
D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	1	of	26	
	

																																																						 	
	
	

	
	

Testing Cyber-Physical Systems under
Uncertainty: Systematic, Extensible, and
Configurable Model-based and Search-based
Testing Methodologies

D 2.3 - Report on Uncertainty Modelling Framework V.3

	

	 	

Project	Acronym	 U-Test	 Grant	Agreement	
Number	 H2020-ICT-2014-1.	645463	

Document	Version	 1.0	 Date	 2017-10-27	 Deliverable	No.	 2.3	

Contact	Person	 Phu	Hong	Nguyen	 Organisation	 Simula	Research	Laboratory	

Phone	 +47	90025581	 E-Mail	 phu@simula.no			

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	2	of	26	
	

Document	Version	History	

Version	No.	 Date	 Change	 Author(s)	

0.1	 2017-01-19	 Initial	document	outline	 Phu	Nguyen	

0.2	 2017-03-08	 Detailed	document	outline	 Phu	Nguyen	

0.3	 2017-04-17	 Section	1	 Phu	Nguyen	

0.4	 2017-04-18	 New	Section	3.3	 Luca	Berardinelli	

0.5	 2017-04-19	 Section	2.1	 SRL	

0.6	 2017-04-21	 Section	2.2,	Section	3.1	 SRL	

0.7	 2017-05-05	 New	TUW	Sections	 Luca	Berardinelli	

0.8	 2017-05-05	 Sections	related	to	Application	level	 FF	

0.9	 2017-05-08	 Integration	 SRL	

0.9	Inter	 2017-05-30	 Intermediate	version	 SRL	

0.95	 2017-09-06	 A	revised	version	without	the	models	of	pilots	 SRL	

0.96	 2017-10-19	 Updated	by	SRL	and	TUW	 SRL,	TUW	

0.97	 2017-10-20	 Last	updates	from	FF	 FF	

0.98	 2017-10-26	 Revised	according	to	the	reviews		 SRL,	TUW,	FF	

1.0	 2017-10-27	 Final	version	 SRL,	TUW,	FF	

	
	
Contributors	

Name	 Partner	 Part	Affected	 Date	

Shaukat	Ali	 SRL	 Sections	2.1,	3.1,	4.1,	5.1	 		

Man	Zhang	 SRL	 Sections	2.1,	3.1,	4.1,	5.1	 		

Tao	Yue	 SRL	 Sections	2.1,	3.1,	4.1,	5.1	 	

Phu	Hong	Nguyen	 SRL	 All	 	

Marc-Florian	Wendland	 FF	 Sections	3.2,	4.2,	5.2	 	

Luca	Berardinelli	 TUW	 Sections	3.3,	4.3,	5.3	 		

Reviewers	

Name	 Partner	 Part	Affected	 Date	

Fabien	Peureux	 EGM	 All	 	

César	Cuevas	 IKL	 All	 	

	

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	3	of	26	
	

Executive	Summary	
The	Uncertainty	Modelling	Framework	(UMF)	provides	a	systematic	way	for	standard-based	
holistic	 modelling	 as	 a	 Unified	 Modelling	 Language	 (UML)	 profile	 for	 the	 specification	 of	
uncertainty	concepts	in	Cyber-Physical	Systems	(CPS).	Following	an	Agile-like	approach,	this	
deliverable	reports	on	the	third	version	of	 the	UMF	(UMF	V3),	which	 is	an	upgrade	on	the	
two	previous	versions	(UMF	V1	and	UMF	V2,	reported	in	the	deliverables	D2.1	[3]	and	D2.2	
[4]).	 Specifically,	 the	 UMF	 V3	 improves	 from	 the	 UMF	 V2	 by	 1)	 improving	 the	 modelling	
profiles;	and	2)	finalizing	the	modelling	methodology	such	as	the	guidelines	for	applying	the	
UML	Testing	Profile	(UTP),	modelling	indeterminacy	sources,	integrating	formal	fitness	factor	
provider,	 and	 extending	 library	 for	 supporting	 rule-based	 evolution	 strategy.	 We	 have	
showed	how	the	UMF	V3	is	an	upgrade	on	V2	for	uncertainty	modelling	at	the	application,	
infrastructure,	and	integration	levels	of	CPS.		

	
Keywords:	Cyber-Physical	Systems,	Uncertainty	Modelling,	Modelling	Framework,	UML,	UTP		 	

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	4	of	26	
	

Table	of	Contents	
Executive	Summary	...	3	
Abbreviations	..	5	
1	 Introduction	..	6	

1.1	 U-Test	Workflow	..	6	
1.2	 Objectives	of	the	Deliverable	..	7	
1.3	 Structure	of	the	Deliverable	..	7	

2	 Uncertainty	Modelling	Framework	V3	...	8	
2.1	 An	overview	of	the	UMF	..	8	
2.2	 An	Overview	of	the	Updates	in	the	UMF	V3	..	8	

3	 Updates	on	UML	Uncertainty	Profile	..	9	
3.1	 Core	(Integration	Level)	Profile	...	9	
3.2	 Application	Level	Profile	..	11	
3.3	 Infrastructure	Profile	...	11	

3.3.1	 The	Infrastructure	Uncertainty	Profile	...	12	
3.3.2	 The	Infrastructure	CPS	Profile	..	14	

4	 Updates	on	Modelling	Methodology	..	18	
4.1	 Updates	in	the	Methodology	at	the	Integration	Level	..	18	
4.2	 Updates	of	the	modelling	methodology	at	the	Application	level	21	

4.2.1	 Pilot	modelling	process	...	21	
4.2.2	 Uncertainty	modelling	..	22	
4.2.3	 Deployment	modelling	...	22	

4.3	 Updates	of	the	Infrastructure	level	modelling	methodology	24	
4.4	 Test-Ready	Models	for	Pilots	...	24	

5	 Summary	...	24	
5.1	 UMF	for	Integration	Level	...	25	
5.2	 UMF	for	Application	Level	...	25	
5.3	 UMF	for	Infrastructure	Level	...	25	

6	 Bibliography	..	26	
	
	 	

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	5	of	26	
	

Abbreviations	
	

CPS	 Cyber-Physical	System	

Dx	 Deliverable	number	x	

EGM	 Easy	Global	Market	

FPX	 Future	Position	X	

FF	 Fraunhofer	FOKUS	

IEEE	 Institute	of	Electrical	and	Electronics	Engineers	

IoT	 Internet	of	Things	

IKL	 Ikerlan	

MARTE	 Modelling	and	Analysis	of	Real-Time	and	Embedded	Systems	

MBT	 Model-Based	Testing	

Mx	 Milestone	

NMT	 Nordic	Medtest	

OCL	 Object	Constraint	Language	

SBSE	 Search-Based	Software	Engineering	

SRL	 Simula	Research	Laboratory	

SUT	 System	Under	Test	

TR	 Technical	Report	

TUW	 Technische	Universität	Wien	

T4UME	 Tool	for	Uncertainty	Modelling	and	Evaluation	

U-Taxonomy	 Uncertainty	Taxonomy	

UHS	 ULMA	Handling	Systems	

UME	 Uncertainty	Modelling	and	Evaluation	

UMF	 Uncertainty	Modelling	Framework	

UTF	 Uncertainty	Testing	Framework	

UTP	 UML	Testing	Profile	

UUP	 UML	Uncertainty	Profile	

WP	 Work	Package	

	

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	6	of	26	
	

1 Introduction	
This	 document	 presents	 the	 work	 done	 for	 the	 WP2’s	 Task	 2.3	 in	 developing	 the	 third	
version	 of	 the	 Uncertainty	 Modelling	 Framework	 (UMF	 V3).	 The	 UMF	 provides	 a	
methodology	 to	 create	 and	 specify	 test-ready	 models	 based	 on	 existing	 modelling	 and	
testing	standards.	The	models	are	based	on	the	U-Test	specific	uncertainty	profile	providing	
the	 relevant	 concepts	 to	describe	uncertainty	at	 the	Application	 level,	 Infrastructure	 level,	
and	 Integration	 level	 of	 CPS.	 This	 report	 presents	 the	UMF	V3,	 achieved	 through	 iterative	
improvements	over	the	UMF	V2	reported	in	D2.2	[4].	This	is	the	final	deliverable	of	the	WP2,	
which	documents	the	complete	UMF	V3.		

In	Section	1.1,	we	revisit	the	position	of	UMF	and	its	V3	in	the	whole	U-Test	workflow.	The	
specific	objectives	of	this	deliverable	are	presented	in	Section	1.2.	Then,	we	give	in	Section	
1.3	an	overview	of	the	main	content	of	this	document.		

1.1 U-Test	Workflow	

Figure	1	 shows	 the	general	U-Test	workflow,	 the	position	of	 the	UMF,	and	 its	 relationship	
with	other	U-Test	components.		We	would	like	to	recall	that	the	UMF	comprises	models	and	
profiles	 for	 uncertainty	 in	 CPS,	 based	on	 the	 concepts	 introduced	 in	U-Taxonomy	 [2],	 and	
Modelling	and	Testing	Standards.	The	application	of	the	UMF	produces	test-ready	models	as	
output.	Next,	 the	 application	of	 the	Uncertainty	 Testing	 Framework	 (UTF)	 (WP4)	on	 these	
models	generates	uncertainty-wise	test	cases.		

	
Figure	1.	U-Test	workflow	

The	 UTF	 offers	 corresponding	 uncertainty	 test	 case	 generators	 to	 generate	 and	 execute	
adequate	test	cases	for	the	U-Test	use	cases.	Finally,	the	test	execution	results	are	used	to	
evolve	 unknown	 uncertainty	 information	 (before	 the	 U-Test	 workflow)	 into	 known	
uncertainty	functional	models	(after	a	walk-through	across	the	U-Test	workflow).	This	means	
that	formerly	unknown	uncertainty	behaviours	go	into	known	(uncertainty)	behaviours.	

In	 the	 UMF	 V3,	 we	 have	 made	 several	 improvements	 for	 better	 supporting	 uncertainty	
modelling	 and	 testing	 such	 as	 the	 guidelines	 for	 applying	 the	 Uncertainty	 Testing	 Profile	
(UTP).	The	UMF	V3	also	incorporates	more	libraries	for	facilitating	the	discovery	of	unknown	
uncertainties	to	the	model	evolution	algorithms.		

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	7	of	26	
	

1.2 Objectives	of	the	Deliverable	

The	 main	 objectives	 of	 this	 deliverable	 are	 two-fold.	 On	 one	 hand,	 we	 report	 the	
improvements	that	we	have	made	from	the	UMF	V2	in	terms	of	modelling	methodology	and	
supporting	libraries.	These	improvements	result	in	the	new	version	of	UMF,	namely	UMF	V3.	
On	the	other	hand,	we	show	in	the	companion	D2.4	[5]	how	we	have	used	this	latest	version	
of	 UMF	 to	 completely	 model	 all	 the	 use	 cases	 of	 the	 two	 pilot	 systems.	 The	 test-ready	
models	 specify	 100%	 of	 the	 Geo	 Sports	 and	 Warehouse	 Management	 System	 (WMS)	
scenarios,	as	well	as	the	use	cases	described	for	them	[1].		

1.3 Structure	of	the	Deliverable	

The	remainder	of	this	document	is	structured	as	follows:	Section	2	presents	an	overview	of	
the	UMF.	We	briefly	describe	the	updates	in	the	UMF	V3,	compared	to	the	UMF	V2	that	we	
have	reported	in	the	D2.2	[4].	Then,	we	present	in	Section	3	the	detailed	updates	in	the	UML	
Uncertainty	 Profile	 (UUP)	 of	 the	 UMF	 V3.	 Section	 4	 shows	 the	 updates	 of	 modelling	
methodology	 for	 supporting	 uncertainty	 modelling	 at	 three	 CPS	 levels,	 i.e.,	 application,	
infrastructure,	 and	 integration.	 Section	 5	 concludes	 this	 document	 by	 summarizing	 the	
achievements	of	the	UMF	V3.		

	 	

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	8	of	26	
	

2 Uncertainty	Modelling	Framework	V3	
In	this	section,	we	present	an	overview	of	the	UMF	V3	and	its	updates	based	on	the	UMF	V2	
reported	 in	 the	D2.2	 [4].	Specifically,	we	recall	 in	Section	2.1	 the	architectural	overview	of	
the	 UMF.	 Then,	 in	 Section	 2.2,	 we	 present	 an	 overview	 of	 the	 updates	 to	 the	 UML	
Uncertainty	Profile,	Model	Libraries	and	Modelling	Methodology	compared	to	the	UMF	V2.	

2.1 An	overview	of	the	UMF	

We	 recall	 in	 Figure	 2	 the	 architectural	 overview	of	 the	UMF,	 together	with	 its	 inputs	 and	
outputs.	The	UMF	is	built	on	well-established	and	widely	accepted	modelling	standards	such	
as	UML,	UTP,	and	MARTE.	The	UMF	uses	as	input	updated	requirements,	together	with	the	
U-Taxonomy.	 The	 requirements	 for	 both	 the	 Geo	 Sports	 and	 Warehouse	 Management	
System	scenarios	have	been	updated	with	supplementary	details.	Furthermore,	 in	 the	Geo	
Sports	 scenario,	 for	 supporting	 the	 test	execution,	 in	 some	of	 the	use	cases	 the	X4	device	
has	 been	 replaced	 with	 the	 Quuppa	 device.	 These	 changes	 are	 due	 to	 use	 case	
requirements.	 This	 resulted	 of	 course	 in	 supplementary	 updates	 of	 the	 requirements	
detailing	the	behaviour	of	the	Quuppa	device.		

	
Figure	2:	UMF	Architecture	

Our	 UMF	 defines	 a	 UML	 profile	 that	 provides	 support	 for	 uncertainty	 definition,	
management	and	specification.	The	UMF	also	provides	methodologies	for	easing	the	usage	
and	 application	 of	 uncertainty	 profiles.	 Based	 on	 the	UMF,	we	 have	 developed	 test-ready	
models,	for	both	pilot	scenarios,	which	are	described	in	the	Deliverable	2.4	[5].	

2.2 An	Overview	of	the	Updates	in	the	UMF	V3	

The	 UMF	 V3	 improves	 the	 UMF	 V2	 by	 finalizing	 the	 modelling	 methodology	 such	 as	 the	
guidelines	for	applying	UTP,	for	modelling	indeterminacy	sources,	integrating	formal	fitness	
factor	provider,	and	extending	library	for	supporting	rule-based	evolution	strategy.		

In	 the	 following	 sections	 we	 describe	 the	 updates	 to	 the	 UML	 Uncertainty	 Profile	 (UUP,	
Section	3),	Model	Libraries	and	Modelling	Methodology	(Section	4)	with	respect	to	the	UMF	
V2	reported	in	D2.2	[4].	

	

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	9	of	26	
	

3 Updates	on	UML	Uncertainty	Profile	
The	 U-Test	 UML	 Uncertainty	 Profile	 (UUP)	 is	 divided	 into	 (1)	 Core	 Profile,	 (2)	 Application	
Level	Profile,	and	(3)	Infrastructure	Level	Profile.	

3.1 Core	(Integration	Level)	Profile	

This	 section	 only	 highlights	 the	 updates	 as	 compared	 to	 D2.2	 [4]	 to	 avoid	 unnecessary	
repetition.	More	specifically,	there	are	a	few	updates	in	the	core	profile	for	modelling	Belief	
and	Uncertainty.	

Since	we	focus	on	testing	a	CPS	in	the	presence	of	environmental	uncertainties,	we	need	to	
introduce	uncertainties	in	the	physical	environment	that	lead	to	the	uncertain	behaviour	of	
the	CPS.	To	achieve	this,	we	have	further	extended	the	indeterminacy	source	in	the	profile	to	
enable	the	modelling	of	indeterminacy	sources.	

Figure	3	shows	the	updated	profile	for	modelling	indeterminacy	sources,	whereas	the	rest	of	
the	 profile	 is	 unchanged.	 As	 shown	 in	 Figure	 3,	 we	 provide	 a	 set	 of	 options	 to	 model	
indeterminacy	 sources,	 e.g.,	 as	 a	 UML	 Behaviour	 (e.g.,	 State	Machine)	 or	 as	 a	 constraint	
formulated	 in	 the	Object	 Constraint	 Language	 (OCL).	 An	 indeterminacy	 source	 always	 has	
1..*	 indeterminacy	 specifications,	 i.e.	 «IndeterminacySpecification»	 (conditions)	 that	
must	 be	 true	 for	 an	 indeterminacy	 source	 to	 occur.	 The	 «IndeterminacySourceInput»	
specifies	 the	action	that	 triggers/releases	 the	occurrence	of	«IndeterminacySource».	The	
recommendation	 for	 applying	 indeterminacy	 source	 profile	 is	 presented	 in	 Section	 4.1.	 In	
addition,	we	have	developed	a	set	of	options	to	enable	indeterminacy	source	during	testing,	
e.g.,	EnablePattern,	SelectSpecification	and	FindPosition.	

The	detailed	specification	of	these	profile	updates	can	be	found	in	the	online	specification	of	
the	 Core	 Profile	 available	 at	 [9]	 or	 in	 the	 technical	 report	 TR9.pdf	 accompanying	 this	
deliverable.

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	10	of	26	
	

	

	
Figure	3.	Profile	Diagram	of	Indeterminacy	Source	

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	11	of	26	
	

3.2 Application	Level	Profile	

No	changes	with	respect	to	D2.2	[4].	

3.3 Infrastructure	Profile	

This	section	introduces	the	new	version	of	Infrastructure	CPS	and	Infrastructure	Uncertainty	
Profiles,	 their	 relationship	with	 the	Uncertainty	Modelling	 and	Evaluation	 (UME)	 approach	
and	 tool	 (T4UE),	 presented	 in	 the	 deliverable	 D3.3	 [7]	 (see	 Figure	 4).	More	 details	 about	
these	profiles	 can	be	 found	 in	 the	 TR	 tuwien-mobiquitous2017.pdf	 [8]	 accompanying	 this	
deliverable.		

	
Figure	4.	The	Infrastructure	CPS	and	Infrastructure	Uncertainty	Profile	and	overview.	

Figure	 4	 shows	 the	 roles	 played	 by	 the	 Infrastructure	 CPS	 and	 Uncertainty	 Profiles	 with	
respect	 to	 U-Test	 UML	 Models	 and	 the	 Uncertainty	 Modelling	 and	 Evaluation	 (UME)	
approach	further	detailed	in	WP3.	

The	 updated	 profile	 refines	 the	 Infrastructure	 CPS	 Profile	 description	 given	 in	 D2.2	 [4]	 by	
highlighting	 its	 design	 rationales	 and	 its	 applicability	 on	 different	 UML	 diagrams	 (Class,	
Component,	Composite	Structure	and	Deployment)1.		

The	aforementioned	profiles	are	required	by	the	UME	methodology	and	the	companion	tool	
(T4UME)	to	enable	uncertainty	detection	and	model	refactoring	actions	at	design	time2.		

																																																													
1	It	does	not	prescribe	the	adoption	of	all	the	mentioned	UML	Diagram	types.	It	is	a	modelling	choice	
to	represent	the	model	content	on	different	diagram	types	since	valid	UML	Models	can	be	obtained	
without	 the	 creation	 of	 any	 UML	 Diagram.	 Diagrams	 are	 only	 an	 effective	 mean	 to	 ease	 the	
communication	between	modellers.		
2 	We	 replaced	 the	 Infrastructure	 CPS	 Library	 with	 modelling	 wizards	 provided	 by	 the	 UME	
methodology	 introduced	 in	 deliverable	 d3.3.	 Wizards	 allow	 the	 on	 demand	 generation	 of	 all	 the	

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	12	of	26	
	

The	 following	 subsections	 describe	 the	 Infrastructure	 Uncertainty	 and	 Infrastructure	 CPS	
Profiles	and	in	detail.	

3.3.1 The	Infrastructure	Uncertainty	Profile	
Based	on	U-Taxonomy,	we	updated	the	Infrastructure	Uncertainty	Profile	shown	in	Figure	5.	
The	Infrastructure	Uncertainty	profile	extends	the	core	Uncertainty	stereotype.	In	particular,	
we	introduce	the	Uncertainty	concept	as	stereotype	in	addition	to	profile	types	(i.e.,	defining	
Class	at	the	profile	level).	The	«InfrastructureUncertainty»	stereotype	is	characterized	
by	the	following	properties,	modelled	as	UML	Enumeration	types,	namely:		

• TemporalManifestationType,		
• LocationType,		
• NonFunctionalDimensionalityType,		

• CauseType,		
• ObervationTimeType,		
• FunctionalDimensionalityType,		
• EffectPropagationType.		

We	then	identify	different	specialization	of	the	«UncertaintyFamily»	stereotype	namely:		
• DataDeliveryUncertainty,		

• ActuationUncertainty,		
• ExecutionEnvironmentUncertainty,		
• GovernanceUncertainty,		
• ElasticityUncertainty,		
• StorageUncertainty.	

Each	 family	 is	 characterized	 by	 a	 particular	 set	 of	 values	 assigned	 to	 infrastructural	
uncertainty	properties	that	determine	whether	an	uncertainty	belongs	to	a	particular	family.	
For	example,	 the	 functional	dimensionality	property	of	«StorageUncertainty»	stereotype	 is	
set	by	default	to	storage.	

																																																																																																																																																																															
stereotyped	model	elements	originally	planned	to	be	part	of	static	Infrastructure	CPS	Library	that	can	
rapidly	become	obsolete	due	to	changes	to	profiles.		

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	13	of	26	
	

	
Figure	5	The	up-to-date	Infrastructure	Uncertainty	Profile.	

		

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	14	of	26	
	

3.3.2 The	Infrastructure	CPS	Profile	
The	previous	 version	of	 the	CPS	profile	was	 presented	 in	D2.2	 [4].	 An	 excerpt	 of	 the	new	
version	of	the	Infrastructure	CPS	Profile	with	Stereotypes3	and	their	relationships	is	depicted	
in	Figure	6.		

	
Figure	6.	Package	Diagram	of	the	Infrastructure	CPS	Profile.	

The	goals	of	this	new	version	are:	

• To	highlight	the	design	rules	behind	the	profile	definition	and	to	refine	the	extension	
relationships	 between	 stereotypes	 and	 UML	 meta-classes	 (e.g.,	 replace	 Element	
meta-class	with	Class	one)	 to	 suitably	narrow	the	scope	of	 stereotype	applications	
(e.g.,	from	any	model	element	on	any	diagram	to	Class	depicted	on	Class	Diagrams)	
thus	taming	the	complexity	of	modelling	activity	in	UMF.	

• To	 structure	 the	 profile	 in	 packages	 to	 group	 stereotypes	 with	 respect	 to	 the	
purposes	 (see	 Figure	 6)	 they	 are	 modelling	 (i)	 edge	 and	 cloud	 infrastructures	
(Infrastructure	 Modelling	 package)	 and	 (ii)	 test	 configurations	 (Test	
Configuration	Modelling	package).	

The	 next	 subsections	 detail	 the	 Infrastructure	Modelling	 and	 Test	Configuration	
Modelling	packages	of	the	new	version	of	the	Infrastructure	CPS	Profile.	

3.3.2.1 Infrastructure	Modelling	Package	

One	of	the	main	goals	of	the	Infrastructure	CPS	Profile	is	representing	the	Infrastructure	
and	 its	 constituting	 InfrastructureElements,	 both	 physical	 and	 virtual	 ones,	 which	 are	
part	of	the	cloud-based	CPS.		

Figure	 7	 shows	 an	 excerpt	 of	 the	 stereotypes	 and	 their	 relationships	 defined	 within	 the	
Infrastructure	 CPS	 Profile.	 The	 envisaged	 Infrastructure	 CPS	 includes	 both	 software	 and	
hardware	Units.	We	aim	at	representing	both	kinds	of	units	in	a	specular	manner	to	provide	
the	same	modelling	expressiveness,	with	the	only	exception	of	communication	devices	and	
protocols,	as	detailed	later.	

																																																													
3	When	referring	to	Stereotype	model	element,	we	write	the	term	in	italics	and	capital	letter.	

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	15	of	26	
	

	
Figure	7.	The	Infrastructure	CPS	Profile.	Excerpt	of	the	packages	Common	Concepts,	Software	Modelling,	Hardware	Modelling,	and	Cloud	Modelling	

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	16	of	26	
	

Therefore,	we	have	applied	the	following	design	rule	 in	the	definition	of	the	 Infrastructure	
CPS	Profile,	yielding	four	sets	of	stereotypes,	collected	in	the	following	sub-packages:	

• Common	Concepts.	 This	 sub-package	 introduces	 generic,	 abstract	 stereotypes	 for	
concept	crosscutting	software	and	platform	representations.		

• Software	 Modelling	 and	 Hardware	 Modelling	 packages.	 These	 sub-packages	
define	concepts	to	represent	the	software	and	hardware	elements	that	build	up	an	
infrastructure.	 We	 introduce	 new	 concrete	 stereotypes	 by	 adding	 Virtual-	 and	
Physical-	 prefixes	 to	 the	 name	 of	 the	 generic,	 abstract	 stereotypes	 defined	 in	 the	
Common	Concepts	sub-package.	

• Cloud	Modelling	 package.	 This	 sub-package	 introduces	 stereotypes	 to	 represent	
cloud-based	elements.	

For	 the	sake	of	explanation,	we	represent	an	excerpt	of	 the	 Infrastructure	CPS	Profile	as	a	
flat	 Package	 Diagram	 where	 Common	 Concepts’	 stereotypes	 are	 connected	 to	 other	
stereotypes	graphically	grouped	in	areas	named	after	the	containing	package.	

The	 Infrastructure	 is	 composed	 of	 multiple,	 generic	 Units,	 each	 one	 with	 its	 own	
identifier,	 location,	 description,	 and	 configuration	properties.	 In	 particular,	 a	 configuration	
represents	the	settings	associated	to	the	Unit.		

Units	 can	 be	 divided	 in	 PhysicalUnits	 and	 VirtualUnits	 that	 represent	 hardware	 and	
software	resources,	respectively.	Both	physical	and	virtual	units	are	complex	elements	and	
can	be	composed	of	other	physical	and	virtual	units,	respectively.		

A	 PhysicalUnit	 has	 associated	 Actuators	 and	 Sensors4,	 which,	 in	 turn,	 are	 themselves	
particular	kinds	of	PhysicalUnits.	

An	Actuator	represents	a	hardware	component	that	changes	the	status	of	the	surrounding	
environment.	 Each	Actuator	 realizes	 one	or	more	PhysicalCapabilities.	 A	Sensor	 is	 a	
component	through	which	a	PhysicalUnit	monitors	its	environment	(e.g.,	location	tracker,	
temperature	sensor,	humidity	sensor).	Each	PhysicalUnit	has	associated	Metrics	that	it	is	
capable	 to	 collect.	 	 For	 example,	 a	 thermostat	 physical	 unit	 can	 include	 both	 a	 sensor	 to	
collect	temperature	and	humidity	(i.e.,	the	physical	capability	to	collect	two	metrics),	and	an	
actuator	 that	 has	 the	 capability	 to	 modify	 the	 temperature	 and	 the	 humidity	 of	 the	
surrounding	environment.			

Each	PhysicalUnit	has	associated	one	or	more	VirtualUnits	 that	 run	on	 top	of	 it	 (e.g.,	
PLC	code	running	and	governing	machines	within	a	production	system).		

As	anticipated,	we	assume	a	specular	set	of	concepts	to	describe	the	software	architecture	
of	 the	 Infrastructure	 CPS.	 A	 VirtualUnit	 has	 associated	 VirtualActuators	 and	 a	
VirtualSensors,	which,	in	turn,	are	themselves	particular	kinds	of	VirtualUnits.	

A	 VirtualActuator	 represents	 a	 software	 component	 through	 which	 the	 owning	
VirtualUnit	controls	the	hardware	platform	elements	that	interact	with	the	environment.	
Each	VirtualActuator	realizes	one	or	more	VirtualCapabilities.	

A	VirtualSensor	 is	a	 software	component	 through	which	physical	 sensors	are	controlled.	
Each	VirtualUnit	has	associated	one	or	more	SoftwareDefinedMetrics	that	it	is	capable	
to	 collect	 (e.g.,	 logical	 representations	 of	 physical	 measures	 like	 temperatures	 are	 float	
variables).	 The	 SoftwareDefinedMetric	 has	 an	 id,	name,	description,	endpoint,	
period,	measuredProperty,	and	measurementProtocol.	These	are	the	attributes	needed	
for	accessing	the	sensor	information.	

																																																													
4	In	this	case,	terms	like	Actuators	and	Sensors	are	definitely	hardware-specific	terms	and	we	choose	
to	not	add	Physical-	prefix	to	the	corresponding	stereotypes.		

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	17	of	26	
	

Concerning	the	modelling	of	communication	units	and	protocols,	it	 is	worth	noting	that	we	
did	not	introduce	a	specific	stereotype	for	communication	devices,	like	routers	or	cables,	but	
we	 plan	 to	 model	 them	 as	 PhysicalUnits.	 On	 the	 contrary,	 we	 introduce	 a	 specific	
Communication	 stereotype	 to	 model	 interactions	 between	 VirtualUnits.	 Each	
communication	 realizes	 a	 particular	 ProtocolType	 between	 different	 infrastructure	
elements.	The	supported	protocols	values	are	MQTT,	HTTP,	TCP,	UDP,	AMQP,	and	STOMP.		

We	 then	map	 stereotypes	 to	UML	meta-classes	 to	 determine	which	model	 elements	 they	
can	 be	 applied	 to	 and,	 then,	 in	 which	 UML	 diagrams	 they	 can	 appear.	 In	 Figure	 7,	 the	
extended	 UML	 meta-class	 is	 referred	 by	 the	 «base_class»	 stereotype	 property.	 All	 the	
aforementioned	 stereotypes	 define	 structural	 modelling	 concepts.	 For	 this	 reason,	 the	
chosen	 UML	 meta-classes	 are	 Class,	 Component,	 and	 InstanceSpecification	 for	 both	
software	 and	 platform	 related	 concepts.	 Therefore,	 the	 UML	modeller	 can	 (i)	 define	 new	
infrastructural	 element	 types	 via	 Classes,	 Components	 and	 Nodes,	 (ii)	 instantiate	 typed	
objects	 via	 InstanceSpecification,	 and	 (iii)	 depict	 them	 on	 Class,	 Component,	 and	
Deployment	diagrams.	

	

3.3.2.2 Test	Configuration	Modelling	Package	
Figure	8	shows	a	set	of	stereotypes	from	the	Infrastructure	CPS	Profile	defined	to	represent,	
in	 UML,	 test	 configurations.	 These	 stereotypes	 complement	 those	 included	 in	 the	
Infrastructure	Modelling	package	depicted	in	Figure	7.	

	
Figure	8.	Test	Configuration	Modelling	package	

For	testing	CPS,	we	associate	a	TestConfiguration	to	Metric,	being	an	extension	point	for	
further	types	of	tests.	The	TestConfiguration	has	a	name,	description	and	a	testTimeout.	
The	 testTimeout	 gives	 the	 maximum	 amount	 of	 time	 in	 which	 the	 associated	
TestExecutor	should	answer	the	test.	The	TestExecutor	has	an	association	to	Capability	
or	to	SoftwareDefinedCapability,	for	the	case	in	which	certain	settings	need	to	be	done	
on	 the	CPS	before	 the	 test	 is	 executed.	 The	TestExecutor	owns	 a	 description,	 a	 Boolean	
stating	whether	 the	 unit	 executing	 this	 test	 is	 different	 from	 the	 target	 of	 the	 test,	 and	 a	
target	describing	the	target	of	the	test.		

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	18	of	26	
	

Each	 TestConfiguration	has	 associated	 a	 TestTrigger,	 which	 describes	 when	 the	 test	
should	 be	 executed.	 The	 TestTrigger	 is	 of	 two	 types,	 either	 EventTrigger	 or	
PeriodicTrigger.	 The	EventTrigger	is	 used	 for	 event-based	 testing	 (e.g.,	when,	 during	
system	 runtime,	 the	 quality	 is	 too	 low).	 The	 EventTrigger	 has	 two	 attributes:	 the	
description	 of	 the	 event,	 and	 the	 eventSource.	 The	 PeriodicTrigger	is	 used	 for	 tests	
executed	 in	 specific	 periods	 described	 under	 various	 units	 of	 time.	 The	PeriodicTrigger	
has	two	attributes:	the	period	and	the	timeUnit.	

Finally,	 any	 CPS	 is	 equipped	 with	 CloudServices	 of	 different	 types	 (see	
CloudServiceTypes	 enumeration	 including	 VM,	 Disk,	 StorageService,	 and	
DataAnalyticsEngine)	 corresponding	 to	 cloud	 offerings	 by	 cloudProvider	 and	
dataProvider.	

It	is	worth	noting	that	we	have	designed	the	stereotypes	belonging	to	the	Test	Configuration	
Modelling	 package	 to	 be	 applicable	 on	 both	 Classes	 and	 InstanceSpecification	model	
elements.	 Therefore,	 the	 UMF	 user	 can	 specify	 tests	 both	 referring	 to	 SUT	 architectural	
types	 (i.e.,	 Classes,	 Operations	and	 Associations	depicted	 on	 Class	 Diagrams)	 or	 use	
case	 specific	 configurations	 made	 of	 graph	 of	 connected	 architectural	 instances	 (i.e.,	
InstanceSpecification,	Links	and	Slot	values5).	

4 Updates	on	Modelling	Methodology	
This	 section	 presents	 the	 updates	 in	 the	 modelling	 methodology	 at	 the	 integration	 level	
(Section	4.1),	application	level	(Section	4.2),	and	infrastructure	level	(Section	4.3)	of	CPS.	

4.1 Updates	in	the	Methodology	at	the	Integration	Level	

The	main	 updates	 of	 the	methodology	 at	 the	 integration	 level	 are	 represented	 as	 orange	
parts	 in	Figure	9:	Validation	Guidelines,	and	Design	Decisions	&	Recommendations.	For	the	
complete	details,	please	see	the	TR6.pdf	[10]	accompanying	this	deliverable.		

	
Figure	9.	The	Overview	of	UncerTum	(orange	is	updated)	

																																																													
5	See	the	U-CertifyIt	modelling	methodology,	where	test	configurations	are	specified	at	the	 instance	
level	

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	19	of	26	
	

To	facilitate	the	construction	of	test-ready	models	with	our	methodology,	we	have	 listed	a	
set	of	design	decisions	and	 recommendations	as	 shown	 in	Figure	9.	They	are	summarized,	
along	with	the	rationales	behind	in	Table	4	of	the	aforementioned	TR6.pdf	[10].	

To	ensure	that	test-ready	models	are	syntactically	correct	and	communication	across	state	
machines	 of	 various	 physical	 units	 constituting	 a	 CPS	 takes	 place	 correctly,	 we	 have	
developed	 the	 validation	 process	 (Figure	 9)	 with	 step-wise	 guidelines	 and	 a	 set	 of	
recommendations	to	 fix	problems	 in	test-ready	models.	Such	validation	 is	aimed	at	 finding	
modelling	errors	that	may	have	been	introduced	by	a	test	modeller	accidentally.	Once	test-
ready	models	have	been	successfully	validated,	test	cases	can	be	then	generated	from	them.	
Since	the	execution	of	test-ready	models	requires	data	to	execute	triggers,	we	generate	data	
as	 follows:	 1)	 if	 a	 trigger	 (Call	 Event/Signal	 Event)	 is	 guarded	 by	 a	 guard	 condition,	 we	
generate	random	values	for	all	the	variables	involved	in	the	guard	condition	that	satisfy	the	
guard	condition	and	use	these	values	to	fire	the	trigger,	and	generate	random	values	for	all	
the	other	parameters	of	the	call	event/signal	event,	2)	if	a	trigger	(Call	Event/Signal	Event)	is	
not	 guarded,	 we	 generate	 random	 values	 for	 all	 the	 parameters	 of	 the	 Call	 Event/Signal	
Event	to	fire	the	trigger,	3)	if	a	trigger	corresponds	to	a	Change	Event,	we	randomly	generate	
values	 that	 satisfy	 the	 change	 condition,	 4)	 if	 a	 trigger	 corresponds	 to	 a	 Time	 Event,	 we	
ensure	that	the	specified	period	of	time	in	the	event	is	elapsed.	For	more	details,	see	Section	
8	of	the	TR6.pdf	[10]	accompanying	this	deliverable.	

To	 ease	 the	 modeling	 indeterminacy	 source,	 we	 summarize	 our	 recommendations	 for	
applying	 the	 indeterminacy	 source	 profile	 (Table	 1)	 and	 update	 the	 activity	 diagram	 for	
modelling	indeterminacy	source	(Figure	10).	For	more	details,	see	Section	2.1.3	and	4.5.2.B	
of	the	TR9.pdf	[9]	accompanying	this	deliverable.	

Table	1.	Recommendations	for	applying	the	Indeterminacy	Source	part	of	the	UUP	

Stereotype Applied Base Element
S1: States of the environment of the CPS are indeterminate, such as the
batteryStatus.
 R1 «IndeterminacySource» Property
 «IndeterminacySpecification» Constraint
 Op1 «IndeterminacySourceInput» Operation
 Op2 «IndeterminacySourceInput» Operation, Constraint
 R2 «IndeterminacySource» Constraint
 «IndeterminacySpecification» FALSE (default)
 Op1 «IndeterminacySourceInput» Operation
 Op2 «IndeterminacySourceInput» Operation, Constraint
S2: Input data is indeterminate.
 R1 «IndeterminacySource» Operation
 «IndeterminacySpecification» Constraint
 «IndeterminacySourceInput» Constraint
S3: Occurrences of an event from the environment (e.g., “pressing the
button”) are indeterminate.
 R1 «IndeterminacySource» Property
 «IndeterminacySpecification» Constraint
 Op1 «IndeterminacySourceInput» Operation
 Op2 «IndeterminacySourceInput» Operation, Constraint
 R2 «IndeterminacySource» Constraint
 «IndeterminacySpecification» FALSE (default)
 Op1 «IndeterminacySourceInput» Operation
 Op2 «IndeterminacySourceInput» Operation, Constraint

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	20	of	26	
	

	

	
Figure	10.	Model	IndeterminacySource	

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	21	of	26	
	

Table	2	summarizes	the	updates	in	the	UMF	at	the	Integration	level.		
Table	2.	Overall	Updates	in	the	UMF	

Category	 Name	 Update	Status	 Details	in	Section	#	

Profile	 IndeterminacySource	 Updated	 Section	 3.1	 and	 details	
in	 Section	 2.1.1	 -	 2.1.3	
of	 the	 TR9.pdf	 or	
online	specification	[9].	

Profile		 IndeterminacyInput		 New	

Profile	 IndeterminacySpecification	 New	

Profile	 SelectSpecification	 New	

Profile	 FindPosition	 New	

Profile	 EnablePattern	 New	

Methodology	 15	 design	 decisions	 and	
recommendations	

New	 Section	 4.1	 and	 details	
in	 Table	 in	 Table	 4	 of	
the	TR6.pdf	[10]	

Methodology	 The	 activity	 diagram	 to	 enable	
validate	process	

New	 Section	 4.1	 and	 details	
in	 Section	 8	 of	 the	
TR6.pdf	[10]	

Methodology	 9	 recommendations	 to	 fix	
problems	in	test-ready	model.		

New	 Section	 4.1	 and	 details	
in	 Section	 8	 of	 the	
TR6.pdf	[10]	

Methodology	 The	 recommendations	 of	
applying	 indeterminacy	 source	
profile		

New	 Section	 4.1	 and	 details	
in	 Section	 4.5.2.B	 of	
the	 TR9.pdf	 or	 online	
specification	[9].	

Methodology	 The	 activity	 diagram	 to	 model	
indeterminacy	source	

Updated	 Section	 4.1	 and	 details	
in	 Section	 4.5.2.B	 of	
the	 TR9.pdf	 or	 online	
specification	[9].	

	

4.2 Updates	of	the	modelling	methodology	at	the	Application	level	

The	application	level	modelling	methodology	remains	almost	stable	with	respect	to	D2.2	[4].	
Still,	 there	 are	 minor	 updates	 to	 the	 pilot	 modelling	 process	 and	 deployment	 modelling	
process,	which	are	summarized	in	the	subsequent	sections.	

4.2.1 Pilot	modelling	process	
Update	of	Transition’s	effects	
Until	D2.2	[4],	 the	effects	of	transitions	and	the	body	of	auxiliary	operations6	were	defined	
by	 means	 of	 fUML-compliant	 Activities	 and	 visualized	 as	 activity	 diagrams.	 Although	 this	
approach	was	very	adequate	from	a	methodological,	semantic	and/or	technical	perspective,	
it	 failed	 in	 terms	of	usability.	Usability	 is,	 however,	 particularly	 critical	with	 respect	 to	 the	
development	 of	 effects	 (or,	 in	 general,	 any	 other	 behavioural	 statement	 that	 needs	 to	 be	
executed	 by	 a	 test	 case	 generator).	 At	 the	 beginning	 of	 the	 U-Test	 project,	 when	 first	
																																																													
6	Operations	that	help	in	the	generation	of	test	cases	by	executing	some	re-occurring	functionality	but	
do	not	reflect	any	external	interface	of	the	actual	SUT	implementation.	

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	22	of	26	
	

considerations	about	the	U-Test	UMF	where	done,	it	was	expected	to	utilize	the	Papyrus	Alf	
editor,	which	produces	fUML-Activities	from	textual	Alf	statements.	Back	in	those	days,	this	
was	 considered	 (and	 it	 still	 is)	 the	 easiest,	 yet	 most	 elegant	 and	 usable	 way	 to	 develop	
transition	 effects	 and	 auxiliary	 methods.	 Unfortunately,	 the	 Papyrus	 Alf	 editor	 did	 not	
mature	in	time	for	a	reliable	usage	within	the	U-Test	project	(it	was	still	not	fully-fledged	and	
mature	in	the	Eclipse	Mars	release,	i.e.,	after	M18	of	the	U-Test	duration).	
After	 reconsidering	 how	 to	 circumvent	 this	 pure	 technical	 issue,	 we	 decided	 to	 go	 for	 a	
direct	 modelling	 of	 the	 corresponding	 activity	 diagrams	 –	 corresponding	 in	 terms	 of	 the	
activity	diagrams	that	would	have	been	generated	by	the	Papyrus	Alf	editor.	Although,	from	
a	 semantic	 point	 of	 view,	 this	 was	 exactly	 what	 was	 required	 for	 the	 application	 level	
process,	changes	to	the	use	cases	and	transitively	to	the	affected	activity	diagrams	required	
a	 huge	 and	 ineffective	maintenance	 effort.	 Furthermore,	 the	 end	 users	would	 have	 to	 be	
experts	 in	modelling	the	executable	activity	diagrams	on	which	we	relied.	Since	this	would	
impose	a	too	high	technical	barrier	on	the	industrial	adoption	of	the	U-Test	application	level,	
we	decided,	after	 the	experiences	of	D2.2	 [4]	with	activity	modelling,	 to	even	go	one-step	
back	 and	 directly	 include	 the	 required	 C#	 code.	 This	 C#	 snippet	 was	 intended	 to	 be	
generated	from	the	executable	activity	diagrams	beforehand	in	order	to	generate	test	cases	
from	the	underlying	C#-based	engine	for	test	generation.	
Due	to	missing	stability	of	the	Papyrus	Alf	Editor	at	first,	and	the	infeasible	activity	modelling	
barrier	 at	 second,	 the	 final	 update	 of	 the	 pilot	modelling	 process	 has	 shifted	 towards	 the	
direct	usage	of	C#	code	to	express	transition	effects	and	auxiliary	behaviour.	

4.2.2 Uncertainty	modelling	
No	changes	with	respect	to	D2.2	[4].	

4.2.3 Deployment	modelling	
The	 specification	 of	 test	 directives	was	 already	 described	 in	 D2.2	 [4]	 to	 a	 certain	 degree.	
Since	then,	the	test	directive-based	modelling	methodology	was	further	developed	in	order	
to	 simplify	 the	 entire	 deployment	 and	 automation	process.	 There	 are	now	 three	different	
kinds	of	test	directives	defined	for	the	UMF,	technically	represented	as	sub-types	of	the	UTP	
stereotype	«TestDesignDirective».	These	are:	

• UTFTestDirective;	
• TestCaseGenerationDirective;	

• TestCodeGenerationDirective;	
• TestExecutionDirective;	
• UTFModelEvolutionConfiguration	and	GenerationSizeStrategy.	

These	 test	 directives	 serve	 different	 purposes	 in	 the	 UMF	 test	 automation	 architecture	
(Fokus!MBT	U-Test).	They	aim	at	a	completely	automated	test	process	without	any	manual	
intervention.	
The	 UTFTestDirective	 is	 a	 test	 directive	 specially	 tailored	 for	 U-Test	 that	 acts	 as	 a	
container	for	the	test	automation	process	required	directives.	The	UTFTestDirective	acts	
as	 the	executable	entry	point	 into	 the	automated	uncertainty	 testing	process.	 It	 combines	
the	directives	for	both	automated	test	generation	and	automated	test	execution.	When	the	
user	 executes	 the	 UTFTestDirective,	 the	 entire	 automated	 tool	 chain	will	 be	 setup	 and	
configured	 automatically.	 The	 result	 of	 the	 test	 generation	 sub-process	 (if	 successful)	 is	 a	
number	of	UTP	test	scripts.		
Technically,	a	UTFTestDirective	is	defined	as	an	extension	of	the	UTP	2	test	design	facility,	
i.e.	 a	 stereotype	 that	 specializes	 the	 UTP	 stereotype	 «TestDesignDirective».	 The	
corresponding	profile	specification	is	shown	in	Figure	11.	

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	23	of	26	
	

	
Figure	11.	Specification	of	the	UTFTestDirective	

The	stereotypes	«UTFTestCaseGenerationDirective»	and	«UTFTestCodeGenerationDirective»	
are	 similar	 concepts	 but	 only	 for	 the	 purpose	 of	 test	 case	 generation	 and	 generation	 of	
executable	 test	 scripts.	 Both	 parts	 represent	 the	 corresponding	 manual	 activities	 in	
generating	logical	test	cases	and	implementing	executable	test	cases.		
The	 UTFModelEvolutionConfiguration	 serves	 the	 purpose	 of	 configuring	 the	 model	
evolution	 in	terms	of	population	size,	crossover	activation	(see	D3.3	[7]	 for	 further	details)	
and	 the	 generation	 size	 strategy.	 The	 generation	 size	 strategy	 determines	 how	 many	
generations	 shall	 be	 generated	 by	 search-based	 algorithm	 for	 revealing	 new	 uncertain	
behaviour	 of	 the	 system	 under	 test.	 The	 application	 level	 UMF	 supports	 currently	 a	 fix	
generation	size	strategy	(represented	by	the	stereotype	«FixGenerationSize»)	that	when	
certain	number	of	generations	has	been	generated,	used	 for	 test	case	generation	and	test	
case	execution.	The	long-term	goal	in	this	regard	is	to	replace	the	fix	generation	size	strategy	
with	a	dynamic	generation	size	strategy.	This	one	would	then	use	the	outcome	of	each	test	
case	execution	of	each	generation	in	order	to	check	whether	the	desired	result	(in	terms	of	a	
fitness	factor	threshold)	has	been	found.	This	would	allow	an	optimized	automation	process	
based	 on	 the	 search-based	 problem	 as	 opposed	 to	 finishing	 testing	 after	 a	 fix	 number	 of	
generations.		
The	TestExecutionDirective	abstracts	from	concrete	deployment	modelling	and	creates	a	
deployment	 specification	 for	 automated	 test	 case	 execution	 (automated	 start	 of	 the	
execution	 of	 the	 test	 cases	 that	 have	 been	 generated).	 Furthermore,	 the	 entire	 test	
execution	 system	 (JUnit	 in	 case	 of	 U-TEST	 project)	 is	 automatically	 setup	 and	 the	 JUnit	
engine	 gets	 started.	 After	 test	 execution,	 the	 test	 logs	 are	 feedback	 and	 evaluated	 for	
eventual	verdict	calculation.	

Furthermore,	 the	 UTFTestDirective	 couples	 the	 known	 application	 level	 uncertainties	
(which	 serve	 as	 the	 basis	 for	 the	 model	 evolution	 algorithm	 in	 order	 to	 detect	 further	
unknown	 uncertainties)	 with	 a	 concrete	 U-Test	 test	 strategy	 (the	 different	 strategies	 are	
described	 in	 detail	 in	 D3.2	 [6]).	 The	 underlying	 test	 automation	 engine	 exploits	 this	
information	to	configure	and	steer	the	model	evolution	implementation	later	on.	The	UML	
profile	for	the	application	level	test	strategies	is	shown	in	Figure	12.	

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	24	of	26	
	

	
Figure	12.	UML	profile	for	application	level	UMF	

Summary	

With	 respect	 to	 the	deployment	of	eventually	executable	 test	 cases,	a	UTFTestDirective	
encapsulates	 all	 information	 and	 generates	 the	 respective	 UML	 deployment	 specification	
automatically,	instead	of	imposing	these	subtle	modelling	steps	on	the	test	engineer.	These	
changes	in	the	definition	of	the	deployment	modelling	process	are	a	major	step	towards	the	
simpler	 application,	 increase	 usability	 of	 the	 UMF.	 For	 these	 reasons,	 it	 has	 been	
implemented	in	the	recent	version	of	the	Fokus!MBT	UTEST.	

4.3 Updates	of	the	Infrastructure	level	modelling	methodology	

The	 infrastructure	 level	 profile	 has	 been	 further	 extended	 to	 model	 different	 kinds	 of	
infrastructural	 elements	 (IoT	 hardware/software	 components	 and	 cloud	 services)	 as	 types	
(by	 extending	 the	 UML	 Class	 meta-class)	 and	 instances	 (by	 extending	 the	 UML	
InstanceSpecification	meta-class).	Since	 the	evolution	process	of	non-standard	profiles	
is	 supposed	 to	 continue	 to	 accommodate	 different	 needs	 of	 users	 and	 tool	 vendors,	 we	
introduce	 in	D3.3	 [7]	 a	methodology	and	 tool	 that	adapt	 to	 changes	 to	profiles	applied	 to	
UML	Model.		

4.4 Test-Ready	Models	for	Pilots	

The	application	of	 the	UMF	yields	 test-ready	models	as	outputs,	which	are	based	on	UML	
and	the	UTP	and	UUP	profiles.	In	general,	test	modellers	should	be	guided	by	the	provided	
modelling	methodology	 in	order	 to	create	these	test-ready	models.	The	goal	 is	 to	produce	
models	that	are	defined	at	a	sufficient	 level	of	detail	 to	generate	adequate	test	cases.	The	
test-ready	models	for	both	pilots	are	described	in	the	Deliverable	D2.4	[5].	

5 Summary	
In	 general,	we	have	made	 significant	 improvements	 from	UMF	V2	 to	UMF	V3	 in	 terms	of	
completing	 the	 modelling	 methodology,	 and	 the	 modelling	 support	 such	 as	 the	 UUP	 for	
better	 supporting	 modelling	 indeterminacy	 source.	 Moreover,	 we	 have	 also	 shown	 the	
application	 of	 UMF	 V3	 in	 completing	 the	 test-ready	 models	 for	 the	 two	 industrial	 case	

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	25	of	26	
	

studies	 (D2.4	 [5]).	 The	 detailed	 achievements	 in	 UMF	 V3	 at	 the	 CPS’s	 integration	 level,	
application	level,	and	infrastructure	level	are	summarized	as	follows.	

5.1 UMF	for	Integration	Level	

We	have	reached	the	milestone	Mx4	regarding	 the	UMF	V.3	 (final	version)	 for	uncertainty	
modelling	at	the	integration	level	of	CPS.	Comparing	with	UMF	V.2,	the	main	improvements,	
as	shown	in	Figure	9,	(page	18)	for	uncertainty	modelling	at	the	integration	level	include:	

1) The	update	of	the	UUP	for	supporting	modelling	indeterminacy	source,	which	leads	
to	occurrence	of	the	uncertainties.	

2) The	implementation	of	the	validation	process	to	ensure	the	syntactically	correctness	
of	test-ready	models.	

3) The	summarized	design	decisions	and	recommendations	to	provide	modellers	with	
options	to	construct	test-ready	models	using	UMF	V.3	at	the	integration	level.	

We	present	in	the	accompanying	D2.4	[5]	the	implementation	of	100%	use	cases	for	the	two	
case	studies	at	the	integration	level.	

5.2 UMF	for	Application	Level	

Milestone	 Mx4	 (UMF	 V.3)	 has	 been	 successfully	 reached	 with	 respect	 to	 uncertainty	
modelling	 at	 the	 application	 level.	 The	major	 updates	 in	 UMF	 V.3	 targeted	 the	 following	
aspects:	

• Pilot	modelling	process:	Use	of	C#	action	code	instead	of	fUML-compliant	Activities	
due	to	technical	reasons.		

• Deployment	modelling	process:	Integration	of	U-Test-specific	test	directives	to	drive	
the	entire	dynamic	test	process	

5.3 UMF	for	Infrastructure	Level	

We	have	reached	the	milestone	Mx4	regarding	the	UMF	V.3	for	uncertainty	modelling	at	the	
infrastructure	 level	 of	 CPS.	 When	 compared	 to	 UMF	 V.2,	 the	 main	 improvements	 for	
infrastructure	level	modelling	at	the	infrastructure	level	include:	

• Updated	Infrastructure	Uncertainty	Profile.	We	introduced	stereotype	definitions	in	
addition	to	profile	types	(i.e.	Classes	defined	in	UML	profiles),	and	new	enumerated	
types	to	distinguish	among	different	kinds	of	infrastructure	uncertainty	families.	

• Updated	 InfrastructureCPS	 Profile	 with	 clear	 distinction	 among	 IoT	 and	 cloud	
infrastructural	elements.	

It	 is	 worth	 noting	 that	 we	 introduce	 wizards	 as	 part	 of	 the	 Uncertainty	 Modelling	 and	
Evaluation	 methodology	 and	 tool	 in	 D3.3	 [7]	 to	 automatically	 adapt	 infrastructure	 level	
modelling	guidelines	to	changes	in	profiles	applied	to	UML	models.	

D2.3	 Version	1.0	 Confidentiality	Level:	PU	
	

27.10.2017		 U-Test	 Page	26	of	26	
	

6 Bibliography	
	
[1]	 D1.1:	U-Test	Deliverable	Report	on	Requirements	Collection.	
[2]	 D1.2:	U-Test	Deliverable	Report	on	Uncertainty	Taxonomy.	
[3]	 D2.1:	U-Test	Deliverable	Report	on	Uncertainty	Modelling	Framework	(UMF)	V1.	
[4]	 D2.2:	U-Test	Deliverable	Report	on	Uncertainty	Modelling	Framework	(UMF)	V2.	
[5]	 D2.4:	U-Test	Deliverable	Report	on	Uncertainty	Modelling	Framework	(UMF)	V3:	The	

Test-Ready	Models	of	Pilots.	
[6]	 D3.2:	U-Test	Deliverable	Report	on	Uncertainty	Testing	Framework	V.2.	
[7]	 D3.3:	U-Test	Deliverable	Report	on	Uncertainty	Testing	Framework	V.3.	
[8]	 Truong,	H.-L.,	L.	Berardinelli,	I.	Pavkovic,	and	G.	Copil.	Modeling	and	Provisioning	IoT	

Cloud	Systems	for	Testing	Uncertainties.	in	The	14th	EAI	International	Conference	on	
Mobile	and	Ubiquitous	Systems:	Computing,	Networking	and	Services	(MobiQuitous).	
2017.	Melbourne,	Australia:	ACM.	

[9]	 Zhang,	M.,	S.	Ali,	T.	Yue,	and	P.H.	Nguyen,	Uncertainty	Modeling	Framework	for	the	
Integration	 Level	 V.3.	 Technical	 Report,	 2016.	 2016-01.	 Available	 from:	
https://www.simula.no/publications/uncertainty-modeling-framework-integration-
level-v2.	

[10]	 Zhang,	M.,	S.	Ali,	T.	Yue,	R.	Norgren,	and	O.	Okariz,	Uncertainty-Wise	Cyber-Physical	
System	test	modeling.	Software	&	Systems	Modeling,	2017.	

	
	

