Worst-case Scheduling of Software Tasks
A Constraint Optimization Model to Support Performance Testing

Stefano Di Alesio 12
Shiva Nejati 2
Lionel Briand 2
Arnaud Gotlieb 1

CP 2014
Lyon, 10/09/1914

@ecrtus SIT

Centre for Software Verfication & Validation

securityandtrust.lu

1 Certus Centre for Software V&V 2 Interdisciplinary Centre for Reliability, Security and Trust (SnT)
Simula Research Laboratory University of Luxembourg

Norway Luxembourg

simula - by thinking constantly about it

We present a Constrained Optimization Model
to support Performance Testing in RTES

- ;ig-_-_-ﬂ"»r' Performance Requirements vs.
WS Real Time Embedded Systems (RTES)

— —J | Supporting Performance Testing:
—— =] A novel application for COPs

Industrial Experience:
Context, Process and Results

[.research laboratory | Stefano Di Alesio - 2/19

RTES are typically safety-critical, and thus
bound to meet strict Performance Requirements

5 .research laboratory | Stefano Di Alesio - 3/19

Our case study Is a monitoring application for
fire/gas leaks detection in offshore platforms

% KM: Kongsberg Maritime
FMS: Fire and gas Monitoring System

KONGSBERG

External Hardware
(Sensors + Actuators)

: 4)
Drivers Control Modules
- - - (SW-HW Interface) (Application Logic)
~500 devices = = ‘—[?—' o
|

‘Human Operators | I]_l.] [r_l] > < >
(Engineers) ' ' '

k~100 Drivers * ~5 kLoC) CSOOO Modules * ~1 kLoC)
Real Time Operating System |
- g (VxWorks)

é N

Computing Hardware
L (Tri-core Processor))

J

I .research laboratory | Stefano Di Alesio - 4/19

Drivers transfer data between external hardware
(sensors and actuators) and control modules

PullData | [BoxIn | [IOBR] [[OQW]| |Queue| |IOQR] [IOBW]| |BoxOut||PushData
| | | | | [——1 —
1.s)ca_1n | | | | | |[Control Modules
S | | | | | (Application Logic)
2.write - | | | | ——
A : 3.check : | | |
> r—L .
S.trigger
— [>"9P | | | K=
| 4.read | > I |
: : :6 Write' 7 ChleCk | \~5000 Modules * ~1 kLoC)
: : .ch : |
—L I d N | | € — O.trigger |
External Hardware T
(Sensors + Actuators) | | | 8.read| _
I I | I I10.write!
i i i T N | lscan
dev | | | | | €
| SEEveEsS | | | | ~12.read LH—s>
| | | | | | | | 13.send

.research laboratory |

Stefano Di Alesio - 5/19

The FMS drivers have performance requirements on
task deadlines, response time, and CPU usage

PullData

BoxlIn

|IOBR

I0QW

Queue

IOOR

|IOBW

BoxOut

PushData

l.scan

>

—

2) Response Time < 1 sec

2.Write

3.check
>

(]

3) CPU Usage < 20%

5.trigger

I
I
I
|
1) No task should miss its deadline

| 4.read |

.research laboratory |

'6.write

—>

7.check

| 8.read|

9.trigger
32

Stefano Di Alesio - 6/19

11.scan

—_—

€
12.read Y
13._send

Our goal is to identify worst-case scenarios w.r.t.

deadline misses, response time, and CPU usage
PullData | [BoxIn | [IOBR] [[OQW]| |Queue| |IOQR] [IOBW]| |BoxOut||PushData
| | [[[[[[[
1.S)C€-_ln | The main variable impacting deadline misses, response
I | time, and CPU usage, are the arrival times of check
2.write

The arrival times of check depend on the buffers
status, which in turn depends on the environment

.research

laboratory |

Stefano Di Alesio - 7/19

|
: I | I I
b.trigger
97 | | | | |
SN I I I I
6 writg . |
| ==t igger | |
| | 8.read | —> I
I I I 11 ritel I
| | | | ow Ite| 11.scan
—_—
<€
r12.read >
| | 13.send

Each worst-case scenario can characterize a test

case In terms of t

ne arrival times of check

I6.W t

PullData | [BoxIn | [IOBR] [[OQW]| |Queue| |IOQR] [IOBW]| |BoxOut||PushData
1 SCEIln I I I I I I I
i | | The check signal can be manipulated during
_ | | testing (e.g. simulating the environment)
[2.Wrl checlk | | | | I
I : - I I I
| > 15.trigger | | |
> |
I ead | I I I
I ' I I
I I
I I

Therefore, we need a strategy to
search for the arrival times of check |

I

| check,; = 20 ms
check, = 48 ms

I

I

check; = 50 ms

—

[.research laboratory |

cpu_usage = 25%

deadline_misses = N/A
response_time = 900 ms

Stefano Di Alesio - 8/19

7.check
—>rt .
4 9.trigger
32
ead | —>
I |]_ I |
| | O-write 11.scan
| <
| ri2.read 54—
| | 13.send

Several techniqgues have been used for solving

similar prob

ems, but each has its own weaknesses

Verification Testing
| SE Schedulability Model Performance Genetic
Theory Checking Engineering Algorithms
Basis Mathematical System Practice and System
Theory Modeling Tools Modeling
Background | Queuing Theory Fixed-point Profiling, Meta-Heuristic

Key Features

Weaknesses

ﬁ

[.research laboratory |

Computation

Theorems

Symbolic
Assumptions, Complex
Multi-Core Modeling

Graph-based,

Benchmarking Search

Dynamic Non-Complete
Analysis Search
Non Low
Systematic Effectiveness

Multi-core
Priority

Job-shop schedulability analysis

Preemption

Dependency
Triggering

Stefano Di Alesio - 9/19

The COP models a multi-core priority-driven preemptive
scheduler with task triggering and dependencies

We cast the search for the arrival times of the check
signal leading to worst-case scenarios as a COP

e

Constrained Optimization Problem (COP)

7

Static Properties of Tasks
(Constants)

\

[

Performance Requirement
(Objective Function)

J

(Variables)

rDynamic Properties of Tasks)

Search Heuristics

OS Scheduler Behaviour
(Constraints)

OS Scheduler Behaviour
(Labeling Strategy)

]

J
\ [
\

.research laboratory |

Stefano Di Alesio - 10/19

Static Properties depend on the FMS design,
and are modeled as Constants

Jo J1 P J2 Jj3 Constants

© 0O N o o A WO N B+, O

| | | *Observation Interval: T = [0, 9]

| e Number of cores: ¢ = 2
lock : » Set of Tasks: J = {jo,j1,J2,J3}

 Priority of Tasks: pr(j;) =i

s Period of Tasks: pe(j,) =5
* Min/Max Inter-arrival time of Tasks:
mn(j,) = 5 mx(jy) = 10

I

| e Duration of Tasks: dr(jy) = 3
| *Deadline of Tasks: dl(j,) =7
|

lock
m-g%—>

i

Triggering Relation: tg(j,,j1)
« Dependency Relation: de(j,j,)

« Number of Periodic Task Executions:

te() = |oo5] . teG) = || =2

lock

n

Time is discretized in our analysis:
we solve an IP over finite domains

.research laboratory | Stefano Di Alesio - 11/19

Dynamic Properties depend on the FMS runtime
behavior, and are modeled as Variables (1/2)

Jo

LEY)

J2

J3

Variables

lock

—_—

© 0O N o o A WO N B+, O

lock

m-g%

- F
3

lock

n

i

e
 —

Independent

* Number of Aperiodic Task Exec.:
. tq tq
te(j) € [mm ’
te(jo) €[1,2],te(jo) =1
« Arrival time of Aperiodic Task Exec.:
at(j, k) €T, at(j,,0) =0, ac(jz, 1) =7
* Active time of Task Executions:
ac(j,k,p) €T, p€e[0,dr(j) — 1],
ac(jo,0,0) =0, ac(jy,0,1) =2

Dependent (1/2)
» Set of Aperiodic Task Executions:
I{i== [0, te(i)'— 1],I(j0:: [0]

Quantification over non-ground sets:

te and at of Periodic Tasks Executions are constants:

at(j, k) = k = pe(j),

| tq 10
te@)—{pe—m, teoz>—[5]—z

[.research laboratory |

_ tq
= ["' mix (mncn)]
VkeK;- C(k) & Vke K- (k<te(j))— C(k)

z E(x) = Z(k < te(j)) - E(x)

kEK]' keK

Stefano Di Alesio - 12/19

Dynamic Properties depend on the FMS runtime
behavior, and are modeled as Variables (2/2)

Jo J1 T12 J2 J3
| | | | |
0 | |
lock .
1 | |
- I | |
. | | | |
I 1 1 >I ﬁl
4 lock
| e | — |
| ' |
3 I I lock |
| | : :
£ | |
° | | | |)
| | |

[.research laboratory |

Stefano Di Alesio - 13/19

Variables

Dependent (2/2)

» Start/End time of Task Executions:

st(j, k) = ac(j, k,0), st(j,, 0) =0,
en(j, k) = ac(j, k,dr(j) — 1),
en(jo,,0) =3

* Preempted time of Task Executions:

pm(j, k,p) = ac(j, k,p) —ac(j, k,p — 1),
pm(j,,0,1) =1, pm(jy,0,2) =0

« Waiting time of Task Executions:

wt(j, k) = st(j, k) — at(j, k),
Wt(]z,O) = 0, Wt(iz, 1) =1

*Deadline of Task Executions:

ed(j, k) = at(j, k) + dl(j), ed(jy, 0) =
0+6=6

*Deadline Miss of Task Executions:

dm(j, k) = en(j, k) —ed(j, k),
dm(j,,0) =3 —-6=-3

* System Load: ld(t) =

Yikplac, k,p) =1t), 1d(0) = 2,
1d(3) = 1

The Performance Requirements of the FMS are
modeled as objective functions to maximize

Jo J1 LEY) J2 J3
I I I I I

0 I I

lock .

1 | I

> I | !

3 I I I |
I ' ' > —

4 Iock

N o] e | — |
I ' I

j N | o tock | |
I I : :

8 N |

9 I I I I aI
I I I I I

Objective Function

Deadline Misses:

Fpy = Z 24mGk)
jk
Fpy=23+23+2242"142"142-1

*Response Time:
Fgr = m_%x(en(i, k) - m%'(n(at(i, k),
J J
FRT - 8 - 0 - 8
* CPU Usage:
2. (ld(t) > 0)

Fey = ,Fcy =0.9
cU tq cU

Fpy should properly reward scenarios with deadline misses [1]

[1] L. Briand, Y. Labiche, and M. Shousha, “Using genetic algorithms for early schedulability analysis and stress testing in real-time
systems”, Genetic Programming and Evolvable Machines, vol. 7 no. 2, pp. 145-170, 2006

[.research laboratory |

Stefano Di Alesio - 14/19

The FMS scheduler is modeled through constraints

among Static and Dynamic

Jo J1 LEY) J2 J3
I I I I I
0 I I
lock .
1 | I
> I | !
; | | | .
I ' ' > —
4 lock
N o] e | — |
I ' I
j] | e lock | |
I I : :
2 | |
9 I I I I I
—!
I I I I I

[.research laboratory |

Stefano Di Alesio - 15/19

oroperties (1/2)

Constraints

Well-formedness
* A task cannot start before it has
arrived: at(j, k) < st(j, k)
* A task cannot finish before it has
completed: st(j, k) + dr(j) < en(j, k)
* Arrival times of aperiodic tasks are
separated by min/max interarr. times:
at(j,k — 1) + mn(j) < at(j, k)
<at(j,k—1)+mx(j)

Temporal Ordering
*Triggered tasks arrive when their
triggering task ends:
tg(1.j2) = en(ji, k) = at(j, k)
*Dependent tasks cannot overlap:
de(jy,j2) — en(jy, k1) < st(jz, kz)
V en(iz,kz) < St(il, kl)

Multicore
* The system load is always less than
or equal to the number of cores:
ld(t) <c

The FMS scheduler is modeled through constraints
among Static and Dynamic properties (2/2)

Jo J1 T2 J2 Jj3 Constraints

| | | Priority-Driven Preemption
| o If atask is preempted, then there are
' c higher priority tasks running

lock

' Scheduling Efficiency
| «If a task is waiting, then either

| *There are no free cores, or
I

|

lock
m-g%—>

i

* A dependent task is active, or
* A dependent task is preempted

lock
—

—_—

: ha,da and dp are defined as
| I sums of boolean variables:

| I bL(j, k. j1, k1, p1) = at(j, k)
| | | < ac(jy, k1,p1) <st(, k)

© 0O N o o A WO N B+, O

n

pm(j, k,p) - c = z ac(j,k,p — 1) < ac(jy, k1, p1) < ac(j, k,p)

Ji:pr(jO>pr(), k1, p :
! ! v ha(j, k) = Time quanta where c tasks with higher priority are active

wt(j, k) = ha(j, k) + da(j, k) + dp(j, k)< da(j, k) = Time quanta where tasks depending on j are active
dp(j, k) = Time quanta where tasks depending on j are preempted

| .research laboratory | Stefano Di Alesio - 16/19

Our work originates from the interaction we had with
Kongsberg Maritime over several months

A Effectiveness: revealing power
of worst-case scenarios

Efficiency: time needed
to generate test cases

1. Can the input data of our COP (constants)
be provided with reasonable effort? [2]

~25 man-hours ' >

< |

2. Can one use the output data of our
COP (variables) to derive test cases?

[2] Nejati, S., Di Alesio, S., Sabetzadeh, M., Briand, L.: Modeling and analysis of CPU usage in safety-critical embedded systems to
support stress testing. In: Model Driven Engineering Languages and Systems, pp. 759-775. Springer (2012)

[.research laboratory | Stefano Di Alesio - 17/19

We run our COP model for 5 hours recording every
Incumbent, one run for each objective function

T =500, 1tq = 10ms, c=3 Fom— 55/81 incumb. w/ deadline misses
~600 variables, 1 million constraints _8,
in IBM ILOG CPLEX CP Solver 6
5
1. Worst deadline miss: PushData, by 4 fJ
10 ms in three executions |:> g | time: 00:03:05
2. Highest response time: 1200 ms 1 Fou: 1.691120625
3. Highest CPU Usage: 32% 0
00:00:00 01:48:00 03:36:00 05:24:00

Frr—18/19 incumb. w/ response time > 1s

Fcu— 16/20 incumb. w/ CPU usage > 20%

125 0.35
120 —— 0.3 =
115 /] 025
/ 0o =" time:00:04:46
110 F/) 015 (Fcy: 0.206666667
105 o1 ’
100 [——"time: 00:02:38 '
Frr: 101 0.05
95 : : 0
00:00:00 01:48:00 03:36:00 05:24:00 00:00:00 01:48:00 03:36:00 05:24:00
[.research laboratory | Stefano Di Alesio - 18/19

In summary, we showed how Constrained
Optimization can support Performance Testing

The COP models the System
Scheduler, Tasks, and Perf. Regs.

The COP finds arrival times leading to
worst-case scenarios — test cases

We were able to generate test cases
violating Perf. Regs. in few minutes

Questions?

| .research laboratory | Stefano Di Alesio - 19/19

	Worst-case Scheduling of Software Tasks�A Constraint Optimization Model to Support Performance Testing
	We present a Constrained Optimization Model�to support Performance Testing in RTES
	RTES are typically safety-critical, and thus bound to meet strict Performance Requirements
	Our case study is a monitoring application for fire/gas leaks detection in offshore platforms
	Drivers transfer data between external hardware (sensors and actuators) and control modules
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Several techniques have been used for solving similar problems, but each has its own weaknesses
	We cast the search for the arrival times of the check signal leading to worst-case scenarios as a COP
	Static Properties depend on the FMS design, and are modeled as Constants
	Dynamic Properties depend on the FMS runtime behavior, and are modeled as Variables (1/2)
	Dynamic Properties depend on the FMS runtime behavior, and are modeled as Variables (2/2)
	The Performance Requirements of the FMS are modeled as objective functions to maximize
	The FMS scheduler is modeled through constraints among Static and Dynamic properties (1/2)
	The FMS scheduler is modeled through constraints among Static and Dynamic properties (2/2)
	Our work originates from the interaction we had with Kongsberg Maritime over several months
	We run our COP model for 5 hours recording every incumbent, one run for each objective function
	In summary, we showed how Constrained Optimization can support Performance Testing

