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SUMMARY

Future exascale systems are expected to adopt compute nodes that incorporate many accelerators. To shed
some light on the upcoming software challenge, this paper investigates the particular topic of programming
clusters that have multiple Xeon Phi coprocessors in each compute node. A new offload approach is consid-
ered for intra-node communication, which combines Intel’s APIs of coprocessor offload infrastructure (COI)
and symmetric communication interface (SCIF) for achieving low latency. While the conventional pragma-
based offload approach allows simpler programming, the COI-SCIF approach has three advantages in (1)
lower overhead associated with launching offloaded code, (2) higher data transfer bandwidths, and (3) more
advanced asynchrony between computation and data movement. The low-level COI-SCIF approach is also
shown to have benefits over the MPI-OpenMP counterpart, which belongs to the symmetric usage mode.
Moreover, a hybird programming strategy based on COI-SCIF is presented for joining the computational
force of all CPUs and coprocessors, while realizing communication hiding. All the programming approaches
are tested by a real-world 3D application, for which the COI-SCIF-based approach shows a performance
advantage on Tianhe-2. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Due to energy-efficiency considerations, future extreme-scale systems will not only be enhanced by
hardware accelerators, such as general purpose graphic processing units and many-integrated-core
(MIC) coprocessors, but are also projected to have multiple accelerators per compute node. This
is exemplified by Tianhe-2, which is currently ranked No. 1 on the TOP500 List [1]. Three Intel
Xeon Phi coprocessors can be found in each of Tianhe-2’s 16,000 compute nodes [2]. However,
with this unconventional multi-coprocessor-per-node setup come challenges of programming. Apart
from ensuring the performance of each coprocessor, there arises a new challenge of joining the force
of all heterogeneous computing resources, both within one compute node and across many nodes.
Here are two important issues. First, the various inter-node and intra-node communication tasks
must be executed at the highest speed simultaneously, while the computation proceeds. Second, the
CPUs should also carry out an appropriate portion of the entire computation, to avoid wasting the
unused computational capacity.
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The Xeon Phi coprocessors from Intel adopt the MIC architecture and support a modified x86
instruction set, thereby providing the programmability of a full-fledged multicore CPU [3–5]. A
coprocessor-enhanced compute node has always a CPU host consisting of one or more multicore
CPU sockets that share a memory address space. There can be one or more coprocessor cards, each
connected to the host as a device via a PCIe bus. The cores on each coprocessor have access to a
shared device memory space that is disjoint from both the host and the other coprocessors.

For a multi-coprocessor compute node, two usage modes can be adopted: offload and symmet-
ric [6]. In the offload mode, the code is first started on the CPU host, whereas compute-intensive
blocks of the code are offloaded to the coprocessors. In the symmetric mode, the coprocessors
are considered as independent nodes of a mini-supercomputer. For example, MPI can be used to
start the code simultaneously on the coprocessors and possibly, also on the CPU host. This MPI
approach in the symmetric mode is simple and has the best code portability. However, one major
disadvantage with a pure MPI approach is the excessive overhead in memory footprint because of
the large number of MPI processes. A remedy is to use one MPI process per coprocessor while
adopting OpenMP threads for intra-coprocessor parallelism. Due to the possible shortcoming of the
MPI-based symmetric usage mode, we also want to consider the offload usage mode. The usual
approach is to insert an offload pragma in front of each code block that is to be offloaded. The
resulting coprocessor-coprocessor data transfers are actually relayed through the host.

In this paper, in order to effectively program multiple Xeon Phi coprocessors within one compute
node, we adopt a new offload programming approach that allows each coprocessor to run an inde-
pendent sub-program, while bi-directional and asynchronous coprocessor-coprocessor data transfers
are directly enabled by Intel’s low-level APIs of coprocessor offload infrastructure (COI) [7] and
symmetric communication interface (SCIF) [8]. Furthermore, we present a hybrid programming
strategy combining techniques such as MPI, OpenMP, COI and SCIF, thus extending our work
to cover clusters with multi-coprocessor nodes. This hybrid strategy is motivated by performance.
Besides intra-node communication efficiency, results also show that the impact of inter-node com-
munication can be decreased by a proper overlap with the computation. The total workload is
partitioned between the CPUs and coprocessors in a way that ensures no waste of the CPUs’
computational capacity while overlapping various communication tasks with the computation.

The remainder of the paper is organized as follows. Some background information is presented
in Section 2, and the related work is surveyed in Section 3. Section 4 explains the programming
approaches, using a simple example of 3D stencil computation. Section 5 quantifies the perfor-
mance advantages of the intra-node and inter-node programming approaches based on low-level
COI-SCIF, in terms of both bandwidth benchmark measurements and time usages of a real-world
3D application. All the experiments have been done on Tianhe-2.

2. BACKGROUND

2.1. Xeon Phi coprocessor

Intel’s Xeon Phi coprocessor has up to 61 x86-based Intel CPU cores on a single chip. Each core
supports 512-bit SIMD vector computing and has 32 KB private L1 data cache and 512 KB shared
L2 cache. Four hardware threads can be enabled on each core to give up to 244 threads per chip.
Each coprocessor has its own device memory and is connected to the CPU host via PCIe bus.

2.2. Pragma-based offloading

In this pragma-based programming approach [9], the CPU host controls the entire execution of a
code. Blocks of the code can be delegated to the coprocessors for execution. Because memory is not
shared between the host and any of the coprocessors, variables and arrays needed in the offloaded
code block also have to be allocated on the target coprocessors. The content of the coprocessor
data can be transferred back to the host if desired. The following is an example of the directive that
combines code offload with host-coprocessor data transfers.
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#pragma offload target(mic:id) \
in(input_msg: length(N)) out(output_msg: length(N))

Here, id is an integer specifying the target coprocessor. The content of array input_msg (of
length N), which is marked by the in specifier, is copied from the host at the start of offload. Sim-
ilarly, the content of array output_msg is copied back to the host at the end of offload. A third
possible data specifier is inout, which marks a variable or array as both input and output. A fourth
possible data specifier is nocopy, which only marks variables that will be used on the target copro-
cessor, but without any host-coprocessor data movements (by assuming that these variables persist
on the coprocessor). For a code block that is offloaded iteratively, to save the cost of repeatedly allo-
cating/deallocating the same data storage, the modifiers alloc_if(arg) and free_if(arg)
can be used.

To initiate asynchronous host-coprocessor data transfers, such that computations have the pos-
sibility of being simultaneously carried out, the signal clause can be used together with the
offload pragma or another pragma named offload_transfer. The compiler directive only
initiates an asynchronous data transfer without offloading any computation to the target coprocessor.
A matching offload_wait pragma should be used to complete the asynchronous data transfer.
An example is as follows:

#pragma offload_transfer target(mic:id) \
out(output_msg: length(N)) signal(output_msg)

...
#pragma offload_wait target(mic:id) wait(output_msg)

Although asynchronous data transfers are achievable with pragma-based programming, one major
disadvantage is that data transfers between two coprocessors always have to be relayed through
the host. The second disadvantage is the offload start-up cost, especially for a code block that is
offloaded iteratively.

2.3. Coprocessor offload infrastructure and symmetric communication interface

To realize direct coprocessor-coprocessor data transfers in connection with offload programming
while also avoiding the overhead related to repeated offload start-ups, we use two low-level APIs:
COI and SCIF, provided by Intel’s MPSS software stack [10]. They provide the programmer with a
finer control of code offloading and data transfers.

Two of COI’s key abstractions are COIEngine and COIProcess. The first abstraction represents a
COI-capable device, for example, the host or a coprocessor, whereas the second one encapsulates a
process created by COI on a remote engine. These two abstractions can be used together to offload
computations to multiple coprocessors within one compute node.

SCIF is a low-level API that provides a low-latency communication channel between clients,
which can be either the host or coprocessors. Efficiency of SCIF is because of direct use of the
PCIe bus for bi-directional data transfers between two coprocessors (or between the host and a
coprocessor). The following is a list of abstractions used by SCIF:

� Node: It is a physical node in SCIF network. Both the host and a MIC card can be seen as a
node.
� Port: An SCIF port on a node is represented as a 16-bit integer, which is a logical endpoint on

the SCIF node similar to an IP port.
� Endpoint: The port for a connection is defined as an endpoint, which is similar to a socket.
� Registered memory: This is a registered memory driven by SCIF and is held for the connected

endpoints.

For small-amount data transfers (<4KB) between two SCIF clients, the scif_send and
scif_recv functions should be employed, which can also be used for synchronizing the two
clients. SCIF also provides remote direct memory access (RDMA) semantics. More specifically,
the scif_register function exposes local memory on a device for remote access by another
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device. Then, either function scif_readfrom or function scif_writeto can be used to
initiate asynchronous and zero-copy data transfers (>4KB) between two devices. Finally, the
scif_fence_signal function can ensure the completion of an asynchronous RDMA-based
data transfer.

2.4. Coprocessor-only usage mode

Strictly speaking, the symmetric usage mode means that the CPU host is used simultaneously with
the coprocessors [6], that is, a form of hybrid computing. We will however loosen the definition of
symmetric usage to also include the scenario of only using the coprocessors. This is because if the
CPU host is not involved, an existing MPI code can be readily run on multiple coprocessors without
the worry of sophisticated workload balancing. As mentioned in Section 1, OpenMP threads can
be used to exploit the intra-coprocessor parallelism, giving rise to an MPI-OpenMP programming
approach. This is for avoiding the pure MPI approach’s excessive overhead in memory footprint,
due to the large number of MPI processes.

3. RELATED WORK

Many researchers have focused on single-MIC programming. There are, however, not many publi-
cations on programming multiple MIC coprocessors or MIC clusters. As introduced in Section 2,
pragma-based offload mode (combined with OpenMP) and MPI-based native/symmetric mode are
two existing programming approaches. For the default MPI version included in MPSS, there have
been reported bandwidth bottlenecks in intra-node and inter-node MPI communication between an
MIC and the host or between two MICs; see [11, 12].

Due to the Intel MPI bandwidth problem in MIC clusters, some researchers proposed alterna-
tive MPI implementations for improving the communication performance for the native/symmetric
mode. DCFA-MPI [13] is an MPI library implementation for direct inter-node InfiniBand com-
munication between MIC coprocessors. MPICH2-1.5 [14] is an MPI implementation that uses
shared memory, TCP/IP, and SCIF-based communication for MIC clusters. The research group of
D. K. Panda at The Ohio State University has investigated the communication within a node that
consists of a CPU host and one MIC coprocessor [15]. They proposed MVAPICH-PRISM [12], an
MPI implementation that is a proxy-based communication framework using InfiniBand and SCIF
for MIC clusters. All the aforementioned MPI implementations targeted MIC clusters with only one
MIC coprocessor per node.

In addition, to solve the MPI bandwidth problem in its early version, Intel MPI has also imple-
mented a proxy-based design that allows hybrid utilization of InfiniBand and SCIF, depending on
the actual communication scenario [16].

Some researchers have studied the use of COI and SCIF APIs. COSMIC [17] is a user-level
middleware for automatically managing MIC coprocessor resources by scheduling COI processes
and their offloads, which can improve both performance and reliability of multiprocessing on
MIC coprocessors. Dokulila et al. [18] created a library that supports hybrid execution in C++
applications using MIC coprocessors, where SCIF is used for synchronization and data transfers.

High performance has been achieved on coprocessors for many kernels and some applications.
Schulz et al. [19] ported existing scientific applications and micro-kernels to a single MIC copro-
cessor. Chen et al. [20] from NUDT sped up several important arithmetics on the MIC coprocessor
and achieved the automatic translation and optimization from OpenACC to Intel offload. Pennycook
et al. [21] explored SIMD for molecular dynamics applications on an MIC coprocessor. Rosales [11]
summarized the critical skills for pursuing high performance on Xeon Phi. By offloading the
Linpack benchmark to MIC coprocessors, Heinecke et al. [22] achieved over 76% efficiency on a
100-node cluster with two MIC coprocessors per node.

Considering hybrid programming, Meng et al. [23] presented a computing framework for the
Uintah software on an MIC-enhanced cluster. The CPU and coprocessors run the MPI processes
dependently, and Pthreads are used for intra-CPU or intra-coprocessor parallelism. However, the
programming framework only targets clusters that have one coprocessor in each compute node, so
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the problem of load balancing has not been considered in the case of having multiple coprocessors
within each compute node.

Although COI and SCIF are two established APIs, we believe that our work represents a first
effort in combining COI and SCIF for programming multiple MIC coprocessors within one compute
node, and the extended hybrid programming strategy provides a good starting point for achieving
high communication efficiency on a cluster of multi-coprocessor nodes.

4. EXAMPLE: IMPLEMENTING A SIMPLE 3D STENCIL

This section serves to explain the hybrid programming strategy, as well as how to handle the involved
intra-node and inter-node data transfers. We will start with the COI-SCIF programming approach for
one multi-coprocessor node. This will be done through parallelizing a very simple example of 3D
stencil computation. The standard pragma-based offload programming approach and the MPI-based
symmetric programming approach are conventional, thus not discussed here.

4.1. Problem description

The 3D stencil example assumes a box-shaped computational grid that has in total .nxC2/� .nyC
2/�.n´C2/mesh points. The entire computation is assumed as an iterative loop (over time). During
each iteration, a 3D array named C1 is computed by applying a 7-point stencil operator over another
3D array named C0. Values of C1 are prescribed on the entire boundary, so the actual computation
per iteration computes the nx � ny � n´ inner points of C1 as follows:

for (k=1; k<=nz; k++)
for (j=1; j<=ny; j++)

for (i=1; i<=nx; i++)
C1[k][j][i]=a*C0[k][j][i]

+b*(C0[k][j][i-1]+C0[k][j][i+1]
+C0[k][j-1][i]+C0[k][j+1][i]
+C0[k-1][j][i]+C0[k+1][j][i]);

Parallelism between the coprocessors can be enforced by dividing the 3D computational grid (and
the C0/C1 arrays) into subdomains, each being assigned to one coprocessor. Between two neigh-
boring subdomains, values on each other’s respective internal boundary layer have to be exchanged
through data transfers. It is also customary that the subdomain grid is extended with a layer of ghost
points towards each neighbor. An example of 1D grid decomposition can be found in Figure 1.

The work on each subdomain consists of at least the following tasks per iteration. For each of
its neighbors, first pack an ‘outgoing’ buffer (1D array) by copying from respective (possibly non-
contiguous) entries of the subdomain 3D array C0 and then unpack an ‘incoming’ buffer (1D array)
by copying its content to respective (possibly non-contiguous) entries of C0; compute all the entries

Figure 1. An example of 1D decomposition (in the y-direction) of a 3D uniform grid into two subdomains.
(a) The original 3D grid and (b) two subdomains after the decomposition.
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Figure 2. The direct coupling between two coprocessors, achieved by a coprocessor offload infrastructure–
symmetric communication interface implementation.

of the subdomain 3D array C1 (except its boundary entries) by applying a 7-point stencil over the
entries of C0; swap the subdomain array pointers C0 and C1 before proceeding to the next iteration.
The actual coprocessor-coprocessor data transfers may be mediated by the host or asynchronously
initiated by the coprocessors themselves, depending on the chosen approach of programming.

4.2. Coprocessor offload infrastructure–symmetric communication interface implementation for a
two-coprocessor node

The conventional pragma-based offload programming approach always relays coprocessor-
coprocessor data exchange through the CPU host. Another disadvantage for this stencil example is
the unavoidable overhead of repeatedly offloading work from the host to the two coprocessors (once
per iteration). In comparison, a COI-SCIF-based implementation uses an independent sub-program
per coprocessor. The host main program is also quite different from that of the pragma-based imple-
mentation. More specifically, a pair of COIEngine and COIProcess will be created by the host
and connected to each coprocessor. Thereafter, the host can choose not to disturb the two copro-
cessors, which will carry out all the computation iterations, interleaved with bi-directional and
asynchronous data transfers directly between themselves. That is, data transfers do not pass through
the host. As shown in Figure 2, each coprocessor can independently initiate scif_writeto
towards the other, and the pseudo code on the host side is shown as follows.

// start MIC0 to run sub-programm 0
COIEngineGetHandle (COI_ISA_KNC,0,&coi_engine0);
COIProcessCreateFromFile (coi_engine0,mic0_main,\

&mic0_arg,&coi_proc0);
// start MIC1 to run sub-programm 1
COIEngineGetHandle (COI_ISA_KNC,1,&coi_engine1);
COIProcessCreateFromFile (coi_engine1,mic1_main,\

&mic1_arg,&coi_proc1);
// establish SCIF connection of Host-MIC0
host0_ep = scif_open();
scif_bind (host0_ep,host0_portNum);
scif_listen (host0_ep);
scif_accept(host0_ep, host0_portNum, &mic0_ep);
C0_0_reg = scif_register(mic0_ep,C0_0,C0_0_array_size,\

C0_0_reg_addr);
// establish SCIF connection of Host-MIC1
...
// wait for MIC0 and MIC1 to finish all iterations

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
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// collect results from MIC0 and MIC1 via SCIF
...
// free registered windows
scif_unregister(mic0_ep,C0_0_reg,C0_0_array_size);
scif_unregister(mic1_ep,C0_1_reg,C0_1_array_size);
// close SCIF endpoints
scif_close (mic0_ep);
scif_close (host0_ep);
scif_close (mic1_ep);
scif_close (host1_ep);
// stop process on MIC0 and MIC1
COIProcessDestroy (coi_proc0);
COIProcessDestroy (coi_proc1);

The sub-programs (not shown here) for the two coprocesssors involve some elaborate program-
ming details, but the advantages are three-fold. First, the repeated cost of offload start-ups of the
pragma-based implementation is avoided. Second, bi-directional and asynchronous coprocessor-
coprocessor data transfers result in higher bandwidths than the host-mediated data transfer approach.
Third, the more advanced asynchrony, due to RDMA data accesses such as scif_readfrom and
scif_writeto, makes it easier to overlap computation with communication. This possibility of
overlapping is illustrated in Figure 3 (assuming three coprocessors).

4.3. A hybrid programming strategy

4.3.1. Overall design. For MIC-enhanced clusters, where each node has multiple coprocessors,
we propose a hybrid programming approach to take advantage of the various resources while
also overlapping computation with communication. The proposed programming model is based
on MPI+OpenMP+COI+SCIF, as shown in Figure 4. The CPUs serve as a communication proxy.
For each coprocessor, the host program creates a COI process to establish a connection with it.
As usual, MPI is used to deal with the communication between the compute nodes. For intra-
node communication, we program with SCIF, which provides an efficient bi-directional RDMA

Figure 3. (a) Overlapping computation and coprocessor-coprocessor data transfers and (b) data transfers
between multiple coprocessors with (left) or without host (right) relay.
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Figure 4. The hybrid programming approach for a many integrated core-enhanced cluster.

communication channel. In addition, the CPUs are also in charge of parts of the computational work-
load to utilize their unused computational capability. Specifically, we create one MPI process per
node, which then spawns as many OpenMP threads as the number of CPU cores. One of the threads
is reserved for launching non-blocking MPI routines to handle the inter-node communication. Then,
for each coprocessor, one OpenMP thread takes charge and performs (if necessary) host-coprocessor
communication through SCIF. The remaining OpenMP threads compute the workload assigned
to the CPU host. OpenMP threads are also adopted within each coprocessor. This programming
model can ensure the highest speed of inter-node and intra-node data transfers while overlap-
ping these communication tasks with the computation (which is shared between the coprocessors
and CPUs).

4.3.2. Division of workload. Because both the CPU host and coprocessors are used in the compu-
tation, the workload assigned to different devices must be balanced to achieve high performance.
The entire computational mesh is first divided into sub-grids, each assigned to one compute node.
Workload division between the CPU host and coprocessors on each node requires some care, not
only because of the disparity in computational capability but also because the CPU host has an addi-
tional responsibility of inter-node communication and intra-node host-coprocessor data transfer. In
this paper, we consider three ways of partitioning the intra-node workload, as shown in Figure 5.
Through experiments, we found that the third way shown in Figure 5(c) is an appropriate tradeoff
between the first and second alternatives. On one hand, it can reduce the host’s workload compared
with the second alternative, while still keeping the host busy. On the other hand, the coprocessors
can help to compute the content of some of the outgoing MPI messages, so that these can be trans-
ferred to the host early enough for securing a good overlap between inter-node communication
and computation.

Figure 6 displays an ideal execution flow of the proposed hybrid programming model, which
realizes hierarchical pipelining and achieves a complete overlap between computation and commu-
nication by non-blocking asynchronous data transfers. The workloads of the coprocessors and host
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Figure 5. 2D view of three ways of dividing the workload within a single node. (a) The CPU host does no
computation. (b) All boundaries are assigned to the host. (c) Some of the boundaries are assigned to the host.

Figure 6. The ideal execution flow for a cluster with three-coprocessor nodes.

are divided into smaller blocks: the boundaries needed for communication and the inner region. In
addition, the processing order of the sub-blocks should be scheduled carefully to perfectly overlap
inter-node and intra-node communications with the computation of inner regions.

5. EXPERIMENTS AND RESULTS

We will report in this section, measurements of a set of experiments. The purpose is to demon-
strate the advantages of the COI-SCIF approach, which provides both higher bandwidths and lower
overhead related to offload start-ups. Moreover, we want to quantify the resulting performance
benefits of the hybrid programming strategy in connection with solving a real-world 3D reaction-
diffusion problem [24] that consists of several seven-point stencil computations and additional
numerical operations.

5.1. Hardware platform

Each Tianhe-2 compute node is equipped with three Intel Xeon Phi 31S1P coprocessors and two
Intel Ivy Bridge 12-core E5-2692 CPUs. Every 31S1P coprocessor has 57 cores, where 56 of them
can be used in the offload mode. The PCIe 2.0 bus with 16 lanes between the CPU host and the
coprocessors can theoretically offer a bi-directional bandwidth of 16 GB/s in total. For the entire
cluster, a fat tree interconnect network is used, with custom network interface and switch chips
(THNI), and each channel has 160 Gbps bi-directional bandwidth. MPICH2 v1.4.1p1 is used for
inter-node communication.
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5.2. Bandwidth tests

Figure 7(a) compares the bandwidth between the following six scenarios of uni-directional data
transfer:

� offload-in: data transfer from host to coprocessor by offload_transfer;
� offload-out: data transfer from coprocessor to host by offload_transfer;
� MIC-Host-r: host-initiated data transfer from coprocessor to host, using the scif_readfrom

function;
� MIC-Host-w: host-initiated data transfer from host to coprocessor, using the scif_writeto

function;
� MIC-MIC-r: data transfer from one coprocessor to another (without host involvement), using

the scif_readfrom function;
� MIC-MIC-w: data transfer from one coprocessor to another (without host involvement), using

the scif_writeto function.

It can be seen from Figure 7(a) that the first four scenarios enjoy roughly the same bandwidth, which
is higher than that of the latter two. Nevertheless, if data need to be transferred from one coprocessor
to another, it is still beneficial to use the MIC-MIC-w approach because otherwise, data have to first
travel from one coprocessor to the host, then from the host to the other coprocessor.

Figure 7(b) shows the bandwidth differences between the following five scenarios of bi-
directional data transfer:

� MIC-Host: data transfer between host and coprocessor, for which host and coprocessor
independently initiate scif_writeto, as illustrated in Figure 8(a);
� MIC-MIC: data transfer between two coprocessors, for which each coprocessor independently

initiates scif_writeto, as illustrated in Figure 8(b);
� Host-initiated: data transfer between host and coprocessor, for which both scif_readfrom

and scif_writeto are initiated on the host side, as illustrated in Figure 8(c);

Figure 7. Measured bandwidths, as functions of the transferred data size, (a) for six scenarios of uni-
directional data transfers and (b) for five scenarios of bi-directional data transfers. Details can be found in

Section 5.2.

Figure 8. Four scenarios of bi-directional data transfers: (a) both independently initiate data transfer between
MIC and host, (b) both independently initiate data transfer between MIC and MIC, (c) only host initiates

data transfer between MIC and host, and (d) only one MIC initiates data transfer between MIC and MIC.
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� MIC-initated: data transfer between two coprocessors, for which both the scif_readfrom
and scif_writeto are initiated on the same coprocessor, as illustrated in Figure 8(d);
� MIC-MIC-mpi: data transfer between two coprocessors, for which two MPI processes call
MPI_Isend and MPI_Irecv.

In the case of direct data exchange between two coprocessors, it is always better to let both coproces-
sors simultaneously initiate scif_writeto towards each other, instead of letting one coprocessor
initiate both scif_readfrom and scif_writeto. Relaying the data through the CPU host
incurs extra overhead. More specifically, when the SCIF API is used properly, there is no loss in
the obtained bandwidth but with increased latency (not shown in Figure 7(b)). When MPI routines
are used to communicate the data, however, there is additional loss in the obtained bandwidth, as
shown in Figure 7(b). This means that if optimal speed is the goal, MPI should not be chosen for
programming data transfers between multiple coprocessors on the same compute node.

5.3. Performance of a real-world 3d application

We used a real-world 3D application [24] to test the two implementations of offloading. Both
implementations used OpenMP threads for intra-coprocessor parallelism. The performance of an
MPI-OpenMP implementation is also included for comparison. More specifically, the real-world
application involved five reaction-diffusion equations. Each equation was numerically split into a
reaction part and a diffusion part, where the latter was solved by applying the seven-point stencil
operator. All calculations were done using double precision.

5.3.1. Single-node performance. Table I shows the time usages associated with two ways of
offloading the computational work to a single Xeon Phi coprocessor. The performance difference
is due to the fact that the pragma-based offloading approach induced repeated start-up costs, once
every time iteration.

Table II summarizes the time usages associated with employing two or three Xeon Phi coproces-
sors. Unlike Table I, the costs of data transfers and packing/unpacking data buffers are now present.
The pragma-based offload implementation was considerably slower than the COI-SCIF implemen-
tation. There are two reasons for this performance difference. The first reason is due to the repeated
offload start-up costs, as we have already experienced in Table I. The second reason is due to the

Table I. Time usage (in seconds), by a single
coprocessor, of two implementations of a real-

world 3D application.

Programming mode Total time

Pragma-based 30.12
COI-SCIF 26.66

Total number of time steps is 1000. Mesh size:
112 � 1200 � 142.

Table II. Time usage (in seconds) of four implementations of a real-world 3D application.

Pragma-based COI-SCIF� MPI-OpenMP COI-SCIF

2 Coprocessors Pack/unpack 0.41 0.41 0.40 0.40
Data trans 1.27 1.26 0.98 0.80
Total 19.34 15.08 14.91 14.62

3 Coprocessors Pack/unpack 0.40 0.40 0.40 0.40
Data trans 1.21 1.31 1.09 0.76
Total 12.63 10.22 9.82 9.43

The version of ‘COI-SCIF*’ refers to relaying data transfers via the host. Number of time steps:
1000 and global mesh size: 112 � 1200 � 142.
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less efficient data transfers of the pragma-based implementation, demonstrated by the ‘Data trans’
row in Table II.

We recall that the COI-SCIF implementation adopts bi-directional and asynchronous coprocessor-
coprocessor data transfers, thereby capable of hiding (a part of) the data transfer costs. The
MPI-based symmetric implemetation also has the advantages in asynchronous data transfers
between coprocessors, but the extra overhead of MPI communication leads to a lower performance
than the low-level COI-SCIF implementation. For comparison purposes, Table II also includes
another implementation based on using the COI and SCIF APIs. This special implementation,
denoted as COI-SCIF*, relayed data transfers through the host. It thereby closely resembled the
pragma-based implementation with respect to data transfers, and also that no overlap happened
between data transfer and computation.

5.3.2. Multi-node performance. Table III shows the execution time of the 3D application on 16
nodes, using the three ways of host-coprocessors workload partitioning depicted in Figure 5. It can
be seen that the second partitioning alternative gets the worst performance. In fact, offloading the
whole boundary computation to the host increases the execution time significantly. The time taken
to compute the Left-Right boundary is far more than that for the Front-Back boundary, because of
both a larger size and poorer data locality. However, if the task of computing Left-Right boundary
is given to the powerful coprocessors, whereas the host computes the Front-Back boundary, the
execution time returns to normal. Although the third workload partitioning does not achieve faster
time than the first partitioning in Table III, the lesson learned is that letting the host compute the
Front-Back boundary will not slow down the coprocessor. Actually, the thickness of the Front-Back
boundary layer can be increased to better utilize the CPU host’s computing capacity. This will in
turn reduce the workload assigned to the coprocessors, thereby decreasing the total time usage. In
addition, by giving the Front-Back boundary calculation to the host, we can start the respective
inter-node MPI communication as soon as the host calculation is done, which will overlap with the
computation of the Left-Right boundary on the coprocessors and the subsequent coprocessor-host
data transfer.

To find out how much workload should ideally be given to the host, we varied the thickness of
the Front-Back boundary layer, in connection with the third workload partitioning scheme. Table IV
shows the resulting performance measurements. Note that the workload for each coprocessor was
fixed at 112 � 400 � 142, which means that the global mesh became larger when we assigned a
thicker Front-Back boundary layer to the host. For this setup, we found that the thickness can be up
to 22 without increasing the total time usage.

Table V summarizes the time usages of the three programming approaches: pragma-based,
MPI+OpenMP, and the new COI-SCIF-based hybrid programming strategy. In the table, it can be
seen that the COI-SCIF-based approach clearly outperforms the other two approaches because of a
better overlap between communication and computation, as well as faster intra-node data transfers.
It should be noticed that we divided the whole data mesh for hiding the communication overhead.
This resulted in poor data locality on the host. That is why the host-compute time of the hybrid
implementation is slightly longer than the others.

Table III. Time usage (in seconds) associated with 16 nodes and
three ways of host-coprocessor workload partitioning.

Boundaries for host Host compute time Total

None N/A 16
Left-Right+Front-Back 14.7+1.06 25
Front-Back 1.0 16

Sub-mesh size assigned to each coprocessor is always 112�400�142.
The boundary thickness is 1 and the total number of time steps is 1000.
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Table IV. Time measurements (in seconds) using 16 nodes,
as function of the thickness of the Front-Back boundary that

is assigned to the host.

F-B thickness Host compute time Total time

2 1.06 16.65
16 8.92 16.90
18 10.24 16.46
20 11.50 16.51
22 12.75 16.49
24 13.92 17.61

The sub-mesh size assigned to each coprocessor is always 112�
400 � 142 and the total number of time steps is 1000.

Table V. Time measurements (in seconds), using 16 nodes, of three
implementations of a real-world 3D application.

Pragma-based MPI-OpenMP Hybrid approach

MPI inter-comm 5.85 5.79 5.82
Host compute time 11.69 11.75 12.66
Total 21.02 19.62 16.54

The thickness of the Front-Back boundary (assigned to the host) is 22; the
sub-mesh size assigned to each coprocessor is 112�400�142, and the total
number of time steps is 1000.

6. CONCLUSIONS

In the context of a compute node that has multiple coprocessors, this paper has compared three dif-
ferent programming approaches: MPI-based, pragma-based, and COI-SCIF-based. While the first
two are easier to implement, the last one gives better performance, but requires more involved pro-
gramming effort. On the topic of how to efficiently use a cluster of multi-coprocessor nodes, the
paper has proposed a hybrid programming strategy. A variety of programming techniques are used,
including MPI, OpenMP, COI, SCIF, and appropriate workload partitioning to realize the overall
efficiency. For a real-world 3D application, considering the intra-node communication, the best per-
formance was achieved by the COI-SCIF approach, where bi-directional and asynchronous data
transfers were enabled directly between the coprocessors. The low-level COI-SCIF approach also
resulted in lower communication overhead, in comparison with the MPI-based approach. Measure-
ments also show that the hybrid programming strategy, using COI and SCIF, naturally extends to
clusters of multi-coprocessor nodes.

Programming coprocessor-enhanced clusters with computation and communication efficiency is
a hard task. Pre-operations and performance analysis are often needed for a real simulation to obtain
the optimal settings. It should be remarked that this COI-SCIF-based programming approach is not
limited to stencil computation on regular grids. Our findings not only shed some light on this new
topic of using multiple Xeon Phi coprocessors within one compute node but also provide a good
starting point for fully utilizing Tianhe-2 in the future.
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