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Abstract. Real-Time Embedded Systems (RTES) in safety-critical applications
have to meet strict performance requirements to be deemed safe for operation. The
satisfaction of these requirements at runtime often depends on configuration param-
eters that regulate how software tasks interact with hardware sensors and actuators.
Tuning performance-related parameters is usually a manual, time-consuming, and
error-prone process. This is because these parameters and their values define
a large space of system configurations, and evaluating how each configuration
affects the performance often requires executing the whole system. In this paper,
we express RTES performance tuning as a multi-objective Constrained Optimiza-
tion Problem (COP) over the configuration space that captures the dependencies
between configuration parameters and performance requirements. In this way, the
COP solutions characterize configurations predicted to maximize the satisfaction
of performance requirements, and can in turn be used as guidelines for optimal
performance tuning. We develop the COP as an OPL model for IBM ILOG CP
OPTIMIZER, and validate our approach on a safety-critical I/O drivers system
from the maritime and energy domain. The validation shows that our approach
identifies within half an hour configurations characterized by tasks delay times
that minimize deadline misses, response time, and CPU usage.

1 Introduction: Performance Tuning in Safety-Critical Systems

Failures in safety-critical systems, such as those in the energy, transport, and healthcare
domains, could result in catastrophic consequences [17]. Therefore, the safety-related
software components of these systems are usually subject to strict performance require-
ments involving real time and resources utilization constraints [26]. In particular, three
performance requirements that are commonplace in safety-critical systems concern fask
deadlines, response time, and CPU usage [24]. Specifically, task deadlines state that the
system tasks should always terminate before a given completion time, entailing that even
a single deadline miss severely compromises the system operational safety. Response
time requirements specify that, in order for the outputs to be valid, the system should
react to external inputs within a specified time. Finally, CPU usage constraints state that
the system should always keep a certain percentage of free CPU time, to avoid that high
computational load prevents the system from timely responding to safety-critical alarms.

However, safety-critical systems are progressively relying on Real-Time Embedded
Systems (RTES), where software applications interact with the environment through
sensors and actuators [22]. In complex RTES, the software components communicate



with a large number of different devices. In particular, RTES have to ensure a smooth
data transfer between hardware devices and software components. This is especially
true in safety-critical systems, where external data should always be processed in brief
time to guarantee a prompt reaction to critical events [34]. Therefore, the timing of
RTES tasks can be configured to correctly operate with the specific devices connected.
Nonetheless, tuning these timing properties without violating performance requirements
is complicated by two main factors [16]. First, the task parameters related to temporal
properties, such as delay times, offsets, and periods, range in a large domain of values.
Second, the impact specific parameter values have over the system performance is hard
to evaluate without executing the whole system. This is because RTES typically run on a
preemptive Real-Time Operating System (RTOS) which may preempt a task execution
in order to run an incoming higher priority task. Therefore, a minimal variation in a
single task timing may trigger unpredictable interactions between other tasks [10].

As a consequence, it is often practice in industry to tune parameters related to RTES
performance manually, based on the engineers expertise and knowledge of the system.
This renders the process of tuning these performance-related parameters significantly
time-consuming and error-prone [41]. Traditionally, systematic approaches for analyz-
ing the RTES performance properties rely on Scheduling Theory [36], which is often
based on unrealistic assumptions on the target system [3]. On the other hand, Model
Checking [1] has been successfully proposed as an alternative for performance analysis
and tuning [9], even though its scalability has to be further investigated due to the well-
known state explosion problem [8]. Approaches based on metaheuristic search have also
been proposed for identifying configuration parameters likely to satisfy performance
requirements on CPU usage [28]. However, previous work in the field of software stress
testing [13] suggests that complete search strategies, such as those based on Constraint
Programming (CP), can potentially find solutions closer to the global optimum than
meta-heuristics such as Genetic Algorithms (GA), and hence are worth being considered
also in the context of performance tuning.

In this paper, we propose a methodology, based on Constrained Optimization, to help
engineers tune performance-related parameters of RTES. The key idea behind our work
is to identify scenarios where tasks finish their execution as far as possible from their
deadlines, and exhibit low response time and CPU usage. Such scenarios are determined
by the way tasks are scheduled to execute at runtime by the RTOS. The task schedules
depend in turn on the value of system timing parameters, on constraints derived from
software design, and on the execution platform. Therefore, we propose a strategy to
find combinations of timing properties that maximize the satisfaction of performance
requirements on deadline misses, response time, and CPU usage. We characterize each
of these combinations by a set of task delay times, and we refer to each set of delay times
as a configuration.

2 Motivating Case Study: The Fire and Gas Monitoring System

The motivation behind our work originates from a case study in the maritime and energy
domain concerning a Fire and Gas Monitoring System (FGMS). The system monitors
potential gas leaks in off-shore oil extraction platforms, displaying to human operators
data coming from smoke, heat, and gas flow sensors. In case a fire is detected, the FGMS



triggers audio/visual alarms, activates the fire sprinklers, shuts down ongoing processes,
and isolates electrical equipment. The software architecture of the system consists of
drivers and control modules, as shown in Figure 1a. Drivers support I/O communication
between the software components and the operating environment, which consists of
hardware sensors and actuators. Control modules implement the application logic of the
FGMS, processing operational commands coming from the environment and accordingly
deciding the actions to perform. The FGMS software components are executed by the
RTOS VxWorks', which is configured with a fixed-priority preemptive scheduling policy
on a tri-core computing platform.

We point out three main context factors that influence our formulation of the perfor-
mance tuning problem in the FGMS. (1) In this paper, we do not consider FGMS-level
performance requirements, which require considering interactions between drivers, con-
trol modules, and external hardware. On the other hand, we limit our scope to driver-level
requirements, for which it is only necessary to consider the drivers subsystem. To avoid
confusion, in the rest of this paper we will refer to the FGMS drivers as the sysfem under
investigation. (2) Different instances of a given driver are independent, i.e., they do not
communicate with one another and do not share memory. For this reason, in this paper
we focus on a single driver instance and do not consider interactions between them.
(3) The FGMS performance profiling logs indicate that task deadlines, response time, and
CPU usage of the drivers are not significantly affected by memory allocation activities
such as garbage collection and data transfer operations on storage peripherals. For this
reason, we do not consider the impact of memory usage on the drivers performance.
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Fig. 1: Description of the Fire and Gas Monitoring System

Drivers in the FGMS share the same design pattern, consisting of two periodic
tasks, (PullData and PushData), and one singular task (IODispatch), which is executed
only once during the drivers execution. The tasks communicate through three fixed
capacity buffers with mutually exclusive access, namely BoxIn, Queue, and BoxOut.
Figure 1b shows how the three tasks collaborate in the typical operating scenario,
that is a unidirectional data transfer between hardware sensors and control modules.

I http://www.windriver.com/products/vxworks



(1) PullData periodically receives data from sensors or human operators through the
pull signal, formats the data in an appropriate command form, and (2) writes it in BoxIn.
(3) IODispatch reads the buffer, extracts the commands from the data, and (4) stores
them in the priority Queue. After a given delay time, (5) IODispatch reads the highest
priority command and (6) writes it to BoxOut. When the periodic push signal (7) activates
PushData, the task (8) reads the commands from BoxOut and finally (9) sends them to
the control modules for processing. Note that /ODispatch is executed when the drivers
are initialized, and encloses within an infinite loop four sequential read/write activities.
In particular, the two activities writing in Queue and BoxOut are followed by delay times,
implemented as sleep calls in the drivers source code. In particular, the delay times
may vary during the IODispatch loop iterations, allowing the drivers to send data to the
control modules at a variable rate. This design is meant to ensure that the FGMS data
flow is slow enough to avoid overloading the computational resources, but fast enough
to ensure prompt reaction to critical events.

The data transfer functionality is subject to strict performance requirements. Specif-
ically, in each driver instance, (1) no task should miss its deadline, (2) the response
time should be less than one second, and (3) the average CPU usage should be below
20%. The main variables determining whether or not these requirements will be satisfied
at runtime are the delay times after the write activities of /ODispatch. Indeed, if the
delay times are too short, /ODispatch is running continuously and keeps the CPU busy,
eventually exceeding the 20% usage threshold. On the other hand, if the delay times
are too large, PullData may fill up BoxIn, and be blocked waiting for IODispatch to
empty the buffer. As a result, PullData is not able to terminate before the next pull signal
arrives, missing its deadline. In general, it is hard to predict whether a set of delays
in /ODispatch will break deadlines in other tasks, or will make the driver exhibit high
response time or CPU usage at runtime. This is because the delay determines the arrival
time of the activities in IODispatch, which in turn can preempt or be preempted by
other tasks. Note that, however, the delay times of the IODispatch iterations are tunable
parameters that engineers can set when configuring the drivers.

3 Related Work

The increasing complexity in RTES software and hardware architecture renders analyzing
and estimating performance properties in RTES increasingly challenging [26], especially
in safety-critical domains, where performance issues can impact the system behavior
more than incorrect functionality [39]. In RTES, performance properties have been
traditionally analyzed through verification approaches, such as Scheduling Theory [36]
and Model Checking [1]. Theorems from Scheduling Theory are limited to providing
sufficient or necessary conditions for a set of tasks to be schedulable, and are often based
on unrealistic assumptions on the target system [3]. On the other hand, Model Checking
approaches analyze time-related properties, such as task deadlines and resource usage, by
proving reachability properties in state machines [9]. However, Model Checking requires
complex formal modeling of the system, which is not always available for large systems
and often leads to the state explosion problem [8]. Our experience suggests that, in several
industrial contexts, RTES are developed by relatively small-sized teams consisting of
developers with several years of expertise in their domain. This development strategy



increases productivity by reducing the communication overhead [15], but can potentially
come at the cost of overlooking the need of systematic performance analysis. This
usually happens in systems with long lifespan, whose core functionalities undergo only
minor updates over the years and are hence deemed stable. In such systems, performance
tuning is mostly addressed by human expertise, which in turn relies on profiling and
benchmarking tools that dynamically analyze performance properties [21]. Such tools,
however, can only provide a rough performance assessment limited to a small number of
system executions, which have to be manually investigated [41].

The use of search-based approaches to find optimal configuration parameters origi-
nates from the domain of control systems [38], where Genetic Algorithms (GA) have
been applied to tune the performance of Proportional-Integrative-Derivative (PID) con-
trollers [19]. In the context of Real-Time Systems, GA have been used to generate
scenarios characterized by reproducible environmental conditions that push the system to
break task deadlines [5]. These approaches have inspired the use of metaheuristic search
to derive configuration parameters that are predicted to minimize the CPU usage [28]. In
particular, Non-dominated Sorting GA (NSGA) have been used to identify task offsets
that yield an optimal trade-off between CPU usage and requirements specifying groups
of tasks that have to be executed within short time [29]. Even though these approaches
have only been applied in the context of Static Cyclic Scheduling (SCS), which is
non-preemptive, they represent the closest related work to that presented in this paper.

Previous work [13] in the area of stress testing suggests that, when compared to GA,
Constraint Programming (CP) can find task schedules closer to the global optimum, and
is hence worth investigating also in the context of performance tuning. For schedulability
analysis, CP approaches [4] have been used since long time, especially in the domain of
job-shop scheduling [25]. Among those, several approaches target task real-time con-
straints such as task deadlines [18], or timeliness [27]. Preemptive scheduling problems
have also been approached with pure CP [6], and with hybrid approaches combining
CP with GA [42]. The most recent implementations have successfully used both CP
and Mixed Integer Programming (MIP) to solve priority-driven scheduling problems,
albeit not addressing task preemption [23]. However, we are unaware of CP approaches
targeted to the generation of software configurations predicted to satisfy performance
requirements, and in particular of approaches addressing all the complexities of RTES
such as multi-core architectures, task dependencies and triggering relationships, and
priority-based preemptive scheduling policies.

4 Performance Tuning with Constrained Optimization

The approach presented in this paper extends earlier work [12,30] for deriving test cases
exercising CPU usage and task deadlines requirements of multi-core RTES. Specifically,
the approach has been adapted to derive configurations characterized by task delay times
that maximize the satisfaction of requirements on their deadlines, response time, and
CPU usage. In particular, we cast the search for these delay times as a multi-objective
Constraint Optimization Problem (COP). The COP models a preemptive priority-based
task scheduler with fixed priorities, task triggering, and dependencies on shared resources.
The COP is derived from earlier work on generating stress test cases for RTES [14],
and the key idea behind its formulation relies on four main points. (1) We model the



system design, which is static and known prior to the analysis, as a set of constants.
The system design consists of the tasks of the real-time application, their dependencies,
offsets, periods, durations, deadlines, and priorities. (2) We model the system properties
that depend on runtime behavior, and those that are configurable parameters, as a set
of variables. The main real-time property in the first category is the specific runtime
schedule of the tasks. Configurable properties, which are the output variables of the
model, are instead the delay times between task activities. (3) We model the RTOS
scheduler as a set of constraints among such constants and variables. Indeed, the RTOS
scheduler periodically checks for triggering signals of tasks and determines whether
tasks are ready to be executed or need to be preempted. (4) We model the performance
requirements the system must satisfy (i.e., task deadlines, response time, or CPU usage)
as objective functions to be minimized. By design, each solution of our COP is a sequence
of task delay times, which in turn characterizes a configuration.

Our analysis is subject to two assumptions. (1) The RTOS scheduler checks the
running tasks for potential preemptions at regular and fixed intervals of time, called
time quanta. Therefore, each time value in our problem is expressed as a multiple of a
time quantum. (2) The interval of time in which the scheduler switches context between
tasks is negligible compared to a time quantum. We found these two assumptions to be
commonplace in several RTES, as the scheduling rate of operating systems varies in the
range of few milliseconds, while the time needed for context switching is usually in the
order of nanoseconds [32]. These assumptions allow us to consider time as discrete in
our analysis, and model the COP as an Integer Program (IP) over finite domains.

We implemented the COP in the Optimization Programming Language (OPL) [37],
and solved it with IBM ILOG CPLEX CP OPTIMIZER?. This choice was motivated by
practical reasons, such as its extensive documentation, strong supporting community, and
acknowledged efficiency to solve optimization problems. Note that we could not express
a preemptive priority-driven scheduling problem in an effective way that exploited the
solver capabilities of working with task intervals [7], and hence we implemented our COP
as a traditional IP. In the following, we describe our constraint model (Section 4.1), and
how to use it to model infinite loops of activities separated by a delay time (Section 4.2).

4.1 Description of the Constrained Optimization Problem

Constants. As explained before, we consider time as discretized in time quanta. There-
fore, we define the observation interval T as an integer interval of length tq, i.e.,
T = [0,tq — 1], representing the time interval during which we observe the system
behavior. Each time value ¢ € T is a time quantum. We define c as the number of cores in
the execution platform, representing the maximum number of tasks that can be executed
in parallel, J as the set of tasks of the system, and R as the set of resources shared by
such tasks. Each resource r € R is typically implemented as a buffer, and serves as a
mechanism to store data for synchronous and asynchronous communication between
tasks. Each task j € J has a set of static properties, whose values are part of system
design and known prior to the execution of the system. These static properties are defined
in Real-Time Scheduling Theory [33], and comprehend the task priority pr;, period

2 nttp://www.ibm.com/software/commerce/optimization/cplex-cp-optimizer/



Dej, offset of o deadline dl;, and number of task executions te;. In particular, we refer
to the k' execution of task j as the couple (7, k — 1). In this way, the first execution of j
is the couple (7, 0). The offset and period determine the number of task executions so

that te; = Ltq;ieo.fjJ . For simplicity, we define the interval K; of executions of task j
J

as K; = [0, tej — 1], so that, in the context of a given j, k € K ;. We also consider the
duration dr; of tasks as a constant equal to the task Worst Case Execution Time (WCET),
which can be estimated through different techniques both statically, using the system
design, and dynamically, by measuring execution times [40]. In our context, the WCET
is estimated by selecting the worst-case time across several executions of the system.
Note that considering the duration of each task as its WCET is a common practice when
analyzing task real-time properties [16]. We refer to the d" time quantum of the task
execution (j, k) as the triple (4, k, d — 1). For simplicity, we also define the interval D
of duration time quanta of a task as D; = [0, dr; — 1], so that, in the context of a given
J»d € Dj. Finally, we also define as constants the tasks triggering relation tg, and read
(write) dependency relation rd (wr). The former is an irreflexive and antisymmetric
binary relation over .J x .J, where tg, ; holds if the event triggering j2 occurs when j;
finishes its execution, plus a possible delay. The latter are binary relations over J x R,
where rd; . (wr; ) holds if j reads data from (writes data to)  during its execution.
Note that tasks in a dependency relation cannot be executed in parallel nor can preempt
each other, but one can execute only after the other has released the lock on the resource.

Variables. Tasks in J also have a set of dynamic properties, whose values depend on
the runtime behavior of the system, and hence are not known prior to the analysis.
Indeed, the values for these variables are calculated during the search, and represent the
output data of the COP. In the context of constraint solving, variables whose domain
values define the search space are said to be independent or decision variables [20].
Indeed, the goal of a constraint solver is to assign values for the independent variables
that satisfy all the constraints, optimizing an objective function when specified. In
our model, the independent variables characterize configurations in terms of the delay
time that trigger the task executions. The independent variables of our model, marked
with a single dot (), are the time quanta ac; x,q where the system tasks are active and
executing, the arrival times a'tj, i of triggered task executions, and their delay times
cfy ;i All these variables have domain in 7'. In particular, we refer to the set of all
ac variables as the schedule produced by the arrival times of tasks in J. Note that the
arrival times of periodic tasks are constant, and determined by the task period and offset:
at j.k = of ;+k-pe;.In addition to these independent variables, we also define dependent
variables, whose value is defined by a mathematical expression of independent variables
and constant values. Dependent variables, marked with a double dot (--), simplify our
notation by allowing us to easily formulate constraints and objective functions. For
example, we define as dependent variable the start and end time of tasks st 4.k and en; g,
i.e., the first and the last time quantum in which (j, k) is executing: st; x = ac; ko
and en; i = ge ok, drj—1 T 1. In particular, the end times of tasks allows to define the
deadline miss dm , of a task execution as the amount of time by which (j, k) missed
its deadline: dm ; = €y — (at;x + dl;). We also define the system load 1d; as the
number of tasks active at time ¢: Id, = > jk.a(acjk,a = t). Note that (6t x,q = t) is



a boolean variable that is evaluated to 1 when true, and to 0 when false. Furthermore,
the dependent variables include the preempted time quanta pin ; ;. ; of task executions,
defined as the number of time quanta for which (4, k) is preempted for the d" time:
Pin i 4 = aCjk.d— aCj k-1 — 1, and the waiting time wt  j, of task executions, defined
as the amount of time for which (4, k) has to wait after its arrival time before starting its
execution: wt; ; = st; 1 — at; . The preempted time quanta and the waiting time allow
us to easily formulate constraints specifying that tasks should only be preempted by
higher priority tasks, and should postpone their starting time only when they are locked
on a shared resource, or waiting for data to be written, or because there is no processing
core available. Finally, we define the resource status indicator 75, ; as a binary variable
indicating whether the resource r is full or empty at time ¢. For any pair of executions
of two tasks j; and j which respectively read and write r, 75, ; has value 1, i.e., the
resource is full and ready to be accessed for read operations, between the end of j, and
the end of j;, and has value 0, i.e., the resource is empty and cannot be accessed for read
operations, otherwise: Vj1,jo € J,k € K;, N Kj,,r € R,t €T - rdj, » Nwrj, »

w |1 ift € [en, k, €, k]
TST t — :
0 otherwise

The resource status indicator allows us to easily formulate constraints specifying that
tasks can only write to empty buffers, and read from full buffers.

Constraints. We define five sets of constraints which model task runtime interactions,
i.e., locks and preemptions, and the way in which the RTOS scheduler executes these
tasks based on their triggering and dependency relations. In this paper, we only report
shortened expressions of constraints, labeled with the letter v, as their rigorous mathe-
matical formulation is part of previous work [14]. Well-formedness constraints specify
relations among variables that directly follow from their definition in the schedulability
theory. For example, well-formedness constraints state that each task execution starts af-
ter its arrival time, and ends after the task duration dr (y; : at;x < st < €njp— dr;).
Furthermore, note that resources may be shared between more than two tasks. This
entails that more than one task execution can be locked on a given resource at any time.
In RTES, task queues regulate the access of a resource by multiple locked tasks. In
our COP, these task queues are modeled through a well-formedness constraint stating
that if task js is ready to be executed at the same time as a lower-priority task j1, ja
starts first: (y2 @ atj, g, = Atjy ks < Stip ks < Stjy k). Temporal ordering con-
straints specify the relative ordering of tasks based on their dependency and triggering
relations. In particular, these constraints state that the a task jo triggered by j; arrives
after the delay of j;, counted from when j; ends (y3 : enj, r + cl'ij,C = a'tj%k).
Furthermore, temporal ordering constraints state that the executions of two dependent
tasks j; and jo cannot overlap, i.e., that one can only start after the other has ended
(v4 1 enj, g < stjz ko V €My ko < stjl &, )- Finally, these constraints state that (1) a
task cannot write to a full buffer, i.e., that the start time of a task j writing on a resource
7 has to occur when 7 is empty (75 : 75, stx = = 0), and that (2) a task cannot read from
an empty buffer, i.e., that the start time of a task j reading from a resource r has to occur

when 7 is full (76 : 75, g, = 1). Multi-core constraints capture the concurrent nature



of the computing platform, stating that no more than c tasks can be active at any time
(y7: ld, < o). Preemption constraints capture the priority-driven preemptive scheduling
of the RTOS, stating that each task should be preempted when a higher priority task is
ready to be executed and no cores are available. Finally, scheduling efficiency constraints
ensure that tasks are not preempted unnecessarily and are executed as soon as possible.

Objective Functions. We formalize three objective functions representing task dead-
lines, response time, and CPU usage. The functions are minimized in a multi-objective
optimization problem, in a way that solutions of the COP characterize scenarios ap-
proaching optimal tradeoffs between the objective values. Note that, even though the
performance requirements specify a maximum threshold on the value of task deadlines,
response time, and CPU usage, the value of these properties is not bound by any con-
straint in the COP. Therefore, the search process might initially find solutions that satisfy
the constraints, but whose objective value is greater than the threshold expressed by the
requirements. However, our COP is based on estimates of the tasks WCET, which might
be over-pessimistic. For this reason, the delay times characterized by these solutions
might not violate the performance requirements at runtime, and hence are worth look-
ing at during configuration. Nevertheless, the COP minimizes the objective functions
representing the performance requirements, because the lower the objective values, the
higher the confidence that the system achieves a satisfactory performance. We define the

CPU usage function Feoy that models the system CPU usage: Foy = 3. (Id; > 0) /tq.
teT
Fopy measures the average CPU usage of the system over 7' as the percentage of T'

where at least one core is busy. We define the dead{ine misses function Fpys that models
the requirement on task deadlines: Fppy; = > 2 95k, To ensure that tasks completing
ik

in short time do not overshadow deadline misses, F)pps assigns to dm an exponential
contribution towards the sum [13]. Recall that dm 4,k 18 positive if the task execution
(J, k) misses its deadline, and negative otherwise. Finally, we also define the response
time function Frp that models the system response time. In traditional scheduling,
the response time measures the maximum length in time quanta of the task schedule
restricted to a single execution. This means that the response time is the maximum time
between the k™ arrival time of a task, and the £™ end time of a possibly different task.
The response time is also traditionally known as makespan [31].

Frr = a D01k — ok
i j17j2€J,I26§jzuKJ2 (672(]1 ) — at(j2 ))

4.2 Modeling Task Activities and Infinite Loops

In task scheduling, a task j consists of a vector [ag, as,...a,—1] of n activities a;
executed sequentially. At the lowest level of abstraction, an activity is a single statement
in a task source code. For this reason, several task properties defined in Section 4.1 can
also be considered at activity-level. For example, the duration of an activity is its WCET,
while its priority is equal to the priority of its task. In particular, the delay time of an
activity a, is the minimum time that has to elapse, not considering preemptions, between
the completion of a; and the start of a;4;. Since activities are executed sequentially,



the arrival time of an activity a; is the time when the preceding activity a;_1 finishes
executing, plus the delay of a;_;. Task interactions can also be considered at activity-
level, as activities may depend on, or trigger other activities in different tasks. For
instance, an activity may trigger another activity of a waiting task by sending a specific
message to that task, or can launch a new task by triggering its first activity. Therefore, a
task j = [ag, a1, . .. a,—1] with priority p consisting of n activities a; can be considered
for scheduling purposes as a vector [Jo, j1, - - - jn—1] of n tasks with priority p, where
the duration of j; is equal to the duration of a;, and where j; triggers j;41. In this case,
each task j; inherits the dependencies and triggering relationships of the corresponding
activity a;. Note that this property holds under the assumption that the RTOS overhead
for managing tasks in negligible compared to their execution and interarrival times. This
assumption has proven to be realistic in most RTES [35].

Given this mapplng between activi- Singular Task Singular Task Triggered Tasks
ties and tasks, we can model tasks en- [ODispatch| [Init ] 10BR] joaw| 10aR] joBW|
closing activities in infinite loops, such ' (' ! ' —
. . . (—'—\ trigger | I(iteration 1
as IODispatch (Figure 1b). Consider the |
| sl |

task j = [ag, . . . an—1], where the n activ-
ities are enclosed in an infinite loop. 7 can
be modeled through a vector of n+1 tasks
(365 do - - - jn—1]- In the vector, j{ and jo
both correspond to ag, and each other task
ji corresponds to the activity a;. Each task

in the vector has the same duration, prior- ;Ird_ehb
ity, and dependencies of its corresponding i
activity. Each task triggers the following
one forming a triggering chain, with the
exception of j|, that triggers ji, and j,,—1
that triggers jo. Note that, if all the activities in j are enclosed in an infinite loop, the task
Jo is necessary in order to ensure that the COP is feasible. Consider indeed the alternative
of modeling j through the tasks jj . .. j,—1, with each task triggering the following one
and j,_1 triggering jo. Recall that a triggered task execution arrives after when its
triggering execution finishes, plus a possible delay. This is specified by the temporal
ordering constraint -3 introduced in Section 4.1. Therefore, a circular dependency of
tasks triggering each other would render the model infeasible, because the first arrival
time of j, would depend from a previous execution of j,,_; that never happened. This
means that the temporal ordering constraint above would result in a non well-defined
recursion, i.e., a recursion with no base case. To overcome this issue, we model the first
execution of ag as a separate task, namely j(,. j, is a singular task, i.e., a periodic task
whose period is equal to the observation interval 7', and hence is only executed once
during the system execution. After finishing, j| triggers j;, emulating ag triggering for
the first time a; in j. Fixing the first arrival time of the first activity executed during the
loop allows the solver to find the arrival times of subsequent activities by unrolling the
task executions in the triggering chain. Figure 2 shows how the loop in IODispatch is
modeled through five tasks, namely Init, IOBoxRead (IOBR), IOQueueWrite (I0QW),
10QueueRead (IOQR), and IOBoxWrite (IOBW). In the figure, the numbers within the
rectangles on the lifeline show the correspondence between activities and tasks.

delay

E
|
|
E | | trigger |
4 J ﬁ/
I:;; trigger :

-

=3
Q
Q

Fig. 2: Emulation of the loop in IODispatch
through five tasks



5 Industrial Experience: Context, Process, Results, and Discussion

The work reported in this paper originates from the collaboration over the years with
Kongsberg Maritime (KM)?, a leading company in the production of systems for position-
ing, surveying, navigation, and automation of merchant vessels and offshore installations.
When developing the software components of their real-time systems, KM faces signif-
icant challenges which have motivated our research. Therefore, the main goal of our
industrial evaluation is to investigate whether CP can effectively support performance
tuning in an industrial context. This aspect depends on whether we can conveniently
use the output of our analysis, i.e., the values for the delay time variables in the COP,
to derive configurations that satisfy the system performance requirements. In particu-
lar, we investigate this practical usefulness through two main factors. First, we note
how, for practical use, performance tuning has to accommodate time and budget con-
straints. Therefore, we analyze the efficiency of our approach, i.e., the time needed to
generate delay times predicted to satisfy the performance requirements. Second, recall
from Section 2 that requirements on task deadlines and response times often conflict
with thresholds on the CPU usage, because it is hard to achieve shorter task completion
times without over-utilizing the CPU. In practice, the goal of performance tuning in the
FGMS is finding safe margins in which delay times yield a trade-off between conflicting
performance requirements without violating them. For this reason, we also analyze the
effectiveness of our approach, i.e., the capability of the generated delay times to lead to
scenarios achieving such satisfactory trade-off between performance requirements.
Experimental Design. Recall from Section 2 that we characterize system configurations
by delay times between activities in the /ODispatch task of the FGMS drivers. Therefore,
such delay times are the main independent variables in our constraint model (Section 4).
We performed an experiment with the FGMS drivers using an observation interval 7'
of five seconds, assuming, in accordance with the specification of the RTOS executing
the FGMS, time quanta of 10 ms. The search for optimal solutions was driven by a
lexicographic multi-objective optimization. In lexicographic ordering, the first criterion
is considered as the most important one, so that its improvement is worth any loss on the
other criteria. The second criterion is the second most important, so that only losses on
the first criterion are not allowed for its improvement, and so on. Using multi-objective
optimization allows us to identify a Pareto-optimal frontier of solutions that are non-
dominated, i.e., solutions x* for which no other solution z exists such that x has a better
objective value than z* for all the criteria. The solutions in the frontier achieve an optimal
trade-off between the search criteria, because any solution with a better objective value
for one criterion has a worse objective value for at least another criterion. Investigating
solutions in the Pareto frontier is particularly useful to evaluate trade-offs of conflicting
optimization criteria, such as Frr and Foy.

We run our model for six times, one for each lexicographic permutation of Fpyy,
Frr, and Fgy. Each run was performed on an Amazon EC2 m2.xlarge instance* with
a timeout of two hours, after which the solver was instructed to terminate. We also
recorded the computation times of the first solutions predicted to satisty Fpys, Frr,
and Foy. Consistent with the terminology used in Integer Programming, we refer to

3 nttp://www.km.kongsberg.com * http://aws.amazon.com



these (sub)optimal solutions as incumbents [2]. The COP consisted of approximately
500 variables and one million constraints, and used up to 10 GB RAM during resolution.

Results and Discussion — Efficiency. Figure 3 shows 18 graphs reporting the experi-
mental results for the six runs. The graphs are organized in a matrix, where each row
corresponds to an objective function (Foy, Fpy, and Frr, respectively), and each
column corresponds to a run. Runs are reported in the format XX-YY-ZZ, where each
group of two letters corresponds to an optimization criterion, with XX being the most im-
portant, YY being the second most important, and ZZ the least. In each graph, the x-axis
reports the incumbent computation times in the format Ah:mm:ss, and the y-axis reports
the corresponding objective value. The graphs related to Foyy and Frr also report an
horizontal line representing the maximum threshold on the performance requirement.
Note that, being defined as an exponential function of task deadline misses, F'pas has no
threshold on its value. In each graph, we also highlight in a circle () the first incumbent
predicted to satisfy the relative performance requirement, and in a square (L) the first
incumbent predicted to satisfy all the requirements. For these incumbents, we report in a
box their computation times and objective values. Finally, we report at the top right of
each column the total number of solutions found in the run, and at the top center of each
graph the number of incumbents satisfying the requirement. Recall from Section 4 that
each solution of our COP is a sequence of task delay times.

To support engineers in configuring performance-related parameters of RTES, our
approach should be able to efficiently produce usable results. In particular, engineers need
to know for how long on average they should run our COP. The six runs found a total of
71 incumbents, terminating with proof of optimality in less than one hour when choosing
F'pys as the primary optimization criterion (third and fourth column in Figure 3). With
the exception of Foy in the runs CU-DM-RT, CU-RT-DM, and DM-RT-CU, the first
solution predicted to satisfy any of the performance requirements was found in less than
a minute. In these three cases, the first solution predicted to exhibit a CPU usage less
than 20% was found approximately after 28, 27, and 15 minutes, respectively. In each
run, the incumbents found presented no deadline misses. Overall, our COP was able
to find solutions predicted to satisfy at least one performance requirement in less than
one minute, and all the requirements in less than half an hour. In particular, the runs
DM-CU-RT, RT-CU-DM and RD-DM-CU found the first solutions satisfying all the
requirements in approximately 30 seconds, while the other runs did so in approximately
28 minutes. The delay times characterizing these solutions can be used to derive and test
initial system configurations while the search continues, because the lower the objective
value, the more likely the solutions are to satisfy the systems performance requirements.
In summary, it is sufficient to run our COP for half an hour on the FGMS 1/O drivers in
order to find solutions satisfying all the requirements.

Results and Discussion — Effectiveness. As explained above, engineers are particu-
larly interested in finding ranges of delay times where conflicting performance require-
ments are close to their thresholds, but are not violated. To find these ranges, we first
have to identify the conflicting requirements by analyzing the trend of the objective
functions. We note how, in each run, the objective value over time related to the first opti-
mization criterion presents a monotonic decreasing trend. This is expected because each
run performs a lexicographic optimization, for which any gain on the primary criterion
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is worth loss on the others. When looking into the trend of specific criteria over runs,
Fpas shows no significant correlation with Foy and Frr. This seems counterintuitive,
because tasks are likely to miss their deadlines if the response time is too long, and
when the response time is short, tasks are likely to complete long before their deadline.
However, even though the exponential shape of Fpyy is very sensible to variations in task
deadlines, the fluctuations in the objective value are several orders of magnitude smaller
than the size of the observation interval 7'. We also note how Foy and Frp present
an inversely proportional trend. Indeed, in the runs where F'oy is the first optimization
criterion (first two columns in Figure 3), Fr tends to decrease over time, and vice versa
(last two columns in Figure 3). This is also expected because, as explained in Section 2,
short delay times make IODispatch keep the CPU busy, while long delay times are likely
to block PullData, increasing the drivers response time. Therefore, when configuring
delay times, it is necessary to analyze the trade-off between expected response time and
CPU usage. Note that every incumbent found satisfies the requirement on task deadlines,
and hence this trade-off analysis can ignore F'py,.

Figure 4 shows the Pareto-optimal 4110 solutions in the frontier (20/71 in total) with
frontier of FC'U and FRT» whose solu- F¢y < 0.2, no deadline misses, and Fgp <100
tions are highlighted with a solid bullet s P Usage v Response Time
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computation time and objective values.
Similar to Figure 3, the two orthogonal
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quirements. The first of such solutions o0 - - ’ - ¥ =)
was found in approximately 27 minutes, Response Tne

and corresponds to that highlighted in the
CU-RT-DM run in Figure 3. By definition,
the solutions in the frontier do not Pareto-
dominate each other, entailing that for each solution in the frontier there does not exist
any other solution with a lower CPU usage and a lower response time. Therefore, the
solutions in the frontier achieve an optimal trade-off between CPU usage and response
time, and can be used to derive configurations that are as likely as possible to exhibit low
CPU usage and response time. Finally, recall that the six solutions in the frontier above
the 20% CPU threshold might not violate such requirement at runtime due to pessimistic
WCET estimates. These solutions are still worth being investigated, albeit with lower
priority than the others. In particular, our experience suggests that the most valuable
solutions lie in the extreme regions of the Pareto frontier, close to the highest value for a
single objective function, and in the central part, where the performance requirements
are equally far from their maximum values. In fact, solutions in extreme regions can
be used to push the system performance to the limit, while solutions in the central area
guarantee a balance between conflicting requirements.

Fig. 4: Pareto-optimal frontier (solid bullets)
of F cuU and F RT



6 Concluding Remarks

In this paper, we presented a multi-objective Constrained Optimization Problem (COP)
for generating RTES configurations characterized by values of configurable timing prop-
erties that satisfy a set of performance requirements. In particular, we presented a COP
whose solutions are task delay times that characterize scenarios where tasks are as far as
possible from their deadlines, and exhibit low response time and CPU usage. However,
we note that casting the scheduling analysis of RTES as a COP is a flexible strategy that
can be tailored to support activities in different phases of software development, such as
stress testing and performance tuning, as well as to suit different application scenarios.
For example, in order to generate task offsets that satisfy a requirement on minimal
throughput, we would only need to modify the existing COP by (1) specifying task
offsets as variables, rather than constants, and (2) defining a new throughput objective
function. As another example, to target a system with a priority ceiling scheduling
policy, we would have to modify only the preemption constraints by specifying that
tasks locking a resource shared with a high priority task cannot be preempted. These
adaptations would be similar to that done in this paper with respect to previous work in
the area of stress testing [14].

We validated our approach on a RTES from the maritime and energy domain concern-
ing safety-critical device drivers, showing that our approach is able to find Pareto-optimal
solutions with respect to CPU usage and response time in less than half an hour. Recall
that our approach builds also upon previous work in the context of performance analysis,
which introduces a conceptual model to capture the timing and concurrency abstractions
required to analyze response time and CPU Usage in RTES [30]. Those abstractions
form the basis of both the COP presented in that work, and that presented in this paper.
The effort to capture the input data for that approach was approximately 25 man-hours of
effort [30]. This was considered worthwhile as drivers typically have a long lifetime and
have to be certified regularly. We note how both COPs have the same set of constants,
and are applied to FGMS I/O drivers having similar architectural design, and hence, the
overhead for deriving the COP constant values is comparable in both cases. Furthermore,
the design of our COP ensures that the final users, i.e., software engineers, can simply use
it as a black box configuration generator, without having to be aware of the mathematical
details of the COP. Currently, KM engineers spend several days simulating the FGMS
behavior with manually tuned delay times, and monitoring its performance requirements.
We expect that, by following our approach, they can configure the delay times in the
FGMS drivers more conveniently, and ensure that no safety risks are posed by violating
performance requirements at runtime.

Previous work in the field of software stress testing has shown that approaches based
on complete search can potentially be more effective than metaheuristics in finding task
schedules closer to the global optimum [13]. This aspect motivated us to investigate
complete search strategies also in the context of performance tuning. However, we solve
the COP with a off-the shelf solver that performs a deterministic complete search. This
means that solving the COP multiple times within a time budget always finds the same
set of solutions. To diversify the configurations found, we plan to combine complete
deterministic search with randomized metaheuristics in hybrid strategies, which have
already been successfully applied to stress test RTES [11].
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