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Abstract. When new symmetric-key ciphers and hash functions are
proposed they are expected to document resilience against a number of
known attacks. Good, easy to use tools may help designers in this process
and give improved cryptanalysis. In this paper we introduce CryptaPath,
a tool for doing algebraic cryptanalysis which utilizes Compressed Right-
Hand Side (CRHS) equations to attack SPN ciphers and sponge construc-
tions. It requires no previous knowledge of CRHS equations to be used,
only a reference implementation of a primitive.
The connections between CRHS equations, binary decision diagrams and
Boolean polynomials have not been described earlier in literature. A
comprehensive treatment of these relationships is made before we explain
how CryptaPath works. We then describe the process of solving CRHS
equation systems while introducing a new operation, dropping variables.
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1 Introduction

It is not enough to simply propose a new design for symmetric ciphers. Along-
side the design, there must be design rationale and security evaluation which
describe how this design is resistant against attacks. This can be quite a labori-
ous task, even if one includes only the most common attacks. As attack vectors
are becoming more and more complex, experience and good intuition is impor-
tant while designing the cipher. We therefore recognize the need of some sort of
tool for assisting researchers designing a new symmetric primitive, which allows
for automated analysis, enabling efficient testing of alternatives and leading to
informed decisions. Ideally, this tool would cover all the most common attack
techniques. That would be a large undertaking, and this ambition needs to be
divided into several projects.

Fortunately, this is also recognized by other researchers, and an automated
tool to use with linear and differential cryptanalysis has already been published:
CryptaGraph [15]. We wish to add to this contribution by proposing a tool
for algebraic cryptanalysis. There are many algebraic attacks, like Gröbner base
computations, SAT-solving and interpolation attacks. We decided to go for Com-
pressed Right-Hand Sides (CRHS) due to their compact representation of a set of
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binary vectors and the promising results for solving non-linear equation systems
in [18,23,31]. Our tool is named CryptaPath, as we have drawn inspiration from
CryptaGraph. The name is not the only similarity; with only small adjustments
a reference implementation made for CryptaPath can be used with CryptaGraph
and vice versa. A difference from CryptaGraph is that our tool also extends to
sponge constructions.

Algebraic Cryptanalysis The first step of an algebraic attack is to convert
the primitive into a system of equations. Next, we try to solve this system. If the
complexity of solving such a system is lower than the complexity of the brute
force attack, the cipher is considered broken.

When designing new ciphers, the focus is often on defending against linear
and differential attacks. This was also the case for PURE, a variant of the KN
cipher [22]. The KN cipher is provably secure against differential cryptanalysis.
PURE was broken by an interpolation attack in [22]. In [21], a combined attack
using differential paths and an (minimally modified) of-the-shelf SAT solver was
able to generate full collisions for the hash functions MD4 and MD5. Last year,
a successful Gröbner basis attack against Jarvis and Friday was presented [2].
This goes to show that algebraic cryptanalysis can be efficient on symmetric
primitives.

There are various ways to model a cipher as a system of equations, and
subsequently attack the cipher via trying to solve the system:

– SAT solving first converts the cipher into a Boolean formula, and then tries
to find values to the arguments such that the formula evaluate to true [21,30].

– A Gröbner basis is a particular kind of generating set of an ideal in a poly-
nomial ring. Finding a Gröbner basis is the crux of this attack. Well-known
Gröbner basis finding algorithms are F4 [9] and F5 [10].

– Compressed Right-Hand Sides equations models the cipher as a system of
linear equations with multiple right-hand sides. The hard problem here is to
identify only the few right-hand side vectors which yield a consistent system
of linear equations [23,26].

The solution to any of these systems of equations will contain the secret values
we are looking for, i.e. the secret key of a symmetric cipher, or a pre-image for
a hash function.

Existing research tools Our work focuses extensively on the correspondence
between polynomials in the Boolean polynomial ring and binary decision dia-
grams (BDD). PolyBoRi [4] is an existing framework that has the exact same fo-
cus. However, PolyBoRi’s way to represent polynomials using BDDs differs from
ours. While PolyBoRi associates one monomial with every path in the BDD, we
associate paths with the assignment of values to the variables themselves. This
difference will become clear in Section 2.2.

There exist many tools for BDD manipulation [13,20,32,11,29], the most uti-
lized one probably being CUDD [29]. Unfortunately, none of them suits our
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needs. We decided to make our own implementation of CRHS equations us-
ing Rust. Rust is fast and memory-efficient, with memory-safe and thread-safe
guarantees and many classes of bugs being eliminated at compile time.

1.1 Our contribution

We propose a new tool called CryptaPath for assisted algebraic cryptanalysis
using the CRHS representation. CryptaPath allows for algebraic analysis of any
symmetric primitive that can be described as an SPN structure, such as most
block ciphers, and sponge constructions. Running this tool on an SPN block
cipher takes a single plaintext – ciphertext pair, converts it into a system of
CRHS equations, and then tries to solve the system. If successful, it will return
all solutions to the system, including all keys transforming the given plaintext
into the given ciphertext. In the case of a sponge-based hash function, the tool
will take in a hash digest, and try to find a matching pre-image. The researcher
is only required to provide a reference implementation for CryptaPath to work,
but may choose to dive deeper under the hood of the analysis if desired.

The caveat is the amount of memory required to launch a successful attack.
For this reason, we have included the possibility of fixing bits in the key or
pre-image. This allows CryptaPath to solve systems in practice. The number of
rounds in the primitive is also a parameter which is possible to vary.

This tool builds on theory developed over several decades. CHRS equations
can be described as a unification of MRHS equations [24] and BDDs. Earlier
work describes how CRHS equation systems can be solved, but a thorough ex-
planation of the relationships between Boolean polynomials in algebraic normal
form, BDDs and CRHS equations has not been made before. We address this
gap in literature in Section 2.

In addition, we have included a novel operation to the toolbox of CRHS:
dropping variables. Dropping of variables is a technique which allows the solver
to reduce the size of the system, and thus to save space. This operation comes
with its own caveat, see Section 4.2 for details.

Finally, the source code of CryptaPath is available at
https://github.com/Simula-UiB/CryptaPath.

2 Preliminaries

Algebraic attacks are attacks where a cipher is represented as a system of equa-
tions and one tries to break the cipher by solving the system. While it is well
known that the general MQ-problem is NP-hard [12], it is less known how to
argue convincingly that a system of equations representing one particular ci-
pher specification must be hard to solve. If the equation system is represented
as Boolean polynomials in algebraic normal form (ANF) one may try to es-
timate the minimal degree a Gröbner base solver will reach before producing
linear forms, and then give a lower bound on the attack complexity based
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on that. However, there can always be other ways of representing the equa-
tions, giving systems that are easier to solve. In this paper we use the CRHS
representation, and start by explaining the correspondence between binary de-
cision diagrams and multivariate polynomials in the Boolean polynomial ring
F2[x0, . . . , xn−1]/(x20 + x0, . . . , x

2
n−1 + xn−1).

2.1 Binary Decision Diagrams and Boolean Functions

A Binary Decision Diagram (BDD) is an efficient way to represent and evaluate
Boolean functions [5]. Boolean functions have numerous use cases, with examples
found in computer assisted design [6], network analysis [16], formal verification
[6], artificial intelligence, risk assessment [14], cryptology [23,26], and more.

A BDD is a rooted, directed acyclical graph (DAG), with labeled nodes.
There are two kinds of nodes, decision nodes and terminal nodes. A terminal
node is labeled either with the value 0 or 1, while each decision node N is
labeled by a Boolean variable xi. A decision node has two children, often called
the low child and the high child. The edge from decision node N to its low (high)
child represents an assignment of the associated Boolean variable xi to 0 (1).
These edges are drawn as dashed (solid) lines in all figures.

To construct a BDD representing a given Boolean function f(x0, . . . , xn−1),
we start with the root node and associate f to it. Choose a variable from f , say
x0, as the decision variable, or label, for the root node and create its low and high
child. Associate f(0, x1, . . . , xn−1) with the low child and f(1, x1, . . . , xn−1) with
the high child. Continue recursively from each of the children by deciding on the
next variable, then creating more decision nodes associated with polynomials
made from partial assignments to f . If several nodes get associated to the same
polynomial they will be merged into one. In the end the last variable gets fixed,
so the only two nodes created at the bottom will be the terminal nodes 0 and 1.

Conversely, to find the ANF of the Boolean function associated to a given
BDD we start with the terminal nodes 0 and 1 and find the ANFs associated to
the nodes by going upwards in the BDD. Assume a decision node N decides on
variable xi and that the ANFs corresponding to its low and high children have
already been computed as g0 and g1, respectively. By the theory of Shannon ex-
pansion [28], the ANF of N will then be xig1+(xi+1)g0. Recursively computing
ANFs for the nodes in the BDD this way will eventually compute the ANF f
associated with the root node. This f will be the ANF of the Boolean function
associated with the BDD.

Figure 1 shows a small example of a BDD with the ANFs associated to each
node. The ANF associated to the root node is the Boolean function associated
with the complete BDD.

Following a path from the root node through the BDD can therefore be
viewed as assigning values to the arguments of a Boolean function, and the value
of the function for those assignments is given by the terminal node in which the
path ends. Each variable xi can only occur once on any path of the BDD. Every
decision node has two children, so all possible assignments are present as paths.
The BDD therefore encodes the complete truth table of a Boolean function
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(a) (RO)BDD, with associated
(sub-) Boolean functions.

(b) ANF and truth table.

Fig. 1: Example of BDD, ANF and the truth table for a Boolean function.
Dashed lines represent 0-assignments, solid lines represent 1-assignments.

associated with the BDD. If we encounter the Boolean variables in the same
order for each path in the BDD, we say that the BDD is ordered. The size of
the BDD (i.e., its number of nodes) may be sensitive to the order we choose for
the variables. Finding the optimal order of variables is an NP-hard problem [3].
Because a BDD utilizes a DAG, evaluating the Boolean function can be done
very efficiently: in n steps or less, where n is the number of variables of the
Boolean function.

Size wise, truth tables, Karnaugh maps and other classical representations
of Boolean functions grow exponentially with the number of variables involved.
There exist more practical approaches where its size is dependent on the Boolean
function it represents, and where sub-exponential growth is possible. BDDs fall
into this category.

Another desirable property of BDDs, is that a BDD can be reduced to a
canonical representation, i.e. for every function there exists a unique BDD rep-
resenting it, up to the ordering of variables, which has a minimal number of
nodes. A BDD in this state is called reduced (see [5, Sec. 4.2]).

BDDs may also be understood as a compressed representation of sets or rela-
tions, where operations are executed directly on this compressed representation.
This view is closer to how we use and understand BDDs in terms of CRHS
equations.

2.2 Compressed Right-Hand Sides and Boolean Equations

We use reduced ordered BDDs (ROBDDs) as the fundamental building block
of Compressed Right-Hand Side equations. As they are, ROBDDs are too strict
in its definition for us to use them the way we would like. We will therefore
redefine some of the rules regarding ROBDDs, and call them Compressed Right-
Hand Side equations. The changes we make consists of one minor generalization,
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and two major changes to the definition of ROBDDs, “transforming” them into
CRHS equations:

First, we divide the ordered BDD into levels where each level has nodes of
only the same Boolean variable. This allows us to generalize the notation slightly,
by associating the decision variable with a level instead of individual nodes. Sec-
ond, we have only one terminal node, the 1-terminal node, instead of both. This
means that we no longer associate the Boolean function f(x0, . . . , xn−1) with the
root node. Instead, the root node is now associated with the Booelan equation
f(x0, . . . , xn−1) = 1. Third, and more significantly, we allow linear combina-
tions of variables to be associated with a level, and not only single variables.
We also allow the same variable to be associated with multiple levels, or more
generally, we do not require the linear combinations of the levels to be linearly
independent. This means that where standard ROBDDs have as many levels as
variables, CRHS equations may have both more or fewer variables than levels.

As the CRHS equation is an evolution from the ROBDD, we base the defi-
nition of CRHS equations on ROBDDs:

Definition 1. A CRHS equation is a reduced, ordered BDD with a single ter-
minal node and linear combinations of variables associated to each level. The set
of linear combinations is referred to as the left-hand side of the CRHS equation,
and the paths of the DAG as the equation’s right-hand sides. A CRHS equation
represents the Boolean equation f(x0, . . . , xn−1) = 1, where f is the Boolean
function corresponding to the BDD.

Having linear combinations instead of single variables still allows us to use
Shannon expansion to compute the ANF of the individual nodes in the CRHS
equation, and therefore also for the ANF of the Boolean equation the CRHS
equation represents. However, since CRHS equations allow linear combinations
to be associated with the levels, it can be even more effective, in terms of nodes,
in compressing a polynomial than a standard BDD. Figure 2a shows the CRHS
equation made from the same BDD as in Figure 1a, but where the levels now
are associated with some linear combinations. The linear combinations have been
randomly chosen for the sake of demonstrating a concrete example. In Figure 2b
the Boolean equation is written out in ANF.

While we have only 6 nodes in the CRHS equation, the ANF contains 46
terms. The BDD representing the same ANF with single variables will contain
18 nodes. In general it is easy to construct CRHS equations where the number
of terms in the associated ANF is exponential in the number of nodes in the
DAG.

We think of the linear combinations as the left-hand sides of a set of linear
equations and all the paths compressed in the DAG as the set of right-hand sides.
Choosing a path through the DAG in a CRHS equation, as seen in Figure 3a, is
then the same as fixing a right-hand side vector for the set of linear combinations
in the equation’s left-hand side (Figure 3b). This system of linear equations can
than be solved using standard linear algebra.
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(a) CRHS

(b) ANF

Fig. 2: Example of a CRHS equation and its corresponding ANF.

Definition 2. The solution set of a CRHS equation is the union of the solution
sets of all linear equation systems given by the left-hand side and the CRHS
equation’s right-hand sides.

This solution set of a CRHS equation is precisely the assignments for which
the Boolean function associated with the equation’s DAG evaluates to 1.

(a) Choosing a path (blue) through a CRHS
equation...

(b) ... assigns a right-hand side to the sys-
tem of linear equations

Fig. 3: Example of CRHS equation and one associated linear system.

While we normally ignore the underlying Boolean polynomials associated
with the nodes, including the ANF associated with the root, they are useful for
showing that operations available to a BDD can be done on CRHS equations
without changing the solution set of the equation.

2.3 Basic operations on CRHS equations

Traditionally, there have been two operations on BDDs relevant for CRHS equa-
tions: Reduction of a BDD [5] and the swapping of the variables of two adjacent
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levels of a BDD [25]. With the transition from Multiple Right Hand Sides equa-
tions [24] to CRHS equations, two more operations were introduced [26,27]:
adding the linear combination of one level onto the level below, and level extrac-
tion. Both of these operations are a natural consequence of the introduction of
linear dependencies among the linear combinations of the CRHS equation. Com-
bined with swapping, they allow for an adapted version of Gaussian elimination
to be performed on the linear combinations of the levels. How these operations
are used together will be covered in Section 4. Here we will briefly describe the
operations, for full details see [25,26].

The reduction algorithm merges together nodes that have the same Boolean
polynomial associated with them. They can easily be identified, since if two
nodes have the same low child and high child, they must represent the same
Boolean polynomial. The DAG of a CRHS equation can end up in an unreduced
state when any of the other operations is performed.

Level extraction can be applied in the special case when the ”linear com-
bination” l associated with a level is just a constant b ∈ {0, 1}. In that case
all outgoing edges from the nodes on the level assigning the value (b + 1) give
an inconsistency and should be deleted. When only b-edges remain as outgoing
edges, it can be shown using Shannon expansion that the polynomial associated
with a node on the b-level is equal to the polynomial associated with its remain-
ing child. We can therefore merge the parent and child node. Since all nodes on
the level can be merged this way, the whole level is effectively removed, and the
number of levels in the CRHS equation decreases by 1.

The swap operation is an algorithm which swaps the linear combinations of
two adjacent levels, taking care to rearrange the nodes and edges in such a way
that the underlying ANF of the root node is preserved. In other words, doing a
swap operation does not change the solution set of a CRHS equation.

Adding two levels in a CRHS equation is akin to the matrix operation of
adding one row onto another. The first row stays the same, while the second
row becomes the sum of the two. However, where any row in a matrix may be
added to any other row, adding two levels in a CRHS equation requires the
two levels to be adjacent. The procedure adds the linear combination of the top
level to the one below it, and modifies edges and nodes in the process. As with
the swap operation, the add operation is designed to preserve the underlying
Boolean polynomial, so the solution set of a CRHS equation is not changed after
an add operation.

One may use the swap operation to achieve both the adjacency and the or-
dering requirements as needed. In particular, one can use the swap and add
operations to produce any linear combination in the span of the linear com-
binations for the levels, and make it appear on any desired level in a CRHS
equation.

Swapping, adding and level extraction may leave the DAG in an unreduced
state and it is therefore recommended to run the reduction algorithm afterwards.
Swapping and adding levels can increase or decrease the number of nodes on the
affected levels. This is entirely deterministic when the levels are known, and the
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processes are described in [25] and [26,27]. Level extraction will always decrease
the number of nodes.

3 Modelling cryptographic primitives as system of CRHS
equations

Any cryptographic primitive can be modelled as a system of non-linear equations,
where any secret material is represented by variables. In this section we first
briefly recall how block ciphers designed as substitution-permutation networks
(SPN) are built, before explaining how a system of CRHS equations representing
an SPN cipher can be constructed. It is straight forward to adapt this description
to other types of ciphers or hash functions, as long as the non-linearity comes
from S-boxes or other mappings that operate independently on blocks consisting
of relatively few bits.

3.1 The structure of SPN block ciphers

SPN block ciphers are constructed by iterating a round function a number of
times. Each round consists of the application of a non-linear transformation of
the cipher state followed by an affine transformation and the xor addition of a
round key. An SPN cipher starts with the addition of a whitening key to the
plaintext, before iterating the round function r times. The output of the last
round is the ciphertext. We refer to the block of bits at any point during the
encryption procedure as the cipher state.

The non-linear layer is typically made by dividing the cipher state into blocks
of b bits each, and substituting each block with the value given by a fixed b-bit
S-box.

The affine transformation in a round can be constructed in many different
ways, with various trade-offs. However, any affine transformation can be thought
of as a linear transformation of the cipher state, followed by the addition of a
constant. The linear transformation can always be realised as the multiplication
of the cipher state with a fixed matrix over GF (2). The only thing we care about
in this paper is that each bit in the cipher state after the affine transformation
is just a linear combination of the bits at the input, with the possible addition
of a constant 1-bit.

An SPN cipher with r rounds needs r + 1 round keys, denoted as
K0,K1, . . . ,Kr. The whitening key is K0 and Ki is used in round i for i =
1, . . . , r. The cipher has a master key K of κ bits, and all round keys are derived
from K in a deterministic way. The computation of Ki from K can be linear
or non-linear. If the key schedule is linear, each bit in Ki is again just a linear
combination of the κ bits in K. If the key schedule is non-linear, the non-linear
part in computing Ki typically uses the same S-box as used in the rest of the
cipher.
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3.2 Variables

We introduce the following set of variables to model an encryption C = EK(P )
of an SPN cipher of block size n and key size κ:

– K = k0, k1, . . . , kκ−1, the bits of the unknown user-selected key
– P = p0, p1, . . . , pn−1, the bits of the plaintext
– C = c0, c1, . . . , cn−1, the bits of the ciphertext
– a0, a1, . . . , am−1, bits in the cipher state at the output of the S-box layer in

rounds 1, . . . , r − 1

For most ciphers m = n(r − 1), but if the S-box layer is incomplete, like for
LowMC, m = s(r − 1) where s is the number of bits passing through S-boxes
in each round. If the key schedule is linear these are all the variables that are
needed. If the key schedule is non-linear we introduce auxiliary ai-variables at
the output of the non-linear transformations of the key schedule as well. See
Figure 4 for an illustration of the setup of variables.

Fig. 4: Variables in a general SPN cipher. The round keys Ki depend on
k0, . . . , kκ−1.

The introduction of variables can be done in different ways. The important
point is that each bit in the cipher state at the input and output of the non-
linear transformations can be expressed as a linear combination of the variables
we have introduced. Note that it is not necessary to introduce new variables at
the output of the S-boxes in the last round, since these bits can be expressed as
linear combinations of the bits in Kr and the known ciphertext.

3.3 Constructing CRHS equations and the complete system

We construct the complete system representing the cipher by making one CRHS
equation for each S-box instance appearing during the encryption process. For
a b-bit S-box, let l0, . . . , lb−1 represent the input to the S-box and lb, . . . , l2b−1

the output. We then build a CRHS equation with 2b levels associated with
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l0, . . . , l2b−1. The CRHS equation will be constructed such that its associated
polynomial f(l0, . . . , l2b−1) evaluates to 1 for all values where l0, . . . , lb−1 and
lb, . . . , l2b−1 is a matching input/output pair of the S-box, and 0 otherwise.

We now explain how to construct such an CRHS equation, using the 3-bit
S-box from LowMC [1] as an example. First, assign the b linear combinations in
the cipher state at the input of the S-box to the top b levels. Create a complete
binary tree from the top node and down to level b − 1. Each path in this tree
will correspond to the first b − 1 bits of a particular input value. See Figure 5
for the resulting structure when b = 3.

Fig. 5: The three highest levels of the CRHS equation representing the LowMC
S-box. The input to the S-box is (l2, l1, l0) with l0 as least significant bit.

Second, construct a complete tree from the bottom node and upwards to
level b. Assign the linear combinations in the cipher state at the output of the
S-box to the b lowest levels. From each node on level b down to the bottom node
there is now a unique path, representing an output value of the S-box. See figure
6 for the 3-bit S-box example.

Fig. 6: All nodes and levels of the CHRS equation representing a 3-bit S-box.
The output of the S-box is (l5, l4, l3) with l3 as the least significant bit.

Finally, connect nodes on level b− 1 to level b according to the look-up table
defining the S-box. All complete paths in the CRHS equation will represent all
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correct input/output values of the S-box. See Figure 7 for the complete CRHS
equation representing the 3-bit S-box used in LowMC [1].

We construct one CRHS equation for each application of the S-box in the
cipher. The complete set of equations makes up the CRHS equation system
representing the cipher.

Recall that each path in a CRHS equation gives a right-hand side to a system
of 2b linear equations. To solve the equation system representing the cipher, we
need to find one path in each CRHS equation such that the combined system
of linear equations from all CRHS equations is consistent. For a fixed plain-
text/ciphertext pair we only need to solve this system to find the values of
all variables, in particular finding the variables representing the unknown key.
We proceed to explain the techniques used in CryptaPath for solving a CRHS
equation system.

Fig. 7: The CRHS equation representing the LowMC S-box.

4 Solving a System of CRHS equations

A system of CRHS equations (SOC) is the set of CRHS equations which models
one instance of a primitive. The solution set to the SOC is the intersection of
the solution sets of each CRHS equation, the challenge is to find this set.

The solution set of the SOC is dependent on the paths in its CRHS equations.
Collectively, the number of combinations of paths in the SOC is exponential in
the number of CRHS equations. Yet we have only one associated system of linear
combinations, namely the set of all linear combinations from the CHRS equa-
tions. Only a few selections of the paths will yield a consistent linear equation
system when assigned to the associated linear combinations, resulting in a so-
lution to the SOC. We call these paths consistent and identifying these paths
will allow us to calculate the values of all the variables, including any key or
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pre-image variables. We see that the solution set of the SOC is given by all the
consistent paths. Solving a system of CRHS equation is therefore a matter of
identifying the consistent paths of the SOC, and removing the inconsistent ones.

4.1 Finding the Solution

Allowing arbitrary linear combinations to be associated with levels may give rise
to linear dependencies in the set of linear combinations in a CRHS equation.
For a well-defined cipher, a single CRHS equation in the initial system will not
have any dependencies among its linear combinations as it would imply a non-
invertible linear transformation in the cipher. We therefore need to join multiple
CRHS equations to give rise to linear dependencies.

Joining two CRHS equations E1 and E2 is a straightforward and memory ef-
ficient operation to execute. We simply replace E1’s terminal node with E2’s top
node. The resulting CRHS equation contains one fewer node than the combined
total of E1 and E2. It also contains all possible concatenations of paths from
E1 with paths from E2, thus preserving the space of possible right-hand side
vectors. This operation allows us to easily string together some, or all, CRHS
equations into fewer, or even only one, CRHS equation(s).

Identifying linear dependencies in a SOC is straightforward. We extract the
set of all linear combinations from all the CHRS equations in the SOC into one
matrix, and use normal linear algebra to identify linear combinations that are
linearly dependent. We keep track of where the linear combinations come from,
and can use this information to decide which CRHS equations to join, and in
what order. After joining, the resulting CRHS equation contains dependencies
among its linear combinations. We then use linear absorption to remove the
linear dependencies.

Linear absorption [27] is the process of resolving one linear dependency from
the SOC. Resolving one linear dependency will remove all paths that give right-
hand sides in the associated linear system (see Figure 3) that are inconsistent
with this particular dependency. The idea is simple: Adding the relevant levels
onto each other, as defined by the linear dependency, will result in a level whose
”linear combination” is the constant 0. Since this level now has a constant value,
we can remove the level using level extraction. Linear absorption is therefore the
repeated applications of swap and add, ending in a level extraction. Figure 8
shows a simple example of linear absorption.

Solving the SOC is an iterative process: when there are no linear dependencies
in any of the existing CRHS equations, join some CRHS equations together that
give rise to some linear dependencies. Then use linear absorption to remove
all these dependencies. In the end, when all CRHS equations have been joined
together and all linear dependencies have been absorbed, we are left with only a
single CRHS equation, containing only consistent paths. Any of these paths will
give us a consistent system of linear equations that can be solved.
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(a) Initial CRHS
equation

(b) After add op-
eration, creating
0-level

(c) Level extrac-
tion, part 1: re-
move 1-edges

(d) Level extrac-
tion, part 2: re-
move the level

Fig. 8: Linear Absorption

4.2 Supporting techniques

We have now seen the core techniques required in order to solve a SOC. However,
we also have two techniques which may aid in this process: the extraction and
injection of linear equations, and the dropping of variables.

Extracting and injecting linear equations Extracting a linear combination
is similar to level absorption. If at any given point all outgoing edges from all
nodes on a level with linear combination li are 0 (or 1), we know that the linear
equation li = 0 (or li = 1) must be true. This information is useful in two ways.
First, we may use this information to eliminate one variable from the system,
by choosing to eliminate any one variable xj that appears in li. This is done by
simply adding li (or li+1) to any linear combination in the system that contains
the variable xj . Note that here we mean ”add” in the simple sense of just xoring
li (or li + 1) onto any other linear combination without modifying the BDD at
all, not the add operation as described in Sec 2.3.

Second, for the level where we extracted this information, we will get 0 as the
linear combination for that particular level. This level should then be removed
in the same way as for level extraction. We note that the linear equation li = 0
(or li = 1) may be needed after all linear dependencies have been absorbed. It
should therefore be stored, so that it can be added back into the final consistent
linear system in the end.

We can similarly inject a constraint where we do not know the actual value
in order to make a guess. If the guess is wrong the system will have no solutions.
A system with no solutions is identified when a 0-level with only outgoing 1-
edges appears, showing the contradiction. Deleting all 1-edges will in this case
disconnect the top node from the bottom node, leaving no complete paths in the
CHRS equation.

Dropping variables We introduce a novel technique, dropping variables, which
has not been described before. Dropping a variable means to completely remove a
variable from the SOC. This should therefore only be used on auxiliary variables,
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whose values we do not really care about, and not on variables representing the
key of a cipher or a pre-image of a hash value.

We can remove any variable xv from the SOC as follows: First, find all CRHS
equations that have linear combinations containing xv, and join them together.
Now xv only exists in the joined CRHS equation. Second, pick one level where xv
occurs, and use the add and swap operations to add this level to all other levels
where xv occurs. Now xv only exists in the linear combination of one single level.
This level is then moved, using the swap operation, to the lowest level, just above
the terminal node. Finally, all incoming edges to the level with xv are redirected
directly to the bottom node and the xv-level is completely removed, eliminating
the last instance of xv from the system.

Dropping a variable does not disturb the solution space of the variables we
care about. This fact can be seen as follows: The consistent path that goes
through the level is still valid, since the linear combination containing the single
instance of xv can not be part of any dependency. Assume that a consistent
path will fix all other variables in the linear combination of the removed xv-
level. This path will then simply determine the value of xv, but as xv does
not appear elsewhere in the system no inconsistencies can arise. Note, however,
that we will never learn the actual value of dropped variables when solving the
remaining system.

The benefit of dropping is that the SOC will contain fewer variables, and the
CRHS equation may be simplified after removing a level and reducing. The cost
of dropping is the number of add and swap operations that must be performed,
possibly increasing the number of nodes. Note also that dropping variables does
not resolve any linear dependencies and does not bring us closer to a solution
in that sense. It just simplifies the system by eliminating a variable. In practice,
variable dropping should only be done when a particular variable is already only
contained in a single CRHS equation and the involved levels are already close
to the bottom.

4.3 Complexity

We now turn to the complexity of the procedures described above. Absorbing
one linear dependency is linear in the number of levels, and the number of
dependencies must be less than the number of levels. Hence solving a system is at
most quadratic in the number of levels, and the time complexity therefore mostly
depends on the number of nodes the levels contain. Solving a non-linear equation
system over GF (2) is NP-complete in general and solving systems representing
ciphers is still hard. For a cipher to be secure, the number of nodes in the SOC
must increase significantly during an attempted solving of the SOC. We will see
that all our operations are running in linear time in the number of nodes, and
that it is not the run time that is crucial, but rather the memory consumption
due to the increase in the number of nodes. We will therefore use the total
number of nodes seen during solving as the measure of complexity.
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Complexity of the operations Running the reduction on a CRHS equation
is linear in its number of nodes and will only affect memory by removing nodes,
so this operation has no cost in terms of memory. Adding and swapping levels
are local operations, in the sense that only two levels are involved, and it only
affects the number of nodes on the lower level. Nodes on the lower level may
be removed and added, and in the worst case the number of nodes may end up
being double that of the upper level.

Linear absorption of one linear dependency in a CRHS equation makes use
of repeated applications of the swapping and adding operations, but each level is
only involved once. The number of nodes can increase or decrease after resolving
a dependency, and in the worst case the number of nodes in the CRHS equation
may double when resolving a single linear dependency. This leads to the memory
complexity for solving a SOC being potentially exponential in the number of
initial dependencies.

As dropping a variable means moving the level to the bottom of the CRHS
equation before being removed, repeated use of the swap algorithm may be
needed. As with linear absorption, this is linear in terms of affected levels, but
may in the worst case double the number of nodes. Finally, the level extraction
and extracting linear equations (if any exist) are very quick to do and can only
reduce the number of nodes.

Order of operations influences effective complexity In [23] it is pointed
out that the process of solving a SOC can be summed up as three processes.

1. Joining CRHS equations.
2. Absorbing all linear dependencies.
3. Selecting a path from the remaining consistent paths and solving the linear

system.

Of these three processes, absorbing dependencies is the hard one. As noted above,
the number of nodes on a level may become the double of the number of nodes
on the level above when performing the add and swap operations. That in turn
means the number of add and swap operations, and the order of executing said
operations are the driving factors in the growth of the memory complexity. Solv-
ing a system of CRHS equations will see a growth of memory complexity until
a “tipping point” is reached, the point from where the memory usage will de-
crease towards a solution. Therefore, the order in which the dependencies are
absorbed should be considered when solving a SOC, in an attempt to minimize
the number of nodes at this tipping point.

Finding the best order for absorbing linear dependencies, and in turn the
best order to join CRHS equations, is still an open research question.

5 CryptaPath

CryptaPath is a tool both for those who only want to perform an algebraic
cryptanalytical attack on a primitive, and for those who wish to do research
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on CRHS equations. Only needing a reference implementation of a primitive
to begin an attack ensures accessibility for those coming from other areas than
algebraic cryptanalysis. For those who wish to go further, ways to specialize the
solving algorithm are provided. Finally, being open source means that anyone
can adapt the tool, changing it to their needs. An overview of how CryptaPath
is organized and used is given in Appendix A.

5.1 Example usage and results

The simplest way of using CryptaPath is for example by giving the following
command:

./cryptagraph cipher -c skinny64128 -r 4

This command will:

– Generate a random plaintext p and random key K for an instance of Skinny
reduced to 4 rounds with 64-bit block and 128-bit key.

– Use this instance to encrypt p to a ciphertext c with K.
– Discard K.
– Create a SOC and fix the appropriate values of the variables corresponding

to p and c.
– Run the default solver to remove all the dependencies in the system.
– Get the solution(s) from the solved SOC.
– Validate that the solution(s) correctly encrypt p to c, and output them.

Additional CLI parameters are available such as providing a known plain-
text/ciphertext pair or providing a partially known key.

In Table 1 we present several results of instances of round-reduced ciphers we
were able to break using CryptaPath, with both time and the memory complexity
given as number of nodes. We present both the maximal number of rounds
without guessing any bits that we were able to solve as well as some larger
instances that we were able to solve with several known key bits. In Table 2 we
give some results on finding pre-images for a few variants of the Keccak hash
function. The experiments were run on a laptop with an i7-4720HQ CPU @
2.60GHz processor and 16 GB of RAM, which limit the maximum complexity
to ≈ 228 nodes for this particular hardware.

A few remarks on the numbers and the instances in Table 1: Cryptanalytic
results using only one single plaintext/ciphertext pair is not very common, so
for some of the ciphers there is little to compare against. In [23] both DES and
a small version of AES, SR∗(r, 2, 2, 4), are attacked with a similar approach as
in this paper. For DES, 6 rounds can be broken with a dedicated strategy and
using 6 chosen plaintexts, while with a single plaintext/ciphertext pair only 4
rounds can be attacked. The complexities are lower than in our case, showing
that solving strategy plays a role. DES with a single plaintext/ciphertext pair is
also attacked algebraically in [7], where the authors break 6 rounds after guessing
more than 20 bits of the key.
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cipher number of rounds attacked number of known bits runtime # nodes

DES 3 of 16 0/56 0:0.143 214.644

DES 4 of 16 10/56 7:31.102 226.899

LOWMC 64-1-80 19 of 164 0/80 14:17.784 226.528

LOWMC 64-1-80 27 of 164 26/80 9:28.118 226.199

LOWMC 128-31-80 1 of 12 0/80 0:0.849 217.741

LOWMC 128-31-80 2 of 12 68/80 14:34.702 226.845

LOWMC 256-1-256 24 of 458 0/256 11:24.846 226.540

LOWMC 256-1-256 45 of 458 65/256 9:42.992 226.228

PRESENT 80 2 of 31 7/80 10:0.642 227.004

PRESENT 80 2 of 31 8/80 1:18.747 224.480

PRINCE 2 of 12 0/128 0:5.865 219.831

PRINCE 4 of 12 87/128 5:31.046 226.153

PRINCE-CORE 4 of 12 21/64 0:13.592 222.298

SKINNY 64-128 4 of 36 0/128 0:0.437 214.975

SKINNY 64-128 5 of 36 70/128 14:1.398 227.120

SKINNY 128-128 3 of 40 0/128 0:0.444 215.285

SKINNY 128-128 4 of 40 32/128 16:29.616 227.247

SKINNY 128-128 4 of 40 34/128 3:46.160 225.825

SR* 2-2-8 1 0/32 0:0.108 215.298

SR* 2-2-8 2 12/32 0:0.705 218.060

SR* 2-2-8 3 12/32 6:4.170 226.743

SR* 2-2-8 4 23/32 0:8.904 221.128

SR* 4-4-4 1 0/64 0:0.074 212.053

SR* 4-4-4 2 25/64 0:25.430 222.970

SR* 4-4-4 3 46/64 2:52.634 225.479

Table 1: Results on block ciphers (runtimes in min:sec.milliseconds)

6 Conclusions and further work

There are two purposes of this paper. The first is to have a thorough explanation
of the connection between CRHS equations and Boolean equations represented as
ANF polynomials, since this has not been described earlier. The second purpose
is to advertise an easy to use tool for doing algebraic cryptanalysis.

CRHS equations give a memory efficient representation of a Boolean equation
in several variables. Many Boolean polynomials that are too big to be represented
in ANF in practice can still be represented as CRHS equations. The size of a
CRHS equation does not depend so much on the degree of its associated Boolean
polynomial, but rather on how much ”regularity” there is in its paths. The
theory for solving CRHS equation systems is now better understood, and with
CryptaPath it has been compiled into a library that is available for anyone to use
and adapt to their own needs. The optimal solving strategy is cipher dependent,
and CryptaPath provides API’s to experiment with various strategies.

Another goal of CryptaPath is to provide a user interface for doing algebraic
cryptanalysis of a particular cipher, without needing knowledge of how CRHS
equations are constructed, and without needing to know how solving systems
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rounds rate capacity message-length hash-length number of known bits runtime # nodes

1 240 160 240 80 0/240 0:9.411 212.21

2 40 160 80 80 (39+32)/80∗ 5:33.516 225.64

2 80 120 80 80 49/80 2:20.401 224.37

Table 2: Results on Keccak variants (runtimes in min:sec.milliseconds)
∗39 fixed variables in first message block, and 32 in the second.

of CRHS equations work. This is inspired from the tool CryptaGraph, which
has an equally simple interface for applying a search for differential or linear
characteristics.

Further work: In a longer perspective, we hope there will be more tools
for analysing symmetric key primitives, that can be applied by only giving a
reference implementation of the cipher in question. Right now it is not possible
to simply copy the Rust source code of the ciphers in CryptaGraph’s portfo-
lio and apply them to CryptaPath, due to small differences in the Rust traits
used by the two tools. For that reason, a standardized way of coding reference
implementations needs to be agreed upon.

In our current work we have focused on attacks recovering the secret key in
SPN ciphers or finding pre-images for hash functions. There are several directions
further research can take for applying CRHS equations on other problems. In
[17] CRHS equations are applied on the cipher GOST [8], which uses addition
modulo 2n for including round keys. Checking whether CRHS equations gives
a good model for attacking ARX ciphers in general is one avenue to explore.
Another topic for further work is applying CRHS equations on a search for the
best linear hull or differential in a cipher. This is a hard problem in general and
involves keeping a large number of partial solutions in memory at the same time,
exactly the feature that a CRHS equation is suitable for.

Last, it is possible to generalize a BDD to a p-ary decision diagram, having p
edges out of each node for p > 2. To keep the compactness of the CRHS equation
p can not be too large. Apart from ciphers (like MiMC) that are defined over Fp
where p is large, we are only aware of the hash function Troika [19] that uses a
non-binary field at its base. Troika is defined over F3 and could be attacked using
CRHS equations containing ternary decision diagrams. In contrast, SAT-solvers
are inherently binary and can not be adapted as easily to solve problems defined
over non-binary fields.
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A Overview of the code and usage of CryptaPath

The code base of CryptaPath is broken into two parts:

– The Crush library which provides an implementation of the CRHS equations
and System of CRHS equations along with several APIs for the operations
that one can be performed on them (swap, add, absorb, drop and more). An
interface (a Rust trait) to construct solvers, with default implementation for
several methods is also provided.

– the CryptaPath tool uses the Crush library. The tool itself is composed of a
simple command line interface (CLI), a set of generic methods for building
specifications for a SOC from an implementation of a cipher, and several
example ciphers that we implemented for analysis. It also provides a generic
solver, built from the interface of the Crush library.

We decided to make this separation from the belief that the usage of CRHS
equations can be explored outside of cryptanalysis, and in that case the Crush
library as a standalone will be sufficient. However, when used in the case of
cryptanalysis, the main obstacle to usage for researchers would be to generate the
SOC for every cipher and variant they want to analyze. The goal of CryptaPath is
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to simplify this task. By specifying an implementation that respects the provided
interface, the tool will generate the SOC from the Rust source code.

While we provide several implementations of primitives (reduced versions of
AES, LowMC, Skinny, Prince, Present, DES and Keccak) we encourage users to
add their own if they want to analyze it. To facilitate any future implementation
job we are providing several helper functions making it possible to run an imple-
mentation against test vectors to ensure its correctness. As already mentioned,
we provide a general good solving algorithm which will work out of the box for
any SPN cipher or sponge construction implemented in Rust. As a user gets
familiar with the tool, tailor made solvers can be created and tested.

A.1 Usage

Simple usage of the tool can be made by using the provided CLI. A user can
generate a SOC for any of the primitives implemented in CryptaPath for any
number of rounds and run the solver on it. The user can provide a specific plain-
text/ciphertext pair and solve for the key. The user may also fix arbitrary bits of
the key to see how much easier solving becomes with a partially guessed key. If no
plaintext/ciphertext pair is provided CryptaPath will generate a random plain-
text and a random key respecting any fixed bits, and compute the corresponding
ciphertext at runtime. Any solution found will be validated by encrypting the
plaintext and ensuring the result matches the ciphertext. The system of CRHS
equations can be output in the form of a .bdd file for studying and fed back into
CryptaPath later.

As specified earlier, it is possible and encouraged to add new ciphers into
CryptaPath. We provide for that purpose a Cipher trait which a reference im-
plementation has to follow. Existing ciphers can be used as examples on how to
make an implementation.

We provide two similar solvers which we believe to be a good general fit for all
algorithms. The main difference between them is the use of the drop operation
which as noted earlier can either increase or decrease the complexity.

In the case of the solver which uses dropping of variables we consider variables
that can be dropped without any joining of CRHS equations, and compare the
cost of dropping them against the cost of absorbing the cheapest dependency
found. The cost of resolving a dependency or dropping a variable is estimated by
summing up the number of nodes in the levels that have to be swapped or added
to resolve it. There are a lot of heuristics which can be explored to improve the
solving, and in particular we expect a tailor made solver to outperform ours
when targeting a specific algorithm. A new solver can be implemented using the
traits we provide with a minimal amount of code to rewrite.

A specific part of the solver which we encourage users to tweak is the feedback
function. This function is called by the solver every time it completes an oper-
ation on the system and is used to provide feedback to the user. Its role is to
allow for gathering data from the SOC during the solving process. Our default
implementation prints several metrics on the terminal window such as the num-
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ber of individual CRHS equations left in the system, the maximal number of
node reached and the number of absorbed dependencies.


