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Abstract

Failures in safety-critical Real-Time Embedded Systems (RTES) could result in catastrophic con-
sequences for the system itself, its users, and the environment. Therefore, these systems are subject to
strict performance requirements specifying constraints on real-time properties such as task deadlines,
response time and CPU usage. Lately, RTES have been shifting towards multi-threaded application
design, highly configurable operating systems, and multi-core architectures for computing platforms.
The concurrent nature of their operating environment also entails that the order of external events trig-
gering RTES tasks is often unpredictable. Such complexity in the system architecture, concurrency,
and environment renders performance testing increasingly challenging. Specifically, computing input
combinations that are intended to violate performance requirements, i.e., stress testing, is one of the
preferred ways for verifying RTES performance. These input combinations are referred to as stress
test cases, and, upon execution, are predicted to result in worst-case scenarios with respect to a per-
formance requirement. In RTES, stress test cases are usually characterized by sequences of arrival
times for aperiodic tasks in the subject system. Generating stress test cases is challenging because it
is hard to predict how a particular sequence of arrival times will affect the system performance, and
because the set of all arrival times for aperiodic tasks quickly grows as the system size increases. For
this reason, search strategies based on Genetic Algorithms (GA) have been used to find stress test
cases with high chances of violating performance requirements.

For practical use, software testing has to accommodate time and budget constraints. In the con-
text of stress testing, it is essential to investigate the trade-off between the time needed to generate
test cases (efficiency), their capability to reveal scenarios that violate performance requirements (ef-
fectiveness), and to cover different scenarios where these violations arise (diversity). Even though GA
are efficient, and capable of finding diverse solutions, they explore only part of the search space, and
their effectiveness depends on configuration parameters. This aspect justifies considering alternative
strategies, such as Constraint Programming (CP), that explore the search space completely. Further-
more, to enable effective industrial application, stress testing has to be capable of seamless integration
in the development cycle of companies. Therefore, it is both important to capture specific system and
contextual properties in a conceptual model, and to map such conceptual model in a standard Model
Driven Engineering (MDE) language such as UML/MARTE.

In this thesis, we address the challenges above by presenting a practical approach, based on CP, to
support performance stress testing in RTES. Specifically, we make the following contributions: (1) a
conceptual model, mapped to UML/MARTE, which captures the abstractions required to generate
stress test cases, (2) a constraint optimization model to generate such test cases, and (3) a combined
GA+CP stress testing strategy that achieves a practical trade-off between efficiency, effectiveness and
diversity. The validation of our work shows that (1) the conceptual model can be applied with a rea-
sonable overhead in an industrial settings, (2) CP is able to effectively identify worst-case scenarios
with respect to task deadlines, response time, and CPU usage, and (3) the combined GA+CP strategy
is more likely than GA and CP in isolation to scale to large and complex systems. The work in this
thesis opens up the exploration of further directions, involving the use of multi-objective optimization
to generate stress test cases that simultaneously exercise different performance properties of the sys-
tem, and of MiniMax analysis to derive design and configuration guidelines that minimize the risk to
violate performance requirements at runtime.
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Chapter 1

Introduction

Software in domains such as automotive, maritime, and aerospace is increasingly relying on safety-
critical systems, whose failure could result in catastrophic consequences for the system itself, its users,
and its environment. For this reason, the safety-related components of these systems are usually subject
to third-party certification to assess its operational safety. Among several different aspects, software
safety certification has to take into account performance requirements specifying how the system should
react to its environment, and how it should execute on its hardware platform. Such requirements often
specify constraints on real-time properties such as response time, jitter, task deadlines, and computational
resources utilization [Henzinger and Sifakis, 2006]. Specifically, widely used safety standards like IEC
61508 and IEC 26262 clearly highlight the importance of performance analysis and testing, stating it
is highly recommended for the highest Safety Integrity Levels [Brown, 2000]. However, safety-critical
applications are progressively being built as Real-Time Embedded Systems (RTES), whose overall goal
is monitoring, responding to, and controlling the external environment [Shaw, 2000].

As a consequence of advances in software technology, RTES have been shifting towards multi-
threaded application design, highly configurable operating systems, and multi-core architectures for com-
puting platforms [Kopetz, 2011]. The concurrent nature of the environment where these systems operate
also entails that the order of external events triggering the system tasks is often unpredictable [Gomaa,
2006]. Such complexity in the system architecture, concurrency, and environment renders performance
analysis and testing increasingly challenging. This aspect is reflected by the fact that most existing
approaches in Software Engineering prioritize the system functionality, though the degradation in per-
formance can potentially have more severe consequences than incorrect system responses [Weyuker and
Vokolos, 2000]. In industrial contexts, this problem is mostly tackled by Performance Engineering prac-
tices. This field extensively relies on profiling and benchmarking tools that dynamically analyze per-
formance properties [Jain, 1991]. These tools, however, are limited to producing a small number of
system executions and require manual inspection of those executions. In general, such tools provide
only a rough assessment of the system performance, and can only be part of a more comprehensive and
systematic approach for performance evaluation.
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1.1 Thesis Background
When it comes to assessing whether a software system fulfills its intended purpose, Software Engineering
distinguishes between the activities of validation and verification. Traditionally, the two are meant to an-
swer the questions “are you building the right system?" and “are you building the system right?" [Boehm,
1991], respectively. Indeed, validation ensures that the system meets the stakeholders’ requirements, and
verification checks whether the system has been built according to its specification. While the former
usually requires interaction with the stakeholders, the latter is based only on comparing the system arti-
facts with their specification. For this reason, research in software engineering has increasingly focused
over the years in devising automated or semi-automated methodologies for software verification.

There exist two fundamental, complementary approaches to software verification: namely formal ver-
ification and testing. Formal verification techniques aim at mathematically proving the correctness of a
system with respect to a set of properties derived from the requirements. Among several others, common
approaches for formal verification include Theorem Proving [Dijkstra et al., 1976], Static Analysis [Niel-
son et al., 1999], and Model Checking [Clarke et al., 1999]. One of the main challenges faced by formal
verification approaches is the so-called state (or combinatorial) explosion problem. Indeed, static ap-
proaches revolve around proving reachability properties over a graph of the possible system states, but
exhaustively exploring all the graph paths is generally infeasible for large systems. Despite the introduc-
tion of Bounded Model Checking as a way to mitigate state explosion [Biere et al., 2003], there is no
general solution to the problem [Clarke et al., 2012].

In contrast to verification, testing consists in investigating whether given input combinations (test
cases) produce their expected system outputs as described in a test oracle. If some test case produces an
unexpected output, then a failure, caused by a fault (or defect, or bug) in the implementation, was trig-
gered in the system execution. The main challenge of testing is the so-called coverage problem: in gen-
eral, observing the system outputs for all the possible inputs is infeasible for large systems. Furthermore,
some failures occur only in highly exceptional cases, and are hard to reproduce. Several techniques try to
overcome this limitation by automating the generation of test cases that reach high coverage. Popular ap-
proaches for testing are Mutation-Based Testing [King and Offutt, 1991] and Model-Based Testing [Dalal
et al., 1999].

In safety-critical domains, carefully testing system performance as well as functional behavior is
of paramount importance. It is common knowledge that, in general, test cases aimed at testing some
functionality can also be used to evaluate system performance. However, such an approach might lead
to overlooking crucial flaws in the system architecture or implementation, because it does not entail the
generation of test cases specifically meant to stress the system performance. Therefore, computing input
combinations that are intended to violate performance requirements has become one of the preferred ways
for testing RTES performance [Millett et al., 2007]. This technique is commonly known as stress testing,
where “ [. . . ] a system is subjected to unrealistically harsh inputs or load with inadequate resources with
the intention of breaking it" [Beizer, 2002].

In the context of safety-critical RTES, there are three main performance-related aspects that need
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to be thoroughly tested [Lee and Seshia, 2011], possibly by using stress testing approaches. These as-
pects concern hard real-time, soft real-time, and resource usage constraints, respectively. Hard real-time
constraints are often expressed as task deadlines, implying that system tasks must always terminate be-
fore their given completion time. Such strict constraints entail that even a single deadline miss severely
compromises the system operational safety. Soft real-time constraints imply looser bounds on task com-
pletion times, and are usually expressed as response time requirements, stating that the system should
respond to external inputs within a specified time. Failure to do so entails negative consequences over the
Quality of Service (QoS), undermining the system responsiveness. Finally, resource constraints specify
that the usage of some resources, e.g., bandwidth, CPU, or memory, has always to be below a certain
threshold.

Design analysis techniques have traditionally been used in RTES for early verification of performance
requirements. For this purpose, specific methods for design-time performance analysis have been pro-
posed [Gomaa, 2006]. Based on estimates for tasks execution times, these methods are mostly used to
assess the tasks schedulability at design time through formulas and theorems from Real-Time Scheduling
Theory [Tindell and Clark, 1994]. However, results from scheduling theory can be inaccurate, depending
on their assumptions regarding the target RTES. In general, extending these theories to multi-core pro-
cessors has been shown to be a challenge [David et al., 2010]. Therefore, in large and complex RTES,
scheduling analysis techniques are usually complemented by stress testing.

When stress testing a system, the goal is to find input combinations that are likely to pressure the
system to violate performance requirements, i.e., to miss task deadlines, to exhibit high response time,
or high CPU usage. These input combinations are referred to as stress test cases, which, upon execution,
are predicted to result in worst-case scenarios with respect to a performance requirement. In RTES, these
test cases are usually characterized by sequences of arrival times for aperiodic tasks in the system under
test.

Generating stress test cases is not trivial, because it is hard to predict how a particular sequence of
arrival times will affect the system performance. Furthermore, the set of all possible arrival times for
aperiodic tasks quickly grows as the system size increases, rendering exhaustive testing infeasible. For
this reason, search strategies are needed to effectively find stress test cases with high chances of violating
performance requirements. The discipline studying how to formalize Software Engineering problems in
a way that allows them to be solved with search strategies is commonly known as Search-Based Software
Engineering (SBSE), which specializes in Search-Based Software Testing (SBST) [Harman and Jones,
2001]. In SBST, the requirements to verify are usually formalized with a mathematical function that
drives the search towards optimal solutions, which in turn represent test cases.

The most recent [Afzal et al., 2009] contributions that have been proposed for automated stress
test cases generation are based on meta-heuristics and incomplete search, namely Genetic Algorithms
(GA) [Briand et al., 2005, Briand et al., 2006, Garousi et al., 2008]. GA are search heuristics mimicking
the process of natural evolution, often used to solve optimization or search problems. Although there
is no universally accepted definition of GA, most of these algorithms have in common four elements: a
population of chromosomes, selection according to fitness, crossover to produce new offspring and ran-
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dom mutation of individuals [Mitchell, 1998]. Chromosomes represent candidate solutions for a given
problem, and consist of a set of genes, each representing a particular value in the solution. A typical
GA starts by randomly generating a population of chromosomes, and calculating their fitness. GA then
performs a series of generations where pairs of chromosomes are selected according a given criterion.
Genes in the pair are crossed over to form two offspring, which are then randomly mutated. Finally, two
chromosomes in the population, chosen with decreasing probability according to fitness, are replaced by
the offspring. The main assumption behind GA is that good parents produce a good offspring, and, as in
biological evolution, only fit individuals survive and proliferate. Indeed, during a series of generations,
the fittest chromosomes tend to survive in the population, while the unfit are discarded.

For practical use, software testing has to accommodate time and budget constraints. In the context
of stress testing, it is essential to investigate the trade-off between the time needed to generate test cases
(efficiency), their capability to reveal scenarios that violate performance requirements (effectiveness), and
to cover different scenarios where these violations arise (diversity). It is known that, in most applications,
the incomplete and randomized nature of GA makes this class of algorithms efficient, and capable of find-
ing solutions highly diverse from each other [Goldberg, 2006]. Nonetheless, when it comes to devising a
stress testing approach suitable for use in large industrial systems, there are two main reasons that justify
the investigation of alternatives to GA. First, GA is an incomplete and randomized search strategy that
explores only part of the input space. This means that, depending on the choice for the initial population,
GA could converge to plateaus yielding suboptimal solutions that characterize ineffective test cases, i.e.,
test cases that are not likely to break task deadlines, response time, or CPU usage requirements. Second,
GA relies on a set of parameters that have a significant impact on the search and therefore need to be
tuned. Examples of these parameters are the probabilities of crossover, mutation and replacement, the
population size, and its initial chromosomes. A suboptimal choice for the value of these parameters could
once again lead the search to subspaces with ineffective solutions.

Addressing the above challenges leads us to consider strategies that both explore the search space
completely, and whose results do not depend on specific search parameters. Among all the techniques
fulfilling these two characteristics, Constraint Programming (CP) has been able to effectively solve search
problems in a variety of domains [Rossi et al., 2006], and therefore represents a good candidate for a
stress testing search strategy. Specifically, CP has successfully been used to generate best- and worst-case
schedules, especially in the domain of job-shop scheduling problems [Baptiste et al., 2001]. Furthermore,
CP is very well supported by both free and commercial tools that also provide APIs in several program-
ming languages for building and developing domain-specific applications [Benhamou et al., 2010]. This
last point is essential to develop any automated approach that aims at being used on industrial scale. CP
is a programming paradigm where relations among variables are expressed in form of constraints [Apt,
2003]. Specifically, CP can be used to solve Constraint Optimization Problems (COP), where the goal is
to find a solution which maximizes a given objective function under constraints. This is usually done by
branch and bound algorithms that, when combined with a complete labeling strategy over the domains
of variables, compute the global optimum of a COP. Branch-and-bound algorithms usually iterate over
three steps: (1 – branch) divide a set of candidate solutions into two or more partitions, (2 – bound)
compute bounds for the value of the objective function in one set of candidate solutions, and (3 – prune)
possibly discard sets of candidate solutions that are shown to be sub-optimal or infeasible. The com-
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mon representation of a branch and bound algorithm is a branching tree, since recursively applying the
branch step starting from the whole search space defines a tree structure whose nodes are the candidate
solutions, and whose edges are the node branches. Branch and bound algorithms are also supported by
search heuristics, i.e., problem-specific techniques used to speed up the search process, for instance by
specifying the selection policy for the node to branch at each iteration. Due to its completeness, the
search may take time to terminate and hence heuristics can be used to shorten the search time by provid-
ing a quicker convergence towards the global optimum. COP are represented in constraint models that
include constant values, variables, constraints, and an objective function. Solutions for such models are
found by constraint solvers, which implement solving algorithms that use techniques such as constraint
propagation and domain filtering, and often allow to specify of user-defined search heuristics.

When devising a stress testing approach that aims at being suitable for industrial use, there are aspects
to consider other than choosing the appropriate search strategy. First, even though RTES share some com-
monalities, they all require domain-specific configurations. This implies that, to enable effective stress
testing, a conceptual model capturing specific system and contextual properties is required. Abstracting
the main concepts needed for an analysis is indeed the first step in devising a generalizable approach
that is not tied to a specific system [Lindland et al., 1994]. Second, to enable effective industrial use,
approaches have to be capable of seamless integration in the development cycle of companies. Nowa-
days, Model Driven Engineering (MDE) has become popular in industry as a way to handle increasing
software complexity through the systematic use of models during development [Hutchinson et al., 2011].
To simplify its application in standard MDE tools, a conceptual model has to be mapped to a standard
modeling language. In the context of RTES, reasoning about performance requirements such as dead-
line misses, response time, and CPU usage requires the explicit modeling of time, which is one of the
key characteristics of the UML Profile for Modeling and Analysis of Real-Time and Embedded Systems
(UML/MARTE, in short MARTE) [OMG, 2011a]. MARTE is meant to support the specification, design,
and verification/validation of RTES, focusing on performance and scheduling analysis. Therefore, it rep-
resents the reference modeling framework when mapping the abstractions needed for stress testing to a
standard modeling language.

1.2 Thesis Contributions
In this thesis, we addressed the challenges above by presenting a practical approach, based on Constraint
Programming (CP), to support performance stress testing in Real-Time Embedded Systems (RTES).
Specifically, we make the following contributions:

1. A conceptual model to support stress testing in Real-Time Systems. We provide a conceptual
model that captures, independently from any modeling language, the abstractions required to sup-
port stress testing of task deadlines, response time, and CPU usage in RTES. We also provide a
mapping between our conceptual model and UML/MARTE, in order to simplify its application
in standard MDE tools. The subset of UML/MARTE that corresponds to out conceptual model
contains tagged values and stereotypes that extend UML sequence diagrams, which are popular for
modeling concurrent systems such as RTES. The conceptual model has been validated in a Fire
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and Gas monitoring System (FMS) for offshore platforms, concerning performance requirements
for safety-critical I/O drivers. The validation shows that the conceptual model can be applied in
industrial settings a practically reasonable overhead, and enables the definition of a search strat-
egy for worst-case scenarios with respect to performance requirements. This contribution has been
published in a conference paper [Nejati et al., 2012], and is discussed in Chapter 5.

2. A CP-based search strategy to identify worst-case scenarios in RTES. We cast the problem
of generating stress test cases for task deadlines, response time, and CPU usage as a Constraint
Optimization Problem (COP) over our conceptual model. The COP implements a preemptive task
scheduler with fixed priorities, and, upon resolution, generates worst-case scenarios that can be
used to characterize stress test cases. The COP is the result of a refinement process over four itera-
tions in two years. (1) First, we devised a COP implemented in COMET [Hentenryck and Michel,
2009], a constraint programming language that supports both modeling and search heuristics. In
that work, we addressed the verification of CPU Usage and response time requirements. This first
iteration has been published in a conference paper [Nejati et al., 2012]. (2) Then, we implemented a
second version of that model in the Optimization Programming Language (OPL) [Van Hentenryck,
1999], which, while retaining the same features as COMET, is also supported by a large commu-
nity. In that work, we focused on generating worst-case scenarios for task deadline misses. This
second iteration has been published in a workshop paper [Di Alesio et al., 2012]. (3) Subsequently,
we included a dedicated search procedure for a smarter labeling of variables, in order to provide a
faster convergence of the search towards optimal solutions. However, these first three versions of
the model included a variable boolean matrix showing tasks execution over time, which proved to
severely limit the efficiency of our model. This third iteration has been published in a conference
paper [Di Alesio et al., 2013]. (4) To overcome this weakness, we finally improved the data struc-
tures representing task executions by considering a discretized matrix, as opposed to a boolean
one, to represent task executions over time. This fourth iteration has been published in a confer-
ence paper [Di Alesio et al., 2014]. We validated the COP in the FMS, and in five other subject
systems from several safety-critical domains. The validation on the industrial system shows that
CP is effectively able to find scenarios that break task deadlines and violate response time and CPU
Usage requirements. On the other hand, the validation on the other five subject systems shows that,
when compared to GA, CP is more effective, but less efficient and generates stress test cases that
are less diverse. This contribution is discussed in Chapter 6.

3. A combined GA+CP search strategy to identify worst-case scenarios in RTES. We devise a
search strategy to generate stress test cases, namely GA+CP, that combines GA and CP to provide
higher scalability by retaining the efficiency and solution diversity of GA, and the effectiveness of
CP. The key idea behind GA+CP is to further improve the solutions computed by GA by performing
a complete search with CP in their neighborhood. In this way, GA+CP takes advantage of the
efficiency of GA, because solutions are initially computed with GA, and the subsequent CP search
is likely to terminate in a short time since it focuses on the neighborhood of a solution, rather than
on the entire search space. GA+CP also takes advantage of the diversity of the solutions found
by GA, because CP performs a local search in subspaces defined by GA solutions. Similarly,
GA+CP takes advantage of the effectiveness of CP since, once GA has found a solution, CP further
improves it by either finding the best solution within the neighborhood, or proving upon termination
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that no better solution exists. We validated GA+CP using the same five subject systems as GA and
CP in isolation. The validation shows that, in comparison with GA and CP in isolation, GA+CP
achieves nearly the same effectiveness as CP and the same efficiency and solution diversity as GA,
thus combining the advantages of the two techniques. This contribution has been accepted for
publication in a journal [Di Alesio et al., 2015], and is discussed in Chapter 7.

1.3 Thesis Outline
This thesis is organized in two Parts. Part I describes the theoretical foundations behind our work, and
defines the problem of identifying worst-case scenarios with respect to performance requirements. This
Part consists of two Chapters:

1. Chapter 2 – Background introduces the background of the thesis, ranging from Real-Time Em-
bedded Systems (RTES) to Model-Driven Engineering (MDE), Software Testing, and Mathemati-
cal Optimization.

2. Chapter 3 – Problem Description casts the problem of stress testing RTES performance to the
identification of worst-case scenarios. The problem is first illustrated through an example, and then
specified in a safety-critical industrial system from the maritime and energy domain concerning a
Fire and Gas monitoring System (FMS) for offshore platforms.

Part II describes the contributions of the thesis, comparing our work with similar approaches. This
Part consists of five Chapters:

1. Chapter 4 – An Overview of Stress Testing in Real-Time Embedded Systems introduces our
methodology for generating stress test cases in Real-Time Systems. The approach consists of
modeling the system in UML/MARTE, and searching for worst-case scenarios using a combination
of Genetic Algorithms (GA) and Constraint Programming (CP). These key components of our
approach are described in the following three sections.

2. Chapter 5 – UML/MARTE Modeling describes a conceptual model defining the key abstractions
to identify worst-case scenarios in RTES. The conceptual model maps to a subset of UML/MARTE,
and has been validated in the FMS.

3. Chapter 6 – Generating Stress Test Cases with CP describes how to cast the generation of
stress test cases as a Constrained Optimization Problem (COP). The Chapter details the constrained
optimization model, which is validated in the FMS, and on a set of five subject systems from other
safety-critical domains.

4. Chapter 7 – Generating Stress Test Cases with GA+CP describes how to combine CP with GA
for the purpose of identifying worst-case scenarios with respect to performance requirements. The
Chapter details the combined search strategy, which is validated on the same set of five subject
systems used to validate the CP-based strategy.

5. Chapter 8 – Discussion and Related Work places our work in the four main relevant areas of
the literature, namely methodologies for verifying RTES, Model-based and Software Testing ap-
proaches, and search techniques used for Mathematical Optimization.
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Finally, Chapter 9 – Conclusions and Future Work summarizes the thesis contributions and dis-
cusses perspectives on future work.
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Chapter 2

Background

Embedded Systems are cyber-physical systems built to perform a specific function, and whose software
components are tightly coupled to external hardware devices (Section 2.1). Several Embedded Systems
have to satisfy strict timing constraints on their computations, and are therefore referred to as Real-Time
Embedded Systems (RTES). RTES are extremely common in safety-critical domains, where even a single
failure can potentially result in catastrophic consequences. Therefore, RTES have to undergo a rigorous
quality assessment process to ensure that their operation does not pose uncontrolled risks for the users, the
system itself, and the environment. In particular, most RTES are developed as concurrent systems, where
functionalities are implemented in several interdependent tasks that interact with each other. Whether
these tasks are going to satisfy timing constraints at runtime is determined by their schedule, which is
in general unpredictable prior to the system execution. For this reason, the early development phases of
RTES are built upon scheduling (Section 2.1.1) and performance analysis techniques, in order to assess
as early as possible whether the system is likely to meet its expected performance at runtime. While
the former are mostly based on theorems from scheduling theory, the latter are based on design-time
analysis (Section 2.1.2) and simulation (Section 2.1.3).

RTES in industrial applications can be very large, and hence are developed using methodologies
aimed at managing software complexity. The most used of such methodologies is Model-Driven Engi-
neering (MDE), which simplifies the understanding of a system through the use of modeling abstrac-
tions (Section 2.2). Indeed, the key idea behind MDE is to use of models in order to abstract the system
details, and to specify such models using metamodels (Section 2.2.1). One of the most acknowledged
implementations of MDE is the Model-Driven Architecture, defined in 2001 by the Object Management
Group (OMG) (Section 2.2.2.1). MDA defines the Unified Modeling Language (UML) as the reference
language to describe models (Section 2.2.2.2). UML is a general-purpose framework suitable to develop
a variety of systems, but it is not expressive enough to represent every domain-specific abstraction. In the
context of RTES, UML is extended by the profile for Modeling and Analysis of Real-Time Embedded
Systems (UML/MARTE, in short MARTE) which defines abstractions specific to the RTES domain (Sec-
tion 2.2.2.3). In particular, MARTE provides modeling facilities to support the definition of scheduling
and performance analysis methodologies of RTES.
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However, design-time analysis is often not sufficient to guarantee that the system satisfies all of its
requirements during operation. This is because such analysis either makes restrictive assumptions, or
requires a description of the system at a level of detail which is hard to manage for large industrial
applications. For this reason, design-time techniques are often complemented with testing, which aims at
trying input combinations on a system implementation, and checking whether or not these inputs produce
expected outputs (Section 2.3). In particular, the principles of MDE have been applied to software testing,
leading to the definition of Model-Based Testing (MBT) as an approach to derive test cases from the
system specification (Section 2.3.1). In general, there exist several software testing techniques, most of
which focus on the system functional aspects. However, in the context of RTES, performance testing
plays a major role, because it complements design-time scheduling analysis in order to ensure that the
system satisfies its real-time constraints (Section 2.3.2). Performance testing in safety-critical RTES often
revolves around stress testing, intended as a way to test the system under the worst operating conditions.
Specifically, stress testing in RTES aims at finding sequences of inputs and their timing that maximize
the chance to break task deadlines or to violate constraints on response time and CPU usage. Finding
these sequences of inputs is hard in general, because the set of possible task arrival times is too large to be
exhaustively tested for large and complex systems. For this reason, stress testing is often cast as a search
problem, similar to several other problems in Search-Based Software Testing (SBST) (Section 2.3.3).

Search problems consist in finding, among a large set of alternatives, a set of solutions which ful-
fill given criteria. These criteria are often formulated as objective functions in some variables, so that
search problems consist in finding values for these variables which minimize or maximize the objective
functions. Mathematical Optimization is the discipline describing methods to solve these optimization
problems (Section 2.4). There exist several techniques in Mathematical Optimization, which mostly de-
pend on the shape of the objective function, and on the types of restrictions on the values for its variables.
For instance, Constrained Optimization focuses on problems where the variables of the objective function
are subject to constraints, such as logical relations among boolean values, and equalities or inequalities
among integer and real values (Section 2.4.1). Problems in Constrained Optimization are usually solved
through the means of Constraint Programming (CP), which is a declarative paradigm where relations
among variables are expressed in form of constraints. CP is largely used to solve both Constraint Opti-
mization Problems (COP) and Constraint Satisfaction Problems (CSP), which are particular COP where
the objective function is constant and the variables only appear in constraints. CSP are usually solved
using a tree representation of the variables values. The tree is then visited, backtracking each time an
assignment breaks a constraint (Section 2.4.1.1). Popular techniques to solve COP are also based on tree
search and backtracking, with the addition of keeping track of the best solution found (Section 2.4.1.2).
These tree search approaches for CP exhaustively explore the search space, and are guaranteed to return
the optimal solution upon termination. CP have been used in several applications, including scheduling
analysis, formal verification, and software testing. However, there exist practical problems which are
hard to formulate as COP, and even when modeled through constraints they can not be solved to opti-
mality in convenient time. For this reason, SBST often solves problems using randomized algorithms,
which start by generating solutions at random, and then manipulate them to achieve better values of the
objective function. These algorithms are collectively known under the name of Metaheuristics, and, in
contrast to methods in CP, do not exhaustively explore the search space (Section 2.4.2). Random Search
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and Hill-Climbing are the two most basic implementations of metaheuristics (Section 2.4.2.1). Random
Search randomly generates solutions from scratch, thus exploring the search space. On the other hand,
Hill-Climbing randomly generates a solution, and then improves it by making random modifications, thus
exploiting the initial solution. Exploration and exploitation are the two dimensions determining the trade-
off between gaining confidence that the search gets close to the global optimum, and finding a solution
with a satisfactory objective value. In general, all metaheuristics achieve such trade-off by combining
Random Search and Hill-Climbing. Genetic Algorithms (GA) have been successfully used in SBST due
to their flexibility in combining explorative and exploitative behavior (Section 2.4.2.2). GA start from
an initial set of randomly generated solutions, and then combine them through crossover and mutation
operators, mimicking the natural evolution process of individuals. In the context of SBST, GA have been
extensively used for test case generation, and in particular to generate stress test cases for RTES.

2.1 Real-Time Embedded Systems (RTES)
An Embedded System is a computing system where software and hardware are tightly coupled in order
to perform a specific function. In contrast to general-purpose systems such as personal computers, these
systems are integrated (embedded) as part of a larger system and often use specific computational and
external hardware. Embedded systems are the backbone of a variety of domains, ranging from microwave
ovens and washing machines, to satellite and nuclear power plant control systems [Barr and Massa, 2006].
Many embedded systems operate in safety-critical domains, where failures can result in severe damage
of the system itself, harming its users and the environment [Knight, 2002]. For instance, a malfunction
in an air traffic monitoring system can lead to an airplane collision with catastrophic consequences. Most
of the time, in safety-critical domains the correct behavior of embedded systems does not only depend on
the result of the computation, but also on the time when the result has been computed. For instance, the
Anti-lock Braking System (ABS) of a vehicle has to activate within milliseconds after the driver breaks,
as failure to do so may result in a vehicle skid due to the wheels locking up. In general, embedded
systems that have to satisfy these real-time constraints for computing the results are defined as Real-
Time Embedded Systems (RTES) [Burns and Wellings, 2001].

RTES usually interact with the external environment through sensors and actuators, as in Figure 2.1.
Sensors detect the status of the environment, and communicate it to the embedded software components
executed by the hardware computing platform. Based on this input, the system decides to activate one or
more actuators, whose operation changes the status of the environment. A typical example is a fire moni-
toring system: when smoke and temperature sensors detect a fire, the system activates the water sprinkles.
In this way, the sprinkles extinguish the fire, so that the sensors do not detect anymore anomalies in smoke
and temperature levels. Therefore, the system finally deactivates the sprinkles. This behavior fundamen-
tally implements a feedback control loop, similar to Proportional-Integral-Derivative (PID) controllers
from control theory [Lee and Markus, 1967]. Indeed, many devices that implement control loops, such
as digital controllers, signal processors, or sampled-data systems, are implemented as RTES [Liu et al.,
2000].

Similar to most software systems, RTES are designed in a layered architecture consisting of three
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Figure 2.1. Typical operating scenario of Embedded Systems, where external sensors examine the envi-
ronment state. Based on this input, the system activates some specific actuator, changing the state of the
environment

main tiers, as in figure Figure 2.2 [Noergaard, 2005].

(2.2.1) RTES without Operating
System

(2.2.2) RTES with Operating Sys-
tem and integrated middleware

(2.2.3) RTES with Operating Sys-
tem and higher-level middleware

Figure 2.2. Typical RTES architectures [Noergaard, 2005]

• Hardware Layer. This layer contains the physical components of the system, including external
hardware, such as sensors and actuators, and computing hardware, such as memory, processor, and
network. The system and application software layers contain instead the software components of
the system.
• System Software Layer. This layer contains device drivers, which provide interfaces to hardware

devices. Drivers implement basic functionality such as I/O and power management, allowing up-
per software layers of RTES to access hardware functions independently from hardware details.
Furthermore, the system software layer also contains the middleware, which is an abstraction layer
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that provides interoperability and connectivity mechanisms in systems with several applications.
In simple systems (Figure 2.2.1), the middleware is a thin layer mediating between device drivers,
and high-level applications. In larger systems, the functionalities of the middleware can be im-
plemented within a Real-Time Operating System (RTOS), as in Figure 2.2.2. A RTOS is a set of
software libraries managing hardware and software resources to provide common services for ap-
plications. Other than providing middleware functionalities, RTOS also implement management
functions for concurrent processes. Large RTES often have a distributed architecture, and consist of
several sub-systems where different system software layers communicate. In those (Figure 2.2.3),
the middleware is usually defined as the layer allowing interoperability between different RTOS.
• Application Layer. This layer implements the system logic, defining the type and scope of the

RTES. Software in the application layer decides what actions a RTES takes upon receiving input
from the sensors.

RTES are usually classified depending on how strict their real-time constraints are. These constraints
often specify requirements on two important activities in real-time process management, namely resource
allocation and dispatching. Resource allocation determines how much of the computational resources are
allocated to the system processes, while dispatching determines how often such resources are allocated
to the processes. Specifically, the literature defines hard-, soft real-time and best effort systems [Brandt
et al., 2003]. Figure 2.3 classifies real-time systems based on the relative tightness of resource allocation
and dispatching requirements, ranging in the graph axes from loose to tight.

Figure 2.3. Classification of Real-Time Embedded Systems based on resource allocation and dispatching
requirements [Lin et al., 2006]

• Hard Real-Time Systems have to respond to external inputs within strict time bounds. Failure to
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do so can have potential catastrophic consequences: indeed, most safety-critical systems are hard
real-time systems. Systems in the transport, maritime, energy, and military domains often fall in
this class. The timing requirements in these systems are often expressed in terms of deadlines, i.e.,
latest completion times for operations. Missing even a single deadline in a hard real-time system
invalidates the computation results, compromising system safety. For this reason, hard real-time
systems often have no fault tolerance with respect to missed deadlines.
• Soft Real-Time Systems do not have the same strict timing requirements as hard real-time systems,

as their output is valid to some extent even in cases where deadlines are missed. For this reason,
real-time constraints in soft-real time systems are often expressed in terms of response time rather
than deadlines. Media streaming systems are common examples of soft real-time systems: if the
incoming stream can not be decoded in time and a single frame is lost, end-users are not likely
to notice the missing frame. However, if several frames in a row are lost, the system Quality of
Service (QoS) suffers a negative impact. For this reason, soft real-time systems often present some
degree of fault tolerance with respect to unsatisfied real-time constraints. Soft real-time systems are
usually divided into four sub-categories, depending upon the extent to which resource allocation
and dispatching constraints are relaxed.

– Missed Deadline Soft Real-Time Systems can miss any number of deadline misses in case
no computational resource are available [Jones et al., 1997]. This is often the case for systems
that are not capable of adapting their QoS to the available resources, and for which a timely
computation of the results is not critical.

– Firm Real-Time Systems have more strict dispatching requirements than Missed Deadline
systems, because in their operational context late results have little or no value [Bernat et al.,
2001]. Usually, these systems can miss only some of their deadlines before their behavior is
deemed unsatisfactory. In particular, statistical firm real-time systems allow a given percent-
age of processes to miss their deadlines, limiting the number of consecutive deadline misses.
On the other hand, pattern-based firm real-time tasks allow deadline misses under user- or
system-defined patterns, for instance requiring at least m out of every k jobs to meet their
deadlines.

– Resource Adaptive Real-Time Systems are designed to adapt their resource usage, and
hence their QoS, based on the available resources [Burns, 1991]. These systems can either
adapt via discrete or continuous QoS levels. For example, in adaptive control systems control
task are allowed to use different sampling periods chosen from a discrete set. On the other
hand, a chess engine designed to play timed games continuously adapts its performance based
on the available time. The system always outputs a legal move before the time is over, even
though the more time it spends, the better the chosen move is. Note that, when resources are
insufficient, missed deadline systems miss their deadlines, while resource adaptive systems
adapt their performance to the available resources.

– Rate-Based Real-Time Systems are the most flexible in terms of resource allocation and
dispatching constraints, even though they require an average resource rate for correct oper-
ation [Jeffay and Bennett, 1995]. Specifically, if a large amount resources is provided, then
a long time may elapse before the next allocation. On the other hand, if less resources are
allocated, then the subsequent allocation has to happen within short time. In general, the
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flexibility of rate-based systems is achieved by temporarily storing the output data in buffers
until resources are available.

• Best-Effort Systems can run without a considerable amount of resources, and are subject to flex-
ible dispatching requirements. Within this class, non-interactive CPU-bound systems generally
need a significant amount of CPU, but they usually perform low-priority operations whose execu-
tion is not urgent. On the other hand, I/O-bound processes are often interactive, and even though
they use relatively little CPU, they need a faster dispatching in order to provide a satisfactory re-
sponsiveness. In general, best-effort systems are not subject to strict real-time constraints, and
hence fall outside the scope of this thesis.

RTES can also be orthogonally characterized by the way system tasks are activated, i.e., by the tasks
activation type. This distinction is the basis for the following definitions of time-triggered and event-
triggered real-time systems [Kopetz, 1991].

• Time-triggered Systems are controlled by the progress of time, as their tasks are activated at
regular intervals of time called periods. For instance, wind shear detection systems are time-
triggered: at regular interval of times, the system polls the external sensors to detect spikes in
the wind speed and direction.
• Event-triggered Systems are instead controlled by the arrival of events. These systems are char-

acterized by aperiodic execution, since the triggering events are often unpredictable. For instance,
the cruise control system of a vehicle is event-triggered: whenever the driver accelerates or breaks,
the system adjusts the cruising speed.

RTES are often defined either as hard real-time, or as soft-real time, depending on how critical is
a timely response for the system. However, large and complex systems can be both time-triggered and
event-triggered. This usually happens in systems where periodic behavior coexists with signals coming
from the environment. For instance, a flight control system periodically monitors air pressure and temper-
ature, but also activates wing flaps or air brakes when the pilot interacts with the flight controls [Pinedo,
2012].

2.1.1 Scheduling in RTES
RTES are often developed as concurrent systems, where several computations are executed in parallel by
the Real-Time Operating System. The basic abstraction for such computations is a process, i.e., a program
in execution managed by the system [Tanenbaum, 2009]. A Real-Time Operating System assigns a set
of resources to a process, such as CPU time to perform computations, and disk access to perform I/O
operations, and address space in memory. Therefore, that there exist some overhead in managing a
process, as each process is given its own resources. If multiple resources of the same kind are available,
such as CPU cores in a multi-core hardware platform, the system can exploit hardware parallelism to
efficiently run computations. However, if this is not the case, such as in single-core platforms, the RTOS
can constantly alternate the processes giving each process access to the resource for a short time. This
behavior, called pseudo-parallelism, is mostly used by legacy systems to emulate concurrent behavior
in single-core environments. Besides processes, operating systems also allow the definition of threads,
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i.e., light-weight processes whose creation and execution demands less overhead for the RTOS. Indeed,
threads belong to a parent process, so that each thread shares their parent resources. When reasoning
about performance in the context of RTES, the differentiation between processes and threads is often not
necessary. This is because the time overhead in managing processes or threads is negligible compared to
real-time constraints on the tasks duration, and on the time when tasks are activated. For this reason, in
this thesis we use the generic term task to indicate both processes and threads.

Following from the classification of RTES based on the activation type, the literature defines four
main types of tasks [Sprunt et al., 1989].

• Periodic tasks are activated at regular interval of times, since they have a specific occurrence
frequency. Tasks in time-triggered systems are periodic.
• Aperiodic tasks can be activated at any time instant by a triggering event. In general, we say that an

aperiodic task arrives when its triggering event activates it1. Tasks in event-triggered systems are
aperiodic. Specifically, Unbounded aperiodic tasks are triggered by a number of events for which it
is not possible to establish an upper bound. On the other hand, Bursty aperiodic tasks are triggered
by a bounded number of events. In general, events triggering aperiodic tasks may arrive with an
arbitrarily short distance between them. In some cases, it is possible to determine the minimum
and maximum intervals of time that separates two consecutive executions of aperiodic tasks. In
this case, the task is said to be sporadic. When analyzing the execution of tasks, the minimum and
maximum intervals of time separating two executions can be assumed equal to the smallest and the
largest intervals of time considered by the analysis, respectively. For this reason, in this thesis we
use the term aperiodic to also describe sporadic tasks.
• Singular tasks are executed only once. In general, they are either periodic tasks whose period is

equal to the total execution time of the system, or aperiodic tasks whose triggering event is known
to be fired only once. Tasks implementing an infinite loop are usually also singular.

The temporal requirements and constraints that regulate tasks execution are usually represented as
task attributes, which we describe hereby [Sprunt et al., 1989].

• Period. The period specifies how often a periodic task is activated. The task period is inversely
proportional to its frequency in time.
• Minimum and Maximum Interarrival Time. The minimum and maximum interarrival times

specify the smallest and the largest intervals of time separating two consecutive executions of
aperiodic tasks.
• Arrival Time. The arrival time is the moment when a task is activated. Note that this definition

implies that the arrival time of periodic tasks is known prior to the execution of the system, as it
is function of its period. On the other hand, the arrival time of aperiodic tasks is only known at
runtime when the corresponding triggering events occur.

1 In the literature, the most common nomenclature is that periodic tasks are activated (at regular intervals of time), while
aperiodic tasks arrive (when some event triggers them). To avoid confusion, in this thesis we do not distinguish between the
two terms, since usually periodic tasks are activated by events sent by RTOS, and the arrival of aperiodic tasks corresponds to
their activation.
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• Offset. The offset specifies the time, counted from when the system starts, when the first occur-
rence of a periodic task arrives. Usually, the period of the most important periodic tasks start as
soon as the system is executed, and hence their offset is zero. However, there exist some periodic
tasks which are designed to wait some time before their period starts, usually to allow the RTOS to
allocate resources necessary for their execution.
• Release. The release specifies the time, counted from its arrival time, when a task can start being

executed. In general, critical tasks are executed as soon as they are activated. However, there exist
some tasks which are designed to wait some time after their arrival before starting. Similar to the
case of tasks with non-zero offsets, this is to allow resource allocation from the RTOS. Furthermore,
we also say that a task is ready for execution upon its arrival time, plus its release time. Note that,
in the literature, arrival times are sometimes called release times. However, the definitions we gave
imply that the arrival time of a task is equal to its release time only if its release is zero.
• Delay. The delay specifies the time that has to occur between the execution of two occurrences

of the same task. In general, when a task finishes its execution, its next occurrence is executed as
soon as it is ready for execution, and there are available computing resources. However, in some
cases, a task might be designed to wait some time after the completion of its preceding occurrence,
usually to avoid monopolizing the RTOS resources.
• Duration. For scheduling purposes, the duration represents the longest time a task takes to execute

its code when there is no interruption. This is often referred to as Worst-Case Execution Time
(WCET). In general, the WCET for a task is unknown since it depends on a series of context
factors including software libraries, programming languages, external and computational hardware.
However, there exist several techniques to estimate the WCET (Section 2.1.2).
• Deadline. The deadline specifies a constraint on the completion time of a task, and is expressed

relative to the time when a task has been activated. In general, every task has to complete before
its deadline, as failure to do so poses a severe threat on the system safety.
• Priority. The priority is a value that represents the relative importance between tasks in the sys-

tem. Higher priority tasks have execution precedence over lower-priority ones, which might get
interrupted (preempted) if there are not enough computational resources available for concurrent
execution.

In large RTES, tasks also interact with each other to implement complex functionalities, which re-
quire advanced features such as synchronization and communication. For example, tasks can also share
computational resources with exclusive access. This is common in case of locks upon critical sections,
whose access is usually synchronized by semaphores. Note that tasks sharing the computational resource
can not run in parallel. In this case, we say that the tasks depend on each other. Another common type of
task interaction happens if a task, during its execution, can trigger other tasks. This is common in cases
when, due to particular conditions, the triggering task has to perform additional operations which take
place in the triggered tasks [Andrews, 1991]. In this case, we say that the triggering task triggers the
triggered task2.

2 Note that, when discussing tasks in generic contexts, we say that tasks are interdependent to mean that they interact with
each other through dependencies, triggering, or both.
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In general, a task j consists of an ordered list [a1,a2, . . .an] of operations ai executed in sequential
order. We refer to these operations as task activities. At the lowest level of abstraction, an activity is
a single statement in the source code of a task. For this reason, arrival times, durations, releases, and
delays, can also be considered at activity-level. For example, the duration of an activity is its WCET.
Similarly, the delay time of an activity ai is the time expected to elapse between the completion of ai,
and the start of ai+1. Since activities are executed in sequential order, this means that the arrival time
of an activity ai is the time when the preceding activity ai−1 finishes executing, plus the delay of ai−1.
Finally, the release of an activity a is the time, counted from its arrival time, that a has to wait before
being able to execute. Note that release and delay times between activities usually correspond to sleep
calls in the task source code. Task interactions can be considered at activity-level as well. In this case,
an activity within a task can depend on an another activity in a different task, can trigger an activity in
a different task, or can trigger another task. For example, an activity can trigger another activity of a
waiting task by sending a specific message to that task, or can trigger a new task by launching it. Note
that, for scheduling purposes, a task j = [a1,a2, . . .an] with priority p consisting of n activities ai can
be considered as a sequence [ j1, j2, . . . jn] of n tasks with priority p, where the duration of ji is equal to
the duration of ai, and where ji triggers ji+1. In this case, each task ji inherits the dependencies and
triggering relationships of the corresponding activity ai. Also note that this property holds under the
assumption that the RTOS overhead for managing tasks in negligible compared to their execution and
interarrival times. However, this assumption is realistic in most RTES, as discussed in the beginning of
this section. Given the property above, when not specified otherwise, in this thesis we only consider tasks
and task-level interactions.

The collection of tasks that constitute a system is called the system task set, and we refer to the set
of all task arrival times in a task set as arrival pattern. When a task set is executed, the operating system
assigns tasks to the free CPU cores. If there are more tasks available for execution than CPU cores,
the RTOS decides when and which task to schedule for execution. This operation is called scheduling,
and produces a schedule, i.e., an order in which tasks are executed, and possibly preempted3. RTOS
implement different scheduling algorithms to schedule concurrent tasks according to different scheduling
policies that specify the logic behind task scheduling. The main purposes of a scheduling algorithm is to
minimize resource starvation, and to ensure fairness amongst the executing tasks.

There exists a variety of scheduling algorithms for RTOS, each serving different purposes depend-
ing on the type and goals of the RTES. A common way to classify scheduling algorithms is based on
when the decisions to schedule tasks for execution are taken. Off-line scheduling algorithms implement
static policies according to a predefined schedule. This schedule is usually generated starting from the
task set hyper-period, i.e., the least common multiple among periods of tasks. At runtime, the RTOS
dispatches tasks according to the schedule, periodically repeating the hyper-period schedule. Off-line
algorithms require the task properties to be known at design time, and for this reason are mostly suitable
for periodic task sets. These algorithms require very low runtime overhead, but have little flexibility with
respect to aperiodic tasks, whose schedule can not be predetermined prior to execution. An example of

3 Note that, for scheduling purposes, a task is an abstraction for a piece of code which is executed sequentially. For this
reason, in this thesis we do not consider concurrency within tasks, but rather only concurrency among tasks.
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off-line scheduling policy is the Round-Robin (RR), where tasks are cyclically executed according to
predefined time slots. On-line scheduling algorithms instead dynamically perform scheduling decisions
at runtime [Buttazzo, 2011]. In particular, task attributes, such as deadlines, periods, and priorities, are
used by the RTOS scheduler to decide what task to execute at each time. In on-line algorithms, tasks are
usually preempted if there are higher priority tasks ready for execution, but not enough computational
resources to run them. For this reason, most on-line algorithms are defined as preemptive scheduling algo-
rithms. One of the most common classifications of on-line algorithms is based on whether task priorities
are fixed (Fixed Priority Scheduling) or they can be modified at runtime (Dynamic Priority Scheduling).
For instance, in the Deadline Monotonic (DM) and Rate Monotonic (RM) algorithms, priorities are in-
versely proportional to task deadlines and periods, respectively [Liu and Layland, 1973]. However, task
priorities can also be assigned dynamically and change at runtime. The Earliest Deadline First (EDF)
is an example of Dynamic Priority Scheduling algorithm, which periodically assigns the highest priority
to the task with the closest deadline [Dertouzos and Mok, 1989]. On-line schedulers can implement ad-
vanced features, such as resource reclaiming in case that a task finishes before its estimated WCET. The
reclaimed resources can then be used for executing other tasks, or to lower the CPU speed in order to
save power [Bernat et al., 2004]. On-line scheduling algorithms are flexible enough to handle aperiodic
tasks, but a cost of a larger overhead for determining the tasks schedule.

Similar to the majority of commercial software systems, RTES have to undergo a rigorous quality
assessment process before being deployed. This is especially true for safety-critical systems, where
incorrect runtime behavior can not be tolerated. The quality assessment in RTES is mostly performed
through the activities of static analysis (Section 2.1.2), simulation (Section 2.1.3), and testing4.

2.1.2 Static Analysis in RTES
Static analysis techniques reason over abstractions of the system, and do not require its implementation.
For this reason, they can be applied even at design-time, provided that the system details are known.
There exist five main types of static analyses in RTES, mostly based on Scheduling Theory [Coffman
and Bruno, 1976]. In scheduling theory, a schedule is defined as feasible iff every task in it meets its
deadline. Furthermore, a task set is defined as schedulable iff there exists a feasible schedule for some
arrival pattern. Based on these definitions, Scheduling Theory aims at determining whether or not a task
set is schedulable. This is mostly done through scheduling analysis techniques, which use proofs by
construction or mathematical methods called schedulability tests. Indeed, for off-line scheduling, a task
set can be deemed schedulable upon a proof by construction, i.e., by constructing a feasible schedule.
On the other hand, schedulability tests are sets of necessary or sufficient conditions for a task set to be
schedulable. Whenever such conditions are both necessary and sufficient, the schedulability test is said
to be exact. There exist schedulability tests for most scheduling algorithms used in practice [Buttazzo,
2011]: the most common are the Utilization-based Analysis (UBA) [Liu and Layland, 1973] and the Re-
sponse Time Analysis (RTA) [Joseph and Pandya, 1986]. The UBA provides a sufficient, non-necessary
condition for the schedulability of a task set, based on the definition of a task critical instant as the task

4 Testing of RTES is discussed in Section 2.3, where we introduce software testing. Indeed, most of the principles and
strategies for testing software systems also hold in the domain of RTES.
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arrival time that leads to its latest completion time. A critical instant for any task occurs whenever a task
arrives simultaneously with every other higher priority task. In this way, the case when all tasks arrive
simultaneously represent the worst-case scenario, as more critical instants occur at the same time. The
RTA provides an exact condition for the schedulability of a set of tasks based on a recursive formula
calculating the time when each task end. Once these times are known, they can be compared to task
deadlines to determine the schedulability of the task set.

Scheduling analysis methods are based upon a static description of the system, including the tasks
Worst-Case Execution Times. However, the problem of obtaining upper bounds for execution times of
programs is undecidable, as it can be reduced to the halting problem. WCET closely depend on the worst-
case input for tasks, which are often unknown and hard to predict. Therefore, tasks WCET have to be
estimated, as providing their actual value is practically infeasible. Nonetheless, the validity of scheduling
analysis results depend on the how accurate the estimates of tasks Worst Case Execution Times are.
Indeed, if these estimates are too pessimistic, a task can be predicted to miss a deadline in a scenario that
will not happen at runtime because the task will not take as long as expected to execute. Similarly, if
WCET estimates are too optimistic, a task that is predicted not to miss a deadline will do so at runtime
because it will take longer than expected to execute. For this reason, providing reliable estimates for
tasks WCET is a fundamental step to enable effective RTES analysis. This activity is commonly known
under the name of Worst-Case-Execution Time Analysis (WCET Analysis), whose main approaches are
described hereby [Wilhelm et al., 2008].

• Static WCET Analysis (SA). This approach estimates WCET by statically analyzing the task
source code, together with hardware models specifying the functional and temporal behavior of
the computing platform. SA is based on techniques such as flow analysis to compute loop bounds,
and low-level analysis to predict cache hits or misses in memory. Since these techniques are often
conservative, SA usually makes pessimistic assumptions overestimating WCET [Heckmann et al.,
2003]. A particular type of SA is the Parametric (or symbolic) WCET Analysis (PA). This approach
uses SA techniques to estimate WCET as functions of task parameters, rather than numerical time
values. PA is usually used for on-line scheduling of tasks where the value of parameters are un-
known prior to the system executions, or to find the source code blocks that have high impact on
WCET. However, PA is often more complex than classical SA and thus is not effective on large and
complex systems [Lisper, 2003].
• Measurement-Based WCET Analysis (MBA). This approach is based on end-to-end measure-

ments performed by running the task on the hardware platform with given input combinations.
Traditionally, execution times are measured by adding instrumentation to the task source code that
generates a trace of time stamps. However, this instrumentation code requires time to be run, and
therefore affects the time measurement. This is widely referred to as the probe effect. Recent MBA
techniques trace time at the hardware level, rather than injecting measurement function calls in
the source code, thus avoiding inaccuracies in time measurements [Bernat et al., 2002]. The main
assumption behind MBA is that the highest observed execution time, i.e., the High Water-Mark
Time (HWMT), is a good estimate of the WCET provided that (1) the analysis is performed in a
realistic operational setting, and (2) the analysis appropriately covers the input space of the RTES.
This last point is crucial to ensure that the analysis runs the system on the worst-case inputs that
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in turn lead the task to execute in its worst-case path. Being based on measurement, the estimates
provided by MBA can be too optimistic, underestimating the WCET. For this reason, a percent
margin is usually added to estimates obtained by MBA, but this comes at the cost of a possible
overestimation [Kirner et al., 2004].
• Hybrid Measurement-Based WCET Analysis (HMBA). This approach combines SA with MBA,

with the goal of balancing the trade-off between SA overestimation and MBA underestimation.
HMBA divides the task source code into segments (instruction blocks), separated by instrumenta-
tion points. The execution time of each block is then measured at each instrumentation point, and
recorded into a trace. The task WCET is then obtained through SA, where the execution times in
the trace are used in place of estimates derived from hardware models. Usually each instruction
block envelops a single loop, so that execution times in the trace can be combined without using
pure SA techniques that overestimate tasks WCET. However, the main assumption behind HMBA
is that the execution time of each instruction block has been measured for its longest possible loop.
This is hard to ensure in general, even though there have been successful attempts at using Ge-
netic Algorithms (Section 2.4.2.2) to generate input data that provides reliable WCET estimates of
instruction blocks [Wegener and Mueller, 2001].
• Statistical WCET Analysis (STA). This approach uses statistical methods on a sample set of task

execution times to estimate the WCET under a given interval of confidence. STA is based on the
Extreme Value Theory (EVT), an approach originally meant to analyze the risk of rare events by
studying the tail behavior of a distribution [Beirlant et al., 2006]. The main assumption behind
STA is that the WCET can be modeled as a random variable with Gumbel Max distribution, as it
often happens for worst-case measures in EVT [Edgar and Burns, 2001].

2.1.3 Simulation in RTES
Scheduling analysis techniques are useful for verifying RTES, especially at design-time when the im-
plementation is not yet available. However, such techniques require restrictive assumptions on the task
set, for instance tasks being independent or periodic. For this reason, they face severe limitations when
applied to large and complex RTES, where concurrent, inter-dependent tasks are run on multi-core plat-
forms with preemptive scheduling policies. In such systems, these verification techniques are comple-
mented with testing. However, testing in RTES has to account for the system complexity in software,
hardware, and the environment. For this reason, it is common in RTES to perform a specific kind of test-
ing at early stages of system development, when details about the hardware platform and the environment
have been established, but physical components and implementation are not available yet. In the context
of RTES, this type of testing is often referred to as simulation [Broekman and Notenboom, 2003], as it
takes place at different stages of the system development, where implementation, computing platform,
and external hardware are not fully available. Since the behavior of most RTES can be seen as a control
loop, these simulations are known as in-the-loop simulations, depending on the level of detail they run
at. There exist four main types of in-the-loop simulation, hereby described.

• Model-in-the-Loop (MiL). This approach consists in simulating the RTES software, hardware and
environment to ensure that the system complies with its specification. MiL simulation is based on
capturing the system behavior in behavioral model models, and therefore is mostly used in the con-
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text of Model-based Testing (Section 2.3.1). These models are run in environments simulating both
the computational and external hardware, in order to check the RTES compliance with requirement
specifications. MiL simulation mostly investigates functional aspects of the system, as a precise
performance evaluation is left at further stages, when the physical hardware is available [Lindlar
et al., 2010].
• Software-in-the-Loop (SiL). MiL simulation can also be extended from models to executable

code in order to have a more thoughtful evaluation of the system behavior, as usually the models
do not capture implementation details. In SiL simulation, the system software, rather than a model,
is run on a development platform that simulates the RTES hardware and environment [Kruse et al.,
2009].
• Processor-in-the-Loop (PiL). At development stages when the computational hardware of the

RTES is available, the system software can be run on a real computing platform in an environment
where the external hardware, such as sensors and actuators, and environment are simulated. Run-
ning the system at the PiL level can reveal faults caused by code compilers or by the processor
architecture that are overlooked at MiL and SiL level [Francis et al., 2007].
• Hardware-in-the-Loop (HiL). Finally, when both the computing and the external hardware are

available, the RTES can be run on a real platform where only the external environment is simulated,
possibly through the use of mathematical models describing continuous or discrete phenomena.
HiL simulation is able to reveal faults in the low-level hardware services, such as I/O operations of
sensors and actuators [Short and Pont, 2008].

2.2 Model-driven Engineering (MDE)
One of the basic principles behind Software Engineering is raising the level of abstraction when rea-
soning about software. The idea is to eliminate complexity that is not inherent in software artifacts by
abstracting away non-fundamental aspects. Reducing complexity of a certain task has indeed shown to
have a positive impact upon software productivity. This is reflected by the fact that, in productivity mod-
els, the software cost metrics take into account complexity together with resources and personnel [Fenton
and Pfleeger, 1998].

To address the need of reducing software development time and costs, Model-driven Engineering
(MDE) rose in the last years as an approach to Software Engineering aimed at handling software com-
plexity through abstractions. Specifically, the goal of MDE is to improve software productivity by using
models as the principal way to raise the level of abstraction of a system [Schmidt, 2006]. The cor-
nerstones of MDE are usually summarized in four aspects: (1) models representing real-world elements,
(2) metamodels describing the structure of models, (3) languages enabling the formal definition of models
and metamodels, and (4) transformations between languages [Favre and Nguyen, 2005].

MDE factorizes software complexity into different levels of abstraction and concern, from high-
level conceptual models down to individual aspects of deployment platforms. To do so, MDE combines
general-purpose with domain-specific languages to define high- and low-level models respectively, and
uses model transformation engines to automatically transform the former into the latter.
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2.2.1 Models and Metamodels
The word “model" derives from the Latin “modulus", that can be translated as pattern, rule, or example
to be followed. Models are used in several scientific disciplines, ranging from biology, to chemistry and
physics. Even though the meaning of model can vary across disciplines, models all share a common
characteristic: a model is a simplification of a physical system, denoting a particular viewpoint of the
system to control it for a given purpose [Apostel, 1961]. Specifically, a model is a sound abstraction
of an original [Stachowiak, 1973]. Being an abstraction means that a model retains a relevant selection
of the original’s properties with respect to its context and the concerns of the model user. Being sound
means that a model can be used in place of the original for analyzing, inferring, or predicting properties
of the original.

Models are usually distinguished between descriptive and prescriptive [Ludewig, 2003]. Descriptive
models are intended to mirror an existing original and its phenomena, while prescriptive models are
used as a specification to create an original. While the former are mostly used in natural sciences or
reverse engineering, Model-driven Engineering heavily relies on prescriptive models. Indeed, most of the
software models, such as design, process, and information flow models, are used to drive development as
they are the essential part of the system specification.

There is no universal agreement on a precise definition of a model. However, the experience from
practitioners and academics established over the years a common sense on the relationship between
a model and what it models, and the notions of metamodel and model instantiation. Since a model
is basically a representation operating an abstraction over its original, then the relationship between a
subject and its model is a fundamental aspect in the theory of models. A model is either a token model
or a type model [Kühne, 2006]. We illustrate this distinction with the example of a road map depicting
cities connected through roads.

Figure 2.4. Example of Token Models [Kühne, 2006]

Token models directly represent originals by capturing singular (as opposed to universal) aspects of
the original elements. In Figure 2.4, the map on the left is an original, while the box at the center is a
token model of it. The token model associates one model element, e.g., Frankfurt, to exactly one original
element, e.g., the city of Frankfurt in the map. In this sense, they provide a one-to-one mapping between
the model and the original properties. Note that the model abstracts away some properties of the original:
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only four cities and three roads are depicted in the model. The box on the right is another token model
of the map containing even fewer details: only two cities and one road are depicted there. Also note that
the model on the right can in turn be seen as a token model of the model in the center.

(2.5.1) Type model of a token model

(2.5.2) Generalized type model of a type model

Figure 2.5. Examples of a type model and its generalized type model [Kühne, 2006]

Type models classify, or conceptualize, the original elements by capturing universal aspects of such
elements in a many-to-one mapping. In Figure 2.5.1, the box at the top contains the two elements City
and Road, that classify the elements of the original by stating the universal nature of maps: roads connect
two cities, and cities are connected by one or more roads. Note that many elements in token models are
mapped to a single element in a type model: Darmstadt, Frankfurt, Nürnberg, and Munich are all mapped
to City, while A5, A3, and A9 are mapped to Road. Specifically, type models provide a classification of
token models, in the sense that they specify a universal for equivalent items. For this reason, the token
model at bottom right of Figure 2.5.1 is an instance of type model at the top. The process of classification
can in turn be extended to type models when one wants to infer even more general elements from existing
classifications. In Figure 2.5.2, the box on the left contains another type model specifying that each Ferry
connects two harbors, and each Harbor is connected through one or more ferries. This type model
is conceptually very similar to the one of cities and roads, provided that one abstracts away from the
physical support of terrestrial and maritime connections. Therefore, the entities in both type models can
be pairwise depicted into single super-concepts, as in the box on the right of Figure 2.5.2. Each ferry
and road can be seen as a Connection connecting two locations, and each Location is connected through
one or more connections. Specifically, generalized type models provide a generalization of type models,
in the sense that they extend their universal concepts. The generalization relationship is usually depicted
with an arrow whose head is an empty triangle (4).

Starting from the concepts described above, one can provide a mathematical formalization of the
concept of model [Kurtev et al., 2006] through the definitions below.

Directed Multigraph. A directed multigraph G = (NG,EG,ΓG) is a triple where:
• NG is a set of nodes
• EG is a set of edges
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• ΓG : EG→ NG×NG is a function that maps edges to pair of nodes

Note that ΓG can possibly be non-injective, therefore allowing different edges to connect the same pair
of nodes.

Model. A model M = (G,ω,µ) is a triple where:

• G = (NG,EG,ΓG) is a directed multigraph
• ω is a reference model associated to its directed multigraph Gω = (NGω

,EGω
,ΓGω

)
• µ : NG∪EG→ NGω

is a function that maps nodes and edges of G to nodes of Gω

The relationship between a model and its reference model is called conformance, and specifies that each
element in a model corresponds to an element in its reference model.

Metametamodel. A metametamodel M3 = (G3,ω3,µ3) is a model that is the reference model of itself,
i.e., ω3 = M3.

Metamodel. A metamodel M2 = (G2,ω2,µ2) is a model such that its reference model is a metameta-
model.

Terminal Model. A terminal model M1 = (G1,ω1,µ1) is a model such that its reference model is a
metamodel.

(2.6.1) Organization of the metamodeling stack

(2.6.2) Classification of models as terminal models,
metamodels, and metametamodels

Figure 2.6. Metamodeling stack and classification of models [Kurtev et al., 2006]

Figure 2.6.1 depicts the organization of models, metamodels, and metametamodels in terms of the
conformance relationship. Such organization is usually referred to as metamodeling stack. In this figure,
the conformance relationship is denoted by conformsTo or c2, and details how a model conforms to one
metamodel, which in turn is the archetype of one or more models that conform to it. A metamodel
conforms to one self-conforming metametamodel. The definitions above also imply the classification of
models as in Figure 2.6.2, that shows that terminal models, metamodels, and metametamodels are all
instances of a generic Model type.
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Besides models and metamodels, Model-driven Engineering approaches also extensively rely on
Model Transformations and Domain Specific Modeling (DSM) as ways to automate steps in the system
development, and to tackle software heterogeneity and complexity. These two concepts are not entirely
relevant for the scope of the thesis, and are only briefly discussed for the sake of completeness.

MDE strongly revolves around the concept of models, that by nature are expensive and difficult to
build. However, the formal definition of a metamodeling stack enable the (semi-)automated manipulation
of models through model transformations. One of the most common definitions of model transformation
implies the automatic generation of a target model from a source model, according to a transformation
definition [Kleppe et al., 2003]. A typical model transformation is based upon a transformation specifi-
cation detailing the mapping of elements from a source metamodel into elements of a target metamodel.
When executing the model transformation, an input model conforming to the source metamodel is trans-
formed into an output model conforming to the target metamodel, following the rules of the specification.
Model transformation allows to automate the generation and manipulation of models, which is error-
prone if done by hand. One of the main use of model transformations is to generate source code from
models upon the use of target metamodels which are intended to be manipulated through text. The au-
tomatic generation of source code from system models allows developers to focus on design, rather than
implementation, and to minimize the effort of maintaining consistency through artifacts at different levels
of abstractions.

However, model transformation by itself requires an input model, that has to be created by humans.
Designing a model of a large and complex system can be challenging, because it is hard to capture all
its different aspects. A basic principle behind the solution of several engineering problems is the divide-
and-conquer approach: given a problem, first divide it into easier sub-problems, then solve them one at
a time, and finally aggregate the solutions of the sub-problems to generate the solution of the original
problem. In MDE, the same approach is applied to software development by dividing the design activity
into several areas of concerns, each focusing on a specific aspect of the system. In this way, it is possible
to reason over software specifications at a higher level of abstraction, and to provide partial specifications
which are easier for experts to manage because they are closer to their domains. This approach is known
in MDE as DSM, a methodology that makes systematic use of Domain Specific (Modeling) Languages
(DSL, or DSML) to represent artifacts of a system pertaining to a given domain. DSL are languages
meant to support higher-level abstractions than General Purpose Languages (GPL), so they require less
effort and fewer low-level details to specify a system. The separation of concerns behind DSM does not
only allow a better management of software complexity by humans. Indeed, DSM also fully exploits the
idea of code generation through model transformations by providing modeling languages easier to use
and understand. As a consequence, the joint use of DSM and model transformations increasingly shifts
the focus of software development into the creation of models rather than code.

2.2.2 Standards for Model-driven Engineering
The principles of Model-Driven Engineering provide conceptual foundations of the approach, but they
can applied in different ways. There exist several implementations of such principles that standardize
the manipulation of models, providing tool support for MDE approaches. These tools provide Inte-
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grated Development Environments (IDE) with frameworks for repository management, model transfor-
mation, and so on. In the rest of this chapter, we briefly discuss the Model-Driven Architecture (MDA)
in Section 2.2.2.1 as the MDE reference implementation for the Unified Modeling Language (UML, Sec-
tion 2.2.2.2). An extensive description of MDE standards, MDA and UML falls beyond the scope of
this thesis. Nonetheless, introducing UML is necessary to describe the UML Profile for Modeling and
Analysis of Real-Time Embedded Systems (UML/MARTE, Section 2.2.2.3) that has been used in this
thesis to formalize the key abstractions of stress testing.

2.2.2.1 Model-Driven Architecture (MDA)

The most common implementation of the MDE principles is the Model-Driven Architecture (MDA)
defined by the Object Management Group (OMG) in 2001 [Kleppe et al., 2003]. The Model Driven
Architecture is based upon three cornerstones [Soley et al., 2000]. (1) First, MDA proposes a pyramidal
construction of models, organized in four layers as in Figure 2.7.1. Artifacts in the bottom level M0
represent actual systems in the real world. Those are modeled by token models in the level M1, which
are in turn compliant to metamodels in the level M2. The top level M3 consists of the Meta-Object
Facility (MOF) as the reference self-conforming metametamodel used to specify all the metamodels
in MDA. (2) Second, MDA proposes a vision of software development structured in six main steps,
each centered around a specific model as in Figure 2.7.2. System requirements are initially collected
into a Computation Independent Model (CIM), independently from computational notions. Then, the
CIM is transformed into a Platform Independent Model (PIM) that describes the CIM in computational
terms independently from specific implementation technologies. The PIM is merged with a Platform
Description Model (PDM) containing information on the platform where the system will be deployed to
form a Platform Specific Model (PSM). The PSM links the PIM specification with information about a
specific platform and can finally be transformed into executable source code. (3) Third, MDA proposes
the Unified Modeling Language (UML) as the reference language to describe models [Booch et al., 2000].

2.2.2.2 Unified Modeling Language (UML)

The Unified Modeling Language (UML) is a general-purpose modeling language, designed to provide a
standard way for visualizing software systems. UML has been initially developed in 1998 as a graphical
notation, and evolved to include a formal specification upon its adoption in the MDA in 2007. Since its
creation, UML has become an international standard for defining models of software systems. As of ver-
sion 2.4.1, UML defines 14 types of diagrams, divided into two main classes: structural and behavioral
diagrams (Figure 2.8). A thorough description of UML and its diagram types falls outside the scope of
this thesis. Nonetheless, we briefly introduce the UML diagram types, especially focusing on sequence
diagrams. This is because sequence diagrams are the main way to visualize concurrency in software, and
therefore they are of primary importance to enable reasoning over performance properties in the context
of real-time systems.

• Structural Diagrams represent the static aspect of the system, i.e., the set of parts composing its
architecture. Structural diagrams describe the system in terms of components at different levels of
abstraction, focusing on their dependencies. There exist seven types of structural diagrams.
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(2.7.1) The MDA metamodeling stack, organized as a
pyramid [Thirioux et al., 2007]

(2.7.2) Vision of software development in MDA [Miller
et al., 2003]

Figure 2.7. Two cornerstones of the MDA: the pyramidal metamodeling stack and the software develop-
ment vision

– Class Diagrams are the most common diagrams in UML, and depict the key entities in the
system as classes, i.e., object types, their properties as attributes, and their relationships as
associations.

– Component Diagrams display the structural relationship of components, i.e., sets of classes
that collaborate to realize certain features and communicate through interfaces.

– Object Diagrams, also referred to as Instance Diagrams, show relationships between actual
objects in the system, instanced from classes using real data. The most important abstraction
in object diagrams defines active objects as an object that owns a process or thread, and that
can initiate control activity. For this reason, active objects are the ones encapsulating the
behavior of the system, and are further described in behavioral diagrams. Objects that are not
active are said to be passive.

– Profile Diagrams describe UML profiles, i.e., extensions to the language that allow adapta-
tion to different platforms and domains.

– Composite Structure Diagrams show the internal structure of classes in terms of functions
and variables.

– Package Diagrams represent groups (packages) of elements, such as classes and compo-
nents, under a common namespace.

– Deployment Diagrams show how the software components of the system are allocated, i.e.,
deployed, into hardware components.

• Behavioral Diagrams represent the dynamic aspect of the system, i.e., the interactions between
parts of the system that define functionalities and runtime operation. Behavioral diagrams describe
the system in terms of states of its components, focusing on changes in such states. There exist
seven types of structural diagrams.

– Use Case Diagrams are the most common behavioral diagrams in UML, and provide a high
level description of the system functionalities (use cases) from the viewpoint of external en-
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Figure 2.8. Taxonomy of UML 2.4.1 diagrams

tities that interface to it (actors).
– Activity Diagrams model the system computational and organizational processes through

flowcharts of stepwise activities and actions.
– State Machine Diagrams implement the concept of Finite States Automaton in UML, rep-

resenting the system behavior as a series of events that determine transitions through states.
– Interaction Diagrams are a subset of behavioral diagrams that emphasize the data and con-

trol flow among elements of the system. There exist four types of interaction diagrams.
∗ Communication Diagrams model the interactions between system objects in terms of

sequences of messages.
∗ Interaction Overview Diagrams are particular activity diagrams where each activity is

pictured as a frame representing a nested interaction diagram.
∗ Timing Diagrams model the change in state of system elements over time.
∗ Sequence Diagrams are the most common interaction diagrams in UML, and show the

execution order of system processes, highlighting their interoperation. Sequence Dia-
grams depict the entities operating concurrently as vertical lifelines, and messages ex-
changed between them as horizontal arrows, entailing the order in which such messages
occur.

Figure 2.9 illustrates the graphical notation of sequence diagrams through examples. Figure 2.9.1
shows a sequence diagram describing an interaction scenario in an Access Control System (ACSystem)
that regulates electronic door locks via access cards and PINs. In this interaction, labeled as UserAc-
cepted, a User interacts with the system to unlock a door upon inserting the access card with its PIN.
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(2.9.1) Lifelines and Messages in sequence diagrams

(2.9.2) Interaction Uses in sequence diagrams (2.9.3) Combined Fragments in sequence diagrams

Figure 2.9. Graphical notation of Sequence Diagrams [OMG, 2011b]

The example shows three messages labeled as Code(PIN), CardOut, and OK, exchanged in this order by
two lifelines of types User and ACSystem. The sequence diagram also includes a Local Attribute of type
Integer, representing the PIN being inserted by the user. Once the user inserts the card code, the system
asynchronously sends the messages CardOut and OK, and finally sends a fourth Unlock message to an
undisplayed entity in the environment. Interaction diagrams, and in particular sequence diagrams, also
allow the definition of Interaction Fragments, which are named elements representing an interaction unit.
There exist several types of interaction fragments, among which Occurrence Specifications, Execution
Specifications, Interaction Uses and Combined Fragments are the most used in sequence diagrams.

• Execution Specifications (executions, or activations) represent a period of time in a lifeline
where the participant entities either (1) execute a unit of behavior, (2) send a signal to another en-
tity, or (3) wait for a reply message from an entity. Executions specifications are usually depicted
in lifelines as rectangles. Occurrence Specifications (often simply called occurrences) represent a
moment in time at the beginning or end of a message, or at the beginning or end of an execution.
• Occurrence Specifications (or occurrences) appear on exactly one lifeline, and are ordered along

such lifeline. Note that occurrence specifications have no notation, as they are represented by a
point at the beginning or end of a message or execution.
• Interaction Uses allow to reference interactions: Figure 2.9.2 shows the interaction UserAccess
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that refers to the externally defined interactions EstablishAccess with argument Illegal PIN, and
OpenDoor. Interaction uses are commonly used to simplify the notation of large and complex
sequence diagrams by allowing the reuse of already defined interactions.
• Combined Fragments define combinations or expressions of interaction fragments. The semantic

of combined fragments is defined by an interaction operator. Figure 2.9.3 shows an example of a
Person inserting his card into the system to unlock a door. After receiving the GivePIN message
by the AccessControl, the user inserts the four digits of his PIN one at a time. This is modeled
by a combined fragment with the Loop operator, stating that the body of the loop is repeated four
times. Combined fragments can also have Interaction Constraints in the form of guards. If the user
inserts the wrong code, the Wrong PIN guard evaluates to true, so that the user can insert the code
two more times. Note that, as in this last case, combined fragments can be nested.

UML is a General Purpose Language designed to be used in software development at every stage,
from high-level specification, e.g., with use case diagrams, to low-level implementation details, e.g.,
with deployment and state machine diagrams. The universality of UML makes it suitable for a variety
of purposes, but comes at the cost of flexibility. Indeed, UML cannot always provide the abstraction
level developers need to model software in every domain [Atkinson and Kühne, 2007]. In MDE, this
problem is addressed with the use of Domain Specific Languages, but UML also includes the possibility
to define profiles, a built-in mechanism to tailor the language for specific needs. Specifically, profiles
allow the extension of UML metaclasses by providing additional semantics through two main constructs:
stereotypes and tagged values. Stereotypes define extensions of existing UML metaclasses, enabling the
use of domain-specific notation that provides additional semantic for the extended metaclass. Stereotypes
are defined by a name and by the set of metamodel elements they extend. Tagged values are meta-
attributes attached to a metaclass of the metamodel extended by a profile. Tagged values have a name
and a type, and are associated to a specific stereotype. We further illustrate these concepts through the
example in Figure 2.10.

Figure 2.10.1 shows the WeightsAndColours profile that extends UML proving modeling support for
the concepts of weights and colors, with the possibility to specify the color of colored elements, and
the weight of weighed elements. WeightsAndColours defines the two stereotypes Colored, extending the
UML metaclasses Class and Association and Weighted, extending the metaclass Association. Stereo-
types are graphically visualized in boxes labeled stereotype. This means that, when applying the profile,
classes and associations can be colored, i.e., stereotyped Colored, and associations can also be weighted,
i.e., stereotyped Weighted. The stereotype Colored has a tagged value named color specifying that each
colored element has a specific color, chosen from an Enumeration of four. Similarly, the stereotype
Weighted has a integer tagged value named weight that represents the weight of the stereotyped associa-
tion. Tagged values are formally specified as attributes of the class defining the stereotype. Figure 2.10.2
shows TopologyProfile, another example of UML profile extending UML with concepts such as Node
and Edge. Figure 2.10.3 finally shows a class diagram with classes and associations stereotyped with
both these profiles. Specifically, the diagram shows a Branch node in a weighted, LocalEdge association
with a CentralOffice colored MainNode. In the example, the tagged values are represented within UML
notes.
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(2.10.1) Example of a UML profile concerning colors
and weights

(2.10.2) Example of a UML profile concerning nodes
and edges

(2.10.3) Example of application of the UML profiles

Figure 2.10. UML Profiles definition and usage showed through an example [Fuentes-Fernández and
Vallecillo-Moreno, 2004]

2.2.2.3 UML Profile for Modeling and Analysis of Real-Time Embedded Systems
(UML/MARTE)

UML has been used for long time to model Real-Time Embedded Systems [Selic, 1998], but it is not
flexible enough to be effectively applied in complex real-time systems. As discussed in Section 2.2.2.2,
profiles are meant to tailor UML to specific domains, providing high level concepts to support software
modeling. When it comes to RTES, the UML profile for Modeling and Analysis of Real-time Embed-
ded Systems (UML/MARTE, in short MARTE [OMG, 2011a]) is the most acknowledged and used by
practitioners. MARTE is an OMG standard defined in 2011 to replace its predecessor UML profile for
Schedulability, Performance, and Time (SPT), aligned with UML v1.x [OMG, 2005].

56



2.2. Model-driven Engineering (MDE) Chapter 2. Background

The specification of MARTE defines the profile in two steps. The first step consists of defining the
concepts related to one specific concern in RTES. These concepts are referred to as domain elements,
e.g., abstractions to model time, scheduling, or non-functional properties. The domain elements are
gathered in the domain model, which is formalized through the definition of a meta-model and the detailed
semantics descriptions of each of its elements. The second step in the definition of MARTE consists of the
actual formalization the UML profile, referred to as UML representation. In particular, the specification
of MARTE maps the concepts introduced in the domain model to UML stereotypes, tagged values,
specific notations, and Object Constraint Language (OCL) rules. Note that abstractions in the domain
model are grouped in packages, while the extensions in the UML representation are grouped in sub-
profiles. Therefore, packages in the domain model map into sub-profiles in the UML representation.
Also note that sub-profiles in the UML representation can also be grouped in packages, which should not
be confused with the packages of domain models.

Figure 2.11 shows the architecture of MARTE, which consists of four main packages, each grouping
several sub-profiles. MARTE revolves around the main concept of providing support for both design and
analysis of RTES. These two development activities are supported with the abstractions defined in design
model and analysis model packages [Gerard and Selic, 2008], respectively. Due to its completeness and
level of detail, it is beyond the scope of this thesis to thoughtfully examine MARTE. Nonetheless, we
provide an overview of its architecture, especially focusing on the domain model packages containing
abstractions for quantitative analysis and resource modeling. This is because the sub-profiles associated
to these packages provide frameworks for collecting information pertaining to schedulability and perfor-
mance analysis, and to model resources in computational platforms. These two concepts are essential
when it comes to stress testing, that entails finding worst-case scenarios with respect to some perfor-
mance requirement. Indeed, such worst-case scenarios are characterized by the way concurrent software
tasks are scheduled by the Real-Time Operating System, and the schedules in turn depend on the runtime
status and properties of the computational platform.

Figure 2.11. UML/MARTE Architecture [OMG, 2011a]
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• MARTE foundations contains the abstractions shared by the two main packages, MARTE design
model, and MARTE analysis model. Therefore, this package defines concepts used in both analysis
and design of RTES, such as abstractions for representing time, concurrent resources, and quality
of service. MARTE foundations is structured in five sub-profiles.

– CoreElements contains the basic elements used for structural and behavioral modeling of
RTES. The domain model of this profile consists of the two packages Foundations and Causal-
ity, containing abstractions for model-based design and analysis of RTES, respectively.

– Non-Functional Properties (NFP) contains modeling constructs to declare non-functional
properties as UML data types, so that they can be attached to standard UML elements. This
profile defines concepts to express relationships and constraints among non-functional prop-
erties in order to model system non-functional requirements.

– Time supports modeling the notion of time and time-related concepts such as clocks and time
events. This profile allows the definition of three time models: causal/temporal, for modeling
relative ordering of events, clocked/synchronous, for modeling time as a discrete succession
of instants, and physical/real-time, for modeling continuous time.

– Generic Resource Modeling (GRM) contains abstractions to represent computing platforms
as sets of resources, possibly organized as a hierarchy, where each resource offers services in
response to service requests.

– Allocation Modeling (Alloc) provides support for allocating system functionalities into com-
putational resources, providing a conceptual link between real-time software and the hardware
platform that runs it.

• MARTE design model refines the concepts defined in MARTE foundations from the view-point
of RTES design. This package provides domain-specific concepts of real-time applications and
components, and software and hardware resources. MARTE design model is structured in four
sub-profiles.

– Generic Component Modeling (GCM) refines concepts already defined in UML to support
modeling component-based RTES.

– High-Level Application Modeling (HLAM) provides modeling concepts for modeling fea-
tures in RTES at a high level of abstraction. The domain model of this profile defines Real-
time Units (RtUnit) as the main concurrent entities of a system, and Protected Passive Units
(PpUinit) as mechanisms to share information among real-time units.

– Software Resource Modeling (SRM) refines the concepts defined in GRM to model Appli-
cation Programming Interfaces (API) for concurrent software, independently from the spe-
cific Real-Time Operating System used. The domain model of this profile provides model-
ing concepts for software resources (ResourceCore), concurrent execution contexts (Concur-
rency), resources communication (Interaction), and management (Brokering). Being RTOS-
independent, the concepts in SRM have to be complemented with specific modeling libraries
implementing OS standards. Such libraries are introduced in the package MARTE annexes.

– Hardware Resource Modeling (HRM) refines concepts in GRM to model components of
hardware platforms, such as processors, memory hierarchies, Application-Specific Integrated
Circuits (ASIC), and Programmable Logic Devices (PLD). Note that, while SRM provides
generic abstractions that have to be complemented with modeling constructs specific to RTOS
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standards, the abstractions in HRM do not to need to be further specified. This is because,
while there exist a variety of RTOS that differ from each other in several aspects, the dif-
ferences in hardware platforms for RTES are small enough that can be captured by a single
sub-profile, without the need of hardware-specific additional information.

• MARTE analysis model represents models from schedulability and performance analysis theo-
ries into a UML framework, by refining the concepts defined in MARTE foundations. Note that
this package does not entail the definition of particular analysis techniques, but rather defines the
modeling constructs to enable them. MARTE analysis model is structured in three sub-profiles.

– Generic Quantitative Analysis Modeling (GQAM) provides concepts to enable the defi-
nition of quantitative analysis in RTES, i.e., the investigation on how the system behavior
affects the resources usage. The abstractions in this profile support the definition of tech-
niques aimed at determining the values of output NFP, such as deadline misses, response
times, and resources utilizations, in terms of input NFP, such as, task deadlines, periods, and
arrival times.

– Schedulability Analysis Modeling (SAM) refines the concepts defined in GQAM to enable
model-based schedulability analysis methodologies based on UML. This subprofile provides
modeling constructs for attaching quantitative measures to UML models. These measures
represent in turn the input for mathematical formalisms used for schedulability analysis, such
as extended timed automata, holistic techniques, or Rate Monotonic Analysis (RMA).

– Performance Analysis Modeling (PAM) refines the concepts defined in GQAM to enable
model-based performance analysis methodologies based on UML. Opposed to SAM, this pro-
file focuses on the definition of performance modeling as the probabilistic analysis of tempo-
ral properties of RTES. Therefore, both the input and output measures of performance analysis
are modeled as statistical values, such as means, deviations and probabilities. Similar to SAM,
these statistical quantities represent in turn input for performance analysis techniques such as
simulations, extended queuing models, and discrete-state models.

• MARTE annexes contains complementary cross-cutting modeling constructs that are not orga-
nized in the other three packages. MARTE annexes is structured in three sub-profiles.

– Value Specification Language (VSL) complements the NFP profile by defining a textual
language for specifying algebraic and time expressions conforming to an extended system of
data types. Indeed, while NFP supports the declaration of non-functional properties as UML
data types, VSL supports the description of the values for those types.

– Repetitive Structure Modeling (RSM) defines constructs for describing system with a reg-
ular structure, i.e., systems with a large number of identical components such as parallel
computation systems. This profile defines abstractions to consider structures as repetitions of
elements interconnected via regular connection patterns.

– MARTE Library contains guidelines to complement the abstractions in SRM in order to
model API in specific RTOS. This profile contains modeling libraries with abstractions from
the domain of the ARINC 653 [Prisaznuk, 2008], POSIX [Burns and Wellings, 2001] or
OSEK/VDX [Lemieux, 2001] standards.

Figure 2.12 shows the architecture of the GRM and GQAM sub-profiles of UML/MARTE. These
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(2.12.1) Dependencies of GRM

(2.12.2) Architecture of GRM (2.12.3) Architecture and dependencies of GQAM

Figure 2.12. Architectures of the UML/MARTE packages for Generic Resource Modeling and Generic
Quantitative Analysis Modeling [OMG, 2011a]

packages contain the stereotypes and attributes which map to the conceptual model of our stress testing
approach. Figures 2.12.1 and 2.12.2 show dependencies and architecture of the GRM domain model,
which is structured in five packages.

• ResourceCore defines the basic abstractions for resource modeling, providing constructs to model
the system in terms of resources, and services provided by such resources. A Resource represents
a persistent entity of the system offering one or more ResourceServices. Resources have Instances
at runtime, and can be associated with non-functional properties.
• ResourceTypes defines the fundamental types of resources and the services they provide. MARTE

defines seven main types of resources.
– StorageResource models resources capable of storing information, such has Hard Disk Drives

(HDD) or Rapid Access Memory (RAM).
– TimingResource models resources centered around the notion of time, such as clocks.
– SynchResource models resources arbitrating concurrent execution flows, such as semaphores.
– ComputingResource models physical or virtual processing devices capable of storing and

executing program code, such as Central Processing Units (CPU).
– ConcurrencyResource models resources capable of executing concurrently with others, such

as threads or processes in a concurrent environment.
– DeviceResource models external resources that require system services to operate, such as

peripheral devices.
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– CommunicationResource models terminal entities (CommunicationEndPoint), and channels
(CommunicationMedia) involved in a communication, such as system peripherals and buses.

• ResourceManagement defines resource management services in two main concepts. First, Re-
sourceManager models a resource responsible for creating, maintaining, and deleting resources
according to a ResourceControlPolicy. Second, ResourceBroker models resources responsible for
allocation and de-allocation of resource instances to clients, according to an AccessControlPolicy.
• ResourceUsages models the usage of resources providing concepts such as demand of resources

(UsageDemand) and amount of resources used (UsageTypeAmount).
• Scheduling defines abstractions to model how the system behavior is arranged at run-time in terms

of the execution order of tasks. This package defines a ProcessingResource as a kind of resource ca-
pable to process information, such as a ComputingResource, CommunicationMedia, or DeviceRe-
source. Then, it defines a Scheduler as a ResourceBroker that brings access to ProcessingResources
following a certain SchedulingPolicy. Finally, it defines a SchedulableResource as a particular Con-
currencyResource that can be granted computational power by a ProcessingResource according to
SchedulableParameters.

Figure 2.12.3 shows the dependencies and the architecture of GQAM domain model. The main ab-
straction of the package is the AnalysisContext, defined in terms of operations triggered over time by
events (WorkloadBehavior). and the container of resources that perform such operations (ResourcesPlat-
form). GQAM is structured in three packages.

• Workload defines the concepts of system workload and behavior. A WorkloadBehavior is a set of
system behaviors (BehaviorScenario), triggered by a set of events (WorkloadEvent ), and consisting
of sequences of operations (Step). Each Step is allocated into a SchedulableResource, and can
be acquiring (AcquireStep) or releasing (ReleaseStep) a resource to perform its operations. For
this reason, the abstraction BehaviorScenario inherits from ResourceUsage, since each behavior is
characterized by a demand of resources. Note that a BehaviorScenario is conceptually similar to a
task in scheduling analysis (Section 2.1.1).
• Resources refines the concept of resource defined in GRM by defining the ResourcesPlatform

abstraction, which represents a container for the resources used to perform a BehaviorScenario
defines two types of resource: ExecutionHost, a processor that executes operations specified in the
model, and CommunicationsHost, a hardware link between devices to transmit messages through
a CommunicationChannel.
• Observers defines the concept of TimedObserver as an entity collecting performance measures on

an interval of time between two specific events.

Effectively applying the UML/MARTE concepts in industrial contexts is a challenging task that is
complicated by two main factors [Iqbal et al., 2012]. (1) MARTE is a very large profile that accounts
for a variety of performance-related aspects in RTES. Indeed, the profile is meant to provide modeling
support in all the lifecycle phases of RTES, ranging from design to performance analysis and verification.
Nonetheless, for practical use, one often needs only a subset of the abstractions defined in the profile.
However, (2) MARTE is a relatively young standard, and there exists little published research providing
guidelines on how to apply its concepts, i.e., on how to identify the relevant abstractions for a particular
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kind of analysis. For these reasons, there is the need to define frameworks to guide practitioners in
applying MARTE. Typically, a methodology is needed which identifies the subset of MARTE that best
fits the performance analysis to be carried out. This is especially true when it comes to performance stress
testing. However, few sources are available that highlight relevant concepts in the profile for identifying
worst-case scenarios with respect to performance requirements.

2.3 Software Testing
Software testing is an investigation conducted by system developers to systematically evaluate the Sys-
tem Under Test (SUT) by observing its execution [Myers et al., 2011]. It is acknowledged as one of the
most critical activities in the software development process, as studies have shown that testing typically
takes more than 40% of the total development time [Boehm, 1981]. Even though there exist a large num-
ber of strategies for software development, testing is an essential part in each of them. The archetype of
such strategies is the Waterfall Model, which is often represented as a V-Model (Figure 2.13) [Forsberg
and Mooz, 1991]. The left side of the V shows the top-down steps where software requirements are
progressively refined into more detailed and technical representations of the system, down to its source
code. Then, once code has been generated, the development continues in a bottom-up fashion on the right
side of the V, where the software artifacts are tested in reversed order as they are created. The V-model
highlights the relationship testing has with the different phases of software lifecycle, visualizing how
late-stage testing impacts early-stage development activities. For instance, if system testing highlights
architectural problems, the development might suffer a significant setback. This reason lead to the adop-
tion of new software processes, which stress on the importance of test-driven development [Beck, 2003].
Software testing is based on the concepts hereby defined [Ammann and Offutt, 2008].

Figure 2.13. The V-Model for software development [Roger, 2005]
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• Fault (or Defect). A fault is an anomaly in the system implementation, such as a wrong expres-
sion in the system source code.Faults are often caused by human errors, such as misinterpreting a
requirement, forgetting some conditions, or mistyping an instruction. A system can have a fault
that is not executed, and therefore has no effect on the system behavior. In this case, the fault is
dormant. If the faulty instruction is executed, then the fault is activated.
• Error (or Bug) An error is a wrong internal state of an executing system, such as a program

counter or an attribute with wrong values, caused by an activated fault. An error can have impact
the observable behavior of a system. In this case, the error propagates to the outside.
• Failure. A failure is a deviation, caused by a propagated error, of the system behavior from the

expected behavior. The system evaluation performed during software testing is mostly aimed at
identifying failures in a system, so that the corresponding fault(s) can be corrected5.
• Test Case. A test case is a set of data given as input to the SUT in order to observe the system

behavior in a particular scenario. In general, a test case is a possible input to a system, such as a
set of particular values that a system interface takes as a parameter. Given that the ultimate goal of
testing is to identify defects, generating test cases that have high chance to reveal faulty behavior
in the system is a critical task. The process of creating test cases for a system is known as test case
generation.
• Test Suite. A test suite is a set of test cases. Since testing has to account time and budget con-

straints, it is not feasible to execute arbitrarily large test suites. In practice, one wants to find a
balance between the size of the test suite, i.e., the time that it takes to execute all of its test cases,
and the likelihood test cases have to reveal faults. This need is addressed by techniques known as
test suite optimization or test suite reduction.
• Test Case Specification. A test case specification is a document containing the scenarios that test

cases are meant to exercise. The test case specification is used to guide the test case generation
process. Note that in Model-driven Engineering, both the system and the test case specification are
represented by models (Section 2.3.1).
• Test Oracle. A test oracle is a map that associates to each test case in a test suite its expected

behavior. Typical oracles consist of past versions of the same system, standards the system must
conform to, or user expectations.
• Test Framework (or Test Harness). A test framework is a tool that supports (semi-)automation

of the testing process, including the generation of test cases, their execution, the comparison with
test oracles, and the generation of reports on the test executions.

It is well-known that testing, being based on the execution of a system, is a powerful technique
to show the presence of defects, but can not show their absence [Dijkstra et al., 1970]. Indeed, the
potential size of input space and the presence of unbounded loops within the system control flow renders
exhaustive testing practically infeasible. This motivates the need to assess the quality of test suites,
in order to reduce costs and gain confidence that the system has been properly tested. Evaluating the
quality of test suites is mostly done by assessing the extent to which the system is thoroughly tested,
and the capability of test cases to reveal faults. These two aspects are investigated trough test coverage

5 Note that testing is aimed at detecting system failures, not at diagnosing their causes. Indeed, the process of identifying
the faults that cause failures is referred to as debugging. Nevertheless, testing and debugging are often mixed up.
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criteria and mutation-based analysis, respectively. Test coverage is a measure of the proportion of a
system exercised, i.e., covered, by a test suite [Rapps and Weyuker, 1985]. This proportion can be
measured with several criteria that reason over the system at different levels of abstractions, considering
user requirements (requirement-based criteria), control flow graphs (control-flow-based criteria), state
machines (transition-based criteria), internal variables usage (data-flow-based criteria), and partitions
of input values (boundary-based criteria). For instance, transition-based criteria consider the system as
a state machine, and measure the percentage of states or transitions visited when executing the test suite.
Mutation analysis is a technique to measure the fault detection capability of a test suite [DeMillo et al.,
1978]. The idea behind mutation analysis is to inject faults into a correct implementation of a system,
thus creating faulty implementations called mutants. The test suite is then executed on each mutant, and
the number of mutants that reveal faults, referred to as killed mutants, determines the quality of the test
suite.

Testing not only affects the development costs of software, but also its quality [Deutsch and Willis,
1988]. For this reason, software testing has been adopting formal and structured approaches. Indeed,
many techniques for software testing have been devised over the years. One of the most important clas-
sifications of testing strategies distinguishes black-box from white-box testing [Pressman and Jawadekar,
1987]. Black-box testing techniques assume no details on the system implementation, interacting exclu-
sively with user interfaces. The SUT is then seen as a black box, whose behavior is only determined
through the input-output relationships revealed during testing. Black-box testing is particularly useful
when system details are not available, allowing for an objective perspective that avoids bias when gen-
erating test cases, due to knowing the fundamental aspects of the system. On the other hand, having no
details on the parts of the system exercised by each test case renders achieving satisfactory testing cov-
erage challenging. In white-box testing, the SUT is instead completely accessible. This allows a more
effective generation of test cases, where coverage criteria can be taken into account. However, white box
testing comes at the cost of requiring a careful investigation of the system artifacts to be more effective
than black-box testing. Note that it is beyond the scope of this thesis to discuss a complete taxonomy
of testing approaches. However, we briefly describe three most relevant areas for this thesis, namely
Model-based Testing (Section 2.3.1), Performance Testing (Section 2.3.2), and Search-Based Software
Testing (Section 2.3.3).

2.3.1 Model-based Testing (MBT)
Model-driven Engineering (Section 2.2) is based on use of models as main artifacts during every phase
of software development, including testing. This lead to the definition of Model-based Testing (MBT)
as an approach for deriving test cases from system models (Figure 2.14), implying that the test case
specification is also represented as a model. Even though there is no universal definition for MBT [Binder,
2000], Figure 2.14.1 shows one of the most common understandings. The main idea behind MBT is that
the specification of a system behavior can not only be used to guide development, but also to derive test
cases that exercise particular behaviors. Specifically, models can be used to derive abstract test cases
representing test data and scenarios. These abstract test cases model executable test cases, which can be
run on the system once implemented. One of the main advantages of MBT is that test cases are generated
from system models, which in turn are derived from requirements. Indeed, linking the test cases to system
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requirements simplifies their readability, understandability, and maintainability [Utting et al., 2006].

(2.14.1) Relationships between system,
models, and test cases in MBT

(2.14.2) Levels of abstraction in MBT [Utting et al.,
2006]

(2.14.3) A typical MBT process [Utting and Legeard,
2010]

Figure 2.14. Overview of Model-based Testing: the system models are used to drive the generation of
test data (abstract test cases), that characterizes executable test cases

Similar to MDE, models in MBT can be defined at different levels of abstraction. Figure 2.14.2
shows a graph where the x- and y-axes report the level of detail of the environment and system models,
respectively. The models S, E, and SE represent the extreme cases, where the model formalizes all the
details about the System, the Environment, or both. Such models are often too detailed to be managed,
so in MBT these details are typically abstracted away as in M1, M2, and M3. This is also a common
practice in MDE.

Figure 2.14.3 shows a typical MBT process, which consists of five main steps: (1) starting from
a model of the system, (2) generate abstract test cases, (3) transform them into executable test cases
which are (4) run in the system, and finally (5) analyze the results, possibly comparing them with test
oracles [Utting and Legeard, 2010]. Another advantage of MBT is that the generation of abstract test
cases and their transformation into executable test cases (test cases and test scripts in Figure 2.14.3,
respectively) can be automated with relatively low effort [Utting and Legeard, 2010]. Usually, executable
test cases are generated via model transformation of the corresponding abstract test cases. There exist

65



Chapter 2. Background 2.3. Software Testing

several possible techniques for generating abstract test cases, mostly depending on test selection criteria
and generation technology [Utting et al., 2006].

In practice, it is not possible to exhaustively test the set of behaviors represented by models of large
systems. When generating test cases from a model, it is then necessary to define some criteria to chose
the behaviors to test. In this way, the test selection criteria define a test suite. There exist seven main
types of test selection criteria for MBT [Utting et al., 2006].

• Requirement-based criteria aim at providing coverage of the system requirements. To implement
these criteria, requirements need to be traced to system models, so that each test case generated
exercises one or more system aspect expressed in a requirement.
• Specification-based criteria are based on the test case specification. Even though it is in general

independent from the system models, the test case specification is often expressed with formalisms
such as Finite State Machines (FSM), constraints, and regular expressions [Utting et al., 2006].
These formalisms are often used in conjunction with UML profiles such as the UML Testing Pro-
file (UTP) [OMG, 2013], in order to provide the adequate abstraction level to generate test cases
representing the scenarios in the specification [Baker et al., 2008].
• Structure-based criteria select test cases based on the structure of the model, typically with

control-flow-based, transition-based or state-based coverage criteria [El-Far and Whittaker, 2001].
• Data-based criteria are based on the decomposition of the input space into equivalence classes,

as in boundary-based coverage criteria. In this way, that test cases can be selected to exercise one
representative value from each class.
• Mutation-based criteria are based on the concept of mutation analysis. Even though mutation

analysis has been defined as a strategy to evaluate the quality of test suites, its principles can
also be applied to drive test case generation. This is mostly done by ensuring that the test cases
generated kill a satisfactory number of mutants [Papadakis and Malevris, 2012].
• Fault-based criteria rely on the knowledge of typically occurring faults, which are often captured

in the form of a fault model.
• Probabilistic-based criteria are based on stochastic models of the environment, and are mostly

used when the usage patterns of the SUT are determined by such environment. Typical approaches
profile the system usage with Markov chains or statistical models [Beyer et al., 2003].

Abstract test cases generation can be classified under another dimension, orthogonal to selection
criteria, concerning the technology that automates the generation of test cases. There exist four main
technologies to automate test case generation in MBT [Utting et al., 2006].

• Search algorithms are generally used to generate test cases from behavioral models such as Finite
State Machines. Indeed, state machines are graphs where to each node corresponds a state, and
to each edge corresponds a transition between states. Commonly used selection criteria for state
machines involve graph coverage, such as nodes, transitions, and cycles coverage. Test cases
satisfying these criteria can be easily generated with search algorithms that explore the FSM graphs,
and keep track of the paths yielding high coverage, which represent abstract test cases.
• Model Checking (MC) is a software verification technique that aims at verifying properties ex-
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pressed in a model [Clarke et al., 1999]. Typically, a property is a condition that should never hold
in the system at any given time. These properties are in turn formulated as reachability queries of
a faulty state in a FSM, in such a way that MC verifies whether this faulty state is reachable or
not from the initial state. If this is the case, MC returns a counterexample with the path leading
to the faulty state, otherwise it terminates proving that the property never holds because the faulty
state can never be reached. MC is mostly used in software engineering to compare a model with its
specification, e.g., to check the absence of deadlocks in a FSM modeling task executions. However,
MC can also be used for test case generation by formulating test case specifications as reachability
properties in a state machine [Ammann et al., 1998]. For instance, a test case could be specified
in a way that upon execution, the state S in the state machine M is reached at some point. In this
case, MC can generate an abstract test case by computing a path in model M such that the state S
is visited.
• Theorem Proving is another software verification technique that, similar to Model Checking, aims

at verifying properties expressed in a model [Hoare, 1969]. However, while Model Checking casts
these properties as reachability queries over a state machine, Theorem Proving verifies the same
properties by casting them as logic formulas, and proving their satisfiability using deductive logic,
such as Hoare Rules or Lambda Calculus [Halpern and Vardi, 1991]. However, Theorem Proving
can be used for to generate abstract test cases in MBT by modeling the system behavior as a set
of logical expressions (predicates). The model is then partitioned into equivalence classes over the
valid semantic interpretations of the expressions. In this way, each equivalence class represents a
system behavior, and is therefore an abstract test case [Brucker and Wolff, 2013].
• Symbolic Execution (or Symbolic Evaluation) is a technique aimed at determining what inputs

cause given statements of a program code to execute [King, 1976]. Typically, an interpreter follows
the program, assuming symbolic values for input variables. For each statement in the program, the
interpreter assigns to variables expressions in terms of the symbolic values, based on the previous
statements interpreted. Whenever the interpreter analyzes a conditional statement with n branches,
it creates n logical constraints and associates each to the first statement the corresponding branch.
When the program is fully analyzed, for each statement in the code the interpreter has created a
constraint model consisting of constraints on the program variables. Then, in order to find concrete
values for the input variables leading to the execution of a given statement, the corresponding con-
straint model is solved with a constraint solver (Section 2.4.1). In MBT, Symbolic Execution can
be used as an alternative to Model Checking when proving reachability properties over executable
models, e.g., models expressed with Executable UML (xtUML or xUML) [Mellor et al., 2002]. In
this way, the concrete values found when solving a constraint model associated with a statement L
represent an abstract test case that executes L.

Finally, there exist two fundamental strategies for generating and executing test cases in MBT, namely
off-line and on-line approaches (Figure 2.15) [Hessel et al., 2008]. In the former, (Figure 2.15.1), test
cases are executed in an Implementation Under Test (IUT) after the test suite is fully generated. In
this way, the test cases execution process is straightforward, because it is decoupled from generation.
In addition, the test suite can be optimized prior to execution, for instance by eliminating redundant test
cases and by ensuring the satisfaction of some coverage criteria. On the other hand, in on-line approaches
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(2.15.1) Off-line MBT (2.15.2) On-line MBT

Figure 2.15. Off-line and on-line approaches for MBT [Hessel et al., 2008]

test generation and execution happen one after the other in a feedback loop (Figure 2.15.2). In this way,
the outcome of past test cases can possibly influence the generation of new ones. On-line testing may
continue until some coverage or fault-detection criteria have been satisfied. This approach is mostly used
for systems where testers can not inject some of the inputs, such as non-deterministic systems whose
environment is hard to effectively simulate.

2.3.2 Performance and Stress Testing
Software testing has historically focused on functional aspects, and has mostly been intended as a mean
to ensure that each system input corresponds to the expected output. However, the degradation in perfor-
mance can have potentially severe consequences, even worse that unexpected system responses [Weyuker
and Vokolos, 2000]. This is especially true in the context of safety-critical systems, where responding
timely to external inputs is as important as processing them in the correct way. Therefore, many stud-
ies stated the importance of performance testing, especially during early development stages, when the
system architecture is finalized [Denaro et al., 2004]. This aspect highlighted the need of methodologies
flexible enough to combine performance testing with early design-time analysis [Woodside et al., 2007].

For practitioners, performance testing investigates whether or not a software system handles the ex-
pected user load by responding quickly enough [Barber, 2003]. Indeed, a common definition of per-
formance testing involves the systematic evaluation of a System Under Test under realistic conditions,
in order to check whether performance requirements are satisfied or not [Binder, 2000]. This definition
entails the investigation of abstract concepts such as the capacity and limits of the system, which are
defined in the performance requirements [Gao et al., 2003]. For this reason, performance test cases are
designed starting from such requirements, which in turn can be expressed in different ways, depending
on the system scope, domain, and objectives. In this thesis, we focus on the description of performance
testing in the context of safety-critical Real-Time Embedded Systems, where the most important concern
is ensuring a timely reaction to external triggers (Section 2.1).

Figure 2.16 depicts a typical performance testing process, which consists of five main steps [Gao
et al., 2003].
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1. Selection of Performance Requirements. The first step is to identify the concepts characterizing
the performance of the tested system [Nixon, 2000]. In RTES, common performance requirements
involve task deadlines, response time, and computational resources utilization, such as CPU, mem-
ory and network bandwidth. Performance requirements are then formalized in formal metrics that
are measured during testing [Jain, 1991].

2. Definition of the Workload (or Performance Evaluation Model). The requirements selected are
then used to drive the definition of the workload, which consists of the scenarios that the system
has to be tested in. The workload contains all the basic information characterizing performance
test cases. Indeed, at the lowest level of abstraction, each scenario corresponds to one test case.

3. Definition of the Performance Test Plan. Performance requirements, metrics and workload are
documented in a performance test plan. The test plan also contains technical information related to
test execution, such as hardware used, software versions, tools and test schedule.

4. Generation of the Performance Test Report. After test cases execution, the final step is to
prepare a report that documents the results in order to analyze system performance. The resulting
report includes the measured values of performance metrics, possibly with graphs displaying their
evolution over time.

Figure 2.16. A typical performance testing process [Gao et al., 2003]
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The performance testing process is thus centered on the definition of a workload that the system is ex-
posed to. The workload is also called operational profile, as it can be seen as a mean to profile the system
behavior [Musa, 1996]. In the domain of distributed systems, the workload is often defined through the
use of traffic models, which stochastically predict the most likely user interactions with the system [Hong
and Rappaport Stephen, 1986]. However, RTES interact with the external environment, which is in-
trinsically hard to predict prior to system execution. This renders the definition of RTES workloads
a challenging task, as popular techniques such as workload characterization based on historical data or
stochastic models can be rather ineffective. This is especially true in the context of safety-critical systems,
where it is mandatory to test performance in worst-case scenarios, rather than only in the most common
ones. Workloads are usually classified into real and synthetic workloads [Jain, 1991]. A real workload
corresponds to a set of actual operating scenarios that occur in a given time frame. Real workloads are
useful to investigate the system under realistic conditions, but can not be controlled in practice. Indeed,
they are not repeatable, and can not guarantee a significant variety of operating conditions. Nonetheless,
systems can always be tested under real workloads. On the other hand, synthetic workloads are simula-
tions of real conditions that can be repeatedly applied to the system, and controlled by testers. Whenever
workload characterization is possible, synthetic workloads are created from real workload models, which
classify particular system-user or system-environment interaction patterns. Note that, in the context of
RTES, using synthetic workloads requires the capability to interact with the system by simulating the
external environment.

There exist several types of performance testing, each characterized by a specific workload that ex-
ercises given aspects of the SUT performance [Shannon et al., 2005]. In the context of safety-critical
RTES, a major role in performance testing is played by stress testing, intended as testing a system under
“unrealistically harsh inputs [. . . ] with the intention of breaking it" [Beizer, 2002]. For this reason, stress
test cases push the system “beyond its design limits" as they are “designed to cause a failure" [Binder,
2000]. Indeed, stress testing is the simulation of border-line cases that represent worst-case scenarios.
Testing these scenarios is particularly important for safety-critical systems, where failures can not be
tolerated as they may lead to catastrophic consequences for the system, its users and the environment.
Therefore, stress testing workloads define worst-case scenarios, which in RTES are usually represented
by particular sequences of external events triggering system tasks. These events are often signals coming
from hardware sensors which carry must-answer data, such as alarms from fire, pressure or temperature
sensors. In RTES, stress testing workloads are mostly characterized by the timing patterns of such events.
Consider for instance a fire monitoring system that has to activate water sprinklers in case smoke is de-
tected. When testing such a system, it is crucial to investigate whether the sprinklers are timely activated
whenever there is a fire, i.e., whatever the timing of the fire detectors signals is. There could be (worst)
cases where the alarm comes when the system does not have enough resources or is blocked in other
operations, resulting in a failure to activating the sprinklers on time. Stress testing is ultimately aimed at
investigating whether worst-case scenarios like these pose significant safety risks. However, as explained
before, worst-case scenarios are hard to predict due to the environment unpredictability and the complex
real-time interactions between components in large systems.
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2.3.3 Search-based Software Testing (SBST)
Many software engineering activities can be very expensive in terms of time, effort, and resources. As a
consequence, there have been many attempts in reducing the cost of these activities via automation [Mc-
Clure, 1992]. Several methodologies have been proposed to automate software processes, for instance
using data mining [Xie et al., 2009], code generation [Herrington, 2003], or automated reasoning [Be-
navides et al., 2005] techniques. One of the most popular approaches to automate software engineering
activities is re-expressing them as search problems, i.e., problems consisting of (1) defining a set of ob-
jects of interest as problem variables, (2) defining a set of criteria to evaluate values (solutions) for these
variables, and (3) finding, from the set of possible values (search space), solutions that fulfill the criteria
at best. This approach is commonly known as Search Based Software Engineering (SBSE) [Harman and
Jones, 2001], and has been successfully applied in several activities of software engineering, including
requirements analysis [Greer and Ruhe, 2004], design [Clark and Jacob, 2001], maintenance [Antoniol
et al., 2005] and project management [Alba and Francisco Chicano, 2007]. Out of all activities in software
engineering, testing has been the first field where search-based techniques have been applied [Miller and
Spooner, 1976]. Over the years, Search-Based Software Testing (SBST) has been successful in several
areas of software testing, especially test case generation [McMinn, 2004], selection [Yoo and Harman,
2007], and prioritization [Li et al., 2007].

(2.17.1) Test case selection

(2.17.2) Test case prioritization

Figure 2.17. Two examples of software testing activities commonly solved with search-based techniques:
test case selection and prioritization [Harman et al., 2012]

SBST is mostly centered around optimization problems, where the search aims at finding the best
solutions with respect to some criteria. These solutions usually represent test data, rankings of test cases
in a test suite, or sets of test cases fulfilling some requirement, such as optimal coverage. Figure 2.17
shows two examples of software testing activities commonly addressed in SBST. Figure 2.17.1 shows a
mapping between test cases, and elements they cover, e.g., statements in code. The test case T1 covers
the statements S1 and Sm, T2 covers S2 and Tn covers S2 and Sm. The test case selection problem consists
in finding the minimal set of test cases that achieves some coverage criteria. Note that, in this case, the
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search space grows exponentially in the size of the test suite. This is because, given a test suite T of n test
cases, there exist 2n subsets of T . Figure 2.17.2 shows an example of the test case prioritization problem,
consisting in finding the optimal execution order of test cases with respect to criteria such as coverage or
fault detection rate. Even in this case the search space grows exponentially in the size of the test suite:
given a set of n test cases, there exist n! permutations of test cases that define a sequence. These examples
show that the search space is often too large to be exhaustively explored within a practically convenient
time. For this reason, SBST makes a extensive use of search algorithms, namely metaheuristics, which
aim at finding solutions by evaluating only a fraction of the search space [Harman, 2007]. We describe
metaheuristics in Section 2.4.2.

2.4 Mathematical Optimization
Mathematical Optimization (or Mathematical Programming) is the discipline describing methods for
solving optimization problems, i.e., problems that consist in finding the best (optimal) element(s), with
respect to given criteria, from a set of alternatives. This best element is referred to as global optimal
solution and it yields the global optimum value for the criteria. When such element is found, the corre-
sponding problem is said to have been solved to optimality [Polak, 1997]. The optimization criteria are
often expressed as objective functions whose codomain is a partially ordered set. In this way, the goal
of an optimization problem is to find either the minimum or the maximum value of the function, and
the values for the function variables that yield these minimum and maximum. Therefore, depending on
their goal, optimization problems are referred to as either minimization or maximization problems. In
general, an optimization problem can also specify that the optimum must present specific characteristics
other than minimizing or maximizing the objective function. Based on the concepts above, we provide
the following formalization of minimization and maximization problems [Snyman, 2005]:

Minimum of a function. Let f : X →Y be a function whose codomain Y is a set with a partial order ≤,
and let X ′ ⊆ X be a subset of X. The minimum of f restricted to X ′ is denoted by min

x∈X ′
f (x), and defined

by the following property.

f (x∗) = min
x∈X ′

f (x) ↔ ∀x′ ∈ X ′ · f (x∗)≤ f (x′)

Argument of the minimum of a function. Let f : X → Y be a function whose codomain Y is a set with
a partial order ≤, and let X ′ ⊆ X be a subset of X. The argument of the minimum of f restricted to X ′ is
denoted by argmin

x∈X ′
f (x), and defined by the following property.

x∗ = argmin
x∈X ′

f (x) ↔ ∀x′ ∈ X ′ · f (x∗)≤ f (x′)

Note that, in general, a function f can have more than one minimum, and more than one argument of the
minimum. Also note that, by definition, f

(
argmin

x∈X ′
f (x)

)
= min

x∈X ′
f (x).
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Minimization problem. Let f : X → Y be a function whose codomain Y is a partially ordered set, and
let X ′⊆X be a subset of X. A (single-objective) minimization problem over f restricted to X ′ is a problem
consisting in finding the minimum, and the argument of the minimum of f restricted to X ′.

Note that, in this thesis, we do not consider multi-objective optimization problems.

Maximum of a function. Let f : X→Y be a function whose codomain Y is a set with a partial order≤,
and let X ′ ⊆ X be a subset of X. The minimum of f restricted to X ′ is denoted by max

x∈X ′
f (x), and defined

by the following property.

f (x∗) = max
x∈X ′

f (x) ↔ ∀x′ ∈ X ′ · f (x′)≤ f (x∗)

Argument of the maximum of a function. Let f : X →Y be a function whose codomain Y is a set with
a partial order ≤, and let X ′ ⊆ X be a subset of X. The argument of the maximum of f restricted to X ′ is
denoted by argmax

x∈X ′
f (x), and defined by the following property.

x∗ = argmax
x∈X ′

f (x) ↔ ∀x′ ∈ X ′ · f (x′)≤ f (x∗)

Note that, in general, a function f can have more than one maximum, and more than one argument of the
maximum. Also note that, by definition, f

(
argmax

x∈X ′
f (x)

)
= max

x∈X ′
f (x).

Single-objective Maximization problem. Let f : X →Y be a function whose codomain Y is a partially
ordered set, and let X ′ ⊆ X be a subset of X. A (single-objective) maximization problem over f restricted
to X ′ is a problem consisting in finding the maximum, and the argument of the maximum of f restricted
to X ′.

Most practical optimization problems can be described with the formalizations above. Specifically, f
is referred to as objective function, while max and argmax represent the global optimum and the global
optimal solution, respectively. In practice, the key elements in these definitions, such as the function f
or the subset X ′, often have specific characteristics that can be exploited to solve the problem. Therefore,
Mathematical Optimization has different subfields that focus on solving particular classes of optimization
problems. For instance, Combinatorial Optimization is aimed at solving optimization problems where
the domain X of f is a finite set [Nemhauser and Wolsey, 1988], while Stochastic Programming focuses
on problems where f depends on random variables [Birge and Louveaux, 2011]. In this thesis, we de-
scribe the two classes of optimization techniques that have mostly been applied to Software Engineering
problems, namely Constrained Optimization (CO) (Section 2.4.1), and Metaheuristics (Section 2.4.2).

2.4.1 Constrained Optimization (CO) and Constraint Programming (CP)
Constrained (or Constraint) Optimization (CO) is a field in Mathematical Optimization that focuses
on problems where the variables of the objective function are subject to logical relations named con-
straints [Gill et al., 1981]. Problems in CO are often referred to as Constraint Optimization Problems
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(COP). Consistent to the definitions in Section 2.4, in COP the subset X ′ ⊆ X of the objective function
domain can be expressed as a set of constraints, usually in form of equalities or inequalities. Constraints
enjoy a set of properties that simplify their adoption to model real-world problems [Lloyd, 1994]. For
instance, constraints specify partial information on the variable values: usually, a single constraint does
not uniquely specify the values for the problem variables, and has to be considered in conjunction with
other constraints. However, constraints are commutative, as the order in which they are considered does
not affect the set of values they describe. Constraints are declarative, as they only define relationships
among variables without specifying computational procedures. Finally, constraints can be combined to
infer other constraints. Consider for instance the variables x, y, and z, and the constraints c1 : x ≤ y, and
c2 : y≤ z. In this case, c1 and c2 can be used to infer the constraint c3 : x≤ z.

In general, a solution of a COP has two key features, i.e., (1) satisfies all the constraints, and (2) op-
timizes the objective function. However, several practical problems only consist in finding solutions that
satisfy a set of constraints, because there is no relevant function to optimize. These problems are com-
monly known as Constraint Satisfaction Problems (CSP). Even though CSP do not traditionally belong to
the field of Mathematical Optimization as they are not optimization problems, they can be seen as COP
where the objective function is constant [Apt, 2003]. Indeed, these two classes of problems are often
treated together, because the techniques used to solve them all reason over constraints6. Specifically,
both CSP and COP are solved through the means of Constraint Programming (CP). CP is a programming
paradigm that expresses relationships among variables as a conjunction of logical constraints [Apt, 2003].
Note that, as explained before, constraints do not specify machine instructions to execute, but rather prop-
erties that characterize the values of variables7. For this reason, CP is a declarative paradigm, as are Logic
Programming and pure Functional Languages. Since constraints do specify a way to compute values that
satisfy them, COP and CSP are solved in CP through constraint solvers, which implement resolution
algorithms based on different strategies. In general, these resolution strategies are based upon problem
properties such as convexity or linearity. There exists a number of free and commercial constraint solvers,
which are able to solve several types of COP and CSP: notable examples include ECLIPSE8, GECODE9,
SICSTUS10, and the IBM ILOG CPLEX suite11. These solvers take as input a CSP or COP, whose
constants, variables, constraints and objective functions are specified in a constraint model. Constraint
models are usually implemented in mathematical languages, which offer primitives and constructs for
the definition of mathematical and programming objects, such as statements, variables, functions, lists,
iterators and conditional expressions. Notable examples of such languages are A Mathematical Program-
ming Language (AMPL) [Fourer et al., 1987], MiniZinc [Nethercote et al., 2007], and the Optimization
Programming Language (OPL) [Van Hentenryck, 1999]. In the rest of this section, we formalize CSP

6 Note that, given a COP P and a candidate optimal solution x∗ which yields the objective value f ∗ = f (x∗), it is possible
to verify whether x∗ is the global optimum by solving a CSP P′. In particular, P′ has the same constraints of P, plus the
additional constraint f (x)> f ∗.

7 Note that, opposite to constraints, primitives in imperative programming languages also imply the computation of the
variables values.

8 http://eclipseclp.org/
9 http://www.gecode.org/

10 http://sicstus.sics.se/
11 http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
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and COP, and we introduce the major techniques used to solve them. Note that, as it often happens in the
CP literature, we first introduce CSP in Section 2.4.1.1, and then COP in Section 2.4.1.2 as an extension
of CSP.

2.4.1.1 Constraint Satisfaction Problems (CSP)

We formalize Constraint Satisfaction Problems (CSP) in the following way [Russell et al., 1995]:

Constraint Satisfaction Problems. A Constraint Satisfaction Problem P = (X ,D,C) is a triple where:
• X = {x1,x2, . . .xn} is a finite set of n variables.
• D = {D1,D2, . . . ,Dn} is a finite set of n domains, where for each i, Di ∈ D is the domain of xi ∈ X.

Let φ : X→D be the function that associates each variable to its domain, i.e., ∀xi ∈ X · φ(xi) = Di.
• C = {c1,c2, . . . ,cm} is a finite set of m constraints. Each constraint c = (Xc,Rc) is a pair where:

– Xc ⊆ X is a subset of variables, called the scope of the constraint.
– Rc ⊆

∏
x∈Xc

φ(x) is a relation defined on the domains of variables in Xc.

Given a variable xi ∈ X , each element d ∈ Di is said to be a value for xi. The arity of a constraint is the
number of variables in its scope. A CSP P is said to be binary if all its constraints have arity one or two.

Variable assignment. A variable assignment (or assignment) θ : X → φ(X) is a function that maps a
variable x ∈ X to one value in its domain φ(x), i.e., ∀x ∈ X · θ(x) ∈ φ(x).

An assignment θ is said to be complete or total if it is a total function, i.e., if it assigns a value for each
variable in X . An assignment which is not complete is said to be partial. A variable x ∈ X is said to be
instantiated in θ iff θ(x) is defined. Variables which are not instantiated in θ are said to be unassigned
in θ . Note that, by definition, every variable in X is assigned in a complete assignment.

Satisfied constraint. A constraint c = (Xc,Rc) is said to be satisfied in an assignment θ , and is denoted
by c |= θ , iff the tuple of values assigned by θ to variables in Xc belongs to the relation Rc, i.e., iff(
θ(x) | x ∈ Xc

)
∈ Rc.

A constraint which is not satisfied is said to be unsatisfied or violated.

Consistent assignment. An assignment θ is said to be consistent iff every constraint c = (Xc,Rc) whose
variables in Xc are assigned by θ is satisfied, i.e., iff ∀

(
c ∈C | ∀x ∈ Xc · θ(x) ∈ φ(x)

)
· c |= θ .

Feasible Solution of a Constraint Satisfaction Problem. A (feasible) solution of a CSP P is a complete
consistent assignment.

Note that a complete assignment is an element of the set S =
∏

x∈X φ(x), which is the Cartesian product of
the domains in D. Since S is the set of all the complete assignments of variables in X , it is a superset of all
the solutions of a CSP P. For this reason, S is said to be the solution space of P. In general, the solution
of a CSP can be seen as a search problem (Section 2.3.3) over S whose criteria is the completeness and
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consistency of the assignments. Also note that a partial consistent assignment is said to be a partial
solution.

A well-known example of a CSP is the n-queens problem, which consists in placing n queens on a
n× n chessboard in such a way that queens do not attack each other [Bruen and Dixon, 1975]. Two
queens are said to attack each another if they are on the same row, column or diagonal of the chessboard.
This problem can be modeled as CSP where:

• X = {x1,x2, . . .xn} is the set of variables, where xi represents the column of the queen in the ith row.
• D = {D1,D2, . . . ,Dn} is a the set of variables domains where for each i, Di = {1,2, . . .n}. Note

that the assignment θ(xi) = j means that the queen on the ith row is placed in the jth column of the
chessboard.
• C is the set of constraints that define relations such that ∀x, j ∈ [1,n] · xi 6= x j∧ | xi− x j |6=| i− j |.

A solution of the n-queens problem for n = 8 is shown in Figure 2.18.

Figure 2.18. A solution for the n-queens problem in the case n = 8 [Abelson and Sussman, 1983].

In the domain of Software Engineering, several problems have been modeled as CSP, including
project staffing [Barreto et al., 2008], product-lines feature modeling [Benavides et al., 2005], formal
verification [Cabot et al., 2008], and test data generation [Gotlieb et al., 1998].

There exist several techniques to solve CSP, most of which are based upon (systematic) tree search.
The idea behind tree search is to model the search space as a tree where each node represents the assign-
ment of a value to a single variable. The children of each node represent mutually exclusive choices on
the values to assign to each variable, effectively partitioning the solution space into disjoint sub-spaces.
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In this way, each root-leaf path in the tree corresponds to a complete variable assignment. However,
the tree exponentially grows in the number of variables and the size of their domains. This means that
generating all the possible complete variable assignments and checking their consistency is infeasible
for large problems. To address this problem, there exist tree search techniques that use (chronological)
backtracking [Van Hentenryck, 1989]. In these techniques, the search tree is constructed and explored
in a depth-first process, which starts from a node with all the variables unassigned, i.e, with an empty
partial solution. At each iteration, the backtracking algorithm extends a partial solution by assigning a
value to an unassigned variable. This step is called labeling. If the new partial solution violates any of
the constraints of the problem, a fail is said to be detected. In case of fail, the most recent assignment
is invalidated in a step backtrack. Then, the search continues iterating by assigning a value to the first
unassigned variable. The algorithm stops when a solution is found, i.e., when all variables are assigned
in a way that no constraint is violated, or when no more labeling or backtracking is possible because no
solution exist. In general, the efficiency of the search process is influenced by the order in which the
variables and values are tried for assignments. The strategies to choose what variable and what value
to assign at each iteration are known under the name of variable and value ordering heuristics. In gen-
eral, the values and variable order can be chosen either before the algorithm starts (static ordering), or at
runtime depending on the current node of the tree (dynamic ordering) [Gent et al., 1996]. For instance,
first-fail is one of the most common heuristics, which consists in ordering the variables in such a way that
the tree levels have an increasing order of children [Haralick and Elliott, 1980]. This strategy is based on
the principle that, the earlier a fail is detected, the larger is the sub-tree that is proved to have no solutions,
and that hence does not to be visited. For many problems of practical interest, proper ordering heuristics
can significantly speed up the search process. However, if heuristics choose a wrong assignment early
in the tree, the search is likely to take too much time to backtrack and invalidate that early choice. This
is because the efficiency of backtracking strongly depends on whether heuristics are able to choose the
right branch early in the tree. A backtracking strategy called Limited Discrepancy Search (LDS) tries to
mitigate this problem under the assumption that, most of the time, ordering heuristics chose the wrong
assignments for variables only a small amount of time [Harvey and Ginsberg, 1995]. LDS remembers
each branch of a path p that ends with fail. Instead of the usual backtracking step, LDS tries the set of
paths that differ from p by a single branch. If all of these fail, then LDS tries the paths that differ from
p by two branches, and so on. However, backtracking suffers in general from two major drawbacks:
(1) late fail detection, due to fails not being detected before the corresponding branch in the tree is taken
for exploration. This can potentially lead the search to spend time on sub-trees that have no solution.
(2) redundancy, due to conflicting values of variables not being remembered. This can potentially lead
to repeated fails due to the same reason. For this reason, there exist several strategies aimed at mitigating
these two drawbacks. Late fail detection is usually addressed through look-ahead strategies, which aim
at predicting whether or not a tree branch leads only to fails (dead-end) [Apt, 1999]. This is usually
done through Constraint Propagation algorithms, which eliminate from the solution space assignments
inconsistent with some constraints [Haralick and Elliott, 1980]. Constraint Propagation considers the
CSP constraints in increasing order of arity, and progressively eliminates (filters) from the variables do-
main the values that violate such constraints. This domain reduction is referred to as domain filtering.
Consider for instance a CSP where the variable x has domain [1,5], and is subject to the unary constraint
c stating that x ≤ 3. Constraint Propagation starts the filtering process by reducing the domain of x to
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the interval [1,3], because assigning 4 or 5 to x leads to a violation of c. Consider also the case where
the same CSP has a variable y with domain [0,7], which is subject to the binary constraint y ≥ x+ 2.
Since x is at least 1, y has to be at least 3, and therefore the Constraint Propagation algorithm filters the
domain of y reducing it to the interval [3,7]. Constraint Propagation repeatedly applies domain filtering
until no more deduction is possible. There exist several strategies to perform Constraint Propagation
and domain filtering. For instance, forward checking is a look-ahead strategy that performs Constraint
Propagation at each branch of the tree [Haralick and Elliott, 1980]. There exists also another class of
techniques, namely look-back strategies, which aim at addressing the backtracking redundancy by either
deciding how far to backtrack at each step, or by remembering the causes of past fails [Bayardo Jr and
Schrag, 1997]. For instance, backjumping detects conflicting variables of a fail, and backtrack directly
to the assignment of those variables, instead of the most recently assigned variable [Dechter and Frost,
2002]. On the other hand, techniques such as backchecking and backmarking record compatible and
incompatible sets of assignments for variables. In this way, the search algorithm does not spend effort
into checking whether an assignment occurred in the past leads to a fail or not, and does not consider for
future branches assignments which are already known to lead to fail.

2.4.1.2 Constraint Optimization Problems (COP)

A Constraint Optimization Problem (COP) can be considered as a Constraint Satisfaction Problem ex-
tended by an objective (or cost) function that evaluates the quality of each solution. Therefore, we
formalize COP in the following way [Russell et al., 1995]:
Constraint Optimization Problem (COP). A Constraint Optimization Problem (COP) P is a couple
(P′,F) where:

• P′ = (X ,D,C) is a CSP.
• F :

(
X → φ(X)

)
→V is an objective (or cost) function that associates a variable assignment of P′

to a set V with a partial order ≤. F is defined only for complete consistent variable assignments
(solutions).

Note that, when referring to variables, domains or constraints of a COP, we intend the ones of the associ-
ated CSP. Also note that, for most practical problems, the partially ordered set V is a numerical set such
as N, Z, Q or R.

Preferred solution. A solution θ1 is said to be preferred to a solution θ2, iff the value of the objective
function applied to θ1 is less than the value of the objective function applied to θ2, i.e., iff F(θ1)≤ F(θ2).
Optimal solution. A solution θ is said to be optimal iff no preferred solution θ ′ to θ exists, i.e., iff
∀θ ′ ∈ {X → φ(X)} · F(θ)≤ F(θ ′).

Note that this formalization is consistent with the generic definitions given at the beginning of this Sec-
tion. Specifically, the objective function F of a COP can be seen as a generic function f : A→ B that
maps an assignment in A to a value in a partially ordered set B. Specifically, f is defined only for the
complete consistent assignments (solutions) in A′ ⊆ A. In this way, the argument of the minimum of f
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restricted to A′ is exactly the solution s ∈ A′ such that f (s) is the minimum of f 12.

A well-known example of COP is the job-shop scheduling problem, which consists in assigning a
set of jobs to processing machines [Coffman and Bruno, 1976]. Each job is a sequence of tasks, each
completed in a given processing time. Tasks must be performed in a specific order, and on a specific
machine. Therefore, a solution to the problem is a schedule of job sequences on machines, such that
no machine is processing two tasks at once. In general, machines consume resource while operating,
and one wants to minimize the total time where the set of machines is active. Therefore, the optimal
solution to a job-shop scheduling problem is a schedule which minimizes the jobs makespan, i.e., the
total elapsed time between the beginning of the first task, and the completion of the last task. Among
several application fields, COP have indeed been used for scheduling analysis, especially in the domain
of manufacturing systems [Baptiste et al., 2001].

The techniques to solve COP are mostly extensions of the tree search algorithms to solve CSP. Specif-
ically, Constructive algorithms gradually extend a partial solution to a complete one. The basic construc-
tive algorithm is branch-and-bound, which iteratively searches for solutions by applying backtracking
and constraint propagation to the search tree [Lawler and Wood, 1966]. Opposite to algorithms for CSP,
branch-and-bound does not stop as soon as a feasible solution is found, but keeps track of the best solu-
tion found (incumbent), and its cost (objective function upper bound). At each iteration, the algorithm
searches for a solution with a lower cost than the upper bound. To do so, it evaluates the best value that
the partial solutions can yield once all of its variables are assigned (objective function lower bound).
Each time a value is assigned to a variable in the partial solution, the lower bound of that assignment
is computed. If the lower bound is greater than the upper bound, the subtree under the current partial
assignment can not contain a solution with a better cost, and is pruned from the tree.

Most approaches for COP are complete, in the sense that they return the optimal solution upon ter-
mination. However, for large problems, complete approaches can take long time to terminate. For this
reason, incomplete techniques have been devised to solve COP, and optimization problems in general.
Such techniques are discussed in Section 2.4.2.

2.4.2 Metaheuristics
In the field of Mathematical Optimization, there exist some problems whose global optimum is too hard to
find within reasonable time. This mostly happens when the objective function is hard to express through
equations, and no analytic or numerical approximation technique can be used to solve the problem. In
such cases, the optimal solutions often have unknown characteristics, and the set of all possible solutions
is too large to be enumerated. However, most of the time, generating an arbitrary solution to the problem
requires significantly lower effort than finding the optimum. In such cases, the problem is often cast as a
search problem. Recall from Section 2.3.3 that a search problem is a problem that consists of three main

12 Traditionally, COP are defined as minimization problems. This is because a maximization problem of a function f with
values in a partially ordered set B can be seen as a minimization problem of the same function where the partial order of B is
inversed. For most practical problems, the partial order is a numerical set. In this case, maximizing f is indeed equivalent to
minimizing − f . When not specified, in this thesis we assume that a COP models a minimization problem.
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characteristics: (1) the definition of problem variables, (2) the definition of criteria to evaluate values
(solutions) for these variables, and (3) the process of finding, from the set of possible values (search
space), solutions that fulfill the criteria at best.

The field of Stochastic Optimization studies randomized algorithms and techniques which attempt
at finding optimal solutions to these hard search problems. Specifically, metaheuristics is a term often
used to describe the most general class of Stochastic Optimization algorithms13 [Luke, 2009]. These
algorithms can be used whenever it is possible to generate solutions and evaluate their quality. Opposed
to analytical gradient-based methods [Snyman, 2005], metaheuristics do not require the search criteria
to be expressed as functions, and therefore they are often referred to as black-box techniques. However,
the search criteria are often referred to as objective function(s) to maximize or minimize, even though
they are not usually expressed as mathematical objects. Metaheuristics are used to solve problems in
many domains, including Software Engineering. Indeed, metaheuristics are extensively used in the area
Search-Based Software Testing for test case generation, selection, and prioritization (Section 2.3.3).

2.4.2.1 Random Search and Hill-Climbing

In general, all metaheuristics can be described in terms of five steps [Luke, 2009]: (1 – initialize) provide
an initial set of solutions, (2 – assess) evaluate the quality of the solutions, (3 – tweak) create a new
set of solutions by randomly modifying the existing ones, (4 – select) define a new set of solutions by
choosing a mix of old and new solutions to keep in memory, (5 – iterate) repeat steps 2-4 until given
termination criteria are reached. The solutions in steps 1-4, which the algorithm uses to drive the search
towards the optimum, are typically referred to as candidate solutions of the problem at a given iteration.
Given this description in five steps, metaheuristics differ from each other based on the logic behind steps
3 and 4. The most naive search algorithm is Random Search, where solutions are randomly generated and
evaluated against the search criteria [Hamlet, 1994]. The generation process can continue until the time or
resource budget expires, and usually returns only the best solutions found. For instance, Random Testing
has been used in the context of Software Engineering for long time, proving to be effective in several
case studies [Duran and Ntafos, 1984]. However, most search algorithms exploit specific properties of
the solutions in an attempt to perform better than Random Search in terms of quality of solutions found,
and time needed to find such solutions. The simplest algorithm that implements a basic reasoning over
the solutions found is Hill-Climbing [Blum and Roli, 2003]. This algorithm first randomly generates
a solution, and then creates a new version by making a small random modification. Then, it keeps the
best version with respect to the search criteria, and continues iterating by making new modifications to
the last kept solution. Hill-Climbing attempts at exploiting the supposition that similar solutions have
similar quality with respect to the search criteria. In this way, small modifications generally result in
small changes in quality, and keeping the best version of two solutions allows to climb the hill of quality,
up to reaching a plateau where these small modifications do not increase quality anymore.

13 Note that there is no universal agreement on a definition for metaheuristics. In general, Stochastic Optimization tech-
niques such as Simulated Annealing, Evolutionary Algorithms, or Swarm Intelligence are traditionally seen as metaheuristics,
while others such as Markov Chain Monte Carlo or Gibbs Sampling are not. To avoid confusion, in this thesis we do not
distinguish between the terms of metaheuristic and (randomized) search algorithm, even though in the literature this is not
always the case.
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Note that Random Search and Hill-Climbing are based upon two fundamentally different strategies
to find optimal solutions. On the one hand, Random Search continuously generates solutions unrelated
to each other, thus exploring the search space in an attempt to find the optimum. On the other hand, Hill-
Climbing starts from one solution and exploits it by incrementally improving it with small modifications.
Random Search fundamentally implements a Global Search strategy, by visiting different regions of the
search space. Hill-Climbing instead implements a Local Search strategy, where small moves are made
in the most promising directions of the search space. Global, explorative algorithms such as Random
Search and local, exploitative algorithms such as Hill-Climbing perform very differently based on the
shape of the function to optimize.

(2.19.1) Unimodal function (2.19.2) Noisy function

(2.19.3) Needle-in-a-Haystack type of func-
tion (2.19.4) Deceptive function

Figure 2.19. Four examples of quality functions where Random Search and Hill-Climbing tend to per-
form very differently [Luke, 2009]

Consider for instance Figure 2.19, where each graph depicts an objective function to maximize. The
x-axes report the solutions in the search space, while the y-axes report the value of the objective function.
Hill-Climbing performs very well in cases such as in Figure 2.19.1, where there is a strong relationship
between the distance along the x-axis of two candidate solutions, and their quality. In this scenario,
Random Search is very unlikely to reach the global optimum. However, when there is no relationship be-
tween the distance of two solutions and their quality (Figure 2.19.2), Hill-Climbing is likely to converge
to a local optimum, possibly with a similar objective value as Random Search. In general, Hill-Climbing
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is effective when the objective function has an informative gradient, which leads the search towards high
quality solutions. In the unimodal and noisy functions, there is such gradient, and Hill-Climbing is guar-
anteed to find the best solution within the neighborhood of the initial solution. Consider now the function
in Figure 2.19.3: in this case, there is no gradient to guide Hill-Climbing towards the optimum. There are
also cases, such as Figure 2.19.4, where the exploitation strategy of Hill-Climbing is counterproductive,
since the gradient is likely to lead the search away from the optimum. In these last two cases, a global
search approach is more likely to perform better than local search. For vast majority of optimization
problems where metaheuristics are applied, the shape of the objective function is not known, and there-
fore it is not possible to predict whether an explorative or exploitative behavior is preferable. For this
reason, metaheuristics essentially combine the principles of Random Search (global explorative search),
and Hill-Climbing (local exploitative search) [Glover and Kochenberger, 2003].

2.4.2.2 Genetic Algorithms (GA)

Many metaheuristics have been defined over the years, most of which have been successfully applied
to solve problems in Software Engineering [Harman, 2007]. However, it is beyond the scope of this
thesis to provide a thoughtful discussion on the different kinds of randomized search algorithms. In
the context of Search-Based Software Testing, the literature [Ali et al., 2010] reports successful results
especially when using a class of metaheuristics known as Genetic Algorithms (GA) [Goldberg, 2006].
Although there is no universally accepted definition, one can identify four elements that most methods
referred to as GA have in common: (1) populations of individuals, (2) selection according to fitness,
(3) crossover to produce new offspring, and (4) random mutation of new offspring [Mitchell, 1998].
Each individual is referred to as chromosome or genotype, and represents a candidate solution for a given
problem. Chromosomes consist of a set of genes, where each gene encodes a value in the solution. The
number of genes in a chromosome, is often referred to as the chromosome length. A typical GA starts
by randomly generating a population of chromosomes, and evaluating their fitness by calculating the
value of a fitness function. Then, the algorithm iterates through a series of generations consisting of three
main steps. (1) First, a pair of chromosomes is randomly selected with increasing probability according
to fitness. (2) Then, the pair is crossed over to form two offspring, whose genes are then randomly
mutated. (3) Finally, the offspring replaces two chromosomes the population, chosen with decreasing
probability according to fitness. Each of these three steps is performed by a specific operator, which
implements the logic of selecting, crossing-over, and mutating chromosomes. Similar to what happens
in nature, during a series of generations the fittest chromosomes tend to survive in the population, while
the unfit are discarded. The main assumption behind GA is that high quality parents produce a high
quality offspring, so that, similar to biological evolution, only the fit individuals survive and proliferate.
Note that the selection, crossover, and mutation probabilities define the trade-off between explorative
and exploitative behavior. For instance, a strategy with higher mutation than crossover probability leads
to an explorative behavior that prefers to generate new solutions instead of optimizing the current ones.
Similarly, a selection operator that tends to always discard unfit chromosomes leads to an exploitative
behavior that prefers inbreeding to outbreeding. There exists a number of free and commercial libraries,
available in several programming languages, which implement GA: notable examples include OPEN
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BEAGLE14, the Genetic Algorithms Utility Library (GAUL)15, the Java Genetic Algorithms Package
(JGAP)16, and the Genetic Algorithms Library (GALIB)17.

GA have been used for many activities in SBST, including the generation of workloads that represent
worst-case scenarios with respect to task deadlines [Briand et al., 2005]. Recall from Section 2.3.2 that
generating stress test cases that push a system into violating performance requirements is challenging
because of the large set of possible scenarios where task can interact, and the complex nature of RTES
which renders such task interactions unpredictable. Therefore, it is a natural choice to cast this problem
as a search problem, and solve it through the use of metaheuristics. The key idea that enables the use
of GA is to model the arrival times of aperiodic system tasks as chromosomes, and to evaluate their
fitness by computing the value of a function that properly rewards scenarios with deadline misses. This
fitness function depends on the end times of tasks, which can be calculated starting from a fixed arrival
pattern. Indeed, the fitness of each chromosome is calculated by simulating the schedule that the Real-
Time Operating System produces in case of the arrival pattern specified by the chromosome. We present
below a brief description of this GA-based approach for stress testing of task deadlines [Briand et al.,
2006].

• Population, Chromosomes, and Genes. The initial population consists of 80 chromosomes,
where each chromosome represents a set of arrival times for aperiodic tasks, i.e., an arrival pat-
tern for the RTES. Each gene in the chromosome is encoded as the pair ( jk, t), where jk is the kth

execution of task j, and t is the arrival time of jk.
• Crossover Operator. The algorithm uses with 0.7 probability a n-point crossover operator, where

n is the number of aperiodic tasks. Each crossover point is defined after the set of genes correspond-
ing to an aperiodic task. In this way, chromosomes cross over exchanging genes associated to the
same task. Each crossover produces two offspring, where the genes of the parents are inherited
by the offspring with 0.5 probability, in a way that the children inherit each gene from a different
parent. Note that, due to real-time constraints, two consecutive arrival times of each aperiodic task
must be separated by its minimum and maximum interarrival times. During the search, it may
happen that a crossover operation breaks this constraint on a certain chromosome. In such case,
the algorithm invalidates the operation, and proceeds by applying it to a different chromosome.
• Mutation Operator. The genes in the chromosome are mutated by randomly replacing one arrival

time. This replacement is done by generating a time value in the interval defined by the minimum
and maximum interarrival times of the preceding task execution. The mutation operator is applied
at each gene with a probability of 1.75 ·(λ

√
l)−1, where λ is the population size, and l is the length

of the chromosomes.

The population size, and the crossover and mutation rates, have been derived from the literature of
GA and tuned for the specific domain of deadline miss analysis [Briand et al., 2005]. This GA-based
approach uses the GALIB implementation, and has been successfully used to generate stress test cases in

14 http://code.google.com/p/beagle/
15 http://gaul.sourceforge.net/
16 http://jgap.sourceforge.net/
17 http://ancet.mit.edu/ga/
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a case study from the avionics domain featuring the weapon control system of a military aircraft [Locke
et al., 1990].
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Chapter 3

Problem Description

Real-Time Embedded Systems (RTES) are becoming increasingly more complex and critical in many
industry sectors. A main aspect of such complexity is their concurrent architecture that entails that sev-
eral tasks are triggered and executed in parallel in ways which are difficult to establish a priori [Gomaa,
2006]. Moreover, RTES are often safety critical [Kopetz, 2011], and thus bound to meet strict perfor-
mance requirements. In addition, their tasks must satisfy execution constraints in terms of dependency
from shared computational resources, triggering of other tasks, maximum completion time, and execu-
tion priority. Such complexity gives rise to a multitude of possible task execution scenarios at runtime,
for which any manual reasoning is very inefficient, if not infeasible. In the domain of safety-critical
RTES one is especially interested in those particular scenarios that exercise a system in a way that tasks
are pushed as close as possible to violate their performance requirements. Identifying such scenarios is
the basis for stress testing, a high-priority activity in the validation of RTES [Beizer, 2002]. In the rest of
this chapter, we will first introduce the principles behind stress testing through an abstract example (Sec-
tion 3.1), and then we will discuss the problem concretely in an industrial case study from the maritime
and energy domain (Section 3.2).

3.1 Finding Worst-case Scenarios in Real-Time Embedded
Systems

Most of the approaches for analyzing time-related properties in RTES are based on a combination of
real-time scheduling theory (Section 2.1.1) and static Worst-case Execution Time (WCET) analysis (Sec-
tion 2.1.2). These methods estimate the schedulability of a tasks set under a given scheduling policy [Tin-
dell and Clark, 1994], assuming worst case situations with respect to tasks arrival times, and using es-
timates for task execution times [Baker, 2006]. For instance, the Completion Time Theorem (CTT)
provides a sufficient condition for deadlines to be met in case of a task set of independent tasks scheduled
with the Rate Monotonic algorithm [Lehoczky et al., 1989]. The CTT specifies that, if each task meets its
deadline when all tasks start executing at the same time, then the tasks will meet their deadlines for any
combination of start times. The CTT assumes that task do not depend on each other, which is hardly the
case in large and complex RTES. For this reason, the CTT has been extended into the Generalized Com-

85



Chapter 3. Problem Description 3.1. Finding Worst-case Scenarios in Real-Time Embedded Systems

pletion Time Theorem (GCTT) by considering interdependent tasks that share resources with exclusive
access [Gomaa, 2006]. Note that both the CTT and the GCTT only consider periodic tasks. For schedul-
ing analysis, the GCTT has been extended to also consider aperiodic tasks [Sha and Goodenough, 1989].
In this extension, aperiodic tasks are considered as periodic tasks with period equal to their maximum
interarrival time [Sprunt et al., 1989]. The CTT and the GCTT both consider that the worst-case scenario
with respect to task deadlines is the case where all tasks are simultaneously ready to execute when the
system starts. However, this does not hold when both interdependent and aperiodic tasks are present.
Consider for instance a fixed-priority preemptive scheduler that schedules the task set J = { j1, j2, j3} de-
scribed in Table 3.1. The first row reports the observation interval T of the task set, and the number c of
cores of the target platform, i.e., the maximum number of tasks that can run in parallel. The first columns
of the table report the tasks priority, duration, period, minimum and maximum interarrival times, and
deadline. The last two columns report triggered tasks, and tasks that share computational resources with
exclusive access. A centered dot (·) indicates that the property does not hold for a task. For example, j0
is periodic, and therefore does not have minimum and maximum interarrival times. Similarly, j0 triggers
j1 upon finishing execution, and does not share computational resources with other tasks. Note that, as
it often happens in RTES analysis, time is discretized into time quanta. This means that time-related
properties of tasks are expressed as multiples of a time quantum. In the example, T is an integer interval
of 9 time quanta.

T = [0,8] c = 1

Task priority duration period min_ia max_ia deadline triggers depends

j0 0 2 9 · · 6 j1 ·
j1 1 3 · · · 4 · ·
j2 2 2 · 9 9 3 · ·

Table 3.1. Example system with three tasks, one of which is triggered

In this task set, j0 is a periodic task that triggers j1, and j2 is a higher priority aperiodic task. The
GCTT assumes that the worst-case scenario happens when j0 and j2 arrive simultaneously at the begin-
ning of the observation interval. Note that this scenario does not lead to any deadline miss, as showed
in Figure 3.1.1. However, there exists a scenario where j1 misses its deadline: this happens if j2 ar-
rives after j0 has finished, as depicted in Figure 3.1.2. Note that similar examples can also be made for
response time and CPU usage.

This example shows two important concerns when analyzing time-related properties of RTES. First,
it shows how the GCTT result, i.e., that the worst-case scenarios happen when each task arrives simulta-
neously at the beginning of the observation interval, is not valid when tasks have complex dependencies.
Second, the example shows how the task arrival times have a great impact on hard real-time properties,
and specifically, on deadline constraints. Note that arrival times of aperiodic tasks depend on the envi-
ronment, and can never be predicted prior to the execution of the system. Indeed, the arrival times also
vary across different system executions due to the unpredictability of the environment.

For the reasons above, in order to evaluate deadline miss constraints, we need a strategy to search for
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(3.1.1) j0 and j2 arrive simultane-
ously, but no task misses its deadline

(3.1.2) j2 arrives when j1 is execut-
ing, and makes it miss its deadline

Figure 3.1. Impact of changes in the arrival times of tasks with respect to deadline miss properties

all the possible task arrival times. The search has to be performed in an effective way with the objective
of finding scenarios that violate performance requirements or are close to violating them. In software for-
mal verification, time-related properties expressed in a RTES models have been successfully verify with
Model Checking (MC) approaches [Alur et al., 1990]. Such properties typically represent conditions,
e.g., deadline misses, that should never hold in the system at any given time. Usually, MC approaches
cast the search of these properties as a reachability query over a Finite State Machine representing the
system behavior. However, MC is mostly used for verification, i.e., to check if a given set of real-time
tasks satisfy some property of interest. In general, one wants to complement formal design verification
by testing the system implementation, which is the focus of this thesis. Specifically, we focus on the
problem of identifying scenarios that exercise a system in a way that tasks are pushed as close as possible
to violate their performance requirements on deadlines, response time, and CPU usage. Consistent with
the widely accepted definition [Beizer, 2002], we refer to this activity as stress testing (Section 2.3.2).
Specifically, given a performance requirement, we define a stress test case as a sequence of arrival times
for aperiodic tasks that the search identifies as likely to violate that performance requirement.

The ultimate goal of this thesis is to define an efficient and effective strategy for the generation of
stress test cases. To do so, we have devised an approach based on UML/MARTE modeling (Chapter 5),
where the search for arrival times of aperiodic tasks is carried out by a strategy where Constraint Pro-
gramming (CP) (Chapter 6) is combined with Genetic Algorithms (GA) (Chapter 7).

3.2 Motivating Case Study
The main motivation behind the work described in this thesis comes from the case study in the mar-
itime and energy domain concerning a Fire and gas Monitoring System (FMS). The FMS is developed
by Kongsberg Maritime (KM)1, a leading company in the production of systems for positioning, survey-

1www.km.kongsberg.com
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ing, navigation, and automation to merchant vessels and offshore installations. The goal of the system
is to monitor potential gas leaks in oversea oil extraction platforms, and trigger an alarm in case a fire
is detected. The system monitors and displays to human operators data coming from smoke detectors,
heat detectors, and gas flow sensors. When the system receives some critical data from the hardware
sensors, it automatically triggers actuators, such as fire sprinklers and audio/visual alarms. Technicians
constantly monitor the system, and can also directly interact with it, for instance to manually tune oper-
ational parameters or control events raised by specific data. The FMS software architecture is shown in
Figure 3.2.

Figure 3.2. The architecture of the Fire and Gas Monitoring System (FMS)

The software part of the system consists of a set of drivers, and a set of control modules. Drivers im-
plement I/O communication between the system and the external environment, such as hardware sensors,
actuators, and human operators. Control Modules implement the application logic of the FMS, i.e., they
process data coming from the environment and accordingly decide the operations to perform. Drivers
and Control Modules are the main software components of the FMS, and run on a Real-Time Operating
System that is executed over a multicore computing platform. The whole FMS is composed by approx-
imately 5000 control modules and 500 sensors and actuators that communicate with the system through
ca. 100 different drivers. Drivers and control Modules have an approximate size of 5 and 1 thousands
lines of source code (kLoC) each. The system runs on a Real-Time Operating System (RTOS), namely
VxWorks2, that is configured with a fixed-priority preemptive scheduling policy. VxWorks is installed on
a platform featuring a tri-core processor. This architectural design is common in many industry sectors
relying on embedded systems [Buttazzo, 2011].

Figure 3.3 shows the key entities of the FMS which are relevant to our study. A communication
scenario consists in a driver communicating externally with some sensors and/or actuators, and commu-
nicating internally with control modules. To cope with the large number of external hardware devices,

2 http://www.windriver.com/products/vxworks
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Figure 3.3. A class diagram representing the key entities in the Fire and Gas Monitoring System (FMS)

the system runs in parallel several instances of each driver. In the FMS, each driver implements a specific
communication protocol, and it is meant to communicate only with sensors and actuators that implement
the same protocol. The reason for having different types of drivers relies in the variety of sensors and
actuators built by different vendors. Indeed, devices work under specific communication protocols that
have to be implemented by the drivers in order to successfully connect the devices to the system.

Drivers constitute the most critical part of the FMS. Indeed, one of the main complexity factors in
drivers is that they are meant to bridge the timing discrepancies between hardware devices and soft-
ware controller modules. Hence, their design typically consists of parallel tasks that communicate asyn-
chronously to smooth the data transfer between hardware and software. Therefore, drivers are subject to
strict requirements to ensure that their flexibility does not come at the cost of performance. Specifically,
in each FMS driver (1) no task should miss its deadline, (2) the response time should be less than 1
second, and (3) the CPU usage should be below 20%.

Three important context factors in the FMS case study influenced the definition of our approach to
generate stress test cases. (1) Different instances of a given driver are independent, in the sense that
they do not communicate with one another and do not share memory. (2) The purpose of the constraint
on CPU usage is to enable engineers to estimate the number of driver instances of a given monitoring
application that can be deployed on a CPU. These constraints express bounds on the amount of CPU time
required by one driver instance. Therefore, in this thesis we focus on individual driver instances. The
independence of the drivers (first factor above) is the key to being able to localize CPU usage analysis
to individual instances in a sound manner. (3) The drivers are not memory-bound, i.e., task deadlines,
response time, and CPU usage, are not significantly affected by activities such as disk I/O and garbage
collection. To ensure this, KM over-approximates the maximum memory required for each driver in-
stance by multiplying the number of hardware devices connected to the driver instance and the maximum
size of data sent by each device. Execution profiles at the partner company indicate that the drivers are
extremely unlikely to exceed this limit during their lifetime.

Figure 3.4 shows the an a example of three communication scenarios in the FMS, represented by a
dashed rectangle. In the scenario at the top, the instance i1 of driver d1, which implements the protocol
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Figure 3.4. An example showing three communication scenarios in the Fire and Gas Monitoring System
(FMS)

p1, communicates with the sensors s1 and s2 and the control modules m1 and m2. In the scenario at the
center, the instance i2 of d1 communicates with the sensor s3, the actuator a1, and the modules m1 and m2.
In the scenario at the bottom, the instance i3 that runs the driver d2 communicates with the actuator a2
and the module m3. Note that, in each scenario, the driver implements the same communication protocol
of the sensors and actuators involved.

Drivers in the FMS share the same design pattern, where periodic and aperiodic tasks communicate
asynchronously through buffers. There exist two major types of driver implementations, one with four
aperiodic tasks (Section 3.2.1), and another with a singular task consisting of four activities in an infinite
loop (Section 3.2.2)3. However, regardless of the implementation, all the drivers have to satisfy the same
performance requirements. Nonetheless, the specific factors determining whether or not the performance
requirements will be satisfied at runtime closely depend on the specific implementation used.

3.2.1 Implementation 1: Data Transfer with Four Aperiodic Tasks
The first implementation of the FMS drivers consists of six tasks communicating through three buffers.
More precisely, in this implementation a generic driver consists of:

3 Recall from Section 2.1.1 that a singular task is executed only once during the system execution, and that an activity
represents a sequence of operations that a task executes.
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• Three communication buffers, namely BoxIn, Queue, and BoxOut. These buffers serve as tem-
porary storage locations for the data transiting from the hardware devices to the control modules.
Moreover, the buffers have a fixed capacity, and exclusive access by software tasks, i.e., no two
task can simultaneously access a buffer. BoxIn and BoxOut contain formatted data that is coming
from the external hardware, and going towards the control modules respectively. Queue contains a
priority-ordered list of commands extracted from the data that have to be processed by the control
modules.
• Two periodic tasks, namely PullData and PushData. These tasks are periodically activated by a

scan signal, and transfer data from the hardware sensors, and to the control modules respectively.
• Two aperiodic tasks, namely IOBoxRead (IOBR) and IOQueueRead (IOQR). These tasks are acti-

vated at irregular interval of times by a check signal that is fired by the RTOS to notify that BoxIn
and Queue are almost full and need to be emptied.
• Two tasks triggered by aperiodic tasks, namely IOQueueWrite (IOQW), and IOBoxWrite (IOBW).

These tasks are activated by a trigger signal from IOBoxRead and IOQueueRead respectively,
when they finish reading from the BoxIn and Queue buffers.

Figure 3.5. A typical operating scenario of drivers in the FMS consisting of a unidirectional data transfer
between external hardware sensors and control modules. The scenario is implemented by two periodic
tasks, four aperiodic tasks, and three buffers.

Figure 3.5 shows how tasks in the first driver implementation collaborate in the typical scenario, that
is a unidirectional data transfer between hardware sensors and control modules. (1) PullData periodically
receives data from sensors or human operators, formats the data in an appropriate command form, and
(2) writes it in the buffer BoxIn. (3) When BoxIn is almost full, the check signal activates IOBoxRead that
(4) reads the data from the buffer and (5) triggers IOQueueWrite. IOQueueWrite extracts the commands
from the data, and (6) stores them in the priority Queue. When Queue is reaches a critical capacity,

91



Chapter 3. Problem Description 3.2. Motivating Case Study

(7) the check signal activates IOQueueRead that (8) reads the highest priority command and (9) triggers
IOBoxWrite which in turn (10) writes the command to BoxOut. When the periodic scan signal (11) acti-
vates PushData, the task (12) reads the commands from BoxOut and finally (13) sends them to the control
modules for processing.

As mentioned before, this asynchronous design is necessary for the drivers to smooth the data transfer
between external devices and control devices. However, the data transfer functionality is subject to
strict performance requirements in terms of task deadlines, response time, and CPU Usage. Specifically,
(1) each of the six tasks that implement a driver has to finish before its deadline, typically in the range
of milliseconds. Consider for instance a scenario where PushData is blocked on the BoxOut driver by
IoBoxWrite, and thus is late in alerting the control modules that a fire has been detected. In this case,
the system will fail to timely activate the alarm and the sprinklers, with potential severe consequences.
Task deadlines are hard real-time constraints that have to be met to ensure that the system safely reacts
in case of fire. However, the FMS is also subject to soft-real time constraints such as (2) response times.
Indeed, the interval of time between an execution of PullData and the execution of PushData that sends
the commands to the control modules has to be bounded. Consider for instance a scenario in which
some data in BoxIn is not promptly emptied. If too much time passes after that data is collected by the
external hardware, the new data arriving from the same sensor will arrive when the old data has still not
been processed. Therefore, the FMS will perform the commands corresponding to the first chunk of data
when the environment state has already changed. This behavior degrades the QoS, as the system will not
react promptly to external changes. Finally, driver instances are independent from each other, and thus
concurrently executed in the same hardware platform. For this reason, (3) each driver instance must not
exceed a given threshold of CPU usage. Indeed, if a driver has a significant impact on the CPU time,
other driver instances may have to wait too long for the operative system to grant them computational
resources and potentially fail to timely process critical data.

The main variables determining whether or not these requirements is satisfied at runtime are the arrival
times of the check signal. These arrival times depend on the environment, in the sense that they depend
on the data sent by the hardware sensors via PullData. The arrival times also vary across different system
executions, as a consequence of the impossibility to predict the data coming from the sensors. Therefore,
in order to evaluate task deadlines, response time, and CPU usage, we need a strategy to search for all
the possible task arrival times. The search has to be performed in an effective way with the objective of
finding scenarios that are predicted to violate the requirements, or be close to violating them. Indeed, the
more likely is a scenario predicted to violate a performance requirement, the higher the chances that the
test case characterized by such scenario stresses the system.

3.2.2 Implementation 2: Data Transfer with One Singular Task and Four
Activities

There also exists a second implementation of the FMS drivers, where the functionalities of IoBoxRead,
IoBoxWrite, IoQueueRead, and IoQueueWrite are implemented in four activities of a singular task,
namely IoDispatch. IoDispatch encloses the four activities in an infinite loop, and sequentially executes
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them. The activities that read BoxIn and write Queue are separated by the activities that read Queue and
write BoxOut by a delay time. The delay ensures that the control modules receive data from the sensors
at a slow enough rate so that the FMS can process it. Note that the delay time typically corresponds to a
sleep call in the drivers source code. Also note that IoDispatch is executed only once, in particular when
the system starts. Even though IODispatch is formally a periodic task, its behavior is determined by the
delay time between activities at each loop iteration.

Figure 3.6. The unidirectional data transfer scenario between external hardware sensors and control
modules implemented by two periodic tasks, an aperiodic task enclosed in an infinite loop, and three
buffers.

Figure Figure 3.6 shows how tasks in the second driver implementation collaborate in the scenario of
a unidirectional data transfer between hardware sensors and control modules. (1) PullData periodically
receives data from sensors or human operators, formats the data in an appropriate command form, and
(2) writes it in the buffer BoxIn. (3) IoDispatch reads the data from the buffer, extracts the commands
from the data, and (4) stores them in the priority Queue. After a given delay time, (5) IoDispatch reads the
highest priority command and (6) writes it to BoxOut. When the periodic scan signal (7) activates Push-
Data, the task (8) reads the commands from BoxOut and finally (9) sends them to the control modules
for processing.

There exists a fundamental difference between the first drivers implementation described in Sec-
tion 3.2.1, and this second one. In the former, as explained before, the main variables determining
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whether or not the driver performance requirements are satisfied at runtime are the arrival times of the
check signal. However, in the second implementation the arrival times of IoDispatch do not have signif-
icant impact on the performance requirements. This is because the task arrives only once, and when the
system is started. In this case, the delay times between the first and the last two activities of IoDispatch
determine whether or not the driver satisfies its performance requirements at runtime. Indeed, if the delay
times are too short, IoDispatch is continuously running and keeps the CPU busy, eventually exceeds the
given threshold on CPU usage. On the other hand, if the delay times are too large, pullData may fill up
BoxIn, and be blocked waiting for IODispatch to empty the buffer. As a result, pullData is not able to
terminate before its next scan signal arrives, missing its deadline.

Opposite to the arrival times in the first implementation, the delay times do not depend on the en-
vironment, but rather are tunable parameters that engineers can choose when configuring the system.
Therefore, in order to evaluate task deadlines, response time, and CPU usage in this second implemen-
tation, we need a strategy to search for all the possible task delay times. Note that the objective of the
search remains finding scenarios that are predicted to violate the requirements, or be close to violating
them. The difference with the search in the case of the first implementation lies within the choice of the
variables to search for.

The problem of ensuring that performance requirements are satisfied in the second drivers implemen-
tation leads to a definition of stress test cases which is different from the one given at the end of Sec-
tion 3.1. Indeed, in this second drivers implementation, a stress test case with respect to a performance
requirement is a sequence of delay times (rather than arrival times) likely to violate that performance re-
quirement. These stress test cases retain the traditional goal of stress testing, i.e., ensuring that the system
satisfies the performance requirements even under the worst operating conditions. However, these test
cases identify values for tunable parameters (rather than replicable environmental conditions) that violate
the requirements. Therefore, the execution traces of these stress test cases can be used to ensure that upon
configuration the parameter values remain within safe margins. Note that, on the other hand, execution
traces of stress test cases characterized by arrival times have to be carefully analyzed together with the
system architecture, in order to find possible bottlenecks hindering the system performance. We finally
point out that, for the rest of this thesis, we are consistent with the traditional meaning of stress testing in
RTES with respect to environmental conditions, and hence with the definition of stress test cases given at
the end of Section 3.1. Recall from Section 2.1.1 that indeed, for scheduling analysis, each activity can
be considered as a task, provided that the RTOS overhead for managing tasks in negligible with respect
to their execution and interarrival times. For this reason, when not specified otherwise, stress test cases
are characterized by sequences of arrival times for aperiodic tasks.
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Chapter 4

Automating the Generation of Stress Test
Cases in Real-Time Embedded Systems: an
Overview

In this thesis, we present an approach for generating stress test cases exercising performance require-
ments of RTES. The framework blends UML/MARTE modeling to capture the timing and concurrency
aspects of the system design and platform, and automated search based on Genetic Algorithms (GA) (Sec-
tion 2.4.2.2) and Constraint Programming (CP) (Section 2.4.1) to generate the stress test cases. An
overview of the approach is shown in Figure 4.1.

The approach builds upon a conceptual model that captures details about the timing and concurrency
aspects in the software components and computing platform of the RTES. Specifically, the conceptual
model captures abstractions in the software application, e.g., tasks with their priorities, periods, depen-
dencies, and in the computing platform, e.g., processing cores and scheduling policies. Entities in this
conceptual model are mapped to MARTE stereotypes, thus defining a subset of the profile which is rele-
vant for supporting the generation of stress test cases. In particular, the abstractions related to the software
application are mapped to stereotypes that extend UML metaclasses represented in sequence diagrams.
Note that sequence diagrams are popular for visualizing concurrent multi-threaded interactions, and are
intuitive to most developers [Harel and Marelly, 2003]. On the other hand, abstractions in the conceptual
model related to the computing platform are mapped to stereotypes that extend generic UML metaclasses,
which can be represented in class or deployment diagrams. We validate the conceptual model in the Fire
and Gas Monitoring System (FMS) introduced in Section 3.2, showing that it can be applied in an indus-
trial setting with a practically reasonable overhead. The conceptual model and its mapping to MARTE
have been first introduced in a conference paper [Nejati et al., 2012], and is discussed in Chapter 5.

Design and platform models stereotyped with MARTE organize the input data for our approach,
which generates stress test cases using automated search. Specifically, we cast the generation of stress test
cases as an optimization problem over the abstractions represented in design and platform models. The
goal of the optimization problem is finding arrival times for aperiodic tasks that maximize the likelihood
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Figure 4.1. An overview of our approach for generating stress test cases in Real-Time Embedded Sys-
tems.

of the RTES violating its performance requirements on task deadlines, response time and CPU usage.
To solve this optimization problem, we discuss a search strategy based on CP. Specifically, we present
a Constraint Optimization Model (COP) that models the system design, real-time properties, executing
platform, and performance requirements. The COP is implemented as an Optimization Programming
Language (OPL) model, which is solved with IMB ILOG CPLEX CP OPTIMIZER. We validate our
CP-based search strategy in the FMS, showing that CP is able to effectively identify arrival times for
aperiodic tasks that are predicted to maximize deadline misses, response time and CPU usage. We also
compared CP with GA in five systems from safety-critical domains, analyzing both strategies in terms
of the trade-off between the time needed to generate stress test cases, and their power for revealing
worst-case scenarios with respect to task deadlines. The CP-based strategy has been first introduced in
a workshop paper [Di Alesio et al., 2012], and in three conference papers [Nejati et al., 2012, Di Alesio
et al., 2013, Di Alesio et al., 2014], and is discussed in Chapter 6.

The series of experiments to evaluate the performance of CP and GA shows an opposing trend. Specif-
ically, GA is more efficient, i.e., faster in generating test cases, while CP is more effective, i.e., it generates
test cases that are more likely to reveal deadline misses. In practice, it is also important to evaluate to
what extent the test cases generated by an approach exercises different aspects of the system under test.
This concept is commonly known as test coverage, and is an important metric to assess the quality of
a test suite (Section 2.3). In these experiments GA generated a large number of test cases that were
also highly diverse, i.e., they had a higher variety in terms of (1) time span, (2) preemptions between
task executions, and (3) number of aperiodic task executions. On the other hand, CP generated fewer
solutions which were mostly redundant. At a high level of abstraction, the experiments show that GA
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provides more coverage than CP due to the higher diversity in the test cases generated. For this reason, in
this thesis we propose a strategy (GA+CP), based on the combined use of GA and CP, aimed at holding
both the efficiency and solutions diversity of GA and the effectiveness of CP. The choice of combining
the two search strategies has been motivated by the analysis of the results of our previous experiments.
Specifically, we looked into the possibility of further improving the solutions computed by GA by per-
forming a complete search with CP in their neighborhood. In this way, GA+CP takes advantage of the
efficiency of GA, because solutions are initially computed with GA, and the subsequent CP search is
likely to terminate in a short time since it focuses on the neighborhood of a solution, rather than on the
entire search space. GA+CP also takes advantage of the diversity of the solutions found by GA, because
CP performs a local search in subspaces defined by GA solutions. Similarly, GA+CP takes advantage of
the effectiveness of CP since, once GA has found a solution, CP further improves it by either finding the
best solution within the neighborhood, or proving upon termination that no better solution exists. GA+CP
has first been introduced in a journal paper [Di Alesio et al., 2015], and is discussed in Chapter 7.
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Chapter 5

Modeling Real-Time Embedded Systems with
UML/MARTE to Support Stress Testing

Recall from Section 2.2.2.3 that UML/MARTE defines a large number of abstractions related to RTES
performance. Even though these abstractions support the definition of methodologies for performance
analysis and verification, MARTE does not include guidelines on how to identify the relevant stereotypes
and tagged values for a particular kind of analysis. In this section, we propose a conceptual model that
captures, independently from any modeling language, the abstractions required to support stress testing in
RTES (Section 5.1). To simplify the application of our conceptual model in Model-Driven Engineering
(MDE) approaches, we propose a mapping of our conceptual model to UML/MARTE (Section 5.2).
Note that we define the abstractions needed to support stress test cases in two steps, i.e., first defining
a conceptual model, and then its mapping to MARTE. This formalization approach is similar to the
one in MARTE, where concepts related to RTES are first defined a domain model, and then formalized
as stereotypes and tagged values in a UML representation (Section 2.2.2.3). Finally, we validate the
conceptual model in the Fire and Gas Monitoring System (FMS) described in Section 3.2. The validation
shows that the conceptual model and its mapping to UML/MARTE can be applied with a practically
reasonable overhead in an industrial context (Section 5.3).

5.1 A Conceptual Model to Support Stress Testing in Real-Time
Embedded Systems

To enable a sound definition of our approach, we first define a conceptual model that identifies the key
abstractions of RTES that are relevant for stress testing. Note that, even though RTES share some com-
monalities, they all require domain-specific configurations. This means that, we need to define a concep-
tual model that captures the abstractions required for stress testing independently from specific contexts.
Recall from Section 3.1 that the goal of our approach is finding worst-case scenarios for RTES tasks that
are likely to violate task deadlines, response time, and CPU usage constraints. Therefore, our conceptual
model is based upon abstractions defined in the real-time scheduling theory (Section 2.1.1), such as tasks,
activities, and scheduling policies. Figure 5.1 shows an overview of the conceptual model we propose,
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whose entities are explained below. Classes in the conceptual model are partitioned into the Application
and Platform packages, which respectively correspond to the system design and platform of Figure 4.1.

Figure 5.1. Our conceptual model representing the key abstractions to support stress testing in Real-Time
Embedded systems.

• Application. The software part of a RTES is an embedded application, which consists of several
parallel software tasks, and is allocated in a computing platform.

– Activity. Recall from Section 2.1.1 that an activity is a sequence of operations in a task, and
that task activities within a task are sequentially executed. Each activity a has an estimated
duration or Worst-Case Execution Time (WCET). Consecutive activities within a task are
separated by a delay time, and each activity starts executing after a given release. Activities
can trigger other activities: for example, each activity in a task triggers the following one, thus
defining a temporal ordering. This is because after the last statement in an activity is executed,
the program control flow executes the first statement in the following activity. Activities can
also trigger other tasks: for example, upon meeting certain conditions, an activity can spawn
a new task to perform additional operations. Moreover, activities in a task can also depend on
each other by sharing computational resources which are generally used for communication.

– DataDependency. Activities can depend on each other because they communicate in a syn-
chronous or asynchronous way.
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– Buffer. Asynchronous communication between two activities can use a buffer, whose access
is protected by semaphores, and hence is blocking. This means that at most one activity can
access a buffer at any time. Note that, in this thesis, we only consider the case where tasks
are communicating asynchronously through buffers.

– Task. The software part of a RTES consists of a set of parallel tasks that have to complete
before a given deadline. Each task also has a priority that determines the relative importance
of a task with respect to other tasks, so that the scheduler executes higher priority tasks before
lower priority tasks. Periodic tasks are triggered by timed events handled by the global clock,
and are invoked at regular intervals. Therefore, their arrival times are fixed, and equal to mul-
tiples of one interval, called period, which is counted starting from an offset. Periodic tasks
are commonly used to send and receive data at regular interval of times, e.g., PushData and
PullData in Figure 3.5. On the other hand, the arrival times for aperiodic tasks are bound by
minimum and maximum inter-arrival times, which indicate the minimum and maximum time
intervals between two consecutive arrivals of the event triggering the task. Aperiodic tasks are
instead used to process asynchronous events/communications, e.g., IODispatch in Figure 3.5.
Finally, the arrival time of triggered tasks is determined by particular activities, which spawn
the task upon finishing their execution. During its lifetime, a task can perform the following
operations.
∗ Trigger. Communicates to the scheduler that the task is ready to start a new execution in

response to a triggering event. The origin of the event depends on the type of the task.
For periodic tasks, the event comes from an internal clock, for aperiodic tasks the event
comes from the environment, and for triggered tasks the event comes from another task.
∗ Start. Begins execution after having been assigned to a CPU core by the scheduler. This

operation precedes the execution of the first activity of each task.
∗ Finish. Completes execution. This operation is performed after the last activity in a task

has completed.
∗ Wait. Temporarily stops execution in order to synchronize with another task, or to acquire

a resource. Note that each buffer access within an activity implies an implicit wait by its
task.
∗ Sleep. Temporarily stops execution for a given amount of time. Note that a sleep call for

a given time t at the beginning (end) of an activity corresponds to a release (delay) for
that activity equal to t.
∗ Resume. Communicates to the scheduler that the task is ready to resume execution after

a previous wait or sleep operation.
The state machine in Figure 5.2 shows the lifecycle of a task, where the operations determine
transitions between states. Tasks start in the idle state, and only consume CPU time in the
running state. Note that there is no final state. This is common in embedded systems, which
are intended to run continuously. Also note that, in our model, activities within tasks only
release the CPU when preempted by the scheduler, so that the CPU can be used by another
activity belonging to a higher priority task. This means that tasks perform the operations only
between two consecutive activities.

• Platform. A computing platform is the hardware part of a RTES that executes embedded applica-
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tions. A computing platform consists of a processing unit, and a real-time scheduler.
– ProcessingUnit. A processing unit represents the CPU of the computing platform. Each

CPU has a number of processor cores, representing the maximum number of tasks that can
be executed in parallel. Note that, as explained in Section 3.2, we do not consider memory
such as RAM, disk memory, or cache in our conceptual model. This is because, given the
context factors of this thesis, the impact memory has over task deadlines, response time, and
CPU usage is negligible.

– Global Clock. The processing unit has a global clock, which determines when time-based
events and triggers are fired. The global clock has a time attribute, representing a list of time
instants where the system is running.

– Scheduler. The scheduler implements a given scheduling policy, which defines the rules
to handle concurrency and execution order among tasks. Even though several policies are
commonly used in RTES, in this thesis we only consider fixed-priority preemptive scheduling.

Figure 5.2. The state machine representing a task lifecycle. Events triggering a task determine a transition
from the idle state to the ready state.

Note that, in our conceptual model, both tasks and activities are active objects, and hence are rep-
resented with double bars on the sides. Recall from Section 2.2.2.2 that active objects in UML model
entities owning a process or thread, and that can initiate flow control activity.

5.2 Mapping of the Conceptual Model to UML/MARTE
To enable effective industrial use, every approach in software engineering has to be capable of seamless
integration in the companies development cycle. Recall from Section 2.2 that, in the last years, Model
Driven Engineering (MDE) has risen as a way to handle software complexity through the systematic use
of models during development. In the context of RTES, reasoning about performance requirements such
as deadline misses, response time, and CPU usage requires the explicit modeling of time, which is one
of the key characteristics of UML/MARTE (Section 2.2.2.3). For this reason, we provide a mapping of
the abstractions in our conceptual model to UML/MARTE stereotypes and tagged values. This mapping
shows the feasibility of extracting the abstractions required to support stress test cases generation from
standard modeling languages.
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Figure 5.3. A sequence diagram modeling the data transfer scenario described in Figure 3.6. The se-
quence diagram is stereotyped with UML/MARTE stereotypes and tagged values mapped to concepts in
the conceptual model we defined.

Some of the abstractions in our conceptual model are already present in UML. Recall from Sec-
tion 2.2.2.2 that each active object in a sequence diagram can be associated to a lifeline. In this way, exe-
cution specifications represent the activities in our conceptual model. Similarly, occurrence specifications
represents sending and receiving of messages, and therefore can be used to describe the synchronous and
asynchronous communication defined in our conceptual model. Figure 5.3 shows a sequence diagram
capturing the data transfer scenario of the Fire and Gas Monitoring System (FMS) described in Sec-
tion 3.2.2. Tasks in the driver application are active objects, while buffers are passive objects. Each
activity within a task is depicted using an execution specification, i.e., as a box on the task lifeline that
shows the interval of time that the task performs the activity. Therefore, pullData has two activities,
ioDispatch has four, and pushData has three. Note that the order of activations on a task lifeline implies
the temporal ordering between activities of that task. In sequence diagrams, a synchronous message
between two activities is shown using an arrow with a filled head, while an asynchronous message is
shown by an arrow with an open head. Synchronous communication is blocking and does not necessarily
require a buffer, because the sending activity must wait until the receiving activity is ready to receive the
message. On the other hand, asynchronous communications can use buffers. Recall from Section 3.1 that
in the FMS, and hence in Figure 5.3, all communications are asynchronous and use buffers.

Even though UML sequence diagrams can already capture several concepts in a real-time applica-
tion, other concepts defined in our conceptual model do not have appropriate counterparts in pure UML.
Specifically, the schedulability concepts, and the timing and concurrency attributes of our conceptual
model are captured by UML/MARTE. Recall from Section 2.2.2.3 that MARTE provides a Software Re-
source Modeling (SRM) package, that defines abstractions to model software resources, and communica-
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tion between resources. Therefore, we map our notion of buffer to the MessageComResource stereotype,
which is meant to represent artifacts for communicating messages among concurrent resources.

MARTE also provides a Generic Quantitative Analysis Modeling (GQAM) package, which is in-
tended to provide a generic framework for collecting information required for performance and schedu-
lability analysis. The domain model of this package includes two key abstractions that closely resemble
our notions of task and activity, Scenario and Step respectively. A step is defined in the domain model of
GQAM as a unit of execution, while a scenario is defined a sequence of steps. These two concepts are
represented by the stereotypes «GaStep» and «GaScenario», which we map in our conceptual model to
activities and tasks respectively. Note that these two stereotypes can be applied to a wide set of behavior-
related elements in the UML metamodel, and in particular, to elements in sequence diagrams. In particu-
lar, «GaScenario» and «GaStep» inherit from both «TimeModels::TimedProcessing», which extends the
UML metaclasses Behavior, Message, Actions, and «GRM::Resource», which extends NamedElement.
Steps and Scenarios in MARTE also include a list of measures that are widely used for analyzing of
real-time properties of embedded systems. We map attributes of tasks and activities in our conceptual
model to the tagged values representing those measures. Specifically, we map interOccTime, the time
interval between two successive occurrences of scenarios, to period, offset, minimum, and maximum
inter-arrival times of task. We also map execTime, i.e., the execution time of a step, to duration of activi-
ties, and selfDelay, i.e., the time steps are delayed for execution, to activities delays and releases. These
tagged values can be specified either as single values, or as bounds defining an interval. Note that «GaS-
cenario» does not specify tagged values representing the concept of task deadline. Indeed, in MARTE,
the concept of deadline is defined in the Schedulability Analysis Modeling (SAM) package, in particular
through the domain class EndToEndFlow, and the associated stereotype «SaEndToEndFlow». For this
reason, we also map «SaEndToEndFlow» to our notion of task, so that the task deadline is mapped to the
tagged value endToEndDeadline. We point out one discrepancy in our mapping of tasks and activities.
In MARTE, the concept of execution priority is defined for individual steps, rather than for scenarios.
Nonetheless, at the implementation level, it is common to define priorities at task-level, rather than at
activity-level. Indeed, our conceptual model reflects this fact by specifying priorities as task, rather than
activity, attributes. To address this discrepancy, we assume in our mapping that steps within a scenario
all have the same priority p, and hence the scenario has priority p.

Finally, the abstractions related to the computing platform in our conceptual model are not captured
in sequence diagrams, but can be represented using MARTE stereotypes applied to class and deploy-
ment diagrams. Specifically, the Generic Resource Modeling (GRM) package defines the stereotypes
«Scheduler» and «SchedulingPolicy», which are mapped to the corresponding entities in our conceptual
model. Furthermore, we map processing units to «ComputingResource», and global clocks to «Logical-
Clock». In this way, we map the global clock time to the timeBase tagged value. Table 5.1 summarizes
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the mapping between entities in our conceptual model, and stereotypes in MARTE.

Conceptual Model UML/MARTE

Class/Attribute Stereotype/Tagged Value Sub-profile

A
pp

lic
at

io
n

Task «GaScenario» GQAM
«SaEndToEndFlow» SAM

Task::deadline SaEndToEndFlow::endToEndDeadline SAM
Task::priority GaStep::priority 1 GQAM
PeriodicTask::offset GaScenario::interOccT GQAM
PeriodicTask::period GaScenario::interOccT GQAM
AperiodicTask::maxIa GaScenario::interOccT GQAM
AperiodicTask::minIa GaScenario::interOccT GQAM
Activity «GaStep» GQAM
Activity::delay GaStep::selfDelay GQAM
Activity::duration GaStep::execTime GQAM
Activity::release GaStep::selfDelay GQAM
Buffer «MessageComResource» SRM::SW_Interaction

P
la

tfo
rm

Scheduler «Scheduler» GRM
Scheduler::policy Scheduler::schedPolicy GRM
SchedulingPolicy «SchedPolicyType» MARTE_Library::GRM_BasicTypes
ProcessingUnit «HwProcessor» HRM::HW_Logical::HW_Computing
ProcessingUnit::nbCores HwProcessor::nbCores HRM::HW_Logical::HW_Computing
GlobalClock «LogicalClock» Time::TimeAccesses::Clocks
GlobalClock::time Clock::timeBase Time::TimeAccesses::Clocks

Table 5.1. Mapping of the entities in our conceptual model to UML/MARTE. PeriodicTask, Aperiod-
icTask and TriggeredTask do not appear in the mapping because they inherit the stereotypes from their
superclass Task.

5.3 Validation of the Conceptual Model in the Fire and Gas
Monitoring System

The practical usefulness of our approach depends two main factors. First, we need to investigate whether
the input to our approach, i.e., the system specification stereotyped with the subset of UML/MARTE we
defined, can be provided with reasonable overhead. This first factor sums up to validating our conceptual
model and its mapping to UML/MARTE in an industrial context, and is discussed in this section. Second,
we also need to investigate whether the output of our approach can effectively be used to derive stress
test cases that are likely to violate performance requirements. This second factor closely depends on the
search strategies used to generate test cases, and is discussed in Section 6.2 and Section 7.2.

As discussed in Section 5.1, the information required for generating stress test cases is captured by the
1Note that, as explained above, MARTE defines the concept of priority at activity-level, rather than at task-level. For this

reason, we assume that all activities in a task have the same priority. Therefore, the priority of a task is equal to the priority of
its composing activities.
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conceptual model we defined. To gather this information, we first built UML sequence diagrams for the
FMS I/O drivers, starting by the existing design documents and implementation. Such sequence diagrams
were iteratively validated and refined in collaboration with the lead engineer of the drivers in Kongsberg
Maritime. We extracted the quantitative elements of our conceptual models, i.e., the concrete values for
the tagged values, from design documents, source code, and performance profiling logs. Specifically, we
extracted the values for priorities, deadlines, and periods of tasks from the certification design documents,
and the drivers source code. Furthermore, we extracted the values for the activities duration from the
performance profiling logs of the drivers. We created the sequence diagrams augmented with the timing
information from the MARTE stereotypes over 8 days, involving approximately 25 man-hours of effort.
This was considered worthwhile, as safety-critical I/O drivers have a long lifetime and are regularly
certified. Finally, we obtained information on the computing platform from the RTOS configuration and
hardware design documents. We finally remark that, the main rationale behind the mapping we provided
in Table 5.1 is to allow engineers to develop and manipulate our input design notation with any modeling
environment that supports UML/MARTE.
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Chapter 6

Using Constraint Programming to Automate
the Generation of Stress Test Cases

The main objective of the conceptual model and its mapping to UML/MARTE is to organize the input
data for our approach, which automates the stress test case generation. Recall from Section 3.1 that we
define a stress test case with respect to a performance requirement as a sequence of arrival times for
aperiodic tasks which maximizes the chance to violate that requirement. In this section, we cast the
generation of stress test cases as a search problem over the space of task arrival times, and we solve the
search problem with Constraint Programming (CP). Specifically, we cast the search for arrival times as
a Constrained Optimization Problem (COP) over the abstractions of our conceptual model (Section 6.1).
The goal of the COP is finding arrival times for aperiodic tasks that maximize the likelihood of the RTES
violating its performance requirements on task deadlines, response time and CPU usage. We refer to this
strategy for generating stress test cases as CP-based strategy. When confusion with the programming
paradigm can not arise, we also refer to the CP-based strategy as CP.

We assess the practical usefulness of our CP-based strategy in two steps. First, we validate the COP
in the Fire and Gas Monitoring System (FMS) described in Section 3.2 (Section 6.2.1). This validation
shows that the COP effectively identifies in a few minutes stress test cases that are predicted to violate
the FMS requirements on deadline misses, response time, and CPU usage.

However, for practical use, test case generation has to accommodate time and budget constraints. For
this reason, it is essential to investigate the trade-off between the time needed by a strategy to generate
stress test cases, and their power for revealing deadline misses. Recall from Section 2.4.2.2 that a strategy
based on Genetic Algorithms (GA) [Briand et al., 2006] has been proposed to support stress testing of
task deadlines by searching for worst-case scenarios, and is therefore a natural comparison baseline. We
refer to this strategy for generating stress test cases as GA-based strategy, or, when confusion with the
metaheuristic can not arise, as GA. Therefore, the second step in validating CP consists in a systematic
comparison with GA for the purpose of generating stress test cases for deadline misses. We designed a
series of experiments in five subject systems from safety-critical domains, ranging in size and complex-
ity (Section 6.2.2). The experiments show that, on average, GA is generally more efficient, i.e., faster
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in generating test cases, while CP is more effective, i.e., it generates test cases that are more likely to
reveal deadline misses. Note that this result opens up the possibility to combine the two strategies in
order to retain the advantages of both. An hybrid approach combining GA and CP, which aims at striking
a profitable trade-off between efficiency and effectiveness, is discussed in Chapter 7.

6.1 A Constrained Optimization Problem to Automate the
Generation of Stress Test Cases in Real-Time Embedded
Systems

We address the problem of determining worst-case schedules of tasks with an approach inspired by the
work done in Constraint Programming to solve traditional scheduling problems [Baptiste et al., 2001].
Specifically, we cast the search for real-time properties that characterize the worst-case schedules, namely
arrival times for aperiodic tasks, as a Constraint Optimization Problem (COP). The key idea behind our
formulation relies on five main points.

1. First, we model the system design, which is static and known prior to the analysis, as a set of con-
stants (Section 6.1.1). The system design mainly consists of the tasks of the real-time application,
their dependencies, period, duration, deadline, and priority.

2. Then, we model the system properties that depend on runtime behavior as a set of variables (Sec-
tion 6.1.2). The main real-time properties are the number of task executions, the arrival times of
aperiodic tasks, and the specific runtime schedule of the tasks.

3. We model the Real-Time Operating System (RTOS) scheduler as a set of constraints among such
constants and variables (Section 6.1.3). Indeed, the real-time scheduler periodically checks for
triggering signals of tasks and determines whether tasks are ready to be executed or need to be
preempted. Constraints of our model are described in.

4. We model the performance requirement to be tested, i.e., task deadlines, response time, or CPU
usage, as an objective function to be maximized (Section 6.1.4).

5. Finally, we encapsulate the logic behind the RTOS scheduler in an effective labeling strategy over
the variables of the model (Section 6.1.5). By design, the scheduler tries to execute high priority
tasks as soon as possible, potentially preempting tasks with lower priority. We exploit this behavior
by proposing a labeling strategy for the variables related to tasks execution.

A graphical overview of our approach is shown in Figure 6.1. Our analysis is subject to two main
assumptions:

1. The RTOS scheduler checks the running tasks for potential preemptions at regular and fixed in-
tervals of time, called time quanta. Therefore, each time value in our problem is expressed as a
multiple of a time quantum. Accordingly to the specification of the RTOS executing the FMS, we
consider the length of ten milliseconds for time quanta.

2. The interval of time in which the scheduler switches context between tasks is negligible compared
to a time quantum.
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Figure 6.1. A graphical overview of the Constrained Optimization Model to generate stress test cases.

These two assumptions are reasonable in the context of RTES, as the scheduling rate of operating
systems varies in the ranges of few milliseconds, while the time needed for context switching is usually
in the order of nanoseconds [Singh, 2009]. These assumptions allow us to consider time as discrete, and
model the COP as an Integer Program (IP) over finite domains. We implemented the COP in OPL, and
solved it with IBM ILOG CPLEX CP OPTIMIZER. This choice was motivated by practical reasons,
such as extensive documentation, strong supporting community, and its acknowledged efficiency to solve
optimization problems. Despite the scheduling nature of our problem, we implemented our model as a
traditional IP as opposed to using the scheduling features of OPL and CP OPTIMIZER. This is because
we could not express a preemptive priority-driven scheduling behavior in an effective way that exploited
the capabilities of the solver.

Figure 6.2. Real-time scheduling example of four tasks on a dual-core platform

The rest of this section details our constraint model using the example shown in Figure 6.2. This
system features four tasks in increasing priority order, j0 to j3, running on a dual-core platform for 10
time units. j0 and j1 are executed once, while j2 and j3 are executed twice. The figure reports the arrival
times and deadlines of the tasks, labeled by at and dl respectively, where the first index represents the
task, and the second the task execution. In this example, j0 is aperiodic, while j2 and j3 are periodic.
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Note that task j1 is triggered by j0 upon termination, and that j1 and j2 share the resource r12 with
exclusive access.

6.1.1 Constants
Constants are implemented as integers (int), integer ranges (range), tuples (tuple), sets of tuples (setOf )
and integer expressions. Integers values are defined as external data.

Observation Interval. We define T as an integer interval of length tq, i.e., T def

= [0, tq−1].

T represents the time interval during which we observe the system behavior. Note that T is an integer
interval, as a consequence that time is discretized in our analysis. Therefore, each time value t ∈ T is a
time quantum. In Figure 6.2, tq = 10 and T = [0,9].

Number of platform cores. We define c as the number of cores in the execution platform.

c represents the maximum number of tasks that can be executed in parallel. In Figure 6.2, c = 2, as at
most two tasks are allowed to run in parallel.

Set of tasks. We define J as the set of tasks of the system. We define Jp, Ja, and Jg as the set of periodic,
aperiodic, and triggered system tasks, respectively.

Each task j ∈ J has a set of static properties, defined as constants, and a set of dynamic properties,
defined as variables. Note that Jp, Ja, and Jg define a partition over J. We assume that OS tasks have
lower priority than system tasks and can be preempted at any time, and hence, can be abstracted away
in our analysis. Each task j is implemented as an OPL tuple named Task, whose fields are the following
non-relation constants. J is implemented as an OPL tuple set, while Jp, Ja, and Jg are OPL generic sets
derived from J. In Figure 6.2, J = { j0, j1, j2, j3}, Ja = { j0}, Jp = { j2, j3}, and Jg = { j1}.

Priority of a task. We define pr( j) as the priority of task j. For simplicity, we define the set HP j of tasks
having higher or equal priority than j: HP j

def

= { j1 ∈ J | j 6= j1∧pr( j1)≥ pr( j)}.
In Figure 6.2, pr( j0) = 0, pr( j1) = 1, pr( j2) = 2, and pr( j3) = 3.

Period of a task. We define pe( j) as the period of task j.

pe( j) is only defined if j is periodic. In Figure 6.2, pe( j2) = 5 and pe( j3) = 6.

Offset of a task. We define of ( j) as the offset of task j, i.e., the time, counted from the beginning of T ,
after which the first period of task j begins.

of ( j) is only defined if j is periodic. In Figure 6.2, of ( j2) = 0 and of ( j3) = 1.

Delay of a task. We define dy( j) as the delay of task j, i.e., the time, that has to occur between two
executions of j.

In Figure 6.2, dy( j2) = 3.
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Release of a task. We define re( j) as the release of task j, i.e., the time that j has to wait after its arrival
before starting to execute.

In Figure 6.2, all tasks have release 0.

Minimum and maximum inter-arrival times of a task. We define mn( j) and mx( j) as the minimum
and maximum inter-arrival times of task j, respectively, i.e., the minimum and maximum time separating
two consecutive arrival times of j.

mn( j) and mx( j) are only defined if j is aperiodic since for all periodic tasks j, mn( j) = mx( j) = pe( j)
trivially holds. In Figure 6.2, we assumed mn( j0) = 5 and mx( j0) = 10.

Duration of a task. We define dr( j) as the estimated Worst Case Execution Time (WCET) of task j. For
simplicity, we define the integer interval Pj of execution slots as Pj

def

=
[
0, dr( j)−1

]
.

Since OPL does not support indexed ranges, Pj is implemented as a single range P def

= [0,max
j∈J

dr( j)−1].

This definition entails that ∀ j ∈ J · Pj ⊆ P. The iteration through values in Pj is emulated with a logic
implication. Indeed, the following properties hold for every logic predicate C and arithmetic expression
E.

∀p ∈ Pj · C(p) ⇐⇒ ∀p ∈ P · p < dr( j) =⇒ C(p) (6.1)∑
p∈Pj

E(p) =
∑
p∈P

(
p < dr( j)

)
·E(p) (6.2)

Note that in Equation (6.2)
(

p < dr( j)
)

is a boolean expression that is true if p < dr( j), and false
otherwise. For the rest of this paper, equalities and inequalities written within parentheses represent
boolean expressions that evaluate to the integer 1 if true, and to the integer 0 if false. This is also the
default behavior in CP OPTIMIZER. In Figure 6.2, dr( j0) = 3 and Pj0 = [0,1,2].

Deadline of a task. We define dl( j) as the time, with respect to its arrival time, before which task j
should terminate.

In Figure 6.2, dl( j0) = 7, dl( j1) = 6, dl( j2) = 4, and dl( j3) = 3.

Triggering relation between tasks. We define tg( j1, j2) as a binary relation between tasks j1 and j2
that holds if the event triggering j2 occurs when j1 finishes its execution. We define the sets TS j and STj
of tasks triggered by and triggering j, respectively.

T S j
def

= { j1 ∈ J | tg( j, j1)} STj
def

= { j1 ∈ J | tg( j1, j)}

The relation tg is defined as irreflexive and antisymmetric. tg is implemented as an OPL tuple with two
fields, the first being the task triggering, and the second being the task triggered. In Figure 6.2, tg( j0, j1)
holds.

Dependency relation between tasks. We define de( j1, j2) as a binary relation between tasks j1 and j2
that holds if there exists a computational resource r such that j1 and j2 access r during their execution
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in an exclusive way. We define the set DS j of tasks depending on j.

DS j
def

= { j1 ∈ J | j 6= j1∧de( j1, j)} (6.3)

The relation de is defined as reflexive and symmetric. This definition implies that j1 and j2 cannot be
executed in parallel nor can preempt each other, but one can execute only after the other has released
the lock on the resource. de is implemented as an OPL tuple with two fields, each being one of the task
depending on the other. In Figure 6.2, de( j1, j2) holds.

6.1.2 Variables
Independent variables in our model are implemented as OPL finite domain variables (dvar int). Depen-
dent variables are implemented as OPL variable expressions (dexpr int) defined through equality con-
straints. The first three variables described hereafter, namely the number of task executions, their arrival
times, and active sets, are independent variables. The remaining variables described in this section are all
dependent.

Number of task executions. We define te( j) as the number of times task j is executed within T . For
simplicity, we define the integer interval K j of task executions for the task j as K j

def

= [0, te( j)−1].

Note that we refer to the kth execution of task j as the couple ( j,k). We assume the minimum and
maximum inter-arrival times bound the number of executions of an aperiodic task. This means that, for
aperiodic tasks, te( j) is defined as a variable with domain

[⌊
tq

mx( j)

⌋
,
⌊

tq
mn( j)

⌋]
. Similarly, we assume that

offset and period statically determine the number of executions of periodic tasks so that te( j)=
⌊

tq−of ( j)
pe( j)

⌋
.

Therefore, the number of task executions of periodic tasks is constant, rather than variable. However, we
do not formally distinguish it from the number of task execution for aperiodic tasks. te is implemented as
an integer array ranging over Jp if the task is periodic (or ranging over Jg if triggered by a periodic task),
and as an integer variables array ranging over Ja if the task is aperiodic (or ranging over Jg if triggered
by an aperiodic task). Since OPL does not support ranges with variable bounds, K j is implemented as a
single constant range K.

K def

=

[
0, max

(
max
j∈Jp

⌊
tq−of ( j)

pe( j)

⌋
,max

j∈Ja

⌊
tq

mn( j)

⌋)]

Note that K is defined as a range from 0 to the largest upper-bound for task executions of periodic and
aperiodic tasks. This definition entails that ∀ j ∈ J · K j ⊆ K. The iteration through values in K j is
performed in a similar way as the case of Pj, thanks to the following properties for each logic predicate
C and arithmetic expression E.

∀k ∈ K j · C(k) ⇐⇒ ∀k ∈ K · k < te( j) =⇒ C(k) (6.4)∑
k∈K j

E(k) =
∑
k∈K

(
k < te( j)

)
·E(k) (6.5)
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In Figure 6.2, te( j0) = 1, te( j3) = 2, K j1 = [0], and K j2 = [0,1].

Arrival time of a task execution. We define at( j,k) as the time when an event notifies the RTOS that
task j should be executed for the kth time.

We say that j arrives for the kth time at time t iff at( j,k) = t. When the specific execution k of j is
understandable from the context, we simply say that j arrives at time t. In our analysis, we assume that
the arrival time of periodic tasks is constant: ∀ j ∈ Jp, k ∈ K j · at( j,k) = o f ( j)+ k ·pe( j). Similarly to
the case of te, we do not formally distinguish the arrival times of periodic and aperiodic tasks. at has
domain T for aperiodic tasks. In Figure 6.2, at( j0,0) = 0 and at( j2,1) = 5.

Active set of task executions. We define ac( j,k, p) as the pth time quantum in T in which task j is
running for the kth execution. We also define A j,k as the integer vector of time quanta where j is executing
for the kth time, the vector A j of time quanta where j is executing, and the vector A of time quanta where
tasks are executing.

A j,k
def

= [ac( j,k, p) | p ∈ Pj] A j
def

= [A j,k | k ∈ K j] A def

= [A j | j ∈ J]

Note that A j and A are defined as vectors of vectors. Also note that we refer to both the set of all ac
variables, and to A, as the schedule produced by the arrival times of the tasks in J. ac variables have
domain T . In Figure 6.2, ac( j0,0,0) = 0, ac( j0,0,1) = 2, A j0,0 = [1,2,4], A j0 =

[
[1,2,3]

]
, and

A =
[[
[1,2,3]

]
,
[
[4,5]

]
,
[
[0,1], [6,7]

]
,
[
[1,2], [7,8]

]]
.

Preempted set of task executions. We define pm( j,k, p) as the number of time quanta for which the kth

execution of task j is preempted for the pth time.

pm( j,k, p) def

= ac( j,k, p)−ac( j,k, p−1)−1

pm is only defined for p > 0. In Figure 6.2, pm( j0,0,1) = 1, and pm( j0,0,2) = 0.

Start and end times of task executions. We define st( j,k) and en( j,k) as the first and the one after the
last time quantum in which task j is executing for the kth time.

st( j,k) def

= ac( j,k,0) en( j,k) def

= ac
(

j,k,dr( j)−1
)
+1

We say that j starts or ends for the kth time at time t iff st( j,k) = t or en( j,k) = t − 1, respectively.
In Figure 6.2, st( j0,0) = 0 and en( j1,0) = 6.

Waiting time of task executions. We define wt( j,k) as the time that j waits after its arrival time before
starting its kth execution.

wt( j,k) def

= st( j,k)−at( j,k)

In Figure 6.2, wt( j0,0) = 0, and wt( j2,1) = 1.
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Deadline of task execution. We define ed( j,k) as the absolute deadline of the kth execution of j, i.e., the
time, with respect to the beginning of T , before which j should terminate to meet its deadline.

ed( j,k) def

= at( j,k)+dl( j)−1

ed is implemented as two-dimensional array of integer variable expressions ranging over the set J and
the range K. In Figure 6.2, ed( j0,0) = 6, and ed( j1,0) = 8.

Deadline miss of task execution. We define dm( j,k) be the amount of time by which j missed its deadline
during its kth execution.

dm( j,k) def

= en( j,k)− ed( j,k)−1

dm is implemented as two-dimensional array of integer variable expressions ranging over the set J and
the range K. In Figure 6.2, dm( j0,0) =−3.

Blocking task execution time quantum. We define bl( j,k, j1,k1, p1) as a boolean variable that is true
if in the interval

[
at( j,k),st( j,k)

)
the task execution ( j1,k1) is active at the time slot p1:

bl( j,k, j1,k1, p1)
def

= at( j,k)≤ ac( j1,k1, p1)< st( j,k)

In Figure 6.2, bl( j2,1, j1,0,1) = true, since ( j2,0) waits at t = 5 for the last time quantum of ( j1,0)
before starting.

Higher priority active tasks. We define ha( j,k) as the number of time quanta in the interval[
at( j,k),st( j,k)

)
where exactly c tasks having higher priority of j and not depending on j are active.

Consider the summation indexes j1, k1, p1 defined over the sets HPj \DS j, K j1 , and Pj1 respectively, and
the summation indexes j2, k2, and p2 defined over the sets HP j \DS j, K j2 , and Pj2 , respectively.

ha( j,k) def

=
∑

j1,k1,p1

bl( j,k, j1,k1, p1)∧

( ∑
j2,k2,p2

bl( j,k, j2,k2, p2)
)
= c


Note that for the definition of ha( j,k), it is important that HP j also includes tasks with equal priority
than j. This is because, in the RTOS scheduling policy we consider, tasks can only preempt tasks with
strictly lower priority. In Figure 6.2, ha( j,k) = 0 for all task executions ( j,k), since in no case there are
two tasks active when a task is waiting.

Dependent active tasks. We define da( j,k) as the number of time quanta in the interval[
at( j,k),st( j,k)

)
where task executions depending on j is active. Consider the summation indexes j1, k1,

p1 defined over the sets DS j, K j1 , and Pj1 , respectively.

da( j,k) def

=
∑

j1,k1,p1

bl( j,k, j1,k1, p1)

116



6.1. Description of the COP Chapter 6. Generating Stress Test Cases with CP

In Figure 6.2, da( j2,1) = 1, because j1 is active for the time quantum t = 5 between the arrival and the
start of j2.

Dependent preempted tasks. We define dp( j,k) as the number of time quanta in the interval[
at( j,k),st( j,k)

)
where task executions depending on j have been preempted. Consider the summation

indexes j1, k1, p1 defined over the sets DS j, K j1 , and Pj1 , respectively.

dp( j,k) def

=
∑

j1,k1,p1

pm( j1,k1, p1) ·bl( j,k, j1,k1, p1)

In Figure 6.2, dp( j,k) = 0 for all task executions ( j,k), since there are no dependent task preempted that
block the execution of any task.

System load. We define ld(t) as the load of the system at time t, i.e., the number of tasks active at time t.
Consider the summation indexes j, k, p defined over the sets J, K j, and Pj, respectively.

ld(t) def

=
∑
j,k,p

(
ac( j,k, p) = t

)

In Figure 6.2, ld(0) = 2, and ld(3) = 1.

6.1.3 Constraints
We define five groups of constraints related to different aspects of the RTOS.

Well-formedness Constraints. Well-formedness constraints specify relations among variables that di-
rectly follow from their definition in the schedulability theory.

Constraint WF1. Each task execution starts after its arrival and release time, and ends after the task
duration.

∀ j ∈ J, k ∈ K j · at( j,k)+ re( j)≤ st( j,k)≤ en( j,k)−dr( j) (WF1)

Constraint WF2. Consecutive executions of the same task are separated by task delays

∀ j ∈ J, k ∈ K j \{0} · en( j,k−1)+dy( j)≤ st( j,k) (WF2)

Constraint WF3. Arrival times of aperiodic tasks are separated by their minimum and maximum inter-
arrival times.

∀ j ∈ Ja, k ∈ K j \{0} · at( j,k−1)+mn( j)≤ at( j,k)≤ at( j,k−1)+mx( j) (WF3)
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Constraint WF4. The time indexes p ∈ Pj define an order over the active time quanta of tasks.

∀ j ∈ J, k ∈ K j, p ∈ Pj \{0} · ac( j,k, p−1)< ac( j,k, p) (WF4)

Temporal Ordering Constraints. Temporal Ordering Constraints specify the relative ordering of tasks
basing on their dependency and triggering relations.

Constraint TO1. Each triggered task is executed the same number of times of its triggering task.

∀ j1 ∈ J, j2 ∈ TS j · te( j1) = te( j2) (TO1)

Constraint TO2. Each triggered task execution arrives when its triggering task execution ends.

∀ j1 ∈ J, k ∈ K j1 j2 ∈ TS j · en( j1,k) = at( j2,k) (TO2)

Constraint TO3. Executions of dependent tasks cannot overlap, i.e., each task can only start after the
one it depends on has ended.

∀ j1 ∈ J, k1 ∈ K j1 j2 ∈ DS j, k2 ∈ K j2 · en( j1,k1)≤ st( j2,k2) ∨ (TO3)
en( j2,k2)≤ st( j1,k1)

Constraint TO4. If two tasks that depend on each other arrive at the same time, the higher priority task
executes first.

∀ j1 ∈ J, k1 ∈ K j1, j2 ∈
(
DS j∩ (J \HP j)

)
, k2 ∈ K j2 · (TO4)

at( j1,k1) = at( j2,k2) =⇒ st( j1,k1)< st( j2,k2)

Multi-core Constraint. The Multi-core Constraint captures the specification of the number c of cores of
the computing platform, and stating that no more than c tasks are allowed to be active in parallel at any
time. The constraint specifies that the system load should be less than the number of cores at any time.

∀t ∈ T · ld(t)≤ c (MC)

Note that, when c = 1, MC is equivalent to an alldifferent constraint over ac.

Preemption Constraint. The Preemption Constraint captures the priority-driven preemptive scheduling
of the RTOS, and stating that each task should be preempted when a higher priority task is ready to be
executed and no cores are available. The constraints specifies that the number of time quanta where a
task execution is preempted times c is equal to the number of time quanta where higher priority tasks are
active. Consider the summation indexes j1, k1, and p1 defined over the sets HPj, K j1 , and Pj1 respectively.

∀ j ∈ J, k ∈ K j, p ∈ Pj · (P)

pm( j,k, p) · c =
∑

j1,k1,p1

(
ac( j,k, p−1)< ac( j1,k1, p1)< ac( j,k, p)

)
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Scheduling Efficiency Constraint. The Scheduling Efficiency Constraint ensures that there is no un-
necessary task preemption, and that tasks are executed as soon as possible. The constraint specifies that,
for each time quanta in which a task execution ( j,k) is waiting, there should be either (1) exactly c
tasks with higher priority that do not depend on j active, or (2) one task execution dependent on j that is
active, or (3) one task execution dependent on j that is preempted.

∀ j ∈ J, k ∈ K j · wt( j,k) = ha( j,k)+da( j,k)+dp( j,k) (SE)

6.1.4 Objective Functions
We formalized three objective functions, each modeling one performance requirement, and each meant
to be maximized in a separate constraint model having the same constants, variables, and constraints.
In this way, solutions to each of the three constraint models characterize worst-case scenarios for the
requirement modeled by the function.
Task Deadline Misses Function. We define FDM as the function that models the performance require-

ment involving task deadlines.
FDM =

∑
j∈J, k∈K j

2 dm( j,k)

As explained at the beginning of this chapter, the goal of our approach is to find values for the arrival
times of aperiodic tasks that maximize the likelihood of violating performance requirements, in particular
deadline misses. We formalized this concept through an objective function of whose value captures how
arrival times compare in terms of their likelihood of triggering deadline misses. We first identify a set of
characteristics the function should meet:

• No deadline miss is overshadowed. In safety-critical real-time systems even a single deadline miss
could lead the system to a fail state. Thus, a good function should not allow task executions which
meet their deadline to overshadow deadline misses.
• The more deadline misses, the higher the value. Intuitively, the function value should take into

account the number of deadline misses among task executions. Even if a system could recover
from a scenario where a task misses its deadline in a single execution, recovering from several
deadline misses might be harder.
• The larger the deadline misses, the higher the value. Our analysis is based on WCET estimates

(duration) for the system tasks. Such estimates could be over-pessimistic, and our approach could
compute a test case identifying a deadline miss that does not happen when actually testing the
system. However, the closest to its deadline a task is in our analysis, the more likely it is to miss a
deadline in a real scenario. Such concept is captured by the quantity defined as deadline_miss: the
larger its value, the closer the task completion time to its deadline, with possibly the task missing
its deadline. Hence, we expect a good function to prioritize scenarios where a larger deadline miss
is identified.

Having considered the criteria above, we adopted a modified version of the function defined by Briand et
al. [Briand et al., 2006]:
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f ( j) =
∑

k∈K j

2 dm( j,k)

Note that f is defined for a given task j. FDM is an alternative formulation of f which instead takes into
account all tasks is given by the sum of f for each task in the system:

FDM =
∑
j∈J

f ( j)

Also note that the purpose of f ( j) is to identify deadline miss scenarios for a single critical task j, since
it has larger values when large deadline misses occur in j. On the other hand, FDM has larger values
when more deadline misses on several tasks occur, aiming at identifying scenarios stressing the whole
system rather than a single task. Given that we use our subject systems for the purpose of experimental
evaluation and comparison, there is no clear guidance on how to choose a specific target task j for each
case. For this reason, we model the performance requirement involving task deadlines with FDM. Recall
from Section 6.1.2 that, dm( j,k) is positive if task j misses its deadline during its kth execution, and
negative otherwise. This means that large negative values stand for j ending long before its deadline.
On the other hand, positive values stand for j failing to end before its deadline, thus missing it. The
exponential shape of the function favors executions with large deadline misses, thus avoiding them being
overshadowed by other executions.

Response Time Function. We define FRT as the function that models the system response time.

FRT =

(
max

j∈J, k∈K j
en( j,k)

)
−
(

min
j∈J, k∈K j

at( j,k)
)

FRT measures the total length in time quanta of the schedule, starting from when the first task arrives, up
to when the last ends. This function is also known in traditional scheduling as makespan.

CPU Usage Function. We define FCU as the function that models the system CPU usage.

FCU =

∑
t∈T

(
ld(t)> 0

)
tq

FCU measures the average CPU usage of the system over T , by counting all the time quanta where at least
one task is active, i.e., where the system load is greater than 0.

6.1.5 Search Heuristic
We defined a search heuristic that refines the branching process of the CP OPTIMIZER solving algorithm.
The heuristic specifies that the solver should mimic the behavior of a RTOS by first trying to schedule
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tasks with higher priority. This is done by choosing the ac variables to branch on by decreasing priority,
and then by assigning their time values in increasing order. For example, consider a system where
c = 1, j0, j1 ∈ J, pr( j1) > pr( j0). Suppose that, for given k0, p0, k1, j1 the filtering algorithm reduced
the domains of the ac variables to the set [0,1]. Figure 6.3.1 shows the branching tree in case the solver
runs with default settings.

In the root node, the ac variables have domain [0,1]. The solver then tries the first variable assignment
in the branch b1, stating that j0 is executing at time 0. Then, the solver tries the second assignment in
the branch b2, stating that j1 is executing at time 0. This variable assignment violates the multi-core
constraint MC since both j0 and j1 are executing at the same time. Therefore, the solver prunes the
node, backtracks to the father node, and tries the assignment in b3 where j1 is executing at time 1.
This assignment violates the preemptive scheduling constraint P, since j1 has higher priority, but j0 is
running instead. Only after backtracking up to the root node, the solver tries the assignments in b4 and b5
which do not violate any constraint. Note that several other branching steps might have been necessary
if ac( j1,k1, p1) had a larger domain.

ac( j0,k0, p0) ∈ [0,1]
ac( j1,k1, p1) ∈ [0,1]

ac( j0,k0, p0) = 0
ac( j1,k1, p1) ∈ [0,1]

ac( j0,k0, p0) = 0
ac( j1,k1, p1) = 0

b2

ac( j0,k0, p0) = 0
ac( j1,k1, p1) = 1

b3

b1

ac( j0,k0, p0) = 1
ac( j1,k1, p1) ∈ [0,1]

ac( j0,k0, p0) = 1
ac( j1,k1, p1) = 0

b5

b4

(6.3.1) Branch and bound without our heuristic

ac( j0,k0, p0) ∈ [0,1]
ac( j1,k0, p0) ∈ [0,1]

ac( j0,k0, p0) ∈ [0,1]
ac( j1,k0, p0) = 0

ac( j0,k0, p0) = 0
ac( j1,k0, p0) = 0

b2

ac( j0,k0, p0) = 1
ac( j1,k1, p1) = 0

b3

b1

(6.3.2) Branch and bound with our heuristic

Figure 6.3. Branch and bound backtracking without and with our search heuristic. The nodes with a solid
border are the ones leading to a feasible solution.

Consider Figure 6.3.2, where the solver has been instructed to first branch by assigning the smallest
value in its domain to the ac variable associated with the highest priority task. In this case, the solver
tries the first assignment ac( j1,k1, p1) = 0 in the branch b1. Then, it tries the second assignment in the
branch b2, that violates MC. However, the third assignment in b3 does not violate any constraint, making
the solver perform only one backtracking step.

The semantics of this heuristic, i.e., highest priority tasks should be scheduled first, is the same as
the semantics of the RTOS scheduler, which in turn is captured by preemptive scheduling constraint. By
using this concept in the branching process, the solver is less likely to assign values for ac that violate the
preemptive scheduling constraint, and thus finds solutions faster. We implemented the search heuristic
within a stand-alone application that solves the OPL model using the .NET CONCERT library to interface
with the CP OPTIMIZER. Experimentation with our search heuristic showed a significant decrease in the
time needed by the solver to find solutions.
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6.2 Validation of the CP-based Strategy for Stress Test Cases
Generation

We first assessed the practical usefulness of our CP-based strategy in the Fire and Gas Monitoring Sys-
tem (FMS) described in Section 3.2. Recall from Section 6.2.1 that the FMS is a RTES whose main
goal is to monitor potential gas leaks and fires in offshore platforms, and activate countermeasures in
case hazardous events are detected. Currently, KM engineers spend several days simulating the behavior
of the FMS and monitoring its performance requirements. We expect that, by following our systematic
CP-based approach for stress testing, they can effectively derive stress test cases to produce satisfactory
evidence that no safety risks are posed by violating performance requirements at runtime. We note that
our methodology draws on context factors (Section 3.2) that need to be ascertained prior to application.
While the generalizability of these factors needs to be further studied, we have found them to be com-
monplace in many industry sectors relying on RTES. Furthermore, we note how casting the worst-case
scenario analysis as a search problem relies on modeling the property to stress test as an objective func-
tion to be maximized. This is a flexible design when it comes to adapting the constraint model to test
different performance requirements. Indeed, in such cases, it is only needed to consider a different ob-
jective function modeling another performance requirement. Moreover, the final users of our approach,
i.e., software testers and engineers, do not need to be aware of the mathematical details of the constraint
model, as they can simply use our methodology as a black box test cases generator. Overall, the valida-
tion of our CP-based strategy shows that the COP effectively identifies in a few minutes stress test cases
that are predicted to violate the FMS requirements on deadline misses, response time, and CPU usage.

However, for practical use, test case generation has to accommodate time and budget constraints. For
this reason, it is essential to investigate the trade-off between the time needed by a strategy to generate
stress test cases, and their power for revealing deadline misses. Recall from Section 2.4.2.2 that a strategy
based on Genetic Algorithms (GA) [Briand et al., 2006] has been proposed to support stress testing of
task deadlines by searching for worst-case scenarios, and is therefore a natural comparison baseline. We
refer to this strategy for generating stress test cases as GA-based strategy. When confusion with the
metaheuristic can not arise, we also refer to the GA-based strategy as GA. After validating CP in the
FMS, we compared CP with GA for the purpose of generating stress test cases for deadline misses. To
do so, we designed a series of experiments in five subject systems from safety-critical domains, ranging
in size and complexity (Section 6.2.2). The experiments show that, on average, GA is generally more
efficient, i.e., faster in generating test cases, while CP is more effective, i.e., it generates test cases that are
more likely to reveal deadline misses. Note that this result opens up the possibility to combine the two
strategies in order to retain the advantages of both. An hybrid approach combining GA and CP which
aims at striking a profitable trade-off between efficiency and effectiveness is discussed in Chapter 7.

6.2.1 Validation of CP in the Fire and Gas Monitoring System
Recall from Section 3.2 that the work reported in this thesis originates from the interaction over the years
with Kongsberg Maritime (KM), a leading company in the maritime and energy field. KM has pressing
needs to improve its practices related to safety certification, and this involves improving the validation of
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performance requirements. Therefore, we proposed, along with the approach in Chapter 5, the CP-based
strategy described in this chapter to provide support for systematic performance testing.

The main goal of evaluating CP for stress testing is to investigate whether engineers can use the solu-
tions of our Constrained Optimization Problem (COP), i.e., the values for the at variables (Section 6.1.2),
to derive stress test cases for different performance requirements. Indeed, recall from Section 3.1 that we
characterize stress test cases by arrival times of aperiodic tasks in the FMS drivers. We performed an ex-
periment with the FMS drivers with an observation interval T of five seconds, assuming time quanta of 10
ms. We run our OPL model for three times on a single AMAZON EC2 M2.XLARGE instance1. Each run
maximized one objective function defined in Section 6.1.4, and had a duration of five hours. Figure 6.4
shows the feasible solutions with the best objective value that were found within five hours. Consistent
with the terminology used in Integer Programming, we refer to these solutions as incumbents [Atamtürk
and Savelsbergh, 2005]. In each graph, the x-axis reports the incumbent computation times in the format
hh:mm:ss, and the y-axis reports the corresponding objective value. The constraint problems had almost
600 variables and more than one million constraints, using up to 10 GB RAM during resolution.

Since software testing has to accommodate time and budget constraints, we also investigated the
trade-off between the time needed to generate test cases, and their power for revealing violations of
performance requirements. For this reason, we recorded the computation times of the first incumbents
predicted to violate the three performance requirements as expressed in Section 3.2. The run optimizing
FDM is shown in Figure 6.4.1. The solver found 55 out of a total of 81 incumbents with at least one
deadline miss in their schedule; the first of such solutions was found after three minutes. The solution
yielding the best value for FDM produced a schedule where the PushData task missed its deadline by 10
ms in three executions over T . Figure 6.4.2 shows the results for the run optimizing FRT . The solver found
18 out of 19 incumbents with response time higher than one second; the first of such solutions was found
after two minutes. The best solution with respect to FRT produced a schedule where the response time of
the system was 1.2 seconds. Finally, the solutions found by optimizing FCU are shown in Figure 6.4.3.
The solver found 16 out of 20 incumbents with CPU usage above 20%; the first of such solutions was
found after four minutes. The solution with the highest value for FCU produced a schedule where the
CPU usage of the system was 32%. In all of the three runs the solver terminated after the time budget of
five hours, without completing the search with proof of optimality. However, for each objective function,
the solver was able to find, within few minutes, solutions that are candidates to stress test the system as
they may lead to requirements violations. Note that these solutions can be used to start testing the system
while the search continues, because the highest the objective value, the more likely the solutions are to
push the system to violating its performance requirements.

6.2.2 Validation of CP in Five Systems from Safety-critical Domains
After the initial validation of our CP-based strategy in the FMS, we investigated the overall performance
of CP for the purpose of generating stress test cases that break task deadlines. Recall from Section 2.4.2.2
that a strategy based on Genetic Algorithms (GA) [Briand et al., 2006] has been recently proposed to

1 http://aws.amazon.com
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(6.4.1) FDM value over time (6.4.2) FRT value over time

(6.4.3) FCU value over time

Figure 6.4. Objective values of FDM, FRT , and FCU over time, where we highlighted the time when the
first incumbent predicted to violate a performance requirement was found

support stress testing of task deadlines, and is therefore a natural comparison baseline. To successfully
enable our empirical study, we slightly modified the original GA approach. Specifically, (1) we added
the support for multi-core platforms, as the original work was meant for analyzing only software systems
running on single-core architectures, and (2) we replaced the original fitness function with the FDM de-
fined in Section 6.1.4, in order to account for the deadline misses for all tasks, rather than for a single
target task.

The comparison is performed on five subject systems from safety-critical domains reported in the
literature, briefly described in Section 6.2.2.1. The goal of our study is to answer the research questions
presented in Section 6.2.2.2 based on the metrics and attributes detailed in Section 6.2.2.3. The design
of our experiment is described in Section 6.2.2.4, and its results are discussed in Section 6.2.2.5. Finally,
Section 6.2.2.6 covers some potential threats that could affect the general validity of our conclusions.
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6.2.2.1 Subject Systems

To investigate the general performance of GA and CP in a variety of conditions, we selected five subject
systems from safety-critical domains with varying size and complexity. Specifically, our comparison is
based on one system from the aerospace domain, two systems from the automotive domain, and two from
the avionics domain. The systems presented in the following subject systems share the most common
characteristics of safety-critical RTES: they are integrated with the physical domain by interacting with
external devices such as sensors and actuators, they have a concurrent design, and they are subject to
timing requirements ranging in the order of milliseconds.

• Ignition Control System (ICS). Bosch GmbH2 developed an ignition control system of an auto-
motive engine [Peraldi-Frati and Sorel, 2008]. The system features sensors and actuators to sample
physical phenomena such as knock, temperature variation and engine warm-up, and to perform
corrections over them for a successful ignition of a spark plug in the engine.
• Cruise Control System (CCS). Continental AG3 developed a Cruise Control System deployed on

AUTOSAR-compliant architectures [Anssi et al., 2011]. The system features a switch sensor that
acquires driver inputs (e.g., set/cancel cruise, increase/decrease speed), and a control system that
processes the inputs and maintains the specified vehicle speed.
• Unmanned Air Vehicle (UAV). The ENSMA4, together with the University of Poitiers in France,

worked on a joint project for a mini Unmanned Air Vehicle named AMADO [Traore et al., 2006].
The system embeds a camera to be able to follow dynamically defined way-points, and is connected
to a ground station via a wireless modem that allows it to receive instruction data during a mission.
• Generic Avionics Platform (GAP). The Carnegie-Mellon University in Pennsylvania, together

with the US Naval Weapons Center5 and the IBM Federal Sector Division6, designed a specifi-
cation for a hypothetical avionics software mission control computer of a military aircraft [Locke
et al., 1990]. Though the system can be configured to fit several possible missions, the specification
is targeted for the specific case of an air-to-surface attack.
• Herschel-Planck Satellite System (HPSS). The European Space Agency7 carried out the Herschel-

Planck Mission consisting of the two satellites Herschel and Planck [Mikučionis et al., 2010].
The satellites have different scientific purposes: Herschel carries a large infrared telescope, while
Planck is a space observatory for studying the Cosmic Microwave Background. The satellites share
the same computational architecture composed of a real-time operating system, a basic software
layer, and application software.

Table 6.1 summarizes relevant data from the systems specifications, reported in ascending order of
size and complexity. Specifically, we take into account the number of software tasks, inter-dependencies,
triggering relations, and platform cores. This data has been extracted from the sources cited above, which

2 http://www.bosch.com
3 http://www.conti-online.com
4 http://www.ensma.fr
5 http://www.navair.navy.mil/nawcwd
6 http://www.ibm.com/federal
7 http://www.esa.int
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include full descriptions of the systems. The complete version of the data extracted is available on-line
as a technical report8.

System

Software System Platform

LogsizeTasks Relationships
Cores

Periodic Aperiodic Dependencies Triggering

ICS 3 3 3 0 3 446.7
CCS 8 3 3 6 2 551.6
UAV 12 4 4 0 3 671.5
GAP 15 8 6 5 2 709.4
HPSS 23 9 5 0 1 836.6

Table 6.1. Subject systems data

To investigate the impact that the target system complexity has over the practical usefulness of the
search strategies, we also quantified the system size. Specifically, we define the size of each system as
the size of its associated search space, that is the product of the domain size of the search variables (Sec-
tion 6.1.2). Indeed, the search space contains by definition all the feasible assignments of values to
variables in the problem. The last column of the table reports the base 2 logarithm of the size of the
search space. For example, in ICS there are ca. 2446.7 possible ways in which tasks could arrive and be
scheduled for execution.

6.2.2.2 Research Questions

The goal of our empirical study is to answer the following research questions involving GA and CP for
the purpose of supporting stress testing of task deadlines.

RQ1 — Efficiency. Does one search strategy find the best solutions significantly faster than the other?
RQ2 — Effectiveness. Does one search strategy find significantly better solutions (i.e., solutions with

worse deadline misses) than the other?
RQ3 — Scalability. To what extent does the size of a system affect the efficiency of the two search

strategies?

RQ1 and RQ2 are investigated through a set of metrics and attributes detailed in Section 6.2.2.3. The
goal of such metrics and attributes is to provide quantitative evidence to answer the research questions.
On the other hand, RQ3 is discussed only qualitatively in Section 6.2.2.5. This is because we base our
analysis of efficiency on a set of five subject system, and therefore no quantitative study, for example
based on regression analysis, can be carried out to identify precise trends.

8 http://home.simula.no/∼stefanod/data.pdf

126

http://home.simula.no/~stefanod/data.pdf


6.2. Validation of the CP-based Strategy Chapter 6. Generating Stress Test Cases with CP

6.2.2.3 Comparison Metrics and Attributes

Though the search for optimal solutions is driven by the function FDM defined in Section 6.1.4, we broke
down the function into several factors that are of practical interest while investigating worst case sce-
narios for deadline misses. This is because, to properly answer the research questions, one must look
into several complementary aspects of FDM. For this reason, we defined the efficiency and effectiveness
properties related to RQ1 and RQ2 as attributes, and we defined a set of metrics to enable their measure-
ment. Therefore, we compare the performance of GA and CP by collecting data pertaining to the metrics
and attributes defined below. To enable a formal definition of metrics and attributes, we introduce the
following notation:

Search Strategy. Let Γ denote the search strategies: Γ ∈ {GA,CP}.
Target System. Let Σ denote the systems described in Section 6.2.2.1: Σ∈{ICS,CCS,UAV,GAP,HPSS}.
Set of Solutions. Let X(Γ,Σ) denote the set of solutions found by the search strategy Γ during an exper-
iment on the target system Σ.

6.2.2.3.1 Comparison Metrics The following metrics are defined for a given solution x ∈ X found
by the search strategy Γ during an experiment on the target system Σ. In the definitions, we omit the
dependency from Γ and Σ for the sake of readability. Recall that a solution x is defined as a sequence of
arrival times x j,k for each aperiodic task, i.e., x =

[
[x j,k | k ∈ K j] | j ∈ Ja

]
. We use an alternative notation

for the variables when in need to make their context explicit. In such notation, the indexes j, k and
p are reported as subscripts, and the parentheses contain the specific context that the variable refer to.
Examples of contexts for variables are the system Σ under analysis, the search strategy Γ used, or the
solution x the properties belong to. For instance, we write dm j,k(x) to mean the value of dm( j,k) in the
solution x.

Computation time. We define t(x) as the time required to find solution x, from when the search starts.

The sum of time quanta in all deadline misses is strongly related to the value of the fitness/objective
function that guides the search. In practice, the sum of time quanta in deadline misses provides some
insight into the magnitude of the identified deadline misses. Since our approach is based on task execution
time estimates, the larger the sum of deadline misses, the more likely tasks are to miss their deadlines at
runtime.
Sum of time quanta in deadline misses. We define s(x) as the sum of time quanta in all deadline misses
of solution x. Recall from Section 6.1.1 that, for a given solution x, we define dm( j,k) def

= en( j,k)−dl( j,k).

s(x) def

=
∑

j∈J, k∈K j(x)
max

(
0, dm j,k(x)

)

The number of tasks that miss a deadline is relevant for generating stress test cases for task deadlines
as, in practice, every task that misses a deadline has to be looked into and possibly re-designed. Hence,
not realizing that a task can miss its deadline may lead to overlooking an important flaw.
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Number of tasks that miss a deadline. We define n(x) as the number of tasks that miss at least a
deadline in solution x.

n(x) def

=
∣∣∣{ j ∈ J | ∃k ∈ K j(x) · dm j,k(x)≥ 0

}∣∣∣
The number of task executions that miss a deadline is also of interest as, in soft real-time systems, one

could tolerate less critical tasks missing some deadlines, provided that the frequency of deadline misses
is acceptable. Therefore, overestimating this number might lead us to inspect a task when unnecessary,
while underestimating it could lead to overlooking tasks that frequently miss their deadlines.
Number of task executions that miss a deadline. We define m(x) as the number of task executions that
miss a deadline in solution x.

m(x) def

=
∣∣∣{k ∈ K j(x) | j ∈ J∧dm j,k(x)≥ 0

}∣∣∣
Note that, by definition, ∀x ∈ X · m(x)≥ n(x).

We note how the metrics s, n, and m also capture the general quality of a solution. Intuitively, higher
values for s, n and m, all correspond in a different way to higher quality solutions. Specifically, solutions
with many large deadline misses or many tasks or task executions that miss a deadline characterize worst
case scenarios. Therefore, a best solution can be identified only with respect to a specific metric. For
each search strategy Γ running during an experiment on the target system Σ, we define the following
quantities:
Largest sum of time quanta in deadline misses. We define s∗ as the largest sum of time quanta in

deadline misses in X.
s∗ def

= max
x∈X

s(x)

Largest number of tasks missing their deadline. We define n∗ as the largest number of tasks missing
their deadline in X.

n∗ def

= max
x∈X

n(x)

Largest number of task executions missing their deadline. We define m∗ as the largest number of task
executions missing their deadline in X.

m∗ def

= max
x∈X

m(x)

Set of best solutions with respect to the sum of time quanta in deadline misses. We define X∗s as the
set of best solutions with respect to the sum of time quanta in deadline misses.

X∗s
def

= {x ∈ X | s(x) = s∗}

Set of best solutions with respect to the number of tasks missing their deadline. We define X∗n as the
set of best solutions with respect to the number of tasks missing their deadline.

X∗n
def

= {x ∈ X | n(x) = n∗}
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Set of best solutions with respect to the number of task executions missing their deadline. We define
X∗m as the set of best solutions with respect to the number of task executions missing their deadline.

X∗m
def

= {x ∈ X | m(x) = m∗}

6.2.2.3.2 Comparison Attributes We introduce two comparison attributes to capture two aspects of
practical interest while testing. Indeed, a test suite has two desirable properties:

1. It is computed in the shortest possible time, and,
2. It contains test cases that are as likely as possible to push tasks to miss their deadlines at runtime

Efficiency captures the first property, measuring how quickly a search strategy converges to the opti-
mal solutions it finds. Effectiveness captures the second property, measuring how likely are the solutions
found to characterize stress cases that reveal deadline misses at runtime. The comparison attributes are
also defined for each search strategy Γ running during an experiment on the target system Σ.

The more efficient a strategy, the faster it computes its best solutions. Therefore, the efficiency
attribute relates to RQ1 and RQ3.
Efficiency. We define the efficiency η with respect to a given metric as the minimum time required to

compute one of the best solutions with respect to that metric. Specifically, we define the efficiency with
respect to s, m, and n.

ηs
def

= min
x∈X∗s

t(x) ηn
def

= min
x∈X∗n

t(x) ηm
def

= min
x∈X∗m

t(x)

The more effective a strategy, the better the solutions it computes. Therefore, the effectiveness at-
tribute relates to RQ2.
Effectiveness. We define the effectiveness κ with respect to a given metric as the value of that metric for
the best solutions found. Specifically, we define effectiveness with respect to s, m, and n.

κs
def

= s∗ κn
def

= n∗ κm
def

= m∗

6.2.2.4 Experiments Setup

To answer RQ1 and RQ2, we performed a series of experiments over the systems described in Sec-
tion 6.2.2.1. The experimental design is illustrated in Figure 6.5. Each experiment consisted of running
both search strategies on a target system for a number of times, each run having the same duration. To
provide an initial assessment of the practical usefulness of GA and CP, we chose to run each strategy on
a desktop computer for one hour. To do so, we set up GA to continuously generate new solutions for
one hour, while we set up CP to terminate the search after one hour. Running both strategy for the same
amount of time allows us to meaningfully compare their effectiveness. Furthermore, during the design
of the experiment, we had to consider the inherent randomized behavior of GA in contrast to the fully
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deterministic behavior of CP. Indeed, GA finds solutions starting from a randomly chosen initial popula-
tion of individuals by applying crossover and mutation operators with a given probability, while CP finds
solutions by solving a COP. For this reason, while we ran CP only once for one hour for each system,
we ran GA 50 times for one hour on each system. In this way, we could compute distributions of the
best solutions recorded over 50 runs over the efficiency and effectiveness ranges. For each experiment,
we recorded only the 100 solutions with the highest fitness/objective value found by GA and CP. This is
because each solution characterizes a stress test case, and 100 has proven to be a satisfactory number of
observations to meaningfully compare two distributions [Arcuri and Briand, 2011]. Since RQ1 and RQ2
are related to attributes η and κ respectively, for each solution we computed the values of the metrics
t, s, n, and m used to define such attributes. Both GA and CP have been run one at a time on the same
machine, i.e., a desktop computer with a 3.3 Ghz dual-core Intel Core i3 processor, and 8GB RAM.

Figure 6.5. Experimental design: we run CP a single time recording the 100 solutions with highest
objective value, and calculating a single value for each metric. Then, we run GA 50 times recording the
100 solutions with highest fitness value, and calculating distributions for the metrics.

6.2.2.5 Results and Discussion

Table 6.2 reports the efficiency η with respect to s, n and m for GA and CP and for each system. The
computation times for the best solutions are reported in the format mm:ss. In place of reporting the full
distributions of GA, we report instead a set of statistics that meaningfully represent the efficiency of GA
across runs, specifically:

130



6.2. Validation of the CP-based Strategy Chapter 6. Generating Stress Test Cases with CP

• The mean computation time x̄ of the best solution
• The three quartiles Q1, Q2, and Q3 of the computation time of the best solution
• The probability P that GA achieves a greater or equal efficiency than CP. P is calculated as the

percentage of runs in which GA had a greater or equal efficiency than CP, i.e., the percentage of
runs in which GA found its best result before or at the same time as CP found its own.

Being deterministic, the column of CP reports instead the single computation times of the best solu-
tions.

System
ηs ηn ηm

GA CP GA CP GA CP

ICS x̄ 15:23 40:23 x̄ 11:05 40:23 x̄ 11:05 40:23
Q1 09:33 Q1 04:33 Q1 04:33
Q2 14:07 Q2 07:49 Q2 07:49
Q3 18:05 Q3 13:32 Q3 13:32
P 0.98 P 1 P 1

CCS x̄ 24:42 18:04 x̄ 07:20 18:04 x̄ 07:20 18:04
Q1 15:09 Q1 05:19 Q1 05:19
Q2 22:33 Q2 06:48 Q2 06:48
Q3 30:52 Q3 08:16 Q3 08:16
P 0.36 P 1 P 1

UAV x̄ 42:01 01:05 x̄ 39:50 00:37 x̄ 39:50 00:37
Q1 33:39 Q1 32:49 Q1 32:49
Q2 38:34 Q2 37:11 Q2 37:11
Q3 53:29 Q3 48:19 Q3 48:19
P 0 P 0 P 0

GAP x̄ 40:26 22:38 x̄ 21:07 01:38 x̄ 30:03 01:38
Q1 33:00 Q1 06:30 Q1 10:59
Q2 40:32 Q2 12:47 Q2 34:50
Q3 50:22 Q3 34:20 Q3 42:48
P 0.1 P 0 P 0

HPSS x̄ 20:19 05:56 x̄ 20:19 00:54 x̄ 20:19 00:54
Q1 14:31 Q1 14:31 Q1 14:31
Q2 17:51 Q2 17:51 Q2 17:51
Q3 22:30 Q3 22:30 Q3 22:30
P 0 P 0 P 0

Table 6.2. Experimental results for efficiency η

6.2.2.5.1 RQ1 — Efficiency We observe how, on the two smallest subject systems, GA has a consis-
tently better efficiency than CP. Specifically, in ICS, GA was able to find on average the best solutions x∗s ,
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x∗n, and x∗m three or four times faster than CP. We can identify this trend also in CCS, where we recorded
the same efficiency gap with the exception of ηs, where the efficiency of CP is achieved by GA by the
second quartile. However, for the three largest systems, CP is significantly faster than GA at finding the
best results with respect to s, n, and m. The efficiency of CP is indeed far above the one observed before
the third quartile of GA. With the exception of ηs in GAP, no GA run was faster at finding its best result
than CP.

Table 6.3 reports the effectiveness κ with respect to s, n, and m for GA and CP and for each system.
As for Table 6.2, the columns of GA report statistics about the distribution of effectiveness:

• The mean value x̄ of the best solution
• The three quartiles Q1, Q2, and Q3 of the value of the best solution
• The probability P that GA achieves a greater or equal effectiveness than CP. P is calculated as the

percentage of runs in which GA had a greater or equal effectiveness than CP, i.e., the percentage of
runs in which the best result found by GA was better than or equal to the best result found by CP.

The column of CP reports instead the single value of the best solutions.

6.2.2.5.2 RQ2 — Effectiveness We observe how, on the two smallest subject systems, the effective-
ness of GA is on average similar to the effectiveness of CP. In ICS, GA reaches by the third quartile the
same result as CP for κs, κn, and κm. In CSS instead, GA reaches by the second quartile the same result
as CP for κs, and does so by the first quartile for both κn and κm. However in both cases, though the
solutions found by CP are better on average, the efficiency of GA is superior to the efficiency of CP. This
means that there is a high probability that in few runs GA finds the same best solutions with respect to s,
n, and m as CP. For the three largest systems instead, with the exception of UAV for κn and κm, CP finds
significantly better values than GA for s, n, and m. Specifically, in UAV GA finds on average one dead-
line miss of one time quantum, while CP finds one deadline miss of three time quanta. The difference
in κs between GA and CP increases in GAP and HPSS. In GAP, GA has an average value of 19 for κs,
while CP achieves 34 half of the time. In HPSS, GA hardly finds any deadline miss, while CP finds one
of five time quanta after a few minutes. These differences in the value of κs are of practical significance
because, as discussed above, a larger sum of deadline misses indicates scenarios where tasks are more
likely to miss their deadlines at runtime. Furthermore, for all subject systems, no GA run found a better
solution than CP.

6.2.2.5.3 RQ3 — Scalability In light of these results, we conclude that, for the smaller subject sys-
tems, GA has proven to be more efficient than CP, and nearly as effective. On the other hand, for the
larger systems, CP has proven to be significantly more efficient and more effective than GA. The out-
come of this experiments seems to suggest that, within the range covered by our systems and the proposed
experimental design, the larger the size of the system, the better CP when compared to GA.

6.2.2.5.4 Summary and Discussion We conjecture that the reason for this trend stems from the in-
teraction between the size of the search space of the subject systems, and the heuristics used in our CP
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System
κs κn κm

GA CP GA CP GA CP

ICS x̄ 13.22 19 x̄ 1.3 2 x̄ 1.3 2
Q1 14 Q1 1 Q1 1
Q2 14 Q2 1 Q2 1
Q3 19 Q3 2 Q3 2
P 0.26 P 0.32 P 0.32

CCS x̄ 12.14 13 x̄ 2 2 x̄ 2 2
Q1 11 Q1 2 Q1 2
Q2 13 Q2 2 Q2 2
Q3 13 Q3 2 Q3 2
P 0.52 P 1 P 1

UAV x̄ 0.94 3 x̄ 0.74 1 x̄ 0.74 1
Q1 0 Q1 0 Q1 0
Q2 1 Q2 1 Q2 1
Q3 1 Q3 1 Q3 1
P 0.02 P 0.74 P 0.74

GAP x̄ 19.18 34 x̄ 2.4 3 x̄ 3.06 5
Q1 16 Q1 2 Q1 3
Q2 19 Q2 2 Q2 3
Q3 21 Q3 3 Q3 4
P 0 P 0.4 P 0.02

HPSS x̄ 0.04 5 x̄ 0.04 1 x̄ 0.04 1
Q1 0 Q1 0 Q1 0
Q2 0 Q2 0 Q2 0
Q3 0 Q3 0 Q3 0
P 0 P 0.04 P 0.04

Table 6.3. Experimental results for effectiveness κ

solution. The size of the search space is largely determined by the number of aperiodic task executions
within the observation time interval. The systems where GA is more efficient than CP, i.e., ICS and CCS,
have a smaller search space, and hence, GA is able to quickly converge towards the best solutions regard-
less of its initial population. Therefore, in these systems GA performs reasonably well compared to CP.
On the other hand, in systems with large search spaces, i.e., UAV, GAP, HPSS, GA needs more time to
converge towards its best solution. Thanks to its heuristic, CP is able to find solutions with a rather high
objective value in a few minutes.

Note that the efficiency and effectiveness results of the search strategies are obtained by running them
for one hour. Due to this time limit, in the larger systems, CP may fail at further improving the solutions
that it finds at the very beginning of its search. Indeed, if the GA and CP had been run for longer
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time on the larger systems, we might have obtained better solutions that take much longer to compute.
Analyzing the experimental results, we found out that running GA and CP for one hour can provide only
a rough assessment on the efficiency and effectiveness of both strategies, and on the way the system size
affects efficiency and effectiveness. For this reason, we further investigated the performance of GA and
CP in another series of experiments, where we run each strategy for 10 hours. This second series of
experiments, discussed in Section 7.2, showed a clear trend, where GA is more efficient, while CP is
more effective. This second experiment motivated us in devising a combined strategy (Chapter 7) that
aims at retaining the advantages of GA and CP.

6.2.2.6 Threats to Validity

We identified three main threats that could affect the general validity of our conclusions: First, the anal-
ysis of efficiency, effectiveness and scalability is based on a set of five subject systems. Although com-
paring GA and CP in a larger number of systems would have mitigated this threat, the systems have been
selected from different RTES domains and feature varying size and complexity.

Second, the size of the selected systems varies from 6 to 32 tasks, 3 to 9 of which aperiodic. There
could be much larger systems featuring hundreds of tasks, and for those the efficiency and effectiveness
of CP need to be investigated. This means that the conclusions drawn are valid only for systems in the
same size range of the subject systems used in the comparison.

Third, the experiment set-up relies on the choice of running both search strategies for one hour,
and on specific parameters used for GA, such as the initial population size, the crossover and mutation
probabilities, and the population replacement rate. Different values for these parameters could have led
to higher efficiency and effectiveness. However, we used the same values as in the work of Briand et
al. [Briand et al., 2006], that have been derived from the GA literature and specifically tuned for deadline
misses analysis. However, by looking at the quartiles of the efficiency distributions, GA did not find
always find its best results significantly earlier than one hour. This means that, in most cases, GA did not
reach a plateau before one hour, and there are chances for it to find a better solution if given more time.
To mitigate this threat, we should investigate the efficiency and effectiveness in an experiment where GA
and CP are run for longer time. As discussed at the end of Section 6.2.2.5, this longer experiment is
discussed in Section 7.2.
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Chapter 7

Combining Genetic Algorithms and Constraint
Programming to Automate the Generation of
Stress Test Cases

In Chapter 6 we discussed a strategy based on Constraint Programming (CP) to automate the genera-
tion of stress test cases to break task deadlines. The strategy is based on the definition of a Constraint
Optimization Problem (COP) for the purpose of generating sequences of arrival times likely to lead to
deadline misses. The COP models the properties of the system as integer constants and variables, and
models the scheduler of the system as a set of constraints among such variables. The generation of stress
test cases is driven by an objective function that expresses the likelihood of the arrival times to violate
a given performance requirement. In particular, we defined the objective function FDM expressing the
extent to which a particular set of arrival times is predicted to break task deadlines. Also recall from Sec-
tion 2.4.2.2 that Genetic Algorithms (GA) have been used in the past to support stress testing of task
deadlines. Among others, Briand et al. proposed a GA-based search strategy [Briand et al., 2006] to
generate sequences of arrival times likely to lead to deadline misses. In that work, arrival times of aperi-
odic tasks are modeled as chromosomes. The initial population of these chromosomes is initialized with
random values, and their fitness is evaluated by computing the tasks schedule that is produced from the
arrival times encoded in the chromosomes. Indeed, such a schedule contains information about the end
times of tasks, which belong to the fitness function in a fashion similar to that of FDM. At each itera-
tion of GA, a pair of chromosomes is crossed over and then mutated using specific operators that ensure
compliance with the inter-arrival times of aperiodic tasks.

Preliminary experimental results have shown in some cases an opposing trend: while GA was more
efficient, i.e., faster in generating test cases, CP was more effective, i.e., it generated test cases that were
more likely to identify deadline misses. Furthermore, GA was able to find a larger and more diverse set
of test cases than CP, exercising the system in a more diverse way with respect to task executions. Specif-
ically, the test cases generated by GA had a higher variety in terms of 1. time span and 2. preemptions
between task executions, and 3. number of aperiodic task executions. These three criteria are described
in Section 7.2.2 and define the concept of test case diversity. On the other hand, CP generated a smaller
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number of test cases, most of which were redundant with respect to the three criteria, i.e., executed the
system tasks during similar time intervals, with the same preemptions and number of executions.

Therefore, we looked into a way to achieve both the efficiency of GA and the effectiveness of CP. The
key idea behind this new stress testing strategy is to improve the solutions computed by GA by perform-
ing a complete search with CP in their neighborhood, hence defining a two-stage GA+CP strategy. In this
way, we expected the combined approach to take advantage of the efficiency of GA, because solutions
are initially computed with GA and the subsequent CP search is likely to terminate in a short time since
it focuses on the neighborhood of a solution, rather than in the whole search space. Similarly, we ex-
pected GA+CP to take advantage of the solutions diversity of GA, because these solutions define in turn
subspaces where CP searches for better solutions. Finally, we also expected GA+CP to take advantage of
the effectiveness of CP since, after GA computes a solution, CP either finds the best solution within the
neighborhood, or proves upon termination that no better solution exists in such neighborhood.

7.1 A hybrid GA+CP strategy to Automate the Generation of
Stress Test Cases

We refine our strategy for determining worst-case schedules of tasks with an approach motivated by our
experimental results on the comparison between the CP-based and GA-based strategies (Section 6.2.2).
Specifically, we solve the search for arrival times of aperiodic tasks with a two-step strategy. The key
idea behind the strategy is to first generate a set of solutions with GA, and then perform a series of local
searches with CP in the neighborhood of those solutions. Figure 7.1 illustrates how GA+CP searches for
solutions through an abstract example.

1. GA Step. The initial population of GA consists of the three solutions x1, y1, and z1. In the first
generation, GA finds the solutions x2, y2, and z2 that are generated from x1, y1 and z1 respectively.
After the five generations, GA converges on the solutions x6, y6 and z6.

2. CP Step. CP then searches for better solutions in the neighborhoods of x6, y6 and z6. This step is
performed by launching three separate instances of CP, each having x6, y6 and z6 as a starting point.
The first two complete searches find the solutions x∗ and y∗. The last proves upon termination that
z6 is the best solution in its neighborhood, hence z6 = z∗. Therefore, x∗, y∗, and z∗ are the final
solutions found by GA+CP, and are used to characterize stress test cases.

We begin the formal description of our approach by introducing the following notation.

Recall that a solution is a sequence of arrival times which the search identifies as likely to break task
deadlines, and hence characterizes a stress test case.
Solution computed by GA. Let x =

[
[x j,k | k ∈ K j] | j ∈ Ja

]
denote a solution computed by GA.

Note that, by definition, x is an assignment of arrival times for aperiodic tasks, where x j,k is the value for
the kth arrival time of task j: ∀ j ∈ Ja, k ∈ K j · at j,k(x) = x j,k.
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Figure 7.1. Overview of GA+CP: the solutions x1, y1 and z1 in the initial population of GA evolve into
x6, y6, and z6, then CP searches in their neighborhood for the optimal solutions x∗, y∗ and z∗.

Consider two tasks j1 and j2 such that the arrival time of an execution of j1 can have a direct impact
over an execution of j2. In practice, this can happen in two cases. The first case occurs if j1 has higher
priority than j2. In this case, j2 can be preempted at any time by j1 if there are not enough cores available.
The second case occurs when j1 and j2 share the same computational resource. In this case, if j1 arrives
before j2 has acquired the lock on the resource, the latter will have to wait until such lock is released.
Therefore, we define the impacting relation between two tasks in the following way:

Impacting Relation between two tasks. We define im as a binary relation defined over J× J holding if
the arrival time of an execution of j1 can have a direct impact over an execution of j2:

im( j1, j2)
def

= pr( j1)≥ pr( j2)∨de( j1, j2)

Note that im is defined reflexive, because trivially the arrival time of a task has an impact over the
execution of the task itself. However, j1 having higher priority or depending on j2 is not the only case
in which j1 can have an in impact over an execution of j2. For instance, consider the case where j1 has
higher priority than another task j3, and j3 depends on j2. In this case, j1 could preempt j3 after j3 has
acquired the lock on the resource shared with j2, and then j2 would have to wait for both the completion
of j1 and j3 before being able to execute. In this case, j1 can also have an impact over an execution of j2,
albeit this impact is indirect since it involves j3. For this reason, we denote the transitive closure of im as
im+, in order to cover all the cases where j1 can have a direct or indirect impact over the execution of j2.
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Impacting Set of a Task. Let I : J→ P(J) be the function that represents the set of tasks that can have
an impact over the execution of a target task: I j

def

=
{

j′ ∈ J | im+( j′, j)
}
. We define I j as the impacting set

of j.

Set of tasks that miss a deadline or are the closest to miss it among all tasks. We define J∗(x) as the
set of tasks that miss at least a deadline in one execution, or are closer than others to doing so in the
schedule generated by the arrival times in x.

J∗(x) def

=
{

j ∈ J
∣∣∣ ∃k∗ ∈ K j∗(x) ·

(
dm j∗,k∗(x)≥ 0 ∨

∀ j ∈ J, k ∈ K j · dm j∗,k∗(x)≥ dm j,k(x)
)}

Union set of impacting sets of tasks missing or closest to miss their deadlines. We define I∗(x) as the
union of the impacting sets of tasks in J∗(x).

I∗(x) def

=
⋃

j∗∈J∗(x)
I j∗(x)

By definition, I∗(x) contains all the tasks that can have an impact over a task that misses a deadline or is
closest to a deadline miss.

Neighborhood of an arrival time and neighborhood size. We define εD(x j,k) as the neighborhood of
x j,k of size D, i.e., as the interval centered in the arrival time x j,k whose radius is D.

εD(x j,k)
def

= [x j,k−D, x j,k +D]

ε defines the part of the search space around x j,k where to find arrival times that are likely to break task
deadlines. Note that D is a parameter of the search.

Constraint Model Implementing a Complete Search Strategy. Let M denote the constraint model
defined in Section 6.1 that considers the function FDM (Section 6.1.4) for the purpose of identifying task
arrival times that are likely to break deadlines.

M models the static and dynamic properties of the software system as constants and variables respec-
tively, and the scheduler of the operating system as a set of constraints among such variables. Note that
M is solved a using a complete search strategy over the space of arrival times. This means that M
searches for arrival times of all aperiodic tasks within the whole interval T .

Our combined GA+CP strategy consists of the following two steps:

1. GA Step. Run GA for a given amount of time to obtain a set X of solutions. For this purpose, we
use the implementation of GA introduced by Briand et al., with the same initial population size,
replacement strategy, and probability values used for crossover and mutation [Briand et al., 2006].
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2. CP Step. For each solution x ∈ X , solve a constraint model M′(x) that searches for arrival times
only within a fixed-size neighborhood of x.

M′(x) is derived from M by:

• Fixing the arrival time of tasks not in I∗. This is done by adding to M the following constraint:

∀ j ∈ J \ I∗(x), k ∈ K j(x) · at( j,k) = x j,k

In practice, this means that the arrival time of all task executions that do not have any impact on
tasks being close to missing a deadline will be fixed in M′.
• Bounding the arrival times of tasks in I∗. This is done by adding to M the following constraint:

∀ j ∈ I∗(x), k ∈ K j(x) · x j,k−D≤ at( j,k)≤ x j,k +D

In practice, this means that the arrival time of the task executions that can have an impact on tasks
identified by GA as close to missing a deadline will be declared in M′ as a variable with domain
ε(x j,k).

Note that, by definition, M′ implements a local search strategy over the search space of arrival times.
This means that M′ searches only for arrival times of aperiodic tasks that can have an impact on tasks
GA identifies as close to missing a deadline, and bounds the search within a neighborhood of size D from
the solution computed by GA. Specifically, for given j and k, the inequality constraints on the variable at
define in the solutions space a hypercube of side 2D centered in x j,k.

The search in GA+CP can be configured through two sets of parameters, one related to GA and the
other to CP. GA relies on parameters specific to evolutionary algorithms, such as the initial population
size, the crossover and mutation probabilities, and the population replacement rate. For those, we used
values that have been derived from the GA literature and specifically tuned for deadline miss analy-
sis [Briand et al., 2006]. On the other hand, CP is a deterministic search strategy, and therefore does not
require us to set such parameters. However, our combined search strategy depends on the neighborhood
size D that CP searches for arrival times of aperiodic tasks. Our preliminary experimentation showed that
a value of D around 1% of T yields a good compromise between efficiency and effectiveness. Specif-
ically, lower values for D define a smaller neighborhood where GA+CP is less likely to improve the
solutions found by GA, while higher values for D define a larger neighborhood where GA+CP is likely
to spend a significant amount of time without finding better solutions.

7.1.1 GA+CP in Practice: a Working Example
In this section, we introduce an example to show how GA+CP works in practice. Consider the system
composed of five aperiodic tasks detailed in Table 7.1. Note that pe and of are not defined, since each
task is aperiodic. There are also no tg relationships between tasks.

Suppose GA finds the solution x =
[
[0][2][3][6][3]

]
, where each task is executed once, and j0 arrives

at time 0, j1 at time 2, j3 at time 3, j4 at time 6 and j5 at time 3. The schedule corresponding to this
solution is shown in Figure 7.2.1.
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T = [0,9] c = 1

Task pr dr mn mx dl de

j0 0 2 10 10 8
j1 1 2 10 10 6 j4
j2 2 2 10 10 5
j3 3 2 10 10 4
j4 4 2 10 10 3 j1

Table 7.1. Example system with four tasks and one dependency

(7.2.1) Solution x found by GA (7.2.2) Solution x′ found by GA+CP

Figure 7.2. GA+CP neighborhood search example

In x, j4 misses its deadline by 2 time quanta, being the task that has the biggest deadline miss.
Therefore, J∗(x) = { j4}. By looking at the tasks priorities and dependencies, j1 depends on j4, and both
j2 and j3 have higher priority than j1, so all three can potentially have an impact over the execution of
j4 for the reasons detailed in above. This means that I j4(x) = { j1, j2, j3, j4}, and consequently I∗(x) =
{ j1, j2, j3, j4}.

GA+CP searches the space around x up to a distance D from the tasks in I∗(x), i.e., the tasks that can
potentially have an impact over the execution of j4. This local search is performed by solving the CP
model M′(x) derived from M by specifying that:

• The arrival time of j0 is fixed, since j0 6∈ I∗(x). This step is done by adding to M the following
constraint: at( j0,0) = 0. In practice, at( j0,0) is declared in M′(x) as a constant with value 0.
• The arrival times of tasks in I∗(x) are bounded within distance D from the arrival times computed

by GA in x. For this example, suppose D = 2. This step is done by adding to M the following
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constraints:

2−2 = 0≤ at( j1,0)≤ 4 = 2+2
3−2 = 1≤ at( j2,0)≤ 5 = 3+2
6−2 = 4≤ at( j3,0)≤ 8 = 6+2
3−2 = 1≤ at( j4,0)≤ 5 = 3+2

In practice, at( j1) is declared in M′(x) as a variable with domain [0,4], at( j2) as a variable with
domain [1,5], at( j3) as a variable with domain [4,8], and at( j4) as a variable with domain [1,5].

GA+CP solves this model to optimality and finds the solution x′ =
[
[0][2][3][4][3]

]
, with the schedule

shown in Figure 7.2.2. In x′, j4 misses its deadline by 4 quanta, and therefore GA+CP has succeeded in
improving the solution found by GA by finding a larger deadline miss.

7.2 Validation of GA+CP in Five Subject Systems from
Safety-critical Domains

The goal of our empirical study is to compare the overall performance of GA, CP, and GA+CP for the
purpose of supporting stress testing of task deadlines. The design of this empirical study is similar to that
described in Section 6.2.2, as the comparison is performed on the same five subject systems introduced
in Section 6.2.2.1. The goal of our study is to answer the research questions presented in Section 7.2.1.
Note that, in addition to the research questions related to efficiency, effectiveness, and scalability intro-
duced in Section 6.2.2.2, we also investigate a fourth property of the search strategies that concerns the
capability to exercise the system in a more diverse way with respect to task executions. Therefore, we
define metrics and attributes in Section 7.2.2 to capture the test cases variety in terms of (1) time span
and (2) preemptions between task executions, and (3) number aperiodic task executions. The design
of our experiment is described in Section 7.2.3, and its results are discussed in Section 7.2.4. Finally,
Section 7.2.5 covers some potential threats that could affect the general validity of our conclusions.

7.2.1 Research Questions
The goal of our empirical study is answering the following research questions involving GA, CP and
GA+CP for the purpose of supporting stress testing of task deadlines. Note that RQ1, RQ2, and RQ4
have been introduced in Section 6.2.2.2, and are reported here.

• RQ1 — Efficiency. Does one search strategy find the best solutions significantly faster than the
other?
• RQ2 — Effectiveness. Does one search strategy find significantly better solutions (i.e., solutions

with worse deadline misses) than the other?
• RQ3 — Diversity. Does one search strategy find solutions that are significantly more diverse (i.e.,

solutions that exercise the system in a larger number of different ways) than the other?
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• RQ4 — Scalability. To what extent does the size of a system affect the efficiency of the search
strategies?

RQ1, RQ2 and RQ3 are investigated through a set of metrics and attributes detailed in Section 7.2.2.
The goal of such metrics and attributes is to provide quantitative evidence to answer the research ques-
tions. Similar to Section 6.2.2.5, RQ4 will instead be only qualitatively discussed in Section 7.2.4. Note
that we base our analysis of efficiency on a set of five systems, and therefore no quantitative study, for
example based on regression analysis, can be carried out to identify precise trends.

7.2.2 Comparison Metrics and Attributes
Similar to Section 6.2.2.3, we broke down the objective function FDM (Section 6.1.4) into several fac-
tors of practical interest while investigating worst case scenarios for deadline misses. For this reason,
we defined the efficiency and effectiveness, and diversity properties related to RQ1, RQ2, and RQ3 as
attributes, and we defined a set of metrics to enable their measurement. Therefore, we compare the per-
formance of GA, CP and GA+CP by collecting data pertaining to the metrics t, s, n, m, and the attributes
η and κ defined in Section 6.2.2.3. In addition, we define the attributes related to diversity for each search
strategy Γ running during an experiment on the target system Σ. Indeed, an ideal test suite has three main
properties:

1. It is computed in the shortest possible time.
2. It contains test cases that are as likely as possible to push tasks to miss their deadlines at runtime.
3. It contains test cases that are as little redundant as possible.

Recall from Section 6.2.2.3 that efficiency captures the first property, measuring how quickly a search
strategy converges to the optimal solutions it finds, while effectiveness captures the second property,
measuring how likely are the solutions found to characterize stress cases that will reveal deadline misses
at runtime. The third property is instead captured by the concept of diversity. Conceptually, diversity
among stress test cases is similar to test coverage in functional testing. Indeed, a test suite that yields
high coverage with respect to a given criterion ensures that the system will be thoroughly tested with
respect to that criterion. Similarly, a test suite that yields high diversity ensures that test cases will
thoroughly exercise interactions between task executions.

In general, the higher the number of best solutions of a search strategy, the higher the number of
effective test cases it generates. Note that the effectiveness κ is a different concept from the number N of
solutions which are effective. Since N does not take into account redundancy among solutions, it is not
true in general that the higher N, the more effective a search strategy is. For example, a strategy could
generate a large number of effective test cases that yet exercise the system with respect to very similar
scenarios. On the other hand, another strategy could generate fewer effective test cases that are instead
highly diverse. For this reason, the number of best solutions is only meaningful when considered together
with the redundancy of the solutions, formalized by the concept of diversity. Therefore, the number of
best solutions relates to RQ3.
Number of best solutions. We define the number N of best solutions with respect to a given metric
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as the cardinality of the set of best solutions found with respect to that metric. Specifically, we define
effectiveness with respect to s, m, and n.

Ns
def

=
∣∣∣X∗s ∣∣∣ Nn

def

=
∣∣∣X∗n ∣∣∣ Nm

def

=
∣∣∣X∗m∣∣∣

We define three types of diversity δ , each with respect to a given metric. Specifically, we define the
shift diversity δh, the pattern diversity δr, and the executions diversity δe, each defined with respect to the
three metrics s, m, and n. Intuitively, the shift diversity δh measures the extent to which solutions exercise
the system during time intervals that are distant from each other. Therefore, the diversity attribute relates
to RQ3.

The shift diversity is defined based on the shift distance between active vectors, which measures the
distance in time between a given execution in two solutions.
Shift Distance between Active Vectors. Let A j,k(x) and A j,k(y) be the active vectors of task execution
( j,k) in the solutions x and y, respectively. We define the shift distance Dh, j,k(x,y) between A j,k(x) and
A j,k(y) as the sum of absolute differences between their start and end times.

Dh, j,k(x,y)
def

=
∣∣∣st j,k(x)− st j,k(y)

∣∣∣+ ∣∣∣en j,k(x)− en j,k(y)
∣∣∣

For example, in Figures 7.2.1 and 7.2.2, Dh, j1,0 = | 2−2 |+ | 6−8 |= 2.

Average Shift Distance between Pairs of Executions. We define Dh, j(x,y) as the average shift distance
over pairs of executions of task j in solutions x and y.

Dh, j(x,y)
def

=

∑
k∈
(

K j(x)∩∈K j(y)
)Dh, j,k(x,y)

∣∣∣K j(x)∩K j(y)
∣∣∣

In Figures 7.2.1 and 7.2.2, Dh, j1 = Dh, j1,0 = 2, since j1 is executed only once.

Shift Diversity between Solutions. We define δh

(
A(x),A(y)

)
as the shift diversity between the solutions

x and y as the sum of the shift distances between A j(x) and A j(y) for j ∈ J:

δh

(
A(x),A(y)

)
def

=
∑
j∈J

Dh, j(x,y)

Shift Diversity between Two Solutions. We define δh as the shift diversity with respect to a given metric
as the average shift diversity over the set of best solutions for that metric.

δh,s
def

=

∑
x,y∈X∗s

δh(x,y)

|X∗s |
δh,n

def

=

∑
x,y∈X∗n

δh(x,y)

|X∗n |
δh,m

def

=

∑
x,y∈X∗m

δh(x,y)

|X∗m|
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In Figures 7.2.1 and 7.2.2, δh = 0+2+2+8+4 = 16.

The pattern diversity δr measures the extent to which solutions exercise the system such that tasks
are preempted at different times. The pattern diversity is defined based on the pattern distance between
active vectors, which measures the difference between the preemption times of a given task execution in
two solutions.
Pattern Distance between Active Vectors. Let A j,k(x) and A j,k(y) be the active vectors of task execution
( j,k) in the solutions x and y, respectively. We define the pattern distance Dr, j,k(x,y) between A j,k(x) and
A j,k(y) as the sum of the absolute differences between the preemption values of task j.

Dr, j,k(x,y)
def

=
∑

p∈Pj\{0}

∣∣∣pm j,k,p(x)−pm j,k,p(y)
∣∣∣

For example, in Figures 7.2.1 and 7.2.2, Dr, j2,0 = | 0−2 |= 2.

Average Pattern Distance between Pairs of Executions. We define Dr, j(x,y) as the average shift dis-
tance over pairs of executions of task j in solutions x and y.

Dr, j(x,y)
def

=

∑
k∈
(

K j(x)∩∈K j(y)
)Dr, j,k(x,y)

∣∣∣K j(x)∩K j(y)
∣∣∣

In Figures 7.2.1 and 7.2.2, Dr, j2 = Dr, j2,0 = 2, since j2 is executed only once.

Pattern Diversity between Two Solutions. We define δr
(
A(x),A(y)

)
as the diversity between the solu-

tions x and y, i.e., as the sum of the pattern distances between A j(x) and A j(y) for j ∈ J.

δr
(
A(x),A(y)

)
def

=
∑
j∈J

Dr, j(x,y)

Pattern Diversity. We define the pattern diversity δr with respect to a given metric as the average pattern
diversity over the set of best solutions for that metric.

δr,s
def

=

∑
x,y∈X∗s

δr(x,y)

|X∗s |
δr,n

def

=

∑
x,y∈X∗n

δr(x,y)

|X∗n |
δr,m

def

=

∑
x,y∈X∗m

δr(x,y)

|X∗m|

In Figures 7.2.1 and 7.2.2, δr = 0+2+2+0+0 = 4.

The execution diversity δe measures the extent to which solutions exercise the system such that tasks
are executed different numbers of times.
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Execution Diversity between Two Solutions. We define δe
(
A(x),A(y)

)
as the execution diversity be-

tween the solutions x and y, i.e., as the sum of the absolute differences between the number of task
executions in solutions x and y.

δe
(
A(x),A(y)

)
def

=
∑
j∈J

∣∣∣|K j(x)|− |K j(y)|
∣∣∣

Execution Diversity. We define δh as the execution diversity with respect to a given metric, i.e., as the
average execution diversity over the set of best solutions for that metric.

δe,s
def

=

∑
x,y∈X∗s

δe(x,y)

|X∗s |
δe,n

def

=

∑
x,y∈X∗n

δe(x,y)

|X∗n |
δe,m

def

=

∑
x,y∈X∗m

δe(x,y)

|X∗m|

For example, in Figures 7.2.1 and 7.2.2, δe = | 1− 1 | + | 1− 1 | + | 1− 1 | + | 1− 1 | + | 1− 1 | = 0
because each task gets executed once in each solution.

7.2.2.1 Diversity Properties

We note that δh, δr, and δe are defined as non-negative, symmetric, and subadditive. Furthermore, when
considered in conjunction, the three diversities also satisfy the coincidence property. Specifically, δh, δr,
and δe satisfy the following four properties.

1. Non-Negativity
∀x,y · δh(x,y)≥ 0 ∧ δr(x,y)≥ 0 ∧ δe(x,y)≥ 0

2. Coincidence
∀x,y · δh(x,y) = 0 ∧ δr(x,y) = 0 ∧ δe(x,y) = 0 ⇐⇒ x = y

3. Symmetry

∀x,y · δh(x,y) = δh(y,x) ∧ δr(x,y) = δr(y,x) ∧ δe(x,y) = δe(y,x)

4. Subadditivity (Triangle inequality)

∀x,y,z · δh(x,y)+δh(y,z)≥ δh(x,z) ∧
δr(x,y)+δr(y,z)≥ δr(x,z) ∧
δe(x,y)+δe(y,z)≥ δe(x,z)

The proofs of the above four properties are straightforward and follow from the definition of δh, δr,
and δe as sums of absolute values. These properties enable the definition of the three types of diversity
as distance functions on the set of solutions.
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7.2.2.2 Diversity Examples

In this section, we present an example with three pairs of solutions x and y. Each pair represent a case
where only one type of diversity, δh, δr, and δe respectively, has a non-zero value. This highlights the
necessity of breaking down the concept of diversity into three orthogonal sub-attributes that have to be
considered together when analyzing how differently stress test cases exercise the system.

Consider the single-task system detailed in Table 7.2. Note that pe and of are not defined, since j0 is
aperiodic. Trivially, there are also no de and tg relationships.

T = [0,9] c = 1

Task pr dr mn mx dl

j0 0 3 4 10 6

Table 7.2. Example system with one task

(7.3.1) x1 (7.3.2) y1 (7.3.3) x2 (7.3.4) y2 (7.3.5) x3 (7.3.6) y3

Figure 7.3. Six example solutions for the system in Table 7.2
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Figure 7.3 shows six different solutions for the system detailed in Table 7.2. In their schedules, we
omitted the arrival times and deadlines of j0, since they are not relevant for the definition of diversity.
Note that j0 is the only task of the system, and therefore it cannot be preempted. However, in these
example solutions, we introduce unnecessary task preemptions to meaningfully describe the concept of
diversity.

Consider the two solutions x1 and y1 in Figures 7.3.1 and 7.3.2. In this case, we note that δh(x1,y1) =
| 2− 0 | + | 9− 7 | = 4. This reflects the fact that x1 is predicted to exercise the system in the interval
[2,9], and y1 is predicted to do so in [0,7]. Furthermore, δr(x1,y1) = | 3−3 |+ | 4−4 |= 0. This reflects
the fact that in both x1 and y2 task j0 is predicted to preempt at runtime in the same way, i.e., by two
time quanta the first time, and by three the second time. Finally, δe(x1,y1) = | 1− 1 | = 0 since in both
solutions j0 gets executed once.

Furthermore, consider the two solutions x2 and y2 in Figures 7.3.3 and 7.3.4. In this case, we note
that δh(x2,y2) = | 0−0 |+ | 7−7 |= 0. This reflects the fact that x2 and y2 are both predicted to exercise
the system in the same interval [0,7]. However, δr(x2,y2) = | 1−5 |+ | 4−0 |= 8. This reflects the fact
that in x2 and y2 task j0 is predicted to preempt at runtime in different ways. Indeed, j0 is preempted
twice for one and four time quanta in x3, while in y2 it is preempted once for five time quanta. Finally,
δe(x2,y2) = | 1−1 |= 0 since even in this case j0 gets executed once in both solutions.

Finally, consider the two solutions x3 and y3 in Figures 7.3.5 and 7.3.6. In this case, we note that
δh(x3,y3) = | 0−0 |+ | 3−3 |= 0. This reflects the fact that, considering only the first execution of j0
that is present in both solutions, x3 and y3 are predicted to exercise the system in the same interval [0,4].
Moreover, δr(x3,y3) = | 1− 1 | + | 0− 0 | = 0. This reflects the fact that, considering again the only
common execution of j0, x3 and y3 are both predicted to preempt j0 once by one time quanta. However,
δe(x3,y3) = | 2−1 |= 1 since in this case j0 gets executed twice in x3 and only once in y3.

7.2.3 Experiments Set-Up
To answer the research questions, we performed a series of experiments over the systems described
in Section 6.2.2.1. The experimental design is illustrated in Figure 7.4. Each experiment consisted of
running GA, CP and GA+CP on a target system Σ for a number of times, each run generating a set X
of solutions. Since the purpose of our empirical study is to compare the practical usefulness of the three
strategies and give an insight over their scalability, we chose to run them in the way engineers would
realistically do so in a real testing environment. Based on our experience with industrial partners, we
assumed that a reasonable choice would be running GA and CP for ten hours. Note that this interval is
sensibly longer than the one hour time budget we adopted while initially validating CP (Section 6.2.2.4).
We set up GA to continuously generate new solutions for ten hours, while we set up CP to terminate
the search after ten hours. GA+CP was instead run by performing one local CP search for each solution
found by GA. We set a timeout of 2 hours for these local searches, so that GA+CP was run for a total
of 12 hours. However, note that CP terminates the search upon proof of optimality. Since CP performed
the local searches in a significantly small subset of the search space (recall Figure 7.1), the local CP
searches always terminated with proof of optimality before the 2 hours timeout. Therefore, even if we
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instructed GA+CP to run longer than GA and CP, the time taken by CP to terminate the local searches
was practically not significant with respect to the 10 hours taken by GA to generate its solutions. For each
run of GA, CP, and GA+CP, we recorded in X only the 100 solutions with the highest fitness/objective
value found. As explained in Section 6.2.2.4, this is because each solution characterizes a stress test
case, and 100 has proven to be a satisfactory number of observations to meaningfully compare two
distributions [Arcuri and Briand, 2011]. Similar to GA and CP, we instructed GA+CP to run 100 CP
searches as described in Section 7.1 each in the neighborhood of a solution found by GA.

Figure 7.4. Experimental design: we run CP a single time recording the 100 solutions with highest
objective value, and calculating a single value for each metric. Then, we run GA and GA+CP 30 times
recording the 100 solutions with highest fitness value, and calculating distributions for the metrics.

Running the three search strategies for approximately the same amount of time allows us to mean-
ingfully compare effectiveness, number of solutions found, and diversity. Furthermore, during the design
of the experiment, we had to consider the inherent randomized behavior of GA in contrast to the full
determinism of CP. Indeed, GA finds solutions starting from a randomly chosen initial population of
individuals by applying crossover and mutation operators with a given probability, while CP finds solu-
tions by solving a constraint optimization problem. For this reason, while we ran CP only once for each
system, we ran GA, and consequently GA+CP 30 times on each system. In this way, we could compute
the comparison metrics distributions of the best solutions recorded over 30 runs. Since our research ques-
tions are directly related to attributes η , κ , N, and δ , for each solution x ∈ X we computed the values of
the metrics t, s, n, and m used to define such attributes. GA, CP and GA+CP runs have been separately
executed on a single AMAZON EC2 M2.XLARGE1 instance.

7.2.4 Results and Discussion
In this section, we discuss the experimental results for the attributes η , κ , N, and δ in each subject
system. Each attribute is discussed through 15 box-and-whisker plots, one for each pair of metric and

1 http://aws.amazon.com
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system. In each plot, the x-axis reports the search strategies CP, GA, and GA+CP, denoted as C, G,
and + respectively. The y-axis reports instead the value for the comparison attribute. Each plot is also
complemented by two p-values from the non-parametric Wilcoxon statistical significance test between
GA+CP and CP (first row), and between GA+CP and GA (second row). Specifically, we report the p-
values from the Wilcoxon rank-sum test for the difference between GA+CP and GA, and the Wilcoxon
signed-rank test for the difference between GA+CP and CP. The former is a two-sample test comparing
two distributions, while the latter is a one-sample test, given the deterministic nature of CP. In particular,
we investigated the statistical significance of differences between CP and GA/GA+CP by testing the null
hypothesis that the median of the GA/GA+CP distributions are the deterministic values obtained with
CP. For all tests, we selected a level of significance α = 0.05. Note that a centered dot (·) in place
of a Wilcoxon test p-value indicates that the test has not been performed. This happens when the two
distributions considered for the test are identical, and hence the effective sample size, i.e., the number of
observation pairs with different values, is zero.

7.2.4.1 RQ1 — Efficiency

The first three columns in Table 7.3 report the efficiency η with respect to s, n and m for GA+CP, GA,
and CP, and for each subject system. The computation times for the best solutions are reported in the
format hh:mm. We observe how, on each system, GA+CP has a worse efficiency than GA with respect
to each metric. With the exclusion of ηn for ICS and UAV, the difference in efficiency is also statistically
significant as shown by the p-values below 0.05. This result is expected because GA+CP performs a
complete search in the neighborhood of GA solutions, and therefore, the time GA+CP requires to find its
best solution is in general higher than that of GA. However, the difference between the average efficiency
of GA+CP and GA is small from a practical standpoint, and does not keep GA+CP from being far more
efficient than CP. Specifically, the difference between the ηs, ηn and ηm medians of GA and GA+CP vary
from around 20 minutes in ICS (Tables 7.3.1 to 7.3.3) up to 1.5 hour in HPSS (Tables 7.3.37 to 7.3.39).
This difference has little practical significance when compared to the ten hours duration of each run, and
to the efficiency of CP, that varies from 3.5 hours in ICS up to almost ten hours in HPSS. The statistical
significance of the difference between the efficiency of GA+CP and CP is also reflected in the p-value for
the signed-rank test, which is below 0.0001 for each metric and subject system. On average, the results
show that GA+CP is twice as fast than CP but only 20% slower than GA in finding the best solutions x∗s ,
x∗n, and x∗m.

7.2.4.2 RQ2 — Effectiveness

The second three columns in Table 7.3 reports the effectiveness κ with respect to s, n and m for GA+CP,
GA, and CP, and for each subject system. We observe how, on each system, GA+CP has equal or greater
effectiveness than that of GA with respect to each metric. This result is also expected, since GA+CP
performs a complete search in the neighborhood of GA solutions, and thus the solutions it finds are
always equal or better than those of GA. We note how GA+CP is significantly more effective than GA
for two out of three metrics in most of the subject systems, being so for all the three metrics in GAP and
HPSS. Moreover, for n and m, GA+CP also achieves nearly the same effectiveness as CP in most of the
subject systems. In particular, in ICS, CCS and UAV, GA+CP achieves the same value as CP for κn in
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ηs ηn ηm κs κn κm Ns Nn Nm

IC
S

(7.3.1) (7.3.2) (7.3.3) (7.3.4) (7.3.5) (7.3.6) (7.3.7) (7.3.8) (7.3.9)
< .0001 < .0001 < .0001 < .0001 < .3256 < .0001 < .0001 < .0001 < .0001
< .0001 .3403 .0026 .0730 .0062 < .0001 .2640 .1932 .1784

C
C

S

(7.3.10) (7.3.11) (7.3.12) (7.3.13) (7.3.14) (7.3.15) (7.3.16) (7.3.17) (7.3.18)
< .0001 < .0001 < .0001 < .0001 · · < .0001 < .0001 < .0001
< .0016 .0001 .0001 .1996 .0001 · .1996 .0001 ·

U
AV

(7.3.19) (7.3.20) (7.3.21) (7.3.22) (7.3.23) (7.3.24) (7.3.25) (7.3.26) (7.3.27)
< .0001 < .0001 < .0001 < .0001 · .0005 < .0001 < .0001 < .0001

.0133 .6309 .0013 < .0001 .3337 < .0001 < .0001 < .0001 < .0001

G
A

P

(7.3.28) (7.3.29) (7.3.30) (7.3.31) (7.3.32) (7.3.33) (7.3.34) (7.3.35) (7.3.36)
< .0001 < .0001 < .0001 < .0001 < .0001 < .0001 .5171 .5171 .5171

.0009 .0009 .0009 .0062 .0062 .0062 .0246 .0246 .0246

H
PS

S

(7.3.37) (7.3.38) (7.3.39) (7.3.40) (7.3.41) (7.3.42) (7.3.43) (7.3.44) (7.3.45)
< .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 .0004 < .0001

.0015 .0003 .0420 < .0001 < .0001 < .0001 .2215 .0605 .1324

Table 7.3. Experimental results of CP (C), GA (G), and GA+CP (+) for efficiency η , effectiveness κ , and
number N of best solutions. Each box-and-whisker plot reports at the bottom the Wilcoxon test p-values
between GA+CP and CP (first value), and between GA+CP and GA (second value).

150



7.2. Validation of the GA+CP strategy Chapter 7. Generating Stress Test Cases with GA+CP

the first quartile (Tables 7.3.5, 7.3.14 and 7.3.23), and for κm in the second quartile (Tables 7.3.6, 7.3.15
and 7.3.24). On the other hand, in these three subject systems, GA achieves the same effectiveness as
CP on the second or third quartile on average. Note that, in CCS and UAV, GA never achieves the same
effectiveness as CP for the criteria n and m. In GAP, GA+CP achieves the same effectiveness as CP in the
third quartile for all the three criteria, identifying a deadline miss in one third of the runs (Tables 7.3.31
to 7.3.33). In comparison, GA found a deadline miss only in a single run. Finally, in HPSS, GA+CP does
not match the effectiveness of CP, but significantly improves the results of GA, having a first quartile that
is around 30% larger than that of GA for s and m (Tables 7.3.40 and 7.3.42). Finally, we note that, with
the exception of κs for ICS and CCS, whenever there is a statistically significant, positive difference in
the effectiveness between CP and GA+CP, there is also one between GA+CP and GA. On average, the
results show that GA+CP is significantly more effective than GA, and is approaching CP in finding the
best solutions x∗n and x∗m.

7.2.4.3 RQ3 — Diversity

The last three columns in Table 7.3 reports the number N of best solutions with respect to s, n and m
for GA+CP, GA, and CP, and for each subject system. We observe how, on most systems, the number
of best solutions found by GA+CP is similar to that of GA, even though it is not consistently larger or
smaller. We conjecture that the reason for this result stems from the way GA+CP is designed to improve
the solutions found by GA. Consider the scenarios shown in Figure 7.5.

(7.5.1) Two or more solutions share the same lo-
cal optimum in their neighborhoods

(7.5.2) There is more than one local optimum in
the neighborhood of a solution

Figure 7.5. Different scenarios of how GA+CP affects the number N of best solutions

Suppose that GA finds two distinct best solutions with respect to a metric, namely x and y. It could be
the case that the best solution in the neighborhoods of x and y is the solution z∗ . In this case, the number
N of best solutions found by GA+CP is smaller than that of GA, because N(GA)= 2, and N(GA+CP)= 1
(Figure 7.5.1). Suppose now that GA finds only a single best solution x with respect to a metric. It could
be the case instead, that there is more than a single best solution in the neighborhood of x, namely x∗1,
x∗2, and x∗3. In this scenario, the number N of best solutions found by GA+CP is larger than that of GA,
because N(GA) = 1, and N(GA+CP) = 3 (Figure 7.5.2). In general, the two scenarios can happen inde-
pendently from other factors since they depend only on the specific solutions found by GA in a subject

151



Chapter 7. Generating Stress Test Cases with GA+CP 7.2. Validation of the GA+CP strategy

system. For this reason, there is no clear trend on whether GA+CP finds a larger or smaller number of best
solutions than GA with respect to a metric, as shown by the p-values. We note that, with the exception
of GAP and UAV for Nn and Nm (Tables 7.3.26 and 7.3.27), GA and GA+CP find a significantly larger
number of best solutions than CP. Note that in ICS, CP finds only a single best solution with respect to s,
n, and m (Tables 7.3.7 to 7.3.9), and does so for s and m in HPSS (Tables 7.3.43 and 7.3.45), and for s in
CCS (Table 7.3.16). This result is expected because of the randomized nature of GA, and consequently
of GA+CP. Indeed, GA finds its solutions by starting from a randomly selected initial population of 80
individuals [Briand et al., 2006] and in our experiment we set up GA to continuously generate and evalu-
ate solutions for ten hours. Even in cases where no deadline misses are revealed, GA is likely to generate
a large set of solutions from the initial population. On the other hand, CP is designed to find solutions
from scratch with a branch-and-bound search process that progressively assigns values to variables in
order to satisfy constraints [Apt, 2003]. Furthermore, CP discards by design solutions that have worse
objective values than the current best known solution [Atamtürk and Savelsbergh, 2005], and is thus less
likely to generate a large set of solutions. Recall that, in our analysis, each solution characterizes a stress
test case. Therefore, a large number of solutions is indicative of the size of test suite generated by the
search strategies. However, we note that N itself is not sufficient by itself to give a practical measure for
the test suite dimension, because many of the solutions found could be redundant (Section 7.2.2). For
this reason, the number N of best solutions needs to be considered together with their diversity.

Table 7.4 reports the diversity δh, δr, and δe with respect to s, n and m for GA+CP, GA, and CP, and
for each subject system. We observe that, on each system, the three diversities of GA+CP are similar to
those of GA, even though they are not consistently larger or smaller. We conjecture that the reason why
GA+CP retains a number N of best solutions similar to GA also explains this result. This means that the
local search performed by CP in the neighborhood of solutions computed by GA had no significant effect
over the three types of diversity in our experiment. Therefore, in our subject systems, the solutions found
by GA+CP retained a diversity similar to that of GA. Note that, as expected, in the cases where CP found
only a single best solution with respect to a metric, the three diversities have a null value. In GAP, CP
found 82 best solutions with respect to s, n, and m, as opposed to 100 for GA and GA+CP. However, the
solutions found by GA and GA+CP are far less redundant than those of CP, having a significantly higher
shift, pattern, and execution diversity (Tables 7.4.28 to 7.4.36). The same also holds for the criterion s in
UAV (Tables 7.4.19, 7.4.22 and 7.4.25), where the three search strategies found 100 best solutions. We
finally remark that the diversity is not normalized, and the values are only meant to be compared within
the same subject system and the same type of diversity. Recall from Section 7.2.2 that δh is defined in
terms of start and end times of task executions, and depends mostly on the observation interval T . δr
is defined in terms of preemptions between task executions, and depends mostly on the task durations.
Finally, δe is defined in terms of number of task executions, and depends mostly on the ratio between T
and the minimum and maximum inter-arrival times of aperiodic tasks. Since T is usually much larger
than tasks durations, δh has higher values than δr and δe. For example, in ICS, the average value for
δh,s(GA+CP) is 83.43. This means that on average, the task executions in the best solutions with respect
to s found by GA+CP are shifted by 83.43 time quanta. Similarly, in ICS the average for δr,s(GA+CP) is
41.08, meaning that the preemptions between task executions in the best solutions with respect to s found
by GA+CP differ on average by 41.08 time quanta. Finally, in ICS the average for δe,s(GA+CP) is 1.56,
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δh,s δh,n δh,m δr,s δr,n δr,m δe,s δe,n δe,m

IC
S

(7.4.1) (7.4.2) (7.4.3) (7.4.4) (7.4.5) (7.4.6) (7.4.7) (7.4.8) (7.4.9)
< .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001

.4289 .0406 .5493 .7958 .1154 .9705 .9176 .4688 .8650

C
C

S

(7.4.10) (7.4.11) (7.4.12) (7.4.13) (7.4.14) (7.4.15) (7.4.16) (7.4.17) (7.4.18)
< .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001

.0070 .7394 .7283 .0536 .0948 .1297 .0003 .9352 1

U
AV

(7.4.19) (7.4.20) (7.4.21) (7.4.22) (7.4.23) (7.4.24) (7.4.25) (7.4.26) (7.4.27)
< .0001 .0761 .0761 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001

.2061 .1087 .1087 < .0001 .0002 .0002 < .0001 < .0001 < .0001

G
A

P

(7.4.28) (7.4.29) (7.4.30) (7.4.31) (7.4.32) (7.4.33) (7.4.34) (7.4.35) (7.4.36)
< .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001

.0021 .0021 .0021 .0034 .0034 .0034 .0913 .0913 .0913

H
PS

S

(7.4.37) (7.4.38) (7.4.39) (7.4.40) (7.4.41) (7.4.42) (7.4.43) (7.4.44) (7.4.45)
< .0001 < .0001 < .0001 < .0001 < .0001 .0004 < .0001 < .0001 < .0001

.8071 .3147 .0004 .9410 .4597 .5692 .0075 .7061 .0314

Table 7.4. Experimental results of CP (C), GA (G), and GA+CP (+) for diversity δh, δr, and δe. Each
box-and-whisker plot reports at the bottom the Wilcoxon test p-values between GA+CP and CP (first
value), and between GA+CP and GA (second value).
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meaning that on average the tasks in the best solutions with respect to s differ by 1.56 executions.

7.2.4.4 RQ4 — Scalability

Figure 7.6 reports the trend of the efficiency η with respect to the system size for GA+CP (downward
triangle), GA (full dot), and CP (diamond). In each graph, the x-axis represents the system size, while
the y-axis reports the efficiency of the search strategies. Since we have a set of five subject systems, we
did not perform any statistical analysis, and we only limit ourselves to a qualitative discussion. However,
for the three criteria the efficiency of GA+CP seems to scale linearly with system size. Indeed, since
we represent the size as a logarithm (Section 6.2.2.1), the x-axis in the three graphs has a logarithmic
scale, while the y-axis has the usual linear scale. For this reason, the apparently exponential shape of
the efficiency trend is in practice linear. Such results are encouraging as they suggest that GA+CP is
more to scale to large systems, and therefore be an advantageous solution given its practical trade-off
between efficiency, effectiveness and diversity. In particular, note that, even if in HPSS the difference
in efficiency between GA+CP and GA is larger than in the other subject systems, to this decrease in
efficiency corresponds a significant increase in effectiveness, as discussed before. Finally, we remark
that we did not investigate the trend for κ , N, and δ with respect to system size. This is because, unlike
η , these last three properties depend most on the specific problem being solved, rather than on its size.
For example, there could be very large subject systems with few tasks missing their deadlines, and very
small systems where more deadline misses are revealed.

(7.6.1) ηs versus size (7.6.2) ηn versus size (7.6.3) ηm versus size

Figure 7.6. Experimental results for efficiency η versus system size, comparing GA (N), CP (•), and
GA+CP (�)

7.2.4.5 Summary and Discussion

In light of these results, we conclude that, for the subject systems in our experiment, GA+CP has been
nearly as efficient as GA and practically as effective as CP, while also generating solutions with a diversity
similar to that of GA. Therefore, our results show that, within the range covered by our subject systems,
GA+CP retains the advantages of both the efficiency and diversity of GA and the effectiveness of CP.

We conjecture that the reason for this result stems from the three factors discussed above. First,
GA+CP is designed to perform a complete local search in the neighborhood of the best solutions com-
puted by GA. Since GA+CP performs an additional search step over GA, it is expected that GA+CP
requires more time than GA to find its best solutions. However, since the search performed during the
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CP step is confined in a neighborhood of restricted size, such local search is likely to terminate within
a short time. Therefore, the time that CP spends improving the solutions found by GA is likely to have
a negligible impact when compared to the time required by GA to find them. This allows GA+CP to
achieve an efficiency which is only slightly worse than that of GA. Second, the search CP performs in
the neighborhood of GA solutions is complete. Therefore, CP is certain to either find the best solution
within distance D from the one GA computed, or to terminate proving that the solution found by GA is
the best in its neighborhood. Furthermore, the search heuristics detailed in our previous work [Di Alesio
et al., 2013] further improve the CP speed in optimizing the GA solutions. We performed a series of
experiments on all subject systems varying the neighborhood size D, and empirically found out that a
value of D = 5 was sufficient for GA+CP to achieve the same effectiveness as CP. However, we note that
on different subject systems, CP might need to explore a larger neighborhood of GA solutions to reach
the effectiveness of CP, and exploring such larger space might lead to a lower efficiency. Third, GA+CP
is designed to search in the neighborhood of solutions computed by GA. This means that the local search
performed by CP can find the same local optimum for different GA solutions (Figure 7.5.1), or more
than one local optimum for a single GA solution (Figure 7.5.2). However, in our experiments these two
scenarios did not have a significant impact on the diversity of solutions identified by GA, and resulted in
GA+CP retaining the same diversity as GA.

7.2.5 Threats to Validity
We identified three main threats that could affect the general validity of our conclusions. First, the
analysis of efficiency, effectiveness, diversity, and scalability is based on a set of five subject systems.
Although evaluating GA+CP with respect to GA and CP in a larger number of systems would have
mitigated this threat, the systems have been selected from different RTES domains and vary in size and
complexity.

Second, the size of the subject systems selected varies from 6 to 32 tasks, 3 to 9 of which are aperi-
odic. There could be much larger systems featuring hundreds of tasks, and for those the efficiency and
effectiveness of GA+CP need to be investigated. This means that the conclusions drawn are valid only
for systems in the same size range of the subject systems used in the comparison. To mitigate these first
two threats, we could have manually constructed a set of systems with an increasing number of aperiodic
tasks. In this way, we would have evaluated GA+CP in an arbitrarily large set of artificial subject sys-
tems, with the largest systems matching in size the most complex industrial RTES. However, this solution
would have come at the cost of giving up the realistic nature of the five subject systems we presented.

Third, the experiment set-up relies on design choices that can potentially have a significant impact
over the results. Specifically, we chose to run the search strategies for ten hours, and it is questionable
whether a longer time could have led to significantly different results. However, by looking at the quartiles
of the efficiency distributions, GA found its best results significantly earlier than ten hours. This means
that in most cases, GA reached a plateau before ten hours, and the chances for it to find a better solution
if given more time are likely to be low. Furthermore, GA, and consequently GA+CP, rely on parameters
specific of the domain of evolutionary algorithms, i.e., the initial population size, the crossover and
mutation probabilities, and the population replacement rate. Values for these parameters different from
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the ones we used in the experiment could have led to significantly different results. However, we used
the same values used by the strategy proposed by Briand et al. [Briand et al., 2006]. These values have
been derived from the GA literature and specifically tuned for deadline miss analysis. Also note that,
as opposed to GA, CP is fully deterministic, hence we expect the parameter sensitivity of GA+CP to be
similar to that of GA. Finally, GA+CP also depends on the neighborhood size D where CP improves the
solutions found by GA (Section 7.1). Our preliminary experimentation showed that a good compromise
between efficiency and effectiveness is a value of D around 1% of T . To fully mitigate this threat, we
would need a systematic investigation on the impact D has on efficiency, effectiveness, diversity and
scalability.
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Chapter 8

Discussion and Related Work

This thesis discusses a practical approach, based on Constraint Programming (CP), to support perfor-
mance stress testing in Real-Time Embedded Systems. The approach has been introduced in several
peer-reviewed publications, namely in a workshop paper [Di Alesio et al., 2012], three conference pa-
pers [Nejati et al., 2012,Di Alesio et al., 2013,Di Alesio et al., 2014], and a journal paper [Di Alesio et al.,
2015]. Given the scope of the thesis described in Chapter 2, we identified four relevant areas to place
our work in the literature. First, we discuss related work in the field of Real-Time Embedded Systems
(RTES), including scheduling theory and simulation approaches (Section 8.1). Second, we discuss re-
lated work in the field of Model-based Analysis, including UML-based methodologies for performance
analysis and formal verification (Section 8.2). Third, we discuss related work in the field of software
performance testing, especially in the field of Model-based Testing (MBT), and Search-Based Software
Testing (SBST) Section 8.3. Finally, we discuss related work in the field of Mathematical Optimiza-
tion, focusing on Constraint Programming (CP) and hybrid search strategies (Section 8.4). Note that we
discuss related work in the area of Genetic Algorithms in Section 8.3, rather than Section 8.4. This is
because, for topics relevant to this thesis, the work in the area of GA mostly concerns automated (stress)
test case generation, which is traditionally considered along search-based methods in the field of software
testing. On the other hand, the work in the area of CP relevant to this thesis is focused on scheduling
analysis, which is traditionally considered along Constraint Programming applications.

8.1 Related Work in the field of Real-Time Embedded Systems
Most of the approaches for analyzing RTES are based on real-time scheduling theory (Section 2.1.1),
static analysis (Section 2.1.2), and simulation (Section 2.1.3). Methods based on scheduling theory es-
timate the schedulability of a tasks set under a given scheduling policy [Tindell and Clark, 1994], using
formulas and theorems that often assume worst case situations with respect to tasks arrival times and
execution times [Baker, 2006]. However, as discussed in Section 3.1, the assumption made by theorems
such as the Completion Time Theorem (CTT) and the Generalized Completion Time Theorem (GCTT)
often do not hold in large and complex RTES with interdependent aperiodic tasks.
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In general, results from the scheduling theory can be either too optimistic or too conservative de-
pending on their assumptions on the task set. This might lead these theorems to overlook scenarios with
deadline misses, or to predict worst-case scenarios that may never be realized in practice [David et al.,
2010]. Indeed, extending these theories to realistic RTES settings with multi-core processors and inter-
dependent, aperiodic tasks has been shown to be a challenge [Buttazzo, 2011]. This is one of the main
reasons one cannot rely on scheduling theory alone when analyzing large and complex RTES. Indeed,
opposite to scheduling theory, our approach does not aim at providing conditions that make a task set
schedulable, but rather at generating scenarios for which performance requirements such as task dead-
lines, response time, and CPU usage are violated.

Note that, in general, our approach requires values for the tasks Worst-Case Execution Times (WCET).
However, being targeted at the generation of worst-case scenarios, our approach can be applied both for
design-time analysis and for testing when the system is implemented. In the first case, techniques for
static WCET estimation can be used. On the other hand, the WCET for tasks that have been imple-
mented can be measured by executing such tasks1. Also note that, in this thesis, we consider our work
as a test-case generation approach, and therefore we do not discuss its advantages and drawbacks with
respect to techniques specifically aimed at design-time analysis. However, we remark the commonalities
our approach shares with the simulation approaches described in Section 2.1.3. Similar to Model-in-the-
Loop strategies, our approach is based on a behavioral model of the system gathering the necessary data
to generate stress test cases. Indeed, the generation of such test cases is the result of a search process
that depends on the computational hardware of the system, e.g., the number of processor cores, and that
aims at finding worst-case scenarios that depend on the external environment. The stress test cases char-
acterize environmental triggers to the system, and can therefore be used to simulate the environment at
Hardware-in-the-Loop (HiL) level.

8.2 Related Work in the field of Model-based Analysis
Other than approaches for RTES scheduling analysis based on real-time theory, there also exist model-
based approaches that aim at capturing through models the real-time computation aspects of the sys-
tem [Balsamo et al., 2004]. For this reason, these approaches traditionally belong to the field of Model-
Driven Engineering (MDE) (Section 2.2). The idea behind these approaches is to analyze the schedula-
bility of RTES in a system model that captures the properties of real-time tasks, such as periods, WCET,
priorities, and dependencies. This provides the flexibility to incorporate specific domain assumptions
and to analyze a range of possible scenarios, not just the worst-cases [Mikučionis et al., 2010]. Indeed,
opposite to theorems from the real-time scheduling theory, model-based approaches can better adapt to
large and complex RTES where interdependent aperiodic tasks run on multi-core processors.

In general, model-based approaches for performance and scheduling analysis are based on explicit
modeling of the time and concurrency aspects of the target RTES [Di Marco and Inverardi, 2011]. Exam-
ples of such approaches include queuing networks [Lazowska et al., 1984], stochastic Petri nets [Kartson

1 The techniques for estimating WCET have been discussed in Section 2.1.2. Since WCET are input of our approach, we
do not discuss methodologies for WCET estimation as related work.
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et al., 1994], and stochastic automata networks [Plateau and Atif, 1991]. Recently, there has been a
growing interest in developing standardized languages to enhance the adoption of performance analysis
concepts and techniques in the industry [Petriu, 2010]. The most notable these languages is the UML
profile for Modeling and Analysis of Real-Time Embedded Systems (UML/MARTE or MARTE), that
extends UML with modeling abstraction to support the definition of quantitative analysis methodologies
for RTES (Section 2.2.2.2 and Section 2.2.2.3). Note that MARTE is a large profile that accounts for a
large variety of aspects in quantitative analysis of RTES, and does not include guidelines on what abstrac-
tions to use for a particular analysis [Iqbal et al., 2012]. In this thesis, we do not provide an extension of
MARTE, but rather provide guidelines on what subset of MARTE is required for stress testing. Indeed,
we provide a conceptual model capturing the timing and concurrency abstractions needed for the gener-
ation of stress test cases. Then, we provide a mapping from this conceptual model to existing stereotypes
in MARTE. The idea of devising a conceptual model to tailor UML profiles for a performance engineer-
ing methodology has been successfully used in the past. Examples include methodologies for deadlocks
detection based on the predecessor of MARTE, the UML profile for Schedulability, Performance, and
Time (UML/SPT, in short SPT) [Shousha et al., 2008], and for early scheduling analysis to design RTES
in such a way that they comply to their timing constraints [Mraidha et al., 2011].

In the field of Model-Driven Software Verification, Model Checking (MC) has been successfully used
to verify performance-related properties expressed in a model [Alur et al., 1990]. In MC approaches,
properties typically represent conditions that should never hold in the system at any given time. These
properties are formulated as reachability queries of a faulty state in a Finite-State Machine (FSM), and
model checkers verify if there exists a path from the initial state of the FSM to this faulty state. MC
is mostly used in software verification to compare a model with its specification, e.g., to check the ab-
sence of deadline misses in a FSM modeling task executions. In particular, real-time model checkers,
e.g., UPPAAL [Behrmann et al., 2004], are commonly used for the evaluation of time-related proper-
ties. We identify three main differences between our work and MC approaches used in the context of
performance analysis and testing. First, MC approaches are mostly used for verification, i.e., to check
if a given set of real-time tasks satisfy some property of interest. Even though our approach can also be
used for design-time verification, the focus of this thesis is stress testing, intended as the generation of
scenarios that are likely to violate performance requirements. For this reason, our approach is comple-
mentary, and not alternative, to MC approaches. Second, software testing approaches that use MC for
test case generation (Section 2.3.1) cast the performance property to be checked as a boolean reachabil-
ity property over a FSM, in a way that a particular scenario either violates the property or does not. On
the other hand, the search approaches used in this thesis for stress test cases generation are based upon
the optimization of a quantitative objective function that expresses the extent to which a given scenario
violates the performance requirement. Third, to adapt model checkers for checking different properties
of real-time applications, the target system FSM has to be modeled in such a way that the target property
can be formulated as a reachability query. For example, consider the problem of verifying whether the
CPU usage of a system exceeds a given threshold. This problem is solved by augmenting the system
FSM with an idle state that keeps track of the CPU time used by the tasks [Mikučionis et al., 2010]. In
this way, the error states are the ones in the FSM that can be reached only when the CPU usage threshold
is violated. On the other hand, the approach in this thesis is based upon the optimization of an objective
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function. This means that, to adapt our approach to generate test cases that stress real-time properties
other than the ones we considered, one only needs to formulate a new objective function.

When it verifies that a given property does not hold in a model, MC also provides counter-examples
similar to the scenarios that are the focus of our thesis. However, MC faces limitations when it comes to
generating worst-case scenarios with respect to time-related properties such as task deadlines.1. Model
Checking requires complex formal modeling of the system, which often leads to the well-known state
explosion problem that has not been solved in the general case [Clarke et al., 2012]. 2. In practice,
engineers are also interested in deadline near-misses, i.e., those scenarios where tasks are predicted to be
close to missing a deadline. Indeed, since Model Checking approaches are based on estimates for the task
execution times, even such scenarios have to be tested because they can lead to deadline misses during
execution. 3. Model Checkers usually do not provide a usable result prior to termination. However, for
practical use, testing has to be performed within a time budget. Therefore, to be effective, the generation
of scenarios has to produce an usable output within the time budget, which is not the case if MC does not
terminate soon enough. To the best of our knowledge, we are not aware of Model Checking approaches
targeted at verifying task deadlines properties that overcome these three issues.

8.3 Related Work in the field of Software Testing
Testing multi-threaded concurrent software has traditionally focused on functional properties rather than
on performance requirements [Weyuker and Vokolos, 2000]. However, the degradation in performance
can have more severe consequences than incorrect system responses, and therefore testing the perfor-
mance of safety-critical RTES is of paramount importance [Parnas et al., 1990].

Over the last years, there has been a growing interest in using model-based approaches (Section 2.3.1)
for performance testing, which base the test case generation process on the target system and workload
models [Dias Neto et al., 2007]. In particular, these approaches have been applied in the domain of
distributed systems, for example concerning web applications [Shams et al., 2006], and transactional
systems [Barna et al., 2011]. As it is common practice in Model-based Testing (MBT), these approaches
generate abstract representation of test cases starting from the system models. These abstract test cases
are then implemented in executable test cases which are run in the target system. Note that, the approach
presented in this thesis also fits in this scheme, and can therefore be defined as model-based. Specifically,
in our approach each abstract test case represents a sequence of arrival times for aperiodic system tasks.
The abstract test cases are derived through the means of a Constrained Optimization Problem (COP) from
sequence diagrams stereotyped with UML/MARTE. Note that, opposite to several MBT approaches, in
this thesis we do not focus on the generation of executable test cases, nor their execution on the target
system.

In industrial contexts, the problem of ensuring that system tasks satisfy their performance require-
ments is mostly studied by Performance Engineering techniques (Section 2.3.2), which extensively rely
on profiling and benchmarking tools to dynamically analyze performance properties [Jain, 1991]. Such
tools, however, are limited to producing a small number of system executions and require manual in-
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spection of those executions. In general, these tools provide only a rough assessment of the system
performance, and cannot replace systematic stress and performance testing. Recently, there has been
research on automating load and stress testing through the use of PID controllers [Bayan and Cangussu,
2008]. These controllers implement feedback control loops that dynamically adjust the system inputs in
order to maximize resources consumption. However, in such an approach, the controllers closely depend
on the target system implementation to analyze inputs and outputs, and require a significant effort to be
built. Note that this is in contrast to the principles of MBT, where only the generation of executable test
cases depends on the system implementation, while abstract test cases are only tied to system models.

Search-based approaches (Section 2.3.3) have extensively been used to test non-functional system
properties [Afzal et al., 2009], often in conjunction with model-based approaches. Specifically, Genetic
Algorithms (GA) have successfully been used in the domain of distributed systems to support perfor-
mance testing, for instance with respect to buffer overflows [Del Grosso et al., 2005], computational
resources consumption [Berndt and Watkins, 2005], Quality of Service (QoS) constraints [Shams et al.,
2006], and network traffic [Garousi et al., 2008]. However, these approaches do not tackle hard real-time
constraints such as deadline misses, as these properties are mostly important in RTES. In this domain,
GA have also been used to generate test cases for testing timeliness properties, showing that it is able to
run in large systems where the execution of MC approaches failed [Nilsson et al., 2006]. However, the
main contribution of Nilsson et al. is a mutation-based testing criterion to assess test adequacy, which
is beyond the scope of this thesis. Therefore, as for testing hard real-time properties such as deadline
misses, the state-of-the-art is represented by the work of Briand et al. [Briand et al., 2006]. In this thesis,
we first use that work as a comparison baseline for Constraint Programming (CP), and then as the GA
part of our combined GA+CP approach.

8.4 Related Work in the field of Mathematical Optimization
Approaches based on Constraint Programming (CP) have been applied for a long in the field of scheduling
analysis [Baptiste et al., 2001], especially concerning job-shop scheduling problems in the manufacturing
domain [Le Pape and Baptiste, 1997]. Among those, several approaches target task real-time constraints
such as task deadlines [Hladik et al., 2008], or timeliness [Malapert et al., 2012]. Preemptive scheduling
problems have also been solved both with pure CP [Cambazard et al., 2004], and with hybrid approaches
featuring combinations with GA [Yun and Gen, 2002]. Furthermore, recent implementations [Laborie,
2009] have successfully used IBM ILOG CP OPTIMIZER and OPL for scheduling problems, albeit
not addressing task preemption. However, the goal of schedulability analysis approaches is to assess
whether or not the system tasks are schedulable, i.e., to find scenarios where tasks do not miss their
deadlines. In this thesis, we have the opposite goal, as we are interested in generating scenarios that
violate performance requirements, i.e., to find scenarios that break task deadlines and thresholds on
response time and CPU usage. In the context of stress testing, CP has been used to generate stress test
cases for multimedia systems [Zhang and Cheung, 2002]. The main focus of that work is to investigate
memory saturation at runtime under heavy loads, as opposed to task deadlines, response time and CPU
usage.
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Despite the extensive literature for constraint based scheduling, we are unaware of CP approaches
targeted to test case generation, such as the generation of worst case scenarios, and of approaches that
consider all of the specific complexities of RETS such as multi-core architectures, task dependencies,
aperiodic tasks, and preemptive scheduling policies. Nonetheless, these approaches have greatly inspired
us to consider CP in this thesis.

Note that, for the purpose of generating worst-case scenarios for stress testing, CP differs with GA
approach in three main respects. (1) The formulation of Constrained Optimization Problems (COP) in
CP enables the use of complete search methods, such as branch and bound (Section 2.4.1). On the other
hand, metaheuristics such as GA are randomized and incomplete approaches that explore only part of the
search space. This means that, upon termination, CP returns the global optimal solution, while GA can
not guarantee that the best solution found is a global optimum. (2) Unlike GA, CP is deterministic and
does not rely on a set of parameters that have a significant impact on the search and therefore need to be
tuned, such as GA crossover and mutation probabilities, population size and replacement strategy. (3) In
CP, the choice of the solver used to solve the COP depends on the shape of the objective function of the
problem. For instance, one cannot use non-integer objective functions with finite-domain solvers, while
GA this does not have this limitation.

There also have been various contributions in the area of hybrid search strategies to solve hard
combinatorial problems [Raidl, 2006], especially in the direction of combining CP with probabilistic
meta-heuristics [Focacci et al., 2003]. For instance, GA has been successfully used in the past to solve
COP [Homaifar et al., 1994]. There has also been interest in devising techniques to combine CP and
local search [Hentenryck and Michel, 2009]. Most of these approaches compute a set of initial solutions
at random, and then optimize them by exploring their neighborhood [Mladenović and Hansen, 1997].
For instance, Large Neighborhood Search [Shaw, 1998] systematically explores subpart of the search
space by relaxing current sub-optimal solutions and using constraint propagation to find better solutions.
Despite this large number of hybrid search strategies, we are unaware of applications that are targeted at
testing timing properties by generating stress test cases. However, the search strategy presented in our
work shares several commonalities with existing work. Specifically, we use CP to completely explore a
neighborhood of a solution computed externally, similar to Pesant et al. when they solved the Traveling
Salesman Problem [Pesant and Gendreau, 1996]. As opposed to Guimarans et. al [Guimarans et al.,
2011] that used the Clark and Wright Savings Heuristic to generate an initial set of solutions to further
optimize with CP, we use a state-of-the-art GA solution [Briand et al., 2006] instead.

We finally point out how, in contrast to strategies where GA is used as a mean to explore the CP search
tree [Iwamura and Liu, 1996], GA and CP are independent in our approach, as the latter is used only once
the solutions have been computed by the former. The general idea of combining search-based approaches
and constraint programming has already proven successful in the field of automated test data generation.
For instance, Lakhotia et al. devised an approach aimed at test data generation in the presence of pointer
inputs and dynamic data structure. The approach combines a CP-based lazy initialization technique
adapted from symbolic execution with search-based testing [Lakhotia et al., 2010]. Other approaches
combine global and local search, in such a way that solutions are initially computed by global search,
and subsequently refined through local search. These approaches are commonly known under the name
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of Memetic Algorithms [Moscato et al., 2004], and are based upon the same behavior of GA+CP, i.e.,
finding initial solutions, and then improving them. Memetic algorithms have successfully been applied
in the domain of Search-based Software Testing for the generation of test data [Harman and McMinn,
2010] and test suites [Fraser et al., 2014].
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Chapter 9

Conclusions and Future Work

Real-Time Embedded Systems (RTES) in safety critical domains have to react to external events within
strict timing constraints. Failure to do so poses great risks for the system safety, as even a single task
missing its deadline could result in a failure with severe consequences for the system itself, its users,
and the environment. For this reason, systematic performance evaluation is of paramount importance
to assess the system capability to operate safely. In the context of safety-critical RTES, the three main
performance-related aspects which have to be thoroughly investigated concern hard real-time, soft real-
time, and resource usage constraints. However, the system environment plays a major role in determining
the inputs, and as a result their timing can never be fully predicted prior to the system execution. For
assessing whether or not the expected performance is met at runtime, several techniques have been pro-
posed, ranging from design verification to testing. In particular, stress testing approaches have been
developed with the goal of identifying scenarios that are likely to violate performance requirements. Due
to the large domain of system inputs, stress testing has often been cast as a search problem over the space
of task arrival times. The best known search-based approach that has been used for generating stress test
cases is based on metaheuristic search, namely Genetic Algorithms (GA).

For practical use, it is essential to investigate the trade-off between the time a stress testing approach
needs to generate stress test cases (efficiency), their capability to reveal scenarios that violate performance
requirements (effectiveness), and to cover different scenarios where such violations arise (diversity).
This trade-off is mostly determined by the search strategy used for generating stress test cases. Even
though GA has proven to be efficient and capable of finding solutions highly diverse from each other in
a variety of problems, GA is an incomplete and randomized search strategy that explores only part of
the input space. This means that a suboptimal choice for the initial population and the search parameters
could drive the search to subspaces with ineffective solutions. This reason justifies the investigation
of alternatives to GA, such as complete search strategies based on Constraint Programming (CP), for
identifying worst-case scenarios with respect to performance requirements.

Furthermore, when devising a stress testing approach suitable for industrial use, choosing the ap-
propriate search strategy is not the only concern. Indeed, since RTES require domain-specific config-
urations, a conceptual model capturing specific system and contextual properties is required to enable
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effective stress testing. However, the conceptual model itself is not sufficient because, to enable effec-
tive industrial use, stress testing has to be capable of seamless integration in Model-Driven Engineering
(MDE) development processes. Therefore, the conceptual model has to be mapped to a standard model-
ing language, such as the Unified Modeling Language (UML). In the context of RTES, reasoning about
performance requirements such as deadline misses, response time, and CPU usage requires the explicit
modeling of time, which is one of the key characteristics of the UML Profile for Modeling and Analysis
of Real-Time and Embedded Systems (UML/MARTE, in short MARTE). Therefore, MARTE represents
the reference modeling framework when mapping the abstractions needed for stress testing to a standard
modeling language.

In this thesis, we introduce three main contributions aimed at supporting the generation of stress test
cases in RTES (Section 9.1). Specifically, the contributions include (1) a conceptual model, mapped to
UML/MARTE, which captures the abstractions required to generate stress test cases (Section 9.1.1), (2) a
constraint optimization model to generate such test cases (Section 9.1.2), and (3) a combined GA+CP
search strategy for stress testing that achieves a practical trade-off between efficiency, effectiveness and
diversity (Section 9.1.3). The validation of our work shows that the conceptual model can be applied with
a reasonable overhead in an industrial settings, that CP is able to effectively identify worst-case scenarios
with respect to task deadlines, response time, and CPU usage, and that the combined GA+CP strategy is
more likely than GA and CP in isolation to scale to large and complex systems. Experimental results leave
room for improvement, for example considering further combinations of meta-heuristic and complete
search, and test suite reduction techniques to find the minimal set of solutions yielding a given level
of effectiveness and diversity. In addition to improvements to the proposed approach, this thesis opens
up the exploration of further directions in the area of software testing and analysis (Section 9.2). Such
directions involve (1) the investigation of multi-objective optimization to generate stress test cases that
simultaneously exercise different performance properties of the system, and (2) the derivation of design
guidelines to configure software parameters in a way to minimize the risk performance requirements are
violated at runtime.

9.1 Summary of the Contributions
To address the challenges described above, this thesis proposes a practical approach based on Constraint
Programming (CP) to support performance stress testing in Real-Time Embedded Systems (RTES). Our
approach expresses the generation of stress test cases as a search problem over the space of task arrival
times. In this way, each solution to the problem, i.e., each sequence of arrival times for aperiodic task
executions, characterizes one test case. The worst-case analysis performed by our approach is based on a
description of the system, and its executing platform. In particular, the input for the approach is derived
from UML models, e.g., sequence diagrams, stereotyped with MARTE. This allows our methodology to
be seamlessly integrated in MDE-compliant development processes.
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9.1.1 A conceptual model to support stress testing in Real-Time Systems
In Chapter 5 we define a conceptual model that captures, independently from any modeling language, the
abstractions required to support stress testing of task deadlines, response time, and CPU usage in RTES.
We also provide a mapping between our conceptual model and UML/MARTE, in order to simplify its
application in standard MDE tools. The subset of UML/MARTE that corresponds to out conceptual
model contains tagged values and stereotypes that extend UML sequence diagrams, which are popular
for modeling concurrent systems such as RTES.

The conceptual model has been validated in a Fire and Gas monitoring System (FMS) from the
maritime and energy domain concerning performance requirements for safety-critical I/O drivers. The
validation showed that the conceptual model can be applied in industrial settings with a reasonable over-
head, and enables the definition of a search strategy for worst-case scenarios with respect to performance
requirements. This contribution has been published in a conference paper [Nejati et al., 2012].

9.1.2 A CP-based strategy to identify worst-case scenarios in RTES
In Chapter 6 we cast the problem of generating stress test cases for task deadlines, response time, and
CPU usage as a Constraint Optimization Problem (COP) over our conceptual model. The COP im-
plements a preemptive task scheduler with fixed priorities and, upon resolution, generates worst-case
scenarios that can be used to characterize stress test cases. This CP-based strategy is proposed as an
alternative to the state-of-the-art relying on metaheuristic search, such as Genetic Algorithms (GA). CP
offers a number of potential advantages over GA, which makes its investigation worthwhile in our con-
text: it can potentially guarantee the completeness of the search provided it has sufficient time, and, being
deterministic, it does not need its users to take into account parameters such as mutation and crossover
probabilities, population size and replacement rate. The key idea behind the formulation of the iden-
tification of worst-case scenarios with respect to performance requirements relies on five main points.
(1) modeling the system design, which is static and known prior to the analysis, as a set of constants,
while (2) modeling the system properties that depend on runtime behavior as a set of variables. (3) In this
way, the Real-Time Operating System (RTOS) scheduler is modeled as a set of constraints among such
constants and variables, and (4) the performance requirement to be tested, i.e., task deadlines, response
time, or CPU usage, is an objective function to be maximized. (5) Finally, the logic behind the RTOS
scheduler can be encapsulated in an effective labeling strategy over the variables of the model, so that the
search is more likely to quickly converge to optimal solutions.

The validation of the COP in the FMS showed that CP is effectively able to find scenarios that break
task deadlines and violate response time and CPU Usage requirements. On the other hand, a second
validation on five subject systems from safety-critical domains showed that, when compared to GA, CP
is more effective, but less efficient and generates stress test cases that are less diverse. This result raises
the need for exploring further search strategies in order to achieve an optimal trade-off between efficiency,
effectiveness, and diversity. This contribution is the result of a refinement process over four iterations in
two years, which have been published as a workshop paper [Di Alesio et al., 2012], and three conference
papers [Nejati et al., 2012, Di Alesio et al., 2013, Di Alesio et al., 2014].
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9.1.3 A GA+CP search strategy to identify worst-case scenarios in RTES
In Chapter 7 we described a search strategy to generate stress test cases, namely GA+CP, that combines
GA and CP to provide higher scalability by retaining the efficiency and solution diversity of GA, and
the effectiveness of CP. The key idea behind GA+CP is to improve the solutions computed by GA by
performing a complete search with CP in their neighborhood. Specifically, our approach consists of two
separate stages. First, the search problem is solved through GA, using a state-of-the-art implementation
for generating scenarios that are likely to reveal task deadline misses. This step produces an initial set
of solutions, each characterizing a stress test case. Second, for each solution found by GA, CP searches
in its neighborhood for better solutions through the constraint optimization model we defined. This step
produces the final set of solutions. In this way, GA+CP takes advantage of the efficiency of GA, because
solutions are initially computed with GA, and the subsequent CP search is likely to terminate in a short
time since it focuses on the neighborhood of a solution, rather than on the entire search space. GA+CP
also takes advantage of the diversity of the solutions found by GA, because CP performs a local search
in subspaces defined by GA solutions. Similarly, GA+CP takes advantage of the effectiveness of CP
since, once GA has found a solution, CP further improves it by either finding the best solution within the
neighborhood, or proving upon termination that no better solution exists.

GA+CP has been validated with the same five subject systems used to evaluate the CP-based strategy.
This validation showed that, in comparison with GA and CP in isolation, GA+CP achieves nearly the
same effectiveness as CP and the same efficiency and solution diversity as GA, thus combining the
advantages of the two techniques. Even though the scalability of GA+CP needs to be further ascertained,
this result is encouraging, and is a significant step forward from GA and CP in isolation, towards a stress
testing approach suitable for industrial-size problems. This contribution has been accepted for publication
in a journal [Di Alesio et al., 2015].

9.2 Perspectives and Future Work
The validation of GA+CP has been conducted on a set of five subject systems varying in size and com-
plexity. However, there might be larger systems than those considered, and for which the efficiency,
effectiveness, and diversity of GA+CP needs to be investigated. A systematic scalability analysis of
GA+CP entails the generation of a set of artificial systems with increasing number ot tasks and depen-
dencies. Such systematic scalability analysis might pose new challenges for the improvement of our
stress testing search strategy, possibly leading to the definition of further ways to combine complete and
meta-heuristic search. Furthermore, a more detailed industrial application of our strategy might uncover
the need of optimizing the set of solutions identified by our approach. For example, in cases where a
large set of solutions is identified, test suite reduction techniques can be used to find the minimal set of
solutions yielding a desired level of effectiveness and diversity.

In addition to improvements to the proposed approach, this thesis opens up the exploration of two
further directions in the area of software testing and analysis, concerning the identification of scenarios
which are predicted to violate more than one performance requirements (Section 9.2.1), and the derivation
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of guidelines to configure tunable parameters at design time, so that the system is as likely as possible to
meet its expected performance (Section 9.2.2).

9.2.1 Identifying Worst-case Scenarios with respect to Several Requirements
In this thesis, we focus on the problem of identifying worst-case scenarios with respect to a single per-
formance requirement, namely task deadlines, response time, and CPU usage. This is because, in safety
critical systems, a scenario that violates even a single performance requirement poses a severe threat to
the system safety. However, some real-time applications might tolerate some cases where performance
requirements are violated. This is common in soft real-time systems, which, provided that enough com-
putational resources are available, are able to recover from short deadline misses. For these systems, we
could consider multi-objective optimization in order to generate test cases that push tasks to miss their
deadlines while at the same time leading to high CPU usage. Such test cases would be able to uncover
scenarios where deadline misses are more severe, because they happen when the system has not enough
free CPU time to recover in a timely manner. Indeed, a Pareto analysis considering more than one fit-
ness/objective function at a time could identify as stressful scenarios where no performance requirement
is explicitly violated. For instance, there might be systems where particular high values of CPU usage
and response time pose safety risks, even if they both remain under their specified thresholds.

9.2.2 Deriving Design Guidelines for Parameters Configuration
In general, full exploitation of the benefits of systematic software engineering methodologies requires, in
the context of safety-critical RTES, a flexible approach that focuses on system performance both during
design and testing. Such strategy has to support developers in (1) designing the system in a way that
performance requirements are as likely as possible to be satisfied during operation, and (2) exercising
the system in a way that performance requirements are as likely as possible to be violated during testing.
While (2), covered by this thesis, aims at providing satisfactory evidence that the system performance has
been thoroughly tested, (1) complementarily ensures that performance is engineered at early development
stages, in order to mitigate the impact of late architectural changes. We envision that such flexibility can
be achieved with the current design of the approach we proposed, due to the fact that the worst-case
scenario analysis is cast as an optimization problem.

In particular, the focus of this thesis is stress testing, which is an important activity to carry out in
order to mitigate the risks in safety-critical systems. In stress testing, the goal is to derive worst-case
scenarios with respect to performance requirements, that characterize stress test cases representing the
worst operational conditions in terms of arrival times for aperiodic tasks. However, in the way our
approach is designed, it is possible to instead identify scenarios in terms of tunable parameters of the
system, such as delay or offset times for periodic tasks. Particular scenarios minimizing the impact of
requirements violations in the worst case could then be used to characterize design guidelines for optimal
performance, in order to build systems that are as likely as possible to meet their expected performance.

To perform this kind of analysis, we would need to consider a search strategy that differs from the
one we defined in two aspects. First, the search would consider, in addition to variables modeling the
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environment, a set of parameters that can be tuned at design time. Examples of such parameters include,
among others, task priorities and periods. Second, instead of maximizing an objective/fitness function
modeling a performance requirement, the search would perform a MiniMax analysis with the goal of
identifying values for the tunable parameters that lead to worst-case scenarios that are as close as possible
to satisfy, rather than to violate, performance requirements.
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[Mladenović and Hansen, 1997] Mladenović, N. and Hansen, P. (1997). Variable neighborhood search.
Computers & Operations Research, 24(11):1097–1100.

[Moscato et al., 2004] Moscato, P., Cotta, C., and Mendes, A. (2004). Memetic algorithms. In New
optimization techniques in engineering, pages 53–85. Springer.

[Mraidha et al., 2011] Mraidha, C., Tucci-Piergiovanni, S., and Gerard, S. (2011). Optimum: a marte-
based methodology for schedulability analysis at early design stages. ACM SIGSOFT Software Engi-
neering Notes, 36(1):1–8.

[Musa, 1996] Musa, J. D. (1996). The operational profile. In Reliability and Maintenance of Complex
Systems, pages 333–344. Springer.

[Myers et al., 2011] Myers, G. J., Sandler, C., and Badgett, T. (2011). The art of software testing. John
Wiley & Sons.

[Nejati et al., 2012] Nejati, S., Di Alesio, S., Sabetzadeh, M., and Briand, L. (2012). Modeling and
analysis of CPU usage in safety-critical embedded systems to support stress testing. In Model Driven
Engineering Languages and Systems, pages 759–775. Springer.

[Nemhauser and Wolsey, 1988] Nemhauser, G. L. and Wolsey, L. A. (1988). Integer and combinatorial
optimization, volume 18. Wiley New York.

[Nethercote et al., 2007] Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J., and Tack, G.
(2007). Minizinc: Towards a standard cp modelling language. In Principles and Practice of Constraint
Programming–CP 2007, pages 529–543. Springer.

[Nielson et al., 1999] Nielson, F., Nielson, H. R., and Hankin, C. (1999). Principles of program analysis.
Springer.

[Nilsson et al., 2006] Nilsson, R., Offutt, J., and Mellin, J. (2006). Test case generation for mutation-
based testing of timeliness. Electronic Notes in Theoretical Computer Science, 164(4):97–114.

182



Bibliography Bibliography

[Nixon, 2000] Nixon, B. A. (2000). Management of performance requirements for information systems.
Software Engineering, IEEE Transactions on, 26(12):1122–1146.

[Noergaard, 2005] Noergaard, T. (2005). Embedded systems architecture: a comprehensive guide for
engineers and programmers. Newnes.

[OMG, 2005] OMG (2005). UML profile for schedulability, performance, and time v1.1. Technical
report, OMG.

[OMG, 2011a] OMG (2011a). UML profile for MARTE: Modeling and analysis of real-time embedded
systems v1.1. Technical report, OMG.

[OMG, 2011b] OMG (2011b). UML superstructure specification v2.4.1. Technical report, OMG.

[OMG, 2013] OMG (2013). UML testing profile v1.2. Technical report, OMG.

[Papadakis and Malevris, 2012] Papadakis, M. and Malevris, N. (2012). Mutation based test case gen-
eration via a path selection strategy. Information and Software Technology, 54(9):915–932.

[Parnas et al., 1990] Parnas, D. L., van Schouwen, A. J., and Kwan, S. P. (1990). Evaluation of safety-
critical software. Communications of the ACM, 33(6):636–648.

[Peraldi-Frati and Sorel, 2008] Peraldi-Frati, M.-A. and Sorel, Y. (2008). From high-level modelling of
time in MARTE to real-time scheduling analysis. ACESMB, page 129.

[Pesant and Gendreau, 1996] Pesant, G. and Gendreau, M. (1996). A view of local search in constraint
programming. In Principles and Practice of Constraint ProgrammingâĂŤCP96, pages 353–366.
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