
ICS 2015

Richmond, 11/01/2015

Generating Worst-case Schedules with

Constrained Optimization
An Approach to Support Software Performance Testing

Stefano Di Alesio 1,2

Shiva Nejati 2

Lionel Briand 2

Arnaud Gotlieb 1

1 Certus Centre for Software V&V

Simula Research Laboratory

Norway

2 Interdisciplinary Centre for Reliability, Security and Trust (SnT)

University of Luxembourg

Luxembourg

1 2

We present a Constrained Optimization Model

to support Performance Testing in RTES

Stefano Di Alesio - 2/20

Performance Requirements in

Real Time Embedded Systems (RTES)

Generating worst-case schedules:

A novel application for COP

Results and Future Directions:

Combining CP with GA

Safety-critical RTES have to meet strict Performance

Requirements: they must be thoroughly tested

Stefano Di Alesio - 3/20

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

RTES have concurrent interdependent tasks which

have to satisfy Performance Requirements

Stefano Di Alesio - 4/20

Tasks can trigger other tasks, or share

computational resources with them

Each task has a deadline (i.e., latest

finishing time) w.r.t. its arrival time

Some task properties depend on the

environment, others are design choices

𝒋𝟐

𝒂𝒕𝟐𝟎

𝒅𝒍𝟐𝟎

𝒋𝟏

𝒂𝒕𝟏𝟎

𝒅𝒍𝟏𝟎

𝒋𝟎

𝒂𝒕𝟎𝟎

𝒅𝒍𝟎𝟎

𝒓𝟏𝟐

𝒂𝒕𝟐𝟏𝒂𝒕𝟎𝟏

𝒅𝒍𝟐𝟏𝒂𝒕𝟏𝟏

𝒄 = 𝟏

𝒕𝒓𝒊𝒈𝒈𝒆𝒓
𝒍𝒐𝒄𝒌

𝒕𝒓𝒊𝒈𝒈𝒆𝒓

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

0

1

2

3

4

5

6

7

8

9

Particular sequences of task arrival times can

determine scenarios where Perf. Reqs. are violated

Stefano Di Alesio - 5/20

𝒋𝟎, 𝒋𝟏, 𝒋𝟐 arrive at 𝒂𝒕𝟎, 𝒂𝒕𝟏, 𝒂𝒕𝟐and

must finish before 𝒅𝒍𝟎, 𝒅𝒍𝟏, 𝒅𝒍𝟐

𝒋𝟏 can miss its deadline 𝒅𝒍𝟏
depending on when 𝒂𝒕𝟐 occurs!

0

1

2

3

4

5

6

7

8

9

𝒋𝟐

𝒂𝒕𝟐

𝒅𝒍𝟐

𝒋𝟏

𝒂𝒕𝟏

𝒅𝒍𝟏

𝒋𝟎

𝒂𝒕𝟎

𝒅𝒍𝟎

Similar examples can be made for other requirements,

e.g., bounds on Response Time and CPU Usage

𝒄 = 𝟏 𝒋𝟐

𝒂𝒕𝟐

𝒅𝒍𝟐

𝒋𝟏

𝒂𝒕𝟏

𝒅𝒍𝟏

𝒋𝟎

𝒂𝒕𝟎

𝒅𝒍𝟎

𝒄 = 𝟏

𝒕𝒓𝒊𝒈𝒈𝒆𝒓

𝒕𝒓𝒊𝒈𝒈𝒆𝒓

Stefano Di Alesio - 6/20

Our case study was a monitoring application for

fire/gas leaks detection in offshore platforms

KM: Kongsberg Maritime

FMS: Fire and gas Monitoring System

Computing Hardware
(Tri-core Processor)

Real Time Operating System
(VxWorks)

Drivers
(SW-HW Interface)

~100 Drivers * ~5 kLoC

Control Modules
(Application Logic)

~5000 Modules * ~1 kLoC

External Hardware
(Sensors + Actuators)

~500 devices

Human Operators
(Engineers)

Stefano Di Alesio - 7/20

Drivers transfer data between external hardware

(sensors and actuators) and control modules

PullData QueueIOBR IOQW IOQR IOBW BoxOut PushData

2.write
3.check

4.read

5.trigger

6.write 7.check

8.read

9.trigger

10.write
11.scan

12.read

Control Modules
(Application Logic)

~5000 Modules * ~1 kLoC

1.scan

13.send

External Hardware
(Sensors + Actuators)

~500 devices

Periodic Task Aperiodic Tasks Aperiodic Tasks Periodic TaskResource Resource Resource

BoxIn

Stefano Di Alesio - 8/20

PullData

1.scan

QueueIOBRBoxIn IOQW IOQR IOBW BoxOut PushData

2.write
3.check

4.read

5.trigger

6.write 7.check

8.read

9.trigger

10.write
11.scan

12.read
13.send

The FMS drivers have performance requirements on

task deadlines, response time, and CPU usage

1) No task should miss its deadline

2) Response Time < 1 sec

3) CPU Usage < 20%

Periodic Task Aperiodic Tasks Aperiodic Tasks Periodic TaskResource Resource Resource

Stefano Di Alesio - 9/20

PullData

1.scan

QueueIOBRBoxIn IOQW IOQR IOBW BoxOut PushData

2.write
3.check

4.read

5.trigger

6.write 7.check

8.read

9.trigger

10.write
11.scan

12.read
13.send

Our goal is to identify worst-case scenarios w.r.t.

deadline misses, response time, and CPU usage

The arrival times of check depend on the buffers

status, which in turn depends on the environment

The main variable impacting deadline misses, response

time, and CPU usage, are the arrival times of check

Periodic Task Aperiodic Tasks Aperiodic Tasks Periodic TaskResource Resource Resource

Stefano Di Alesio - 10/20

PullData

1.scan

QueueIOBRBoxIn IOQW IOQR IOBW BoxOut PushData

2.write
3.check

4.read

5.trigger

6.write 7.check

8.read

9.trigger

10.write
11.scan

12.read
13.send

Each worst-case scenario can characterize a test

case in terms of the arrival times of check

Therefore, we need a strategy to

search for the arrival times of check

The check signal can be manipulated during

testing (e.g. simulating the environment)

𝒄𝒉𝒆𝒄𝒌𝟏 = 𝟐𝟎 𝒎𝒔
𝒄𝒉𝒆𝒄𝒌𝟐 = 𝟒𝟖 𝒎𝒔
𝒄𝒉𝒆𝒄𝒌𝟑 = 𝟓𝟎 𝒎𝒔

𝒅𝒆𝒂𝒅𝒍𝒊𝒏𝒆_𝒎𝒊𝒔𝒔𝒆𝒔 = 𝑵/𝑨
𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆_𝒕𝒊𝒎𝒆 = 𝟗𝟎𝟎𝒎𝒔
𝒄𝒑𝒖_𝒖𝒔𝒂𝒈𝒆= 𝟐𝟓%

Periodic Task Aperiodic Tasks Aperiodic Tasks Periodic TaskResource Resource Resource

Job-shop scheduling analysis

Several techniques have been used for solving this

problem, but each has its own drawbacks

Formal Verification Testing

Scheduling

Theory

Model

Checking

Performance

Engineering

Genetic

Algorithms

Basis
Mathematical

Theory

System

Modeling

Practice and

Tools

System

Modeling

Background Queuing Theory
Fixed-point

Computation

Profiling,

Benchmarking
Metaheuristics

Key Features Theorems
Symbolic

Execution

Dynamic

Analysis

Randomized

Search

Drawbacks
Assumptions,

Multi-Core

Complex

Modeling

Non

Systematic

Low

Effectiveness

SE

CP

Multi-core

Priority

Preemption

Dependency

Triggering

Stefano Di Alesio - 11/20

Constrained Optimization Problem (COP)

Static Properties of Tasks
(Constants)

Dynamic Properties of Tasks
(Variables)

Performance Requirement
(Objective Function)

OS Scheduler Behaviour
(Constraints)

Stefano Di Alesio - 12/20

We cast the search for the arrival times of the check

signal leading to worst-case scenarios as a COP

The COP models a multi-core priority-driven preemptive

scheduler with task triggering and dependencies [1,2,3,4]

[1] Di Alesio, S., Gotlieb, A., Nejati, S., and Briand, L. (2012). Testing deadline misses for real-time systems using constraint

optimization techniques. In Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth International Conference on, pages
764–769. IEEE.

[2] Nejati, S., Di Alesio, S., Sabetzadeh, M., Briand, L.: Modeling and analysis of CPU usage in safety-critical embedded systems to

support stress testing. In: Model Driven Engineering Languages and Systems (MODELS), pp. 759–775. Springer (2012)
[3] Di Alesio, S., Nejati, S., Briand, L., and Gotlieb, A. (2013). Stress testing of task deadlines: A constraint programming approach. In

Software Reliability Engineering (ISSRE), 2013 IEEE 24th International Symposium on, pages 158–167. IEEE.
[4] Di Alesio, S., Nejati, S., Briand, L., and Gotlieb, A. (2014). Worst-case scheduling of software tasks – a constraint optimization model

to support performance testing. In Principles and Practice of Constraint Programming (CP 2014).

•Observation Interval:𝑻 = 𝟎,𝟗
•Number of cores: 𝒄 = 𝟐
•Set of Tasks: 𝑱 = {𝒋𝟎 , 𝒋𝟏, 𝒋𝟐, 𝒋𝟑}
•Priority of Tasks: 𝒑𝒓 𝒋𝒊 = 𝒊
•Period of Tasks: 𝒑𝒆 𝒋𝟐 = 𝟓
•Min/Max Inter-arrival time of Tasks:

𝒎𝒏 𝒋𝟎 = 𝟓,𝒎𝒙 𝒋𝟎 = 𝟏𝟎
•Duration of Tasks: 𝒅𝒓 𝒋𝟎 = 𝟑
•Deadline of Tasks: 𝒅𝒍 𝒋𝟎 = 𝟕
•Triggering Relation: 𝒕𝒈 𝒋𝟎, 𝒋𝟏
•Dependency Relation: 𝒅𝒑(𝒋𝟏, 𝒋𝟐)
•Number of Periodic Task Executions:

𝒕𝒆 𝒋 =
𝒕𝒒

𝒑𝒆 𝒋
, 𝒕𝒆 𝒋𝟐 =

𝟏𝟎

𝟓
= 𝟐

0

1

2

3

4

5

6

7

8

9

𝒕𝒓𝒊𝒈𝒈𝒆𝒓

𝒋𝟎 𝒋𝟏 𝒋𝟑𝒓𝟏𝟐 𝒋𝟐

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

Static Properties depend on the RTES design,

and are modeled as Constants

Constants

Stefano Di Alesio - 13/20

Time is discretized in our analysis:

we solve an IP over finite domains

𝒄 = 𝟐

Independent
•Number of Aperiodic Task Exec.:

𝒕𝒆 𝒋 𝝐
𝒕𝒒

𝒎𝒙 𝒋
,
𝒕𝒒

𝒎𝒏 𝒋
,

𝒕𝒆 𝒋𝟎 𝝐 𝟏, 𝟐 ,𝒕𝒆 𝒋𝟎 = 𝟏
•Arrival time of Aperiodic Task Exec.:

𝒂𝒕 𝒋,𝒌 𝝐 𝑻, 𝒂𝒕 𝒋𝟎,𝟎 = 𝟎, 𝒂𝒄 𝒋𝟑,𝟏 = 𝟕
•Active time of Task Executions:
𝒂𝒄 𝒋, 𝒌,𝒑 𝝐 𝑻, 𝒑 𝝐 𝟎, 𝒅𝒓 𝒋 − 𝟏 ,
𝒂𝒄 𝒋𝟎, 𝟎, 𝟎 = 𝟎, 𝒂𝒄 𝒋𝟎, 𝟎, 𝟏 = 𝟐

Dynamic Properties depend on the RTES runtime

behavior, and are modeled as Variables

Variables

𝒕𝒆 and 𝒂𝒕 of Periodic Tasks Executions are constants:

𝒕𝒆 𝒋 =
𝒕𝒒

𝒑𝒆(𝒋)
, 𝒕𝒆 𝒋𝟐 =

𝟏𝟎

𝟓
= 𝟐

𝒂𝒕 𝒋,𝒌 = 𝒌 ∗ 𝒑𝒆 𝒋 , 𝒂𝒕 𝒋𝟐,𝟏 = 𝟏 ∗ 𝟓 = 𝟓

Stefano Di Alesio - 14/20

Dependent
•Set of Aperiodic Task Executions:
𝑲𝒋 = 𝟎, 𝒕𝒆 𝒋 − 𝟏 ,𝑲𝒋𝟎 = [𝟎]

•Start/End time of Task Executions:
𝒔𝒕 𝒋, 𝒌 = 𝒂𝒄 𝒋, 𝒌,𝟎 , 𝒔𝒕 𝒋𝟎,𝟎 = 𝟎,
𝒆𝒏 𝒋, 𝒌 = 𝒂𝒄 𝒋, 𝒌,𝒅𝒓(𝒋) − 𝟏 ,
𝒆𝒏 𝒋𝟎, 𝟎 = 𝟑

•Deadline Miss of Task Executions:
𝒅𝒎 𝒋,𝒌 = 𝒆𝒏 𝒋, 𝒌 − 𝒂𝒕 𝒋, 𝒌 − 𝒅𝒍 𝒋 ,
𝒅𝒎 𝒋𝟎,𝟎 = 𝟑− 𝟎− 𝟔 = −𝟑

•System Load: 𝒍𝒅 𝒕 =
 𝒋,𝒌,𝒑 𝒂𝒄 𝒋, 𝒌,𝒑 = 𝒕 , 𝒍𝒅 𝟎 = 𝟐,

𝒍𝒅 𝟑 = 𝟏

0

1

2

3

4

5

6

7

8

9

𝒋𝟎 𝒋𝟏 𝒋𝟑𝒓𝟏𝟐 𝒋𝟐𝒄 = 𝟐

𝒕𝒓𝒊𝒈𝒈𝒆𝒓

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

Temporal Ordering
•Triggered tasks arrive when their
triggering task ends:

𝒕𝒈 𝒋𝟏, 𝒋𝟐 → 𝒆𝒏 𝒋𝟏,𝒌 = 𝒂𝒕 𝒋𝟐, 𝒌
•Dependent tasks cannot overlap:

𝒅𝒑 𝒋𝟏, 𝒋𝟐 → 𝒆𝒏 𝒋𝟏, 𝒌𝟏 < 𝒔𝒕 𝒋𝟐,𝒌𝟐
∨ 𝒆𝒏 𝒋𝟐, 𝒌𝟐 < 𝒔𝒕 𝒋𝟏,𝒌𝟏

Well-formedness
•A task cannot start before it has
arrived:𝒂𝒕 𝒋, 𝒌 ≤ 𝒔𝒕 𝒋,𝒌

•A task cannot finish before it has
completed:𝒔𝒕 𝒋,𝒌 + 𝒅𝒓 𝒋 ≤ 𝒆𝒏 𝒋, 𝒌

•Arrival times of aperiodic tasks are
separated by min/max interarr. times:
𝒂𝒕 𝒋,𝒌 − 𝟏 +𝒎𝒏 𝒋 ≤ 𝒂𝒕 𝒋,𝒌
≤ 𝒂𝒕 𝒋, 𝒌− 𝟏 + 𝒎𝒙 𝒋

The RTES scheduler is modeled through constraints

among Static and Dynamic properties (1/2)

Constraints

Stefano Di Alesio - 15/20

Multicore
•The system load is always less than
or equal to the number of cores:

𝒍𝒅 𝒕 ≤ 𝒄

0

1

2

3

4

5

6

7

8

9

𝒋𝟎 𝒋𝟏 𝒋𝟑𝒓𝟏𝟐 𝒋𝟐𝒄 = 𝟐

𝒕𝒓𝒊𝒈𝒈𝒆𝒓

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

Scheduling Efficiency
• If a task is waiting, then either

•There are no free cores, or

•A dependent task is active, or
•A dependent task is preempted

•Waiting time of Task Executions:
𝒘𝒕 𝒋,𝒌 = 𝒔𝒕 𝒋,𝒌 − 𝒂𝒕 𝒋, 𝒌 ,
𝒘𝒕 𝒋𝟐,𝟎 = 𝟎, 𝒘𝒕 𝒋𝟐,𝟏 = 𝟏

Priority-Driven Preemption
• If a task is preempted, then there are
𝒄 higher priority tasks running

•Preempted time of Task Executions:
𝒑𝒎 𝒋, 𝒌,𝒑 = 𝒂𝒄 𝒋,𝒌,𝒑 − 𝒂𝒄 𝒋,𝒌, 𝒑 − 𝟏 ,
𝒑𝒎 𝒋𝟎, 𝟎, 𝟏 = 𝟏, 𝒑𝒎 𝒋𝟎,𝟎, 𝟐 = 𝟎

The RTES scheduler is modeled through constraints

among Static and Dynamic properties (2/2)

Constraints

Stefano Di Alesio - 16/20

𝒑𝒎 𝒋,𝒌, 𝒑 ⋅ 𝒄 =

𝒋𝟏 : 𝒑𝒓 𝒋𝟏 >𝒑𝒓 𝒋 , 𝒌𝟏, 𝒑𝟏

𝒂𝒄 𝒋,𝒌, 𝒑 − 𝟏 < 𝒂𝒄 𝒋𝟏,𝒌𝟏, 𝒑𝟏 < 𝒂𝒄(𝒋,𝒌, 𝒑)

𝒘𝒕 𝒋, 𝒌 = 𝒉𝒂 𝒋,𝒌 + 𝒅𝒂 𝒋,𝒌 + 𝒅𝒑(𝒋, 𝒌)

𝒉𝒂 𝒋,𝒌 =

𝒅𝒂 𝒋, 𝒌 =

𝒅𝒑 𝒋, 𝒌 =

Time quanta where 𝒄 tasks with higher priority are active

Time quanta where tasks depending on j are active

Time quanta where tasks depending on j are preempted

0

1

2

3

4

5

6

7

8

9

𝒋𝟎 𝒋𝟏 𝒋𝟑𝒓𝟏𝟐 𝒋𝟐𝒄 = 𝟐

𝒕𝒓𝒊𝒈𝒈𝒆𝒓

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

Deadline Misses

𝑭𝑫𝑴=

𝒋,𝒌

𝟐𝒅𝒎(𝒋,𝒌) ,

𝑭𝑫𝑴 = 𝟐
−𝟑 +𝟐−𝟑+ 𝟐−𝟐 +𝟐−𝟏 +𝟐−𝟏 +𝟐−𝟏

The Performance Requirements of the RTES are

modeled as objective functions to maximize

Objective Function

Stefano Di Alesio - 17/20

𝑭𝑫𝑴 should properly reward scenarios with deadline misses [5]

[5] L. Briand, Y. Labiche, and M. Shousha, “Using genetic algorithms for early schedulability analysis and stress testing in real-time

systems”, Genetic Programming and Evolvable Machines, vol. 7 no. 2, pp. 145-170, 2006

Response Time
𝑭𝑹𝑻 = 𝒎𝒂𝒙

𝒋,𝒌
𝒆𝒏 𝒋, 𝒌 − 𝒎𝒊𝒏

𝒋,𝒌
𝒂𝒕 𝒋,𝒌 ,

𝑭𝑹𝑻 = 𝟖− 𝟎 = 𝟖

CPU Usage

𝑭𝑪𝑼 =
 𝒕 𝒍𝒅 𝒕 > 𝟎

𝒕𝒒
, 𝑭𝑪𝑼 = 𝟎. 𝟗

0

1

2

3

4

5

6

7

8

9

𝒕𝒓𝒊𝒈𝒈𝒆𝒓

𝒋𝟎 𝒋𝟏 𝒋𝟑𝒓𝟏𝟐 𝒋𝟐

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

𝒄 = 𝟐

Stefano Di Alesio - 18/20

We validated our approach on the FMS, and on 5

other case studies in safety-critical domains

Efficiency: time needed

to generate test cases

Effectiveness: revealing power

of worst-case scenarios

Diversity: capability to exercise the system

w.r.t. different patterns (i.e., coverage)

1 solution for the COP = 1 test case

CP GA [5]

Effectiveness

Efficiency

Diversity

[5] L. Briand, Y. Labiche, and M. Shousha, “Using genetic algorithms for early schedulability analysis and stress testing in real-time

systems”, Genetic Programming and Evolvable Machines, vol. 7 no. 2, pp. 145-170, 2006

Stefano Di Alesio - 19/20

The idea of GA+CP is to run complete searches with

CP in the neighborhood of solutions found by GA [6]

CP GA GA+CP

Effectiveness

Efficiency

Diversity

Search Space

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒙𝟓

𝒙𝟔

𝒚𝟏

𝒚𝟐

𝒚𝟑

𝒚𝟒

𝒚𝟓

𝒚𝟔
𝒛𝟏

𝒛𝟐

𝒛𝟑

𝒛𝟒

𝒛𝟓

𝒛𝟔𝒚∗

𝒙∗

[6] Di Alesio, S., Nejati, S., Briand, L., and Gotlieb, A. (2014). Combining genetic algorithms and constraint programming to support

stress testing. Technical report (currently under peer-review in TOSEM).

GA: 𝒙𝟏, 𝒚𝟏, 𝒛𝟏 evolve into 𝒙𝟔, 𝒚𝟔, 𝒛𝟔

CP: 𝒙𝟔, 𝒚𝟔, 𝒛𝟔 are optimized into 𝒙∗, 𝒚∗, 𝒛∗

= 𝒛∗

In summary, we showed how Constrained

Optimization can support Performance Testing

The COP models the System Tasks,

Scheduler, and Performance Requirements

The COP finds arrival times leading to

worst-case scenarios → test cases

Stefano Di Alesio - 20/20

Questions?

Combine GA and CP for a good trade-off in

efficiency, effectiveness and diversity

