
CP 2016

Toulouse, 06/09/2016

Optimal Performance Tuning in Real-Time Systems

using Multi-Objective Constrained Optimization

Stefano Di Alesio

Certus Centre for Software Verification and Validation

Simula Research Laboratory

Norway

We present a Constrained Optimization Model

to support Performance Tuning in RTES

Industrial Experience:

Context, Process and Results

Stefano Di Alesio - 2/19

Performance Requirements vs.

Real Time Embedded Systems (RTES)

Supporting Performance Tuning:

A novel application for COPs

RTES are typically safety-critical, and thus

bound to meet strict Performance Requirements

Stefano Di Alesio - 3/19

Stefano Di Alesio - 4/19

Our case study is a monitoring application for

fire/gas leaks detection in offshore platforms

KM: Kongsberg Maritime

FMS: Fire and gas Monitoring System

Computing Hardware
(Tri-core Processor)

Real Time Operating System
(VxWorks)

Drivers
(SW-HW Interface)

~100 Drivers * ~5 kLoC

Control Modules
(Application Logic)

~5000 Modules * ~1 kLoC

Human Operators
(Engineers)

External Hardware
(Sensors + Actuators)

~500 devices

Stefano Di Alesio - 5/19

Drivers transfer data between external hardware

(sensors and actuators) and control modules

PullData Queue IODispatch BoxOut PushData

2.write

3.read

4.write

5.read

6.write 7.push

8.read

Control Modules
(Application Logic)

~5000 Modules * ~1 kLoC

1.pull

9.send

BoxIn

delay

loop

External Hardware
(Sensors + Actuators)

~500 devices delay

Stefano Di Alesio - 6/19

The FMS drivers have performance requirements on

task deadlines, response time, and CPU usage

PullData Queue IODispatch BoxOut PushData

2.write

3.read

4.write

5.read

6.write 7.push

8.read

1.pull

9.send

BoxIn

delay

loop

delay

3) CPU Usage < 20%

1) No task should miss its deadline

2) Response Time < 1 sec

Stefano Di Alesio - 7/19

Our goal is to identify best-case scenarios w.r.t.

deadline misses, response time, and CPU usage

PullData Queue IODispatch BoxOut PushData

2.write

3.read

4.write

5.read

6.write 7.push

8.read

1.pull

9.send

BoxIn

delay

loop

delay

The main variables affecting deadline misses, response

time, and CPU usage, are the delay times in IODispatch

The delay times in IODispatch are

configurable parameters (sleep() calls)

Stefano Di Alesio - 8/19

PullData Queue IODispatch BoxOut PushData

2.write

3.read

4.write

6.write 7.push

8.read

1.pull

9.send

BoxIn

delay

loop

delay

The delay times vary in a large domain

We need a strategy to search for the

delay times of IODispatch

Each best-case scenario is characterized by the

sequence of delay times of IODispatch

𝒅𝒆𝒍𝒂𝒚𝟏 = 𝟐𝟎𝒎𝒔
𝒅𝒆𝒍𝒂𝒚𝟐 = 𝟒𝟖𝒎𝒔
𝒅𝒆𝒍𝒂𝒚𝟑 = 𝟓𝟎𝒎𝒔

𝒅𝒆𝒂𝒅𝒍𝒊𝒏𝒆_𝒎𝒊𝒔𝒔𝒆𝒔 = 𝑵/𝑨
𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆_𝒕𝒊𝒎𝒆 = 𝟗𝟎𝟎𝒎𝒔
𝒄𝒑𝒖_𝒖𝒔𝒂𝒈𝒆 = 𝟏𝟓%

5.read

Hard to predict their impact

on the FMS performance

Multi-objective Constrained Optimization Problem (COP)

Static Properties of Tasks
(Constants)

Dynamic Properties of Tasks
(Variables)

Performance Requirements
(Objective Functions)

OS Scheduler Behaviour
(Constraints)

Stefano Di Alesio - 9/19

We cast the search for the delay times of IODispatch

leading to best-case scenarios as a multi-obj. COP

The COP models a multi-core priority-driven preemptive

scheduler with task (delayed) triggering and r/w dependencies

•Observation Interval: 𝑻 = 𝟎, 𝟗
•Number of cores: 𝒄 = 𝟐
•Set of Tasks: 𝑱 = {𝒋𝟎, 𝒋𝟏, 𝒋𝟐, 𝒋𝟑}
•Priority of Tasks: 𝒑𝒓 𝒋𝒊 = 𝒊
•Period of Tasks: 𝒑𝒆 𝒋𝟑 = 𝟔
•Offset of Periodic Tasks: 𝒐𝒇 𝒋𝟑 = 𝟏
•Min/Max Inter-arrival time of Tasks:

𝒎𝒏 𝒋𝟎 = 𝟓,𝒎𝒙 𝒋𝟎 = 𝟏𝟎
•Duration of Tasks: 𝒅𝒓 𝒋𝟎 = 𝟑
•Deadline of Tasks: 𝒅𝒍 𝒋𝟎 = 𝟕
•Triggering Relation: 𝒕𝒈 𝒋𝟎, 𝒋𝟏
•Dependency Relation: 𝒅𝒆 𝒋𝟏, 𝒋𝟐
•Read Relation: 𝒓𝒅 𝒋𝟏, 𝒓𝟏𝟐
•Write Relation: 𝒘𝒓 𝒋𝟐, 𝒓𝟏𝟐

0

1

2

3

4

5

6

7

8

9

𝒕𝒓𝒊𝒈𝒈𝒆𝒓

𝒋𝟎 𝒋𝟏 𝒋𝟑𝒓𝟏𝟐 𝒋𝟐

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

Static Properties depend on the FMS design,

and are modeled as Constants

Constants

Stefano Di Alesio - 10/19

Time is discretized in our analysis:

we solve an IP over finite domains

Independent (Decision)

•Arrival time of Triggered Task Exec.:

𝒂𝒕 𝒋, 𝒌 𝝐 𝑻, 𝒂𝒕 𝒋𝟎, 𝟎 = 𝟎, 𝒂𝒄 𝒋𝟑, 𝟏 = 𝟕
•Delay time of Triggered Task Exec.:

𝒅𝒚 𝒋, 𝒌 𝝐 𝑻, 𝒅𝒚 𝒋𝟏, 𝟎 = 𝟎
•Active time of Task Executions:

𝒂𝒄 𝒋, 𝒌, 𝒑 𝝐 𝑻, 𝒑 𝝐 𝟎, 𝒅𝒓 𝒋 − 𝟏 ,
𝒂𝒄 𝒋𝟎, 𝟎, 𝟎 = 𝟎, 𝒂𝒄 𝒋𝟎, 𝟎, 𝟏 = 𝟐

Dynamic Properties depend on the FMS runtime

behavior, and are modeled as Variables (1/2)

Variables

The 𝒂𝒕 of a periodic tasks execution is a constant:

𝒂𝒕 𝒋, 𝒌 = 𝒐𝒇 𝒋 + 𝒌 ∗ 𝒑𝒆 𝒋 , 𝒂𝒕 𝒋𝟑 𝟏 = 𝟏 + 𝟏 ∗ 𝟔 = 𝟕

Stefano Di Alesio - 11/19

0

1

2

3

4

5

6

7

8

9

𝒕𝒓𝒊𝒈𝒈𝒆𝒓

𝒋𝟎 𝒋𝟏 𝒋𝟑𝒓𝟏𝟐 𝒋𝟐

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

Dependent

•Start/End time of Task Executions:

𝒔𝒕 𝒋, 𝒌 = 𝒂𝒄 𝒋, 𝒌, 𝟎 , 𝒔𝒕 𝒋𝟎, 𝟎 = 𝟎,
𝒆𝒏 𝒋, 𝒌 = 𝒂𝒄 𝒋, 𝒌, 𝒅𝒓(𝒋) − 𝟏 ,
𝒆𝒏 𝒋𝟎, 𝟎 = 𝟑

•Deadline Miss of Task Executions:

𝒅𝒎 𝒋, 𝒌 = 𝒆𝒏 𝒋, 𝒌 − 𝒂𝒕 𝒋, 𝒌 + 𝒅𝒍 𝒋 ,

𝒅𝒎 𝒋𝟎, 𝟎 = 𝟑 − (𝟎 + 𝟔) = −𝟑
•Preempted time of Task Executions:
𝒑𝒎 𝒋, 𝒌, 𝒑 = 𝒂𝒄 𝒋, 𝒌, 𝒅 − 𝒂𝒄 𝒋, 𝒌, 𝒅 − 𝟏 ,
𝒑𝒎 𝒋𝟎, 𝟎, 𝟏 = 𝟏, 𝒑𝒎 𝒋𝟎, 𝟎, 𝟐 = 𝟎

•Waiting time of Task Executions:
𝒘𝒕 𝒋, 𝒌 = 𝒔𝒕 𝒋, 𝒌 − 𝒂𝒕 𝒋, 𝒌 ,
𝒘𝒕 𝒋𝟐, 𝟎 = 𝟎, 𝒘𝒕 𝒋𝟐, 𝟏 = 𝟏

Dynamic Properties depend on the FMS runtime

behavior, and are modeled as Variables (2/2)

Variables

Stefano Di Alesio - 12/19

0

1

2

3

4

5

6

7

8

9

𝒕𝒓𝒊𝒈𝒈𝒆𝒓

𝒋𝟎 𝒋𝟏 𝒋𝟑𝒓𝟏𝟐 𝒋𝟐

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

•System Load: 𝒍𝒅 𝒕 = σ𝒋,𝒌,𝒅 𝒂𝒄 𝒋, 𝒌, 𝒅 = 𝒕 , 𝒍𝒅 𝟎 = 𝟐, 𝒍𝒅 𝟑 = 𝟏

•Resource Status: 𝒓𝒔 𝒓, 𝒕 = ቊ
𝟏
𝟎

if 𝒕 ∈ 𝒆𝒏 𝒋𝟐, 𝒌 , 𝒆𝒏 𝒋𝟏, 𝒌
otherwise

𝒓𝒔 𝒓𝟏𝟐, 𝟏 = 𝟎, 𝒓𝒔 𝒓𝟏𝟐, 𝟐 = 𝟏

•Deadline Misses:

𝑭𝑫𝑴 =

𝒋,𝒌

𝟐𝒅𝒎(𝒋,𝒌) ,

𝑭𝑫𝑴 = 𝟐−𝟑 + 𝟐−𝟑 + 𝟐−𝟐 +𝟐−𝟏 +𝟐−𝟏 + 𝟐−𝟏

•Response Time:

𝑭𝑹𝑻 = 𝒎𝒂𝒙
𝒋,𝒌

𝒆𝒏 𝒋, 𝒌 −𝒎𝒊𝒏
𝒋,𝒌

𝒂𝒕 𝒋, 𝒌 ,

𝑭𝑹𝑻 = 𝟖 − 𝟎 = 𝟖

•CPU Usage:

𝑭𝑪𝑼 =
σ𝒕 𝒍𝒅 𝒕 > 𝟎

𝒕𝒒
, 𝑭𝑪𝑼 = 𝟎. 𝟗

The Performance Requirements of the FMS are

modeled as objective functions to minimize

Objective Functions

Stefano Di Alesio - 13/19

𝑭𝑫𝑴 should properly reward

deadline misses [1]

[1] L. Briand, Y. Labiche, and M. Shousha, “Using Genetic Algorithms for Early Schedulability Analysis and Stress Testing in Real-time

Systems”, Genetic Programming and Evolvable Machines, vol. 7 no. 2, pp. 145-170, 2006

0

1

2

3

4

5

6

7

8

9

𝒕𝒓𝒊𝒈𝒈𝒆𝒓

𝒋𝟎 𝒋𝟏 𝒋𝟑𝒓𝟏𝟐 𝒋𝟐

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

We used lexicographic multi-objective optimization:

3 criteria, 3! = 6 optimization runs

Temporal Ordering
•Triggered tasks arrive when their

triggering task ends:

𝒕𝒈 𝒋𝟏, 𝒋𝟐 → 𝒆𝒏 𝒋𝟏, 𝒌 = 𝒂𝒕 𝒋𝟐, 𝒌
•Dependent tasks cannot overlap:

𝒅𝒆 𝒋𝟏, 𝒋𝟐 → 𝒆𝒏 𝒋𝟏, 𝒌𝟏 < 𝒔𝒕 𝒋𝟐, 𝒌𝟐
∨ 𝒆𝒏 𝒋𝟐, 𝒌𝟐 < 𝒔𝒕 𝒋𝟏, 𝒌𝟏

•Tasks must read from (write to) full

(empty) buffers:

𝒓𝒅 𝒋, 𝒓 → 𝒓𝒔 𝒓, 𝒔𝒕 𝒋, 𝒌 = 𝟏

𝒘𝒓 𝒋, 𝒓 → 𝒓𝒔 𝒓, 𝒔𝒕 𝒋, 𝒌 = 𝟎

Well-formedness
•A task cannot start before it has

arrived: 𝒂𝒕 𝒋, 𝒌 ≤ 𝒔𝒕 𝒋, 𝒌
•A task cannot finish before it has

completed: 𝒔𝒕 𝒋, 𝒌 + 𝒅𝒓 𝒋 ≤ 𝒆𝒏 𝒋, 𝒌
•Arrival times of aperiodic tasks are

separated by min/max interarr. times:

𝒂𝒕 𝒋, 𝒌 − 𝟏 +𝒎𝒏 𝒋 ≤ 𝒂𝒕 𝒋, 𝒌
≤ 𝒂𝒕 𝒋, 𝒌 − 𝟏 +𝒎𝒙 𝒋

The FMS scheduler is modeled through constraints

among Static and Dynamic properties (1/2)

Constraints

Stefano Di Alesio - 14/19

Multicore
•The system load is always less than

or equal to the number of cores:

𝒍𝒅 𝒕 ≤ 𝒄

0

1

2

3

4

5

6

7

8

9

𝒕𝒓𝒊𝒈𝒈𝒆𝒓

𝒋𝟎 𝒋𝟏 𝒋𝟑𝒓𝟏𝟐 𝒋𝟐

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

Scheduling Efficiency [2]
• If a task is waiting, then either

•There are no free cores, or

•A dependent task is active, or

•A dependent task is preempted

Priority-Driven Preemption [2]
• If a task is preempted, then there are

𝒄 higher priority tasks running

The FMS scheduler is modeled through constraints

among Static and Dynamic properties (2/2)

Constraints

Stefano Di Alesio - 15/19

0

1

2

3

4

5

6

7

8

9

𝒕𝒓𝒊𝒈𝒈𝒆𝒓

𝒋𝟎 𝒋𝟏 𝒋𝟑𝒓𝟏𝟐 𝒋𝟐

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

𝒍𝒐𝒄𝒌

[2] S. Di Alesio, S. Nejati, L. Briand, A. Gotlieb. "Worst-case Scheduling of Software Tasks – A Constraint Optimization Model to

Support Performance Testing" In International Conference on Principles and Practice of Constraint Programming (CP 2014)

Stefano Di Alesio - 16/19

Our work originates from the interaction we had with

Kongsberg Maritime over several months

1. Can the input data of our COP (constants)

be provided with reasonable effort? [3]

[3] S. Nejati, S. Di Alesio, M. Sabetzadeh, L. Briand: Modeling and Analysis of CPU Usage in Safety-critical Embedded Systems to

Support Stress Testing. In: Model Driven Engineering Languages and Systems (MODELS 2012)

~25 man-hours

2. Can one conveniently use the output data of

our COP (variables) to derive configurations?

Efficiency: time needed to

generate configurations

Effectiveness: revealing power

of best-case scenarios

COP

Constants

Variables Objective Function

Constraints

Stefano Di Alesio - 17/19

𝑻 = 𝟓𝟎𝟎, 𝟏 𝒕𝒒 = 𝟏𝟎𝒎𝒔, 𝒄 = 𝟑
~600 variables and 1 million constraints

in IBM ILOG CPLEX CP Solver

Stefano Di Alesio - 18/19

We found 4/10 solutions in the frontier (20/71 total)

with 𝑭𝑪𝑼 < 0.2, no deadline misses, and 𝑭𝑹𝑻 < 100

Time: 00:27:25

𝑭𝑪𝑼: 0.18

𝑭𝑫𝑴: 0.5161

𝑭𝑹𝑻: 45

In summary, we showed how CO can support

Performance Tuning in complex industrial RTES

The COP models RT Scheduler, Tasks,

and Performance Requirements

The COP finds delay times leading to

best-case scenarios → configurations

Stefano Di Alesio - 19/19

Questions?

We found Pareto-optimal

delay times in < 30 min

