
D3.2	 Version	1.0	 Confidentiality	Level:	PU	
	

	
2017-05-05	 U-TEST		 Page	1	of	30	

	

																																																									 	

	

	

	
	

Testing	 Cyber-Physical	 Systems	 under	
Uncertainty:	 Systematic,	 Extensible,	 and	
Configurable	 Model-based	 and	 Search-
based	Testing	Methodologies	

Report	on	Uncertainty	Testing	Framework	V.2	
D	3.	2	

	

	

Project	Acronym	 U-TEST	 Grant	Agreement	
Number	 H2020-ICT-2014-1.	645463	

Document	Version	 1.0	 Date	 2017-05-05	 Deliverable	No.	 3.2	

Contact	Person	 Martin	Schneider	 Organisation	 Fraunhofer	FOKUS	

Phone	 +49	30	3463	7383	 E-Mail	 martin.schneider@fokus.fraun
hofer.de		

	 	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	
	

	
2017-05-05	 U-TEST		 Page	2	of	30	

	

Document	Version	History	

Version	No.	 Date	 Change	 Author(s)	

0.1	 2017-01-24	 Initial	document	outline	 FF	

0.2	 2017-04-24	 Contribution	from	SRL	 SRL	

0.3	 2017-04-25	 Contributions	from	TUW,	FF	 TUW,	FF	

0.9	 2017-04-26	 Integrating	all	contributions	for	
review	

FF	

0.9.1	 2017-05-02	 Revision	based	on	review	comments	 FF	

1.0	 2017-05-05	 Revision	based	on	review	comments	 SRL,	TUW	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	
Contributors	

Name	 Partner	 Part	Affected	 Date	

Martin	Schneider	 FF	 Sections	1,	2.1,	2.2,	3.1	 2017-04-25	

Man	Zhang	 SRL	 Sections	2.3,	3.3,	TR4.1.pdf,	
TR7.pdf	

2017-04-24	

Shaukat	Ali	 SRL	 Sections	2.3,	3.3,	TR4.1.pdf,	
TR7.pdf	

2017-04-24	

Tao	Yue	 SRL	 Sections	2.3,	3.3,	TR4.1.pdf,	
TR7.pdf	

2017-04-24	

Ivan	Pavkovic	 TUW	 Sections	2.3,3.2,	TR1	 2017-04-25	

Luca	Berardinelli	 TUW	 Sections	2.3,3.2,	TR1	 2017-04-25	

Hong-Linh	Truong	 TUW	 Sections	2.3,3.2,	TR1	 2017-04-25	

	
Reviewers	

Name	 Partner	 Part	Affected	 Date	

Robert	Magnusson		 NMT	 All	 2017-05-02	

Karmele	Intxausti	 IKL	 All	 2017-04-28	

Fabien	Peureux	 EGM	 All	 2017-05-01	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	
	

	
2017-05-05	 U-TEST		 Page	3	of	30	

	

Table	of	Contents	

Executive	Summary	...	4	
1	 Introduction	..	5	

1.1	 Objectives	of	the	Deliverable	...	5	
1.2	 Relationship	to	other	U-TEST	Deliverables	..	5	
1.3	 Structure	of	the	Deliverable	...	6	

2	 Uncertainty	Testing	Framework	..	7	
2.1	 Overview	of	Uncertainty	Testing	Framework	..	7	
2.2	 Uncertainty	Testing	at	Application	Level	...	7	

2.2.1	 Uncertainty	Model	Evolution	at	Application	Level	..	7	
2.2.2	 Fitness	Evaluation	..	12	
2.2.3	 Test	Strategies	...	13	
2.2.4	 Test	Data	Generation	...	13	

2.3	 Uncertainty	Testing	at	Infrastructure	Level	...	13	
2.3.1	 Uncertainty	Model	Evolution	at	Infrastructure	Level	..	14	
2.3.2	 Test	Strategies	...	17	
2.3.3	 Test	Data	Generation	...	19	

2.4	 Uncertainty	Testing	at	Integration	Level	..	19	
2.4.1	 Uncertainty-wise	Model	Evolution	..	22	
2.4.2	 Uncertainty-wise	Test	Case	Generation	..	24	
2.4.3	 Uncertainty-wise	Test	Case	Minimization	...	24	
2.4.4	 Uncertainty-wise	Test	Case	Prioritization	..	24	

3	 Summary	and	Conclusion	..	25	
3.1	 UTF	at	the	Application	Level	..	25	
3.2	 UTF	at	the	Infrastructure	Level	..	26	
3.3	 UTF	at	the	Integration	Level	...	26	

Appendix	...	27	
Technical	Report	1:	 Implementation	Recommendations	for	Rule-based	Uncertainty	Discovery	and	
Model	Evolution	Strategy	..	27	
Technical	Report	2:	Uncertainty-Wise	Evolution	of	Test	Ready	Models	...	27	
Technical	Report	3:	Uncertainty-Wise	and	Time-Aware	Test	Case	Prioritization	with	Multi-Objective	
Search	..	28	

Bibliography	..	29	
	

	 	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	
	

	
2017-05-05	 U-TEST		 Page	4	of	30	

	

Executive	Summary	

This	 deliverable	 presents	 the	 Uncertainty	 Testing	 Framework	 (UTF)	 V.2	 with	 model	 evolution	
algorithms	and	test	strategies.	It	extends	the	works	from	V.1	of	the	Uncertainty	Testing	Framework	
and	 extends	 its	 focus	 to	 discovery	 of	 unknown	 uncertainties	 in	 addition	 to	 coverage	 of	 known	
uncertainties.	Model	evolution	has	been	developed	for	uncertainty	testing	of	Cyber-Physical	Systems	
(CPS)	at	the	three	levels	(application,	infrastructure,	and	integration)	of	CPS.	More	specifically,	the	UTF	
takes	the	test-ready	models	specified	with	the	Uncertainty	Modelling	Framework	(UMF)	as	input,	and	
(automatically)	 produces	 abstract	 test	 cases	 and	 executable	 test	 cases	 as	 output.	 This	 deliverable	
shows	that	we	have	successfully	achieved	Milestone	4	with	the	UTF	V.2	for	uncertainty	testing	at	the	
three	levels	of	CPS.	The	UTF	V.2	provides	a	concrete	foundation	for	achieving	Milestone	5,	in	which	we	
finalize	the	testing	framework	and	apply	it	exhaustively	to	the	pilot	cases.		
	

	 	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	
	

	
2017-05-05	 U-TEST		 Page	5	of	30	

	

1 Introduction	

This	report	describes	the	second	version	of	the	UTF.	We	are	still	making	possible	improvement	on	the	
UTF.	The	further	iteration	and	refinements	of	UTF	will	be	included	in	the	next	U-Test	reports.	

1.1 Objectives	of	the	Deliverable	
The	goal	of	this	deliverable	is	to	present	improvements	of	the	UTF	that	we	have	developed	since	its	
version	 developed	 at	M3.	 Our	 UTF	 supports	 for	 testing	 uncertainties	 and	 uncertain	 behaviours	 of	
Cyber-Physical	 Systems	 (CPS)	 at	 three	 levels:	 application,	 infrastructure,	 and	 integration.	 We	
developed	and	integrated	different	model	evolution	algorithms	and	testing	strategies	in	the	UTF.	These	
model	 evolution	 algorithms	 cover	 different	 part	 of	 the	 problem	 to	 efficiently	 test	 cyber-physical	
systems	for	known	and	unknown	uncertainties.	All	the	model	evolution	algorithms	and	test	strategies	
take	the	test-ready	models	specified	in	the	UMF	as	inputs	for	uncertainty	testing.		

As	reported	in	the	previous	deliverables,	we	developed	the	Uncertainty	Taxonomy	(U-Taxonomy)	[1]	
and	Uncertainty	Modelling	Framework	(UMF)	[2].	We	used	U-Taxonomy	and	UMF	for	specifying	and	
modelling	 different	 uncertainties	 of	 CPS,	 at	 three	 levels,	 i.e.,	 application,	 infrastructure,	 and	
integration.	In	this	deliverable,	we	show	how	our	UTF	(V.2)	is	based	on	the	U-Taxonomy	and	the	UMF.	
We	developed	UTF	on	the	state	of	the	art	of	Model-Based	Testing	(MBT)	techniques,	and	especially	
customized	for	uncertainty	testing	at	the	three	levels	(application,	infrastructure,	and	integration)	of	
CPS.	 Moreover,	 this	 deliverable	 reports	 the	 definition	 of	 search-based	 approaches	 for	 searching	
unknown	uncertainty	behaviours.	The	searching	is	based	on	known	uncertainty	behaviours	at	the	three	
levels	of	CPS.	Technical	reports	presenting	details	of	approaches	are	completing	this	deliverable.	

1.2 Relationship	to	other	U-TEST	Deliverables	
This	deliverable	presents	the	results	of	U-Test’s	Work	Package	3	that	has	relationships	with	other	U-
Test	deliverables	and	work	packages.	In	particular,	the	specification	of	the	uncertainty	requirements	
from		

• two	U-Test	use	cases	(D1.1),		
• the	U-Taxonomy	(D1.2),	and		
• the	UMF	(D2.2)		

are	the	prerequisites	of	the	UTF.	In	addition	to	that,	UTF	is	also	built	on	the	state	of	the	art	of	MBT	
techniques	and	standards,	e.g.,	UML	Testing	Profile	(UTP)	and	ISO/IEC/IEEE	29119	Software	Testing	
Standards.	 With	 the	 test-ready	 models	 specified	 with	 the	 UMF	 as	 inputs,	 UTF	 has	 implemented	
different	test	strategies	and	MBT	techniques	for	uncertainty	testing	at	the	three	levels	(application,	
infrastructure,	and	integration)	of	CPS.	In	other	words,	the	output	of	the	UMF	is	the	main	input	of	UTF.	
We	modelled	the	test-ready	models	of	the	use	cases	by	using	UMF.	These	test-ready	models	are	used	
in	the	UTF	for	test	case	generation.		

The	results	of	UTF	will	be	used	for	U-Test’s	next	active	work	packages	such	as	Tool(s)	Demonstrator	
(D4.3),	Report	on	test	case	executions	(D5.2),	Dissemination	(D6.4),	and	Exploitation	(D7.3).		

Figure	 1	 shows	 again	 the	 overall	 workflow	 of	 the	 methodology	 in	 our	 U-Test	 project	 and	 more	
specifically	where	the	UTF	is	located	in	the	workflow	of	U-Test	project.		

D3.2	 Version	1.0	 Confidentiality	Level:	PU	
	

	
2017-05-05	 U-TEST		 Page	6	of	30	

	

	
Figure	1.	U-Test	Workflow	

Input:	

• All	previous	Deliverables	
Consumers	of	D3.2	(that	are	currently	active)	

• D4.3	(EGM,	FF):	Tool(s)	Demonstrator		
• D5.2	(FPX	and	ULMA):	Report	on	test	case	executions	
• D5.3	Validation	with	or	without	U-Test	
• D6.3	Dissemination		
• D7.2	(For	Exploitation):	Value	Opportunities	

1.3 Structure	of	the	Deliverable	
The	 deliverable	 consists	 of	 this	 main	 document	 and	 its	 appendix	 (as	 technical	 reports).	 The	main	
content	of	this	document	gives	the	condensed	presentation	of	the	UTF.	More	details	of	some	specific	
key	 results	 of	 the	 UTF	 can	 be	 found	 in	 the	 technical	 reports.	 The	 technical	 reports	 provide	more	
detailed	technical	aspects	of	the	UTF.		

The	remainder	of	this	deliverable	is	organized	as	follows.	An	overview	of	the	UTF	is	given	in	Section	
2.1.	 UTF,	 which	 supports	 uncertainty	 testing	 at	 the	 application	 level,	 infrastructure	 level,	 and	
integration	 level	 of	 CPS,	 is	 presented	 in	 Sections	 2.2,	 2.3,	 and	 2.4	 correspondingly.	 Aiming	 at	 the	
comprehensiveness	 of	 this	 document,	 for	 presenting	 technical	 details	 on	 some	 specific	 topics,	 we	
organized	them	into	technical	reports	(TRs).	TR1,	which	provides	more	technical	details	for	Section	2.3,	
are	included	in	the	Appendix.	TR4.1	and	TR7,	which	provide	more	technical	details	for	Section	2.4,	are	
in	forms	of	two	separate	PDF	files	attached	with	this	document.	We	summarize	the	whole	deliverable	
and	give	our	conclusions	in	Section	3.	

	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	
	

	
2017-05-05	 U-TEST		 Page	7	of	30	

	

2 Uncertainty	Testing	Framework	

Section	2.1	gives	an	overview	of	the	UTF.	Next,	Section	2.2	presents	the	details	of	UTF	for	supporting	
uncertainty	testing	at	the	application	level	of	CPS.	Similarly,	Sections	2.3	and	2.4	present	the	details	of	
UTF	 for	 supporting	 uncertainty	 testing	 at	 the	 infrastructure	 and	 integration	 levels	 of	 CPS	
correspondingly.		

2.1 Overview	of	Uncertainty	Testing	Framework	
Figure	2	shows	a	high-level	overview	of	the	UTF	with	its	input	and	output.	The	main	input	of	UTF	are	
the	test-ready	models	that	we	have	created	by	using	the	UMF.		

	
Figure	2.	An	Overview	of	Uncertainty	Testing	Framework	

Our	UTF	is	composed	of	the	model-based	test	generation	strategies	that	take	as	input	the	test-ready	
models	 above.	 These	 test-ready	 models	 cover	 the	 use	 cases	 for	 generating	 test	 cases	 for	 known	
uncertainties	at	the	application	level,	infrastructure	level,	and	integration	level	of	CPS.	On	the	other	
hand,	UTF	also	integrates	the	uncertainty	model	evolution	strategies	aiming	at	discovering	unknown	
uncertainties.	The	uncertainty	measurement	process	can	drive	the	test	generation	strategies	with	the	
support	 from	 the	 Uncertainty	 Measurement	 Calculator.	 Eventually,	 executable	 test	 cases	 are	
generated	by	the	Uncertainty	Testing	Framework.	The	details	of	UTF	for	supporting	uncertainty	testing	
of	CPS	at	the	three	different	levels	are	presented	in	the	following	sections.		

2.2 Uncertainty	Testing	at	Application	Level	
This	section	describes	the	second	version	of	the	Uncertainty	Testing	Framework	aiming	at	discovering	
uncertainties	at	the	application	level.	

2.2.1 Uncertainty	Model	Evolution	at	Application	Level	
As	indicated	in	D3.1,	mutations	to	state	machines	are	the	atomic	piece	of	information	we	deal	with.	
Therefore,	the	evolution	of	state	machines	is	focused	on	introducing	mutations	into	state	machines.	
These	state	machines	describe	valid	interaction	with	the	system	under	test.	The	problem	we	would	
like	 to	 solve	 is	 to	 find	 those	 sets	of	mutations	 to	a	 state	machine	 that	 reveal	 (the	most	unknown)	
uncertain	behaviours.	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	
	

	
2017-05-05	 U-TEST		 Page	8	of	30	

	

Therefore,	we	consider	the	set	of	mutations	associated	with	a	state	machine	as	an	individual.	One	or	
more	mutations	 are	 representing	 uncertainty	 in	 the	 environment	 of	 the	 CPS	 that	may	 lead	 to	 an	
uncertain	behaviour.	Hence,	 as	 described	 in	D3.1,	 the	 starting	point	 for	model	 evolution	 are	 state	
machines	that	describe	the	expected	interaction	of	the	environment	of	the	CPS.	Evolution	is	done	by	
introducing	 mutations	 to	 this	 state	 machine.	 We	 implement	 the	 evolution	 of	 state	 machines	 by	
employing	a	genetic	algorithm.	The	basic	idea	is	to	use	uncertainties,	modelled	in	test-ready	models,	
to	guide	the	mutation	of	state	machines.	Thus,	to	reduce	the	size	of	the	search	space	whilst	enabling	
to	cover	the	different	scenarios	in	which	an	uncertainty	may	occur.	

In	D3.1,	an	initial	set	of	mutation	operators	were	described	that	cover	mainly	mutations	on	transitions	
itself.	Based	on	the	literature,	we	extended	this	set	of	mutations	as	described	in	the	following	table:	

Table	1.	Mutation	Operators	(adapted	from	[3])	

Mutation	Operator	 Description	 Constraints/Comments	
Add	Transition	 Adds	a	new	transition	by	

duplicating	an	existing	one	and	
setting	a	new	source	and	
target	state.	

	

Remove	Transition	 Completely	removes	the	
transition.	

Transitions	having	an	initial	
state	as	source	or	a	final	node	
as	target	must	not	be	removed.	
	
Equivalent	to	‘Change	Guard:	
replace	expression	with	false’.	

Remove	Transition	(with	State	
Merge)	

Completely	removes	the	
transition.	
	
Merges	the	source	and	target	
state	if	the	removed	transition	
is	the	only	one	connecting	
them	(optional:	with	the	same	
direction).	This	avoid	mutilated	
state	machines	which	inhibit	
generating	test	cases.	

Transitions	having	an	initial	
state	as	source	or	a	final	node	
as	target	must	not	be	removed.	
	
Equivalent	to	‘Change	Guard:	
replace	expression	with	false’.	

Reverse	Transition	 Swaps	source	and	target	of	the	
transition.	

Transitions	having	an	initial	
state	as	source	or	a	final	node	
as	target	must	not	be	reversed.	
	
Optional:	Transitions	being	the	
only	one	that	connect	source	
and	target	state	must	not	be	
removed	(optional:	with	the	
same	direction).	This	avoid	
mutilated	state	machines	
which	inhibit	generating	test	
cases.	

Change	Source/Target	 Move	the	source	or	the	target	
of	the	transition	to	any	other	
state.	

In	case	the	target	state	of	the	
transition	is	changed,	the	
target	must	not	be	the	initial	
state.	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	
	

	
2017-05-05	 U-TEST		 Page	9	of	30	

	

Mutation	Operator	 Description	 Constraints/Comments	
In	case	the	source	state	of	the	
transition	is	changed,	the	
source	must	not	be	the	final	
node.	

Remove	Trigger	 Transforms	the	transition	to	a	
completion	transition.	

	

Remove	Guard	 Removes	the	guard	of	a	
transition	completely.	

Equivalent	to	‘Change	Guard:	
replace	expression	with	true’	

Remove	Effect	 Removes	the	effect	of	a	
transition	completely.	

	

Change	Trigger	Operation	 Changes	the	operation	to	
another	one	of	the	same	
interface	of	the	original	
operation.	

	

Change	Guard/	
Change	Effect	

-	replace	expression	with	
true/false	
-	negate	expression	
-	replace	subexpression	with	
true/false	
-	negate	subexpression	
-	change	logical	operator	
-	change	relational	operator	
-	change	arithmetic	operator	
-	change	set	operator	
-	change	quantifier	
-	replace	operand	
	
guard/effect	mutation	
operators	
-	remove	statement	
-	move	statement	
-	fix	parameter/property	of	a	
called	method	or	sent	signal	
-	change	called	method	or	sent	
signal	
-	change	operator	
-	fix	operand	(replace	it	with	a	
literal)	
-	change	operand	(replace	with	
variable,	call	parameter	or	
signal	property	of	the	same	
type)	
-	replace	result:	replace	right-
hand-side	(RHS)	expression	
with	default	value	of	left-hand-
side	(LHS)	

Guards	and	effects	are	written	
in	C#.	

These	mutation	 operators	 are	 employed	 to	 introduce	mutations	 based	on	modelled	 uncertainties.	
Depending	on	the	values	of	the	properties	of	a	modelled	uncertainty,	different	mutation	operators	are	
applied	 to	 elements	 of	 the	 UML	 state	machine.	 The	 following	 paragraphs	 discuss	which	mutation	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	
	

	
2017-05-05	 U-TEST		 Page	10	of	30	

	

operators	 and	 elements	 of	 a	 state	 machine	 are	 selected	 based	 on	 different	 properties	 of	 an	
uncertainty.	Eventually,	a	set	of	mutation	operator	is	aggregated	based	on	the	different	properties	to	
apply	different	kind	of	mutations	to	a	state	machine.	

Concept	of	
Uncertainty	Taxonomy	

UncertaintyNature::Epistemic	

Mutation	Operators	 Depends	on	the	other	properties	of	the	uncertainty	
Selection	Criterion	 Depends	on	the	other	properties	of	the	uncertainty	

We	perform	a	systematic	mutation	of	selected	elements	supported	according	to	the	other	properties	
of	the	uncertainty.		

Concept	of	
Uncertainty	Taxonomy	

UncertaintyNature::Aleatoric	

Mutation	Operators	 any	
Selection	Criterion	 Depends	on	the	other	properties	of	the	uncertainty	

Aleatoric	uncertainties	are	those	where	we	are	not	aware	of	any	systematics.	Therefore,	mutation	is	
completely	random	while	the	elements	to	be	mutated	depend	on	the	other	properties	of	uncertainty.	
This	will	override	the	selection	of	mutation	operators	based	on	other	properties	of	an	uncertainty.	

Concept	of	
Uncertainty	Taxonomy	

Location::InputParameters	

Mutation	Operators	 Change	Guard	
Selection	Criterion	 Guards	of	transitions	whose	trigger	operation	has	an	in	parameter	

referred	by	InputParameters	
Uncertainty	w.r.t.	the	in	parameters	of	an	operation	called	by	trigger.	Changing	a	guard	will	eventually	
result	in	changed	input	parameters,	i.e.	stimuli,	when	test	cases	are	generated	from	the	mutated	state	
machine.	

Concept	of	
Uncertainty	Taxonomy	

TechnologicalProcess::TimingIssues	

Mutation	Operators	 Change	Trigger	
Selection	Criterion	 Triggers	that	have	a	TimeEvent	and	a	corresponding	TimeExpression	

By	changing	the	time	expression,	uncertain	behaviour	that	may	result	due	to	unexpected	timing	may	
be	observed.	The	change	of	the	trigger	leads	to	generation	of	test	cases	reflecting	the	changed	time	
expression.	

Concept	of	
Uncertainty	Taxonomy	

TechnologicalProcess::ProtocolIssues::InteroperabilityIssue	

Mutation	Operators	 Change	Guard	
Change	Target	of	Transition	

Selection	Criteria	 Guards	of	transitions	whose	trigger	operation	has	an	in	parameter	
referred	by	InteroperabilityIssue	
Transitions	referred	by	this	InteroperabilityIssue	

Interoperability	 issues	 may	 arise	 from	 ambiguous	 or	 misinterpretation	 of	 requirements	 and	
specifications.	 By	 changing	 guards	 and	 input	 parameters	 as	 well	 as	 transitions,	 corresponding	
mutations	resulting	in	different	(behaviour	originating	from	different	interpretations)	is	achieved.	

Concept	of	
Uncertainty	Taxonomy	

TechnologicalProcess::ProtocolIssues::FaultyProtocolImplementation	

Mutation	Operators	 Any	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	
	

	
2017-05-05	 U-TEST		 Page	11	of	30	

	

Selection	Criterion	 Elements	referred	by	this	FaultyProtocolImplementation	that	are	
related	to	a	computer	interface	(i.e.	the	cyber	environment)	

Mutations	will	result	in	any	modifications	related	to	the	digital	interfaces,	i.e.	would	reflect	uncertainty	
from	the	cyber	environment	related	to	protocols.	

Concept	of	
Uncertainty	Taxonomy	

TechnologicalProcess::ResourceIssues	

Mutation	Operators	 Change	Effect	
Change	Transition	Source	
Change	Transition	Target	

Selection	Criteria	 Transitions	whose	effect	has	an	expression	in	which	a	resource	is	
referred	by	ResourceCompetition	
Elements	that	store	resources	based	on	the	assignments	in	an	effect	to	a	
property	of	the	state	machine	that	is	referred	by	ResourceLocation	
Resources	accessed	by	SUT	that	were	assigned	to	a	resource	location	
within	an	effect	

Mutation	Operators	 Change	Guard	
Selection	Criterion	 Transitions	whose	effect	has	an	expression	in	which	a	resource	is	

referred	by	ResourceCompetition,	which	is	indirectly	influenced	by	a	
guard,	e.g.	where	the	control	flow	that	leads	to	reading	or	writing	a	
resource	is	influenced	by	a	variable	that	is	read	by	the	guard	

This	is	basically	a	union	of	all	possible	mutations	based	on	the	sub	concepts	of	ResourceIssues.	

Concept	of	
Uncertainty	Taxonomy	

TechnologicalProcess::ResourceIssues::ResourceCompetition	

Mutation	Operators	 Change	Effect	
Change	Transition	Source	
Change	Transition	Target	

Selection	Criterion	 Transitions	whose	effect	has	an	expression	in	which	a	resource	is	
referred	by	ResourceCompetition	

Mutation	Operators	 Change	Guard	
Selection	Criterion	 Transitions	whose	effect	has	an	expression	in	which	a	resource	is	

referred	by	ResourceCompetition,	which	is	indirectly	influenced	by	a	
guard,	e.g.	where	the	control	flow	that	leads	to	reading	or	writing	a	
resource	is	influenced	by	a	variable	that	is	read	by	the	guard	

Resource	competition	can	be	distinguished	in	direct	and	indirect	resource	competition.	

Direct	resource	competition	occurs	if	the	very	same	resource	is	accessed	by	one	instance	while	being	
accessed	by	a	second	one.	This	is	known	as	resource	contention	in	computer	science.	

Indirect	 resource	 competition	 occurs	 if	 one	 instance	would	 like	 to	 access	 resource	 A	 but	 requires	
accessing	a	resource	B	first,	and	second	instance	is	trying	to	access	B.	This	may	be	the	case	for	resources	
that	aren’t	directly	accessible,	such	as	stacks,	either	in	the	physical	or	the	cyber	world.	

Concept	of	
Uncertainty	Taxonomy	

TechnologicalProcess::ResourceIssues::ResourceLocation	

Mutation	Operators	 Change	Effect	
Selection	Criteria	 Elements	that	store	resources	based	on	the	assignments	in	an	effect	to	a	

property	of	the	state	machine	that	is	referred	by	ResourceLocation	
Resources	 accessed	 by	 the	 system	 under	 test	 that	 were	 assigned	 to	 a	
resource	location	within	an	effect	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	
	

	
2017-05-05	 U-TEST		 Page	12	of	30	

	

The	aim	of	applying	the	Change	Effect	mutation	operator	is	to	change	the	assignment	of	a	resource	to	
a	location	in	a	wider	sense,	that	is	with	respect	to	its	physical	location	or	its	virtual	location	(in	case	of	
virtual	resources,	such	as	data	representing	physical	entities).	

Concept	of	
Uncertainty	Taxonomy	

TechnologicalProcess::	ApplicationIssues::InsufficientResources	

Mutation	Operators	 Change	Effect	
Selection	Criterion	 Elements	that	store	resources	based	on	the	assignments	in	an	effect	to	a	

property	of	the	state	machine	that	is	referred	by	InsufficientResources	
Mutations	to	effects	introduced	by	applying	the	Change	Effect	mutation	operator	are	applied	such	that	
the	cyber	 resources,	e.g.,	memory,	or	physical	 resources,	e.g.,	goods,	aren’t	available	anymore,	 for	
instance	by	removing	the	resources	or	assigning	them	to	other	entities.	

Concept	of	
Uncertainty	Taxonomy	

TechnologicalProcess::	ApplicationIssues::FunctionalFault	

Mutation	Operators	 n/a	
Selection	Criterion	 n/a	

Functional	faults	are	an	outcome	when	the	system	under	test	is	stimulated	with	correct	values	but	did	
not	respond	to	it	with	the	expected	behaviour.	Hence,	this	will	not	be	addressed	in	the	Uncertainty	
Testing	Framework	because	no	uncertainty	in	the	environment	is	involved.	

Concept	of	
Uncertainty	Taxonomy	

TechnologicalProcess::ResourceIssues::HumanBehavior	

Mutation	Operators	 Any	
Selection	Criterion	 Any	transitions	with	operations	or	any	operation	of	an	interface	referred	

by	HumanBehavior	as	a	trigger		
This	reflects	any	mutation	that	may	result	due	to	human	behaviour.	

Concept	of	
Uncertainty	Taxonomy	

TechnologicalProcess::ResourceIssues::NaturalProcess	

Mutation	Operators	 Any	
Selection	Criterion	 Elements	referred	by	this	NaturalProcess	that	are	related	to	a	physical	

(i.e.	the	physical	environment)	
Mutations	will	result	in	any	modifications	related	to	the	digital	interfaces,	i.e.	would	reflect	uncertainty	
from	the	cyber	environment	related	to	protocols.	

	

2.2.2 Fitness	Evaluation	
In	addition	 to	 the	 fitness	 factor	 framework	described	D3.1,	we	extended	 this	 framework	 to	enable	
detection	of	uncertain	behaviour	that	would	manifest	in	non-continuous	values	in	a	data	row.	Non-
continuous	 values	 are	 below	 an	 acceptable	 deviation.	 However,	 the	 difference	 between	 two	 data	
points	 is	higher	than	the	acceptable	threshold,	 leading	to	“jumps”	between	data	points	point.	Such	
uncertain	behaviours,	e.g.,	non-continuous	data	values,	are	depicted	in	Figure	3.	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	
	

	
2017-05-05	 U-TEST		 Page	13	of	30	

	

	
Figure	3.	Outliers	and	Non-Continuous	Values	

2.2.3 Test	Strategies	
No	update	for	this	milestone.	Initial	versions	of	test	strategies	were	proposed	in	Section	4.2.1	of	D3.1.	

2.2.4 Test	Data	Generation		
Test	data	generation	is	realized	by	facilities	of	MS	SpecExplorer.	

2.3 Uncertainty	Testing	at	Infrastructure	Level	
In	this	section,	we	describe	our	strategies	for	testing	CPS	at	the	Infrastructure	level	

Testing	 the	 infrastructure	 of	 CPS	 brings	 its	 particular	 challenges	 due	 to	 the	 run-time	 uncertainty	
associated	 to	 the	 infrastructure.	 Infrastructure	 failures	 can	 appear	 due	 to	 incorrect	 infrastructure	
operation,	such	as	unexpected	infrastructure	behavioural	transitions.	Failures	can	also	appear	at	run-
time	 in	 correctly	 operating	 infrastructures	due	 to	 various	 causes,	 as	 captured	 in	 the	 infrastructure	
uncertainty	 taxonomy	 in	Deliverable	D1.2.	Uncertainties	 at	 infrastructure	 level	may	 appear	 due	 to	
heterogeneity	of	 CPS	 and	data	 transmissions	 in	 it,	 i.e.	 physical	 units,	 sensors,	 actuators,	 networks,	
protocols,	 cloud	 services	 and	 other	 parts	 of	 the	 CPS.	 Additionally,	means	 of	 discovery	 of	 possible	
unknown	uncertainties	 from	a	potentially	 infinite	domain	of	unknown	uncertainties	 are	necessary.		
Thus,	to	correctly	test	and	identify	uncertainties	in	the	infrastructure	of	CPSs,	we	focus	on:	

• Testing	 the	 correctness	 of	 the	 infrastructure	 state	 transitions	 according	 to	 the	 CPS	 state	
transition	belief	model	captured	as	state	diagrams	in	D2.2.	

• Testing	at	run-time	if	specific	uncertainty-affected	properties	of	CPSs	still	hold,	indicating	if	an	
uncertain	CPS	behaviour	has	occurred	or	not.	

• Testing	for	particular	properties	of	a	CPS,	both	at	design-time	and	run-time,	in	order	to	test	
and	discover	unknown	uncertainties	in	the	system	and	provide	possible	recommendations	
for	model	evolution	

Figure	 4	 shows	 an	 overview	 of	 uncertainty	 testing	 at	 the	 infrastructure	 level	 of	 CPS.	 For	 testing	
uncertainty	 at	 infrastructure	 level,	 we	 use	 as	 input	 the	 UML	Model	 as	 obtained	 from	 the	 U-Test	
Uncertainty	Modelling	Framework.	The	UML	Model	contains	Classes	and	StateMachines	to	model	the	
overall	 system	 architecture	 and	 behaviours,	 depicted	 on	 Class	 and	 StateMachine	 Diagrams,	
respectively.	UML	StateMachines	are	the	input	to	the	State	Machine	Transition	Correctness	Testing	
Strategies	(see	D3.1).	The	Transition	Correctness	are	transformed	in	11	test	plans	and	then	in	concrete	
test	plans.	In	turn,	the	SUT	architecture	depicted	on	UML	Class	diagrams	where	SUT	components	and	
connectors	types	are	defined.	Different	test	configurations	can	be	obtained	by	instantiating	Classes	(as	
InstanceSpecifications),	 their	 Properties	 (as	 Slots),	 and	 their	 Relationships	 (as	 Links).	 The	 SUT	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	
	

	
2017-05-05	 U-TEST		 Page	14	of	30	

	

architecture	(at	the	type	level)	and	test	configurations	(at	the	instance	level)	are	used	to	generate	test	
cases	by	U-CertifyIT	(D4.2)	and	run-time	tests	descriptions	by	TUW	Platform	for	Run	Time	Testing	of	
Cyber-Physical	Systems	(D3.1).		

	

	
Figure	4.	Uncertainty	Testing	at	Infrastructure	Level	Overview	

	

In	this	deliverable,	we	focus	on	Rule-based	Uncertainty	Discovery	and	Model	Evolution	Strategy,	which	
takes	the	UML	Model	annotated	with	CPS	Infrastructure	Profile	and	applies	a	set	of	predefined	rules	
(i)	to	discover	potential	unknown	uncertainties	and	(ii)	to	suggest	model	evolution	recommendations	
as	an	output.	

	

2.3.1 Uncertainty	Model	Evolution	at	Infrastructure	Level	
The	Rule-based	Uncertainty	Discovery	and	Model	Evolution	Strategy	uses	rules	to	detect	the	potential	
unknown	 uncertainties	 in	 CPS	 on	 UML	 Model	 and	 suggests	 model	 evolution	 actions	 intended	 as	
additions/deletions/updates	 of	 structural	 and/or	 behavioural	model	 elements.	Whereas	 previously	
developed	 test	 strategies	 (D3.1)	aimed	at	 testing	 the	known	uncertainties,	 the	Rule-based	strategy	
aims	at	detecting	unknown	uncertainties	in	proactive	manner	to	prevent	and	then	reduce	the	possible	
unknown	uncertainties	in	the	SUT	in	the	later	stages	of	the	U-Test	engineering	process.	

As	depicted	in	Figure	5	the	Rule-based	Uncertainty	Discovery	and	Model	Evolution	Strategy	takes	a	
UML	Model	as	input,	suitably	annotated	with	stereotypes	from	the	CPS	Infrastructure	profile.	

Rules	 consist	 of	 queries	 on	 model	 elements	 of	 a	 test-ready	 UML	 Model,	 define	 conditions	 that	
determine	 the	 detection	 of	 potential	 unknown	 uncertainty	 over	 the	 collected	 model	 elements,	
generate	 Boolean	 result	 (true	 =	 detected,	 false	 =	 not	 detected),	 and	 suggest	 potential	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	
	

	
2017-05-05	 U-TEST		 Page	15	of	30	

	

changes/evolutions	on	the	source	UML	model.	If	these	recommendations	are	realized	on	the	source	
UML	Model	(i.e.	addition/deletion/update	of	model	elements	and/or	stereotype	applications),	a	new	
evolved	version	of	the	source	UML	Model	is	obtained.	

	

The	 envisaged	 Rule-based	Uncertainty	 Discovery	 and	Model	 Evolution	 Strategy	 is	 iterative.	 At	 any	
iteration	of	the	proposed	strategy	a	new	evolved	version	of	a	UML	Model	can	be	obtained	by	realizing	
the	suggested	recommendations	from	a	non-empty	set	of	rules	applied	to	the	whole	model	(e.g.,	all	
system	components	and	all	test	configurations)	or	a	subset	of	it	(e.g.,	only	to	selected	components	and	
test	configurations).	Currently,	it	is	up	to	the	modeller	deciding	the	needed	iterations,	i.e.	which	rules	
(out	of	a	set	of	predefined	ones)	to	apply,	their	scope	(the	whole	model	or	only	a	subset	of	it),	and	the	
order	of	their	application.	It	is	worth	noting	that	the	modeller	can	decide	to	completely	skip	the	Rule-
based	Uncertainty	Discovery	and	Model	Evolution	steps	or	 ignore	suggested	recommendations	and	
proceed	with	the	next	U-Test	engineering	steps	requiring	the	UML	Model.	

	

	
Figure	5.	Rule-based	Uncertainty	Discovery	and	Model	Evolution	strategy	overview	

	

The	evolution	rules	required	to	perform	the	Rule	Execution	step	in	Figure	5	have	been	first	specified	in	
a	tabular	with	the	following	template.	

Every	defined	rule	has	the	following	attributes:	

• Rule	level	
• Rule	aspect	
• Rule	element	(from	profile)	
• Rule	description	
• Rule	condition	(algorithm)	
• Model	evolution	recommendation	
• Model	evolution	recommendation	domain	
• Non-functional	property	(quality)	affected	
• Source	or	justification	
• Rule-specific	attribute	(optional)	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	
	

	
2017-05-05	 U-TEST		 Page	16	of	30	

	

• Rule-specific	attribute	execution	period	(optional)	
	

Rules	are	categorized	in	different	levels	(application,	infrastructure,	integration)	as	per	division	in	U-
Test	project.	Rule	aspects	are	categorized	as	per	division	proposed	by	NIST	CPS	Framework	[4]	-	data,	
functional,	business,	human,	trustworthiness,	timing,	boundaries,	composition,	lifecycle,	plus	security,	
as	 intrinsic	 to	 all	 aspects	 of	 CPS.	 Rules	 reference	 the	 profile,	 which	 they	 are	 using	 as	 a	 basis	 for	
uncertainty	 detection	 and	 a	 specific	 profile	 element.	 Each	 rule	 has	 a	 verbal	 description	 and	 the	
accompanying	 algorithm,	 with	 the	 conditions,	 which	 must	 be	 met.	 Each	 rule	 provides	 a	 possible	
recommendation	for	model	evolution,	while	stating	the	possible	domain	for	further	research.		Each	
rule	affects	one	or	more	non-functional	properties	(qualities)	of	a	CPS.	Each	rule	has	to	be	backed	up	
by	 at	 least	 one	 source	 (paper,	 best	 practice	 recommendation,	 existing	 standards,	 etc.),	 or	 in	
experimental	research	domains,	if	there	are	no	sources,	it	needs	to	have	a	justifiable	clarification.	If	
there	is	no	attribute	in	referenced	profile	to	apply	the	rule,	we	define	them	as	rule-specific	attributes.	
In	 such	 case,	 we	 define	 if	 the	 attribute	 value	 represents	 the	 design-time	 (expected)	 or	 run-time	
(measured)	value.	

Initial	 set	of	20+	defined	 rules	are	 located	 in	an	open	source	TUW	U-Test	GitHub1	code	 repository,	
together	with	other	test	strategies	implemented.	Further	definition	of	rules	is	an	on-going	work.	Rules	
currently	 mostly	 cover	 aspects	 of	 data	 (since	 uncertainties	 at	 infrastructure	 level	 appear	 due	 to	
heterogeneity	of	CPS	and	data	transmissions	in	it),	security	aspect,	and	current	trends	in	CPS	evolution	
(e.g.	CPS	to	Fog/Edge	evolution,	CPS	Elasticity,	etc.)	across	multiple	aspects.	An	example	of	data	aspect	
rule,	 security	 aspect	 rule	 and	 CPS	 elasticity	 rule	 is	 shown	 in	 Table	 2.	 Additionally,	 table	 shows	
FPX/ULMA	use	cases	where	particular	unknown	uncertainty	can	be	discovered	with	the	usage	of	the	
specific	rule.		However,	the	full	effectiveness	of	the	Rule-based	strategies,	as	well	as	other	previously	
implemented	 strategies,	 and	 full	 evaluation	 based	 on	 project-defined	 metrics	 (e.g.,	 number	 of	
previously	unknown	uncertainties	identified	by	the	reporting	system	for	use	case	x)	will	be	provided	
as	output	of	empirical	evaluation	task	in	D5.4.	

The	expected	outputs	of	the	rules	are:	

(i) Textual	recommendation	to	modellers	displayed	as	uncertainty	warning	messages	(e.g.,	
via	Console	view	in	Eclipse-based	environment)	with	traceability	links	among	applied	rules,	
checked	model	elements,	and	model	evolution	recommendations.	

(ii) Application(s)	of	stereotypes	defined	in	the	CPS	Uncertainty	profile	to	model	element(s)	
with	detected	uncertainty.	

	

One	goal	of	the	Rule-based	Uncertainty	Discovery	Strategy	is	to	decouple	its	realization	from	modelling	
guidelines	and	tools	required	by	EGM	and	FF.		

In	order	to	decouple	the	proposed	strategy	from	specific	modelling	guidelines	proposed	by	EGM	and	
FF,	we	decided	to	realize	a	CPS	Infrastructure	Model	Library,	which	can	be	imported2	in	U-Test	ready	
models,	where	the	discovery	rules	are	applied.	Moreover,	being	decoupled	from	U-Test	ready	model,	

																																																													
1	TUW	U-Test	GitHub,	https://github.com/tuwiendsg/COMOT4U		
2	The	import	step	can	be	realized	“by	reference”	or	“by	value”.	In	the	first	case,	the	model	library	is	read	only	
while	in	the	latter	the	imported	library	can	be	modified.	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	
	

	
2017-05-05	 U-TEST		 Page	17	of	30	

	

the	model	 library	 can	 evolve	 independently	 from	 U-Test	 models	 to	 accommodate	 refinements	 of	
existing	discovery	rules	or	definition	and	implementation	of	new	ones.		

Concerning	tool	support,	two	Eclipse-based	UML	modelling	tools	are	adopted	to	create	U-Test	ready	
models,	i.e.,	RSA	and	Papyrus,	both	implemented	on	top	of	Eclipse	UML.	Both	tools	provide	support	to	
OCL,	the	OMG	standard	query	language	for	MOF-based	artefacts,	that	we	choose	to	implement	the	
rule	specifications	given	in	a	tabular	form	in	Table	2.	

In	order	 to	produce	 the	expected	outputs,	 rules	will	be	 implemented	 in	OCL	[5]	 (Object	Constraint	
Language)	using	the	Eclipse	OCL	plugin.	Since	OCL	 is	a	side-effect	 free	query	 language	 for	artefacts	
serialized	as	OMG	XMI	documents,	 any	model	 evolution	 (i.e.,	 change	on	 the	 test	 ready	model	 like	
stereotype	application)	are	planned	to	be	implemented	via	external	Java-based	routines	with	support	
of	the	Eclipse	UML	API.		

	

2.3.2 Test	Strategies	
Infrastructure	 level	 test	 strategies	 are	 currently	 divided	 in	 four	 categories,	 as	 previously	 shown	 in	
Figure	4:		

• State	Machine	Transition	Correctness	Testing	Strategies	(Test	Correctness	of	State	Transitions	
in	All	Test	Paths	Strategy	and	Test	Correctness	of	State	Transitions	in	Uncertainty-affected	Test	
Paths	Strategy),		

• Run-Time	 Testing	 Strategies	 (periodic	 testing,	 event-based	 testing,	 direct	 testing,	 indirect	
testing)	

• Rule-based	Uncertainty	Discovery	and	Model	Evolution	Strategy	and		
• Machine	 Learning	 based	 Uncertainty	 Analysis	 Strategy,	 aimed	 at	 analysis	 of	 uncertainty	

patterns	related	to	particular	infrastructure	elements	(ongoing	work,	to	be	reported	in	D3.3).	
For	the	Rule-based	Uncertainty	Discovery	and	Model	Evolution	Strategy,	Figure	6	shows	an	example	
where	we	start	from	the	initial	model	with	applied	referenced	profiles	and	run	the	strategy	over	the	
model	elements.	The	strategy	discovers	three	possible	uncertainties	with	model	recommendations,	
which	modeller	implements.	Over	the	three	evolved	models,	strategy	is	run	again.	Rule-based	strategy	
finds	 no	 uncertainties	 in	 first	 evolved	 model.	 In	 the	 second,	 one	 new	 unknown	 uncertainty	 is	
discovered,	model	is	again	evolved,	and	test	strategy	ran	again,	and	no	new	unknown	uncertainties	
are	found.	Additionally,	rule-based	testing	strategy	finds	one	more	unknown	uncertainty	in	the	third	
evolve	model,	however,	the	stakeholders	of	that	particular	CPS	under	test	are	unable	to	evolve	the	
model.	The	reasons	for	inability	for	model	evolution	are	specific	for	each	particular	CPS	(e.g.,	lack	of	
API,	change	requires	too	much	effort,	change	does	not	fit	with	business	plan,	etc.).	However,	this	newly	
discovered	 unknown	 uncertainty	 transitioned	 from	 an	 unknown	 uncertainty	 domain	 to	 a	 known	
uncertainty	domain	can	be	further	tested	and	observed	with	previously	developed	testing	strategies,	
e.g.,	Run-time	Test	Strategy	or	State	Machine	Transition	Correctness	Testing	Strategies.	

	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	

	

	

2017-05-05	 U-TEST		 Page	18	of	30	

	

Table	2.	Example	of	data,	security	and	CPS	elasticity	rule	

	 	 Data	rule	 Security	rule	 CPS	elasticity	rule	

	 Rule	Name	 Check	Timestamp	Mechanism	Availability	 Check	If	Safety	Critical	Actuator	 Check	Data	Management	

Mechanism	Availability	

R
u
le
	a
ttrib

u
te
s	

Rule	level	 CPS	Infrastructure	 CPS	Infrastructure	 CPS	Infrastructure	

Rule	aspect	 Data	 Security	 Data,	Lifecycle	

Rule	element	 CPSProfile::Unit	 CPSProfile::Actuator	 CPSProfile::CPS	

Rule	description	 Sensor	 data	 should	 be	 timestamped,	 to	

monitor	 the	 latency	 between	 the	 following	

event	 occurrences,	 i.e.	 the	 measurement	

event	occurrence	and	 the	data	availability	 to	

Unit	event	occurrence.		

If	 an	 actuator	 is	 safety-critical	 (e.g.,	
centrifuge	 in	 chemical	 plant,	 that	 may	

cause	 harm	 to	 a	 CPS),	 consider	 adding	

new	physical	controls	over	the	CPS	(e.g.,	

manual	valves)	to	reduce	possible	harm	

in	case	of	misuse.	

	

Sensors	may	produce	too	much	data	

(e.g.,	 if	 sensors	 are	 activated	 by	

certain	 events)	 which	 the	 CPS	

cannot	handle	due	to	its	limitations.	

Please	 test	 the	 system	 with	 both	

maximum	 and	 minimum	 workload	

of	sensors	to	find	out	its	limitations.	

Additionally,	 please	 ensure	 the	

elasticity	 of	 the	 CPS	 in	 such	

occasions.	

Rule	algorithm	 IF Unit. timestampMechanism==
notImplemented

IF Actuator.
safetyCritical== TRUE

IF
SensorDataManagementMech
anism== FALSE

Model	evolution	

recommendation	

Please	implement	the	timestamp	mechanism.	 Please	 consider	 adding	 new	 physical	

controls	over	the	CPS.	

Please	test	and	evolve	the	system	as	

instructed.	

Model	evolution	domain	 Data	timestamping	 Physical	safety	 Elasticity	

Non-functional	property	 Latency	 Safety	 Elasticity	

Source	or	justification	 NIST	CPS	Framework	[4],	page	4	 NIST	CPS	Framework	[4],	page	79	 DSG	TU	Wien,	SYBL	[6]	

Rule-specific	attribute	 CPS	Infrastructure	stereotype:	Unit	

attribute:	hasTimestampMechanism	

values:	true,	false	

CPS	Infrastructure	stereotype:	Actuator	

attribute:	isSafetyCritical	

values:	true,	false		

CPS	Infrastructure	stereotype:	CPS	

attribute:hasSensorDataMngmtMec

hanism		

values:	true,	false	

Attribute	execution	period	 Design-time	 Design-time	 Design-time	

Uncertainty	found:	 ULMA	UC2_INFR_2.1	 ULMA	UC2_INFR_1.2	 FPX	UC1_INFR_8	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	

	

	

2017-05-05	 U-TEST		 Page	19	of	30	

	
	

	

	

Figure	6.	Example	of	an	Iterative	Application	of	Rule-based	Strategy	

2.3.3 Test	Data	Generation	
Our	approach	relies	on	three	data	sources	used	in	infrastructure	testing:	

a. Information	 captured	 as	UML	 Profiles,	 Class	 Diagrams,	 and	 State	 Diagrams	 during	 the	 CPS	
modelling	phase,	as	described	 in	D2.1	and	D2.2.	This	 information	 is	used	 in	generating	 the	
abstract	 transition	correctness	 tests,	 run-time	 test	descriptions,	discovery	of	new	unknown	
uncertainties	and	model	evolution.	

b. Expert	 knowledge	brought	by	CPS	owner/user	used	 in	 the	 implementation	of	 the	 concrete	
tests	according	to	particularities	of	the	tested	CPS.		

c. Test	data	generation	as	implemented	in	U-CertifyIT	together	with	test	strategies.	

	

2.4 Uncertainty	Testing	at	Integration	Level	
This	 section	 presents	 the	 overview	 of	 the	 work	 related	 to	 UTF	 at	 the	 integration	 level	 from	 the	
following	four	perspectives,	as	shown	in	Figure	7:	1)	Uncertainty-wise	Model	Evolution,	2)	Uncertainty-
wise	Test	Case	Generation,	3)	Uncertainty-wise	Test	Case	Minimization,	and	4)	Uncertainty-wise	Test	
Case	Prioritization.	In	this	section,	we	only	provide	an	overview	of	each	of	these	activities	and	all	the	
technical	details	are	provided	in	the	form	of	two	technical	reports,	i.e.	Technical	Report	2:	Uncertainty-
Wise	Evolution	of	Test	Ready	Models	[7]	and	Technical	Report	3:	Uncertainty-Wise	and	Time-Aware	
Test	Case	Prioritization	with	Multi-Objective	Search	[8].	The	short	summaries	of	these	two	technical	
reports	can	be	found	in	the	Appendix.	The	full	technical	reports	are	attached	with	this	deliverable	as	
two	separate	documents	(TR4.1.pdf	and	TR7.pdf).		

D3.2	 Version	1.0	 Confidentiality	Level:	PU	

	

	

2017-05-05	 U-TEST		 Page	20	of	30	

	
	

	

Uncertainty-wise	Model	Evolution	(C1)	will	be	described	in	Section	2.4.1,	Uncertainty-wise	Test	Case	
Generation	(C2)	in	Section	2.4.2,	Uncertainty-wise	Test	Case	Minimization	(C3)	in	Section	2.4.3,	and	
Uncertainty-wise	Test	Case	Prioritization	 (C4)	 in	 Section	2.4.4.	Comparing	with	D3.1,	UncerPlore	 in	
uncertainty-wise	model	evolution	(C1.2)	and	uncertainty-wise	test	case	prioritization	(C4)	are	newly	
proposed	in	this	deliverable,	and	the	description	for	the	rest	(C1.2,	C2,	C3,	and	C4)	only	highlights	the	
updates.	

As	shown	in	Figure	7,	the	initial	input	of	the	UTF	at	Integration	Level,	i.e.	belief	test	ready	model	(BM),	
is	the	output	of	the	UncerTum	(C0)	(presented	in	the	deliverables	of	WP2,	D2.2	and	D2.3).	The	overall	
workflow	is:		

1. Belief	 test-ready	 models	 are	 evolved	 based	 on	 the	 uncertainty-wise	 model	 evolution	
component	(C1);		

2. The	uncertainty-wise	test	case	generation	component	 (C2)	takes	(evolved)	belief	 test-ready	
models	as	input	to	generate	abstract	test	cases;		

3. By	taking	generated	abstract	test	cases	as	input,	the	uncertainty-wise	test	case	minimization	
component	can	be	optionally	used	to	minimize	the	number	of	abstract	test	cases	when	needed	
(C3);		

4. The	uncertainty-wise	prioritization	component	(C4)	takes	abstract	test	cases	and	test	results	
as	input	and	prioritizes	the	sequence	to	execute	test	cases	in	a	cost-effective	way;		

5. The	uncertainty-wise	test	case	generation	component	(C2)	takes	the	(minimized/prioritized)	
belief	test-ready	models	as	input	to	generate	executable	test	cases;		

6. The	uncertainty-wise	 test	 case	execution	 component	 (C5)	 takes	 the	 (minimized/prioritized)	
test	cases	to	execute	on	test	infrastructure.		

	

	 	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	
	

	
2017-05-05	 U-TEST		 Page	21	of	30	

	
	

	

	

	
Figure	7.	Overview	of	Uncertainty	Testing	Framework	at	Integration	Level	

	 	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	

	

	

2017-05-05	 U-TEST		 Page	22	of	30	

	
	

	

The	rest	of	this	section	describes	more	details	about	each	component.	

2.4.1 Uncertainty-wise	Model	Evolution	
This	 section	 presents	 the	 uncertainty-wise	 model	 evolution	 (C1	 in	 Figure	 7),	 which	 contains	 two	
methodologies:	UncerTolve	(C1.1,	Section	2.4.1.1)	and	UncerPlore	(C1.2,	Section	2.4.1.2)	

2.4.1.1 UncerTolve	
This	section	presents	updates	of	UncerTolve	(C1.1	in	Figure	7),	comparing	with	D3.1.	A	summary	of	our	
work	 on	 UncerTolve	 is	 provided	 in	 Technical	 Report	 2:	 Uncertainty-Wise	 Evolution	 of	 Test	 Ready	
Models	[7].	The	corresponding	technical	report	(TR4.1.pdf)	is	also	attached.		

In	general,	the	main	updates	in	the	technical	report	(TR4.1.pdf)	include:		

1. Scientific	 challenges,	 objectives,	 context,	 scope	 and	 contribution	 are	 clearly	 described	 in	
Section	1,	and	Figure	1	is	updated	to	clarify	the	context	and	scope	of	UncerTolve;		

2. The	presentation	of	the	UncerTolve	framework	is	restructured	in	Section	5.1.	Figure	9	is	newly	
added	 to	 describe	 the	 high-level	 components	 of	 UncerTolve	 and	 Table	 2	 discusses	 the	
rationale	behind	the	selection	of	techniques/languages/tools	for	the	implementation.	

2.4.1.2 UncerPlore	
This	section	presents	the	UncerPlore	framework,	which	evolves	test-ready	models	by	using	genetic	
programming	(GP)	[9]	[10]	and	benefiting	from	runtime	test	ready	model	execution	on	the	dedicated	
test	infrastructure	(physical	infrastructure	or	Simulators/Emulators).	The	overview	diagram	is	shown	
in	Figure	8.	The	UncerPlore	framework	is	implemented	on	the	ECJ	tool	[11].	

As	shown	in	Figure	8,	we	formalized	a	belief	state	machine	as	the	basic	input	of	GP	(Section	2.4.1.2.1):	
1)	a	state	is	formalized	as	a	terminal	that	is	evaluated	based	on	the	runtime	status	of	the	system;	2)	a	
transition	is	formalized	as	a	function	with	two	arguments	that	indicate	the	two	statuses	before/after	
executing	this	transition.	Note	that	required	data	for	executing	events	of	transitions	can	be	generated	
by	the	OCL	Solver	(EsOCL	[12]).	In	addition,	we	define	an	algorithm	to	interpret	tree	structure	results	
produced	by	GP,	which	will	be	described	in	Section	2.4.1.2.2.		

	

Figure	8.	Overview	of	UncerPlore	(C1.2)	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	

	

	

2017-05-05	 U-TEST		 Page	23	of	30	

	
	

	

2.4.1.2.1 Problem	Representation	
In	 [10],	 Koza	 defined	 five	 key	 steps	 to	 enable	 Tree-based	 GP	 evolution	 of	 programs.	 These	 steps	
include:	1)	Specification	of	 set	of	 terminals,	e.g.,	external	 inputs,	2)	A	 set	of	 functions,	3)	A	 fitness	
measure,	4)	parameter	 settings,	5)	Termination	criteria	 [13].	 To	evolve	belief	 state	machine	 in	our	
context,	we	defined	the	formalization	shown	in	Table	3.		The	terminal	set	and	function	set	are	the	basic	
ingredients	for	GP	to	create	programs	[13],	so	we	further	defined	the	generation	rules	(Table	3)	to	
automatically	generate	terminal	set	and	function	set	from	the	belief	state	machine.	

Table	3.	Formalizing	the	uncertainty-wise	evolution	problem	as	a	GP	problem	

GP	 Definition	 Description	

Terminal	
Set	

!" = {"!% … "!', "!)*}	 Each	state	(ST)	is	converted	into	a	terminal,	whose	data	type	
is	 Boolean.	 STuk	 is	 a	 state	 that	 all	 existing	 states	 are	 not	
satisfied.		
ST extends Node{
 data:Boolean
 // return true when «BeliefElement»State
contains uncertainty.
 isUncertain():Boolean
 // operation to evaluate the state invariant
based on runtime status
 evaluateStateInvariant():Boolean
// operation to evaluate occurrence of
indeterminacy source if it has
 evaluateIndSpecification():Boolean
}	

Function	
Set	

," = !-% …!-. ∪ {!-01"% …!-01"2}	 Each	 transition	 (TR)	 or	 each	 transition	 with	 specified	
indeterminacy	 input	 (TRInS)	 is	 converted	 into	one	 function	
with	two	arguments	and	a	Boolean	return	value,	represented	
as	!-	(51, 52) = 	51 ∧ 52	under	the	execution	a1®TR®a2	
true	result	indicates	the	valid	program.	
TR extends Node{
 children[2]:Node
 //execute event of transition, OCL Solver is
used when guard condition exits
 execute():void
 // optionally specify the precondition to
execute this transition
 evaluatePrecondition():Boolean
}
TRInS extends TR{
 //execute the trigger to enable indeterminacy
source
 enableInSInput():void
}

Fitness	
Measure	 :;< = #;><1*'

#<1*'
		

,? = 1 −	12 :;< + #<1)*
#<1)* + 1

	

POU	 is	 the	 percentage	 of	 observed	 uncertainty	 comparing	
with	 specified	 uncertainty,	 where	#;><1*' 	indicates	 the	
number	of	observed	uncertainties,	and	#<1*'	indicates	the	
number	of	specified	uncertainties.	FM	is	fitness	measure	to	
evaluate	the	solution,	which	is	related	to	POU	and	observed	
unknown	uncertainties.	

Termination	
Criterion	

(isValid)	and		
(coverageruntime	>=	coveragespecified)	

An	evolution	is	terminated	when	the	corresponding	GPTree	
is	valid	(with	the	true	result)	and	involved	elements	are	more	
than	specified	ones.	

Parameter	 Crossover	Operator:	Subtree	Crossover	[9]	
[10]	
Mutation	 Operator:	 Point	 Mutation	 [9]	
[10]	
Population	size:	50	
Maximum	Generations:	1000	

Default	parameter	setting.		

D3.2	 Version	1.0	 Confidentiality	Level:	PU	

	

	

2017-05-05	 U-TEST		 Page	24	of	30	

	
	

	

2.4.1.2.2 Interpretation	of	GP	Solution	
This	section	describes	the	interpretation	of	the	Tree-based	GP	solution	to	generate	evolved	belief	state	
machines.		Based	on	the	formalizations	of	the	GP	problem	in	Table	3,	1)	each	transition	is	presented	
as	non-leaf	node,	2)	each	state	is	presented	as	the	leaf	node	in	the	tree,	3)	the	source	and	target	of	
the	transition	are	presented	as	the	previous	and	next	visiting	node	based	on	inorder	traversal,	and	4)	
the	incomings	and	outgoings	of	the	state	are	presented	as	the	previous	and	next	visiting	node	based	
on	inorder	traversal.	The	pseudocode	of	the	algorithm	to	generate	evolved	belief	state	machines	is	
shown	in	Figure	9,	and	a	simple	example	describing	the	traversal	process	is	presented	in	Figure	10.	

Algorithm GenerateBSM(node:Node, sm:BSM, list:list<Node>)
Input node is the root of GPTree

list records the traversal sequence
Output sm is the evolved state machine
Begin

1 if(node.children != null)
2 generateBSM (node.children[0], sm, list)
3 if(node is kind of ST)
4 state = getState(node, sm)
5 sm.update(state)
6 if(list.last != null)
7 state.incomings.add(getTransition(list.last,sm))
8 getTransition(list.last,sm).target = state
9 if(node is kind of TR)

10 transition = getTransition(node, sm)
11 sm.update(transition)
12 transition.source = getState(list.last, sm)
13 getState(list.last, sm).outgoings.add(transition)
14 list.add(node)
15 if(node.children != null)
16 generateBSM (node.children[1], sm, list)

End
Figure	9.	The	algorithm	to	generate	evolved	belief	state	machines	based	on	GP	solutions	

	

Figure	10.	An	example	of	generating	belief	state	machines	from	GPTree	

2.4.2 Uncertainty-wise	Test	Case	Generation	
No	Specific	Update.	The	final	version	will	be	provided	in	D3.3.	

2.4.3 Uncertainty-wise	Test	Case	Minimization	
No	Specific	Update.	The	final	version	will	be	reported	in	D3.3.	

2.4.4 Uncertainty-wise	Test	Case	Prioritization	
As	shown	in	Figure	7,	the	key	inputs	of	uncertainty-wise	test	case	prioritization	are	abstract	test	cases	
that	 contain	 uncertainty	 information,	 e.g.	 Uncertainty	 Measure,	 the	 number	 of	 uncertainty,	 and	
execution	results	that	contain	the	execution	time	and	observed	uncertainty	for	each	run.	Based	on	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	

	

	

2017-05-05	 U-TEST		 Page	25	of	30	

	
	

	

these	 two	 key	 inputs,	 we	 formalized	 our	 uncertainty-wise,	 time-aware,	 multi-objective	 test	 case	
prioritization	problem	as	a	search	problem	and	solved	it	using	the	well-known	multi-objective	search	
algorithm	 NSGA-II	 [14].	 Corresponding	 to	 the	 four	 objectives,	 we	 defined	 four	 cost-effectiveness	
measures:	1)	the	total	execution	time	of	prioritized	test	cases	(to	minimize);	2)	the	average	uncertainty	
measure	 (adopted	 from	Uncertainty	Theory	 [15])	of	 the	prioritized	 test	cases	 (to	maximize);	3)	 the	
average	number	of	observed	uncertainties	of	prioritized	test	cases	(to	maximize);	and	4)	the	transition	
coverage	(to	maximize).	Based	on	these	objectives	and	measures,	we	define	a	fitness	function	to	guide	
the	algorithm	towards	finding	optimal	solutions.		

We	evaluated	NSGA-II	and	compared	it	with�Greedy	and	Random	Search	(RS),�with	an	industrial	case	
study	(Quuppa	by	FPX)	requiring	prioritizing	336	test	cases.	We	further	evaluated	the	performance	and	
scalability	of	 the	algorithm	with	72	simulated	problems,	carefully	constructed	based	on	a	 test	case	
repository	 containing	 2085	 test	 cases.	 Results	 show	 that	 NSGA-II	 achieved	 significantly	 better	
performance	 than	 RS	 and	 Greedy	 for	 solving	 the	 uncertainty-wise	 and	 time-aware	 test	 case	
prioritization	problem	for	the	industrial	case	study	and	the	72	simulated	problems.	Please	refer	to	the	
online	technical	report	[8]	and	also	attached	as	TR7.pdf	in	the	deliverable,	for	more	details.	A	summary	
of	our	work	in	TR7.pdf	is	provided	in	the	Appendix	under	the	Technical	Report	3:	Uncertainty-Wise	and	
Time-Aware	Test	Case	Prioritization	with	Multi-Objective	Search	[8].	

3 Summary	and	Conclusion	

3.1 UTF	at	the	Application	Level	
Achievements	of	M4	
The	 fourth	milestone	 was	 achieved	 by	 the	 improvements	 of	 the	 genetic	 algorithm	with	mutation	
operators	for	guards	and	effects	in	form	of	UML	activities	that	are	exploiting	further	information	from	
modelled	uncertainty.	It	was	specified	which	concepts	of	the	Uncertainty	Taxonomy	(implemented	by	
the	Uncertainty	Modelling	Framework)	are	used	to	select	mutation	operators	and	to	which	elements	
they	are	applied.	Furthermore,	refinements	of	the	fitness	function	framework	were	introduced	that	
allow	to	detected	further	kinds	of	uncertain	behaviour	related	to	non-continuous	behaviour	of	a	CPS	
application.	

Plan	for	achieving	M5	
For	 the	 fifth	milestone,	 we	will	 focus	 on	 test	 strategies	 aiming	 at	 discovering	 unknown	 uncertain	
behaviours,	also	by	improving	the	genetic	algorithm.	This	will	be	done	by		

• investigating	further	improvements	of	the	existing	crossover	operators	and	new	options	for	
them,		

• extending	the	genetic	algorithm	with	configuration	points	for	random	variation	(i.e.	decreasing	
the	amount	of	 information	taken	from	modelled	uncertainties	used	to	guide	the	mutation)	
and		

• feeding	back	first	results	from	the	evaluation	of	the	model	evolution	algorithm	on	the	pilots.	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	

	

	

2017-05-05	 U-TEST		 Page	26	of	30	

	
	

	

3.2 UTF	at	the	Infrastructure	Level	
Achievement	of	M4	

The	fourth	milestone	was	achieved	through	the	introduction	of	Rule-based	Uncertainty	Discovery	and	
Model	Evolution	Strategy.	The	strategy	aims	at	discovery	of	new	unknown	uncertainties	as	well	as	
providing	recommendations	for	model	evolution,	while	making	use	of	profiles	created	in	WP2.	Initial	
version	of	model	evolution	algorithm	was	achieved	as	a	set	of	rules,	documented	and	implemented	in	
OCL.	Rules	aim	at	discovery	of	new	realistic	(unknown)	uncertainties,	evolve	the	model	and	provide	
recommendations	 for	 further	 model	 evolution.	 The	 evolved	 models	 can	 be	 used	 as	 an	 input	 to	
previously	developed	test	strategies,	as	well	as	an	input	to	strategies	implemented	in	U-CertifyIT,	to	
generate	new	test	cases.	

Plan	for	achieving	M5	

For	the	fifth	milestone,	we	will	focus	on	extension	of	the	initial	set	of	rules	(with	emphasis	towards	
current	generic	evolution	of	CPS	towards	Edge/Fog/IoT),	as	well	as	on	provision	of	a	methodology	for	
further	 profile	 and	 rule	 creation	 for	 different	 aspects	 of	 CPS	 (data,	 functional,	 business,	 human,	
trustworthiness,	timing,	boundaries,	composition,	lifecycle	and	security)	centred	around	the	core	CPS	
profile.	 Additionally,	 we	 plan	 to	 investigate	 the	 Machine	 Learning	 based	 Uncertainty	 Analysis	
approach,	aimed	at	analysis	of	uncertainty	patterns	related	to	particular	infrastructure	elements,	i.e.	
to	investigate	whether	particular	types	of	uncertainties	can	be	linked	to	specific	CPS	elements	

3.3 UTF	at	the	Integration	Level	
Achievements	of	M4	
We	have	successfully	reached	the	milestone	M4	regarding	the	UTF	V.2	for	uncertainty	testing	at	the	
Integration	 level	 of	 CPS.	 More	 specifically,	 the	 main	 improvements	 for	 uncertainty	 testing	 at	 the	
Integration	level	as	compared	to	the	UTF	V.1	include:		

1) The	 update	 of	 UncerTolve	 for	 supporting	 the	 evolution	 of	 test-ready	 models	 using	 real	
operation	data	(Section	2.4.1.1);	

2) The	development	of	an	 initial	version	of	the	new	model	evolution	framework	(UncerPlore),	
which	evolves	test-ready	models	using	genetic	programming	(GP)	[9]	[10]	and	benefiting	from	
runtime	test	ready	model	execution	on	the	dedicated	test	infrastructure	(Section2.4.1.2);	

3) An	uncertainty-wise	test	prioritization	solution	to	optimize	the	order	of	executing	test	cases	in	
the	cost-effective	way	(Section	2.4.4).	

Plan	for	achieving	M5	
For	the	fifth	milestone,	we	will	work	on		

1) Providing	the	recommendation	of	how	to	configure	the	proposed	test	strategies	for	the	test	
case	generation;	

2) Developing	additional	uncertainty-wise	problems	for	test	case	minimization	and	prioritization,	
and	conducting	experiments	with	additional	search	algorithm;	

3) Finalizing	the	new	model	evolution	framework	UncerPlore	and	performing	experiments.	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	

	

	

2017-05-05	 U-TEST		 Page	27	of	30	

	
	

	

Appendix	

Technical	Report	1:	Implementation	Recommendations	for	Rule-based	
Uncertainty	Discovery	and	Model	Evolution	Strategy		

The	Rule-based	strategy	algorithm	iterates	through	each	test	path	entry	containing	a	state	and	the	
transition	to	the	next	path	state.	 It	traverses	through	all	states,	not	only	uncertainty-affected	ones.	
Unlike	with	test	path	generation,	 this	should	not	cause	an	overhead	problem	as	described	 in	D4.2,	
since	 this	 strategy	 checks	 on	 properties	 of	 only	 the	 current	 state	 at	 particular	 moment	 without	
consideration	of	another	state.	During	the	path	traversal,	it	checks	on	the	properties	of	particular	state	
or	transition,	as	shown	in	Listing	1.	

	

Listing	1:	Test	strategy	2	–	Checking	particular	state	property	during	path	traversal	

RuleCondition refers	 to	 rule	 condition	 attribute	 of	 rules	 (as	 described	 in	 Section	 2.3),	 e.g.	
state.timestampMechanism==notImplemented. RuleOutput refers	to	textual	output	of	
a	 rule,	 i.e.	 rule	 description,	 model	 evolution	 recommendation,	 model	 evolution	 recommendation	
domain,	 source	or	 justification	 (as	described	 in	 Section	2.3),	 and	 the	name	of	 a	 state	or	 transition	
where	an	unknown	uncertainty	is	discovered.	

Additional	set	of	implementation	recommendations	includes:	

• ability	to	categorize	rules	 in	different	aspect	 (e.g.	a	set	of	data	rules,	behavioural	 rules	etc.	
defined	as	different	documents)	

• ability	to	select	a	set	of	rules	to	execute	
• ability	of	run-time	addition	or	removal	of	rules	(e.g.	rules	defined	in	specific	document	with	

Java	syntax,	which	are	 then	 imported	 into	 the	path	 traversal	code.	This	 feature	would	also	
remove	the	need	of	recompilation	of	the	implemented	plugin	every	time	a	new	rule	is	defined)	

• instant	output	in	console	view	

Technical	Report	2:	Uncertainty-Wise	Evolution	of	Test	Ready	Models	

The	details	of	this	technical	report	[7]	can	be	found	in	a	separate	self-contain	document	(TR4.1.pdf)	
attached	with	 this	deliverable.	 This	 technical	 report	paper	describes	our	detailed	approach	 for	 the	

ALGORITHM rule_based_uncertainty_discovery_and_model_evolution_strategy
INPUT: test_paths
OUTPUT: textual_or_console_output

1 FOR EACH test_path IN test_paths DO
2
3 IF ANY state in test_path.entries HAS RuleCondition
4 textual_or_console_output.add(ruleOutput)
5 IF ANY transition in test_path.entries HAS RuleCondition
6 textual_or_console_output.add(ruleOutput)
7
8 ... -- rest in similar state machine diagram iteration sense as
generate_transition_correctness_tests in D3.2
	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	

	

	

2017-05-05	 U-TEST		 Page	28	of	30	

	
	

	

Uncertainty-Wise	Evolution	of	Test	Ready	Models	(UncerTolve),	which	we	have	briefly	presented	in	
Section	2.4.1.1.	An	summary	of	this	technical	report	is	given	as	follows.		

Context:	 Cyber-Physical	 Systems	 (CPSs),	 when	 deployed	 for	 operation,	 are	 inherently	 prone	 to	
uncertainty.	Considering	their	applications	 in	critical	domains	 (e.g.,	healthcare),	 it	 is	 important	 that	
such	CPSs	are	tested	sufficiently,	with	the	explicit	consideration	of	uncertainty.	Model-based	testing	
(MBT)	involves	creating	test	ready	models	capturing	the	expected	behaviour	of	a	CPS	and	its	operating	
environment.	 These	 test	 ready	 models	 are	 then	 used	 for	 generating	 executable	 test	 cases.	 It	 is,	
therefore,	necessary	to	develop	methods	that	can	continuously	evolve,	based	on	real	operational	data	
collected	 during	 the	 operation	 of	 CPSs,	 test	 ready	 models	 and	 uncertainty	 captured	 in	 them,	 all	
together	termed	as	Belief	Test	Ready	Models	(BMs)	

Objective:	Our	objective	is	to	propose	a	model	evolution	framework	that	can	interactively	improve	the	
quality	of	BMs,	based	on	operational	data.	Such	BMs	are	developed	by	one	or	more	test	modellers	
(belief	agents)	with	their	assumptions	about	the	expected	behaviour	of	a	CPS,	its	expected	physical	
environment,	 and	 potential	 future	 deployments.	 Thus,	 these	 models	 explicitly	 contain	 subjective	
uncertainty	of	the	test	modellers.	

Method:	We	propose	a	framework	(named	as	UncerTolve)	 for	 interactively	evolving	BMs	(specified	
with	extended	UML	notations)	of	CPSs	with	subjective	uncertainty	developed	by	test	modellers.	The	
key	inputs	of	UncerTolve	include	initial	BMs	of	CPSs	with	known	subjective	uncertainty	and	real	data	
collected	from	the	operation	of	CPSs.	UncerTolve	has	three	key	features:	1)	Validating	the	syntactic	
correctness	and	conformance	of	BMs	against	real	operational	data	via	model	execution,	2)	Evolving	
objective	 uncertainty	measurements	 of	 BMs	 via	model	 execution,	 and	 3)	 Evolving	 state	 invariants	
(modelling	test	oracles)	and	guards	of	transitions	(modelling	constraints	for	test	data	generation)	of	
BMs	with	a	machine	learning	technique.	

Results:	 As	 a	 proof-of-concept,	 we	 evaluated	 UncerTolve	 with	 one	 industrial	 CPS	 case	 study,	 i.e.,	
GeoSports	 from	 the	 healthcare	 domain.	 Using	 UncerTolve,	 we	 managed	 to	 evolve	 51%	 of	 belief	
elements,	 18%	 of	 states,	 and	 21%	 of	 transitions	 as	 compared	 to	 the	 initial	 BM	 developed	 in	 an	
industrial	setting.	

Conclusion:	 UncerTolve	 can	 successfully	 evolve	 model	 elements	 of	 the	 initial	 BM,	 in	 addition	 to	
objective	uncertainty	measurements	using	real	operational	data.	The	evolved	model	can	be	used	to	
generate	 additional	 test	 cases	 covering	 evolved	model	 elements	 and	 objective	 uncertainty.	 These	
additional	test	cases	can	be	used	to	test	the	current	and	future	deployments	of	a	CPS	to	ensure	that	it	
will	handle	uncertainty	gracefully	during	its	operations.	

Technical	 Report	 3:	 Uncertainty-Wise	 and	 Time-Aware	 Test	 Case	
Prioritization	with	Multi-Objective	Search	

The	details	of	 this	 technical	 report	 [8]	 can	be	 found	 in	a	 separate	self-contain	document	 (TR7.pdf)	
attached	with	this	deliverable.	This	technical	report	paper	describes	our	detailed	work	in	uncertainty-
wise	test	case	prioritization,	which	we	have	presented	in	Section	2.4.4.	An	summary	of	this	technical	
report	is	given	as	follows.		

D3.2	 Version	1.0	 Confidentiality	Level:	PU	

	

	

2017-05-05	 U-TEST		 Page	29	of	30	

	
	

	

Context:	Complex	systems	(e.g.,	Cyber-Physical	Systems)	that	interact	with	the	real	world,	behave	in	
an	 unstipulated	 manner	 while	 operating	 in	 uncertain	 environments.	 Testing	 such	 systems	 in	
uncertainty	 is	 a	 big	 challenge.	 Devising	 uncertainty-wise	 testing	 solutions	 can	 be	 considered	 as	 a	
mandate	for	dealing	with	this	challenge.	Though	uncertainty-wise	testing	is	gaining	attention	in	the	
last	few	years,	industry-strengthening	solutions	are	still	missing.	

Objective:	Our	objective	is	to	propose	an	uncertainty-wise	test	case	prioritization	approach	that	can	
significantly	 improve	 the	 cost-effectiveness	 of	 test	 case	 execution	 to	 maximize	 the	 occurrence	 of	
uncertainty.	

Method:	 In	 this	 paper,	 we	 propose	 an	 uncertainty-wise,	 search-based,	 multi-objective	 test	 case	
prioritization	approach,	with	a	fitness	function	defined	based	on	four	cost-effectiveness	measures:	one	
subjective	and	one	objective	uncertainty	measures,	execution	time,	and	transition	coverage.	

Results:	We	evaluated	the	well-known	multi-objective	search	algorithm	NSGA-II	by	comparing	it	with	
Greedy	and	Random	Search	(RS),	with	a	real	industrial	case	study.	In	addition,	we	created	72	additional	
simulated	problems	of	varying	complexity	based	on	 the	 real	 case	study.	Results	 show	that	NSGA-II	
achieved	significantly	better	performance	than	RS	and	Greedy	for	both	the	real	industrial	case	study	
and	 the	 simulated	 problems.	 On	 average,	 NSGA-II	 improved	 prioritization	 by	 18%	 and	 22%	 as	
compared	to	RS	and	Greedy	respectively.	

Conclusion:	This	paper	presented	an	uncertainty-wise	and	time-aware	test	case	prioritization,	which	
was	specifically	developed	 to	 improve	 the	cost	and	effectiveness	of	 test	case	execution	and	at	 the	
same	time	maximizing	the	occurrence	of	uncertainties.	

Bibliography	

[1]	 U-Test	Consortium,	“U-Test	Deliverable	D1.2:	Report	on	Taxonomy.”	

[2]	 U-Test	Consortium,	“U-Test	Deliverable	D2.2:	Report	on	Uncertainty	Modelling	Framework	V2.”	

[3]	 G.	Weissenbacher	and	(editor),	“D	3.1b	-	Fault	Models	(Final	Version),”	2008.	[Online].	Available:	
https://www.mogentes.eu/public/deliverables/MOGENTES_3-
09_1.0r_D3.1b_Fault_Models_Mutations.pdf.	

[4]	 NIST	–	National	Institute	of	Standards	and	Technology,	“CPS	PWG	Cyber-Physical	Systems	(CPS)	
Framework	Release	1.0.”	2015.	

[5]	 Object	Management	Group	(OMG),	“Object	Constraint	Language.”	.	

[6]	 G.	Copil,	D.	Moldovan,	H.	L.	Truong,	and	S.	Dustdar,	“SYBL:	An	Extensible	Language	for	Controlling	
Elasticity	in	Cloud	Applications,”	in	2013	13th	IEEE/ACM	International	Symposium	on	Cluster,	Cloud,	
and	Grid	Computing,	2013,	pp.	112–119.	

[7]	 M.	 Zhang,	 S.	 Ali,	 T.	 Yue,	 and	 R.	 Norgren,	 “Uncertainty-wise	 evolution	 of	 test	 ready	 models,”	
Information	 and	 Software	 Technology,	 2017.	 [Online].	 Available:	
http://dx.doi.org/10.1016/j.infsof.2017.03.003.	[Accessed:	26-Apr-2017].	

D3.2	 Version	1.0	 Confidentiality	Level:	PU	

	

	

2017-05-05	 U-TEST		 Page	30	of	30	

	
	

	

[8]	 S.	Ali,	Y.	Li,	T.	Yue,	and	M.	Zhang,	“Uncertainty-Wise	and	Time-Aware	Test	Case	Prioritization	with	
Multi-Objective	Search,”	Technical	 report	2017-03,	Simula	Research	Laboratory.	 [Online].	Available:	
https://www.simula.no/publications/uncertainty-wise-and-time-aware-test-case-prioritization-multi-
objective-search.	

[9]	 J.	R.	Koza,	Genetic	Programming	II:	Automatic	Discovery	of	Reusable	Programs.	Cambridge,	MA,	
USA:	MIT	Press,	1994.	

[10]	J.	R.	Koza,	Genetic	programming:	on	the	programming	of	computers	by	means	of	natural	selection.	
MIT	Press,	1992.	

[11]	S.	Luke	et	al.,	“ECJ:	A	Java-based	Evolutionary	Computation	Research	System.”	[Online].	Available:	
https://cs.gmu.edu/~eclab/projects/ecj/.	

[12]	S.	Ali,	M.	Z.	 Iqbal,	A.	Arcuri,	and	L.	C.	Briand,	“Generating	Test	Data	from	OCL	Constraints	with	
Search	Techniques,”	IEEE	Trans.	Softw.	Eng.,	vol.	39,	no.	10,	pp.	1376–1402,	Oct.	2013.	

[13]	R.	 Poli,	W.	 B.	 Langdon,	 N.	 F.	McPhee,	 and	 J.	 R.	 Koza,	A	 Field	 Guide	 to	 Genetic	 Programming.	
Lulu.com,	2008.	

[14]	K.	 Deb,	 A.	 Pratap,	 S.	 Agarwal,	 and	 T.	 Meyarivan,	 “A	 fast	 and	 elitist	 multiobjective	 genetic	
algorithm:	NSGA-II,”	IEEE	Trans.	Evol.	Comput.,	vol.	6,	no.	2,	pp.	182–197,	Apr.	2002.	

[15]	B.	Liu,	Uncertainty	Theory.	Springer,	2015.	

	

