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Executive Summary 

This deliverable presents the last achievements – the Uncertainty Testing Framework (UTF) V.3 - with 
model evolution algorithms and test strategies. It extends the works from V.2 of the Uncertainty 
Testing Framework and extends its focus to  

• The encoding for the search-based algorithm used for uncertainty testing at the application 
level,  

• Rule-based infrastructure level uncertainty evaluation and detection at design-time,  
• New components for uncertainty-wise evolution, test case generation, minimization, 

prioritization, and execution at the integration level. 
 

Keywords: Cyber-Physical Systems, Uncertainty Testing, Testing Framework, UML, Model Evolution 
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1 Introduction 

This report describes the third version of the UTF.  We report the last improvement and refinements 
of UTF.  

1.1 Objectives of the Deliverable 
The goal of this deliverable is to present improvements of the UTF. Our UTF supports for testing 
uncertainties and uncertain behaviours of Cyber-Physical Systems (CPS) at three levels: application, 
infrastructure, and integration. We developed and integrated different model evolution algorithms 
and testing strategies in the UTF. These model evolution algorithms cover different part of the problem 
to efficiently test cyber-physical systems for known and unknown uncertainties. All the model 
evolution algorithms and test strategies take the test-ready models specified in the UMF as inputs for 
uncertainty testing.  

As reported in the previous deliverables, we developed the Uncertainty Taxonomy (U-Taxonomy) [1] 
and Uncertainty Modelling Framework (UMF) [2]. We used U-Taxonomy and UMF for specifying and 
modelling different uncertainties of CPS, at three levels, i.e., application, infrastructure, and 
integration. In this deliverable, we show how our UTF (V.3) is based on the U-Taxonomy and the UMF. 
We developed UTF on the state of the art of Model-Based Testing (MBT) techniques, and especially 
customized for uncertainty testing at the three levels (application, infrastructure, and integration) of 
CPS. 

1.2 Relationship to other U-TEST Deliverables 

This deliverable presents the results of U-Test’s Work Package 3 that has relationships with other U-
Test deliverables and work packages. In particular, the specification of the uncertainty requirements 
from  

• two U-Test use cases (D1.1),  
• the U-Taxonomy (D1.2), and  
• the UMF (D2.2) and (D2.3)  
• the UTF (D3.1, D3.2) 

are the prerequisites of the UTF. In addition to that, UTF is also built on the state of the art of MBT 
techniques and standards, e.g., UML Testing Profile (UTP) and ISO/IEC/IEEE 29119 Software Testing 
Standards. With the test-ready models specified with the UMF as inputs, UTF has implemented 
different test strategies and MBT techniques for uncertainty testing at the three levels (application, 
infrastructure, and integration) of CPS. In other words, the output of the UMF is the main input of UTF. 
We modelled the test-ready models of the use cases by using UMF. These test-ready models are used 
in the UTF for test case generation.  

Figure 1 shows again the overall workflow of the methodology in our U-Test project and more 
specifically where the UTF is located in the workflow of U-Test project.  
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Figure 1. U-Test Workflow 

Input: 

• All previous Deliverables 
Consumers of D3.3 (that are currently active) 

• D4.2 (EGM, FF): Tool(s) Demonstrator  
• D5.2 (FPX and ULMA): Report on test case executions 
• D5.3 Validation with or without U-Test 
• D5.4 Empirical Evaluation of Test Strategies 
• D6.3 Dissemination  
• D7.2 (For Exploitation): Value Opportunities 

1.3 Structure of the Deliverable 

The deliverable consists of this main document and its appendix (as technical reports). The main 
content of this document gives the condensed presentation of the UTF. More details of some specific 
key results of the UTF can be found in the technical reports. The technical reports provide more 
detailed technical aspects of the UTF.  

The remainder of this deliverable is organized as follows. An overview of the UTF is given in Section 2. 
UTF, which supports uncertainty testing at the application level, infrastructure level, and integration 
level of CPS, is presented in Sections 2.2, 2.3, and 2.4 correspondingly. Aiming at the 
comprehensiveness of this document, for presenting technical details on some specific topics, we 
organized them into technical reports (TRs). TR8, providing more technical details for Section 2.4, is in 
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forms of a separate PDF file attached with this document. We summarize the whole deliverable and 
give our conclusions in Section 3. 

 

2 Uncertainty Testing Framework 

This section gives  The UME approach assumes that any UML profile can be source of uncertainty. 
Indeed, different profiles can be applied to represent domain specific concepts to make the model 
ready for different engineering activities, as we do for infrastructure and uncertainty modelling 
purposes. Therefore, the number of applied profiles cannot be known beforehand. Moreover, each 
profile can evolve over time to reflect changes in the supported domain. This is particularly true for 
non-standard, user-defined UML profiles. 

 

  

Figure 2 Example of infrastructural elements as UML Class and UML Instance Specification annotated with multiple 
stereotypes from different profiles. 

In addition to the profiles and stereotypes devised for U-Test purposes, standard OMG profiles like 
UTP [3] and MARTE [4] are expected to be applied on the same UML model. To give an example, Figure 
9 shows a hardware IoT element, the GeoSport GPS Sensor, and a software component, the BigQuery 
storage CloudService. The  former  can further be annotated  with  detailed  hardware  information  via  
MARTE  HwSensor  stereotype and the latter can be annotated with GaExecHost for the sake of 
performance analyses (throughput, utilization, scheduling).  

It is clear that the modelling power brought by UML and profiles can be overwhelming in terms of 
number of available stereotypes, properties and different annotation options determined by extended 
UML metaclasses) if not properly managed. For example, the MARTE profile defines around 360 
stereotypes and more than 1000 properties. In this respect, stereotypes and their properties can be 
seen as potential source of uncertainties.  
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2.1.1 Uncertainty Modeling and Evaluation (UME) and supporting Tool (T4UME) 
Figure 10 details illustrates our Uncertainty Modelling and Evaluation (UME) approach as part of a 
model- driven Design activity, which, in turn, is part of a wider engineering process consisting of many 
other model- driven activities (e.g., requirement specification, testing, analysis) that are expected to 
benefit from the artefacts generated at design-time.  

 

 

 

Figure 3 Detailed Design activity with UME methodology and T4UME tool support 

UME aims at detecting and evaluating infrastructural uncertainties in the UML model caused by 
missing stereotype’s property values, defined in any profile applied to the UML model representing 
the system under study.  

UME (i) provides modelling facilities, i.e., wizards, to help modellers to represent IoT and cloud 
infrastructural components, and uncertainty detection rules (UDRs). Each UDR can detect new, 
potential uncertainties of IoT Cloud infrastructural elements, designed and represented via UML 
models, validates them against the U-Taxonomy, and, in case of positive detection, suggests and 
eventually executes uncertainty-wise model refactoring actions in order to make the model suitable 
for further engineering activities (e.g., model-based testing  [5]).  

UME approach includes three main tasks: Modelling, Uncertainty Detection (U-Detection), and 
Uncertainty Refactoring (U-Refactoring).Our Tool for Uncertainty Modelling and Evaluation (T4UME), 
an Eclipse-based tool built atop EPSILON [6], supports such activities.   
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Indeed, for each stereotype, properties can be defined to further detail IoT Cloud components 
configurations and uncertainty characteristics (e.g., period or persistent manifestation, causes, see  
[2]).  Due to the evolving nature of information in UML model, profiles and uncertainty domains, UME 
and its tool T4UME are designed to suitably adapt to these changes.  

UME and its T4UME provides model management facilities to help users to perform design-time tasks, 
namely wizards for modelling IoT and Cloud components and uncertainty detection rules (UDR) to 
detect (U-Detection) and to evolve (U-Refactoring) uncertainty-agnostic UML model with uncertainty-
specific model elements and annotations. Both UME and T4UME are domain-independent and adapt 
its design-time support to uncertainty modelling and evaluation by (re-)generating profile-specific 
wizards and UDRs on new profile applications and/or evolution of already applied profiles. 

In particular, we tailored UME/T4UME  

• to support modelling of infrastructural components and to detect potential infrastructural 
uncertainties at design-time. For this purpose, we provide wizards and UDRs for uncertainty 
agnostic UML model to make them suitable to next model-based testing activities as required 
in U-Test project. 

• to support deployment and testing of infrastructural elements [2] based on JSON 
representation. For this purpose, we provide a UML2JSON export functionality to generate 
JSON serialization of UML model elements for further processing by third-party tools. 

It is worth noting that we expect continuous updates of wizards, UDRs, and JSON output formats due 
to the following reasons: 

• Continuous updates to number, content and usage of UML profiles. 
• Heterogeneity of specific system requirements (e.g., functional or non-functional),  
• Heterogeneity of UML modelling guidelines proposed by different methodology and tool 

providers (e.g., EGM, FF) 
• Different tool user (e.g., ULMA and FPX) expertise level and needs.  

In this respect, we consider the Wizards and UDRs Generation step in Figure 10 very important and a 
peculiarity of the UME/T4UME pair. 

The following section gives the necessary background to understand the model-driven design 
rationales of UME and model-driven technologies behind the implementation of T4UME. 

 

2.1.2 UME and T4UME in detailed design and usage examples 
In the following paragraphs, we describe how T4UME supports UME tasks. We detail the design of the 
T4UME software components by instantiating the design pattern in Figure 1.  T4UME is, at   the same 
time, a tool for MDE processes, like UME, and a tool developed following MDE principles. 
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2.1.2.1 Adoption of Model-Driven Engineering technologies in T4UME 
Modelling, U-Detection, U-Refactoring and UML2JSON model-driven steps in Figure 10 are model 
management tasks implemented in T4UME. 

T4UME relies on a set of technologies to implement UME model-driven tasks. In particular, it 
implements model transformations systematically define mappings to manipulate and integrate 
models and then realize model-driven engineering processes and supporting tool chains. 

 In a general sense, a model transformation is a program executed by a transformation engine which 
takes one or more models as input to produce one or more models as output as illustrated by the 
model transformation pattern  [7] in Figure 11. It shows a recurrent pattern of model-driven tasks 
where a source model, specified using a source language, is transformed into a target model via model 
transformations, which maps source and target language concepts through executable transformation 
specifications.  

We collected all the technologies mentioned in this section in a technology stack overview depicted in 
Figure 6. A UML model is an XML-based artefact whose content can be conveniently inspected by 
stakeholders via tree-based editors or displayed on an arbitrary number of diagrams. Model-driven 
tool, as T4UME, relies on ad-hoc APIs to query, validate, and modify the XML-based model content. 
These changes show up to modellers through capabilities of the chosen UML editor. 

We select Papyrus [12], an open source, Java-based UML modelling environment to support modelling 
and profiling tasks.  Papyrus, in turn, is developed on top of Eclipse Modelling Framework (EMF) 
[13]and EclipseUML2 . EMF provides, among others, modelling language definition and XML-based 
serialization capabilities. Eclipse- UML2 relies on EMF to define the UML language and to generate Java 
API for UML modelling tasks. Rational Software Architect (RSA) represent a viable alternative to 
Papyrus since it is built atop the same stack of Eclipse technologies (Eclipse EMF and Eclipse UML). 
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We then choose Extensible Platform of Integrated Languages for mOdel maNagement framework 
(Epsilon) [6] to implement the model management tasks provided by UME, i.e., wizards for modelling, 
U- Detection, and U-Refactoring. 

Epsilon plays the role of transformation engine in Figure 11 and provides domain-specific languages 
(DSLs) to implement model management tasks. In particular, we used the following DSLs by Epsilon: 

• Epsilon Object Language (EOL): An imperative model-oriented scripting language that 
combines the procedural style of JavaScript with the powerful model querying capabilities of 
Object Constraint Language (OCL).  

• Epsilon Wizard Language (EWL): A language tailored to interactive in-place model 
transformations on model elements selected by the user. 

• Epsilon Validation Language (EVL): A model validation language that supports both intra and 
inter-model consistency checking. 

• Epsilon Generation Language (EGL): A template-based model-to-text language for generating 
code, documentation and other textual artefacts from models. 
 

EOL libraries can be imported and invoked by EWL, EVL, and EGL scripts and each DSLs can connect to 
external Java libraries. Moreover, both EWL and EVL provide out-of-the-box integration with EMF-
based editors, like Papyrus [12].  

2.1.2.2 Modelling 
Figure 13 shows the models, languages, and tools involved in the UME Modelling task, and their role 
with respect to the design pattern in Figure 11. 

Figure 4 Technology stack of T4UME based on [12] 
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Figure 5. UME Modeling step: language and artifact perspective. 

Modeling in UME is facilitated by wizards. In order to help developers with modeling, we currently 
provide different infrastructure-specific wizards.  
 

 

Listing 1 Wizard for Sensor Stereotype application to Class elements. 
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Listing 2 Wizard to instantiate Class with Sensor stereotype applied. 

Each EWL artefact (.ewl) accesses a source UML model, modifies it, generate a target UML model with 
our InfrastructureCPS profile applied and new IoT/Cloud infrastructural elements have been 
represented.  

T4UME currently provides wizards for stereotype application to and instantiation of infrastructural 
elements.A distinct stereotype application wizard (see Listing 1) is generated for each stereotype 
defined in the InfrastructureCPS profile. It applies the given stereotype to selected model element, if 
applicable. A distinct instantiation wizard (see Listing 2 ) is generated for each stereotype extending 
UML Class concept from which InstanceSpecfiications can be generated (e.g., to describe test 
configurations). Such wizards prompt an input window, asks users to insert the number of instances 
to be generated, and propagate Class annotation to the generated instances. 
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Figure 6 Extending EMF-based editors (e.g., Papyrus and RSA) with EWL wizards provided by T4UME. 

 

Figure 7 Invoking wizards on selected model elements in Papyrus 
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Thanks to the guard clause of EWL, (see Listings 1 and 2) each wizard can guide the user to modify the 
underlying UML model following proper modelling guidelines. Epsilon plays the role of the 
transformation engine. It executes the wizards and extends the functionalities of the select EMF-based 
editor.  

Thanks to the native integration of Epsilon EWL with EMF-based editors, wizards can be loaded and 
used on demand. In this way, T4UME user can choose which wizards should be loaded (see Figure 14) 
to extend the modelling tool capabilities to help her during the modelling task, according to user’s 
expertise. Once loaded, wizards can be invoked as shown in Figure 15. 

2.1.2.3 Uncertainty Detection and Refactoring 

 

Figure 8 T4UME U-Detection and U-Refactoring steps: language and artifacts perspective. 

The UML model obtained after the Modelling step is uncertainty agnostic. We expect that 

• The UML model is annotated with stereotypes of our Infrastructure CPS profile, hopefully with 
the help of T4UME wizards, and  

• Additional profiles can be applied on demand by users to satisfy specific needs.  
If no new profiles applications and no updates occurs in applied UML profile specifications (i.e., in 
profile.uml files), the UME approach can proceed with U-Detection and U-Refactoring steps. 
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By completing the inner loop depicted in Figure 10, UME performs an uncertainty evolution by 
executing UDRs on uncertainty-agnostic UML model. Each UDR can detect and refactor a source 
UML model by inserting (infrastructural) uncertainties on (infrastructural) model elements. 

Both U-Detection and U-Refactoring in UME are realized by UDRs. UDRs and executed by T4UME on 
top of the Epsilon framework (see Figure 16). In particular, U-Detection is implemented as a model 
validation task while U-Refactoring corresponds to a model refactoring task. Both validation and 
refactoring actions are specified within the same UDR artefact, which in turn is specified using the 
Epsilon EVL language. 

 

Listing 3 Excerpt of UDR for the CloudService stereotype (U-CloudService). 

 

The first task of UME is uncertainty detection (U-Detection). It is performed by the check clauses of 
UDRs. We currently provide 41 UDRs for 41 stereotypes of our InfrastructureCPS profile that together 
check the presence/absence of 203 stereotype properties.  

For example, The U-CloudService UDR in Listing 3 is an Epsilon EVL file that validates CloudService-
annotated model elements representing service types (i.e., Class) or instances (i.e., 
InstanceSpecification).  The U-CloudService UDR shows critique warnings (see Figure 17) to T4UME 
users by checking presence/absence (isEmpty()) of six different stereotype properties.  

Each UDR artifact (.evl) can be launched from a launcher configuration that refers to the model to be 
validated (see the Project Explorer in Figure 16). The UDR accesses a source UML model annotated 
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with our InfrastructureCPS profile [1], selects elements annotated with stereotypes of the 
InfrastructureCPS profile and checks whether values have been set for each stereotype property. If 
not, the UDR rises a warning to the user assuming that potential uncertainties may be caused by such 
missing information. Thanks to the native integration of EPSILON with EMF-based editors, validation 
results can be shown on a Validation tab in Eclipse-based environments (see Figure 16).  

By right clicking on a warning message, the user can choose among different refactoring actions, one 
for each infrastructural uncertainty stereotype defined in the InfrastructureUncertainty profile. Each 
refactoring action is implemented by a fix clause of UDR specifications in EVL (see Listing 3). By 
selecting one of the refactoring options, the user completes the U-Detection task (i.e., she recognized 
the presence of a particular uncertainty) and starts the U-Refactoring step by executing the fix clause 
of the UDR (see Listing 3). 

 

 

 

Figure 9 U-Detection step executed for CloudService stereotype applied on Class and InstanceSpecification model 
elements. Warnings and refactoring actions are displayed on Eclipse Validation tab. 

The result of refactoring action is a target UML model with InfrastructureCPS and 
InfrastructureUncertainty profiles applied and additional uncertainty annotations on new and/or 
updated model elements generated as output of the U-Refactoring step. Figure 18 shows the effect of 
the fix clause Generate StorageUncertainty State on the Central Management System of the GeoSport 
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case study, previously annotated as a Cloud Service but without additional values for stereotype 
properties. 

The result of refactoring action is a target UML model with InfrastructureCPS and 
InfrastructureUncertainty profiles applied and additional uncertainty annotations on new and/or 
updated model elements generated as output of the U-Refactoring step. 

 

 

Figure 10 Results of refactoring actions: new annotated state machine for the sake of U-Test model-based testing 
methodologies. 

2.1.2.4 Wizards and UDRs Generation 
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Figure 11 T4UME Wizards and UDRs Generation step: language and artifacts perspective 

 
 

 
U-Detection and U-Refactoring steps can be customized to deal with different users’ and MDE process 
needs by providing new and/or editing existing wizards and UDRs.  

Indeed, we consider both UME and T4UME evolving methodology and tool that should adapt to a 
continuously evolving uncertainty domain, different modelling guidelines, and different users’ profiles. 
The U-Taxonomy and related UML profiles devised in U-Test may evolve over time. In particular, 
continuous updates can affect non-standard and user-defined profiles. Moreover, different companies 
and/or research institutions with different needs could adopt UME and T4UME. Finally, a 
heterogeneous set of customers, from modelling experts, to developers and testers may need to use 
T4UME with different modelling needs 

In order to face the methodology and tool customization challenge, we explicitly introduce an 
adaptation step in UME that generates new wizards and UDRs when new profiles are applied on the 
source UML model or updates happen on already applied profiles (see Figure 10). 

Figure 19 shows the models, languages, and tools involved in the Wizards and UDRs Generation step, 
and their role with respect to the design pattern in Figure 11. 

The Wizards and UDRs Generation step is implemented as a higher-order transformation (HOT) [7] 
using Epsilon technologies. This UME step differs from the other ones because it generates executable 
textual artefacts, instead of UML models, by accessing the content of UML profiles applied on the 
source UML model. These executable artefacts are the wizards (.ewl files), UDRs (.evl files), and EOL 
supporting libraries (.eol), that support the other three UME steps, i.e., Modelling, U-Detection, and 
U-Refactoring. 
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Both wizards and UDRs are textual artefacts. For this reason, we used Epsilon EGL to create wizard and 
UDR templates that are invoked for each stereotype. Listing 4 shows an EGL transformation rule that 
binds each UML stereotypes to an EGL template that generates an UDR specified in Epsilon EVL (.evl). 

 
Listing 4 Excerpt of EGL model to text transformation rule to generate UDRs as EVL files. 

Listing 5 shows the EGL textual template that is invoked for each stereotype defined in 
InfrastructureCPS and InfrastructureUncertainty profiles. Static text is mixed with dynamic parts (in 
blue) where EGL code snippets access the stereotypes and attribute definitions to create check and fix 
clauses as shown in Listing 3 

 

 

Listing 5 Excerpt of the UDR template. 

2.1.2.5 Exporting UML to JSON 
IoT and Cloud infrastructural resources modelled, communication protocols, expected uncertainties 
to be tested, etc.,  can be extracted from models into JSON-based descriptions. The key thing is to 
enable various tools to use the extracted information for different purposes. In this paper, the 
extracted information is used to determine test configuration and deployment. We implement the 
information extraction using the EPSILON framework. 

Infrastructural resources modelled in UML model can be extracted into JSON-based descriptions. The 
key thing is to enable various tools to use the extracted information for different purposes. We 
implement the UML2JSON functionality using the Epsilon framework. Figure 19 instantiates the design 
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pattern for model-driven tasks introduced in Section 2.3.3.1 and shows the models, languages, and 
tools involved in the UML2JSON step. 

 

 

Figure 12 T4UME UML2JSON step: language and artifacts perspective 

The UML2JSON step is split in two sub-steps: UML2Java and Java2JSON. The former takes an annotated 
UML Model as input and generates a Java main program that, in turn, invokes profile-specific Java APIs 
with getters/setters for each stereotype and property defined on profiles applied on the source UML 
model. The latter import the Google Gson library to generate the JSON representation of the Java 
objects instantiated during the Java main program execution. Each Java object, instantiated by 
invoking the profile-specific Java APIs, corresponds to the annotated UML model elements. Figure 20 
shows the UML2JSON step in action to generate the JSON representation of an electricity sensor 
modelled through a UML class annotated by the VirtualSensor stereotype. 
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Figure 13 UML2JSON step example 

The UML2Java step is implemented as a model to text transformation through EGL textual template 
while the Java2JSON step is realized by the Google Gson library.  

We intend to use the UML2JSON capability of T4UME to bind infrastructural model elements 
represented in a UML model to concrete artefacts and testing utilities, usually stored public (e.g., 
Docker hub and Google Registry) and user-provided (e.g., Google Storage and Docker Registry) 
repositories. For the developer of infrastructure level,T4UME needs to connect different repositories 
to search suitable artifacts. Therefore, we develop a metadata service based on MongoDB for our 
artifacts. While artifacts can be stored in different repositories, the developer will need to provide 
metadata so that our configuration generation tool can search the right artifacts for the right 
underlying infrastructures. We also need to rely on resource information services to provide 
information about running instances of artefacts and infrastructural elements. For runtime 
information, tools like HINC [11] and SALSA [12] can be used. 

2.1.2.5.1 Selecting Infrastructure-related artefacts 
 
To enable the search of suitable infrastructure level artifacts, we impose a set of guidelines to describe 
artifact capabilities (there is no model that describing testing artifacts). After such artifacts are built, 
they are deposited into a repository and metadata will be stored into our services. In order to search 
the right artifacts, we have different metadata associated with artifacts. Such metadata will be 
searched by using information extracted as JSON description from the UML model (e.g., type of service 
units, and protocol supports). We use the following convention for metadata: 

• t4u/abstract_element/concrete_element:tag where t4u is the name of the system under test, 
abstract_element indicates the type of infrastructural resource (e.g., VirtualSensor stereotype 
defined in [2]) and concrete_element indicates concrete types of infrastructural elements (e.g., 
model elements annotated with VirtualSensor stereotype), and tag is used to add new 
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information. For example, the string t4u/VirtualSensor/ElectricitySensor:raspberrypi indicates 
images and testing utilities of electricity sensor in Raspberry PI 

• Each artifact has meta information about how to invoke and reconfigure it. For this, we use a 
convention: startup, shutdown, configure scripts with input (JSON) parameters. To be generic, 
we do not guarantee the correctness of these functions but we require these functions in order 
to reconfigure and start infrastructural elements. This requirement is conventional, widely 
used in practice, for dealing with configuration of software components, which can be 
implemented through REST (for Web service), gRCP (for RPC call-based objects), and shell 
scripts (for executable artifacts). 

 

For example, a developer can i) develop a virtual sensor in Python/Java as an element of the CPS and 
ii) create a Docker file for the sensor. A Docker image can be built and deposited into the repository.  

Listing 6 shows an example of a Docker file that bind a concrete MQTT broker to the corresponding 
cloud service, and make it available to developers on a repository. 

 

 
Listing 6 Example of storing artifacts and metadata 

 
From the extracted information, we connect to repositories of artifacts and we have different 
techniques to generate deployment configurations and deployment descriptions. Figure 20 shows the 
design. Configuration Generator will provide different possibilities of deployment configurations for 
elements of SUTs, e.g., whether a software sensor will be executed in a small virtual machine or not. 
After that, several drivers will be used to provide the detailed deployment descriptions, which are used 
to deploy several instances of infrastructural elements for testing. 

 

Figure 14 Deployment configuration and description generator 

$ docker tag m q t t s e n s o r l o c a l h o s t : 5000/ t4u / 
c l o u d s e r v i c e / m q t t b r o k e r : v01 

$ docker push l o c a l h o s t : 5000/ t4u / c l o u d s e r v i c e / 
m q t t b r o k e r 

$ t 4 u _ m e t a d a t a add l o c a l h o s t : 5000/ t4u / c l o u d s e r v i c e / 
m q t t b r o k e r : v0 
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For example, a deployment description can include how many sensors, virtual machines, message 
brokers, cloud data services, etc., should be deployed and to where (e.g., local cloud or Google). SALSA, 
Docker tools, and cloud-specific tools (e.g., Google gcloud) can be used for deployment. We provide 
further information in [7]. 

 

2.1.3 How to adopt UME and T4UME in UTFv3 
The UME methodology (Figure 10) focuses on uncertainties caused by missing values of properties of 
stereotypes defined in profiles applied to the UML model. 

The UME approach is domain-independent and adapt its design-time tasks (modelling, U-Detection, 
and U- Refactoring) to different domains and engineering activities by generating new wizards and 
UDRs depending on stereotypes and properties defined in applied profiles. To show the feasibility of 
our approach, we provide generate wizards, for stereotype annotation and instantiation, and UDRs for 
detection of infrastructure uncertainty families (see D2.3). 

T4UME provides model management facilities to help users to perform modelling, with the help of 
wizards, and uncertainty evolution, via UDRs. Each UDR is capable to detect (U-Detection) and to 
evolve (U-Refactoring) uncertainty-agnostic UML model with uncertainty-specific model elements and 
annotations.  

Depending on the nature of annotations on UML Models brought by stereotypes and properties, the 
UME can be carried out:  

• Before test case generation and execution to generate UML StateMachines for the sake of 
uncertainty-wise test case generation. 

• After test case execution to detect uncertainty and carried out uncertainty-wise refactoring 
based on feedback from test result. 

Indeed, we do not make assumptions on the origins of stereotype property values that:  

• Can be directly annotated by modelers. 
• Can be generated by methodology-specific steps (e.g., model evolution algorithms proposed 

by FF and SRL in Sections 2.2 and 2.4, respectively). 
• Store test case execution results1.  
• Can be measured at runtime (e.g., execution time and number of invocations of system 

functionalities) and then annotated back to the UML model2. 

                                                           
1 UTP2 defines the TestLog stereotype to capture information on the execution of a test case. 
2 MARTE provides the stereotype property source of type SourceKind to distinguish different origins of non-
functional properties. Predefined kind of sources for values are estimated, calculated, required, and measured.  
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In all the aforementioned cases, we assume that the UML model continuously evolves together with 
its applied profiles, stereotypes and properties. In this case, a new UME loop can detect, at design-
time, new potential uncertainties caused by missing information on evolved model elements. 

In this deliverable, we start customizing the UME/T4UME pair to support uncertainty detection and 
evolution at the infrastructure level and JSON serialization for the sake of deployment and provisioning 
of IoT and cloud infrastructural elements.  Indeed, we expect that different UME users can further 
adapt T4UME to their modelling and uncertainty evolution needs  

• By implementing wizards and UDRs with custom detection and refactoring actions (i.e., the 
corresponding check and fix clauses of EVL specifications, respectively) for the sake of 
uncertainty evolution (as those presented by FF and SRL in Sections 2.2 and 2.4).  

• By updating the UML2Java sub-step (i.e., the underlying EGL textual template) while 
preserving the correctness of the JSON output guaranteed by the Google Gson library. 
 

We adopted the Eclipse Epsilon framework 3  to implement the UME functionalities. The Epsilon 
framework can be smoothly integrated with EMF-based editors, as Papyrus (used by FF) and Rational 
Software Architect (used by EGM) are. Therefore, wizards and UDRs can be generated automatically 
by T4UME for both modelling tools and further customization can be implemented by combining 
Epsilon domain-specific languages and Java routines invoking the Eclipse UML API provided by external 
tools4. 

2.2 Uncertainty Testing at Integration Level 
This section presents the overview of the work related to UTF at the integration level. UTF at the 
integration level includes the following five components as shown in Figure 20:  

1) Uncertainty-wise Model Evolution,  
2) Uncertainty-wise Test Case Generation,  
3) Uncertainty-wise Test Case Minimization,  
4) Uncertainty-wise Test Case Prioritization and  
5) Uncertainty-wise Test Execution.  

In this section, we provide the overview of each these components and updates as compared to the 
previous versions of WP3 deliverables. 

As shown in Figure 20, the initial input of the UTF at the Integration Level is belief test ready models 
(BMs). These BMs are the output of the UncerTum (C0). We presented UncerTum in WP2 deliverables, 
i.e., D2.1 to D2.3. Figure 20 provides the overall workflow of the UTF at the integration level, whereas 
below we briefly describe the five components together with which sections and technical reports 
provide complete details. In addition, we also summarise the updates as compared with D3.2 and D3.1:  

                                                           
3 https://www.eclipse.org/epsilon/  
4 https://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.examples.tools  

https://www.eclipse.org/epsilon/
https://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.examples.tools
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1. Belief test-ready models are evolved based on the uncertainty-wise model evolution 
component (C1). There are two solutions developed at the integration level: 1) UncerTolve 
(presented in the D3.2 and submitted as a TR4.1pdf), 2) UncerPlore (Section 2.4.1.2); 

2. The uncertainty-wise test case generation component (C2) takes (initial or evolved) belief test-
ready models as input and generate abstract/executable test cases (Section 2.4.2);  

3. By taking generated abstract test cases as input, the uncertainty-wise test case minimisation 
component (C3) can be optionally used to minimise the number of abstract test cases with 
configurable four test minimization problems using multi-objective search algoriths (Section 
2.4.2);  

4. The uncertainty-wise prioritisation component (C4) takes abstract test cases and test results 
as input and prioritises the sequence to execute test cases cost-effectively with multi-objective 
search algorithms (Section 2.4.2);  

5. The uncertainty-wise test case execution component (C5) takes the (minimised/prioritised) 
test cases as input to execute on test infrastructure, which outputs the test results with the 
occurrence of uncertainties (Section 2.4.3).  

 

 

Figure 15. Overview of Uncertainty Testing Framework at Integration Level 

2.2.1 Updates on Test Ready Model Evolution 
This section presents the uncertainty-wise model evolution, which has two distinct methodologies: 
UncerTolve and UncerPlore. 

2.2.1.1 UncerTolve 
There is no update on UncerTolve. The final version was submitted in D3.2. We published the work in 
the Information and Software Technology Journal and is available with open access: 

Man Zhang, Shaukat Ali, Tao Yue and Roland Norgren, Uncertainty-Wise Evolution of Test Ready 
Models, Information and Software Technology Journal, Volume 87, July 2017, Pages 140-159, Open 
Access at http://www.sciencedirect.com/science/article/pii/S0950584917302161 

http://www.sciencedirect.com/science/article/pii/S0950584917302161
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2.2.1.2 UncerPlore 
We present the methodology to evolve belief state machine as shown in Figure 21. The methodolgoy 
has two parts: 1) discovering new uncertainties and new associations between uncertainty and 
indeterminacy sources with Genetic Programing—one of search algorithms (Section 2.4.1.2.2), 2) 
updating the objective uncertainty measurements for the known uncertainties and newly discovered 
uncertainties (Section 2.4.1.2.3). 

 

Figure 16. Overview of UncerPlore 

 Definitions 
This section presents the definitions for uncertainty-related concepts. These definitions are necessary 
to explain UncerPlore. 

• Belief State Machine (BSM) is a state machine developed with UncerTum, i.e., Uncertainty 
Modelling Framework at the integration level. It consists of a set of UML profiles and modelling 
guidelines as described in [14] [15]. 

• Uncertainty (U) of (𝑠𝑠𝑠𝑠𝑥𝑥, 𝑠𝑠𝑡𝑡𝑦𝑦, 𝑠𝑠𝑠𝑠𝑧𝑧) is a situation whereby the belief agent does not have full 
confidence that the source state, i.e., 𝑠𝑠𝑠𝑠𝑥𝑥 transits to the target state, i.e., 𝑠𝑠𝑠𝑠𝑧𝑧 with the 𝑠𝑠𝑡𝑡𝑦𝑦 
transition in a BSM [15].  

• Uncertainty Measure (UM) is a way to measure uncertainty with Uncertainty theory [5]. The 
value is a belief degree ranging from 0 to 1 represented as: (𝑠𝑠𝑠𝑠𝑥𝑥, 𝑠𝑠𝑡𝑡𝑦𝑦, 𝑠𝑠𝑠𝑠𝑧𝑧) = ℳ{(𝑠𝑠𝑠𝑠𝑥𝑥, 𝑠𝑠𝑡𝑡𝑦𝑦, 𝑠𝑠𝑠𝑠𝑧𝑧)} 
[15].  

• Indeterminacy Source (IndS) describes the uncertainties in the physical environment that 
leads to the observed uncertainties in a CPS [15].  

• Indeterminacy Specification (IndSp) describes the condition that must be true for an 
indeterminacy source to occur [15]. 

2.2.1.2.2 Evolving Belief Test Ready Models using Genetic Programming 
This section describes the methodology to evolve test ready models using Genetic Programming (GP) 
[16] [17] and benefiting from runtime test ready model execution on the dedicated test infrastructure 
(physical infrastructure or Simulators/Emulators) to evaluate and identify runtime state of the system 
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under test. Note that NMT and ULMA provide the test infrastructures including detailed 
simulators/emulators for physical environment (ULMA) and physical infrastructure, i.e., test rigs 
(NMT).  

 ExBSM 
To execute model elements defined in the belief model on a CPS, we convert belief state machines to 
the ExBSM, i.e., executable belief state machine. This enables to evaluate constraints and invoke Test 
APIs as shown in Figure 22. 

In Figure 22, the white concepts are the elements derived from belief state machines. Table 2 presents 
the definitions of concepts. The black concept (EObject) associated with Model E&I indicates that the 
element defines the test configuration generated by the UncerTest. The detailed Model E&I are 
described in Section 2.4.1.2.2.3.   

 

Figure 17. Conceptual Model of Model Execution and Identification of Model Elements and Uncertainties 

Table 1. Definitions of ExBSM  

Concept Name Definitions  
ExBSM This concept maps with belief state machine («BeliefElement» state machine) defined in the belief 

model. is indicates the initial state. fs indicates the set of final states. 
ExState This concept maps with the state defined in the belief state machine. Also, the state invariant for 

each state is converted to ExConstraint. 
ExTransition This concept maps with the transition defined in the belief state machine. Also, we map the trigger 

in the transition to the specific Test API. 
ExUncertainty This concept maps with the uncertainty defined in the state stereotyped «BeliefElement». 
URI URI (Uncertainty Related to Indeterminacy Specification) is the occurrence association between 

uncertainty and indeterminacy specification defined in the relatedIndSp:Uncertainty. 
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IndS IndS is the indeterminacy source which maps to the element stereotyped as «indeterminacySource» 
in belief state machine.  

IndSp IndSp is the indeterminacy specification that is constraint defined in the belief model stereotyped 
«IndeterminacySpecification». The constraint is converted into ExConstraint associated with this 
IndSp. 

ExConstraint This concept maps with the state invariant defined on the state and indeterminacy defined in the 
indeterminacy source. 

ExVariable This concept maps with the PropertyCallExp defined in the constraint. Also, we convert each 
constraint into abstract syntax tree. 

ExecutedLogItem It records the process of execution. un indicates the occurrence of uncertainty. time indicates the 
time point when un is executed. indSp indicates a set of occurrence of indeterminacy specification at 
that specific time point. 

ExElement It is used to describe the execution situation. isDef indicates if the element is defined in the belief 
state machine. executedTimes is used to define the times that element is executed. 

 

 Discovery Strategy 
Discovery Strategy describes a strategy to execute test ready models with the ultimate aim of 
discovering uncertainties not specified in the test ready models. 

We represent a discovery strategy as a tree. We defined two types of nodes in the discovery strategy 
as shown in Table 3. The Action node is the leaf node used to select a transition or indeterminacy 
source. The Condition node is the internal node to evaluate the current execution situation. We 
defined the condition node from the following four perspectives,  

1) the current identified state,  
2) the possible next transitions,  
3) the coverage of executed transitions,  
4) the coverage of executed URI (Relationship between Uncertainty and Indeterminacy Source) 

defined in Table 2.  
Also, the basic operators, i.e., IfElse and Sequence are used to connect Action and Condition.  

Table 2. Definitions of Discovery Strategies 

Type Name Definition 
Action SelectLessEx This action is used to select the next transition that is executed less than other 

known transitions. 
SelectLowUM This action is used to select the next transition whose uncertainty measure is less 

than other known ones. 
SelectHighUM This action is used to select the next transition whose uncertainty measure is more 

than other known ones. 
SelectExcluded This action is used to select the next transition that are not any possible known 

transitions whose source is current state. 
IntroduceLessExIndS This action is used to introduce an indeterminacy source, which is introduced less 

number of times than the other related indeterminacy sources. 
IntroduceExcluded This action is used to introduce an indeterminacy source that are not any related 

indeterminacy source with current state. 
DisableIndS This action is used to disable related indeterminacy source. 

Condition hasOneKnNext This condition is used to evaluate if the number of possible next transition is only one. 
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hasUncertainties This condition is used to evaluate if any possible next transition will lead to occurrence 
of an uncertainty. 

currentIsNewState This condition is used to evaluate if the current state is a newly discovered state. 
isTRCoverage25 This condition is used to evaluate if the coverage of executed transitions is between 

0% and 25%. 
isTRCoverage50 This condition is used to evaluate if the coverage of executed transitions is between 

25% and 50%. 
isTRCoverage75 This condition is used to evaluate if the coverage of executed transitions is between 

50% and 75%. 
isTRCoverage100 This condition is used to evaluate if the coverage of executed transitions is between 

75% and 100%. 
isURICoverage25 This condition is used to evaluate if the coverage of the occurrence of uncertainties 

with known indeterminacy sources is between 0% and 25%. 
isURICoverage50 This condition is used to evaluate if the coverage of the occurrence of uncertainties 

with known indeterminacy source is between 25% and 50%. 
isURICoverage75 This condition is used to evaluate if the coverage of the occurrence of uncertainties 

with known indeterminacy sources is between 50% and 75%. 
isURICoverage100 This condition is used to evaluate if the coverage of the occurrence of uncertainties 

with known indeterminacy sources is between 75% and 100%. 
Basic IfElse This operation is used to manage conditional construct. 

Sequence This operation is used to manage sequence construct. 
 

 Model Execution and Identification of Model Elements and Uncertainties 
Figure 23 shows the process of executing belief state machines and identifying the new model 
elements and uncertainties. Each execution is started from the initial state defined in ExBSM. Based 
on the current execution, Model E&I executes the specific transition (ExTransition) and indeterminacy 
source (IndSp) determined by the Discovery Strategy. Afterwards, Model E&I proceeds with identifying 
the known state (the algorithm in Figure 24). Based on the number of identified states, there are three 
options:  

1) there is no known state that is identified (nds = 0). In this case, we go to the process of 
identifying unknown state (the algorithm in Figure 25);  

2) there are more than one known states identified (nds >1). In this case, we create a new state 
that combines all state invariants using and logical operator;  

3) there is only one known state identified. In this case, we set the current state as the identified 
one. 

 After the current state is identified, Identify IndeterminacySource (Figure 23, C) is used to identify the 
current indeterminacy specification (the algorithm in Figure 26). Execution log is updated followed by 
the identification of current state and indeterminacy specifications. Two conditions terminate the 
execution of the evaluation of one generation of Discovery Strategy: 

1) the executed steps reach the maximum of steps (step = max);  
2) there is no specific transition generated by discovery strategy (isTerminate).   
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Figure 18. Process of Model Execution using Discovery Strategy 

 

Figure 19.  The Algorithm Identify Known State (Figure 20, A) 

 

Identify Known State 
input knSTs:ExState[] 
output curSTs:List<ExState> 
1 n ←len(knSTs) 
2 for i ← 1 to n 
3    if knSTs[i].constraint.evaluate() 
4       curSTs.add(knSTs[i]) 
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Figure 20. The Algorithm Identify Unknown State (Figure 20, B) 

 

Figure 21. The Algorithm Identify IndeterminacySource (Figure 20, C) 

Table 4 describes a set of rules to weaken the constraint. 

Table 3. Weaken Rules for the Operations 

Operation Expression Weaken Rules 
forAll var->forAll(exp) var->exists(exp) 

var->select(exp)->size()=0 

exists - - 

one var->one(exp) var->select(exp)->size()>1 

var->select(exp)->size()=0 

select -  

reject -  

includesAll varX->includesAll(varY) varY->select(y|varX->includes(y))->size()>0 

varX->excludesAll(varY) 

includes -  

Identify Unknown State 
input spST:ExState 
output newST:ExState 
1 newCons : List<ExConstraint> 
2 //get variables based on specified state 
3 vars = getVars(spST) 
4 for var ← vars 
5    //get constraints related to this var 
6    cons = getConstraints(var) 
7    for con ← cons 
8       if con.evaluate() 
9          newCons.add(con) 
10 if len(newCons) = 0       
11    for var ← vars 
12       cons = getConstraints(var) 
13       for con ← cons 
14          //get set of constrains based on Table 4 
15          wcons = weak(con) 
16          //stop to find weaken constraint when one is satisfied 
17          FW: for wcon ← wcons 
18              if wcon.evaluate() 
19                 newCons.add(wcon) 
20                 break FW 
21    if len(newCons) = 0 
22       newST = createUkST() 
23    else newST = createAndST(newCons) 
24 else 
25     newST=createAndST(newCons) 
 

Identify IndeterminacySource 
input u:ExUncertainty, indsps:IndSp[] 
output newURI:List<URI> 
1 newCons : List<ExConstraint> 
2 //get variables based on specified state 
3 vars = getVars(spST) 
4 for indsp ← indsps 
5    if indsp.constraint.evaluate() and not uoa.indsp.contain(indsp) 
6       newURI.add(new URI(uoa, indsp)) 
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excludesAll varX->includesAll(varY) varY->select(y|varX->excludes(y))->size()>0 

varX->includesAll(varY) 

excludes - - 

isEmpty - - 

notEmpty - - 

not - - 

= 
(numeric) 

var=NumericLiteralExp var < NumericLiteralExp 

var > NumericLiteralExp 

varX = varY varX > varY 

varX < varY 

= 
(String, Boolean) 

- - 

<> - - 

> var > NumericLiteralExp var < NumericLiteralExp 

var = NumericLiteralExp 

varX > varY varX < varY 

varX = varY 

< var < NumericLiteralExp var > NumericLiteralExp 

var = NumericLiteralExp 

varX > varY varX > varY 

varX = varY 

>= - - 

<= - - 

 

 Genetic Programming Problem 
Table 5 shows the settings of a GP in UncerPlore.  

Table 4. The Setting of GP in UncerPlore 

Name Definition 
Algorithm GA 
Terminal Set Action 
Function Set Condition, Basic 

Control Parameter 

subtree crossover [16] [17], rate = 0.9 
point mutation [16] [17], rate = 0.01 
Population=100 
Max Generation=100 

Termination Criterion step = max or isTerminate 

Number of runs 10 

 

After execution, we collect a set of uncertainties related information as shown in Table 6.  

Table 5. The Calculation of Uncertainty-Related Data 

 Name Definition 
#UnS Number of uncertainties 

specified 
context ExBSM 
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def: getUnS:Integer = ExUncertainty.allInstances()-
>select(isDef)->size() 

#UnD Number of uncertainties 
discovered 

context ExBSM 
def: getUnD:Integer = ExUncertainty.allInstances()-
>select(not isDef and um = 0.0)->size() 

#UriS Number of URI specified context ExBSM 
def: getUriD:Integer = URI.allInstances()-
>select(isDef)->size() 

#UriD Number of URI 
discovered 

context ExBSM 
def: getUriD:Integer = URI.allInstances()->select(not 
isDef)->size() 

PETR Percentage of Executed 
Transition Coverage 
 

PETR = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑁𝑁𝑠𝑠 𝑡𝑡𝑁𝑁𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑜𝑜𝑡𝑡𝑠𝑠 𝑡𝑡ℎ𝑡𝑡𝑡𝑡 𝑡𝑡𝑁𝑁𝑁𝑁 𝑁𝑁𝑒𝑒𝑁𝑁𝑠𝑠𝑁𝑁𝑡𝑡𝑁𝑁𝑠𝑠
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑆𝑆𝑠𝑠𝑁𝑁𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑁𝑁𝑠𝑠 𝑡𝑡𝑁𝑁𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑜𝑜𝑡𝑡𝑠𝑠

 , which can be defined as 
context ExBSM 
def: getPETR:Double = (ExTransition.allInstances()-
>select(executedTimes > 0 and isDef)->size() * 
1.0)/ExTransition.allInstances()->select(isDef)->size() 

 

The objective is to discover the uncertainty and its related indeterminacy source as many as possible 
under more transitions are executed. 

Since the range of #UnD and #UriS is [0,∞), we use Inverse tan function (arctan) to normalize data 
[16] between 0 to 1. 

𝑁𝑁𝑁𝑁𝑡𝑡(𝑥𝑥) =  
arctan (𝑥𝑥) × 2

𝜋𝜋
 

The overall fitness is defined based on #UnD, #UriS and PETR, which can be calculated as  

𝐹𝐹𝐹𝐹𝑠𝑠𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠 = 0.2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 0.8 × 𝑁𝑁𝑁𝑁𝑡𝑡(#𝑈𝑈𝐹𝐹𝑈𝑈 + #𝑈𝑈𝑡𝑡𝐹𝐹𝑈𝑈) 
 Evaluation 

As specified in D1.3, there are 3 uncertainties for UC2_INTE_2.3. Based on the UncerTum, we further 
refined these uncertainties and as the result we modelled 7 uncertainties in the belief state machine.  

To evaluate the performance of evolving belief state machine using GP, we performed an experiment 
with one use case of ULMA (UC2_INTE_2.3). Given the randomness in GP, we repeated the 
experiments 10 number of times. In 10 number of repetitions, we identified on average 2 new 
uncertainties. As compared to the known uncertainties 7 in belief state machine defined by SRL, we 
managed to discover 28.6% (#𝑈𝑈𝑡𝑡𝑈𝑈

#𝑈𝑈𝑡𝑡𝑆𝑆
= 2

7
) new uncertainties.   

We are running experiments with other use cases at the time of submission of this deliverable. The 
detailed results based on the other use cases will be provided in the Empirical Evaluation Deliverable 
in WP5.  

2.2.1.2.3 Measurement Inference 
In this section, we present the way to update the objective uncertainty measurements based on the 
execution results. 
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The detailed algorithm is shown in Figure 27. 

 

Figure 22. The Algorithm of Measurement inference 

 

2.2.2 Updates on Test Case Generation, Test case Minimization, and Test 
Prioritization 

This section presents updates on UncerTest, comparing with D3.2. The updated technical report 
(TR8.pdf) is also attached. The TR also provides the extensive experiments, we conducted with five use 
cases from Automated Warehouse and GeoSports case studies.  

2.2.2.1 Test Case Generation and Minimization 
The main updates in the technical report (TR8.pdf) include:  

1. The application of UncerTest in the test process is presented in Figure 1 in TR8.pdf;  
2. The executable test generation is updated in terms of introduction of indeterminacy sources 

(Section 4.3 in TR8.pdf); 
3. An extensive experiment to evaluate four uncertainty-wise test cases minimization problems 

with eight multi-objective algorithms are made (Section 5). 
4. The extensive experiment includes five use cases (UC2_APP11, UC2_INFR11, UC2_INTE11, 

UC2_INTE23 and UC1_INTE3) from both industrial case studies. 
The experiments were aimed to select the best algorithm out of eight commonly used multi-
objective search algorithms, for each of the four minimization strategies, with five use cases 
of two industrial CPS case studies. The minimized set of test cases obtained with the best 
algorithm for each minimization strategy were executed on the two real CPSs. The results 
showed that our best test strategy managed to observe 51% more uncertainties due to 
unknown indeterminate behaviors of the physical environment of the CPSs as compared to 
the rest of the test strategies. In addition, the same test strategy managed to observe 118% 
more unknown uncertainties as compared to the unique number of known uncertainties. All 
the details are presented in TR8.pdf. 

2.2.2.2 Test Case Prioritization 
No update. It is same as the TR7.pdf submitted in D3.2. 

Measurement inference 
input log:ExecutedLogItem[], un 
output frequence:Double 
1 total:int 
2 occur:int 
3 for item ← log 
4    if sameSsTr(item, un) 
5 total++ 
6       if sameTs(item,un) 
7          occur++ 
8 frequence = (occur*1.0)/total       
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2.2.3 Updates on Test Case Execution 
The uncertainty-wise test case verdict is newly proposed in the updated technical report (TR8.pdf), 
which can be further used to define the uncertainty-related metric. For more details, (see Section 4.4 
and Section 5.3 in TR8.pdf). 

3 Summary and Conclusion 

3.1 UTF at the Application Level 
Achievements of M5 

The Uncertainty Testing Framework for the Application Level (UTF-AL) has been elaborated in more 
details. In particular the encoding and its relationship to the UML Testing Profile v2 (UTP2) has been 
presented, that allows a consistent usage of UTF-AL together with UTP2 and reduces technical barriers 
for testers who already employ model-based testing together with UTP2. Furthermore, details on two 
alternative crossover operators for uncertainty testing has been presented that allow testing 
recombination of uncertainties in the environment of a CPS. The possible extensions and 
configurations points of UTF-AL for users and developers were discussed in order to facilitate the 
application and improvement of UTF-AL. 

3.2 UTF at the Infrastructure Level 

Achievements of M5 
We have introduced a new uncertainty modelling and evaluation methodology (UME) and 
implemented a companion tool (T4UME) based on uncertainty detection rules (UDR) as planned in 
D3.2. 

We have implemented a UML2JSON extraction step to ease the adoption of uncertainty-wise UML 
model in JSON-based provisioning and deployment of infrastructural resources. 

Due to (i) the heterogeneity and continuous evolution of uncertainty methodologies applied at 
application, infrastructure, and integration level and (ii) continuous evolving functionalities of UTF 
tools, UME has been devised to support uncertainty evolution at design-time, caused by missing 
stereotype property values.  

T4UME, the UME companion tool, built on top of state of the art MDE technologies (Eclipse Epsilon), 
provides an advanced feature (i.e., a so-called higher-order transformation) to adapt its capabilities 
(i.e., new check clauses for U-Detection and/or new fix clauses for U-Refactoring) to different MDE 
tasks, like the  test case generation algorithms implemented by U-Test tool providers. 
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3.3 UTF at the Integration Level 

Achievements of M5 
We have successfully reached the milestone M5 regarding the UTF V.3 for uncertainty testing at the 
Integration level of CPS. More specifically, the main improvements for uncertainty testing at the 
Integration level as compared to the UTF V.2 include:  

1) Uncertainty-wise test minimization has been improved significantly in terms of large scale 
experiments with additional search algorithms. The results showed that our best test strategy 
managed to observe 51% more uncertainties due to unknown indeterminate behaviors of the 
physical environment of the CPSs as compared to the rest of the test strategies. In addition, 
the same test strategy managed to observe 118% more unknown uncertainties as compared 
to the unique number of known uncertainties. 

2) The development of uncertainty-wise test case verdicts, which are used to observe occurrence 
of uncertainties together with its related indeterminacy source(s). 

3) The development of the new model evolution framework (UncerPlore), which evolves test-
ready models using Genetic Programming (GP) [17] [18] and benefiting from runtime test 
ready model execution on the dedicated test infrastructures (Section 2.4.1.2). Our initial 
experiments based on one use case from ULMA demonstrated discovery of 28.6% new 
uncertainties as compared to the ones specified in the initial belief state machine, which is 
input for UncerPlore. 

 
 

4 Bibliography  

 

[1]  U-Test H2020 Deliverable: Revision of deliverable report D1.2: Updated Report on U-Taxonomy.  

[2]  U-Test H2020 Deliverable: Report on Uncertainty Modelling Framework V.3.  

[3]  ObjectManagementGroup, UML Testing Profile.  

[4]  ObjectManagementGroup, UML Profile For MARTE: Modeling And Analysis Of Real-Time 
Embedded Systems.  

[5]  M. Utting and B. Legeard, Practical Model-Based Testing: A Tools Approach, San Francisco, CA, 
USA: Morgan Kaufmann Publishers Inc., 2007.  

[6]  E. Foundation, Epsilon Project, 2017.  



D3.3 Version 1.5 Confidentiality Level: PU 
 
 

 
2017-04-26 U-TEST  Page 39 of 40 

 
 

 

 

[7]  H.-L. Truong, L. Berardinelli, I. Pavkovic and G. Copil, “Modeling and Provisioning IoT Cloud 
Systems for Testing Uncertainties,” in Proceedings of the 14th EAI International Conference on 
Mobile and Ubiquitous Systems: Computing, Networking and Services, Melbourne, 2017.  

[8]  M. Brambilla, J. Cabot and M. Wimmer, Model-Driven Software Engineering in Practice, Morgan 
& Claypool, 2012.  

[9]  E. Foundation, PapyrusUML.  

[10]  E. Foundation, Eclipse Modeling Framework.  

[11]  D.-H. Le, N. Narendra and H.-L. Truong, “HINC-harmonizing diverse resource information across 
iot, network functions, and clouds,” in Future Internet of Things and Cloud (FiCloud), 2016 IEEE 
4th International Conference on, 2016.  

[12]  D.-H. Le, H.-L. Truong and S. Dustdar, “Managing On-demand Sensing Resources in IoT Cloud 
Systems,” in Mobile Services (MS), 2016 IEEE International Conference on, 2016.  

[13]  M. Zhang, S. Ali, T. Yue and R. Norgre, “Uncertainty-wise evolution of test ready models,” 
Information and Software Technology, 2017.  

[14]  M. Zhang, T. Yue and M. Hedmnan, “Uncertainty-wise Test Case Generation and Minimization 
for Cyber-Physical Systems: A Multi-Objective Search-based Approach,” 2016.  

[15]  J. R. Koza, “Genetic programming II: Automatic discovery of reusable subprograms,” Cambridge, 
MA, USA, 1994.  

[16]  J. R. Koza, Genetic programming: on the programming of computers by means of natural 
selection, vol. 1, MIT press, 1992.  

[17]  V. Vinay, I. J. Cox, N. Milic-Frayling and K. Wood, “On ranking the effectiveness of searches,” in 
Proceedings of the 29th annual international ACM SIGIR conference on Research and 
development in information retrieval, 2006.  

[18]  I. Object Management Group, Unified Modeling Language, UML, version 2.5, 2015.  

[19]  V. Vyatkin, “Software Engineering in Industrial Automation: State-of-the-Art Review,” IEEE Trans. 
Industrial Informatics, vol. 9, pp. 1234-1249, 2013.  

[20]  F. Pramudianto, I. R. Indra and M. Jarke, “Model Driven Development for Internet of Things 
Application Prototyping.,” in SEKE, 2013.  

[21]  F. Ciccozzi and R. Spalazzese, “MDE4IoT: Supporting the Internet of Things with Model-Driven 
Engineering,” in Intelligent Distributed Computing X: Proceedings of the 10th International 



D3.3 Version 1.5 Confidentiality Level: PU 
 
 

 
2017-04-26 U-TEST  Page 40 of 40 

 
 

 

 

Symposium on Intelligent Distributed Computing -- IDC 2016, Paris, France, October 10-12 2016 , 
C. Badica, A. El Fallah Seghrouchni, A. Beynier, D. Camacho, C. Herpson, K. Hindriks and P. Novais, 
Eds., Cham, : Springer International Publishing, 2017, pp. 67-76. 

[22]  E. Foundation, Eclipse UML, 2017.  

[23]  B. Liu, “Uncertainty theory,” in Uncertainty Theory, Springer, 2007, pp. 205-234. 

[24]  U-Test H2020 Deliverable: Report on Uncertainty Modelling Framework V.2.  

 

 

 


	Executive Summary
	1 Introduction
	1.1 Objectives of the Deliverable
	1.2 Relationship to other U-TEST Deliverables
	1.3 Structure of the Deliverable

	2 Uncertainty Testing Framework
	2.1.1 Uncertainty Modeling and Evaluation (UME) and supporting Tool (T4UME)
	2.1.2 UME and T4UME in detailed design and usage examples
	2.1.2.1 Adoption of Model-Driven Engineering technologies in T4UME
	2.1.2.2 Modelling
	2.1.2.3 Uncertainty Detection and Refactoring
	2.1.2.4 Wizards and UDRs Generation
	2.1.2.5 Exporting UML to JSON
	2.1.2.5.1 Selecting Infrastructure-related artefacts


	2.1.3 How to adopt UME and T4UME in UTFv3
	2.2 Uncertainty Testing at Integration Level
	2.2.1 Updates on Test Ready Model Evolution
	2.2.1.1 UncerTolve
	2.2.1.2 UncerPlore
	2.2.1.2.1.1 Definitions
	2.2.1.2.2 Evolving Belief Test Ready Models using Genetic Programming
	2.2.1.2.2.1 ExBSM
	2.2.1.2.2.2 Discovery Strategy
	2.2.1.2.2.3 Model Execution and Identification of Model Elements and Uncertainties
	2.2.1.2.2.4 Genetic Programming Problem
	2.2.1.2.2.5 Evaluation

	2.2.1.2.3 Measurement Inference


	2.2.2 Updates on Test Case Generation, Test case Minimization, and Test Prioritization
	2.2.2.1 Test Case Generation and Minimization
	2.2.2.2 Test Case Prioritization

	2.2.3 Updates on Test Case Execution


	3 Summary and Conclusion
	3.1 UTF at the Application Level
	3.2 UTF at the Infrastructure Level
	3.3 UTF at the Integration Level

	4 Bibliography

