construction of d’s several times will, with high probability,
result in diLerent vectors each time. By constructing many d-vectors, we hope to ;nd
a few which are good and produce coset leaders of high weight.

Not many results on the Newton radius for diLerent classes of codes are known. In
[2] the Newton radius is determined for all equidistant binary codes. The ;rst-order
binary Reed–Muller codes are studied in the same paper, and several bounds on the
Newton radius are given for these codes. The authors of [2] have also conducted
a straightforward search for unique coset leaders by randomly selecting x of weight
w, and checking whether x is a unique coset leader. For the [64; 7]2 Reed–Muller
code they tried 300 000 000 diLerent x-vectors of weight 24 without ;nding any
of them to be unique coset leaders. For the [128; 8]2 Reed–Muller code they tried
200 000 000 vectors of weight 52 without ;nding any of them to be unique coset
leaders.

Several unique coset leaders for the [64; 7]2 Reed–Muller code of weight 24 have
been found using the algorithm described above. On three diLerent executions, the
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number of d’s that needed to be produced before one resulted in a unique coset leader
of weight 24 were 96, 64 and 95, respectively.

For the [128; 8]2 Reed–Muller code, many unique coset leaders of weight 52, and a
few of weight 53 have been found. We ran the algorithm three times in search for a
unique coset leader of weight 52. To produce one of weight 52 we needed to construct
37, 40 and 23 d’s, respectively. On three diLerent searches for a unique coset leader
of weight 53 we needed to try 4843, 4072 and 3756 diLerent d’s before a unique coset
leader of weight 53 was found.

Only a few general bounds on the Newton radius are known for codes over other
alphabets than GF(2). The binary simplex codes can be generalized in two ways. One
way is to let C be the [(qk − 1)=(q− 1); k]q code where each column appears exactly
once in the generator matrix. We will refer to this type of code as the short generalized
simplex code. The [qk − 1; k]q code where each column appears exactly q − 1 times
in the generator matrix will be called the long generalized simplex code. Since the
Newton radius and the covering radius are determined for the binary simplex codes,
we have done some small searches for coset leaders of generalized simplex codes over
F3. The results are listed below, and serve as ;rst lower bounds for the covering radius
and the Newton radius for these codes.

k Short gen. simplex Long gen. simplex

3 �(C)¿ 5 | r(C)¿ 7 �(C)¿ 14 | r(C)¿ 16
4 �(C)¿ 21 | r(C)¿ 22 �(C)¿ 48 | r(C)¿ 49
5 �(C)¿ 67 | r(C)¿ 69 �(C)¿ 148 | r(C)¿ 150

In [1] the following relation between the covering radius and the Newton radius is
proven:

r(C) + (q− 1)�(C)6 (q− 1)n− k − (q− 2):

It is conjectured that this relation can be improved to

r(C) + (q− 1)�(C)6 (q− 1)(n− k):
We have done some searching among codes over F3 for counter-examples to this
relation, but have not been able to produce any. However, there are cases where the
bound is met with equality, so if the improved bound is true, it is tight.

6.1. Further work

The tests done here indicate that the method for computing coset leaders presented
in this paper is far better than doing a more straightforward search. On the author’s
workstation, ;nding a unique coset leader of weight 52 for the [128; 8]2 Reed–Muller
code takes less than a minute, and to ;nd one of weight 53 takes less than one and a
half hour.

On the other hand, it is not clear whether all coset leaders can be produced using
our method. Maybe one needs to go deeper than spaces of dimension k − 2 when
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constructing d in order to ;nd some particular coset leaders. When �(C) and r(C)
are known, it should be noted that our algorithm has problems when trying to ;nd
(unique) coset leaders of these weights when the dimension is greater than 6.

It would also be nice to have an algorithm that produces a good d with probability
1 on each execution. When testing the algorithm, we have mostly used only binary
and ternary codes. It appears that it is harder to produce good d’s when q= 3 than it
is when q = 2. In general, it is probably easier to meet the requirements needed for
removing negative numbers in v when q is small.
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