
Symbolic Path-Oriented Test Data Generation for 
Floating-Point Programs

Arnaud Gotlieb

Certus V&V Centre,
SIMULA Research. Lab., 
Norway

ICST 2013, Luxembourg, Apr. 2013
Dagsthul 2014: « Symbolic methods and constraint solving »

Joint work with Roberto Bagnara (Parma), Matthieu Carlier (IRISA) and Roberta Gori (Pisa)



Motivations

 Increasing use of floating-point computations in safety-critical systems

 Testing for detecting and evaluating rounding errors

 Focus on program paths that expose the system to these errors

BCE Rafale – Dassault Alarm system - KM Nuclear Power Plant - EDF



 Symbolic Execution is a popular technique in automatic test input generation
(e.g., PathCrawler, PEX, SAGE, KLEE, …) 

path  path conditions   constraint solving test input

 However, handling correctly floating-point computations in constraint solving
is difficult

Symbolic execution of floating-point computations



float foo( float x) {
float y = 1.0e12

1. if( x < 10000.0 )
2. z = x + y
3. if( z > y)
4. …

Is the path 1-2-3-4  feasible ?

Path conditions:
x < 10000.0 
x + 1.0e12 > 1.0e12

On the reals:  x  (0,10000)

On the floats:  no solution!



float foo( float x) {
float y = 1.0e12

1. if( x > 0.0 )
2. z = x + y
3. if( z == y)
4. …

Is the path 1-2-3-4  feasible ?

Path conditions:
x > 0.0 
x + 1.0e12 = 1.0e12

On the reals:  no solution!

On the floats:  x  (0, 32767.99…)

Conversely,



Contributions of the talk

 Understanding rounding errors and why they occur in numerical programs

 How to solve a set of floating-point constraints

 Claim:     symbolic path-oriented test input generation for 
floating-point programs is feasible!



Outline

• IEEE-754 and rounding errors

• Constraint solving over the floats

• FPSE and first experimental results

• Conclusions



Binary floating-point numbers (IEEE-754)

 float: (s,f,e)  a bit pattern of 32, 64 or more bits

0 < e < emax: Normalized

(-1)s 1.f   2 (e - bias)

e = 0: Denormalized (-1)s 0.f   2 (– bias + 1)

+0.0, -0.0
e = emax: +INF, -INF,  NaNs

 Rounding:    r( ‘1.0e12’ ) = 999999995904.0f 

4 modes (near-to-even, …), monotonicity (i.e., if x > y   then r(x) > r(y) )

sign (1 bit) 

significand (23, 52 bits or extended) 

exponent (8, 11 bits or extended)



Poor  (but well-conceived) approximation of the reals

‘1.0e12’   add ‘10000.0’                   =      r( ‘1.0e12’ )         add r(  ‘10000.0’ )

=  999999995904.0f add 10000.0f 

=  r( 999999995904.0f +           10000.0f )

=  r(              ‘1000000005904.0’             )

=                     999999995904.0f

=                           ‘1.0e12’

Accuracy requirement of IEEE-754

For add, sub, mul, div, sqr, rem, conv: 
the floating-point result of an operation must be the rounding result
of the exact operation over the reals

999999995904.0f + 10000.0f

999999995904.0f

r(…)



Decomposition in symbolic execution

 Decomposition in SSA-like three-address code, preserving evaluation order

e.g., z := z * z + z      t1 == z1  mul z1,   z2 == t1  add z1

 Temporary results are stored into known formats 
(requires to set up specific options when compiling) 
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Context of this work

• Programs that strictly conform to IEEE-754

E  ::= E add E |E subs E |E mult E |E div E

|E == E |E != E |E > E | E >= E

|(float) E |(double) E | Var | Constants

• No extended-formats, only the to-the-nearest rounding mode, 
no exception, no NaNs

• Decomposition preserves the order of evaluation

• Temporary results are stored in known formats 
(requires to set up specific options when compiling) 



Simple Symbolic Execution      [Clarke 76]

Notations : Control Flow Graph (N,A,e,s)

X vector of symbolic input 

Definition (Symbolic State) :
(Path, State, PC) where

Path = ni..nj is a (partial) path of the CFG

State = {<v,>}vVar(P)  is an algebraic expr. over X

PC = c1,...,cn a finite conjunction of conditions 

over X or a temporary assignments



(Path,State,PC) : examples

(1,{<x,X>,<y,1.0e12>,<z,>},true)

(123, 
{<x,X>,<y,1.0e12>,<z,X+1.0e12>},
X < 10000.0 )

(1234, 
{<x,X>,<y,1.0e12>,<z,X+1.0e12>},
X<10000.0, T := X add 1.0e12, T > 1.0e12)

...

4

3

2

1

float foo( float x) {

float y = 1.0e12 ;

if( x < 10000.0 )

z = x + y;

if( z > y)

...



Symbolic state : features

(Path,State,PC) is computed either by a forward or a backward 

analysis over the vertex of Path 

 Let SPC be the solution-set of PC

then XSPC, Path is activated by X

 When SPC= then Path is non-feasible                

However, finding all the non-feasible paths is a classical undecideable
problem   [Weyuker 79]



Interval propagation

 Var x abstracted by an interval Ix

 Interval Arithmetic:

Ix = [a,b]  and Iy = [c,d]  then Ix + y = [r( a+c ), r( b+d )]         

Ix - y =  [r(  a-d ), r( b-c) ]

Iexp(x) =  [r( exp(a) ), r( exp(b) )]  ...

 Filtering over intervals using projection functions
Iz’ Ix + y  Iz

[z = x + y]     leads to            Ix’ Iz - y  Ix

Iy’ Iz - x  Iy

Filtering, constraint propagation and labelling  constraint solving



Example :   y = log(x), x+y = 0

4 projection functions Ix’ Iexp(y)  Ix 

Iy’ Ilog(x)  Iy 

Ix’ I-y  Ix 

Iy’ I-x  Iy 

x [-,+]    
y [-,+]    

If there is a solution x, then x  [0.56, 0.57]

[0,+]
[-, 0]





[0.56,   0.57]
[-0.57, -0.56]





[0.56,   1]
[-1, -0.56]





[0,  1]
[-1, 0]





True over the reals, can be adapted for floating-point numbers! 

Solving constraints means also detecting unsatisfiability



Existing solvers based on IP

Over the reals:

- INTERLOG                                                 (Botella & Taillibert 1993, Lhomme 1993)  
Dynamic optimizations (Lhomme Gotlieb Rueher 1996)  

- NUMERICA                                                         (Van Hentenryck 1997)

- REALPAVER (Granvilliers 1998)

Over the floats:

- FPCS                                                                           (Michel Rueher Lebbah 2001)

- FPSE                                                                            (Botella Gotlieb Michel 2006)

- ECLAIR                                                                 (Bagnara et al.    BUGSENG  2011)



Our approach to solve path conditions :
Interval propagation over floating-point variables

• Notations:

Recall that   [a add b]   denotes   near(a + b)

• Path conditions are made of constraints and 
assignments

x

near(x)

a+

a-

a

mid(a,a+)



Our approach: floating-point projections

Direct and indirect projections for the assignment:
proj(r, r:= a  add b)   (direct) 

[r := a add b] leads to       proj(a, r:= a add b)      (1st indirect)

proj(b,r := a add b)     (2nd indirect)

 Direct projections (over numeric fp numbers):

If   Ir = [rl,rh],   Ia = [al,ah]   and   Ib = [bl,bh]  then

[r := a add b] [rl’,rh’]  [al add bl, ah add bh]   [rl,rh]

[r := a subs b] [rl’,rh’]  [al subs bh, ah subs bl]  [rl,rh]

...



bl

bh

rl’  max(al add bl, rl)

rh’  min(ah add bh, rh)

al

ah

rh

rl

Ex: Direct projection    [r := a add b]

impossible

Monotony of rounding :

r1  r2  near(r1)  near(r2)

impossible



More complex : indirect projections

If    Ir = [rl,rh],    Ia = [al,ah]     and     Ib = [bl,bh]    then

1st indirect projection of  [r := a add b]
[al’,ah’]  [mid(rl,rl

-) subs bh, mid(rh,rh
+) subs bl]  [al,ah]

1st indirect projection of  [r := a subs b]
[al’,ah’]  [mid(rl,rl

-) add bl, mid(rh,rh
+) add bh]  [al,ah]

2nd indirect projection of  [r := a subs b]
[bl’,bh’]  [al subs mid(rh,rh

+), ah subs mid(rl,rl
-)]  [bl,bh]



rl-

rh+

rl

rh

bl

bh
ah’  min(

mid(rh,rh
+) subs bl,

ah)

al’  max(

mid(rl, rl
-) subs bh, 

al) 

al

ah

Ex: 1st indirect projection [r := a add b]

impossible 

not optimal, 

but computable with to-the-nearest



Handling comparisons and conversions

Comparisons (1st proj) :
[al’,ah’]  [max(al,bl), min(ah,bh)]                        when [a==b]

[al’,ah’]  [max(al,bl)
+, ah]                                   when [a > b]

[al’,ah’]  [if(al=bl=bh) then  al
+ else al, 

if(ah=bl=bh) then ah
- else ah]             when [a!=b]

Floating-point conversions:
when [ r := (float)a ]

[rl’,rh’]  [maxf((float)al,rl), minf((float)ah,rh)]             (direct proj.)

[al’,ah’]  [maxd(al,mid(rl,rl
-)), mind(ah,mid(rh,rh

+))]       (indirect)



Handling zeros and infinities

Based on an extended arithmetic defined by specific tables:

values of a in 1st indirect projection of  [r := a add b]

b \ r -INF -0.0 +0.0 Nv +INF

-INF
Nv, 

-INF,0.0
-- -- -- --

-0.0 -INF -0.0 +0.0 Nv +INF

+0.0 -INF -- 0.0 Nv +INF

Nv Nv,-INF -- Nv,0.0 Nv,0.0 Nv,+INF

+INF -- -- -- --
Nv,+INF,

0.0



The Marre&Michel property (Marre and Michel 2010) 

X  – Y = a

a

d 2d 2d

b

Then, The property says that Y cannot be greater than b

1. We have reformulated and corrected this property ULP-Maximum 

a



Filtering by ULP-Maximum

 All the details and correction proofs are in the paper!

2.  And we have generalized it to mul and  div
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FPSE: Floating-Point Symbolic Execution

Handles ISO-C  computations on  Sparc/Solaris/gcc and  Intel/WinXP/VisualC++ 

Programs that strictly conform to IEEE-754
E  ::= E add E |E sub E  |E mul E |E div E

|E == E    |E != E     |E > E      | E >= E
|(float) E |  (double) E   | Var | Constants

 Only near-to-even rounding mode, only normalized numbers

 Written in SICStus Prolog                  (constraint propagation engine, ~10 KLOC)
and C                       (floating-point projection functions, ~1 KLOC)



/* double-error.c */

int main () {
double x; 
float y,z,r;

x=1125899973951488.0;
y = x + 1;
z = x - 1;
r = y - z;
printf("%f\n", r);
}

% 134217728.000000

test24 :-
solveur:init_env(E),
flottant:news([Y,Z,R],float(32),['y','z','r'],E),
flottant:news([X,C,T1,T2],double(64),['x','c','t1','t2'],E),

flottant:affect(const('1125899973951488.0'),X),
flottant:affect(const('1.0'),C),
flottant:affect('+',X,C,T1),
flottant:affect(conv(double(64),float(32)),T1,Y),
flottant:affect('-',X,C,T2),
flottant:affect(conv(double(64),float(32)),T2,Z),
flottant:affect('-',Y,Z,R),
solveur:solve(E),
flottant:fprint([R]).

| ?- test24.
double(64):r in 1.342177280e+08 .. 1.342177280e+08

An example



Selected experimental results (gcc/solaris/sparc)

Programs Expected results Eclipse FPSE

[Goldberg 91]

2.0e-30 + 1.0e30 -1.0e30 -
1.0e-30

single:  -1.000000003e-30

double: -1.0e-30

clpr:  +0.0,       clpq: +10-30

ic: [-1.0e-30, 140737488355328]

single: -1.000000003e-30

double: -1.0e-30

[Goldberg 91]

D == B2 - 4AC

A:=1.22 , B=3.34, D=+0.0

single:

2.2859835624694824

double:

2.2859836065573770

clpr: 2.2859836065573771

clpq :27889/12200=2.285...

ic: [2.2859836065573766,  
2.2859839065573771]

single:[2.2859833240509033,       
2.2859835624694824]

double: [2.2859836065573766,

2.2859836065573770]

X < 1.0e4,

T1= X +1.0e12,  
T1 >1.0e12

single: infeasible path

double: [6.103e-5,   9.999e3]

clpr:   (-0.0,  10000.0)

clpq:  (0,      10000)

ic:      [0.0,   10000.0]

single: infeasible path

double: [6.103e-5, 9.999e3

X > 0,   

T1 = X + 1.0e12,   

T1 == 1.e12

single:

[1.4012984643248171e-45,  
3.2767998046875000e+04] 

double:

[4.9406564584124654e-324, 
6.1035156250000000e-05]

clpr,clpq : infeasible

ic:  infeasible

single:

[1.4012984643248171e-45,

3.2768000000000000e+04] 

double:

[4.9406564584124654e-324,

6.1035156250000000e-05]

power.c (X=10, Y = -40)

84 constraints

single: +0.0

double: 1.000000000001e-40

clpr: +0.0,       clpq: +10-40

ic: [9.99999e-41, 1.0000000e-40]

single: +0.0

double: 1.000000000001e-40

power.c (X=10, Y = -350)

704 constraints

single: +0.0

double: +0.0

clpr: +0.0,       clpq: +10-350

ic: [-4.94065645841247e-324, 

+4.94065645841247e-324]

single: +0.0

double: +0.0

[Howden 82]

T1=A*B,X1=T1+2,X1>100,X2=100
-X1,X3=X2-50,X3 > 50.

infeasible clpr,clpq: infeasible

ic:            infeasible

infeasible



Experimental results with FPSE

The speedup due to ULP-Maximum does not depend on NbC or NbV!



Symbolic path-oriented test input generation on FP-computations is feasible! 



Conclusions

 Testing for detecting rounding errors is important

 CP-based solvers for continuous domains can be tuned for FP
constraints

 Our preliminary experiments with FPSE show that:

1. ULP-Maximum is useful for solving FP constraints

2. Symbolic path-oriented test input generation is feasible
(up to 200 constraints on a path, in a couple of seconds)!

 But, more experiments to compare with SMT-solving are 
needed! 



Thank you !


