
Stress Testing of Task Deadlines:
A Constraint Programming Approach

Stefano Di Alesio1,2, Shiva Nejati2, Lionel Briand2, and Arnaud Gotlieb1

1Certus Centre for Software Verification & Validation, Simula Research Laboratory, Norway
{stefano, arnaud}@simula.no

2Interdisciplinary Centre for Reliability, Security and Trust (SnT), University of Luxembourg, Luxembourg
{shiva.nejati, lionel.briand}@uni.lu

Abstract—Safety-critical Real Time Embedded Systems (RT-
ESs) are usually subject to strict timing and performance re-
quirements that must be satisfied for the system to be deemed
safe. In this paper, we use effective search strategies whose goal
is finding worst case scenarios with respect to deadline misses.
Such scenarios can in turn be used to test the target RTES
and ensure that it satisfies its timing requirements even under
worst case conditions. Specifically, we develop an approach based
on Constraint Programming (CP) to automate the generation of
test cases that reveal, or are likely to, task deadline misses. We
evaluate it through a comparison with a state-of-the-art approach
based on Genetic Algorithms (GA). In particular, we compare
CP and GA in five case studies for efficiency, effectiveness, and
scalability. Our experimental results show that, on the largest and
more complex case studies, CP performs significantly better than
GA. Furthermore, CP offers some advantages over GA, such as it
guarantees a complete search when there is sufficient time, and,
being deterministic, it doesn’t rely on parameters that potentially
have a significant effect on the search and therefore need to be
tuned. Hence, we conclude that our results are encouraging and
suggest this is an advantageous approach for stress testing of
RTESs with respect to timing constraints.

Keywords—Real-Time Systems; Stress Testing; Constraint Pro-
gramming

I. INTRODUCTION

Domains such as avionics, automotive and aerospace feature
safety-critical systems, whose failure could result in catas-
trophic consequences. For this reason, the safety-related soft-
ware components of these systems are usually subject to safety
certification to be deemed safe for operation. Among many
different aspects, software safety certification has to take into
account performance requirements specifying constraints on
how the system should react to its environment, and how
it should execute on its hardware platform [1]. Specifically,
widely used safety standards like IEC 61508 and IEC 26262
clearly state the importance of performance analysis for high
Safety Integration Levels. However, safety-critical systems are
progressively relying on real-time embedded software that
features multi-threaded application design, highly configurable
operating systems, and multi-core architectures for computing
platforms [2]. The concurrent nature of embedded software also
entails that the order of external events triggering the systems
tasks is often unpredictable [3]. Such increasing software com-
plexity renders performance analysis and testing increasingly
challenging. This aspect is reflected by the fact that most ex-
isting testing approaches target system functionality rather than

performance, though the degradation in performance can have
more severe consequences than incorrect system responses [4].

In this paper, we focus on a common [5] class of perfor-
mance requirements concerned with tasks that should complete
before a deadline. To satisfy these requirements, it is crucial
to investigate to which extent some tasks are likely to miss
their deadlines during operation. Design analysis techniques
can be used for early verification of performance requirements
in order to mitigate the impact of architectural changes in the
software systems. For this purpose, specific methods for design-
time performance analysis have been proposed [3]. Based on
estimates for tasks execution times, these methods usually esti-
mate the schedulability of a set of tasks through formulas and
theorems from Real-Time Schedulability Theory [6]. However,
such approaches are often too conservative, and as a result the
predicted worst-case scenarios may never happen in practice.
Moreover, extending these theories to multi-core processors has
shown to be a challenge [7]. Another class of methods used
for real-time performance analysis includes model checking
approaches based on state machine models augmented with
timing information. Real-time model checkers are used to prove
reachability properties over such models in a way that paths
leading to certain states represent scenarios in which deadline
are either missed or met [8].

As opposed to early design verification techniques, our
performance analysis approach [9] is more targeted at software
testing. Specifically, our goal is to identify scenarios that
exercise a system in a way that tasks are pushed as close as
possible to their deadlines, possibly missing them. Consistently
with the widely accepted definition [10], we refer to this activity
as stress testing. The goal of the strategy we propose is finding
combinations of system inputs that maximize the likelihood
of task deadline misses. We characterize an input combination
by a sequence of arrival times for aperiodic tasks in the target
software system, and refer to it as stress test case. Finding such
test cases is not trivial, since the set of all possible arrival times
for aperiodic tasks quickly grows as the system size increases.
For this reason, there is the need of search strategies that would
effectively find stress test cases with high chances of deadline
misses. In such cases, performance requirements are usually
formalized with a mathematical function that drives the search
towards optimal solutions. The most recent contribution in this
direction that has been proposed for automated stress test cases
generation is based on meta-heuristics and incomplete search,
namely Genetic Algorithms (GA) [11].



The goal of this paper is to present and compare an
alternative approach based on Constraint Programming to the
problem presented above. For practical use, software testing
has to accommodate time and budget constraints. It is then
essential to investigate the trade-off between the time needed
to generate test cases, and their revealing power for deadline
misses. The choice of CP as an alternative to GA has been
motivated by two main factors. While GA is an incomplete
and randomized search approach that explores only part of the
input space, CP performs a complete and deterministic search
that ensures to find the global optimum upon termination. The
second motivation for choosing CP is the fact that, unlike GA,
CP is deterministic and doesn’t rely on a set of parameters
that have a significant impact on the search and therefore need
to be tuned, such as GA crossover and mutation probabilities,
population size and replacement strategy. Furthermore, CP is
very well supported by both free and commercial tools that also
provide APIs in several programming languages for building
and developing domain-specific tools [12]. This last point is
essential to develop and test any automated approach that aims
at being used on industrial scale.

Contributions of this Paper. We present an approach based
on Constraint Programming to automate the generation of stress
test cases, and systematically evaluate it through a comparison
with a state-of-the-art approach based on Genetic Algorithms.
Specifically, this paper makes the following contributions:

1) We propose a tool-supported, efficient and effective ap-
proach based on CP to generate stress test cases that
maximize the likelihood of task deadline misses.

2) We analyze the performance of this CP approach and
compare it to a proposed GA alternative through a se-
ries of experiments on five industrial case studies. Our
experimental results show that, as the size of the case
studies increases, CP performs significantly better than
GA in terms of quality of test cases and time required
for finding them.

Structure of the Paper. The rest of the paper is organized
as follows. Section II discusses the related work for analyzing
timing properties in RTES, while Section III describes the prob-
lem of investigating deadline misses among concurrent tasks.
Section IV presents our modeling framework and Section V
details how Constraint Programming can be used to support
stress testing of task deadlines. Finally, Section VI details the
experiment set-up and discusses the results, while Section VII
concludes the paper by summarizing the experimental results
and providing some insights on potential future works.

II. RELATED WORK

Testing multi-threaded concurrent software has largely fo-
cused on functional properties rather than on performance re-
quirements [4]. In RTESs, performance properties have mostly
been analyzed by verification approaches, such as Schedulabil-
ity Theory [6] and Model Checking [8], rather than testing. The
field of Performance Engineering extensively relies on profiling
and benchmarking tools to dynamically analyze performance
properties [13]. Such tools, however, are limited to producing
a small number of system executions and require manual
inspection of those executions. These tools are useful for
checking the overall sanity of the system performance, but
cannot replace systematic stress and performance testing.

Over the years, there has been a growing interest to use
model-based approaches to performance testing, especially in
the domains of distributed systems [14], [15]. In our prior
work [9] we proposed a model-based approach to analyze CPU
usage properties. We provided guidelines to extract the required
information from models and formulated such analysis as a
constraint optimization problem. This paper builds upon our
earlier work and, in addition to being focused on generating
stress test cases to break task deadlines, improves it in the
following respects.

1) We have remarkably improved our constraint model to be
able to capture reasonably large case studies. Our earlier
work could handle systems with less than a handful of
tasks only, whereas in this paper, we were able to analyze
case studies with more than 30 tasks.

2) We have devised and implemented heuristics to signifi-
cantly speed up the search process.

3) We evaluated our work by systematically comparing it
with a state-of-the-art Genetic Algorithm (GA) search
strategy [11]. To the best of our knowledge, there has
been no prior empirical experiment comparing CP-based
and GA-based approaches to stress test case generation.

Search-based approaches like GA have previously been
used to support performance testing, especially with respect
to QoS constraints [14] or computational resources consump-
tion [16]. GA have been successfully used to generate test
cases for testing timeliness properties with respect to deadline
misses, showing to be able to run in large systems where Model
Checking approaches weren’t able to run [17]. As for testing
hard real-time properties such as deadline misses, the state-of-
the-art is represented by the work of Briand et al. [11].

CP approaches have been used for schedulability analysis of
real-time tasks subject to deadline constraints such as job-shop
scheduling [18]. However, these approaches are not targeted
to test case generation, such as the generation of worst case
scenarios, and do not handle the specific complexities of RETSs
such as multi-core architectures and preemptive scheduling
policies. Nonetheless, these approaches have inspired us to
consider CP in our previous [19] and current work.

III. PROBLEM DESCRIPTION

Real-Time Embedded Systems (RTESs) are becoming in-
creasingly more complex and critical in many industry sectors.
A main aspect of such complexity is their concurrent architec-
ture that entails that several tasks are triggered and executed
in parallel in ways which are difficult to establish a priori [3].
Moreover, RTESs are often safety critical [2], and thus bound
to meet strict performance requirements. In addition, their
tasks must satisfy execution constraints in terms of dependency
from shared computational resources, triggering of other tasks,
maximum completion time, and execution priority. Given such
complexity, any manual reasoning on RTES properties is very
inefficient, if not infeasible.

Let us consider the system in Figure 1a featuring three tasks,
j0, j1, j2, in increasing priority order and executing once on
a single core platform. j0 and j2 are aperiodic, and there is a
dependency between j0 and j1. More specifically, j0 triggers j1,
i.e., j1 runs upon completion of j0. On the contrary, the arrival
time at0 of j0 and the arrival time at2 of j2 are independent.
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(a) No deadline miss (b) Deadline miss

Figure 1: Impact of changes in the arrival times of tasks with
respect to deadline miss properties

Figures 1a and 1b represent two different execution scenar-
ios of j0, j1 and j2 corresponding to two different values for
at2, the arrival time of j2. In the first scenario in Figure 1a,
at2 occurs before completion of j0. Since j2 has the highest
priority, it preempts j0 upon its arrival at at2. Once j2 finishes,
j0 resumes and triggers j1 after its completion. Finally, j1 runs.
In this scenario, all the tasks j0, j1 and j2 manage to finish
without exceeding their deadlines. That is, all of them meet
their deadline requirements. In contrast, consider the scenario
in Figure 1b where at2 occurs after completion of j0 and while
j1 is executing. Since j2 has the highest priority, it preempts
j1. As shown in the figure, this leads to j1 missing its deadline.

As the above example shows, the arrival times of the
tasks have a great impact on hard real-time properties, and
specifically, on deadline constraints. The arrival times of the
independent tasks depend on the environment and can never
be predicted prior to the execution of the system. The arrival
times may even vary across different system executions. In
order to evaluate deadline miss constraints, we need a strategy
to search all the possible task arrival times. The search has
to be performed in an effective way with the objective of
finding scenarios that break deadline constraints or are close
to breaking them. In our work, we define a stress test case as
a sequence of arrival times for aperiodic tasks that the search
identifies as likely to lead to deadline misses. We capture the
structure of the system, i.e., the tasks, their properties and
their dependencies, as a constraint model. We use a constraint
solver to search for the arrival time sequences that are likely
to lead to deadline misses. To efficiently and effectively drive
the search towards optimal solutions, we have implemented a
search heuristic (Section V-B).

IV. APPROACH OVERVIEW

At a high level, the approach presented here is an adaptation
of our earlier work [9] for deriving test cases exercising the
CPU usage requirements of a RTES running on a multi-
core platform. The approach has been adapted to derive test
cases pushing the systems tasks as close as possible to their
deadlines, and it is depicted in Figure 2. The framework blends
UML modeling to capture the system design and platform, and
automated search to compute stress test cases.

First, the system design and platform are modeled through
sequence diagrams extended with a subset of the UML/MARTE
profile capturing time and concurrency information extracted
from the system specification. The profile features abstractions

Figure 2: Our approach for schedulability risk analysis in RTES

of the computing platform (e.g., the system scheduler with the
scheduling policy and the processing unit) and the software
application (e.g., tasks with their priorities, periods, dependen-
cies, and so on). Such abstractions are needed to enable our
deadline miss analysis, and will be introduced in Section V.
For their mapping to the UML/MARTE profile we refer the
reader to our earlier work [9] as this is not the focus of this
paper.

The analysis of deadline misses is cast as an optimiza-
tion problem over the abstractions represented in the design
model, that therefore represents the input data for the problem.
Specifically, the goal of the optimization problem is finding
arrival times for aperiodic tasks that maximize the likelihood of
system tasks missing their deadlines. To solve this optimization
problem, we propose here an approach based on Constraint
Programming (CP). Each solution of this optimization problem
characterizes a test case that can be used to stress the system,
i.e., to delay the completion of its tasks as much as possible,
potentially missing deadlines.

V. DEADLINE MISSES ANALYSIS

In order to describe our deadline miss analysis, we first
define the necessary abstractions in Section V-A and then
present our CP approach in Section V-B.

A. Timing and Concurrency Abstractions

We define the following timing and concurrency abstrac-
tions:

• Observation Interval. Let T be an integer interval of
length tq, i.e., T := [0, tq − 1], representing the time
interval during which we observe the system behavior. T
is an integer interval, implying that in our analysis time
is discretized. We refer to each time value t ∈ T as a
time quantum. In Figure 1a, T = [0, 9]: this means that
tq = 10, and therefore T includes 10 time quanta.

• Computing Platform. Let c be the number of processor
cores of the computing platform.

• Tasks. Let J be the set of tasks of the system. Each
task j ∈ J has a set of static properties, and a set of
dynamic properties. Each property is represented by an
integer value. In our analysis, we model software tasks
only, as we assume that the OS tasks do not depend on
software tasks. We further assume that OS tasks have
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lower priority than system tasks and can be preempted
at any time, and hence, can be abstracted away in our
work. In Figure 1a, J = {j0, j1, j2}.

• Static Properties of Tasks. This is the set of properties
depending on the system’s design:
◦ priority(j), the priority of task j. For example, in

Figure 1a, priority(j0) = 0 and priority(j2) = 2.
◦ period(j), the period of the task j. Only defined if j is

periodic.
◦ min ia time(j) and max ia time(j), respectively

the minimum and maximum inter-arrival times, i.e.,
the minimum and maximum time separating two ar-
rival times of task j. Only defined if j is aperiodic
since for all periodic task j, min ia time(j) =
max ia time(j) = period(j) holds.

◦ duration(j), the estimated Worst Case Execution Time
(WCET) of task j. In Figure 1a, duration(j0) = 2.

◦ task executions(j), the number of times the task
j is executed within T . We assume it to be equal
to bT/period(j)c for periodic tasks, and equal to
bT/min ia time(j)c for aperiodic tasks. In this way,
each aperiodic task is executed the maximum number
of times possible within T . This is justified by the
objective of our analysis, where we want to find worst-
case scenarios that are more likely to happen when tasks
are executed as many times as possible. For simplicity,
we define the integer set Kj of task executions for the
task j as Kj := [1, task executions(j)]. In Figures 1a
and 1b each task has only one execution.

◦ deadline(j), the time, with respect to its arrival time,
before which j should terminate for the system not to
be in an error state. We assume ∀j ∈ J ·deadline(j) ≤
period(j). In Figure 1a, deadline(j0) = 6.

• Dynamic Properties of Tasks. This is the set of properties
that depend on the runtime behavior of the system:
◦ arrival timek(j), the time when an event notifies

the scheduler that task j should be executed for the
kth time. We say that j arrives for the kth time
at time t iff arrival timek(j) = t. In Figure 1a,
arrival time1(j0) = 1. We assume for each periodic
task j, we have arrival timek(j) = (k−1)·period(j).
The same assumption is made by the Generalized
Completion Time Theorem (GCTT) [3] to ensure that
the analysis considers the worst case where all periodic
tasks simultaneously arrive for the first time at the
beginning of T .

◦ startk(j) and endk(j), respectively the time when
j starts and finishes its kth execution. In Figure 1a,
start1(j0) = 1 and end1(j0) = 5.

◦ active(j, t), a boolean variable that has value 1 if j is
running at time t, and value 0 otherwise. In Figure 1a,
active(j0, 1) = 1 and active(j0, 2) = 0.

◦ task deadlinek(j), the absolute deadline of
the kth execution of j: task deadlinek(j) :=
arrival timek(j) + deadline(j) − 1. In Figure 1a,
task deadline1(j0) = 6.

◦ deadline missk(j), the amount of time
by which j missed its deadline during its
kth execution, i.e., deadline missk(j) :=
endk(j) − task deadlinek(j) − 1. Negative if
endk(j) − 1 < task deadlinek(j), non-negative

otherwise. In Figure 1a, deadline miss1(j0) = −2.
• Relationships between Tasks. Let the following be two

binary relations defined in J × J :
◦ dependent(j1, j2) holds if there exists a computational

resource r such that tasks j1 and j2 access r during
their execution in an exclusive way. This implies that
j1 and j2 cannot be executed in parallel, but one can
execute only after the other has released the lock on the
resource. The relation dependent is defined as reflexive
and symmetric.
◦ triggers(j1, j2) holds if the event triggering the task
j2 occurs when the task j1 finishes its execution,
i.e. ∀k ∈ Kj1 · arrival timek(j2) = endk(j1). In
Figure 1a, triggers(j0, j1) holds. The relation triggers
is irreflexive and antisymmetric.

• Performance Requirement. As explained in Section IV,
the goal of our approach is to find values for the arrival
times of aperiodic tasks that maximize the likelihood of
deadline misses, and hence are more likely to violate
the deadline performance requirements of the system.
We formalized this concept through a function of output
properties whose value captures how arrival times compare
in terms of their likelihood of triggering deadline misses.
Such a function is referred to as objective function in the
context of Constraint Programming, and as fitness function
in the context of Genetic Algorithms. We first identify a
set of characteristics the function should meet:
◦ No deadline miss is overshadowed. In safety-critical

real-time systems even a single deadline miss could lead
the system to a fail state. Thus, a good function should
not allow task executions which meet their deadline to
overshadow deadline misses.
◦ The more deadline misses, the higher the value. In-

tuitively, the function value should take into account
the number of deadline misses among task executions.
Even if a system could recover from a scenario where a
task misses its deadline in a single execution, recovering
from several deadline misses might be harder.
◦ The larger the deadline misses, the higher the value.

Our analysis is based on WCET estimates (duration)
for the system tasks. Such estimates could be over-
pessimistic, and our approach could compute a test case
identifying a deadline miss that will not happen when
actually testing the system. However, the closest to its
deadline a task is in our analysis, the more likely it is
to miss a deadline in a real scenario. Such concept is
captured by the quantity defined as deadline miss: the
larger its value, the closer the task completion time to
its deadline, with possibly the task missing its deadline.
Hence, we expect a good function to prioritize scenarios
where a larger deadline miss is identified.

Having considered the criteria above, we adopted a mod-
ified version of the function defined by Briand et al. [11]:

f(j) =
∑
k∈Kj

2 deadline missk(j) (1)

Note that f is defined for a given task j. An alternative
function which instead takes into account all tasks is given
by the sum of f for each task in the system:

F =
∑
j∈J

f(j) (2)
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Note that the purpose of f(j) is to identify deadline miss
scenarios for a single critical task j, since it has larger
values when large deadline misses occur in j. On the other
hand, F has larger values when more deadline misses
on several tasks occur, aiming at identifying scenarios
stressing the whole system rather than a single task.
Given that we use our case studies for the purpose of
experimental evaluation and comparison, there is no clear
guidance on how to choose a specific target task j for each
case, and hence, we will use F in place of f(j).
As observed before, deadline missk(j) is positive if
task j misses its deadline during its kth execution, and
negative otherwise. This means that large negative values
stand for j ending long before its deadline. On the other
hand, positive values stand for j failing to end before its
deadline, thus missing it. The exponential shape of the
function favors executions with large deadline misses, thus
avoiding them being overshadowed by other executions.

B. Using Constraint Programming to Support Stress Testing

Constraint Programming (CP) is a programming paradigm
where relations among variables are expressed in form of
constraints [20]. Constraint Programming can both be used
to solve satisfiability problems, and Constraint Optimization
problems (COPs), where the goal is to find a solution which
maximizes a given objective function. The latter is usually
solved with branch and bound algorithms that, when combined
with a complete search labeling heuristic over the domains of
variables, compute the global optimum of a COP. Branch-and-
bound algorithms usually iterate over three steps: (1–branch) di-
vide a set of candidate solutions into two or more partitions, (2–
bound) compute bounds for the value of the objective function
in one set of candidate solutions, and (3–prune) possibly discard
sets of candidate solutions that are shown to be sub-optimal or
infeasible. The common representation of a branch and bound
algorithm is a branching tree, since recursively applying the
branch step starting from the whole search space defines a tree
structure whose nodes are the candidate solutions, and whose
edges are the node branches. Branch and bound algorithms
are also supported by search heuristics, i.e., problem-specific
techniques used to speed up the search process, for instance by
specifying the selection policy for the node to branch at each
iteration. Due to its completeness, the search may take time to
complete and hence heuristics are used to shorten the search
time and quicken the convergence towards the global optimum.
Constraint problems are represented in constraint models that
include constant values, variables, constraints, and in case of
COPs an objective function. Solutions for such models are
found by constraint solvers, which implement solving algo-
rithms featuring constraint propagation and domain filtering,
often allowing to specify user-defined search heuristics.

In this paper, we propose a constraint optimization model
implemented in the Optimization Programming Language
(OPL) [21] for the purpose of generating sequences of arrival
times likely to lead to deadline misses. The key idea behind
our work is to model the properties of the system as integer
constants and variables, and to model the scheduler of the sys-
tem as a set of constraints among such variables. The constraint
model consists of a set of constants, a set of variables, a set of
constraints and an objective function. The model is expressed

with the notation presented in Section V-A, and improved with
the addition of a search heuristic. An excerpt of our constraint
model is presented in Listing 1.

1 /∗ Task C o n s t a n t s ∗ /
2 i n t t a s k d e a d l i n e [ J ] = . . . ;
3 i n t t r i g g e r s [ J , J ] = . . . ;
4 /∗ Task E x e c u t i o n V a r i a b l e s ∗ /
5 dva r i n t a r r i v a l t i m e [ j i n J , k i n K[ j ] ] i n T ;
6 dva r i n t end [ j i n J , k i n K[ j ] ] i n T ;
7 /∗ O b j e c t i v e F u n c t i o n ∗ /
8 maximize sum ( j i n J , k i n K[ j ] ) 2 ˆ d e a d l i n e m i s s [ j , k ] ;
9 /∗ I . Well−f o r m e d n e s s c o n s t r a i n t s ∗ /

10 f o r a l l ( j i n J , k i n K[ j ] )
11 wfc : end [ j , k ] >= s t a r t [ j , k ] + d u r a t i o n [ j ] ;
12 /∗ I I . Temporal O r d e r i n g c o n s t r a i n t s ∗ /
13 f o r a l l ( j 1 i n J , k i n K[ j 1 ] , j 2 i n J : t r i g g e r s [ j1 , j 2 ]

== 1)
14 t o c : a r r i v a l t i m e [ j2 , k ] = end [ j1 , k ] ;
15 /∗ I I I . Mul t i−c o r e C o n s t r a i n t ∗ /
16 f o r a l l ( t i n T )
17 mcc : c o u n t ( a l l ( j i n J ) a c t i v e [ j , t ] , 1 ) <= c ;
18 /∗ IV . P r e e m p t i v e S c h e d u l i n g C o n s t r a i n t s ∗ /
19 /∗ V. CPU Usage C o n s t r a i n t s . ∗ /

Listing 1: Excerpt of our constraint model

The constraint model defines 29 constants, 9 variables and
19 constraints. Each of those is instantiated during the solving
process for each task execution. Due to lack of space, we
explicitly report and discuss only some representative constants,
variables and constraints. Full details about the constraint
model are available as a technical report [22].

• Constants. Constants in the model correspond to the Static
Properties of Tasks, plus details about the computing plat-
form and the observation interval. Values for the constants
are based on data defined in an external file, and are the
input values of the constraint model.

• Variables. Variables in the model correspond to the dy-
namic properties of tasks, plus some technical variables
used to simplify the description of the constraints. Values
for the variables are computed by the constraint solver,
and are the output values of the constraint model.

• Constraints. Constraints in the model specify mathemat-
ical relations between variables and constants, and are
divided into five major subsets:

1) Well-Formedness Constraints. These constraints spec-
ify relations among variables directly following from
their definition. For example, the constraint wfc at line
11 of Listing 1 states that the end time for each task is
greater (or equal in case the task is not preempted) to
its start time plus its duration.

2) Temporal Ordering Constraints. These constraints
capture the dependent and triggers relationships be-
tween tasks. For example, the constraint toc at line 14
of Listing 1 states that the arrival time of a task j2
triggered by a task j1 is equal to the end time of j1.

3) Multi-core Constraint. This constraint captures the
specification of the number c of cores of the computing
platform. For example, the constraint mcc at line 17
of Listing 1 specifies that for each time quantum t, no
more than c tasks can be active.

4) Preemptive Scheduling Constraints. These constraints
capture the priority-driven preemptive behavior of the
system scheduler, stating that each task should be
preempted when a higher priority task is ready to be
executed and no cores are available.
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5) CPU Usage Constraints. These constraints ensure the
scheduler avoids unnecessary context switching and ex-
ecutes tasks as soon as enough resources are available.

• Objective Function. The objective function of the con-
straint model is the one defined in Equation (2).

• Search Heuristic. The constraint solver used to solve the
model is augmented with a search heuristic to refine the
branching process of the solving algorithm. The heuristic
specifies that the solver should first try to schedule tasks
with higher priority by choosing the active variables
to branch on by decreasing priority, and then by try-
ing to assign them time values in increasing order. For
example, consider a system where c = 1, j0, j1 ∈
J, priority(j1) > priority(j0). Figure 3a shows the
branching tree in case the solver runs with the default
settings. In the root node, no decision is made and the
active variable is assigned value 0 for each task and
each time quantum. The solver then tries the first variable
assignment in the branch b1. In the first assignment, j0 is
executing at time 0, and j1 is not. This variable assignment
violates the preemptive scheduling constraint, since j1
has higher priority. The solver then prunes the node,
backtracks to the root node, and tries the assignment in
b2, which violates the multi-core constraint since both
j0 and j1 are executing at the same time. Only after
a second backtracking, the solver tries the assignment
in b3 which does not violate any constraint. Consider
now Figure 3b. The solver has been instructed to first
try to branch by assigning value 1 to the task with the
highest priority. In this case, the first branch b1 leads to a
variable assignment not violating the constraints, and no
backtracking is needed.

∀t ∈ T ·
active(j0, t) = 0
active(j1, t) = 0

active(j0, 0) = 1
active(j1, 0) = 0

b1

active(j0, 0) = 1
active(j1, 0) = 1

b2

active(j0, 0) = 0
active(j1, 0) = 1

b3

(a)

∀t ∈ T ·
active(j0, t) = 0
active(j1, t) = 0

active(j0, 0) = 0
active(j1, 0) = 1

b1

(b)

Figure 3: Branch and bound backtracking without (a) and with
(b) search heuristics

It is important to note that the semantics of this heuristic
(highest priority tasks should be scheduled first) is the same as
the semantic of the preemptive scheduling constraint. By using
this concept in the branching process, the solver will be less
likely to assign values for active that violate the preemptive
scheduling constraint, and thus will find solutions faster.

We implemented the search heuristic within a stand-alone
application that solves the constraint model using IBM ILOG
CP OPTIMIZER, one of the leading CP solvers in the market.

VI. EMPIRICAL STUDY

The goal of our empirical study is to compare the overall
performance of GA and CP for the purpose of supporting
stress testing of task deadlines. Recall from Section II that an
approach based on GA [11] was proposed to support stress
testing of task deadlines by searching for worst-case scenarios,

and is therefore a natural comparison baseline. To successfully
enable our empirical study, we slightly modified that GA
approach. Specifically, (1) we added the support for multi-
core platforms, as the original work was meant for analyzing
only software systems running on single-core architectures, and
(2) we replaced the fitness function in Equation (1) with the
one in Equation (2), for the reasons presented in Section V-A.

The comparison is performed on five case studies reported
in the literature, fully described in Section VI-A. The goal
of our study is answering the research questions presented in
Section VI-B based on the metrics and attributes detailed in
Section VI-C. The design of our experiment is described in
Section VI-D, and its results are discussed in Section VI-E.
Finally, Section VI-F covers some potential threats that could
affect the general validity of our conclusions.

A. Case Studies

To investigate the general performance of GA and CP in a
variety of conditions, we selected five case studies from safety-
critical domains with varying size and complexity. Specifically,
our comparison is based on one case study from the aerospace
domain, two case studies from the automotive domain, and
two from the avionics domain. The systems presented in the
following case studies share the most common characteristics
of safety-critical RTES: they are integrated with the physical
domain by interacting with external devices such as sensors and
actuators, they have a concurrent design, and they are subject
to timing requirements ranging in the order of milliseconds.

• Ignition Control System (ICS). Bosch GmbH developed
an ignition control system of an automotive engine [23].
The system features sensors and actuators to sample
physical phenomena such as knock, temperature variation
and engine warm-up, and to perform corrections over them
for a successful ignition of a spark plug in the engine.

• Cruise Control System (CCS). Continental AG devel-
oped a Cruise Control System deployed on AUTOSAR-
compliant architectures [24]. The system features a switch
sensor that acquires driver inputs (e.g., set/cancel cruise,
increase/decrease speed), and a control system that pro-
cesses the inputs and maintains the specified vehicle speed.

• Unmanned Air Vehicle (UAV). The ENSMA together
with the University of Poitiers in France worked on a
joint project for a mini Unmanned Air Vehicle named
AMADO [25]. The system embeds a camera to be able to
follow dynamically defined way-points, and is connected
to a ground station via a wireless modem that allows it to
receive instruction data during a mission.

• Generic Avionics Platform (GAP). The Software Engi-
neering Institute, the Naval Weapons Center and IBM’s
Federal Sector Division designed a specification for a hy-
pothetical avionics software mission control computer of a
military aircraft [26]. Though the system can be configured
to fit several possible missions, the specification is targeted
for the specific case of an air-to-surface attack.

• Herschel-Planck Satellite System (HPSS). The European
Space Agency carried out the Herschel-Planck Mission
consisting the two satellites Herschel and Planck [27].
The satellites have different scientific purposes: Herschel
carries a large infrared telescope, while Planck is a
space observatory for studying the Cosmic Microwave
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Background. The satellites share the same computational
architecture composed of a real-time operating system, a
basic software layer, and application software.

Table I summarizes relevant data from the case studies spec-
ifications, reported in ascending order of size and complexity.
Specifically, we take into account the number of software tasks,
inter-dependencies, triggering relations, and platform cores.

Software System Platform
Tasks Relationships CoresPeriodic Aperiodic Dependencies Triggering

ICS 3 3 3 0 3
CCS 8 3 3 6 2
UAV 12 4 4 0 3
GAP 15 8 6 5 2
HPSS 23 9 5 0 1

Table I: Case studies data

B. Research Questions

The goal of our empirical study is answering the following
research questions involving GA and CP for the purpose of
supporting stress testing of task deadlines.

• RQ1 — Efficiency. Does one search technology find the
best solutions significantly faster than the other?

• RQ2 — Effectiveness. Does one search technology find
significantly better solutions (i.e., solutions with worse
deadline misses) than the other?

• RQ3 — Scalability. To what extent does the size of a
system affect the efficiency and effectiveness of the two
search technologies?

RQ1 and RQ2 are investigated through a set of metrics and
attributes detailed in Section VI-C. The goal of such metrics
and attributes is to provide quantitative evidence to answer
the research questions. RQ3 will instead be only qualitatively
discussed in Section VI-E. This is because we base our analysis
of efficiency and effectiveness on a set of five case studies,
and therefore no quantitative analysis, for example based on
regression analysis, can be carried out.

C. Comparison Metrics and Attributes

Though the search for optimal solutions is driven by func-
tion F defined in Equation 2, we broke down F into several
factors that are of practical interest while investigating worst
case scenarios for deadline misses. This is because, to properly
answer the research questions, one must look into several
complementary aspects of F . For this reason, we defined
the efficiency and effectiveness properties related to RQ1 and
RQ2 as attributes, and we defined a set of metrics to enable
their measurement. Therefore, we compare the performance of
GA and CP by collecting data pertaining to the metrics and
attributes defined below.

The following metrics are defined for a given solution
x found by the search technology Γ ∈ {GA,CP}
during an experiment on the target system Σ ∈
{ICS,CCS,UAV,GAP,HPSS}.

• Computation time t. We define t(x) as the time required
to find solution x, from when the search starts.

• Sum s of time quanta in deadline misses. We de-
fine s(x) as the sum of time quanta in all dead-
line misses of solution x. Recall from Section V
that, for a given solution x, we define s =∑
j,kmax (0, endk(j)− deadline missk(j)). The sum

of time quanta in all deadline misses is strongly related to
the value of the fitness/objective function that guides the
search. In practice, the sum of time quanta in deadline
misses provides some insight on the magnitude of the
identified deadline misses. Since our approach is based
on task execution time estimates, the larger the sum of
deadline misses, the more likely tasks are to miss their
deadlines at runtime.

• Number n of tasks that miss a deadline. We define
n(x) as the number of tasks that miss at least a deadline
in solution x. This number is relevant as, in practice, every
task that misses a deadline has to be looked into and
possibly re-designed. Hence, not realizing a task can miss
its deadline may lead to overlooking an important flaw.

• Number m of task executions that miss a deadline. We
define m(x) as the number of task executions that miss a
deadline in solution x. This number is also of interest as,
in soft real-time systems, one could tolerate less critical
tasks to miss some deadlines, provided that the frequency
of deadline misses is acceptable. Therefore, not estimating
m correctly might lead to inspect a task when unnecessary.

We note how the metrics s, n, and m also capture the
general quality of a solution. Intuitively, higher values for s,
n and m, all correspond in a different way to higher quality
solutions. In other words, solutions with many large deadlines
or many tasks that miss a deadline characterize worst case
scenarios. Therefore, a best solution can only be identified
with respect to a specific metric. For each search technology
Γ running during an experiment on the target system Σ, we
respectively define:

• The best solution x∗s with respect to s as the solution
that has the highest sum s∗ of time quanta in deadline
misses, i.e., s(x∗s) = s∗.

• The best solution x∗n with respect to n as the solution
that has the highest number n∗ of tasks missing at least
one deadline, i.e., n(x∗n) = n∗.

• The best solution x∗m with respect to m as the solution
that has the highest number m∗ of task executions missing
a deadline, i.e., m(x∗m) = m∗.

The following attributes are also defined for each search
technology Γ running during an experiment on the target
system Σ.

• Efficiency η. We define the efficiency η with respect to
a given metric as the time required to compute the best
solution with respect to that metric. Specifically, we define
the efficiency with respect to s, m, and n:

ηs = t(x∗s) ηn = t(x∗n) ηm = t(x∗m)

Our definition of efficiency entails that the more efficient
a technology, the faster it computes its best results with
respect to some metric.

• Effectiveness κ. We define the effectiveness κ with respect
to a given metric as the value of that metric for the best
solution found. Specifically, we define effectiveness with
respect to s, m, and n:
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κs = s∗ κn = n∗ κm = m∗

Our definition of effectiveness entails that the more effec-
tive a technology, the higher with respect to some metric
are the solutions it computes.

D. Experiments Set-Up

To answer RQ1, RQ2, and RQ3, we performed a series of
experiments over the systems described in Section VI-A. The
experimental design is illustrated in Figure 4. Each experiment
consisted of running both search technologies on a target
system for a number of times, each run having the same
duration. Since the purpose of our empirical study is to compare
the practical usefulness of GA and CP, we chose to run each
technology in the way engineers would realistically do so
in a real testing environment. Based on our experience with
industrial partners, we assumed that a reasonable choice would
be running both technologies on a desktop computer for one
hour. To do so, we set up GA to continuously generate new
solutions for one hour, while we set up CP to terminate the
search after one hour. Running both search technologies for the
same amount of time allows us to meaningfully compare their
effectiveness. Furthermore, during the design of the experiment,
we had to consider the inherent randomized behavior of GA
in contrast to the fully deterministic behavior of CP. Indeed,
GA finds solutions starting from a randomly chosen initial
population of individuals by applying crossover and mutation
operators with a given probability, while CP finds solutions
by solving a constraint optimization problem. For this reason,
while we ran CP only once for one hour for each system, we
ran GA 50 times for one hour on each system. In this way,
we could compute distributions of the best solutions recorded
over 50 runs over the efficiency and effectiveness ranges. For
each experiment, we recorded only the 100 solutions with the
highest fitness/objective value found by GA and CP. Since each
solution characterizes a stress test case, 100 is a reasonable
number of stress test cases to run [28]. Since RQ1 and RQ2
are respectively related to attributes η and κ, for each solution
we computed the values of the metrics t, s, n, and m used to
define such attributes. Both GA and CP have been run one at
a time on the same machine, i.e., a desktop computer with a
3.3 Ghz dual-core Intel Core i3 processor and 8GB RAM.

Figure 4: Experimental design

E. Results and Discussion

Table II reports efficiency η with respect to s, n and m for
GA and CP and for each case study. The computation times
for the best solutions are reported in the format mm:ss. Due
to lack of space, we don’t report the full distributions of GA.
Instead, we report a set of statistics that meaningfully represent
the efficiency of GA across runs, specifically:

• The mean computation time x̄ of the best solution
• The three quartiles Q1, Q2, and Q3 of the computation

time of the best solution
• The probability P that GA will achieve a greater or equal

efficiency than CP. P is calculated as the percentage of
runs in which GA had a greater or equal efficiency than
CP, i.e., the percentage of runs in which GA found its best
result before or at the same time as CP found its own.

Being deterministic, the column of CP reports instead the
single computation times of the best solutions.

ηs ηn ηm
GA CP GA CP GA CP

ICS

x̄ 15:23

40:23

x̄ 11:05

40:23

x̄ 11:05

40:23
Q1 09:33 Q1 04:33 Q1 04:33
Q2 14:07 Q2 07:49 Q2 07:49
Q3 18:05 Q3 13:32 Q3 13:32
P 0.98 P 1 P 1

CCS

x̄ 24:42

18:04

x̄ 07:20

18:04

x̄ 07:20

18:04
Q1 15:09 Q1 05:19 Q1 05:19
Q2 22:33 Q2 06:48 Q2 06:48
Q3 30:52 Q3 08:16 Q3 08:16
P 0.36 P 1 P 1

UAV

x̄ 42:01

01:05

x̄ 39:50

00:37

x̄ 39:50

00:37
Q1 33:39 Q1 32:49 Q1 32:49
Q2 38:34 Q2 37:11 Q2 37:11
Q3 53:29 Q3 48:19 Q3 48:19
P 0 P 0 P 0

GAP

x̄ 40:26

22:38

x̄ 21:07

01:38

x̄ 30:03

01:38
Q1 33:00 Q1 06:30 Q1 10:59
Q2 40:32 Q2 12:47 Q2 34:50
Q3 50:22 Q3 34:20 Q3 42:48
P 0.1 P 0 P 0

HPSS

x̄ 20:19

05:56

x̄ 20:19

00:54

x̄ 20:19

00:54
Q1 14:31 Q1 14:31 Q1 14:31
Q2 17:51 Q2 17:51 Q2 17:51
Q3 22:30 Q3 22:30 Q3 22:30
P 0 P 0 P 0

Table II: Experiments results for efficiency η

We observe how, on the two smallest case studies, GA has a
consistently better efficiency than CP. Specifically, in ICS, GA
was able to find on average the best solutions x∗s , x∗n, and x∗m
three or four times faster than CP. We can identify this trend
also in CCS, where we recorded the same efficiency gap with
the exception of ηs, where the efficiency of CP is achieved by
GA by the second quartile. However, for the three largest case
studies, CP is significantly faster than GA at finding the best
results with respect to s, n, and m. The efficiency of CP is
indeed far above the one observed before the third quartile of
GA. With the exception of ηs in GAP, no GA run was faster
at finding its best result than CP.

Table III reports the effectiveness κ with respect to s, n, and
m for GA and CP and for each case study. As for Table II,
the columns of GA report statistics about the distribution of
effectiveness:

• The mean value x̄ of the best solution
• The three quartiles Q1, Q2, and Q3 of the value of the

best solution
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• The probability P that GA will achieve a greater or equal
effectiveness than CP. P is calculated as the percentage
of runs in which GA had a greater or equal effectiveness
than CP, i.e., the percentage of runs in which the best
result found by GA was better than or equal to the best
result found by CP.

The column of CP reports instead the single value of the
best solutions.

κs κn κm

GA CP GA CP GA CP

ICS

x̄ 13.22

19

x̄ 1.3

2

x̄ 1.3

2
Q1 14 Q1 1 Q1 1
Q2 14 Q2 1 Q2 1
Q3 19 Q3 2 Q3 2
P 0.26 P 0.32 P 0.32

CCS

x̄ 12.14

13

x̄ 2

2

x̄ 2

2
Q1 11 Q1 2 Q1 2
Q2 13 Q2 2 Q2 2
Q3 13 Q3 2 Q3 2
P 0.52 P 1 P 1

UAV

x̄ 0.94

3

x̄ 0.74

1

x̄ 0.74

1
Q1 0 Q1 0 Q1 0
Q2 1 Q2 1 Q2 1
Q3 1 Q3 1 Q3 1
P 0.02 P 0.74 P 0.74

GAP

x̄ 19.18

34

x̄ 2.4

3

x̄ 3.06

5
Q1 16 Q1 2 Q1 3
Q2 19 Q2 2 Q2 3
Q3 21 Q3 3 Q3 4
P 0 P 0.4 P 0.02

HPSS

x̄ 0.04

5

x̄ 0.04

1

x̄ 0.04

1
Q1 0 Q1 0 Q1 0
Q2 0 Q2 0 Q2 0
Q3 0 Q3 0 Q3 0
P 0 P 0.04 P 0.04

Table III: Experiments results for effectiveness κ

We observe how, on the two smallest case studies, the
effectiveness of GA is on average similar to the effectiveness
of CP. In ICS, GA reaches by the third quartile the same result
as CP for κs, κn, and κm. In CSS instead, GA reaches by the
second quartile the same result as CP for κs, and does so by the
first quartile for both κn and κm. However in both cases, though
the solutions found by CP are better on average, the efficiency
of GA is superior to the efficiency of CP. This means that there
is a high probability that in few runs GA will find the same
best solutions with respect to s, n, and m as CP. For the three
largest case studies instead, with the exception of UAV for κn
and κm, CP finds significantly better values than GA for s, n,
and m. Specifically, in UAV GA finds on average one deadline
miss of one time quantum, while CP finds one deadline miss
of three time quanta. The difference in κs between GA and CP
increases in GAP and HPSS. In GAP, GA has an average value
of 19 for κs, while CP achieves 34 half of the time. In HPSS,
GA hardly finds any deadline miss, while CP finds one of five
time quanta after a few minutes. These differences in the value
of κs are of practical significance because, as discussed above,
a larger sum of deadline misses indicates scenarios where tasks
are more likely to miss their deadlines at runtime. Furthermore,
for all case studies, no GA run found a better solution than CP.

In light of these results, we conclude that, for the smaller
case studies, GA has proven to be more efficient than CP,
and nearly as effective. On the other hand, for the larger case
studies, CP has proven to be significantly more efficient and
more effective than GA. Our results show that, the larger the
size of the system, the better CP when compared to GA within
the range covered by our case studies.

We conjecture that the reason for this trend stems from the
interaction between the size of the search space of the case
studies and the heuristics used in our CP solution. The size
of the search space is largely determined by the number of
aperiodic tasks executions within the observation time interval.
The case studies where GA is more efficient than CP, i.e., ICS
and CCS, have a smaller search space, and hence, GA is able
to quickly converge towards the best solutions regardless of
its initial population. Therefore, without being augmented with
any heuristics, GA performs reasonably well compared to CP.
On the other hand, in case studies with large search spaces, i.e.,
UAV, GAP, HPSS, GA needs more time to converge towards
its best solution. Thanks to its heuristic, CP is able to find
solutions with a rather high objective value in a few minutes.
Note that the existing efficiency and effectiveness results of CP
are obtained by running it for one hour. Due to this time limit, in
our larger case studies, CP cannot further improve the solutions
that it finds at the very beginning of its search. If CP had been
run for longer time on the larger case studies, we might have
obtained solutions that take much longer to compute and have
higher objective values. Finally, we note that for case studies
with much larger search spaces than our existing case studies,
the CP solution may fail due to not being able to construct the
constraint model in memory.

F. Threats to Validity

We identified three main threats that could affect the general
validity of our conclusions: First, the analysis of efficiency,
effectiveness and scalability is based on a set of five case
studies. Although comparing GA and CP in a larger number
of systems would have mitigated this threat, the case studies
have been selected from different RTES domains and feature
varying size and complexity.

Second, the size of the selected case studies varies from 6
to 32 tasks, 3 to 9 of which aperiodic. There could be much
larger case studies featuring hundreds of tasks, and for those the
efficiency and effectiveness of CP need to be investigated. This
means that the conclusions drawn are valid only for systems in
the same size range of the case studies used in the comparison.

Third, the experiment set-up relies on the choice of running
both technologies for one hour, and on specific parameters
used for GA, such as the initial population size, the crossover
and mutation probabilities, and the population replacement rate.
Different values for these parameters could have led to higher
efficiency and effectiveness. However, we used the same values
as in the work of Briand et al. [11], that have been derived from
the GA literature and specifically tuned for deadline misses
analysis. Moreover, by looking at the quartiles of the efficiency
distributions, GA found its best results significantly earlier than
1 hour. This means that in most cases, GA reached a plateau
before 1 hour, and chances for it to find a better solution if
given more time are likely to be low.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel Constraint Programming
(CP) approach to support stress testing of task deadlines by
identifying worst case scenarios where tasks are more likely to
miss such deadlines. The approach is proposed as an alternative
to the state-of-the-art relying on metaheuristic search, such as
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Genetic Algorithms (GA). CP offers a number of potential ad-
vantages over GA, which makes its investigation worthwhile in
our context: it can potentially guarantee the completeness of the
search provided it has sufficient time, and, being deterministic,
it doesn’t need its users to take into account parameters such
as mutation and crossover probabilities, population size and
replacement rate.

The proposed approach expresses deadline misses analysis
as a Constraint Optimization Problem (COP). The COP is
implemented in a constraint model defined in OPL, and solved
via the IBM ILOG CP OPTIMIZER in a stand-alone tool.
The solutions found by CP can be used to characterize stress
test cases that are crucial for building satisfactory evidence
to demonstrate that no safety risks are posed by potential
task deadline misses. We define the concepts of efficiency and
effectiveness as means to evaluate the overall performance of
our approach in terms of time required to compute the best
solution and the quality of the best solution computed. We
empirically investigate the efficiency and effectiveness of our
approach by performing a series of experiments over five case
studies that compare CP to GA. The results show that, for the
larger and more complex case studies, CP achieves significantly
better efficiency and effectiveness than GA, within the size
range covered. Finally, we note that, similarly to GA, CP can
always provide results within a time budget, even when not
terminating with proof of optimality.

Our approach relies on a number of context factors (Sec-
tion V) which need to be ascertained before CP can be applied
in industry for supporting stress testing of task deadlines.
Although the generalizability of these factors needs to be
further studied, our experience suggests that these factors are
commonplace in many industrial real-time embedded systems.
In the future, we plan to investigate the applicability of CP on
larger case studies to better evaluate its scalability, and perform
further experimentation with hybrid approaches combining
complete and meta-heuristic search strategies.
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