
Symbolic Path-Oriented Test Data Generation for
Floating-Point Programs

Arnaud Gotlieb

Certus V&V Centre,
SIMULA Research. Lab.,
Norway

ICST 2013, Luxembourg, Apr. 2013
Dagsthul 2014: « Symbolic methods and constraint solving »

Joint work with Roberto Bagnara (Parma), Matthieu Carlier (IRISA) and Roberta Gori (Pisa)

Motivations

 Increasing use of floating-point computations in safety-critical systems

 Testing for detecting and evaluating rounding errors

 Focus on program paths that expose the system to these errors

BCE Rafale – Dassault Alarm system - KM Nuclear Power Plant - EDF

 Symbolic Execution is a popular technique in automatic test input generation
(e.g., PathCrawler, PEX, SAGE, KLEE, …)

path path conditions constraint solving test input

 However, handling correctly floating-point computations in constraint solving
is difficult

Symbolic execution of floating-point computations

float foo(float x) {
float y = 1.0e12

1. if(x < 10000.0)
2. z = x + y
3. if(z > y)
4. …

Is the path 1-2-3-4 feasible ?

Path conditions:
x < 10000.0
x + 1.0e12 > 1.0e12

On the reals: x (0,10000)

On the floats: no solution!

float foo(float x) {
float y = 1.0e12

1. if(x > 0.0)
2. z = x + y
3. if(z == y)
4. …

Is the path 1-2-3-4 feasible ?

Path conditions:
x > 0.0
x + 1.0e12 = 1.0e12

On the reals: no solution!

On the floats: x (0, 32767.99…)

Conversely,

Contributions of the talk

 Understanding rounding errors and why they occur in numerical programs

 How to solve a set of floating-point constraints

 Claim: symbolic path-oriented test input generation for
floating-point programs is feasible!

Outline

• IEEE-754 and rounding errors

• Constraint solving over the floats

• FPSE and first experimental results

• Conclusions

Binary floating-point numbers (IEEE-754)

 float: (s,f,e) a bit pattern of 32, 64 or more bits

0 < e < emax: Normalized

(-1)s 1.f 2 (e - bias)

e = 0: Denormalized (-1)s 0.f 2 (– bias + 1)

+0.0, -0.0
e = emax: +INF, -INF, NaNs

 Rounding: r(‘1.0e12’) = 999999995904.0f

4 modes (near-to-even, …), monotonicity (i.e., if x > y then r(x) > r(y))

sign (1 bit)

significand (23, 52 bits or extended)

exponent (8, 11 bits or extended)

Poor (but well-conceived) approximation of the reals

‘1.0e12’ add ‘10000.0’ = r(‘1.0e12’) add r(‘10000.0’)

= 999999995904.0f add 10000.0f

= r(999999995904.0f + 10000.0f)

= r(‘1000000005904.0’)

= 999999995904.0f

= ‘1.0e12’

Accuracy requirement of IEEE-754

For add, sub, mul, div, sqr, rem, conv:
the floating-point result of an operation must be the rounding result
of the exact operation over the reals

999999995904.0f + 10000.0f

999999995904.0f

r(…)

Decomposition in symbolic execution

 Decomposition in SSA-like three-address code, preserving evaluation order

e.g., z := z * z + z t1 == z1 mul z1, z2 == t1 add z1

 Temporary results are stored into known formats
(requires to set up specific options when compiling)

Outline

• IEEE-754 and rounding errors

• Constraint solving over the floats

• FPSE and first experimental results

• Conclusions

Context of this work

• Programs that strictly conform to IEEE-754

E ::= E add E |E subs E |E mult E |E div E

|E == E |E != E |E > E | E >= E

|(float) E |(double) E | Var | Constants

• No extended-formats, only the to-the-nearest rounding mode,
no exception, no NaNs

• Decomposition preserves the order of evaluation

• Temporary results are stored in known formats
(requires to set up specific options when compiling)

Simple Symbolic Execution [Clarke 76]

Notations : Control Flow Graph (N,A,e,s)

X vector of symbolic input

Definition (Symbolic State) :
(Path, State, PC) where

Path = ni..nj is a (partial) path of the CFG

State = {<v,>}vVar(P) is an algebraic expr. over X

PC = c1,...,cn a finite conjunction of conditions

over X or a temporary assignments

(Path,State,PC) : examples

(1,{<x,X>,<y,1.0e12>,<z,>},true)

(123,
{<x,X>,<y,1.0e12>,<z,X+1.0e12>},
X < 10000.0)

(1234,
{<x,X>,<y,1.0e12>,<z,X+1.0e12>},
X<10000.0, T := X add 1.0e12, T > 1.0e12)

...

4

3

2

1

float foo(float x) {

float y = 1.0e12 ;

if(x < 10000.0)

z = x + y;

if(z > y)

...

Symbolic state : features

(Path,State,PC) is computed either by a forward or a backward

analysis over the vertex of Path

 Let SPC be the solution-set of PC

then XSPC, Path is activated by X

 When SPC= then Path is non-feasible

However, finding all the non-feasible paths is a classical undecideable
problem [Weyuker 79]

Interval propagation

 Var x abstracted by an interval Ix

 Interval Arithmetic:

Ix = [a,b] and Iy = [c,d] then Ix + y = [r(a+c), r(b+d)]

Ix - y = [r(a-d), r(b-c)]

Iexp(x) = [r(exp(a)), r(exp(b))] ...

 Filtering over intervals using projection functions
Iz’ Ix + y Iz

[z = x + y] leads to Ix’ Iz - y Ix

Iy’ Iz - x Iy

Filtering, constraint propagation and labelling constraint solving

Example : y = log(x), x+y = 0

4 projection functions Ix’ Iexp(y) Ix

Iy’ Ilog(x) Iy

Ix’ I-y Ix

Iy’ I-x Iy

x [-,+]
y [-,+]

If there is a solution x, then x [0.56, 0.57]

[0,+]
[-, 0]

[0.56, 0.57]
[-0.57, -0.56]

[0.56, 1]
[-1, -0.56]

[0, 1]
[-1, 0]

True over the reals, can be adapted for floating-point numbers!

Solving constraints means also detecting unsatisfiability

Existing solvers based on IP

Over the reals:

- INTERLOG (Botella & Taillibert 1993, Lhomme 1993)
Dynamic optimizations (Lhomme Gotlieb Rueher 1996)

- NUMERICA (Van Hentenryck 1997)

- REALPAVER (Granvilliers 1998)

Over the floats:

- FPCS (Michel Rueher Lebbah 2001)

- FPSE (Botella Gotlieb Michel 2006)

- ECLAIR (Bagnara et al. BUGSENG 2011)

Our approach to solve path conditions :
Interval propagation over floating-point variables

• Notations:

Recall that [a add b] denotes near(a + b)

• Path conditions are made of constraints and
assignments

x

near(x)

a+

a-

a

mid(a,a+)

Our approach: floating-point projections

Direct and indirect projections for the assignment:
proj(r, r:= a add b) (direct)

[r := a add b] leads to proj(a, r:= a add b) (1st indirect)

proj(b,r := a add b) (2nd indirect)

 Direct projections (over numeric fp numbers):

If Ir = [rl,rh], Ia = [al,ah] and Ib = [bl,bh] then

[r := a add b] [rl’,rh’] [al add bl, ah add bh] [rl,rh]

[r := a subs b] [rl’,rh’] [al subs bh, ah subs bl] [rl,rh]

...

bl

bh

rl’ max(al add bl, rl)

rh’ min(ah add bh, rh)

al

ah

rh

rl

Ex: Direct projection [r := a add b]

impossible

Monotony of rounding :

r1 r2 near(r1) near(r2)

impossible

More complex : indirect projections

If Ir = [rl,rh], Ia = [al,ah] and Ib = [bl,bh] then

1st indirect projection of [r := a add b]
[al’,ah’] [mid(rl,rl

-) subs bh, mid(rh,rh
+) subs bl] [al,ah]

1st indirect projection of [r := a subs b]
[al’,ah’] [mid(rl,rl

-) add bl, mid(rh,rh
+) add bh] [al,ah]

2nd indirect projection of [r := a subs b]
[bl’,bh’] [al subs mid(rh,rh

+), ah subs mid(rl,rl
-)] [bl,bh]

rl-

rh+

rl

rh

bl

bh
ah’ min(

mid(rh,rh
+) subs bl,

ah)

al’ max(

mid(rl, rl
-) subs bh,

al)

al

ah

Ex: 1st indirect projection [r := a add b]

impossible

not optimal,

but computable with to-the-nearest

Handling comparisons and conversions

Comparisons (1st proj) :
[al’,ah’] [max(al,bl), min(ah,bh)] when [a==b]

[al’,ah’] [max(al,bl)
+, ah] when [a > b]

[al’,ah’] [if(al=bl=bh) then al
+ else al,

if(ah=bl=bh) then ah
- else ah] when [a!=b]

Floating-point conversions:
when [r := (float)a]

[rl’,rh’] [maxf((float)al,rl), minf((float)ah,rh)] (direct proj.)

[al’,ah’] [maxd(al,mid(rl,rl
-)), mind(ah,mid(rh,rh

+))] (indirect)

Handling zeros and infinities

Based on an extended arithmetic defined by specific tables:

values of a in 1st indirect projection of [r := a add b]

b \ r -INF -0.0 +0.0 Nv +INF

-INF
Nv,

-INF,0.0
-- -- -- --

-0.0 -INF -0.0 +0.0 Nv +INF

+0.0 -INF -- 0.0 Nv +INF

Nv Nv,-INF -- Nv,0.0 Nv,0.0 Nv,+INF

+INF -- -- -- --
Nv,+INF,

0.0

The Marre&Michel property (Marre and Michel 2010)

X – Y = a

a

d 2d 2d

b

Then, The property says that Y cannot be greater than b

1. We have reformulated and corrected this property ULP-Maximum

a

Filtering by ULP-Maximum

 All the details and correction proofs are in the paper!

2. And we have generalized it to mul and div

Outline

• IEEE-754 and rounding errors

• Constraint solving over the floats

• FPSE and first experimental results

• Conclusions

FPSE: Floating-Point Symbolic Execution

Handles ISO-C computations on Sparc/Solaris/gcc and Intel/WinXP/VisualC++

Programs that strictly conform to IEEE-754
E ::= E add E |E sub E |E mul E |E div E

|E == E |E != E |E > E | E >= E
|(float) E | (double) E | Var | Constants

 Only near-to-even rounding mode, only normalized numbers

 Written in SICStus Prolog (constraint propagation engine, ~10 KLOC)
and C (floating-point projection functions, ~1 KLOC)

/* double-error.c */

int main () {
double x;
float y,z,r;

x=1125899973951488.0;
y = x + 1;
z = x - 1;
r = y - z;
printf("%f\n", r);
}

% 134217728.000000

test24 :-
solveur:init_env(E),
flottant:news([Y,Z,R],float(32),['y','z','r'],E),
flottant:news([X,C,T1,T2],double(64),['x','c','t1','t2'],E),

flottant:affect(const('1125899973951488.0'),X),
flottant:affect(const('1.0'),C),
flottant:affect('+',X,C,T1),
flottant:affect(conv(double(64),float(32)),T1,Y),
flottant:affect('-',X,C,T2),
flottant:affect(conv(double(64),float(32)),T2,Z),
flottant:affect('-',Y,Z,R),
solveur:solve(E),
flottant:fprint([R]).

| ?- test24.
double(64):r in 1.342177280e+08 .. 1.342177280e+08

An example

Selected experimental results (gcc/solaris/sparc)

Programs Expected results Eclipse FPSE

[Goldberg 91]

2.0e-30 + 1.0e30 -1.0e30 -
1.0e-30

single: -1.000000003e-30

double: -1.0e-30

clpr: +0.0, clpq: +10-30

ic: [-1.0e-30, 140737488355328]

single: -1.000000003e-30

double: -1.0e-30

[Goldberg 91]

D == B2 - 4AC

A:=1.22 , B=3.34, D=+0.0

single:

2.2859835624694824

double:

2.2859836065573770

clpr: 2.2859836065573771

clpq :27889/12200=2.285...

ic: [2.2859836065573766,
2.2859839065573771]

single:[2.2859833240509033,
2.2859835624694824]

double: [2.2859836065573766,

2.2859836065573770]

X < 1.0e4,

T1= X +1.0e12,
T1 >1.0e12

single: infeasible path

double: [6.103e-5, 9.999e3]

clpr: (-0.0, 10000.0)

clpq: (0, 10000)

ic: [0.0, 10000.0]

single: infeasible path

double: [6.103e-5, 9.999e3

X > 0,

T1 = X + 1.0e12,

T1 == 1.e12

single:

[1.4012984643248171e-45,
3.2767998046875000e+04]

double:

[4.9406564584124654e-324,
6.1035156250000000e-05]

clpr,clpq : infeasible

ic: infeasible

single:

[1.4012984643248171e-45,

3.2768000000000000e+04]

double:

[4.9406564584124654e-324,

6.1035156250000000e-05]

power.c (X=10, Y = -40)

84 constraints

single: +0.0

double: 1.000000000001e-40

clpr: +0.0, clpq: +10-40

ic: [9.99999e-41, 1.0000000e-40]

single: +0.0

double: 1.000000000001e-40

power.c (X=10, Y = -350)

704 constraints

single: +0.0

double: +0.0

clpr: +0.0, clpq: +10-350

ic: [-4.94065645841247e-324,

+4.94065645841247e-324]

single: +0.0

double: +0.0

[Howden 82]

T1=A*B,X1=T1+2,X1>100,X2=100
-X1,X3=X2-50,X3 > 50.

infeasible clpr,clpq: infeasible

ic: infeasible

infeasible

Experimental results with FPSE

The speedup due to ULP-Maximum does not depend on NbC or NbV!

Symbolic path-oriented test input generation on FP-computations is feasible!

Conclusions

 Testing for detecting rounding errors is important

 CP-based solvers for continuous domains can be tuned for FP
constraints

 Our preliminary experiments with FPSE show that:

1. ULP-Maximum is useful for solving FP constraints

2. Symbolic path-oriented test input generation is feasible
(up to 200 constraints on a path, in a couple of seconds)!

 But, more experiments to compare with SMT-solving are
needed!

Thank you !

