
Testing Deadline Misses for Real-Time Systems
Using Constraint Optimization Techniques

Stefano Di Alesio1 Arnaud Gotlieb1 Shiva Nejati1 Lionel Briand1,2

1Simula Research Laboratory
Oslo, Norway

{stefanod,arnaud,shiva}@simula.no

2SnT Center, University of Luxembourg
Luxembourg

lionel.briand@uni.lu

Abstract—Safety-critical real-time applications are typically
subject to stringent timing constraints which are dictated by the
surrounding physical environments. Specifically, tasks in these
applications need to finish their execution before given deadlines,
otherwise the system is deemed unsafe. It is therefore important
to test real-time systems for deadline misses. In this paper, we
present a strategy for testing real-time applications that aims
at finding test scenarios in which deadline misses become more
likely. We identify such test scenarios by searching the possible
ways that a set of real-time tasks can be executed according to
the scheduling policy of the operating system on which they are
running. We formulate this search problem using a constraint
optimization model that includes (1) a set of constraints capturing
how a given set of tasks with real-time constraints are executed
according to a particular scheduling policy, and (2) a cost function
that estimates how likely the given tasks are to miss their
deadlines. We implement our constraint optimization model in
ILOG SOLVER, apply our model to several examples, and report
on the performance results.

I. INTRODUCTION

In the transport domain, safety-critical real-time applications
need to be thoroughly verified before being used in operational
conditions. Functional testing is usually the preferred validation
technique for these applications and it usually uncovers many
defects at various stages of the software development. Even if
testing an application regarding to its functional behaviors can
detect defects to non-functional properties (e.g., by evaluating
execution time, memory consumption, etc.), computing input
combinations intended to violate non-functional properties is
becoming a standardized way of checking real-time applica-
tions [1], [2].

Many safety critical applications consist of concurrent tasks
that are subject to real-time constraints such as deadlines.
Specifically, these tasks are invoked by external events with
frequent arrival times, causing each task to be executed in
several execution rounds. Each task’s execution must finish
before a specific deadline. This must also guarantee that each
task execution terminates before the next arrival of the event
triggering a subsequent execution of that task. Our objective
is to test real-time safety critical applications for deadline
misses. We do so by finding testing scenarios that maximize the
chances of deadline misses within the system. We refer to this
testing activity as stress testing [3]. Similar to the stress testing
approach of [2], we characterize the stress test scenarios, i.e.,
test cases, by sequences of arrival times of events triggering
different executions of individual tasks.

To stress test the system, the sequences of event arrival times

must be chosen such that the completion times of the tasks’
executions are pushed as close as possible to their deadlines.
Identifying such sequences is complicated as many tasks, with
different priorities, can be triggered within a real-time appli-
cation. Finding stress test cases requires to search the possible
ways that a set of real-time tasks can be executed according
to the scheduling policy of their underlying operating system.
A classification of existing search approaches to solve such
scheduling problems is difficult because of the varied nature of
the software and hardware architecture model (task deadlines,
priorities, platform-specific properties such as the number of
processors, scheduling and memory allocation policy, etc.),
the cost objective functions, and finally the solving strategies
(search heuristics, complete vs incomplete solvers, etc.). Some
existing approaches use constraint solvers to search for feasible
task schedules (e.g., [4]–[6] use constraint solvers for Job shop
scheduling which is a well-known optimization problem). Some
other approaches rely on search-based heuristics (e.g., [2] uses
genetic algorithms to generate stress test cases).

In our approach, the search for stress test cases for deadline
misses is formalized using a constraint optimization model that
includes (1) a set of constraints describing a declarative rep-
resentation of the tasks, their timing constraints and priorities,
and the platform-specific information, and (2) a cost function
that estimates how likely are the given tasks to miss their
deadlines. We specify the arrival times of aperiodic tasks as
scheduling variables in our constraint optimization model. The
goal is, then, to compute values for the scheduling variables
such that: (a) the constraints characterizing execution of tasks
on a real-time platform are satisfied, and (b) the objective
function is optimized (maximized or minimized depending on
the problem).

The real-time platform we are concerned with in this paper
implements a multi-processing fixed-priority preemptive sched-
uler, meaning that the executions of a task can be preempted
by the executions of another task if the latter has a higher
priority than the former. In addition, the presence of multi-
core processors allows for more than one task to be executed
at any given time. We built our constraint optimization model in
the Optimization Programming Language (OPL) [7]. We apply
our model to several examples and report on the performance
results obtained by solving the model using ILOG SOLVER [7],
which is one of the leading Constraint Programming solvers on
the market.

Organization: Sec. II presents a theoretical view of the
problem we address in this paper. Sec. III details our OPL
model for this problem. Sec. IV presents preliminary results
we obtained by using ILOG SOLVER to solve our model for
a number of examples. Sec. V discusses the related work, and
Sec. VI concludes the paper.

II. A THEORETICAL VIEW OF MULTI-PROCESSING
FIXED-PRIORITY PREEMPTIVE SCHEDULING PROBLEM

The key idea of our work is to model properties of tasks
of the System Under Test (SUT) as integer variables, and to
model the scheduler determining the execution of tasks as a set
of constraints among those variables. Therefore, we formalize
the problem addressed in this paper as a constraint optimization
problem, i.e., an Integer Program (IP) over a finite domain,
provided that the following assumptions are satisfied:

1) The scheduler checks the running tasks for (potential)
preemptions at regular and fixed intervals of time (called
time quantum). Each time value in our problem is ex-
pressed as an integer multiple of the time quantum.

2) The interval of time in which the scheduler switches
context between tasks is negligible compared to the time
quantum.

We now present a notation for the abstractions of our
problem, which define variables and constants of our IP. We
will not formally define all the constraints, as their definition
can be easily derived by their OPL implementation reported in
Sec. III.

Observation Interval. Let tq be the maximum number of
time quanta we spend observing the task executions. We define
T = {0, ..., tq − 1} as the set of time quanta during which we
simulate the underlying real-time application.

Tasks. Let J = {j0, j1, . . . jn−1} be a given set of tasks.
Each task j ∈ J has the following real-time properties:
• exec(j): maximum number of executions of j within the

time interval T .
• p(j): priority of j.
• dl(j): deadline of j, i.e., the maximum amount of time by

which j should finish, after the arrival of its trigger.
• max ia(j): maximum inter-arrival time of j, i.e., the

maximum time difference between two successive arrivals
of the event triggering j.

• min dr(j) and max dr(j): respectively minimal and
maximal duration of j.

All of the above properties have fixed values which are given
as the input values in our IP.

Task Executions. Let Ai = {aik | aik is the k-th execution
of ji} be a given set of executions of task ji, and let A =⋃n−1

i=0 Ai be the set of all the task executions. We omit the dou-
ble index from task executions and say A = {a0, a1, . . . am−1}
when the belonging task can be inferred from the context. Each
task execution a ∈ A has the following real-time properties:
• at(a): arrival time of the event triggering a
• dr(a): duration of a
• s(a): start time of a

• e(a): end time of a
• edl(a): deadline of a within the time observation interval.

Note that for each aik, we have edl(aik) = at(aik)+dl(ji)

All of the above properties are variable and regarded as the
output values in our IP:

Task Ordering. Tasks are constrained to be executed in an
order, implying constraints on the start and end time of the
task executions. We consider two kinds of relations defining
the possible orderings among task executions. Both of these
relations are fixed and given, and hence, are treated as input
values of our IP:
• Task Triggering. A task can trigger other tasks upon

completion: this means that if j1 triggers j2, for each
execution round k, we have e(a1k) = at(a2k). Obviously,
the task triggering relation is asymmetric.

• Data Dependency. A task can share some computational
resources with (and thus, depend on) other tasks: this
means that if j1 depends on j2, for each execution k such
that s(a1k) < s(a2k), we have s(a2k) ≥ e(a1k). This is
because j1 locks the shared resource during its execution.
The data dependency relation is symmetric.

Objective Function. We characterize test cases in our work
by the arrival times at(a0) . . . at(am−1) of task executions
a0 . . . am−1. To identify test cases which are more likely to
lead to deadline misses, we are interested in those values
for at(a0) . . . at(am−1) that satisfy the constraints described
in Sec. III and maximize the objective function f defined as
follows:

f =

m−1∑
i=0

max(0,min(1, e(ai)− edl(ai)))

A set of task executions A characterizes a valid schedule
if every task execution terminates before its deadline, i.e.,
∀a ∈ A · e(a) ≤ edl(a). The function f represents the number
of deadline misses among all tasks: if a task execution ai
misses its deadline, we have e(ai) − edl(ai) > 0, and thus
ai contributes for 1 to the value of f . Otherwise, we have
e(ai)− edl(ai) ≤ 0, and thus ai contributes for 0 to the value
of f .

III. OUR OPL MODEL

ILOG CPLEX [7] is a widely known Constraint Program-
ming environment to address various constraint satisfaction and
optimization problems. In our work, we particularly relied on
using Finite Domain (FD) constraint solving capabilities of
ILOG SOLVER. In this section, we describe the OPL model
we designed to solve test case generation for the dead-line miss
problem. As some of the variables and constraints are trivially
defined from their formulation, we intentionally do not describe
all of them, focusing on the description of novel structures and
complex constraints. The full implementation of the OPL model
can be found at [8].

A. Constants

Constants in our model have their values assigned by external
data, as it is common practice in the OPL language. Each

2

constant value, as the number of time quanta tq, the number of
tasks n, and the number of cores c is implemented as a constant
integer. Each quantity relative to a task described in Sec II
is implemented as a constant integer array ranging over the
set J of tasks. Task Triggering and Data Dependency ordering
relations are defined as boolean matrices named triggers and
dependent. The triggers and dependent matrices are defined
as follows:

triggers(ji, jk) =

{
1 if ji triggers jk
0 otherwise

dependent(ji, jk) =

{
1 if ji depends on jk
0 otherwise

Listing 1. Constants
1 / / T : O b s e r v a t i o n i n t e r v a l (r a n g e o f t ime q u a n t a)
2 i n t t q = . . . ;
3 r a n g e T = 0 . . tq−1;
4

5 / / c : Number o f P r o c e s s o r Cores
6 i n t c = . . . ;
7

8 / / n : Number o f t a s k s
9 i n t n = . . . ;

10 r a n g e J = 0 . . n−1;
11

12 /∗ Task C o n s t a n t s ∗ /
13 i n t p r i o r i t y [J] = . . . ;
14 i n t t a s k d e a d l i n e [J] = . . . ;
15 i n t m a x i n t e r a r r i v a l t i m e [J] = . . . ;
16 i n t m i n d u r a t i o n [J] = . . . ;
17 i n t m a x d u r a t i o n [J] = . . . ;
18 i n t t r i g g e r s [J , J] = . . . ;
19 i n t d e p e n d e n t [J , J] = . . . ;
20

21 /∗ Task E x e c u t i o n C o n s t a n t s ∗ /
22 i n t t a s k e x e c u t i o n s [J] = . . . ;
23 {T a s k E x e c u t i o n} A =
24 {<j , k> | j i n J , k i n 0 . . t a s k e x e c u t i o n s [j]−1};
25

26 i n t e s t [a i n A] = 0 ;
27 i n t l s t [a i n A] = t q ;
28 i n t e e t [a i n A] = 0 ;
29 i n t l e t [a i n A] = t q ;

B. Variables

The real-time values related to task executions described in
Sec II are implemented using variable integer arrays ranging
over the set A of task executions. Some variables being defined
by equality constraints, like dr(a) and edl(a) were defined as
variable expressions in order to increase performance. This is
a standard practice in OPL [7]. We also defined two additional
variables to simplify the description of our constraints:
• Active. As known in the literature [5], preemptive schedul-

ing problems can be encoded using a time-table data struc-
ture. Thus, we defined a similar structure named active
as a boolean matrix with m rows, each one corresponding
to a task execution a ∈ A, and tq columns, each one
corresponding to a time quantum. The active matrix is
defined for each task execution a and each time quantum
t < tq as follows:

active(a, t) =

{
1 if a is executing at time t
0 otherwise

• Eligible for Execution. To be able to describe the preemp-
tion constraints in our model, we introduced a variable
named eligible for execution, implemented as an array
ranging over the set A of task executions. Specifically,
eligible for execution(a) represents the time when task
execution a could start assuming an unlimited number
of cores are available, i.e. when the maximum degree of
parallelization is allowed. The time when a task execution
aik is said to be eligible for execution is the latest time
between its arrival time at(aik) and the end time of
its previous execution e(aik−1). We are unaware of any
other related work in task allocation scheduling defining
a similar structure.

Each variable is also defined with a range constraint, cap-
turing its associated finite domain. As known in the literature
[5], [6], bounds for start and end times of task executions are
referred as earliest/latest start/end time.

Listing 2. Variables
1 /∗ Task E x e c u t i o n V a r i a b l e s ∗ /
2 dva r i n t a r r i v a l t i m e [a i n A] i n T ;
3 dva r i n t e l i g i b l e f o r e x e c u t i o n [a i n A] i n e s t [a] . . l s t [a] ;
4 dva r i n t s t a r t [a i n A] i n e s t [a] . . l s t [a] ;
5 dva r i n t end [a i n A] i n e e t [a] . . l e t [a] ;
6 dva r i n t a c t i v e [a i n A, t i n T] i n 0 . . 1 ;
7 dexpr i n t d u r a t i o n [a i n A] = sum (t i n T) a c t i v e [a , t] ;
8 dexpr i n t t a s k e x e c u t i o n d e a d l i n e [a i n A] =
9 minl (a r r i v a l t i m e [a] + t a s k d e a d l i n e [a . t a s k] , t q) ;

10 dexpr i n t d e a d l i n e m i s s [a i n A] =
11 end [a] − t a s k e x e c u t i o n d e a d l i n e [a] ;

C. Well-Formedness Constraints

In addition to range constraints, we add a set of Well
Formedness constraints to our model to capture relations among
the variables which directly follow from the definitions given in
Section II. These constraints may specify the valid range-values
for variables such as the constraints used to define the active
matrix (labeled as wf9-wf12), or they may describe how one
variable is bounded by other variables such as the constraints
used to define s(a) for a task execution a (labeled as wf3-wf4).

Listing 3. Well-Formedness constraints
1 /∗ I . Well−f o r m e d n e s s c o n s t r a i n t s ∗ /
2 f o r a l l (a i n A) {
3

4 i f (p r e v c (A, a) . t a s k == a . t a s k &&
5 sum (a1 i n A) t r i g g e r s [a1 . t a s k , a . t a s k] == 0) {
6 wf1 : a r r i v a l t i m e [p r e v c (A, a)] +
7 t a s k d e a d l i n e [p r e v c (A, a) . t a s k] <=
8 a r r i v a l t i m e [a] ;
9 wf2 : a r r i v a l t i m e [a] <= a r r i v a l t i m e [p r e v c (A, a)] +

10 m a x i n t e r a r r i v a l t i m e [p r e v c (A, a) . t a s k] ;
11 }
12

13 wf3 : e l i g i b l e f o r e x e c u t i o n [a] <= s t a r t [a] ;
14 wf4 : s t a r t [a] <= end [a] ;
15

16 i f (p r e v c (A, a) . t a s k == a . t a s k)
17 wf5 : e l i g i b l e f o r e x e c u t i o n [a] ==
18 maxl (a r r i v a l t i m e [a] , end [p r e v c (A, a)]) ;
19 e l s e
20 wf6 : e l i g i b l e f o r e x e c u t i o n [a] == a r r i v a l t i m e [a] ;
21

22 wf7 : m i n d u r a t i o n [a . t a s k] <= d u r a t i o n [a] ;
23 wf8 : d u r a t i o n [a] <= m a x d u r a t i o n [a . t a s k] ;
24

25 f o r a l l (t i n T) {
26 wf9 : t == s t a r t [a] => a c t i v e [a , t] == 1 ;
27 wf10 : t == end [a] − 1 => a c t i v e [a , t] == 1 ;

3

28 wf11 : t <= s t a r t [a] − 1 => a c t i v e [a , t] == 0 ;
29 wf12 : t >= end [a] => a c t i v e [a , t] == 0 ;
30 }
31 }

D. Temporal Ordering Constraints

Temporal Ordering constraints capture the task triggering
(constraint to2) and data dependence (constraint to3-to4) re-
lations defined in Sec. II. For instance, if task j1 triggers the
execution of task j2, the arrival time of each task execution
a2k is equal to the end time of each task execution a2k. In
addition, the constraint to1 ensures that the start time of each
task execution follows the end time its predecessor.

Listing 4. Temporal Ordering constraints
1 /∗ I I . Temporal O r d e r i n g c o n s t r a i n t s ∗ /
2 f o r a l l (a i n A) {
3

4 f o r a l l (a1 i n A : a1 . t a s k == a . t a s k &&
5 a1 . e x e c u t i o n == a . e x e c u t i o n −1)
6 t o 1 : s t a r t [a] >= end [a1] ;
7

8 f o r a l l (a1 i n A : t r i g g e r s [a . t a s k , a1 . t a s k] == 1)
9 t o 2 : end [a] == a r r i v a l t i m e [a1] ;

10

11 f o r a l l (a1 i n A : d e p e n d e n t [a . t a s k , a1 . t a s k] == 1) {
12 t o 3 : s t a r t [a] ! = s t a r t [a1] ;
13 t o 4 : s t a r t [a] <= s t a r t [a1]−1 => s t a r t [a1] >= end [a] ;
14 }
15 }

E. Multicore Constraint

The multicore constraint ensures that for each time quantum
t the number of executing tasks does not exceed the number
c of available cores. This is done by summing up, for each t,
the values of active(a, t) of all the task executions a.

Listing 5. Multicore constraint
1 /∗ I I I . Mul t i−c o r e C o n s t r a i n t ∗ /
2 f o r a l l (t i n T)
3 mc : sum (a i n A) a c t i v e [a , t] <= c ;

F. Preemptive Scheduling Constraints

As we said in Sec. I, the scheduler modelled by our
constraint program has a priority-based preemptive policy.
The Preemptive Scheduling constraints define such behavior
specifying that each task can potentially be preempted during
each execution (constraint ps1), and that if at a given time
quantum t task execution a1 is running and task execution a0
is not because the platform cores are all busy, then a1 has an
higher priority than a0 (constraint ps2). Due to lack of coupling
between the constraints sets, our model can be tailored to
various applications. For example, this set of constraints can be
replaced by another one defining a different scheduling policy,
e.g., Round Robin. This allows the adaptation of our solution
to various applications.

Listing 6. Preemptive Scheduling constraints
1 /∗ IV . P r e e m p t i v e S c h e d u l i n g C o n s t r a i n t s ∗ /
2 f o r a l l (a i n A)
3 ps1 : end [a] − s t a r t [a] >= d u r a t i o n [a] ;
4

5 f o r a l l (t i n T , a0 i n A, a1 i n A)
6 ps2 : (a c t i v e [a0 , t] == 0 &&
7 a c t i v e [a1 , t] == 1 &&

8 sum (a2 i n A) a c t i v e [a2 , t] == c &&
9 e l i g i b l e f o r e x e c u t i o n [a0] <= t &&

10 end [a0] >= t +1)
11 =>
12 (p r i o r i t y [a1 . t a s k] >= p r i o r i t y [a0 . t a s k]) ;

G. Good CPU Usage Constraints

This set of constraints ensure that the scheduler avoids
unnecessary context-switching between task executions, and
optimizes its resource usage by running tasks which are eligible
for execution as soon as there are free cores. Due to lack of
space, these constraints are not described here, but are available
at [8].

IV. EXPERIENCES

In this section, we provide some initial performance results
by applying ILOG SOLVER to solve our OPL model for a
number of examples. When conducting this study, we had two
main goals. The first goal was to demonstrate correctness of
our constraint model, and our second goal was to evaluate the
performance of our technique when the observation time and
the number of tasks in the system change.

Correctness. Let us consider a set J of three tasks j0, j1 and
j2, with properties shown in Table I, running during an interval
of tq = 10 time quanta on a scheduler with c = 2 cores.

Task j0 Task j1 Task j2
exec(j) 2 2 2
p(j) 100 101 102
dl(j) 3 2 3
max ia(j) 3 2 3
min dr(j) = max dr(j) 3 2 3

Table I
REAL-TIME PROPERTIES OF OUR EXAMPLE TASKS.

The result of our OPL model shows that there are 20 possible
assignments for arrival times of tasks j0, j1, and j2 which
maximize the objective function f described in Sec. II, one of
which is shown in Lst. 7.

Listing 7. One of the solutions for our OPL model
1 a r r i v a l t i m e (a t) : [0 3 2 4 0 3]
2 d u r a t i o n (d r) : [3 3 2 2 3 3]
3 e l i g i b l e f o r e x e c u t i o n (e f e) : [0 7 2 4 0 3]
4 s t a r t (s) : [0 7 2 4 0 3]
5 end (e) : [7 10 4 6 3 6]
6 t a s k e x e c u t i o n d e a d l i n e (e d l) : [3 6 4 6 3 6]
7 d e a d l i n e m i s s : [4 4 0 0 0 0]
8 a c t i v e : [[1 1 0 0 0 0 1 0 0 0]
9 [0 0 0 0 0 0 0 1 1 1]

10 [0 0 1 1 0 0 0 0 0 0]
11 [0 0 0 0 1 1 0 0 0 0]
12 [1 1 1 0 0 0 0 0 0 0]
13 [0 0 0 1 1 1 0 0 0 0]]

Since each task in our example in Table I is exe-
cuted twice, this example includes six task executions i.e.,
a01, a02, a11 . . . a22. The rows of the active matrix correspond
to the task executions (6 task executions), and its columns
correspond to the time quanta (tq = 10). Lst. 8 shows the
active matrix in Lst. 7 annotated with the row and column
labels. The scenario that this matrix shows leads to a deadline
miss for task j0. At t = 2, task j0 has to be preempted because
j2 and j1 have higher priorities and occupy the two existing

4

cores. This task can resume its first round of execution, a01,
only at t = 6, thus missing its deadline at t = 4.

Listing 8. The active matrix for the solution in Lst. 7
1 t = 0 1 2 3 4 5 6 7 8 9
2 a01 [1 1 0 0 0 0 1 0 0 0] 1 s t round j 0
3 a02 [0 0 0 0 0 0 0 1 1 1] 2nd round j 0
4 a11 [0 0 1 1 0 0 0 0 0 0] 1 s t round j 1
5 a12 [0 0 0 0 1 1 0 0 0 0] 2nd round j 1
6 a21 [1 1 1 0 0 0 0 0 0 0] 1 s t round j 2
7 a22 [0 0 0 1 1 1 0 0 0 0] 2nd round j 2

Performance. In order to analyze the performance of our
approach, we created different versions of the example in
Table I by varying the number of tasks, i.e., n. We applied
our OPL model to these different versions and observed the
results by changing the time interval (i.e., the number tq of time
quanta). In our study, we used the CPLEX solver of ILOG. For
each case, we let the solver run for a maximum of 3 hours on
a MacBook Pro geared by a 2.0 GHz Intel Core i7 with 8GB
RAM. In cases where the CPLEX solver did not terminate in
less than 3 hours, we recorded the solving time only for finding
the first optimal solution. Otherwise, we also recorded the time
for finding each individual solution. The results of our study
are shown in (Fig. 1).

Our results (summarized in the three top-graphs and the
bottom-left and bottom-middle graphs) in Fig. 1 show that
increasing tq and n both slow down the solving time, but tq
results in a steeper slow-down than n. The slow-down is higher
when we consider the time required to find all the solutions,
and lower when we consider that for one solution. In addition,
as shown in the bottom-right graph in Fig. 1, CPLEX can
generally find most optimal solutions shortly after the search
starts. However, it often takes a great deal more time for the
search to terminate and to conclude that no more optimal
solutions exist.

V. DISCUSSION AND RELATED WORK

In this section, we discuss the advantages and drawbacks of
our approach compared to the alternative techniques that have
been previously used for analysis of real-time systems. The
techniques for analysis of real-time systems are divided into
two general groups: (1) Approaches based on real-time schedul-
ing theory [9]. These approaches estimate schedulability of a set
of tasks through customized formulas and theorems that often
assume worst case situations only such as worst case execution
times, worst case response times, etc. These approaches are
often too conservative because due to inaccuracies in estimating
worst-case time values, the worst-case situations may never
be realized in practice. Therefore, in general, we cannot rely
on schedulability theory alone when dealing with analysis of
real-time systems. Moreover, extending these theories to multi-
core processors has shown to be a challenge [10], [11]. (2)
Model-based approaches to schedulability analysis. The idea
of this approach is to base the schedulability analysis on a
system model that captures the details and specifics of real-
time tasks. This provides the flexibility to incorporate specific
domain assumptions and a range of possible scenarios, not just
the worst cases [2], [12], [13]. Furthermore, approaches that

fall in this category can deal with multi-core processors as
well [12], [13].

Our work falls into the second group where we create a
constraint model of real-time concurrent applications and use
a constraint optimization tool, i.e., ILOG SOLVER, to analyse
the model. The main difference between our work and other
existing model-based approaches resides in the choice of the
analysis method. Here, we discuss and compare with our work,
i.e., constraint programming (cp), two other techniques that
have been widely used for analysis of real-time concurrent
models: (1) Model checking (mc), in particular, real-time model
checkers, e.g., UPPAAL [14], and (2) Meta-heuristic search,
and in particular, Genetic algorithms (ga) [2].

All approaches to performance engineering and schedulabil-
ity analysis require a model of the time and concurrency aspects
of the system under analysis. The input models for mc are
often a set of parallel state machines augmented with real-time
information. To analyze deadline misses using mc approaches,
the state machines should include some designated error states
chosen in a such a way that the paths leading to these states
represent some deadline-miss scenarios. This allows to reduce
checking deadline misses to checking reachability of error
states in the composition of a set of parallel state machines.
In theory, model checkers are sound and complete in the sense
that they are able to find an error if it exists, and when they
terminate successfully without finding any error, the model is
conclusively error-free. However, in practice, model checkers
may fail to return any conclusive results when the state machine
composition becomes too large to handle.

The mc approaches have been mainly used for verification,
i.e., to check if a given set of real-time tasks satisfy some
property of interest. To adapt mc approaches to checking
different properties of real-time applications, the underlying
state machines may need to be modified so that the question at
hand can be formulated as a reachability query. For example,
in [13], in order to analyze CPU-time usage, an idle state-
machine was added to the set of interacting timed-automata to
keep track of the CPU-time, and the error states were chosen so
that their reachability could lead to violation of the CPU-time
usage limit.

Declarative constraints used in our work, cp, and chromo-
some encodings required in the ga approaches can potentially
be extracted from many existing concurrent behavioral design
models containing real-time information. In particular, in [2],
[12], it is shown that the constraints and the chromosome
encodings can be extracted from standard UML/MARTE mod-
els [15]. In cp and ga approaches, the property to be checked
is captured by a quantitative objective function as opposed to a
boolean reachability property, as in the case of mc. Therefore,
ga and cp approaches are more geared towards optimization
with applications in test-case generation rather than verification.
To adapt these approaches to check other kinds of real-time
properties, it often suffices to change the objective function.
For example, in order to change our approach to perform
CPU usage analysis, we only need to modify the objective
function [12].

5

Figure 1. The performance results of our OPL model with CPLEX

Our approach, cp, differs with the ga approach in two
main respects: (1) We use the complete search method of
ILOG SOLVER in our work, whereas the ga search approach
is incomplete. In other words, in our work, if the search
terminates within the time allotted, the result is guaranteed to
be a global optimal, while in ga, we can never know whether
the search result is a local or a global optimal. (2) In cp,
the choice of the objective function might be limited by the
choice of the solver used for analysis of the constraints. For
example, we cannot use non-integer objective functions with
finite-domain linear solvers, while this limitation does not exist
in ga implementations. In the end, we note that a precise
and thorough comparison of the mc, ga and cp approaches,
and in particular their scalability, requires extensive, large, and
systematic case studies and experiments, and is not within the
scope of this paper.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we provided an approach for generating test
cases that can stress a real-time system to miss its deadlines.
Our solution relies on existing constraint optimization tech-
niques. We described our constraint model in OPL, and used
ILOG CPLEX solver to evaluate our model on a number of
examples. The correctness testing showed that, in general cases,
this approach can effectively lead to the generation of test
cases which are more likely to lead to deadline misses. We
envision that this approach has the potential to be successfully
applied to industrial contexts, providing that the efficiency of
the solving computation is improved. Thus, we plan to replace
the structures used in our OPL model, in particular the active
matrix, with more efficient alternatives. Currently, the size of
this matrix grows proportionally with the size of time quanta
and the number of task executions grow. We plan to implement
this matrix using an array of sequences of intervals of time
quanta instead. Improving the matrix structure can significantly
reduce the search space of our problem, leading to much shorter

solving times.

REFERENCES
[1] N. R. Council, D. Jackson, and M. Thomas, Software for

Dependable Systems: Sufficient Evidence?, 2007.
[2] L. Briand, Y. Labiche, and M. Shousha, “Using genetic algo-

rithms for early schedulability analysis and stress testing in real-
time systems,” Genetic Programming and Evolvable Machines,
vol. 7, no. 2, pp. 145–170, 2006.

[3] B. Beizer, Software testing techniques (2. ed.). Van Nostrand
Reinhold, 1990.

[4] D. Applegate and W. Cook, “A computational study of the job-
shop scheduling problem,” INFORMS Journal on Computing,
vol. 3, no. 2, pp. 149–156, 1991.

[5] C. L. Pape and P. Baptiste, “Resource constraints for preemptive
job-shop scheduling,” Constraints, vol. 3, no. 4, pp. 263–287,
1998.

[6] P.-E. Hladik, H. Cambazard, A.-M. Déplanche, and N. Jussien,
“Solving a real-time allocation problem with constraint program-
ming,” Journal of Systems and Software, vol. 81, no. 1, pp. 132–
149, 2008.

[7] “IBM ILOG CPLEX Optimization Studio Information Center,”
http://publib.boulder.ibm.com/infocenter/cosinfoc/v12r3/index.jsp.

[8] S. Di Alesio, “The deadline-miss constraints in ILOG SOLVER,”
http://home.simula.no/∼stefanod/ilog.pdf.

[9] J. W.-S. Liu, Real-time systems. Prentice Hall, 2000.
[10] M. Bertogna, “Real-time scheduling analysis for multiprocessor

platforms,” Ph.D. dissertation, Scuola Superiore Sant’Annna,
Pisa, 2007.

[11] A. David, J. Illum, K. Larsen, and A. Skou, Model-
Based Framework for Schedulability Analysis Using UPPAAL
4.1. CRC Press, 2010, pp. 93–119. [Online]. Available:
http://www.cs.ru.nl/∼fvaan/PC/chapter.pdf

[12] S. Nejati, S. Di Alesio, M. Sabetzadeh, and L. Briand, “Modeling
and analysis of cpu usage in safety-critical embedded systems to
support stress testing,” Simula Research Laboratory, Tech. Rep.
2010-18, 2011.

[13] M. Mikucionis, K. Larsen, B. Nielsen, J. Illum, A. Skou, S. Palm,
J. Pedersen, and P. Hougaard, “Schedulability analysis using
UPPAAL: Herscehl-Planck case study,” in ISoLA, 2010.

[14] G. Behrmann, A. David, and K. Larsen, “A tutorial on uppaal,” in
SFM-RT 2004. Revised Lectures, ser. Lecture Notes in Computer
Science, M. Bernardo and F. Corradini, Eds., vol. 3185. Springer
Verlag, 2004, pp. 200–237.

[15] “A UML profile for MARTE: Modeling and analysis of real-time
embedded systems,” May 2009.

6

