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We present a Constrained Optimization Model

to support Performance Testing in RTES
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Performance Requirements in

Real Time Embedded Systems (RTES)

Generating worst-case schedules:

A novel application for COP

Results and Future Directions: 

Combining CP with GA



Safety-critical RTES have to meet strict Performance 

Requirements: they must be thoroughly tested
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RTES have concurrent interdependent tasks which 

have to satisfy Performance Requirements
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Tasks can trigger other tasks, or share 

computational resources with them

Each task has a deadline (i.e., latest 

finishing time) w.r.t. its arrival time

Some task properties depend on the 

environment, others are design choices
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Particular sequences of task arrival times can 

determine scenarios where Perf. Reqs. are violated

Stefano Di Alesio - 5/20

𝒋𝟎, 𝒋𝟏, 𝒋𝟐 arrive at 𝒂𝒕𝟎, 𝒂𝒕𝟏, 𝒂𝒕𝟐and 

must finish before 𝒅𝒍𝟎, 𝒅𝒍𝟏, 𝒅𝒍𝟐

𝒋𝟏 can miss its deadline 𝒅𝒍𝟏
depending on when 𝒂𝒕𝟐 occurs!
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Similar examples can be made for other requirements, 

e.g., bounds on Response Time and CPU Usage
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Our case study was a monitoring application for 

fire/gas leaks detection in offshore platforms

KM: Kongsberg Maritime

FMS: Fire and gas Monitoring System

Computing Hardware
(Tri-core Processor)

Real Time Operating System
(VxWorks)

Drivers
(SW-HW Interface)

~100 Drivers * ~5 kLoC

Control Modules
(Application Logic)

~5000 Modules * ~1 kLoC

External Hardware 
(Sensors + Actuators)

~500 devices

Human Operators
(Engineers)
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Drivers transfer data between external hardware 

(sensors and actuators) and control modules

PullData QueueIOBR IOQW IOQR IOBW BoxOut PushData

2.write
3.check

4.read

5.trigger

6.write 7.check

8.read

9.trigger

10.write
11.scan

12.read

Control Modules
(Application Logic)

~5000 Modules * ~1 kLoC

1.scan

13.send

External Hardware 
(Sensors + Actuators)

~500 devices

Periodic Task Aperiodic Tasks Aperiodic Tasks Periodic TaskResource Resource Resource

BoxIn
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PullData

1.scan

QueueIOBRBoxIn IOQW IOQR IOBW BoxOut PushData

2.write
3.check

4.read

5.trigger

6.write 7.check

8.read

9.trigger

10.write
11.scan

12.read
13.send

The FMS drivers have performance requirements on 

task deadlines, response time, and CPU usage

1) No task should miss its deadline

2) Response Time < 1 sec

3) CPU Usage < 20%

Periodic Task Aperiodic Tasks Aperiodic Tasks Periodic TaskResource Resource Resource
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PullData

1.scan

QueueIOBRBoxIn IOQW IOQR IOBW BoxOut PushData

2.write
3.check

4.read

5.trigger

6.write 7.check

8.read

9.trigger

10.write
11.scan

12.read
13.send

Our goal is to identify worst-case scenarios w.r.t. 

deadline misses, response time, and CPU usage

The arrival times of check depend on the buffers 

status, which in turn depends on the environment

The main variable impacting deadline misses, response 

time, and CPU usage, are the arrival times of check

Periodic Task Aperiodic Tasks Aperiodic Tasks Periodic TaskResource Resource Resource
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PullData

1.scan

QueueIOBRBoxIn IOQW IOQR IOBW BoxOut PushData

2.write
3.check

4.read

5.trigger

6.write 7.check

8.read

9.trigger

10.write
11.scan

12.read
13.send

Each worst-case scenario can characterize a test 

case in terms of the arrival times of check 

Therefore, we need a strategy to 

search for the arrival times of check

The check signal can be manipulated during 

testing (e.g. simulating the environment)

𝒄𝒉𝒆𝒄𝒌𝟏 = 𝟐𝟎 𝒎𝒔
𝒄𝒉𝒆𝒄𝒌𝟐 = 𝟒𝟖 𝒎𝒔
𝒄𝒉𝒆𝒄𝒌𝟑 = 𝟓𝟎 𝒎𝒔

𝒅𝒆𝒂𝒅𝒍𝒊𝒏𝒆_𝒎𝒊𝒔𝒔𝒆𝒔 = 𝑵/𝑨
𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆_𝒕𝒊𝒎𝒆 = 𝟗𝟎𝟎𝒎𝒔
𝒄𝒑𝒖_𝒖𝒔𝒂𝒈𝒆= 𝟐𝟓%

Periodic Task Aperiodic Tasks Aperiodic Tasks Periodic TaskResource Resource Resource



Job-shop scheduling analysis

Several techniques have been used for solving this 

problem, but each has its own drawbacks
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Constrained Optimization Problem (COP)

Static Properties of Tasks
(Constants)

Dynamic Properties of Tasks
(Variables)

Performance Requirement
(Objective Function)

OS Scheduler Behaviour
(Constraints)
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We cast the search for the arrival times of the check

signal leading to worst-case scenarios as a COP

The COP models a multi-core priority-driven preemptive 

scheduler with task triggering and dependencies [1,2,3,4]

[1] Di Alesio, S., Gotlieb, A., Nejati, S., and Briand, L. (2012). Testing deadline misses for real-time systems using constraint 

optimization techniques. In Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth International Conference on, pages 
764–769. IEEE.

[2] Nejati, S., Di Alesio, S., Sabetzadeh, M., Briand, L.: Modeling and analysis of CPU usage in safety-critical embedded systems to 

support stress testing. In: Model Driven Engineering Languages and Systems (MODELS), pp. 759–775. Springer (2012)
[3] Di Alesio, S., Nejati, S., Briand, L., and Gotlieb, A. (2013). Stress testing of task deadlines: A constraint programming approach. In 

Software Reliability Engineering (ISSRE), 2013 IEEE 24th International Symposium on, pages 158–167. IEEE.
[4] Di Alesio, S., Nejati, S., Briand, L., and Gotlieb, A. (2014). Worst-case scheduling of software tasks – a constraint optimization model 

to support performance testing. In Principles and Practice of Constraint Programming (CP 2014).



•Observation Interval:𝑻 = 𝟎,𝟗
•Number of cores: 𝒄 = 𝟐
•Set of Tasks: 𝑱 = {𝒋𝟎 , 𝒋𝟏, 𝒋𝟐, 𝒋𝟑}
•Priority of Tasks: 𝒑𝒓 𝒋𝒊 = 𝒊
•Period of Tasks: 𝒑𝒆 𝒋𝟐 = 𝟓
•Min/Max Inter-arrival time of Tasks: 

𝒎𝒏 𝒋𝟎 = 𝟓,𝒎𝒙 𝒋𝟎 = 𝟏𝟎
•Duration of Tasks: 𝒅𝒓 𝒋𝟎 = 𝟑
•Deadline of Tasks: 𝒅𝒍 𝒋𝟎 = 𝟕
•Triggering Relation: 𝒕𝒈 𝒋𝟎, 𝒋𝟏
•Dependency Relation: 𝒅𝒑(𝒋𝟏, 𝒋𝟐)
•Number of Periodic Task Executions: 

𝒕𝒆 𝒋 =
𝒕𝒒

𝒑𝒆 𝒋
, 𝒕𝒆 𝒋𝟐 =

𝟏𝟎

𝟓
= 𝟐
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Static Properties depend on the RTES design, 

and are modeled as Constants

Constants
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Time is discretized in our analysis: 

we solve an IP over finite domains

𝒄 = 𝟐



Independent
•Number of Aperiodic Task Exec.:

𝒕𝒆 𝒋 𝝐
𝒕𝒒

𝒎𝒙 𝒋
,
𝒕𝒒

𝒎𝒏 𝒋
,

𝒕𝒆 𝒋𝟎 𝝐 𝟏, 𝟐 ,𝒕𝒆 𝒋𝟎 = 𝟏
•Arrival time of Aperiodic Task Exec.: 

𝒂𝒕 𝒋,𝒌 𝝐 𝑻, 𝒂𝒕 𝒋𝟎,𝟎 = 𝟎, 𝒂𝒄 𝒋𝟑,𝟏 = 𝟕
•Active time of Task Executions: 
𝒂𝒄 𝒋, 𝒌,𝒑 𝝐 𝑻, 𝒑 𝝐 𝟎, 𝒅𝒓 𝒋 − 𝟏 ,
𝒂𝒄 𝒋𝟎, 𝟎, 𝟎 = 𝟎, 𝒂𝒄 𝒋𝟎, 𝟎, 𝟏 = 𝟐

Dynamic Properties depend on the RTES runtime 

behavior, and are modeled as Variables

Variables

𝒕𝒆 and 𝒂𝒕 of Periodic Tasks Executions are constants: 

𝒕𝒆 𝒋 =
𝒕𝒒

𝒑𝒆(𝒋)
, 𝒕𝒆 𝒋𝟐 =

𝟏𝟎

𝟓
= 𝟐

𝒂𝒕 𝒋,𝒌 = 𝒌 ∗ 𝒑𝒆 𝒋 , 𝒂𝒕 𝒋𝟐,𝟏 = 𝟏 ∗ 𝟓 = 𝟓
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Dependent
•Set of Aperiodic Task Executions: 
𝑲𝒋 = 𝟎, 𝒕𝒆 𝒋 − 𝟏 ,𝑲𝒋𝟎 = [𝟎]

•Start/End time of Task Executions: 
𝒔𝒕 𝒋, 𝒌 = 𝒂𝒄 𝒋, 𝒌,𝟎 , 𝒔𝒕 𝒋𝟎,𝟎 = 𝟎,
𝒆𝒏 𝒋, 𝒌 = 𝒂𝒄 𝒋, 𝒌,𝒅𝒓(𝒋) − 𝟏 ,
𝒆𝒏 𝒋𝟎, 𝟎 = 𝟑

•Deadline Miss of Task Executions: 
𝒅𝒎 𝒋,𝒌 = 𝒆𝒏 𝒋, 𝒌 − 𝒂𝒕 𝒋, 𝒌 − 𝒅𝒍 𝒋 ,
𝒅𝒎 𝒋𝟎,𝟎 = 𝟑− 𝟎− 𝟔 = −𝟑

•System Load: 𝒍𝒅 𝒕 =
 𝒋,𝒌,𝒑 𝒂𝒄 𝒋, 𝒌,𝒑 = 𝒕 , 𝒍𝒅 𝟎 = 𝟐,

𝒍𝒅 𝟑 = 𝟏
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Temporal Ordering
•Triggered tasks arrive when their 
triggering task ends: 

𝒕𝒈 𝒋𝟏, 𝒋𝟐 → 𝒆𝒏 𝒋𝟏,𝒌 = 𝒂𝒕 𝒋𝟐, 𝒌
•Dependent tasks cannot overlap:

𝒅𝒑 𝒋𝟏, 𝒋𝟐 → 𝒆𝒏 𝒋𝟏, 𝒌𝟏 < 𝒔𝒕 𝒋𝟐,𝒌𝟐
∨ 𝒆𝒏 𝒋𝟐, 𝒌𝟐 < 𝒔𝒕 𝒋𝟏,𝒌𝟏

Well-formedness
•A task cannot start before it has 
arrived:𝒂𝒕 𝒋, 𝒌 ≤ 𝒔𝒕 𝒋,𝒌

•A task cannot finish before it has 
completed:𝒔𝒕 𝒋,𝒌 + 𝒅𝒓 𝒋 ≤ 𝒆𝒏 𝒋, 𝒌

•Arrival times of aperiodic tasks are 
separated by min/max interarr. times: 
𝒂𝒕 𝒋,𝒌 − 𝟏 +𝒎𝒏 𝒋 ≤ 𝒂𝒕 𝒋,𝒌
≤ 𝒂𝒕 𝒋, 𝒌− 𝟏 + 𝒎𝒙 𝒋

The RTES scheduler is modeled through constraints 

among Static and Dynamic properties (1/2)

Constraints
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Multicore
•The system load is always less than 
or equal to the number of cores: 

𝒍𝒅 𝒕 ≤ 𝒄
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Scheduling Efficiency
• If a task is waiting, then either

•There are no free cores, or

•A dependent task is active, or
•A dependent task is preempted

•Waiting time of Task Executions: 
𝒘𝒕 𝒋,𝒌 = 𝒔𝒕 𝒋,𝒌 − 𝒂𝒕 𝒋, 𝒌 ,
𝒘𝒕 𝒋𝟐,𝟎 = 𝟎, 𝒘𝒕 𝒋𝟐,𝟏 = 𝟏

Priority-Driven Preemption
• If a task is preempted, then there are 
𝒄 higher priority tasks running

•Preempted time of Task Executions: 
𝒑𝒎 𝒋, 𝒌,𝒑 = 𝒂𝒄 𝒋,𝒌,𝒑 − 𝒂𝒄 𝒋,𝒌, 𝒑 − 𝟏 ,
𝒑𝒎 𝒋𝟎, 𝟎, 𝟏 = 𝟏, 𝒑𝒎 𝒋𝟎,𝟎, 𝟐 = 𝟎

The RTES scheduler is modeled through constraints 

among Static and Dynamic properties (2/2)

Constraints
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𝒑𝒎 𝒋,𝒌, 𝒑 ⋅ 𝒄 =  

𝒋𝟏 : 𝒑𝒓 𝒋𝟏 >𝒑𝒓 𝒋 , 𝒌𝟏, 𝒑𝟏

𝒂𝒄 𝒋,𝒌, 𝒑 − 𝟏 < 𝒂𝒄 𝒋𝟏,𝒌𝟏, 𝒑𝟏 < 𝒂𝒄(𝒋,𝒌, 𝒑)

𝒘𝒕 𝒋, 𝒌 = 𝒉𝒂 𝒋,𝒌 + 𝒅𝒂 𝒋,𝒌 + 𝒅𝒑(𝒋, 𝒌) 

𝒉𝒂 𝒋,𝒌 =

𝒅𝒂 𝒋, 𝒌 =

𝒅𝒑 𝒋, 𝒌 =

Time quanta where 𝒄 tasks with higher priority are active

Time quanta where tasks depending on j are active

Time quanta where tasks depending on j are preempted
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Deadline Misses

𝑭𝑫𝑴= 

𝒋,𝒌

𝟐𝒅𝒎(𝒋,𝒌) ,

𝑭𝑫𝑴 = 𝟐
−𝟑 +𝟐−𝟑+ 𝟐−𝟐 +𝟐−𝟏 +𝟐−𝟏 +𝟐−𝟏

The Performance Requirements of the RTES are 

modeled as objective functions to maximize

Objective Function 
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𝑭𝑫𝑴 should properly reward scenarios with deadline misses [5]

[5] L. Briand, Y. Labiche, and M. Shousha, “Using genetic algorithms for early schedulability analysis and stress testing in real-time 

systems”, Genetic Programming and Evolvable Machines, vol. 7 no. 2, pp. 145-170, 2006

Response Time
𝑭𝑹𝑻 = 𝒎𝒂𝒙

𝒋,𝒌
𝒆𝒏 𝒋, 𝒌 − 𝒎𝒊𝒏

𝒋,𝒌
𝒂𝒕 𝒋,𝒌 ,

𝑭𝑹𝑻 = 𝟖− 𝟎 = 𝟖

CPU Usage

𝑭𝑪𝑼 =
 𝒕 𝒍𝒅 𝒕 > 𝟎

𝒕𝒒
, 𝑭𝑪𝑼 = 𝟎. 𝟗
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We validated our approach on the FMS, and on 5 

other case studies in safety-critical domains 

Efficiency: time needed 

to generate test cases

Effectiveness: revealing power 

of worst-case scenarios

Diversity: capability to exercise the system 

w.r.t. different patterns (i.e., coverage)

1 solution for the COP = 1 test case

CP GA [5]

Effectiveness

Efficiency

Diversity

[5] L. Briand, Y. Labiche, and M. Shousha, “Using genetic algorithms for early schedulability analysis and stress testing in real-time 

systems”, Genetic Programming and Evolvable Machines, vol. 7 no. 2, pp. 145-170, 2006



Stefano Di Alesio - 19/20

The idea of GA+CP is to run complete searches with 

CP in the neighborhood of solutions found by GA [6]

CP GA GA+CP

Effectiveness

Efficiency

Diversity

Search Space

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒙𝟓

𝒙𝟔

𝒚𝟏

𝒚𝟐

𝒚𝟑

𝒚𝟒

𝒚𝟓

𝒚𝟔
𝒛𝟏

𝒛𝟐

𝒛𝟑

𝒛𝟒

𝒛𝟓

𝒛𝟔𝒚∗

𝒙∗

[6] Di Alesio, S., Nejati, S., Briand, L., and Gotlieb, A. (2014). Combining genetic algorithms and constraint programming to support 

stress testing. Technical report (currently under peer-review in TOSEM).

GA: 𝒙𝟏, 𝒚𝟏, 𝒛𝟏 evolve into 𝒙𝟔, 𝒚𝟔, 𝒛𝟔

CP: 𝒙𝟔, 𝒚𝟔, 𝒛𝟔 are optimized into 𝒙∗, 𝒚∗, 𝒛∗

= 𝒛∗



In summary, we showed how Constrained 

Optimization can support Performance Testing

The COP models the System Tasks,  

Scheduler, and Performance Requirements

The COP finds arrival times leading to 

worst-case scenarios → test cases
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Questions?

Combine GA and CP for a good trade-off in 

efficiency, effectiveness and diversity


