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We present a Constrained Optimization Model
to support Performance Testing in RTES

Industrial Experience: 
Context, Process and Results
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Performance Requirements vs.
Real Time Embedded Systems (RTES)

Supporting Performance Testing:
A novel application for COPs



RTES are typically safety-critical, and thus 
bound to meet strict Performance Requirements
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Our case study is a monitoring application for 
fire/gas leaks detection in offshore platforms

Computing Hardware
(Tri-core Processor)

Real Time Operating System
(VxWorks)

Drivers
(SW-HW Interface)

~100 Drivers * ~5 kLoC

Control Modules
(Application Logic)

~5000 Modules * ~1 kLoC

Human Operators
(Engineers)

External Hardware 
(Sensors + Actuators)

~500 devices

KM: Kongsberg Maritime
FMS: Fire and gas Monitoring System



Stefano Di Alesio - 5/19

Drivers transfer data between external hardware 
(sensors and actuators) and control modules
PullData QueueIOBRBoxIn IOQW IOQR IOBW BoxOut PushData

2.write
3.check

4.read
5.trigger

6.write 7.check

8.read
9.trigger

10.write 11.scan

12.read

External Hardware 
(Sensors + Actuators)

~500 devices

Control Modules
(Application Logic)

~5000 Modules * ~1 kLoC

1.scan

13.send
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PullData

1.scan

QueueIOBRBoxIn IOQW IOQR IOBW BoxOut PushData

2.write
3.check

4.read
5.trigger

6.write 7.check

8.read
9.trigger

10.write 11.scan

12.read
13.send

The FMS drivers have performance requirements on 
task deadlines, response time, and CPU usage

1) No task should miss its deadline

2) Response Time < 1 sec

3) CPU Usage < 20%
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PullData

1.scan

QueueIOBRBoxIn IOQW IOQR IOBW BoxOut PushData

2.write
3.check

4.read
5.trigger

6.write 7.check

8.read
9.trigger

10.write 11.scan

12.read
13.send

Our goal is to identify worst-case scenarios w.r.t. 
deadline misses, response time, and CPU usage

The arrival times of check depend on the buffers 
status, which in turn depends on the environment

The main variable impacting deadline misses, response 
time, and CPU usage, are the arrival times of check
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PullData

1.scan

QueueIOBRBoxIn IOQW IOQR IOBW BoxOut PushData

2.write
3.check

4.read
5.trigger

6.write 7.check

8.read
9.trigger

10.write 11.scan

12.read
13.send

Each worst-case scenario can characterize a test 
case in terms of the arrival times of check 

Therefore, we need a strategy to 
search for the arrival times of check

The check signal can be manipulated during 
testing (e.g. simulating the environment)

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝟏𝟏 = 𝟐𝟐𝟐𝟐𝒎𝒎𝒎𝒎
𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝟐𝟐 = 𝟒𝟒𝟒𝟒𝒎𝒎𝒎𝒎
𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝟑𝟑 = 𝟓𝟓𝟓𝟓𝒎𝒎𝒎𝒎

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅_𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 = 𝑵𝑵/𝑨𝑨
𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓_𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 𝟗𝟗𝟗𝟗𝟗𝟗𝒎𝒎𝒎𝒎
𝒄𝒄𝒄𝒄𝒄𝒄_𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖 = 𝟐𝟐𝟐𝟐𝟐
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Several techniques have been used for solving 
similar problems, but each has its own weaknesses

Verification Testing
Schedulability

Theory
Model 

Checking
Performance 
Engineering

Genetic
Algorithms

Basis Mathematical
Theory

System 
Modeling

Practice and 
Tools

System
Modeling

Background Queuing Theory Fixed-point
Computation

Profiling, 
Benchmarking

Meta-Heuristic 
Search

Key Features Theorems Graph-based, 
Symbolic

Dynamic 
Analysis

Non-Complete 
Search

Weaknesses Assumptions,
Multi-Core

Complex
Modeling

Non 
Systematic

Low 
Effectiveness

SE

CP

Multi-core
Priority
Preemption
Dependency
Triggering

Job-shop schedulability analysis



Constrained Optimization Problem (COP)

Static Properties of Tasks
(Constants)

Dynamic Properties of Tasks
(Variables)

Performance Requirement
(Objective Function)

OS Scheduler Behaviour
(Constraints)

Search Heuristics

OS Scheduler Behaviour
(Labeling Strategy)
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We cast the search for the arrival times of the check
signal leading to worst-case scenarios as a COP

The COP models a multi-core priority-driven preemptive 
scheduler with task triggering and dependencies



• Observation Interval: 𝑻𝑻 = 𝟎𝟎,𝟗𝟗
• Number of cores: 𝒄𝒄 = 𝟐𝟐
• Set of Tasks: 𝑱𝑱 = {𝒋𝒋𝟎𝟎, 𝒋𝒋𝟏𝟏, 𝒋𝒋𝟐𝟐, 𝒋𝒋𝟑𝟑}
• Priority of Tasks: 𝒑𝒑𝒑𝒑 𝒋𝒋𝒊𝒊 = 𝒊𝒊
• Period of Tasks: 𝒑𝒑𝒑𝒑 𝒋𝒋𝟐𝟐 = 𝟓𝟓
• Min/Max Inter-arrival time of Tasks: 
𝒎𝒎𝒎𝒎 𝒋𝒋𝟎𝟎 = 𝟓𝟓,𝒎𝒎𝒎𝒎 𝒋𝒋𝟎𝟎 = 𝟏𝟏𝟏𝟏

• Duration of Tasks: 𝒅𝒅𝒅𝒅 𝒋𝒋𝟎𝟎 = 𝟑𝟑
• Deadline of Tasks: 𝒅𝒅𝒅𝒅 𝒋𝒋𝟎𝟎 = 𝟕𝟕
• Triggering Relation: 𝒕𝒕𝒕𝒕 𝒋𝒋𝟎𝟎, 𝒋𝒋𝟏𝟏
• Dependency Relation: 𝒅𝒅𝒅𝒅(𝒋𝒋𝟏𝟏, 𝒋𝒋𝟐𝟐)
• Number of Periodic Task Executions: 
𝒕𝒕𝒕𝒕 𝒋𝒋 = 𝒕𝒕𝒕𝒕

𝒑𝒑𝒑𝒑 𝒋𝒋
, 𝒕𝒕𝒕𝒕 𝒋𝒋𝟐𝟐 = 𝟏𝟏𝟏𝟏

𝟓𝟓
= 𝟐𝟐
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𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

𝒋𝒋𝟎𝟎 𝒋𝒋𝟏𝟏 𝒋𝒋𝟑𝟑𝒓𝒓𝟏𝟏𝟐𝟐 𝒋𝒋𝟐𝟐

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍

Static Properties depend on the FMS design, 
and are modeled as Constants

Constants
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Time is discretized in our analysis: 
we solve an IP over finite domains



Independent
• Number of Aperiodic Task Exec.:
𝒕𝒕𝒆𝒆 𝒋𝒋 𝝐𝝐 𝒕𝒕𝒕𝒕

𝒎𝒎𝒎𝒎 𝒋𝒋
, 𝒕𝒕𝒕𝒕
𝒎𝒎𝒎𝒎 𝒋𝒋

,
𝒕𝒕𝒆𝒆 𝒋𝒋𝟎𝟎 𝝐𝝐 𝟏𝟏,𝟐𝟐 , 𝒕𝒕𝒕𝒕 𝒋𝒋𝟎𝟎 = 𝟏𝟏

• Arrival time of Aperiodic Task Exec.: 
𝒂𝒂𝒕𝒕 𝒋𝒋,𝒌𝒌 𝝐𝝐 𝑻𝑻, 𝒂𝒂𝒂𝒂 𝒋𝒋𝟎𝟎,𝟎𝟎 = 𝟎𝟎, 𝒂𝒂𝒂𝒂 𝒋𝒋𝟑𝟑,𝟏𝟏 = 𝟕𝟕

• Active time of Task Executions: 
𝒂𝒂𝒂𝒂 𝒋𝒋,𝒌𝒌,𝒑𝒑 𝝐𝝐 𝑻𝑻, 𝒑𝒑 𝝐𝝐 𝟎𝟎,𝒅𝒅𝒅𝒅 𝒋𝒋 − 𝟏𝟏 ,
𝒂𝒂𝒂𝒂 𝒋𝒋𝟎𝟎,𝟎𝟎,𝟎𝟎 = 𝟎𝟎, 𝒂𝒂𝒂𝒂 𝒋𝒋𝟎𝟎,𝟎𝟎,𝟏𝟏 = 𝟐𝟐

Dynamic Properties depend on the FMS runtime 
behavior, and are modeled as Variables (1/2)

Variables

𝒕𝒕𝒕𝒕 and 𝒂𝒂𝒂𝒂 of Periodic Tasks Executions are constants: 

𝒕𝒕𝒕𝒕 𝒋𝒋 =
𝒕𝒕𝒕𝒕

𝒑𝒑𝒑𝒑(𝒋𝒋) , 𝒕𝒕𝒕𝒕 𝒋𝒋𝟐𝟐 =
𝟏𝟏𝟏𝟏
𝟓𝟓 = 𝟐𝟐

𝒂𝒂𝒂𝒂 𝒋𝒋,𝒌𝒌 = 𝒌𝒌 ∗ 𝒑𝒑𝒑𝒑 𝒋𝒋 , 𝒂𝒂𝒂𝒂 𝒋𝒋𝟐𝟐,𝟏𝟏 = 𝟏𝟏 ∗ 𝟓𝟓 = 𝟓𝟓
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𝒋𝒋𝟎𝟎 𝒋𝒋𝟏𝟏 𝒋𝒋𝟑𝟑𝒓𝒓𝟏𝟏𝟐𝟐 𝒋𝒋𝟐𝟐

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍

Quantification over non-ground sets: 

𝑲𝑲 = 𝟎𝟎,𝒎𝒎𝒎𝒎𝒎𝒎
𝒋𝒋

𝒕𝒕𝒕𝒕
𝒎𝒎𝒎𝒎 𝒋𝒋

∀𝒌𝒌 ∈ 𝑲𝑲𝒋𝒋 ⋅ 𝑪𝑪 𝒌𝒌 ↔ ∀𝒌𝒌 ∈ 𝑲𝑲 ⋅ 𝒌𝒌 < 𝒕𝒕𝒕𝒕 𝒋𝒋 → 𝑪𝑪 𝒌𝒌

�
𝒌𝒌∈𝑲𝑲𝒋𝒋

𝑬𝑬(𝒙𝒙) = �
𝒌𝒌∈𝑲𝑲

𝒌𝒌 < 𝒕𝒕𝒕𝒕 𝒋𝒋 ⋅ 𝑬𝑬(𝒙𝒙)

Dependent (1/2)
• Set of Aperiodic Task Executions: 
𝑲𝑲𝒋𝒋 = 𝟎𝟎, 𝒕𝒕𝒕𝒕 𝒋𝒋 − 𝟏𝟏 ,𝑲𝑲𝒋𝒋𝟎𝟎 = [𝟎𝟎]



Dependent (2/2)
• Start/End time of Task Executions: 
𝒔𝒔𝒔𝒔 𝒋𝒋,𝒌𝒌 = 𝒂𝒂𝒂𝒂 𝒋𝒋,𝒌𝒌,𝟎𝟎 , 𝒔𝒔𝒔𝒔 𝒋𝒋𝟎𝟎,𝟎𝟎 = 𝟎𝟎,
𝒆𝒆𝒆𝒆 𝒋𝒋,𝒌𝒌 = 𝒂𝒂𝒂𝒂 𝒋𝒋,𝒌𝒌,𝒅𝒅𝒅𝒅(𝒋𝒋)− 𝟏𝟏 ,
𝒆𝒆𝒆𝒆 𝒋𝒋𝟎𝟎,𝟎𝟎 = 𝟑𝟑

• Preempted time of Task Executions: 
𝒑𝒑𝒑𝒑 𝒋𝒋,𝒌𝒌,𝒑𝒑 = 𝒂𝒂𝒂𝒂 𝒋𝒋,𝒌𝒌,𝒑𝒑 − 𝒂𝒂𝒂𝒂 𝒋𝒋,𝒌𝒌,𝒑𝒑 − 𝟏𝟏 ,
𝒑𝒑𝒑𝒑 𝒋𝒋𝟎𝟎,𝟎𝟎,𝟏𝟏 = 𝟏𝟏, 𝒑𝒑𝒑𝒑 𝒋𝒋𝟎𝟎,𝟎𝟎,𝟐𝟐 = 𝟎𝟎

• Waiting time of Task Executions: 
𝒘𝒘𝒘𝒘 𝒋𝒋,𝒌𝒌 = 𝒔𝒔𝒔𝒔 𝒋𝒋,𝒌𝒌 − 𝒂𝒂𝒂𝒂 𝒋𝒋,𝒌𝒌 ,
𝒘𝒘𝒘𝒘 𝒋𝒋𝟐𝟐,𝟎𝟎 = 𝟎𝟎, 𝒘𝒘𝒘𝒘 𝒋𝒋𝟐𝟐,𝟏𝟏 = 𝟏𝟏

• Deadline of Task Executions:
𝒆𝒆𝒆𝒆 𝒋𝒋,𝒌𝒌 = 𝒂𝒂𝒂𝒂 𝒋𝒋,𝒌𝒌 + 𝒅𝒅𝒅𝒅 𝒋𝒋 , 𝒆𝒆𝒆𝒆 𝒋𝒋𝟎𝟎,𝟎𝟎 =
𝟎𝟎 + 𝟔𝟔 = 𝟔𝟔

• Deadline Miss of Task Executions: 
𝒅𝒅𝒅𝒅 𝒋𝒋,𝒌𝒌 = 𝒆𝒆𝒆𝒆 𝒋𝒋,𝒌𝒌 − 𝒆𝒆𝒆𝒆 𝒋𝒋,𝒌𝒌 ,
𝒅𝒅𝒅𝒅 𝒋𝒋𝟎𝟎,𝟎𝟎 = 𝟑𝟑 − 𝟔𝟔 = −𝟑𝟑

• System Load: 𝒍𝒍𝒍𝒍 𝒕𝒕 =
∑𝒋𝒋,𝒌𝒌,𝒑𝒑 𝒂𝒂𝒂𝒂 𝒋𝒋,𝒌𝒌,𝒑𝒑 = 𝒕𝒕 , 𝒍𝒍𝒍𝒍 𝟎𝟎 = 𝟐𝟐,
𝒍𝒍𝒍𝒍 𝟑𝟑 = 𝟏𝟏

Dynamic Properties depend on the FMS runtime 
behavior, and are modeled as Variables (2/2)

Variables
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• Deadline Misses:

𝑭𝑭𝑫𝑫𝑫𝑫 = �
𝒋𝒋,𝒌𝒌

𝟐𝟐𝒅𝒅𝒅𝒅(𝒋𝒋,𝒌𝒌) ,

𝑭𝑭𝑫𝑫𝑫𝑫 = 𝟐𝟐−𝟑𝟑 + 𝟐𝟐−𝟑𝟑 + 𝟐𝟐−𝟐𝟐 +𝟐𝟐−𝟏𝟏 +𝟐𝟐−𝟏𝟏 + 𝟐𝟐−𝟏𝟏

• Response Time:
𝑭𝑭𝑹𝑹𝑹𝑹 = 𝒎𝒎𝒎𝒎𝒎𝒎

𝒋𝒋,𝒌𝒌
𝒆𝒆𝒆𝒆 𝒋𝒋,𝒌𝒌 −𝒎𝒎𝒊𝒊𝒊𝒊

𝒋𝒋,𝒌𝒌
𝒂𝒂𝒂𝒂 𝒋𝒋,𝒌𝒌 ,

𝑭𝑭𝑹𝑹𝑹𝑹 = 𝟖𝟖 − 𝟎𝟎 = 𝟖𝟖
• CPU Usage:

𝑭𝑭𝑪𝑪𝑪𝑪 =
∑𝒕𝒕 𝒍𝒍𝒍𝒍 𝒕𝒕 > 𝟎𝟎

𝒕𝒕𝒕𝒕 ,𝑭𝑭𝑪𝑪𝑪𝑪 = 𝟎𝟎.𝟗𝟗

The Performance Requirements of the FMS are 
modeled as objective functions to maximize

Objective Function 
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𝑭𝑭𝑫𝑫𝑫𝑫 should properly reward scenarios with deadline misses [1]

[1] L. Briand, Y. Labiche, and M. Shousha, “Using genetic algorithms for early schedulability analysis and stress testing in real-time 
systems”, Genetic Programming and Evolvable Machines, vol. 7 no. 2, pp. 145-170, 2006
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Temporal Ordering
• Triggered tasks arrive when their 
triggering task ends: 

𝒕𝒕𝒕𝒕 𝒋𝒋𝟏𝟏, 𝒋𝒋𝟐𝟐 → 𝒆𝒆𝒆𝒆 𝒋𝒋𝟏𝟏,𝒌𝒌 = 𝒂𝒂𝒂𝒂 𝒋𝒋𝟐𝟐,𝒌𝒌
• Dependent tasks cannot overlap:

𝒅𝒅𝒅𝒅 𝒋𝒋𝟏𝟏, 𝒋𝒋𝟐𝟐 → 𝒆𝒆𝒆𝒆 𝒋𝒋𝟏𝟏,𝒌𝒌𝟏𝟏 < 𝒔𝒔𝒔𝒔 𝒋𝒋𝟐𝟐,𝒌𝒌𝟐𝟐
∨ 𝒆𝒆𝒆𝒆 𝒋𝒋𝟐𝟐,𝒌𝒌𝟐𝟐 < 𝒔𝒔𝒔𝒔 𝒋𝒋𝟏𝟏,𝒌𝒌𝟏𝟏

Well-formedness
• A task cannot start before it has 
arrived: 𝒂𝒂𝒂𝒂 𝒋𝒋,𝒌𝒌 ≤ 𝒔𝒔𝒔𝒔 𝒋𝒋,𝒌𝒌

• A task cannot finish before it has 
completed: 𝒔𝒔𝒔𝒔 𝒋𝒋,𝒌𝒌 + 𝒅𝒅𝒅𝒅 𝒋𝒋 ≤ 𝒆𝒆𝒆𝒆 𝒋𝒋,𝒌𝒌

• Arrival times of aperiodic tasks are 
separated by min/max interarr. times: 

𝒂𝒂𝒂𝒂 𝒋𝒋,𝒌𝒌 − 𝟏𝟏 + 𝒎𝒎𝒎𝒎 𝒋𝒋 ≤ 𝒂𝒂𝒂𝒂 𝒋𝒋,𝒌𝒌
≤ 𝒂𝒂𝒂𝒂 𝒋𝒋,𝒌𝒌 − 𝟏𝟏 + 𝒎𝒎𝒎𝒎 𝒋𝒋

The FMS scheduler is modeled through constraints 
among Static and Dynamic properties (1/2)

Constraints
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Multicore
• The system load is always less than 
or equal to the number of cores: 

𝒍𝒍𝒍𝒍 𝒕𝒕 ≤ 𝒄𝒄

0
1
2
3
4
5
6
7
8
9

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

𝒋𝒋𝟎𝟎 𝒋𝒋𝟏𝟏 𝒋𝒋𝟑𝟑𝒓𝒓𝟏𝟏𝟐𝟐 𝒋𝒋𝟐𝟐

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍



Scheduling Efficiency
• If a task is waiting, then either

• There are no free cores, or
• A dependent task is active, or
• A dependent task is preempted

Priority-Driven Preemption
• If a task is preempted, then there are 
𝒄𝒄 higher priority tasks running

The FMS scheduler is modeled through constraints 
among Static and Dynamic properties (2/2)

Constraints
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𝒑𝒑𝒑𝒑 𝒋𝒋,𝒌𝒌,𝒑𝒑 ⋅ 𝒄𝒄 = �
𝒋𝒋𝟏𝟏: 𝒑𝒑𝒑𝒑 𝒋𝒋𝟏𝟏 >𝒑𝒑𝒑𝒑 𝒋𝒋 , 𝒌𝒌𝟏𝟏, 𝒑𝒑𝟏𝟏

𝒂𝒂𝒂𝒂 𝒋𝒋,𝒌𝒌,𝒑𝒑 − 𝟏𝟏 < 𝒂𝒂𝒂𝒂 𝒋𝒋𝟏𝟏,𝒌𝒌𝟏𝟏,𝒑𝒑𝟏𝟏 < 𝒂𝒂𝒂𝒂(𝒋𝒋,𝒌𝒌,𝒑𝒑)

𝒘𝒘𝒘𝒘 𝒋𝒋,𝒌𝒌 = 𝒉𝒉𝒉𝒉 𝒋𝒋,𝒌𝒌 + 𝒅𝒅𝒅𝒅 𝒋𝒋,𝒌𝒌 + 𝒅𝒅𝒅𝒅(𝒋𝒋,𝒌𝒌)�
𝒉𝒉𝒉𝒉 𝒋𝒋,𝒌𝒌 =
𝒅𝒅𝒅𝒅 𝒋𝒋,𝒌𝒌 =
𝒅𝒅𝒅𝒅 𝒋𝒋,𝒌𝒌 =

Time quanta where 𝒄𝒄 tasks with higher priority are active
Time quanta where tasks depending on j are active
Time quanta where tasks depending on j are preempted
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𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

𝒋𝒋𝟎𝟎 𝒋𝒋𝟏𝟏 𝒋𝒋𝟑𝟑𝒓𝒓𝟏𝟏𝟐𝟐 𝒋𝒋𝟐𝟐

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍

𝒉𝒉𝒉𝒉,𝒅𝒅𝒅𝒅 and 𝒅𝒅𝒅𝒅 are defined as 
sums of boolean variables: 
𝒃𝒃𝒃𝒃 𝒋𝒋,𝒌𝒌, 𝒋𝒋𝟏𝟏,𝒌𝒌𝟏𝟏,𝒑𝒑𝟏𝟏 = 𝒂𝒂𝒂𝒂 𝒋𝒋,𝒌𝒌
≤ 𝒂𝒂𝒂𝒂 𝒋𝒋𝟏𝟏,𝒌𝒌𝟏𝟏,𝒑𝒑𝟏𝟏 < 𝒔𝒔𝒔𝒔(𝒋𝒋,𝒌𝒌)
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Our work originates from the interaction we had with 
Kongsberg Maritime over several months

1. Can the input data of our COP (constants) 
be provided with reasonable effort? [2]

[2] Nejati, S., Di Alesio, S., Sabetzadeh, M., Briand, L.: Modeling and analysis of CPU usage in safety-critical embedded systems to 
support stress testing. In: Model Driven Engineering Languages and Systems, pp. 759–775. Springer (2012)

~25 man-hours

2. Can one use the output data of our 
COP (variables) to derive test cases?

Efficiency: time needed 
to generate test cases

Effectiveness: revealing power 
of worst-case scenarios

COP
Constants

Variables

Objective Function

Constraints
Search Heuristics
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We run our COP model for 5 hours recording every 
incumbent, one run for each objective function 
𝑻𝑻 = 𝟓𝟓𝟓𝟓𝟓𝟓, 𝟏𝟏 𝒕𝒕𝒕𝒕 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏, 𝒄𝒄 = 𝟑𝟑
~600 variables, 1 million constraints 
in IBM ILOG CPLEX CP Solver

1. Worst deadline miss: PushData, by 
10 ms in three executions

2. Highest response time: 1200 ms
3. Highest CPU Usage: 32%



In summary, we showed how Constrained 
Optimization can support Performance Testing

The COP models the System 
Scheduler, Tasks, and Perf. Reqs.

The COP finds arrival times leading to 
worst-case scenarios → test cases

Stefano Di Alesio - 19/19

Questions?

We were able to generate test cases 
violating Perf. Reqs. in few minutes
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