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Tasks in Real Time Embedded Systems (RTES) are often subject to hard deadlines, that constrain how quickly the system
must react to external inputs. These inputs and their timing vary in a large domain depending on the environment state, and
can never be fully predicted prior to system execution. Therefore, approaches for stress testing must be developed to uncover
possible deadline misses of tasks for different input arrival times. In this paper, we describe stress test case generation as a
search problem over the space of task arrival times. Specifically, we search for worst case scenarios maximizing deadline
misses where each scenario characterizes a test case. In order to scale our search to large industrial-size problems, we
combine two state-of-the-art search strategies, namely Genetic Algorithms (GA) and Constraint Programming (CP). Our
experimental results show that, in comparison with GA and CP in isolation, GA+CP achieves nearly the same effectiveness
as CP and the same efficiency and solution diversity as GA, thus combining the advantages of the two strategies. In light of
these results, we conclude that a combined GA+CP approach to stress testing is more likely to scale to large and complex
systems.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging

General Terms: Experimentation, Measurement, Performance, Reliability

Additional Key Words and Phrases: Real-Time Systems, Stress Testing, Task Deadline, Search-Based Software Testing,
Genetic Algorithms, Constraint Programming

ACM Reference Format:
Stefano Di Alesio, Lionel C. Briand, Shiva Nejati and Arnaud Gotlieb. 2015. Combining Genetic Algorithms and Constraint
Programming to Support Stress Testing of Task Deadlines. ACM Trans. Softw. Eng. Methodol. V, N, Article A (January
YYYY), 34 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Domains such as avionics, automotive and aerospace feature safety-critical systems, whose failure
could result in catastrophic consequences. For this reason, the safety-related software components
of these systems are usually subject to safety certification to be deemed safe for operation. Among
many different aspects, software safety certification has to take into account performance require-
ments specifying constraints on how the system should react to its environment, and how it should
execute on its hardware platform. Specifically, widely used safety standards like IEC 61508 and IEC
26262 clearly state the importance of performance analysis for high Safety Integrity Levels [Brown
2000]. However, safety-critical systems are progressively relying on real-time embedded software
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that features multi-threaded application design, highly configurable operating systems, and multi-
core architectures for computing platforms [Kopetz 2011]. The concurrent nature of the operating
environment also entails that the order of external events triggering the system tasks is often un-
predictable [Gomaa 2006]. Such complexity in system architecture, concurrency, and environment
renders performance analysis and testing increasingly challenging. This aspect is reflected by the
fact that most existing testing approaches target only the system functionality, though the degrada-
tion in performance can have more severe consequences than incorrect system responses [Weyuker
and Vokolos 2000].

In this paper, we focus on a common [Sprunt et al. 1989] class of performance requirements
concerned with tasks that should complete before a deadline. To satisfy these requirements, it is
crucial to investigate to which extent some tasks are likely to miss their deadlines during operation.
Design analysis approaches can be used for early verification of performance requirements in order
to mitigate the impact of architectural changes in the software systems. For this purpose, specific
methods for design-time performance analysis have been proposed [Gomaa 2006]. Based on esti-
mates for task execution times, these methods are mostly used to assess the task schedulability at
design time through formulas and theorems from Real-Time Scheduling Theory [Tindell and Clark
1994]. However, in practice, engineers are also interested in near deadline misses, as this analysis
is based on estimated execution times. Moreover, extending these theories to multi-core processors
has been shown to be a challenge [David et al. 2010]. Another class of methods used for real-time
performance analysis includes Model Checking approaches based on state machine models aug-
mented with timing information. Real-time model checkers, when provided with sufficient time to
terminate, either report that all deadlines are met, or generate counterexamples identifying scenarios
revealing deadline misses [Alur et al. 1990]. However, since model checkers are not geared toward
optimization, they are not able to identify worst-case scenarios representing near deadline misses,
where the nearness cannot be estimated a priori.

To complement design verification, our performance analysis approach [Nejati et al. 2012] is tar-
geted at software testing. Indeed, note that formal verification is in general complimentary to testing.
In large and complex systems, it is hard to build models at the level of detail Model Checking needs
to meaningfully verify a specification. On the other hand, testing a system can only prove the pres-
ence of faults, but can never prove their absence. Ideally, formal verification and testing should both
be used when verifying safety-critical systems, since the two fill different roles. Specifically, the
goal of our approach is to identify worst-case scenarios that exercise a system in a way that tasks
are pushed as close as possible to their deadlines, and may possibly miss them. Consistent with the
widely accepted definition [Beizer 2002], we refer to this activity as stress testing. The goal of the
strategy we propose is finding combinations of system inputs that maximize the likelihood of task
deadline misses. We characterize an input combination by a sequence of arrival times for aperiodic
tasks in the target software system, and refer to it as stress test case. Finding such test cases is not
trivial, since the set of all possible arrival times for aperiodic tasks quickly grows as the system
size increases. For this reason, search strategies are needed to effectively find stress test cases with
high chances of deadline misses. In such cases, performance requirements are usually formalized
with a mathematical function that drives the search towards optimal solutions, where each solution
represents one test case. The most recent contributions in this direction that have been proposed for
automated stress test case generation are based on meta-heuristics and incomplete search, namely
Genetic Algorithms (GA) [Briand et al. 2006], and on complete search using Constraint Program-
ming (CP) [Di Alesio et al. 2013; Di Alesio et al. 2014]1.

For practical use, software testing has to accommodate time and budget constraints: it is then
essential to investigate the trade-off between the time needed to generate stress test cases, and their
power for revealing deadline misses. In our previous work [Di Alesio et al. 2013], we analyzed such
tradeoffs for GA and CP through a series of experiments, and observed in some cases an opposing

1 Note that, when confusion with the meta-heuristics and the programming paradigm can not arise, we refer to these GA-
based and CP-based strategies simply as GA and CP.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



Combining Genetic Algorithms and Constraint Programming to Support Stress Testing A:3

trend. Specifically, GA was more efficient, i.e., faster in generating test cases, while CP was more
effective, i.e., it generated test cases that were more likely to reveal deadline misses. In practice,
it is also important to evaluate to what extent the test cases generated by an approach exercise
different aspects of the system under test. This concept is commonly known as test coverage, and is
an important metric to assess the quality of a test suite [Myers et al. 2011]. Investigating this aspect,
we noticed in our previous experiments that GA generated a large number of test cases that were also
highly diverse, i.e., they had a higher variety in terms of (1) time span and (2) preemptions between
task executions, and (3) number of aperiodic tasks executions. On the other hand, CP generated
fewer solutions which were mostly redundant. At a high level of abstraction, GA provided more
coverage than CP due to the higher diversity in the test cases generated.

Therefore, the goal of this paper is to present and compare an approach (GA+CP), based on the
combined use of Genetic Algorithms and Constraint Programming, holding both the efficiency and
solution diversity of GA and the effectiveness of CP. The choice of combining the two search strate-
gies has been motivated by the analysis of the results of our previous experiments. Specifically,
we looked into the possibility of further improving the solutions computed by GA by performing
a complete search with CP in their neighborhood. In this way, GA+CP takes advantage of the effi-
ciency of GA, because solutions are initially computed with GA, and the subsequent CP search is
likely to terminate in a short time since it focuses on the neighborhood of a solution, rather than on
the entire search space. GA+CP also takes advantage of the diversity of the solutions found by GA,
because CP performs a local search in subspaces defined by GA solutions. Similarly, GA+CP takes
advantage of the effectiveness of CP since, once GA has found a solution, CP further improves it
by either finding the best solution within the neighborhood, or proving upon termination that no
better solution exists. Even though several other search strategies could have been considered, our
previous experimental results [Di Alesio et al. 2013] motivated us to combine metaheuristics and
constraint programming, which are based on different principles that offer distinct practical advan-
tages. Given the existing work in the field of stress testing, GA has proven to be the best candidate
for the class of meta-heuristic search strategies.

Contributions of this Paper. We present an approach that combines Genetic Algorithms and
Constraint Programming to automate the generation of stress test cases, and systematically eval-
uate it through a comparison with state-of-the-art approaches based on Genetic Algorithms and
Constraint Programming. Specifically, this paper makes the following contributions:

(1) We propose a tool-supported, efficient and effective approach that combines GA and CP
(GA+CP) to generate stress test cases that maximize the likelihood of task deadline misses.

(2) We analyze the performance of GA+CP and compare it to the existing GA and CP alternatives
through a series of experiments on five subject systems from safety-critical domains. Our exper-
imental results show that GA+CP performs significantly better than both GA and CP in terms of
quality of test cases and time required for finding them. Specifically, GA+CP achieves the same
effectiveness as CP and practically the same efficiency and solution diversity as GA, thus com-
bining the strengths of the two individual strategies. These results suggest that GA+CP is thus
more likely than GA and CP in isolation to successfully scale to large industrial-scale systems.

Structure of the Paper. The rest of the paper is organized as follows. Section 2 describes the
problem of investigating deadline misses among concurrent tasks, while Section 3 discusses the
related work for analyzing timing properties in RTES. Section 4 presents our approach to generate
stress test cases and Section 5 details how Genetic Algorithms and Constraint Programming can be
combined to support stress testing of task deadlines. Finally, Section 6 details the experiment set-up
and discusses the results, while Section 7 concludes the paper by summarizing the experimental
results and providing some insights on potential future works.

2. PROBLEM DESCRIPTION

Real-Time Embedded Systems (RTES) are becoming increasingly more complex and critical in
many industry sectors. A main aspect of such complexity is their concurrent architecture that entails
that several tasks are triggered and executed in parallel in ways which are difficult to establish
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a priori [Gomaa 2006]. Moreover, RTES are often safety critical, and thus bound to meet strict
performance requirements [Kopetz 2011]. In addition, their tasks must satisfy execution constraints
with respect to dependencies such as shared computational resources, triggering of other tasks,
maximum completion time, and execution priority. Given such complexity, any manual reasoning
on RTES properties is very inefficient, if not infeasible.

Let us consider the system in Figure 1.1 featuring three tasks, j0, j1, j2, in increasing priority or-
der and executing once on a single core platform. j0 and j2 are aperiodic, and there is a dependency
between j0 and j1. Specifically, j0 triggers j1, i.e., j1 runs upon completion of j0. On the contrary,
the arrival time at0 of j0 and the arrival time at2 of j2 are independent. In the example, time is dis-
cretized in ten time quanta, and the durations of tasks are expressed as multiples of a time quantum.
Specifically, j0, j1, and j2 have a duration of respectively 2, 3, and 2 time quanta. The three tasks
have to complete before their respective deadlines dl0, dl1, and dl2, which are static and specified
with respect to the task arrival times. In the example system, j0, j1, and j2 have to respectively
finish their execution 6, 4, and 3 time quanta after their arrival. Note that, in RTES, task deadlines
are usually fixed prior to execution and specified in the system requirements. For periodic tasks, the
deadline is usually equal to the period, to avoid consecutive executions of the same task to stack
without terminating. For aperiodic tasks, the deadline usually depends on considerations about the
system domain. This is because aperiodic tasks correspond to external triggers that often represent
alarm signals. To be deemed safe, the system has to react to these triggers within a given amount
of time, which is specified by task deadlines. Also note that, in this example, the task deadlines are
inversely proportional to their priority. This is common in RTES, since higher priority tasks usually
implement critical functionalities that have to be completed within short time [Audsley et al. 1991].

(1) No deadline miss (2) Deadline miss

Fig. 1: Impact of changes in the arrival times of tasks with respect to deadline miss properties

Figure 1 reports two different execution scenarios of j0, j1 and j2 corresponding to two different
values for at2, the arrival time of j2. In the first scenario in Figure 1.1, at2 occurs before completion
of j0. Since j2 has the highest priority, it preempts j0 upon its arrival at at2. Once j2 finishes, j0
resumes and triggers j1 after its completion. Finally, j1 runs. In this scenario, all the tasks j0, j1
and j2 manage to finish without exceeding their deadlines. That is, all of them meet their deadline
requirements. In contrast, consider the scenario in Figure 1.2 where at2 occurs after completion of
j0 and while j1 is executing. Since j2 has the highest priority, it preempts j1. As shown in the figure,
this leads to j1 missing its deadline.
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As the prior example shows, the arrival times of the tasks have a great impact on hard real-
time properties, and specifically, on deadline constraints. The arrival times of the independent tasks
depend on the environment, which may evolve over time, and cannot always be fully predictable
prior to the execution of the system. In order to evaluate deadline miss constraints, we need a strategy
to search for all the possible task arrival times. The search has to be performed in an effective way
with the objective of finding scenarios that break deadline constraints or are close to breaking them.
In our work, we refer to these scenarios as worst-case scenarios with respect to task deadlines, and
we define a stress test case as a sequence of arrival times for aperiodic tasks that the search identifies
as likely to lead to deadline misses. Note that each stress test case represents a single worst-case
scenario with respect to task deadlines, and, to search for these worst-case scenarios, we consider the
duration of each task as its Worst-Case Execution Time (WCET). This is common when analyzing
task real-time properties in the worst case [Gomaa 2006]. To efficiently and effectively drive the
search towards such worst-case scenarios, we have implemented a search strategy (Section 5.2),
based on a combination of two existing approaches based on Genetic Algorithms [Briand et al.
2006] and Constraint Programming [Di Alesio et al. 2013].

3. RELATED WORK

Testing multi-threaded concurrent software has largely focused on functional properties rather than
on performance requirements [Weyuker and Vokolos 2000]. In RTES, performance properties have
mostly been studied through verification approaches, such as Schedulability Theory [Tindell and
Clark 1994] and Model Checking [Alur et al. 1990], rather than testing. Even though our approach
can also be used for design-time verification, the focus of this paper is stress testing, intended as
the generation of scenarios that are likely to break task deadlines. For this reason, Schedulability
Theory and Model Checking are not comparable to our work as they are not meant to generate sce-
narios, but rather to assess whether a system model meets its specification. Specifically, theorems
from Schedulability Theory are limited to providing sufficient or necessary conditions for a set
of tasks to be schedulable [Baker 2006]. Model Checking approaches instead analyze time-related
properties, such as task deadlines and resource usage, by proving reachability properties in state ma-
chines [David et al. 2010]. When these properties do not hold, such approaches are able to provide
counter-examples similar to the scenarios that are the focus of our study. However, Model Check-
ing faces limitations when it comes to generating worst-case scenarios with respect to time-related
properties such as task deadlines. First, Model Checking requires complex formal modeling of the
system, which often leads to the well-known state explosion problem that has not been solved in the
general case [Clarke et al. 2012]. Second, upon termination, Model Checking approaches generate
counterexamples that represent violations of real-time properties. In practice, engineers are also in-
terested in deadline near-misses, i.e., scenarios where tasks are predicted to be close to missing a
deadline by a certain amount of time (nearness). Such scenarios provide engineers with valuable
insights into the robustness of their systems. Model checkers are not geared towards optimization,
and hence require additional effort to identify worst-case scenarios representing these deadline near-
misses. In particular, to generate counterexamples with near-misses, the nearness would have to be
quantified a priori. Some recent advancements (e.g., the Ptolemy project2) attempt to adapt model
checkers to provide a measure of fitness, as opposed to a proof of correctness [Henzinger 2013].
However, the overall scalability of model checkers to large realistic real-time systems is still un-
known.

Recall from Section 2 that, in this paper, we consider the problem of identifying worst-case
scenarios with respect to task deadlines. Note that this is a different problem from identifying task
Worst-Case Execution Times (WCET). Indeed, a task WCET is defined as the maximum time that
tasks are executing, and hence keep the CPU busy [Wilhelm et al. 2008]. This definition does not
take into account the time during which a task is preempted by other tasks or during which it is
blocked waiting for computational resources, because in these cases the task in not using the CPU.

2 http://ptolemy.eecs.berkeley.edu/
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However, estimating the task WCET is a prerequisite for the successful application of our test case
generation approach, because in our deadline misses analysis (Section 5) we assume the duration of
each task to be equal to its WCET.

In industrial contexts, the problem of ensuring that system tasks meet their deadlines is mostly
studied by Performance Engineering techniques, which extensively rely on profiling and bench-
marking tools to dynamically analyze performance properties [Jain 2008]. Such tools, however, are
limited to producing a small number of system executions and require manual inspection of those
executions. In general, these tools provide only a rough assessment of system performance, and
cannot replace systematic stress and performance testing. Recently, there has been an attempt at
automating stress testing through the use of PID controllers [Bayan and Cangussu 2008]. These
controllers implement feedback control loops that dynamically adjust the system inputs in order to
maximize resources consumption. However, in such an approach, the controllers closely depend on
the target system implementation to analyze inputs and outputs.

Over the years, there has been a growing interest in using model-based approaches for perfor-
mance testing, especially in the domains of distributed systems [Del Grosso et al. 2005; Shams
et al. 2006; Barna et al. 2011]. In our prior work [Nejati et al. 2012] we proposed a model-based ap-
proach to analyze CPU usage properties. We provided guidelines to extract the required information
from models and formulated such analysis as a constraint optimization problem. Then, we focused
on the problem of generating stress test cases to break task deadlines [Di Alesio et al. 2012], and
improved our constraint model by devising and implementing heuristics to significantly speed up
the search process [Di Alesio et al. 2013]. We evaluated our constraint program by systematically
comparing it with a state-of-the-art Genetic Algorithm (GA) search strategy [Briand et al. 2006],
and then refined it by improving its data structures [Di Alesio et al. 2014]. This paper builds upon
our earlier work, improving it in the following respects.

(1) We have devised and implemented a combined approach, namely GA+CP, to generate stress test
cases that are likely to reveal task deadline misses in such a way as to benefit from the strengths
of each individual search strategy. To the best of our knowledge, there has been no prior attempt
at combining GA and CP to support stress test case generation.

(2) We evaluated our work by systematically comparing it with state-of-the-art GA [Briand et al.
2006] and CP [Di Alesio et al. 2013] search strategies.

(3) As a result, our approach has a remarkably better efficiency than CP, in terms of the time needed
to generate test cases, better effectiveness than GA, in terms of revealing power for deadline
misses, and better diversity than CP, in terms of redundancy in test cases. In effect, these results
clearly show that GA+CP combine the strengths of GA and CP.

Search-based approaches have extensively been used to test non-functional system proper-
ties [Afzal et al. 2009]. Specifically, GA have successfully been used to support performance testing
in the domain of distributed systems with respect to network traffic [Garousi et al. 2008], QoS con-
straints [Shams et al. 2006], and computational resources consumption [Berndt and Watkins 2005].
However, these approaches do not tackle hard real-time constraints such as deadline misses, as these
properties are mostly important in Real-Time Systems. In this domain, GA have also been used to
generate test cases for testing timeliness properties, showing that they are able to run in large sys-
tems where Model Checking approaches were not able to run [Nilsson et al. 2006]. However, the
main contribution of Nilsson et al. is a mutation-based testing criterion to assess test adequacy,
which is beyond the scope of this paper. As for stress testing task deadlines, the state-of-the-art is
represented by the work of Briand et al. [Briand et al. 2006], which we used in this paper as the GA
part of our combined approach.

CP has been applied for a long time to solve schedulability analysis problems [Baptiste et al.
2001], especially in the domain of job-shop scheduling [Le Pape and Baptiste 1997]. Among those,
several approaches target task real-time constraints such as task deadlines [Hladik et al. 2008],
or timeliness [Malapert et al. 2012]. Preemptive scheduling problems have also been solved both
with pure CP [Cambazard et al. 2004], and with hybrid approaches combining GA with complete
search [Yun and Gen 2002]. Furthermore, recent implementations [Laborie 2009] have successfully
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used the IBM ILOG CPLEX CP OPTIMIZER and OPL for scheduling problems, albeit not ad-
dressing task preemption. However, the goal of these schedulability analysis approaches is to assess
whether or not the system tasks are schedulable, i.e., to find scenarios where tasks do not miss their
deadlines. The goal of this work is the opposite, as we are interested in generating scenarios that
break task deadlines. In the context of stress testing, CP has been used to generate stress test cases
for multimedia systems [Zhang and Cheung 2002]. The goal of that work is to investigate resource
saturation at runtime under heavy loads, as opposed to task deadlines.

There have been various contributions in the area of hybrid search strategies to solve hard com-
binatorial problems [Raidl 2006], especially in the direction of combining CP with probabilistic
meta-heuristics [Focacci et al. 2003]. For example, GA has been used in combination with CP
to drive a complete search towards optimal solutions [Homaifar et al. 1994]. There has also been
interest in studying how to combine CP and Local Search (LS) [Hentenryck and Michel 2009].
Most of these approaches compute a set of initial solutions at random, and then optimize them
by exploring their neighborhood [Mladenović and Hansen 1997]. For instance, Large Neighbor-
hood Search [Shaw 1998] systematically explores subpart of the search space by relaxing current
sub-optimal solutions and using constraint propagation to find better solutions. Despite this large
number of hybrid search strategies, we are unaware of applications that are targeted at testing tim-
ing properties by generating stress test cases. However, the search strategy presented in our work
shares several commonalities with existing work. Specifically, we use CP to completely explore a
neighborhood of a solution computed externally, similar to the strategy proposed by Pesant et al.
to solve the Traveling Salesman Problem [Pesant and Gendreau 1996]. In particular, we use CP to
improve a set of solutions initially computed by GA, which is a principle similar to that of memetic
algorithms, where LS is used in the neighborhood of solutions found by GA [Harman and McMinn
2010]. Note that memetic algorithms have successfully been used for the purpose of generating test
suites that optimize branch coverage [Fraser et al. 2014]. As opposed to memetic algorithms, we
use CP in place of LS to optimize the solutions found by GA. Guimarans et. al [Guimarans et al.
2011] used the Clark and Wright Savings Heuristic to generate an initial set of solutions to further
optimize with CP, in a similar way as we use the GA strategy proposed by Briand et al. [Briand et al.
2006] to initially generate solutions. We finally point out how, in contrast to strategies where GA is
used as a mean to explore the CP search tree [Iwamura and Liu 1996], GA and CP are independent
in our approach, as the latter is used only once the solutions have been found by the former. Note
that approaches where metaheuristic search and CP have been used independently have already
proven to be successful in the area of software testing. For example, Lakhotia et al. proposed a test
data generation approach aimed at optimizing branch coverage [Lakhotia et al. 2010]. In that work,
metaheuristic search is used to optimize numerical inputs, while constraint solving is used to find
solutions for pointer inputs.

4. APPROACH OVERVIEW

At a high level, the approach presented here builds upon our earlier work [Nejati et al. 2012] for
deriving test cases exercising the CPU usage requirements of a real-time system running on a multi-
core platform. The approach has been adapted to derive test cases pushing the systems tasks as
close as possible to their deadlines, as depicted by Figure 2. The framework blends UML modeling
to capture the system design and platform, and automated search to compute stress test cases.

First, the system design and platform are modeled through sequence diagrams extended with a
subset of the UML/MARTE profile capturing time and concurrency information extracted from the
system specification. The profile features abstractions of the computing platform (e.g., the system
scheduler with the scheduling policy and the processing unit) and the software application (e.g.,
tasks with their priorities, periods, dependencies, and so on). Such abstractions are needed to enable
our deadline miss analysis, and will be introduced in Section 5. For their mapping to the UML/-
MARTE profile we refer the reader to our earlier work [Nejati et al. 2012] as this is not the focus of
this paper.
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Fig. 2: Our approach for schedulability risk analysis in RTES

The analysis of deadline misses is cast as an optimization problem over the abstractions repre-
sented in the design model, that defines the search space over which to optimize. Specifically, the
goal of the optimization problem is finding arrival times for aperiodic tasks that maximize the like-
lihood of system tasks missing their deadlines. To solve this optimization problem, we propose here
an approach based on a combination of Genetic Algorithms and Constraint Programming. Each so-
lution of this optimization problem characterizes a test case that can be used to stress the system,
i.e., to delay the completion of its tasks as much as possible, potentially missing deadlines.

5. DEADLINE MISS ANALYSIS

In order to describe our deadline miss analysis, we first define the necessary abstractions in Sec-
tion 5.1 using the notation from our previous work [Di Alesio et al. 2013]. These abstractions enable
the definition of our combined GA+CP search strategy, presented in Section 5.2. Finally, we show
a working example of the proposed search strategy in Section 5.3.

We point out that our analysis is subject to two main assumptions:
(1) The RTOS scheduler checks the running tasks for potential preemptions at regular and fixed

intervals of time, called time quanta. Therefore, each time value in our problem is expressed as
a multiple of a time quantum.

(2) The interval of time in which the scheduler switches context between tasks is negligible com-
pared to a time quantum.

These two assumptions are realistic in the context of RTES, as the scheduling rate of operating
systems varies in the ranges of few milliseconds, while the time needed for context switching is
usually in the order of nanoseconds [Singh 2009].

5.1. Timing and Concurrency Abstractions

Our deadline miss analysis is based on the definition of the following timing and concurrency ab-
stractions.
— Observation Interval T. Let T be an integer interval of length tq, i.e., T def

= [0, tq− 1], repre-
senting the time interval during which we observe the system behavior. T is an integer interval,
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implying that time is discretized in our analysis. We refer to each time value t ∈ T as a time
quantum. In Figures 1.1 and 1.2, T = [0,9]: this means that tq = 10, and therefore T includes 10
time quanta.

— Number c of platform cores. Let c be an integer number representing the number of cores in the
execution platform. By definition, c represents the maximum number of tasks that are allowed to
be executed in parallel. In Figures 1.1 and 1.2 we assumed c = 1, as tasks are not allowed to run
in parallel.

— Set J of tasks. Let J be the set of tasks of the system. Each task j ∈ J has a set of static properties,
and a set of dynamic properties, where each property is represented by an integer value. Let Jp
and Ja be the set of periodic and aperiodic tasks of the system, respectively. Jp and Ja define a
partition over J, i.e.: Jp ∩ Ja = /0 and Jp ∪ Ja = J. In our work, we model software tasks only,
as we assume that the OS tasks do not depend on software tasks. We further assume that OS
tasks have lower priority than system tasks and can be preempted at any time, and hence, can be
abstracted away in our analysis. In Figure 1.1, J = Ja = { j0, j1, j2}, and Jp = /0.

— Static Properties of Tasks. The static properties express temporal requirements and constraints
that regulate task execution, and are defined in Real-Time Scheduling Theory [Sprunt et al.
1989]. These properties depend on the system requirements and design, and hence are known
prior to the analysis.
— priority( j), the priority of task j. For example, in Figure 1.1, priority( j0) = 0,

priority( j1) = 1, and priority( j2) = 2.
— period( j), the period of task j. Only defined if j is periodic.
— offset( j), the offset of the task j, i.e., the time, counted from the beginning of T , after which

the first period of task j begins. Only defined if j is periodic.
— min_ia_time( j) and max_ia_time( j), the minimum and maximum inter-arrival times, re-

spectively, i.e., the minimum and maximum time separating two consecutive arrival times
of task j. Only defined if j is aperiodic since for all periodic tasks j, min_ia_time( j) =
max_ia_time( j) = period( j) holds. For example, in Figures 1.1 and 1.2, ∀ j ∈ J ·
min_ia_time( j) = 10.

— duration( j), the estimated Worst Case Execution Time (WCET) of task j. For simplicity,
we define the integer interval Pj of task execution slots as Pj

def
= [0, duration( j)−1]. In Fig-

ure 1.1, duration( j0) = 2 and Pj0 = [0,1].
— deadline( j), the time, with respect to its arrival time, before which j should terminate for

the system not to be in an error state. We assume ∀ j ∈ Jp · deadline( j)≤ period( j). In Fig-
ure 1.1, deadline( j0) = 6.

— Dynamic Properties of Tasks. The dynamic properties express variables that depend on the run-
time behavior of the system, and hence are not known prior to the analysis. Indeed, the values for
these variables are calculated during the search (Section 5.2) for worst-case scenarios. We parti-
tion dynamic properties into independent and dependent properties. The independent properties
characterize stress test cases in terms of the events that trigger the task executions. On the other
hand, the dependent properties characterize the expected reaction of the system to the events
modeled by the independent properties, in terms of the way tasks execute. The dependent prop-
erties are formally defined as expressions of static and independent properties, and are meant to
simplify our notation. Note that the search process manipulates only the values of independent
properties which, once fixed, determine the value of dependent properties. Therefore, a solution
found by our search strategy is an assignment of values to independent properties.
— Independent Properties. We define two independent properties, concerning the number of

times tasks are executed, and task arrival times, respectively.
— task_executions( j), the number of times task j is executed within T . For sim-

plicity, we define the integer interval K j of task executions for task j as K j
def
=

[0, task_executions( j)− 1]. Furthermore, we refer to the kth execution of task j as
the couple ( j,k). We assume the offset and period bound the number of executions
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of periodic tasks: ∀ j ∈ Jp · task_executions( j) = bT−offset( j)
period( j) c. Similarly, we assume

the minimum and maximum inter-arrival times bound the number of executions of
an aperiodic task, implying that ∀ j ∈ Ja · b T

max_ia_time( j)c ≤ task_executions( j) ≤
b T

min_ia_time( j)c. In Figures 1.1 and 1.2 each task has only one execution, therefore
task_executions( j0) = task_executions( j1) = task_executions( j2) = 1 and K j0 = K j1 =
K j2 = {0}.

— arrival_time( j,k), the time when an event notifies the scheduler that task j should
be executed for the kth time. We say that j arrives for the kth time at time t iff
arrival_time( j,k) = t. When the specific execution k of j is understandable from
the context, we will simply say that j arrives at time t. In our analysis, we assume
that ∀ j ∈ Jp, k ∈ K j · arrival_time( j,k) = offset( j)+ k · period( j). In the case where
∀ j ∈ J · offset( j) = 0, our assumption is the same one made by the Generalized Com-
pletion Time Theorem (GCTT) [Gomaa 2006] to ensure that the analysis considers the
case where all periodic tasks simultaneously arrive for the first time at the beginning
of T . Furthermore, we assume that ∀ j ∈ Ja, k ∈ K j \ {0} · arrival_time( j,k− 1) +
min_ia_time( j) ≤ arrival_time( j,k) ≤ arrival_time( j,k− 1) +max_ia_time( j). This
assumption is consistent with the definition of minimum and maximum inter-arrival
times as the intervals of time separating two consecutive arrival times of j. In the case
where k = 0, we assume that ∀ j ∈ Ja · 0≤ arrival_time0( j)≤ max_ia_time( j). In this
way, we ensure that each task arrival time corresponds to a task execution, and vice-
versa. In Figure 1.1, arrival_time( j0,0) = 1.

— Dependent Properties. We define six dependent properties, four related to the execution
pattern of the system tasks, and two related to their deadlines. The first four properties
concern the time quanta when tasks are executing, the time quanta when tasks are preempted
by higher priority tasks, and the task start and end times. These properties enable the analysis
of the way system tasks execute when responding to external events, and are necessary for
the formal definition of the concept of diversity (Section 6.3.2) when comparing solutions
found by search strategies. The last two properties represent the task absolute deadlines, and
the number of time quanta by which tasks miss their deadline, which enable the definition
of the function that drives the search towards optimal solution.
— active( j,k, p), the pth time quantum in T in which task j is running for the kth execution.

We assume that the executing time slots p ∈ Pj define an order over the executing time
quanta for a task j: ∀ j ∈ J, k ∈ K j, p ∈ Pj \ {0} · active( j,k, p− 1) < active( j,k, p).
We further assume that each task starts being executed after its arrival time: ∀ j ∈ J, k ∈
K j, p ∈ Pj · arrival_time( j,k) ≤ active( j,k, p). For simplicity, we define the integer
vector A j,k of time quanta where j is executing for the kth time as A j,k = [active( j,k, p) |
p ∈ Pj], the vector A j of time quanta where j is executing as A j = [A j,k | k ∈ K j], and
the vector A of time quanta where tasks are executing as A = [A j | j ∈ J]. Note that A j
and A are defined as vectors of vectors. We also refer to A as the schedule produced by
the arrival times of the tasks in J. In Figure 1.1, active( j0,0,0) = 1, active( j0,0,1) = 4,
A j0,0 = [1,4], A j0 =

[
[1,4]

]
, and A =

[[
[1,4]

]
,
[
[5,6,7]

]
,
[
[2,3]

]]
.

— preempted( j,k, p), the amount of time quanta for which the kth execution of task j is
preempted for the pth time: preempted( j,k, p) def

= active( j,k, p)−active( j,k, p−1)−1.
Only defined for p > 0. In Figure 1.1, preempted( j0,0,1) = 2.

— start( j,k) and end( j,k), the first and the one after the last time quantum in which j
is executing for the kth time, respectively: start( j,k) def

= active( j,k,0) and end( j,k) def
=

active( j,k,duration( j)−1)+1. In Figure 1.1, start( j1,0) = 5 and end( j1,0) = 8.
— task_deadline( j,k), the absolute deadline of the kth execution of j, i.e., the time,

with respect to the beginning of T , before which j should terminate to meet its
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deadline: task_deadline( j,k) def
= arrival_time( j,k) + deadline( j)− 1. In Figure 1.1,

task_deadline( j0,1) = 6.
— deadline_miss( j,k), the amount of time by which j missed its deadline during its

kth execution, i.e., deadline_miss( j,k) def
= end( j,k)− task_deadline( j,k)− 1. Nega-

tive if end( j,k) − 1 < task_deadline( j,k), non-negative otherwise. In Figure 1.1,
deadline_miss( j0,1) =−2.

We use an alternative notation for the dynamic properties when making their context explicit
is required. In such notation, the meta-variables j, k and p are reported as subscripts, and the
parentheses contain the specific context that the dynamic properties refer to, such as the system
under analysis, the search strategy used, or the solution the properties belong to. For instance,
we write start j,k(x) to mean the value of start( j,k) in the solution x.

— Relationships between Tasks. Tasks can depend on other tasks to implement functionalities
such as inter-process communication, and sequential actions. These task dependencies are cap-
tured through relationships which are defined at design time, and hence, similar to static prop-
erties, are known prior to the analysis. Let the following be three binary relations defined over
J× J.
— triggers( j1, j2) holds if the event triggering the task j2 occurs when the task j1 finishes

its execution, i.e. ∀k ∈ K j1 · arrival_time( j2,k) = end( j1,k). In Figure 1.1, triggers( j0, j1)
holds. The relation triggers is defined as irreflexive and antisymmetric. Tasks triggering
other tasks upon termination are common in RTES, especially in cases where functionalities
are implemented by a sequential chain of procedures, each starting when the previous has
finished [Liu et al. 2000].

— dependent( j1, j2) holds if there exists a computational resource r such that tasks j1 and j2
access r during their execution in an exclusive way. This implies that j1 and j2 cannot be
executed in parallel, but one can execute only after the other has released the lock on the
resource. The relation dependent is defined as reflexive and symmetric. In complex RTES
applications, tasks often use locks on critical sections to implement communication mecha-
nisms or to guarantee atomicity of read/write operations [Liu et al. 2000].

— impacts( j1, j2) holds if the arrival time of an execution of j1 can have a direct impact over
an execution of j2. In practice, this can happen in two cases. The first case occurs if j1 has
higher priority than j2. In this case, j2 can be preempted at any time by j1 if there are not
enough cores available. The second case occurs when j1 and j2 share the same computa-
tional resource. In this case, if j1 arrives before j2 has acquired the lock on the resource, the
latter will have to wait until such lock is released. Therefore, we define the relation impacts
in the following way: impacts( j1, j2)

def
= priority( j1)≥ priority( j2)∨dependent( j1, j2). Note

that impacts is reflexive, because trivially the arrival time of a task has an impact over the
execution of the task itself. However, j1 having higher priority or depending on j2 is not the
only case in which j1 can have an in impact over an execution of j2. For instance, consider
the case where j1 has higher priority than another task j3, and j3 depends on j2. In this case,
j1 could preempt j3 after j3 has acquired the lock on the resource shared with j2, and then
j2 would have to wait for both the completion of j1 and j3 before being able to execute. In
this case, j1 can also have an impact over an execution of j2, albeit this impact is indirect
since it involves j3. For this reason, we define impacts+ as the transitive closure of impacts
to cover all the cases where j1 can have a direct or indirect impact over the execution of j2.

— Impacting Set I of a Task. Let I : J→ P(J) be the function that represents the set of tasks that
can have an impact over the execution of a target task: I j

def
= { j′ ∈ J | impacts+( j′, j)}. We refer

to I j as the impacting set of j.
— Performance Requirement. As explained in Section 4, the goal of our approach is to find values

for the arrival times of aperiodic tasks that maximize the likelihood of deadline misses, and hence
are more likely to violate the deadline performance requirements of the system. We formalized
this concept through a function of output properties whose value captures how arrival times
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compare in terms of their likelihood of triggering deadline misses. Such a function is referred to
as an objective function in the context of Constraint Programming, and as a fitness function in
the context of Genetic Algorithms. In this paper, we adopted the function F from our previous
work [Di Alesio et al. 2013]:

F =
∑

j∈J, k∈K j

2 deadline_miss( j,k) (1)

F is formulated in a way that allows it to be effective for stress testing purposes by meeting three
important characteristics. Being a sum of exponentials, F guarantees that (1) no deadline miss is
overshadowed by executions of the same task that finish long before their deadline, (2) the more
deadline misses, the higher the function value, and, (3) the larger the deadline misses, the higher
the function value [Di Alesio et al. 2013].

5.2. Combining Genetic Algorithms and Constraint Programming to Support Stress Testing

In this paper, we present a hybrid approach that combines Genetic Algorithms (GA) and Constraint
Programming (CP) for the purpose of generating sequences of arrival times likely to break task
deadlines. The approach is based on the definition of an optimization problem, where each solution
represents a worst-case scenario with respect to task deadlines, and therefore characterizes a stress
test case.

GA have been used in the past to support stress testing of task deadlines. Among others, Briand
et al. proposed a GA strategy [Briand et al. 2006] to generate sequences of arrival times likely to
lead to deadline misses. In that work, arrival times of aperiodic tasks are modeled as chromosomes.
The initial population of these chromosomes is initialized with random values, and their fitness
is evaluated by computing the task schedule that is produced from the arrival times encoded in the
chromosomes. Indeed, such a schedule contains information about the end times of tasks, that define
the fitness function in a fashion similar to that of F . At each iteration of GA, a pair of chromosomes
is crossed over and then mutated using specific operators that ensure compliance with the inter-
arrival times of aperiodic tasks.

CP has also been used to automate the generation of stress test cases to break task deadlines.
In our previous work [Di Alesio et al. 2014], we propose a constraint optimization model for the
purpose of generating sequences of arrival times likely to lead to deadline misses. We model the
static and dynamic properties of the system as integer constants and variables respectively, and we
model the RTOS scheduler as a set of constraints among such variables. The constraint model is then
solved using IBM ILOG CPLEX CP OPTIMIZER3, one of the leading CP solvers in the market.
Experimental results [Di Alesio et al. 2013] have shown in some cases an opposing trend: while
GA was more efficient, i.e., faster in generating test cases, CP was more effective, i.e., it generated
test cases that were more likely to identify deadline misses. Furthermore, GA was able to find a
larger and more diverse set of test cases than CP, exercising the system in a more diverse way with
respect to task executions. Specifically, the test cases generated by GA had a higher variety in terms
of (1) time span and (2) preemptions between task executions, and (3) number of aperiodic task
executions. These three criteria are described in Section 6.3 and define the concept of test case
diversity. On the other hand, CP generated a smaller number of test cases, most of which were
redundant with respect to the three criteria, i.e., that executed the systems tasks during similar time
intervals, with the same preemptions and number of executions.

Therefore, we looked into a way to achieve both the efficiency of GA and the effectiveness of CP.
The key idea behind our work is to improve the solutions computed by GA by performing a complete
search with CP in their neighborhood, hence defining a 2-stage GA+CP strategy. In particular, given
that GA is more efficient (generates results faster) and CP is more effective (generates better results),
the most natural choice to retain the advantages of both is to keep the solutions generated by the

3 http://www.ibm.com/software/commerce/optimization/cplex-cp-optimizer/
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most efficient strategy, and try to improve them with the solutions generated by the most effective
strategy. In this way, we expected the combined GA+CP strategy to take advantage of the efficiency
of GA, because solutions are initially computed with GA and the subsequent CP search is likely to
terminate in a short time since it focuses on the neighborhood of a solution, rather than in the whole
search space. Similarly, we expected GA+CP to take advantage of the solutions diversity of GA,
because these solutions define in turn subspaces where CP searches for better solutions. Finally,
we also expected GA+CP to take advantage of the effectiveness of CP since, after GA computes
a solution, CP either finds the best solution within the neighborhood, or proves upon termination
that no better solution exists in such neighborhood. Figure 3 illustrates how GA+CP searches for
solutions through an abstract example.

(1) GA Step. The initial population of GA consists of the three solutions x1, y1, and z1. In the first
generation, GA finds the solutions x2, y2, and z2 that are respectively generated from x1, y1 and
z1. After the five generations, GA converges on the solutions x6, y6 and z6.

(2) CP Step. CP then searches for better solutions in the neighborhoods of x6, y6 and z6. This step
is performed by launching three separate instances of CP, each having x6, y6 and z6 as a starting
point. The first two complete searches find the solutions x∗ and y∗. The last proves upon termi-
nation that z6 is the best solution in its neighborhood, hence z6 = z∗. Therefore, x∗, y∗, and z∗ are
the final solutions found by GA+CP, and are used to characterize stress test cases.

Fig. 3: Overview of GA+CP: the solutions x1, y1 and z1 in the initial population of GA evolve into
x6, y6, and z6, then CP searches in their neighborhood for the optimal solutions x∗, y∗ and z∗.

We begin the formal description of our approach with the following definitions.
— Solution x computed by GA. Recall from Section 4 that a solution is a sequence of arrival times

which the search identifies as likely to break task deadlines, and hence characterizes a stress test
case. Let x =

[
[x j,k | k ∈ K j] | j ∈ Ja

]
be a solution computed by GA. Note that, by definition, x is

an assignment of arrival times for aperiodic tasks, where x j,k is the value for the kth arrival time
of task j: ∀ j ∈ Ja, k ∈ K j · arrival_time j,k(x) = x j,k.
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— Set J∗ of tasks that miss a deadline or are the closest to missing it among all tasks. Let J∗(x)
be the set of tasks that miss at least a deadline in one execution, or are closer than others to doing
so in the schedule generated by the arrival times in x:

J∗(x) def
=
{

j ∈ J
∣∣ ∃k∗ ∈ K j∗(x) ·

(
deadline_miss j∗,k∗(x)≥ 0 ∨

∀ j ∈ J, k ∈ K j ·

deadline_miss j∗,k∗(x)≥ deadline_miss j,k(x)
)}

— Union set I∗ of impacting sets of tasks missing or closest to miss their deadlines. Let I∗(x)
be the union of the impacting sets of tasks in J∗(x):

I∗(x) def
=

⋃
j∗∈J∗(x)

I j∗(x)

By definition, I∗(x) contains all the tasks that can have an impact over a task that misses a
deadline or is closest to a deadline miss.

— Neighborhood ε of an arrival time and neighborhood size D. Let ε(x j,k) be the interval cen-
tered in the arrival time x j,k computed by GA, and let D be its radius: ε(x j,k)= [x j,k−D, x j,k+D].
ε defines the part of the search space around x j,k in which to find arrival times that are likely to
break task deadlines. D is a parameter of the search.

— Constraint Model M implementing a Complete Search Strategy. Let M be the constraint
model defined in our previous work [Di Alesio et al. 2014] for the purpose of identifying arrival
times for tasks that are likely to lead to deadline miss scenarios. M models the static and dynamic
properties of the software system as constants and variables respectively, and the scheduler of
the operating system as a set of constraints among such variables. Note that M implements a
complete search strategy over the space of arrival times. This means that M searches for arrival
times of all aperiodic tasks within the whole interval T .

Our combined GA+CP strategy consists of the following two steps:
(1) GA Step. Run GA for a given amount of time to obtain a set X of solutions. For this purpose,

we use the implementation of GA introduced by Briand et al., with the same initial population
size, replacement strategy, and probability values used for crossover and mutation [Briand et al.
2006].

(2) CP Step. For each solution x ∈ X , solve a constraint model M′(x) that searches for arrival times
only within a fixed-size neighborhood of x.
M′(x) is derived from M by:

— Fixing the arrival time of tasks not in I∗. This is done by adding to M the following constraint:
∀ j ∈ J \ I∗(x), k ∈ K j(x) · arrival_time( j,k) = x j,k. In practice, this means that the arrival time
of all task executions that do not have any impact on tasks being close to missing a deadline will
be fixed in M′.

— Bounding the arrival times of tasks in I∗. This is done by adding to M the following constraints:
∀ j ∈ I∗(x), k ∈ K j(x) · x j,k−D≤ arrival_time( j,k)≤ x j,k +D. In practice, this means that the
arrival time of the task executions that can have an impact on tasks identified by GA as close to
miss a deadline will be declared in M′ as a variable with domain ε(x j,k).

Note that, by definition, M′ implements a local search strategy over the space of arrival times.
This means that M′ searches only for arrival times of aperiodic tasks that can have an impact on
tasks GA identifies as close to miss a deadline, and bounds the search within a neighborhood of size
D from the solution computed by GA. Specifically, for given j and k, the inequality constraints on
the variable arrival_time define in the solutions space a hypercube of side 2D centered in x j,k.

The search in GA+CP can be configured through two sets of parameters, one related to GA and
the other to CP. GA relies on parameters specific to evolutionary algorithms, such as the initial
population size, the crossover and mutation probabilities, and the population replacement rate. For
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those, we used values that have been derived from the GA literature and specifically tuned for dead-
line misses analysis [Briand et al. 2006]. On the other hand, CP is a deterministic search strategy,
and therefore does not require us to set such parameters. However, our combined search strategy
depends on the neighborhood size D that CP searches for arrival times of aperiodic tasks. Our
preliminary experimentation showed that a value of D around 1% of T yields a good compromise
between efficiency and effectiveness. Specifically, lower values for D define a smaller neighborhood
where GA+CP is less likely to improve the solutions found by GA, while higher values for D define
a larger neighborhood where GA+CP is likely to spend a significant amount of time without finding
better solutions.

5.3. GA+CP in Practice: a Working Example

In this section, we introduce an example to show how GA+CP works in practice. Consider the
system composed of five aperiodic tasks detailed in Table 1. Note that period and offset are not
defined, since each task is aperiodic. There are also no triggers relationships between tasks.

priority duration min_ia max_ia deadline dependency
j0 0 2 10 10 8
j1 1 2 10 10 6 j4
j2 2 2 10 10 5
j3 3 2 10 10 4
j4 4 2 10 10 3 j1

T = [0,9] c = 1

Table 1: Example system with four tasks and one dependency

Suppose GA finds the solution x =
[
[0][2][3][6][3]

]
, where each task is executed once, and j0

arrives at time 0, j1 at time 2, j3 at time 3, j4 at time 6 and j5 at time 3. The schedule corresponding
to this solution is shown in Figure 4.1.

(1) Solution x found by GA (2) Solution x′ found by GA+CP

Fig. 4: GA+CP neighborhood search example

In x, j4 misses its deadline by 2 time quanta, being the task that has the biggest deadline miss.
Therefore, J∗(x) = { j4}. By looking at the task priorities and dependencies, j1 depends on j4, and
both j2 and j3 have higher priority than j1, so all three can potentially have an impact over the
execution of j4 for the reasons detailed in Section 5.1. This means that I j4(x) = { j1, j2, j3, j4}, and
consequently I∗(x) = { j1, j2, j3, j4}.
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GA+CP searches the space around x up to a distance D from the tasks in I∗(x), i.e., the tasks that
can potentially have an impact over the execution of j4. This local search is performed by solving
the CP model M′(x) derived from M by specifying that:
— The arrival time of j0 is fixed, since j0 6∈ I∗(x). This step is done by adding to M the following

constraint: arrival_time( j0,0) = 0. In practice, arrival_time( j0,0) is declared in M′(x) as a
constant with value 0.

— The arrival times of tasks in I∗(x) are bounded within distance D from the arrival times computed
by GA in x. For this example, suppose D = 2. This step is done by adding to M the following
constraints:

2−2 = 0≤ arrival_time( j1,0)≤ 4 = 2+2
3−2 = 1≤ arrival_time( j2,0)≤ 5 = 3+2
6−2 = 4≤ arrival_time( j3,0)≤ 8 = 6+2
3−2 = 1≤ arrival_time( j4,0)≤ 5 = 3+2

In practice, arrival_time( j1) is declared in M′(x) as a variable with domain [0,4],
arrival_time( j2) as a variable with domain [1,5], arrival_time( j3) as a variable with domain
[4,8], and arrival_time( j4) as a variable with domain [1,5].

GA+CP solves this model to optimality and finds the solution x′ =
[
[0][2][3][4][3]

]
, with the

schedule shown in Figure 4.2. In x′, j4 misses its deadline by 4 quanta, and therefore GA+CP has
succeeded in improving the solution found by GA by finding a larger deadline miss.

6. EMPIRICAL STUDY

The goal of our empirical study is to compare the overall performance of GA, CP, and GA+CP for
the purpose of supporting stress testing of task deadlines. Recall from Section 3 that approaches
based on GA [Briand et al. 2006] and CP [Di Alesio et al. 2013] were proposed to support stress
testing of task deadlines by searching for worst-case scenarios, and are therefore natural comparison
baselines. To successfully enable our empirical study, we slightly modified the original GA approach
as detailed in our previous work [Di Alesio et al. 2013]. Specifically, (1) we added support for
multi-core platforms, as the original work was meant to apply only to software systems running on
single-core architectures, and (2) we replaced the original fitness function [Briand et al. 2006] with
the one in Equation (1) (Section 5.1) in order to account for deadline misses for all tasks, rather than
for a single target task.

The comparison is performed on five subject systems reported in the literature, briefly described
in Section 6.1. The goal of our study is to answer the research questions presented in Section 6.2
based on the metrics and attributes detailed in Section 6.3. The design of our experiment is described
in Section 6.4, and its results are discussed in Section 6.5. Finally, Section 6.6 covers some potential
threats that could affect the general validity of our conclusions.

6.1. Subject Systems

To investigate the general performance of GA, CP, and GA+CP in a variety of conditions, we se-
lected five systems from safety-critical domains with varying size and complexity. These same sys-
tems have been selected for comparing GA and CP in our previous work [Di Alesio et al. 2013].
Specifically, our comparison is based on one system from the aerospace domain, two systems from
the automotive domain, and two from the avionics domain. The subject systems share the most
common characteristics of safety-critical RTES: they are integrated with the physical domain by
interacting with external devices such as sensors and actuators, they have a concurrent design, and
they are subject to timing requirements ranging in the order of milliseconds.
— Ignition Control System (ICS). Bosch GmbH developed an ignition control system of an au-

tomotive engine [Peraldi-Frati and Sorel 2008]. The system features sensors and actuators to
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sample physical phenomena such as knock, temperature variation and engine warm-up, and to
perform corrections over them for a successful ignition of a spark plug in the engine.

— Cruise Control System (CCS). Continental AG developed a Cruise Control System deployed
on AUTOSAR-compliant architectures [Anssi et al. 2011]. The system features a switch sensor
that acquires driver inputs (e.g., set/cancel cruise, increase/decrease speed), and a control system
that processes the inputs and maintains the specified vehicle speed.

— Unmanned Air Vehicle (UAV). The ENSMA together with the University of Poitiers in France
worked on a joint project for a mini Unmanned Air Vehicle named AMADO [Traore et al. 2006].
The system embeds a camera to be able to follow dynamically defined way-points, and is con-
nected to a ground station via a wireless modem that allows it to receive instruction data during
a mission.

— Generic Avionics Platform (GAP). The Software Engineering Institute, the Naval Weapons
Center and the IBM Federal Sector Division designed a specification for a hypothetical avionics
software mission control computer of a military aircraft [Locke et al. 1990]. Though the system
can be configured to fit several possible missions, the specification is targeted for the specific
case of an air-to-surface attack.

— Herschel-Planck Satellite System (HPSS). The European Space Agency carried out the
Herschel-Planck Mission consisting of the two satellites Herschel and Planck [Mikučionis et al.
2010]. The satellites have different scientific purposes: Herschel carries a large infrared tele-
scope, while Planck is a space observatory for studying the Cosmic Microwave Background.
The satellites share the same computational architecture composed of a real-time operating sys-
tem, a basic software layer, and application software.

Table 2 summarizes relevant data from the systems’ specifications, reported in ascending or-
der of size and complexity. Specifically, we take into account the number of software tasks, inter-
dependencies, triggering relations, and platform cores. This data has been extracted from the sources
cited above, which include full descriptions of the systems. The complete version of the data ex-
tracted is available on-line as a technical report4.

Software System Platform
LogsizeTasks Relationships Cores

Periodic Aperiodic Dependencies Triggering
ICS 3 3 3 0 3 446.7
CCS 8 3 3 6 2 551.6
UAV 12 4 4 0 3 671.5
GAP 15 8 6 5 2 709.4
HPSS 23 9 5 0 1 836.6

Table 2: Subject systems data

To investigate the impact that the target system complexity has over the practical usefulness of
the search strategies, we also quantified the system size. Specifically, we define the size of each
system as the size of its associated search space, that is the product of the domain size of the search
variables (Section 5.1). Indeed, the search space contains by definition all the feasible assignments
of values to variables in the problem. The last column of the table reports the base 2 logarithm of
the size of the search space. For example, in ICS there are circa 2446.7 possible ways in which tasks
could arrive and be scheduled for execution.

4 http://home.simula.no/~stefanod/data.pdf
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6.2. Research Questions

The goal of our empirical study is to answer the following research questions involving GA, CP and
GA+CP for the purpose of supporting stress testing of task deadlines.
— RQ1 — Efficiency. Does one search strategy find the best solutions significantly faster than the

other?
— RQ2 — Effectiveness. Does one search strategy find significantly better solutions (i.e., solutions

with worse deadline misses) than the other?
— RQ3 — Diversity. Does one search strategy find solutions that are significantly more diverse

(i.e., solutions that exercise the system in a larger number of different ways) than the other?
— RQ4 — Scalability. To what extent does the size of a system affect the efficiency of the three

search strategies?
RQ1, RQ2 and RQ3 are investigated through a set of metrics and attributes detailed in Section 6.3.

The goal of such metrics and attributes is to provide quantitative evidence to answer the research
questions. RQ4 will instead be only qualitatively discussed in Section 6.5. This is because we base
our analysis of efficiency on a set of five systems, and therefore no quantitative study, for example
based on regression analysis, can be carried out to identify precise trends.

6.3. Comparison Metrics and Attributes

Though the search for optimal solutions is driven by function F defined in Equation (1) (Sec-
tion 5.1), we broke down F into several factors that are of practical interest while investigating worst
case scenarios for deadline misses. This is because, to properly answer the research questions, one
must look into several complementary aspects of F . For this reason, we defined the efficiency, ef-
fectiveness, and diversity properties related to RQ1, RQ2, and RQ3 as attributes, and we defined a
set of metrics to enable their measurement. Therefore, we compare the performance of GA, CP and
GA+CP by collecting data pertaining to the metrics and attributes defined below.

To enable a formal definition of metrics and attributes, we introduce the following notation:
— Search Strategy Γ. We denote the search strategies with the letter Γ: Γ ∈ {GA,CP,GA+CP}.
— Subject System Σ. We denote the systems described in Section 6.1 with the letter Σ: Σ ∈
{ICS,CCS,UAV,GAP,HPSS}.

— Set of Solutions X. We denote the set of solutions found by the search strategy Γ during an
experiment on the target system Σ as X(Γ,Σ).

6.3.1. Comparison Metrics. We introduce four main comparison metrics to capture four aspects of
practical interest that characterize a stress test case.

(1) The time needed to generate the test case.
(2) The magnitude of deadline misses identified by the test case.
(3) The number of tasks identified to miss a deadline.
(4) The number of task executions identified to miss a deadline.

These four properties are formalized through the following four metrics. Each metric is defined
for a given solution x ∈ X found by the search strategy Γ during an experiment on the subject
system Σ. In the definitions, we omit the dependency from Γ and Σ for the sake of readability.
Recall from Section 5.2 that a solution x is defined as a sequence of arrival times x j,k for each
aperiodic task, i.e., x =

[
[x j,k | k ∈ K j] | j ∈ Ja

]
.

— Computation time t. We define t(x) as the time required to find solution x, from when the search
starts.

— Sum s of time quanta in deadline misses. The sum of time quanta in all deadline misses is
strongly related to the value of the fitness/objective function that guides the search. In practice,
the sum of time quanta in deadline misses provides some insight into the magnitude of the
identified deadline misses. Since our approach is based on task execution time estimates, the
larger the sum of deadline misses, the more likely tasks are to miss their deadlines at runtime.
We define s(x) as the sum of time quanta in all deadline misses of solution x. Recall
from Section 5.1 that, for a given solution x, we define deadline_miss( j,k) def

= end( j,k)−
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task_deadline( j,k). Therefore, we define s(x) in the following way:

s(x) def
=

∑
j∈J, k∈K j(x)

max
(
0, deadline_miss j,k(x)

)
— Number n of tasks that miss a deadline. This number is relevant for generating stress test

cases for task deadlines as, in practice, every task that misses a deadline has to be looked into
and possibly re-designed. Hence, not realizing that a task can miss its deadline may lead to
overlooking an important flaw.
We define n(x) as the number of tasks that miss at least a deadline in solution x:

n(x) def
=
∣∣{ j ∈ J | ∃k ∈ K j(x) · deadline_miss j,k(x)≥ 0

}∣∣
— Number m of task executions that miss a deadline. This number is also of interest as, in soft

real-time systems, one could tolerate less critical tasks missing some deadlines, provided that the
frequency of deadline misses is acceptable. Therefore, overestimating m might lead us to inspect
a task when unnecessary, and underestimating m could lead to overlooking tasks that frequently
miss their deadlines. Note that, by definition, ∀x ∈ X · m(x)≥ n(x).
We define m(x) as the number of task executions that miss a deadline in solution x:

m(x) def
=
∣∣{k ∈ K j(x) | j ∈ J∧deadline_miss j,k(x)≥ 0

}∣∣
We note how the metrics s, n, and m also capture the general quality of a solution. Intuitively,

higher values for s, n and m, all correspond in a different way to higher quality solutions. Specifi-
cally, solutions with many large deadline misses or many tasks or task executions that miss a dead-
line characterize worst case scenarios. Therefore, a best solution can be identified only with respect
to a specific metric.

To enable the formal definition of the comparison attributes in Section 6.3.2, we also define the
following quantities for each search strategy Γ running during an experiment on the target system
Σ:
— Largest sum s∗ of time quanta in deadline misses. We define s∗ as the value for the largest

deadline miss in X , i.e., s∗ def
= max

x∈X
s(x).

— Largest number n∗ of tasks missing their deadline. We define n∗ as the largest number of
tasks that miss their deadline in X , i.e., n∗ def

= max
x∈X

n(x).

— Largest number m∗ of task executions missing their deadline. We define m∗ as the largest
number of task executions that miss their deadline in X , i.e., m∗ def

= max
x∈X

m(x).

— Set X∗s of best solutions with respect to s. We define X∗s as the set of solutions that have the
largest sum s∗ of time quanta in deadline misses, i.e., X∗s

def
= {x ∈ X | s(x) = s∗}.

— Set X∗n of best solutions with respect to n. We define X∗n as the set of solutions that have the
largest number n∗ of tasks missing at least one deadline, i.e., X∗n

def
= {x ∈ X | n(x) = n∗}.

— Set X∗m of best solutions with respect to m. We define X∗m as the set of solutions that have the
largest number m∗ of task executions missing a deadline, i.e., X∗m

def
= {x ∈ X | m(x) = m∗}.

6.3.2. Comparison Attributes. We introduce three main comparison attributes to capture three as-
pects of practical interest while testing. Indeed, an ideal test suite has three main properties:

(1) It is computed in the shortest possible time.
(2) It contains test cases that are as likely as possible to push tasks to miss their deadlines at runtime.
(3) It contains test cases that are as little redundant as possible.

Efficiency captures the first property, measuring how quickly a search strategy converges to the
optimal solutions it finds. Effectiveness captures the second property, measuring how likely are the
solutions found to characterize stress cases that will reveal deadline misses at runtime. Finally, the
third property is captured by the concept of diversity. Conceptually, diversity among stress test cases
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is similar to test coverage in functional testing. Indeed, a test suite that yields high coverage with
respect to a given criterion ensures that the system will be thoroughly tested with respect to that
criterion. Similarly, a test suite that yields high diversity ensures that test cases will thoroughly
exercise interactions between task executions.

The following attributes are defined for each search strategy Γ running during an experiment on
the target system Σ.
— Efficiency η . The more efficient a strategy, the faster it computes its best solutions. Therefore,

the efficiency attribute relates to RQ1 and RQ4.
We define the efficiency η with respect to a given metric as the minimum time required to com-
pute one of the best solutions with respect to that metric. Specifically, we define the efficiency
with respect to s, m, and n as:

ηs
def
= min

x∈X∗s
t(x) ηn

def
= min

x∈X∗n
t(x) ηm

def
= min

x∈X∗m
t(x)

— Effectiveness κ . The more effective a strategy, the better the solutions it computes. Therefore,
the efficiency attribute relates to RQ2.
We define the effectiveness κ with respect to a given metric as the value of that metric for the
best solutions found. Specifically, we define effectiveness with respect to s, m, and n as:

κs
def
= s∗ κn

def
= n∗ κm

def
= m∗

For example, in Figure 4.1 κs = 2 and in Figure 4.2 κs = 4.
— Number N of best solutions. In general, the higher the number of best solutions of a search

strategy, the higher the number of effective test cases it generates. However, the effectiveness κ

is a different concept from the number N of solutions which are effective. Since N does not take
into account redundancy among solutions, it is not true in general that the higher N is, the more
effective a search strategy is. For example, a strategy could generate a large number of effective
test cases that yet exercise the system with respect to very similar scenarios. On the other hand,
another strategy could generate fewer effective test cases that are instead highly diverse. For
this reason, the number of best solutions is meaningful only when considered together with the
redundancy of the solutions, formalized by the concept of diversity. Therefore, the number of
best solutions relates to RQ3.
We define the number N of best solutions with respect to a given metric as the cardinality of the
set of best solutions found with respect to that metric. Specifically, we define effectiveness with
respect to s, m, and n as:

Ns
def
=
∣∣X∗s ∣∣ Nn

def
=
∣∣X∗n ∣∣ Nm

def
=
∣∣X∗m∣∣

— Diversity δ . As explained before, a search strategy may find redundant solutions which stress the
system under similar task schedules. However, covering a diverse set of interactions between the
tasks executions is important not to overlook potentially faulty schedules. To capture similarities
and differences between the schedules produced by solutions, we define three types of diversity
δ , each with respect to a given metric. Specifically, we define the shift diversity δh, the pattern
diversity δr, and the execution diversity δe, each defined with respect to the three metrics s, m,
and n. These diversity attributes also relate to RQ3. Intuitively, the shift diversity δh measures
the extent to which solutions exercise the system during time intervals that are distant from each
other. The shift diversity is defined based on the shift distance between active vectors, which
measures the distance in time between a given execution in two solutions.
— Shift distance Dh between active vectors. Let A j,k(x) and A j,k(y) be the active vectors of

task execution ( j,k) in the solutions x and y, respectively.
We define the shift distance Dh, j,k(x,y) between A j,k(x) and A j,k(y) as the sum of absolute
differences between their start and end times:

Dh, j,k(x,y)
def
=
∣∣start j,k(x)− start j,k(y)

∣∣+ ∣∣end j,k(x)− end j,k(y)
∣∣
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For example, in Figures 4.1 and 4.2, Dh, j1,0 = | 2−2 |+ | 6−8 |= 2.
Similarly, we define the shift distance Dh, j(x,y) between A j(x) and A j(y) as the average
shift distance over pairs of executions of task j in solutions x and y:

Dh, j(x,y)
def
=

∑
k∈
(

K j(x)∩∈K j(y)
)Dh, j,k(x,y)∣∣K j(x)∩K j(y)

∣∣
In Figures 4.1 and 4.2, Dh, j1 = Dh, j1,0 = 2, since j1 is executed only once.

— Shift Diversity δh. We define the shift diversity δh
(
A(x),A(y)

)
between solutions x and y

as the sum of the shift distances between A j(x) and A j(y) for j ∈ J:

δh
(
A(x),A(y)

)
def
=
∑
j∈J

Dh, j(x,y)

Similarly, we define the shift diversity δh with respect to a given metric as the average shift
diversity over the set of best solutions for that metric:

δh,s
def
=

∑
x,y∈X∗s

δh(x,y)

|X∗s |
δh,n

def
=

∑
x,y∈X∗n

δh(x,y)

|X∗n |
δh,m

def
=

∑
x,y∈X∗m

δh(x,y)

|X∗m|
In Figures 4.1 and 4.2, δh = 0+2+2+8+4 = 16.

The pattern diversity δr measures the extent to which solutions exercise the system such that tasks
are preempted at different times. The pattern diversity is defined based on the pattern distance
between active vectors, which measures the difference between the preemption times of a given
task execution in two solutions.
— Pattern distance Dr between active vectors. Let A j,k(x) and A j,k(y) be the active vectors

of task execution ( j,k) in the solutions x and y, respectively.
We define the pattern distance Dr, j,k(x,y) between A j,k(x) and A j,k(y) as the sum of the
absolute differences between the preemption values of task j:

Dr, j,k(x,y)
def
=

∑
p∈Pj\{0}

∣∣preempted j,k,p(x)−preempted j,k,p(y)
∣∣

For example, in Figures 4.1 and 4.2, Dr, j2,0 = | 0−2 |= 2.
Similarly, we define the pattern distance Dr, j(x,y) between A j(x) and A j(y) as the average
shift distance over pairs of executions of task j in solutions x and y:

Dr, j(x,y)
def
=

∑
k∈
(

K j(x)∩∈K j(y)
)Dr, j,k(x,y)∣∣K j(x)∩K j(y)

∣∣
In Figures 4.1 and 4.2, Dr, j2 = Dr, j2,0 = 2, since j2 is executed only once.

— Pattern Diversity δr. We define the diversity δr
(
A(x),A(y)

)
between the solutions x and y

as the sum of the pattern distances between A j(x) and A j(y) for j ∈ J:

δr
(
A(x),A(y)

)
def
=
∑
j∈J

Dr, j(x,y)

Similarly, we define the pattern diversity δr with respect to a given metric as the average
pattern diversity over the set of best solutions for that metric:

δr,s
def
=

∑
x,y∈X∗s

δr(x,y)

|X∗s |
δr,n

def
=

∑
x,y∈X∗n

δr(x,y)

|X∗n |
δr,m

def
=

∑
x,y∈X∗m

δr(x,y)

|X∗m|
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In Figures 4.1 and 4.2, δr = 0+2+2+0+0 = 4.
The execution diversity δe measures the extent to which solutions exercise the system such that
tasks are executed different numbers of times.
— Execution Diversity δe. We define the execution diversity δe

(
A(x),A(y)

)
between the solu-

tions x and y as the sum of the absolute differences between the number of task executions
in solutions x and y:

δe
(
A(x),A(y)

)
def
=
∑
j∈J

∣∣|K j(x)|− |K j(y)|
∣∣

Similarly, we define the execution diversity δh with respect to a given metric as the average
execution diversity over the set of best solutions for that metric:

δe,s
def
=

∑
x,y∈X∗s

δe(x,y)

|X∗s |
δe,n

def
=

∑
x,y∈X∗n

δe(x,y)

|X∗n |
δe,m

def
=

∑
x,y∈X∗m

δe(x,y)

|X∗m|
For example, in Figures 4.1 and 4.2, δe = | 1−1 |+ | 1−1 |+ | 1−1 |+ | 1−1 |+ | 1−1 |= 0
because each task gets executed once in each solution.

Diversity Properties. We note that δh, δr, and δe are defined as non-negative, symmetric, and
subadditive. Furthermore, when considered in conjunction, the three diversities also satisfy the co-
incidence property. Specifically, δh, δr, and δe satisfy the following four properties:

(1) Non-Negativity
∀x,y · δh(x,y)≥ 0 ∧ δr(x,y)≥ 0 ∧ δe(x,y)≥ 0

(2) Coincidence
∀x,y · δh(x,y) = 0 ∧ δr(x,y) = 0 ∧ δe(x,y) = 0 ⇐⇒ x = y

(3) Symmetry
∀x,y · δh(x,y) = δh(y,x) ∧ δr(x,y) = δr(y,x) ∧ δe(x,y) = δe(y,x)

(4) Subadditivity (Triangle inequality)
∀x,y,z · δh(x,y)+δh(y,z)≥ δh(x,z) ∧

δr(x,y)+δr(y,z)≥ δr(x,z) ∧
δe(x,y)+δe(y,z)≥ δe(x,z)

The proofs of the above four properties are straightforward and follow from the definition of δh,
δr, and δe as sums of absolute values. These properties enable the definition of the three types of
diversity as distance functions on the set of solutions.

Diversity Examples. In this section, we present an example with three pairs of solutions x and
y. Each pair represents a case where only one type of diversity, δh, δr, and δe respectively, has a
non-zero value. This highlights the necessity of breaking down the concept of diversity into three
orthogonal sub-attributes that have to be considered together when analyzing how differently stress
test cases exercise the system.

Consider the single-task system detailed in Table 3. Note that period and offset are not defined,
since j0 is aperiodic. Trivially, there are also no dependency or triggers relationships.

Figure 5 shows six different solutions for the system detailed in Table 3. In their schedules, we
omitted the arrival times and deadlines of j0, since they are not relevant for the definition of diversity.
Note that j0 is the only task of the system, and therefore it cannot be preempted. However, in these
example solutions, we introduce unnecessary task preemptions to meaningfully describe the concept
of diversity.

Consider the two solutions x1 and y1 shown in Figures 5.1 and 5.2. In this case, we note that
δh(x1,y1) = | 2−0 |+ | 9−7 |= 4. This reflects the fact that x1 is predicted to exercise the system
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priority duration min_ia max_ia deadline
j0 0 3 4 10 6

T = [0,9] c = 1

Table 3: Example system with one task

(1) Solution x1 (2) Solution y1 (3) Solution x2 (4) Solution y2 (5) Solution x3 (6) Solution y3

Fig. 5: Example solutions for the system in Table 3

in the interval [2,9], and y1 is predicted to do so in [0,7]. Furthermore, δr(x1,y1) = | 3− 3 | + |
4− 4 | = 0. This reflects the fact that in both x1 and y2 task j0 is predicted to preempt at runtime
in the same way, i.e., by two time quanta the first time, and by three the second time. Finally,
δe(x1,y1) = | 1−1 |= 0 since in both solutions j0 gets executed once.

Furthermore, consider the two solutions x2 and y2 in Figures 5.3 and 5.4. In this case, we note that
δh(x2,y2) = | 0−0 |+ | 7−7 |= 0. This reflects the fact that x2 and y2 are both predicted to exercise
the system in the same interval [0,7]. However, δr(x2,y2) = | 1− 5 | + | 4− 0 | = 8. This reflects
the fact that in x2 and y2 task j0 is predicted to preempt at runtime in different ways. Indeed, j0 is
preempted twice for 1 and 4 time quanta in x3, while in y2 it is preempted once for 5 time quanta.
Finally, δe(x2,y2) = | 1−1 |= 0 since even in this case j0 gets executed once in both solutions.

Finally, consider the two solutions x3 and y3 in Figures 5.5 and 5.6. In this case, we note that
δh(x3,y3) = | 0− 0 | + | 3− 3 | = 0. This reflects the fact that, considering only the first execution
of j0 that is present in both solutions, x3 and y3 are predicted to exercise the system in the same
interval [0,4]. Moreover, δr(x3,y3) = | 1−1 |+ | 0−0 |= 0. This reflects the fact that, considering
again the only common execution of j0, x3 and y3 are both predicted to preempt j0 once by 1 time
quanta. However, δe(x3,y3) = | 2− 1 | = 1 since in this case j0 gets executed twice in x3 and only
once in y3.
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6.4. Experiment Set-Up

To answer the research questions, we performed a series of experiments over the systems described
in Section 6.1. The experimental design is illustrated in Figure 6. Each experiment consisted of run-
ning GA, CP and GA+CP on a target system Σ for a number of times, each run generating a set X
of solutions. For GA, we used the implementation introduced by Briand et al. [Briand et al. 2006],
while for CP we used the constrained optimization model defined in our previous work [Di Alesio
et al. 2014]. Since the purpose of our empirical study is to compare the practical usefulness of the
three search strategies, we chose to run them in the way engineers would realistically do so in a real
testing environment. Based on our experience with industrial partners, we assumed that a reasonable
choice would be running GA and CP for ten hours. To do so, we set up GA to continuously generate
new solutions for ten hours, while we set up CP to terminate the search after ten hours. GA+CP was
instead run by performing one local CP search for each solution found by GA. We set a timeout of
two hours for these local searches, so that GA+CP was run for a total of 12 hours. However, note
that CP terminates the search upon proof of optimality. Since CP performed the local searches in a
significantly small subset of the search space (recall Figure 3), the local CP searches always termi-
nated with proof of optimality before the 2 hours timeout. Therefore, even if we instructed GA+CP
to run longer than GA and CP, the time taken by CP to terminate the local searches was practically
not significant with respect to the 10 hours taken by GA to generate its solutions. For each run of
GA, CP, and GA+CP, we recorded in X only the 100 solutions with the highest fitness/objective
value found. This is because each solution characterizes a stress test case, and 100 has proven to
be a satisfactory number of observations to meaningfully compare two distributions [Arcuri and
Briand 2011]. Similar to GA and CP, we instructed GA+CP to run 100 CP searches as described
in Section 5.2, each in the neighborhood of a solution found by GA.

Fig. 6: Experimental design: we run CP a single time recording the 100 solutions with highest
objective value, and calculating a single value for each metric. Then, we run GA and GA+CP 30
times recording the 100 solutions with highest fitness value, and calculating distributions for the
metrics.

Running the three search strategies for approximately the same amount of time allows us to
meaningfully compare effectiveness, number of solutions found, and diversity. Furthermore, during
the design of the experiment, we had to consider the inherent randomized behavior of GA in contrast
to the full determinism of CP. Indeed, GA finds solutions starting from a randomly chosen initial
population of individuals by applying crossover and mutation operators with a given probability,
while CP finds solutions by solving a constraint optimization problem. For this reason, while we
ran CP only once for each system, we ran GA, and consequently GA+CP 30 times on each system.
In this way, we could compute the comparison metrics distributions of the best solutions recorded
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over 30 runs. Since our research questions are directly related to attributes η , κ , N, and δ , for each
solution x∈X we computed the values of the metrics t, s, n, and m used to define such attributes. GA,
CP and GA+CP runs have been separately executed on a single Amazon EC2 m2.xlarge instance5.

6.5. Results and Discussion

In this section, we discuss the experimental results for the attributes η , κ , N, and δ for each subject
system. Each attribute is discussed through 15 box-and-whisker plots, one for each pair of metric
and system. In each plot, the x-axis reports the search strategies CP, GA, and GA+CP, respectively
denoted as C, G, and +. The y-axis reports instead the value for the comparison attribute. Each plot
is also complemented by two p-values from the non-parametric Wilcoxon statistical significance test
between GA+CP and CP (first row), and between GA+CP and GA (second row). Specifically, we
report the p-values from the Wilcoxon rank-sum test for the difference between GA+CP and GA,
and the Wilcoxon signed-rank test for the difference between GA+CP and CP. The former is a two-
sample test comparing two distributions, while the latter is a one-sample test, given the deterministic
nature of CP. In particular, we investigated the statistical significance of differences between CP and
GA/GA+CP by testing the null hypothesis that the median of the GA/GA+CP distributions are the
deterministic values obtained with CP. For all tests, we selected a level of significance α = 0.05.
Note that a centered dot (·) in place of a Wilcoxon test p-value indicates that the test has not been
performed. This happens when the two distributions considered for the test are identical, and hence
the effective sample size, i.e., the number of observation pairs with different values, is zero.

6.5.1. RQ1 — Efficiency. The first three columns in Table 4 report the efficiency η with respect to
s, n and m for GA+CP, GA, and CP, and for each subject system. The computation times for the
best solutions are reported in the format hh:mm. We observe that, on each system, GA+CP has a
worse efficiency than GA with respect to each metric. With the exclusion of ηn for ICS and UAV,
the difference in efficiency is also statistically significant as shown by the p-values below 0.05.
This result is expected because GA+CP performs a complete search in the neighborhood of GA
solutions, and therefore, the time GA+CP requires to find its best solution is in general higher than
that of GA. However, the difference between the average efficiency of GA+CP and GA is small from
a practical standpoint, and does not keep GA+CP from being far more efficient than CP. Specifically,
the difference between the ηs, ηn and ηm medians of GA and GA+CP vary from around 20 minutes
in ICS (Tables 4.1 to 4.3) up to 1.5 hour in HPSS (Tables 4.37 to 4.39). This difference has little
practical significance when compared to the ten hours duration of each run, and to the efficiency of
CP, that varies from 3.5 hours in ICS up to almost ten hours in HPSS. The statistical significance
of the difference between the efficiency of GA+CP and CP is also reflected in the p-value for the
signed-rank test, which is below 0.0001 for each metric and subject system. On average, the results
show that GA+CP is twice as fast than CP but only 20% slower than GA in finding the best solutions
x∗s , x∗n, and x∗m.

6.5.2. RQ2 — Effectiveness. The second three columns in Table 4 reports the effectiveness κ with
respect to s, n and m for GA+CP, GA, and CP, and for each subject system. We observe how, on
each system, GA+CP has equal or greater effectiveness than that of GA with respect to each metric.
This result is also expected, since GA+CP performs a complete search in the neighborhood of GA
solutions, and thus the solutions it finds are always equal or better than those of GA. We note how
GA+CP is significantly more effective than GA for two out of three metrics in most of the subject
systems, being so for all three metrics in GAP and HPSS. Moreover, for n and m, GA+CP also
achieves nearly the same effectiveness as CP in most of the subject systems. In particular, in ICS,
CCS and UAV, GA+CP achieves the same value as CP for κn in the first quartile (Tables 4.5, 4.14
and 4.23), and for κm in the second quartile (Tables 4.6, 4.15 and 4.24). On the other hand, for these
three subject systems, GA achieves the same effectiveness as CP on the second or third quartile on
average. Note that, in CCS and UAV, GA never achieves the same effectiveness as CP for the criteria

5 http://aws.amazon.com/
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ηs ηn ηm κs κn κm Ns Nn Nm

IC
S

(1) (2) (3) (4) (5) (6) (7) (8) (9)
< .0001 < .0001 < .0001 < .0001 < .3256 < .0001 < .0001 < .0001 < .0001
< .0001 .3403 .0026 .0730 .0062 < .0001 .2640 .1932 .1784

C
C

S

(10) (11) (12) (13) (14) (15) (16) (17) (18)
< .0001 < .0001 < .0001 < .0001 · · < .0001 < .0001 < .0001
< .0016 .0001 .0001 .1996 .0001 · .1996 .0001 ·

U
AV

(19) (20) (21) (22) (23) (24) (25) (26) (27)
< .0001 < .0001 < .0001 < .0001 · .0005 < .0001 < .0001 < .0001
.0133 .6309 .0013 < .0001 .3337 < .0001 < .0001 < .0001 < .0001

G
A

P

(28) (29) (30) (31) (32) (33) (34) (35) (36)
< .0001 < .0001 < .0001 < .0001 < .0001 < .0001 .5171 .5171 .5171
.0009 .0009 .0009 .0062 .0062 .0062 .0246 .0246 .0246

H
PS

S

(37) (38) (39) (40) (41) (42) (43) (44) (45)
< .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 .0004 < .0001
.0015 .0003 .0420 < .0001 < .0001 < .0001 .2215 .0605 .1324

Table 4: Experimental results of CP (C), GA (G), and GA+CP (+) for efficiency η , effectiveness κ ,
and number N of best solutions. Each box-and-whisker plot reports at the bottom the Wilcoxon test
p-values between GA+CP and CP (first value), and between GA+CP and GA (second value).
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n and m. In GAP, GA+CP achieves the same effectiveness as CP in the third quartile for all three
criteria, identifying a deadline miss in one third of the runs (Tables 4.31 to 4.33). In comparison,
GA found a deadline miss only in a single run. Finally, in HPSS, GA+CP does not match the
effectiveness of CP, but significantly improves the results of GA, having a first quartile that is around
30% larger than that of GA for s and m (Tables 4.40 and 4.42). Finally, we note that, with the
exception of κs for ICS and CCS, whenever there is a statistically significant, positive difference in
the effectiveness between CP and GA+CP, there is also one between GA+CP and GA. On average,
the results show that GA+CP is significantly more effective than GA, and is approaching CP in
finding the best solutions x∗n and x∗m.

6.5.3. RQ3 — Diversity. The last three columns in Table 4 report the number N of best solutions
with respect to s, n and m for GA+CP, GA, and CP, and for each subject system. We observe how,
on most systems, the number of best solutions found by GA+CP is similar to that of GA, even
though it is not consistently larger or smaller. We conjecture that the reason for this result stems
from the way GA+CP is designed to improve the solutions found by GA. Consider the scenarios
shown in Figure 7.

(1) Two or more solutions share the same
local optimum in their neighborhoods

(2) There is more than one local optimum
in the neighborhood of a solution

Fig. 7: Different scenarios of how GA+CP affects the number N of best solutions

Suppose that GA finds two distinct best solutions with respect to a metric, namely x and y. It could
be the case that the best solution in the neighborhoods of x and y is the solution z∗ . In this case,
the number N of best solutions found by GA+CP is smaller than that of GA, because N(GA) = 2,
and N(GA+CP) = 1 (Figure 7.1). Suppose now that GA finds only a single best solution x with
respect to a metric. It could be the case instead, that there is more than a single best solution in the
neighborhood of x, namely x∗1, x∗2, and x∗3. In this scenario, the number N of best solutions found
by GA+CP is larger than that of GA, because N(GA) = 1, and N(GA+CP) = 3 (Figure 7.2). In
general, the two scenarios can happen independently from other factors since they depend only
on the specific solutions found by GA in a subject system. For this reason, there is no clear trend
on whether GA+CP finds a larger or smaller number of best solutions than GA with respect to a
metric, as shown by the p-values. We note that, with the exception of GAP and UAV for Nn and Nm
(Tables 4.26 and 4.27), GA and GA+CP find a significantly larger number of best solutions than CP.
Note that in ICS, CP finds only a single best solution with respect to s, n, and m (Tables 4.7 to 4.9),
and does so for s and m in HPSS (Tables 4.43 and 4.45), and for s in CCS (Table 4.16). This result
is expected because of the randomized nature of GA, and consequently of GA+CP. Indeed, GA
finds its solutions by starting from a randomly selected initial population of 80 individuals [Briand
et al. 2006] and in our experiment we set up GA to continuously generate and evaluate solutions
for ten hours. Even in cases where no deadline misses are revealed, GA is likely to generate a large
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set of solutions from the initial population. On the other hand, CP is designed to find solutions
from scratch with a branch-and-bound search process that progressively assigns values to variables
in order to satisfy constraints [Apt 2003]. Furthermore, CP discards by design solutions that have
worse objective values than the current best known solution [Atamtürk and Savelsbergh 2005], and
is thus less likely to generate a large set of solutions. Recall that, in our analysis, each solution
characterizes a stress test case. Therefore, a large number of solutions is indicative of the size of
test suite generated by the search strategies. However, we note that N itself is not sufficient by itself
to give a practical measure for the test suite dimension, because many of the solutions found could
be redundant (Section 6.3). For this reason, the number N of best solutions needs to be considered
together with their diversity.

Table 5 reports the diversity δh, δr, and δe with respect to s, n and m for GA+CP, GA, and CP,
and for each subject system. We observe how, on each system, the three diversities of GA+CP are
similar to those of GA, even though they are not consistently larger or smaller. We conjecture that
the reason why GA+CP retains a number N of best solutions similar to GA also explains this result.
This means that the local search performed by CP in the neighborhood of solutions computed by
GA had no significant effect over the three types of diversity in our experiment. Therefore, in our
subject systems, the solutions found by GA+CP retained a diversity similar to that of GA. Note that,
as expected, in the cases where CP found only a single best solution with respect to a metric, the
three diversities have a null value. In GAP, CP found 82 best solutions with respect to s, n, and m,
as opposed to 100 for GA and GA+CP. However, the solutions found by GA and GA+CP are far
less redundant than those of CP, having a significantly higher shift, pattern, and execution diversity
(Tables 5.28 to 5.36). The same also holds for criterion s in UAV (Tables 5.19, 5.22 and 5.25),
where the three search strategies found 100 best solutions. We finally remark that the diversity is
not normalized, and the values are meant to be compared only within the same subject system and
the same type of diversity. Recall from Section 6.3 that δh is defined in terms of start and end
times of task executions, and depends mostly on the observation interval T . δr is defined in terms
of preemptions between task executions, and depends mostly on the task durations. Finally, δe is
defined in terms of number of task executions, and depends mostly on the ratio between T and
the minimum and maximum inter-arrival times of aperiodic tasks. Since T is usually much larger
than task durations, δh has higher values than δr and δe. For example, in ICS, the average value for
δh,s(GA+CP) is 83.43. This means that on average, the task executions in the best solutions with
respect to s found by GA+CP are shifted by 83.43 time quanta. Similarly, in ICS the average for
δr,s(GA+CP) is 41.08, meaning that the preemptions between task executions in the best solutions
with respect to s found by GA+CP differ on average by 41.08 time quanta. Finally, in ICS the
average for δe,s(GA+CP) is 1.56, meaning that on average the tasks in the best solutions with respect
to s differ by 1.56 executions.

6.5.4. R4 — Scalability. Figure 8 reports the trend of the efficiency η with respect to the system
size for GA+CP (downward triangle), GA (full dot), and CP (diamond). In each graph, the x-axis
represents the system size, while the y-axis reports the efficiency of the search strategies. Since we
have a set of five subject systems, we did not perform any statistical analysis, and we only limit
ourselves to a qualitative discussion. However, for the three criteria the efficiency of GA+CP seems
to scale linearly with system size. Indeed, since we represent the size as a logarithm (Section 6.1),
the x-axis in the three graphs has a logarithmic scale, while the y-axis has the usual linear scale. For
this reason, the apparently exponential shape of the efficiency trend is in practice linear. Such results
are encouraging as they suggest that GA+CP is more to scale to large systems, and therefore be an
advantageous solution given its practical trade-off between efficiency, effectiveness and diversity. In
particular, note that, even if in HPSS the difference in efficiency between GA+CP and GA is larger
than in the other subject systems, to this decrease in efficiency corresponds a significant increase
in effectiveness, as discussed before. Finally, we remark that we did not investigate the trend for κ ,
N, and δ with respect to system size. This is because, unlike η , these last three properties depend
primarily on the specific problem being solved, rather than on its size. For example, there could be
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δh,s δh,n δh,m δr,s δr,n δr,m δe,s δe,n δe,m

IC
S

(1) (2) (3) (4) (5) (6) (7) (8) (9)
< .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001
.4289 .0406 .5493 .7958 .1154 .9705 .9176 .4688 .8650

C
C

S

(10) (11) (12) (13) (14) (15) (16) (17) (18)
< .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001
.0070 .7394 .7283 .0536 .0948 .1297 .0003 .9352 1

U
AV

(19) (20) (21) (22) (23) (24) (25) (26) (27)
< .0001 .0761 .0761 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001
.2061 .1087 .1087 < .0001 .0002 .0002 < .0001 < .0001 < .0001

G
A

P

(28) (29) (30) (31) (32) (33) (34) (35) (36)
< .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001
.0021 .0021 .0021 .0034 .0034 .0034 .0913 .0913 .0913

H
PS

S

(37) (38) (39) (40) (41) (42) (43) (44) (45)
< .0001 < .0001 < .0001 < .0001 < .0001 .0004 < .0001 < .0001 < .0001
.8071 .3147 .0004 .9410 .4597 .5692 .0075 .7061 .0314

Table 5: Experimental results of CP (C), GA (G), and GA+CP (+) for diversity δh, δr, and δe with
respect to execution shift, execution pattern, and number of executions. Each box-and-whisker plot
reports at the bottom the Wilcoxon test p-values between GA+CP and CP (first value), and between
GA+CP and GA (second value).
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very large subject systems with few tasks missing their deadlines, and very small systems where
more deadline misses are revealed.

(1) ηs versus size (2) ηn versus size (3) ηm versus size

Fig. 8: Experimental results for efficiency η versus system size, comparing GA (N), CP (•), and
GA+CP (�)

6.5.5. Summary and Discussion. In light of these results, we conclude that, for the subject systems
in our experiment, GA+CP has been nearly as efficient as GA and practically as effective as CP,
while also generating solutions with a diversity similar to that of GA. Therefore, our results show
that, within the range covered by our subject systems, GA+CP retains the advantages of both the
efficiency and diversity of GA and the effectiveness of CP.

We conjecture that the reason for this result stems from the three factors discussed above. First,
GA+CP is designed to perform a complete local search in the neighborhood of the best solutions
computed by GA. Since GA+CP performs an additional search step over GA, it is expected that
GA+CP requires more time than GA to find its best solutions. However, since the search performed
during the CP step is confined in a neighborhood of restricted size, such local search is likely to
terminate within a short time. Therefore, the time that CP spends improving the solutions found
by GA is likely to have a negligible impact when compared to the time required by GA to find
them. This allows GA+CP to achieve an efficiency which is only slightly worse than that of GA.
Second, the search CP performs in the neighborhood of GA solutions is complete. Therefore, CP is
certain to either find the best solution within distance D from the one GA computed, or to terminate
proving that the solution found by GA is the best in its neighborhood. Furthermore, the search
heuristics detailed in our previous work [Di Alesio et al. 2013] further improve the CP speed in
optimizing the GA solutions. We performed a series of experiments on all subject systems varying
the neighborhood size D, and empirically found out that a value of D = 5 was sufficient for GA+CP
to achieve the same effectiveness as CP. However, we note that on different subject systems, CP
might need to explore a larger neighborhood of GA solutions to reach the effectiveness of CP, and
exploring such larger space might lead to a lower efficiency. Third, GA+CP is designed to search
in the neighborhood of solutions computed by GA. This means that the local search performed by
CP can find the same local optimum for different GA solutions (Figure 7.1), or more than one local
optimum for a single GA solution (Figure 7.2). However, in our experiments these two scenarios did
not have a significant impact on the diversity of solutions identified by GA, and resulted in GA+CP
retaining the same diversity as GA.

6.6. Threats to Validity

We identified three main threats that could affect the general validity of our conclusions. First,
the analysis of efficiency, effectiveness, diversity, and scalability is based on a set of five subject
systems. Although evaluating GA+CP with respect to GA and CP in a larger number of systems
would have mitigated this threat, the systems have been selected from different RTES domains and
vary in size and complexity.

Second, the size of the subject systems selected varies from 6 to 32 tasks, 3 to 9 of which are ape-
riodic. There could be much larger systems featuring hundreds of tasks, and for those the efficiency
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and effectiveness of GA+CP need to be investigated. This means that the conclusions drawn are
valid only for systems in the same size range of the subject systems used in the comparison. To mit-
igate these first two threats, we could have manually constructed a set of systems with an increasing
number of aperiodic tasks. In this way, we would have evaluated GA+CP in an arbitrarily large set
of artificial subject systems, with the largest systems matching in size the most complex industrial
RTES. However, this solution would have come at the cost of giving up the realistic nature of the
five subject systems we considered.

Third, the experiment set-up relies on design choices that can potentially have a significant impact
over the results. Specifically, we chose to run the search strategies for ten hours, and it is question-
able whether a longer time could have led to significantly different results. However, by looking at
the quartiles of the efficiency distributions, GA found its best results in significantly earlier than ten
hours. This means that in most cases, GA reached a plateau before ten hours, and the chances for it
to find a better solution if given more time are likely to be low. Furthermore, GA, and consequently
GA+CP, rely on parameters specific to the domain of evolutionary algorithms, i.e., the initial pop-
ulation size, the crossover and mutation probabilities, and the population replacement rate. Values
for these parameters different from the ones we used in the experiment could have led to signifi-
cantly different results. However, we used the same values used by the strategy proposed by Briand
et al. [Briand et al. 2006]. These values have been derived from the GA literature and specifically
tuned for deadline miss analysis. Also note that, as opposed to GA, CP is fully deterministic, hence
we expect the parameter sensitivity of GA+CP to be similar to that of GA. Finally, GA+CP also
depends on the neighborhood size D where CP improves the solutions found by GA (Section 5.2).
Our preliminary experimentation showed that a good compromise between efficiency and effective-
ness is a value of D around 1% of T . To fully mitigate this threat, we would need a systematic
investigation on the impact D has on efficiency, effectiveness, diversity and scalability.

7. CONCLUSIONS AND FUTURE WORK

Real-Time Embedded Systems (RTES) in safety critical domains have to react to external events
within strict timing constraints. Failure to do so poses great risks for the system safety, as even
a single task missing its deadline could result in a failure with severe consequences for the sys-
tem itself, its users, and the environment. For this reason, systematic performance evaluation is of
paramount importance to assess the system capability to operate safely. In RTES, the environment
state plays a major role in determining the inputs and their timing, that for this reason can never be
fully predicted prior to system execution. For assessing whether or not tasks will meet their dead-
lines at runtime, several approaches have been proposed. In particular, stress testing methodologies
have been developed to identify scenarios that are likely to reveal deadline misses. Due to the large
domain of system inputs, stress testing has often been cast as a search problem over the space of
task arrival times. Both Genetic Algorithms (GA), and Constraint Programming (CP) have been
used to solve this search problem, and have been shown to have their own practical advantages and
drawbacks. Specifically, while GA is more efficient, i.e., faster in generating test cases, CP is more
effective, i.e., it generates test cases that have a higher power to reveal deadline misses. Further-
more, GA also generates test cases that are more diverse, i.e., they have higher variety in terms of
time span and preemptions between task executions, and numbers of aperiodic tasks executions.

To provide a strategy suitable for large and complex systems, in this paper we propose a combi-
nation of GA and CP aimed at retaining the advantages of the two search strategies. Specifically,
we develop a combined GA+CP approach to support stress testing of task deadlines by identifying
worst case scenarios where tasks are more likely to miss such deadlines. Similar to GA and CP in
isolation, our approach expresses the generation of stress test cases as a search problem over the
space of task arrival times. In this way, each solution to the problem, i.e., each sequence of arrival
times for aperiodic task executions, characterizes one test case. The key idea behind our approach is
to improve the solutions computed by GA by performing a complete search with CP in their neigh-
borhood. Specifically, our approach consists of two separate stages. First, the search problem is
solved through GA, using a state-of-the-art implementation for generating scenarios that are likely
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to reveal task deadline misses [Briand et al. 2006]. This step produces an initial set of solutions, each
characterizing a stress test case. Second, for each solution found by GA, CP searches in its neigh-
borhood for better solutions through a Constraint Optimization Model derived from our previous
work [Di Alesio et al. 2014]. This step produces the final set of solutions.

We evaluated GA+CP on five subject systems from different RTES domains with varying size
and complexity. Our experimental validation highlighted four main results. First, GA+CP has an
efficiency close to that of GA. This is because solutions are initially computed with GA, and the
subsequent CP search is likely to terminate in a short time since it focuses on the neighborhood of
a solution, rather than on the entire search space. Second, GA+CP has an effectiveness practically
close to that of CP. This is because once GA has found a solution, CP further improves it by either
finding a better solution, or by proving its optimality within the neighborhood. Third, GA+CP has
a solutions diversity close to that of GA. This is because CP performs a local search in each neigh-
borhood of a GA solution, and the GA solutions have high diversity. Fourth, we identified in the
five systems of our experiment a linear trend between the efficiency, effectiveness, and diversity of
GA+CP and the system size. Even though the scalability of GA+CP needs to be further ascertained,
this result is encouraging, and is a significant step forward from our previous work [Di Alesio 2013]
towards a stress testing approach suitable for industrial-size problems.

In the future, we plan to carry out the scalability analysis of GA+CP on even larger systems, and
to continue exploring ways of combining complete and meta-heuristic search strategies to support
stress testing. In this sense, we identified two main research directions. First, we plan to integrate
in our approach a test suite optimization strategy to prioritize test cases that retain some property.
For instance, starting from the test suite generated by GA+CP, we could find the minimal set of test
cases that cover all the task executions predicted to miss a deadline. Such a strategy would allow
us to investigate each potential deadline miss executing the least possible number of test cases.
Second, we also plan to investigate multi-objective optimization to generate stress test cases that
simultaneously exercise different performance properties of the system. Currently, our approach
targets only task deadlines because we assume that even a single deadline miss poses a severe threat
to the system safety. However, some real-time applications might be able to recover from short
deadline misses, provided that enough computational resources are available. For these systems, we
could for instance modify the fitness/objective function of GA+CP in order to generate test cases
that push tasks to miss their deadlines while at the same time leading to high CPU usage. Such
test cases would be able to uncover scenarios where deadline misses are more severe, because they
happen when the system has insufficient CPU resources to recover in time.
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