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Abstract 

 
Modern large-scale software systems are highly configurable. Thus, they require a large 
number of test cases to be implemented and revised for testing a variety of system 
configurations. This makes software testing of large-scale software systems very expensive 
and time-consuming. However, companies have limited time and resources to test software 
systems. They need to deliver high-quality software products while facing different 
constraints (e.g., time), which raises the need for cost-effective testing. 

Driven by the needs of our industrial partner, Cisco Systems Norway for testing of 
video conferencing systems, this thesis applies a set of methods based on evolutionary 
computation for cost-effective testing. Specifically, cost-effective testing in Cisco can be 
formulated into four main problems: 1) test case prioritization (TCP) to cost-effectively 
prioritize the existing test cases, 2) test case selection (TCS) to cost-effectively select a 
subset of test cases from the test suite with maximum effectiveness and minimum cost, 3) 
test case implantation (TCI) to modify existing test cases to cost-effectively test the 
untested configurations, and 4) dynamic test case prioritization (DTP) to dynamically 
prioritize test cases based on runtime execution results of the test cases in order to further 
improve the results of test case prioritization.  

To address the above-mentioned challenges, this thesis proposes a set of methods based 
on evolutionary computation. It includes a: 1) Search-based prioritization approach based 
on incremental unique coverage and positional impact, STIPI to address TCP (Paper A); 2) 
Search-based test case selection approach which can incorporate user preference for 
difference objectives to select test cases within a time budget to address TCS (Paper B); 3) 
Search-based test case implantation approach to automatically analyze and implant existing 
test cases, SBI to address TCI (Paper D); and 4) Test case prioritization approach, REMAP 
that uses rule mining and multi-objective search to dynamically prioritize test cases to 
address DTP (Paper E). In addition, this thesis proposes two new cluster-based genetic 
algorithms to address the shortcomings of the current state-of-the-art search algorithms in 
multi-objective test optimization (Paper C). 

All the proposed methods have been extensively evaluated by comparing against the 
state-of-the-art approaches by employing different case studies (e.g., industrial, real-world, 
open source) and widely used evaluation metrics (e.g., average percentage of fault 
detected). The results showed that the proposed methods could significantly improve the 
performance for all the identified challenges, and thus, help in cost-effective testing. 
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Summary 
 
 
 
 
 
 
 

1 Introduction 
Software is ubiquitous in our everyday life. It exists in our smartphones, computers, 
televisions, cars and so on. In order to deliver high-quality software, software testing is 
performed to reveal software faults and ensure that the execution of software matches its 
expected behavior [1]. Today software testing has become an integral part of software 
development accounting for up to 50% of development budgets [2-5]. The cost is even 
significantly higher for large-scale systems [6] since they are composed of diverse 
hardware and software, and a large number of configurations in these systems need to be 
tested. As a result, companies face different constraints (e.g., time, resources) while trying 
to deliver reliable and high-quality software to the market. This raises the need to test such 
systems cost-effectively by taking into consideration both the cost and effectiveness (e.g., 
fault detection capability) of testing. 

In this thesis, we applied methods based on evolutionary computation to cost-effectively 
test large-scale systems based on our collaboration with Cisco Systems Norway, which 
develops video conferencing systems (VCSs) [7, 8]. These VCSs enable high-quality 
conference meetings. Based on our discussion with the test engineers from Cisco, we 
observed that cost-effectively testing VCSs is a challenging task since a large number of 
test cases have been designed and implemented. However, the test engineers have limited 
time and resources to execute the test cases. To address this issue, we formulated two types 
of multi-objective test optimization problems: 1) test case prioritization, which aims to 
prioritize the test cases in the test suite in an optimal order to maximize the effectiveness of 
the test cases (e.g., configuration coverage) and 2) test case selection, which aims to select 
a subset of test cases from the entire test suite that can be executed within the defined time 
budget with maximum effectiveness and minimum cost (e.g., execution time of each test 
case). As compared to test case prioritization, test case selection selects a subset of test 
cases, where the order of the test cases does not matter. 
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After addressing the multi-objective test optimization problems, we observed that the 
existing test cases in Cisco do not cover the entire configurations supported by the VCSs, 
and some test cases use the same configurations. Thus, end users can encounter unexpected 
errors when VCSs are used with untested configurations. Manually writing test cases to 
test the untested configurations requires a large amount of manual work, which is 
practically infeasible. Moreover, certain test cases verify similar configurations decreasing 
the efficiency of testing. To address this issue, we formulated a 3) test case implantation 
problem, which aims to modify existing test cases for testing the untested configurations 
cost effectively. With test case implantation, existing test cases are modified, and thus, 
runtime prioritization is required in order to refine the solutions for detecting the faults 
quicker. We termed this problem as 4) dynamic test case prioritization, which aims to 
dynamically prioritize the statically prioritized test cases based on the runtime execution 
result of the test cases. Fig. 1 presents the overall scope of the thesis. 

 
Fig. 1. The overall scope of the thesis 

For the test case prioritization problem, the thesis proposes a search-based test case 
prioritization approach based on incremental unique coverage and position impact (STIPI). 
Incremental unique coverage was defined to consider only the incremental unique 
elements (e.g., test APIs) covered by a specific test case as compared with the elements 
covered by the already prioritized test cases. Position impact was defined to consider the 
impact of a specific test case on the quality of a prioritization solution, such that a test case 
with a higher execution position (i.e., scheduled to be executed earlier) has more impact 
than a test case with a lower execution position. Four effectiveness measures were defined 
to evaluate the quality of the solutions based on the configurations covered and fault 
detection capability of the test cases, and for each measure, a fitness function was defined. 
The results were empirically evaluated using three datasets from the industrial partner with 
four different time budgets: 25%, 50%, 75%, and 100% (i.e., no time budget). The results 
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showed that STIPI performed better than the five selected approaches from literature for on 
average 90% of the comparisons. 

Concerning the test case selection problem, the thesis introduces a search-based multi-
objective test case selection approach, which can incorporate user preference for different 
objectives. Four cost-effectiveness measures were defined to evaluate the quality of the 
solutions, and for each measure, a fitness function was defined. After that, a fifth fitness 
function was introduced to incorporate the user preference for different cost-effectiveness 
measures to guide Pareto-based search algorithms in a particular search space. The results 
were extensively evaluated using eight different search algorithms (consisting of three 
weight-based and five Pareto-based search algorithms) by employing a real-world case 
study and 10 artificial problems. The 10 artificial problems consisted of a different number 
of test cases and were created by simulating the real-world case study. Additionally, two 
different weight assignment strategies were used to assign the preference for different 
objectives for each search algorithm. The results showed that all the search algorithms with 
either of the weight assignment strategies significantly outperformed random search. In 
addition, Strength Pareto Evolutionary Algorithm (SPEA2) [9] with either of the weight 
assignment strategies performed the best among different search algorithms. 

For the test case implantation problem, the thesis proposes a search-based test case 
implantation approach (named SBI) to automatically analyze and implant the existing test 
cases with the goal to test the untested configurations and test APIs. SBI consists of two 
key components: 1) Test case analyzer to obtain the program dependence graph for the 
statements in the test case by analyzing each test case; and 2) Test case implanter to select 
suitable test case for implantation using three operators: selection, crossover, and mutation 
and then implant (i.e., modify) the selected test cases using three operations: addition, 
modification, and deletion. Five cost-effectiveness measures were defined to assess the 
quality of the solutions (i.e., implanted test suites), and three variants of REMAP were 
empirically evaluated using an industrial case study and an open source case study. The 
results showed that all the three variants of SBI managed to cost-effectively improve the 
test suite. Additionally, SBI with Non-dominated Sorting Genetic Algorithm (NSGA-II) 
[10] performed the best. Specifically, SBI with NSGA-II achieved on average 19.3% 
higher coverage of configuration variable values for both the case studies.  

Regarding the dynamic test case prioritization problem, the thesis proposes a test case 
prioritization approach named as REMAP that uses rule mining and multi-objective search 
to dynamically prioritize the test cases. REMAP consists of three key components: Rule 
Miner (RM), Static Prioritizer (SP), and Dynamic Executor and Prioritizer (DEP). RM 
defines fail rules and pass rules for representing the execution relations among test cases 
and mines these rules from the historical execution data. SP defines objectives to guide the 
search and applies multi-objective search to prioritize the test cases statically. DEP 
executes the statically prioritized test cases obtained from the SP and dynamically updates 
the test cases order based on the runtime test case execution results, and fail rules and pass 
rules from RM. 18 variants of REMAP were empirically evaluated against 29 variants of 4 
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different approaches by employing two industrial and three open source case studies. The 
results showed that all the variants of REMAP performed significantly better than random 
search. In addition, the two best variants of REMAP (for two different sets of objectives) 
performed significantly better than the selected approaches by 84.4% and 88.9%, and 
managed to achieve on average 14.2% and 18.8% higher average percentage of faults 
detected per cost (APFDc) scores. 

In addition to these works, the thesis proposes two new cluster-based genetic algorithms 
with elitist selection (CBGA-ES+ and its predecessor, CBGA-ES in Paper F) to address the 
current shortcomings of the state-of-the-art search algorithms, which we observed while 
working on the above-mentioned multi-objective test optimization problems. Specifically, 
current multi-objective search algorithms make choices based on the random number 
generation when selecting parent solutions (i.e., stochastic parent solutions) to produce 
offspring solutions. However, if the selected parent solutions are suboptimal in the 
population, it might result in offspring solutions with bad quality, i.e., the produced 
offspring solutions have worse values for the different objectives as compared to the 
solutions in the population. Thus, stochastic parent selection may prevent algorithms in 
finding optimal solutions. To address this issue, the proposed cluster-based genetic 
algorithms employ an efficient elitist strategy to select the parent solutions for producing 
the offspring solutions. The results showed that CBGA-ES+ performed significantly better 
than the state-of-the-art search algorithms and its predecessor, CBGA-ES for 66% of the 
experiments from five different multi-objective test optimization problems (e.g., test case 
prioritization). Moreover, for solutions in the same search space, CBGA-ES+ managed to 
perform better than the selected search algorithms and its predecessor, CBGA-ES for 
11.5% on average. 

This thesis consists of two parts. 
Summary: The first part of the thesis (Part I) consists of the following sections: Section 2 
provides relevant background information required to understand the thesis. The research 
method is presented in Section 3. Section 4 briefly presents the contributions of the thesis 
followed by the summary of the key results in Section 5. Section 6 outlines future research 
direction, and Section 7 concludes the thesis. 
Papers: The second part of the thesis (Part II) presents the published or submitted research 
papers, which are included in this thesis. 
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2 Background 
This section provides the necessary technical background to understand the rest of this 
thesis. Section 2.1 provides a brief overview of software testing followed by an 
introduction to optimization problems in Section 2.2. Section 2.3 provides a short 
description of different search algorithms. Finally, Section 2.4 provides a brief introduction 
to data mining. 

2.1 Software Testing 

The goal of software testing is to verify that the software is reliable and works as expected. 
It is considered as one of the most important activities in the software development 
process. Studies show that software testing can consume up to 50% of the total software 
development costs [2-5]. Testing is used as a means of validation and verification, where 
the validation process describes whether the right software is built and the verification 
process describes if the software is built right [11]. Even though testing can be used to 
show the presence of errors, it cannot show that there are no errors [11]. Thus, the goal of 
testing is to find as many errors as possible, and this can help the stakeholders gain 
confidence in the correct functioning of the software in its intended environment. 

Software testing can be classified into two main categories: black box testing and white 
box testing. Black box testing is also referred to as functional testing. In black box testing, 
a system under test (SUT) is considered as a black box, where the internals of the system 
are not known, i.e., only the input and the outputs of the SUT are known. Specifically, the 
test cases are generated from informal or formal specifications of the SUT, and then the 
outputs generated by the SUT are compared with the expected behavior as defined by the 
requirements/specifications. There exist different techniques for black box testing, such as 
boundary value analysis, equivalence partitioning, and pairwise testing. Black box testing 
is typically used when the source code is unavailable, or when testing the entire system. 

White box testing is also referred to as structural testing. In white box testing, the 
software system is treated as a white box, and testing is based on the actual source code of 
the software. The test cases defined in white box testing have access to the algorithms and 
structures of the source code. White box testing aims to discover errors that have occurred 
during program implementation. Some examples of white box testing techniques include 
mutation testing, data-flow testing, path testing, and statement testing. White box testing is 
typically used during the early stages of the testing process where the programmer is in 
charge of executing the test suite.  

2.2 Testing Optimization Problems 

Several software testing problems (e.g., test case prioritization) can be reformulated as 
optimization problems, where the aim is to find the best solution(s) from the set of all 
feasible solutions corresponding to one or more given functions to be optimized. In order 
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to reformulate a software testing problem as an optimization problem, one needs to: 1) 
represent the problem so that it allows symbolic manipulation, 2) define a fitness function 
that captures the objective(s) to be optimized; and 3) employ a set of manipulation 
operators that allow changing the candidate solutions [12]. The representation of the 
candidate solutions depends on the nature of the problem. The fitness function is used to 
evaluate the quality of a candidate solution (i.e., an element in the search space), and thus 
guide the search in order to find the optimal solution. Some operators are used to mutate 
the candidate solutions while others are used to exchange part of their solutions to produce 
other candidate solutions. The optimization problem can be defined as either a 
maximization or minimization problem that provides the maximum or minimum value for 
the objective function within the search space. 

If an optimization problem has only one objective function to be optimized, it is termed 
as a single-objective optimization problem. On the other hand, if an optimization problem 
involves multiple and often-conflicting objective functions to be optimized at the same 
time, it is termed as a multi-objective optimization problem. Single-objective optimization 
problems have only one solution while there might exist more than one best solution for 
multi-objective optimization problems since it is essential to analyze tradeoffs between the 
objectives. Therefore, for multi-objective optimization problems, a set of solutions with 
equivalent quality (i.e., non-dominated solutions) is usually produced based on Pareto 
dominance and Pareto optimality [13-15]. Specifically, Pareto optimality defines the 
Pareto dominance for assessing the quality of the solutions. 

Suppose there are n objectives 𝑂 = {𝑜%, 𝑜', … , 𝑜)} to be optimized for a multi-objective 
test optimization problem, and each objective can be measured using objective functions 𝑜+ 
from 𝐹 = {𝑓%, 𝑓', … , 𝑓)}.  If we aim to minimize the objective function such that a lower 
value for an objective function implies better performance, then solution 𝐴 dominates 𝐵 
(i.e., 𝐴 ≻ 𝐵) iff: ∀+2%,',…,)𝑓+(𝐴) ≤ 𝑓+(𝐵)	⋀	∃+2%,',…,)𝑓+(𝐴) < 𝑓+(𝐵). Additionally, solution 
𝐴∗ is Pareto optimal if it is not dominated by any other solution in the feasible region Ω, 
i.e., iff 𝐴∗ ≻ 𝐶	∀	𝐶 ≠ 𝐴∗ ∈ 	Ω. Specifically, Pareto optimal solutions are the solutions 
whose corresponding objective functions in 𝐹 cannot be improved simultaneously, i.e., 
there does not exist other solution that can improve one of the objective functions without 
worsening other objective functions [16]. The non-dominated solutions are said to form a 
Pareto-optimal set and the corresponding objective vectors (with the values of the 
objective functions) form a Pareto frontier. In practice, a decision maker selects one of the 
solutions from the Pareto frontier based on his/her preference of the objective functions. 

Fig. 2 presents a graphical representation for a two objective minimization problem 
(i.e., a lower value for the objective is better). In Fig. 2, A dominates B, C, and D since the 
values of both the objectives (i.e., min F1 and min F2) for A is lower than B, C, and D. 
Additionally, E and A are non-dominated solutions since E is better than A for the objective 
function min F1 while A is better than E for the objective function min F2, and there does 
not exist any other solution in Fig. 2 that has better values for both the objectives 
simultaneously. Thus, E and A can be used to form a Pareto front.  
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When the search space becomes too large, specific techniques are required to solve both 
the single-objective and multi-objective test optimization problems in a reasonable time. 
To address this issue, Search Based Software Testing (SBST) employs metaheuristics to 
tackle them efficiently after reformulating the testing problems as optimization problems. 
Specifically, metaheuristics combine basic heuristic methods in higher level frameworks in 
order to find solutions to combinatorial problems at a reasonable computational cost [17, 
18]. To guide the search, problem-specific fitness function(s) is defined, which helps to 
obtain good solutions from a potentially infinite search space.  

Most of the real world testing problems include multiple objectives to be optimized at 
the same time, which often conflict among each other [19]. For instance, a test case 
prioritization problem requires dealing with multiple well-known contrasting criteria, such 
as maximizing statement coverage while minimizing the execution time of the test cases. 
SBST has shown to be widely effective in solving these problems in the literature [17, 20-
24].  

2.3 Search Algorithms 

There exist different search algorithms that can be applied in SBST. Table 1 presents a 
classification of the selected search algorithms used in this thesis. In this section, we 
describe at high-level several types of search algorithms that are used in this thesis.  

Genetic algorithms (GAs) are the most famous metaheuristic used in SBST. GAs are 
inspired by the process of natural selection that optimize one or more objectives (e.g., 
maximizing code coverage while minimizing the execution cost). GAs starts with a 
random population of solutions, where each individual represents a potential solution to the 
optimization problem. Each solution is evaluated using its fitness, and the population is 
evolved towards better solutions by generating new solutions using bio-inspired operators: 
selection, crossover, and mutation [25]. The selection operator selects candidate solutions 
within each generation, the crossover operator is used to recombine pairs of selected 
individuals, and mutation operator randomly modifies parts of individuals. For multi-
objective optimization, weight-based genetic GA (WBGA) assigns a particular weight to 

Fig. 2. Pareto dominance for a two objective minimization problem 
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each objective function for converting a multi-objective problem into a single objective 
problem using a scalar function. 

Table 1. Classification of the Selected Search Algorithms 
Algorithm Category Algorithm 

Genetic Algorithms (GAs) 
Weight-Based GA WBGA 
Sorting-Based GA NSGA-II 
Cellular-Based GA MOCell 

Evolutionary Algorithms (EAs) 
Strength Pareto EA SPEA2 
Evolution Strategies PAES 

Indicator-Based IBEA 
Nearest Neighbor Greedy Greedy 

Non-dominated Sorting Genetic Algorithm (NSGA-II) [10] is based on Pareto 
optimality. NSGA-II sorts the population and places them into several fronts based on the 
ordering of Pareto dominance. After that, the individual solutions are selected from the 
non-dominated fronts, and if the number of the solutions from the non-dominated front 
exceeds the specified population size, the solutions with a higher value of crowding 
distance are selected. Specifically, crowding distance is used to measure the distance 
between the individual solutions with the others in the population [26]. 

In Strength Pareto Evolutionary Algorithm (SPEA2), the fitness of each solution is 
calculated by adding up its raw fitness and density information [9]. The raw fitness is 
calculated based on the number of the solutions it dominates. The density information is 
calculated based on the distance between a solution and its nearest neighbors. SPEA2 starts 
by creating an empty archive and fills it with the non-dominated solution from the 
population, and in the subsequent generations, the solutions from the archive and the non-
dominated solution in the current population are used to create a new population. 
Additionally, if the number of combined non-dominated solutions is more than the 
maximum size of the specified population, the solutions with the minimum distance to 
other solutions are selected by applying a truncation operator. 

Indicator Based Evolutionary Algorithm (IBEA) allows any performance indicator (e.g., 
hypervolume (HV) [27]) to be incorporated into the selection mechanism of a multi-
objective evolutionary algorithm [28]. Specifically, quality indicators are used to measure 
the quality of the solutions for multi-objective optimization, and they are used by IBEA to 
guide the search towards optimal solutions. For instance, HV calculates the volume in the 
objective space covered by a non-dominated set of solutions (e.g., Pareto front) [29]. One 
potential downfall of using HV is the computational complexity of calculating the 
hypervolume measure as the number of objectives increase. 

Multi-Objective Cellular Genetic Algorithm (MOCell) is based on the cellular model of 
genetic algorithm with an assumption that an individual solution can only interact with its 
neighbors in the population during the search process [30]. Specifically, MOCell stores a 
set of non-dominated solutions in an external archive, and after each generation, MOCell 
replaces a fixed number of randomly chosen solutions in the population with the solutions 
from the archive with a feedback procedure until the termination criteria for the algorithm 
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are met. Note that the replacement only occurs if the solutions from the population are 
worse than the solutions in the archive. 

Pareto Archived Evolution Strategy (PAES) maintain an archive of non-dominated 
solutions and applies the dynamic mutation operator for exploring the search space to find 
optimal solutions [31]. Initially, a random solution is added to the archive, which is then 
used to generate the offspring solution. If the newly generated solution is better than the 
parent solution, it is used to replace the parent solution and further added to the archive if it 
is better than the solutions there. On the other hand, if the generated solution is worse than 
the parent solution, it is discarded, and the parent solution is used to generate another 
solution. Additionally, if the generated solution is neither dominating nor dominated by the 
solutions in the archive, additional measures (similar to NSGA-II) are taken into account, 
i.e., if the generated solution lies in a more crowded part of the feasible place (with respect 
to members of the archive) as compared to the parent solution, it is disposed, else it 
replaces the parent solution. 

The greedy algorithm works on the “next best” search principle, such that the element 
with the highest weight for the particular objective (e.g., statement coverage) is selected 
first [17]. After that, an element with the second highest weight, third highest weight and 
so on are selected on that order until all the elements are selected, or the termination 
criteria of the algorithm are met. If there exist multiple elements with the same weight, one 
of them is randomly selected [32]. For multi-objective optimization, greedy algorithm 
converts the problem into a single optimization problem using a scalar objective function. 
Specifically, each objective is assigned a weight (based on user preference), and the overall 
value of the objective is computed by summing up the weighted objective values. 

2.4 Data Mining 
Data mining is used to extract hidden correlations, patterns, and trends from the large data 
set, which are both understandable and useful to the data owner [33]. In our context, we 
used data mining to extract hidden correlations and patterns between the test cases based 
on their historical execution data for prioritizing the test cases dynamically. Data mining 
involves using pattern recognition technologies together with statistical and mathematical 
techniques [34]. Data mining techniques have been widely applied to problems from 
several domains (e.g., engineering), and it is one of the fastest growing fields in the 
computer industry [34].  

Nowadays, a large amount of data is produced since all automated systems generate 
some form of data for analysis or diagnostic objectives [35]. However, the raw data might 
be unstructured and not immediately suitable for automated processing, and the data might 
be collected from different formats. To make better sense of the data, data mining consists 
of three phases: data cleaning, feature extraction, and algorithm design. Specifically, the 
unstructured and complex data is converted to a well-structured data set that can be 
effectively used by the computer program in the data cleaning and feature extraction phase. 
After that, an algorithm is used to discover hidden patterns from the data. 
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Data mining methods can be classified into supervised and unsupervised learning. 
Supervised learning is used for labeled data, and it aims to discover the relationship 
between input data (i.e., independent variables) and the target attribute (i.e., dependent 
variable) or outcome [36]. Unsupervised learning is used for unlabeled data, and it aims to 
identify hidden patterns within input data without labeled responses [36]. Moreover, 
supervised learning uses class information from the training instances, unlike unsupervised 
learning that does not use the class information. In our thesis, we have labeled data, and 
therefore, we adopted supervised learning. Supervised models have two main types: 
classification and regression models. Classification models map the input space into 
predefined classes, and regression models map the input space into a real-valued domain 
[36].  

In this thesis, we used classification models since we have predefined classes. In 
classification models, the classification rules are constructed in two major ways: 1) Indirect 
method (e.g., C4.5 [37]), which learns decision trees and converts them to rules and 2) 
Direct method (e.g., Repeated Incremental Pruning to Produce Error Reduction (RIPPER) 
[38]), which extracts rules from the data. The indirect method is computationally expensive 
in the presence of noisy data while the direct method has the over pruning (hasty 
generalization) problem [39]. To avoid these shortcomings, Pruning Rule-Based 
Classification (PART) [40] is derived from C4.5 and RIPPER. Specifically, PART creates 
partial trees and corresponding to each partial tree; a single is extracted for the branch that 
covers the maximum nodes. 
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3 Research Method 
This section describes our research method used for the entire thesis. This research work 
was funded through Certus [41], which is a center for research-based innovation with the 
objective to improve the reliability of large-scale systems, and it involves some industrial 
partners. This thesis is mainly driven by the collaboration with Cisco Systems Norway, 
which focuses on testing VCSs in a cost-effective manner [7, 8].  

3.1 Problem Identification 
The thesis was initiated by identifying a research problem in an industrial setting (i.e., 
Cisco Systems Norway) to ensure practical relevance. The VCSs developed by Cisco 
enable high-quality conference meetings and can be configured in many ways for 
supporting various user requirements (e.g., using different communication protocols, such 
as SIP and H323) [42]. Testing VCSs in a cost-effective manner is a challenging task, and 
a large number of test cases have been designed and implemented by test engineers. 
Specifically, each test case needs to 1) setup test configurations for VCSs under test (i.e., 
SUTs), 2) invoke a set of test APIs, and 3) check the statuses of the VCSs after executing 
the test case as shown in Fig. 3. The test cases take a long time to execute (median 
execution time of a test case is 30 minutes), and it is not possible to execute all the test 
cases due to different constraints (e.g., time, resource). Based on the domain knowledge of 
VCS testing and discussions with test engineers, we observed that there are three 
challenges in their current testing practice that we aim to address on this PhD thesis. 

 
Fig. 3. Overview of testing a VCS (SUT) 

Challenge 1. Multi-Objective Optimization. Our industrial partner (i.e., Cisco systems 
Norway) develops VCSs in a continuous integration environment, and changes made by 
developers are merged in the VCS codebase daily. Testing is performed each time a new 
change is committed to the VCS codebase. The median execution time of a test case is 30 
minutes, and thus, it is not feasible to execute all the test cases due to a limited time budget 
(e.g., 10 hours available for test case execution). Therefore, it is important to seek cost-
effective approaches to optimize a set of test cases based on predefined criteria, such as 
cover maximum number of configurations, test APIs, statuses, and detect faults as possible. 
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A number of existing works have been done in the context of Cisco for multi-objective 
test case optimization [7, 8, 43]. However, these works define the cost-effective objectives 
at a high level (e.g., feature pairwise coverage in [8], test resource usage in [7]) rather than 
taking detailed test configurations, test APIs, and statuses into account. Through further 
investigation, we noticed that these detailed levels of information should be properly 
incorporated when optimizing test cases before execution. Doing so makes it possible to 
propose efficient approaches that take configurations, test APIs, and statuses of the VCSs 
into account. 

Challenge 2. Test Case Implantation. We noticed that the existing test cases in Cisco 
are unable to cover the entire configurations and test APIs supported by the VCSs. This 
may result in delivering VCSs (without thorough testing) to markets, and end users might 
encounter unexpected problems when using the VCSs in a way that is not tested. 
Moreover, we need to mention that developing test cases manually to cover the entire 
configurations and test APIs is practically infeasible since each configuration and test APIs 
can be configured with a number of values, e.g., configuration protocol can be SIP and 
H323, test API dial can be executed with a call rate between 64 and 6000. Also, we 
observed that certain test cases verify similar configurations decreasing the efficiency of 
testing.  Thus, it requires an automated and cost-efficient approach to modify the existing 
test cases to test maximum configurations and test APIs, which are not covered by the 
existing test cases. 

Challenge 3. Dynamic Test Case Prioritization. Each time the software in VCSs is 
modified, a test cycle is performed, where a set of test cases from the test suite is executed. 
The result of the test execution data is then stored. With time, the amount of test execution 
data increases significantly. Currently, there exists a huge amount of historical test case 
execution data (more than 100 Gb) in the industrial partner, e.g., detailed configurations 
for execution, test APIs employed, success or failure after executing each test API, and the 
overall execution result of each test case at different test cycles. The test engineers at Cisco 
are interested to improve the testing process by incorporating the historical test case 
execution data in order to help them find bugs as soon as possible. 

3.2 Problem Formulation 
After identifying the challenges with our industry partner, we reviewed the state-of-the-art 
techniques to match the challenges [44-51]. Based on this, we proposed the following three 
research questions to address during my Ph.D. 

RQ1. How to cost-effectively optimize a set of test cases based on predefined criteria? 
This research question aims to address challenge 1 by proposing cost-effective approaches 
to optimize a given set of test cases based on predefined criteria. Specifically, we focus on 
two perspectives for test case optimization: 1) test case prioritization that focuses on 
prioritizing test cases into an optimal order for maximizing the effectiveness of testing, and 
2) test case selection that aims at cost-effectively selecting a set of relevant test cases 
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within a time budget for testing particular systems. Since we observed that executing the 
existing test cases cannot cover the entire configurations and test APIs (challenge 2), we 
require an efficient approach for modifying the existing test cases to test the uncovered 
configurations and test APIs, which motivates RQ2. 

RQ2. How to cost-effectively implant existing test cases with the aim to test uncovered 
configurations and test APIs? This research question aims to address challenge 2 by 
modifying the existing test cases with the aim to test untested configurations and test APIs. 
We name this idea as test case implantation, i.e., implanting the untested information (e.g., 
configurations) into the existing test cases. Addressing RQ2 can largely help enhance the 
capability of existing test cases in terms of covering configurations and test APIs without a 
need to manually implement a large number of test cases. As test cases are executed, the 
size of the historical test case execution data increases, which can then be investigated to 
identify useful relations for refining the solutions from RQ1 and RQ2, which motivates 
RQ3. 

RQ3. What relations can be mined and extracted from test cases based on their 
historical execution data in order to find faults as soon as possible? This research 
question aims to address challenge 3 by mining execution relations among test cases in 
order to find faults as soon as possible. Moreover, this research question can help refine the 
solutions from RQ1 and RQ2 (i.e., multi-objective test case prioritization and test case 
implantation). 

In our work, we used search-based techniques since our potential solution space is huge 
and search-based techniques have shown good results for solving such complicated 
optimization problems. Moreover, we used different rule mining techniques that have 
shown good results in literature to extract execution results between the test cases in RQ3. 
In addition, we identified and formulated a set of objectives through careful investigation 
and discussion with test engineers. Note that the entire objectives were mathematically 
defined and formulated, and empirically evaluated after applying the search techniques. 

3.3 Solution Realization 
This step focuses on realizing the proposed solutions to address each research question 
(described in Section 3.2) for tacking the challenges described in Section 3.1. Table 2 
presents a high-level overview of how different research questions were addressed in this 
PhD work. Initially, we discussed each challenge with Cisco to have a common 
understanding of the problem. After that, we obtained datasets from Cisco for tacking 
different challenges and discussed the characteristics of the datasets with the test engineers 
from Cisco to ensure that we understood it correctly. Based on this, we implemented our 
techniques and performed different empirical evaluations using the industrial case study. 
Once the results looked promising, we performed additional experiments with open source 
case studies to generalize the results. Finally, we discussed the findings with the engineers 
from Cisco (e.g., the benefits of the proposed techniques), and how the solution could be 
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integrated into their development process. For instance, for dynamic test case prioritization 
(Paper E), we discussed the discovered hidden rules among the execution relation of the 
test cases, and how it helped to discover the faults quicker. Additionally, we designed and 
implemented the corresponding tool support with respect to the realized solutions for each 
paper, e.g., STIPI to prioritize test cases (Paper A), search-based test case selection tool 
with user preferences (Paper B), cluster-based genetic algorithms (Paper C and Paper F), 
SBI to implant existing test cases (Paper D), and REMAP to dynamically prioritize the test 
cases (Paper E). 

Table 2. Overview of Solutions for Addressing Different Research Questions and Challenges  

Challenge Research Question Solution 
Multi-Objective Optimization 1 Paper A, B, C 
Test Case Implantation 2 Paper D 
Dynamic Test Case Prioritization 3 Paper E 

3.4 Solution Evaluation 
To assess the performance of the proposed methods in terms of each research question, we 
used different case studies, such as industrial, real world, artificial problems, and open 
source. Moreover, we compared the proposed methods against the state-of-the-art 
approaches using widely used evaluation metrics, such as the average percentage of fault 
detected [52], statement coverage, branch coverage, mutation score [53], fault detected 
[54], and hypervolume [27, 55]. In addition, we applied rigorous statistical tests, such as 
Vargha and Delaney statistics [56] and Mann-Whitney U test [57] to analyze the results. 
For instance, to evaluate RQ3, we compared 18 variants of the proposed approach, 
REMAP (in order to find the best variant) against 29 variants of four approaches by 
employing two industrial case studies and three open source datasets using an average 
percentage of faults detected per cost [58] scores (Paper E). To statistically analyze the 
results (Paper E), we applied four different statistical tests: 1) Vargha and Delaney 
statistics, 2) Mann-Whitney U test, 3) Kruskal-Wallis test [59], and 4) Dunn’s test [60] 
with Bonferroni correction [61]. The goal for such extensive evaluation is to ensure that 
the proposed approach can assist to improve the current testing practice and is robust. 
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4 Evolutionary Computation Based Testing Methods  
In this section, we present a set of methods to address each research question. 

4.1 Multi-Objective Test Optimization 

4.1.1 Search-Based Test Case Prioritization Approach 

Based on our collaboration with Cisco Systems Norway, the first step is to find an optimal 
method to cost-effectively optimize a set of test cases based on predefined criteria. 
Specifically, in the context of Cisco, test cases need to be prioritized by taking into account 
detailed test configurations, test APIs, and statuses of the systems since it is not possible to 
execute all the test cases due to different constraints (as described in Section 3.1). 
However, there exists trade-off among these objectives, and thus, the problem can be 
formulated as a multi-objective optimization problem. 

To address this problem, we proposed a search-based test case prioritization approach 
based on incremental unique coverage and position impact (STIPI) in Paper A. Fig. 4 
presents an overview of STIPI. Specifically, four effectiveness measures were defined with 
respect to the required objectives for prioritization based on the context of testing VCSs, 
i.e., maximizing configuration coverage (CC), test API coverage (APIC), status coverage 
(APIC), and fault detection capability (FDC). For each objective, fitness function was 
defined by incorporating two prioritization strategies: 1) Incremental unique coverage, i.e., 
for a specific test case, we only consider the incremental unique elements (e.g., test APIs) 
coverage by the test case as compared with the elements covered by the already prioritized 
test cases; and 2) Position impact, i.e., a test case with a higher execution position (i.e., 
scheduled to be executed earlier) has more impact on the quality of a prioritization 
solution. The fitness function can be combined with any multi-objective search algorithm 
(e.g., in our context, we used NSGA-II). The results were empirically evaluated using three 
datasets from Cisco with four different time budgets. 

T1 T2 ... Tn

Test Suite

STIPI

Configuration
Test API
Status
Fault Detection Capability

Execution

enters time
budget 

optimized
output

updates fault 
detection  capability

has

scheduled forinput for

AlgorithmIncremental
Unique Coverage

Position
Impact

Fitness Functions

Tp1 Tp2 ... Tk

Prioritized Test Cases
STIPI

selects

Test 
engineer

uses

Fig. 4. Overview of STIPI 



 
 

18 
 
 
 
 
 

4.1.2 Search-Based Test Case Selection Approach 
Besides Cisco, we also worked on a real-world case study from the maritime domain for 
testing some of the key elements of subsea oil and gas production systems. The case study 
was created using different standards (e.g., design and operation of subsea production 
systems- ISO 13628-6:200), OREDA offshore reliability data handbook, and requirements 
from different oil and gas companies publicly available. The real-world case study was 
inspired by our prior collaboration with an industrial partner from the maritime domain. 
The department collaborating with us used manual test cases, which requires a lot of effort 
(in terms of time and cost) to execute. However, they had a limited time budget available 
to test the systems, and thus, they needed to select the best set of test cases that could be 
executed within the time budget while ensuring maximum effectiveness. 
 To address the above-mentioned challenge, we introduced a search-based multi-
objective test case selection approach (Fig. 5) in Paper B. Specifically, we defined four 
objectives: maximizing mean priority (MPR), mean probability (MPO), mean consequence 
(MC), and minimizing time difference (TD). For the selected test cases, 1) MPR measures 
the average importance of the test cases based on the type of requirements the test cases 
check; 2) MPO measures the average likelihood that the test cases might find faults; 3) MC 
measures the average impact of failures of the test cases that the system can have on the 
environment once it is operational; and 4) TD measures the difference between the 
execution time of the selected test cases and the time budget available for testing.  

 
Fig. 5. Overview of search-based test case selection approach that supports user preferences 

 Moreover, to incorporate user preference for different cost-effectiveness measures, we 
proposed a fifth objective to guide Pareto-based search algorithms in a particular search 
space. The objectives were then used with eight different search algorithms (three weight-
based and five Pareto-based) by employing a real-world case study and 10 artificial 
problems with varying size. We applied two different weight assigned strategies to 
incorporate user preferences: fixed weights (FW) and randomly assigned weights (RAW). 
Specifically, FW assigns fixed normality weights to each objective based on the domain 
knowledge, while RAW is inspired by Random-Weighted Genetic Algorithm (RWGA), 
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where a randomly-generated set of normalized weights are dynamically assigned (to each 
objective) at each generation during the search [26]. Note that the weights generated by 
RAW should satisfy user-defined constraints. Overall 75 problems were defined for the real 
world case study, and 750 problems were defined for the 10 artificial problems based on 
possible user preferences. 

4.1.3 New Cluster-Based Genetic Algorithms to Support Multi-Objective Test 
Optimization 

While working on the multi-objective test case optimization problems (Paper A and B), we 
observed that the existing multi-objective search algorithms make choices based on the 
random number generation when selecting parent solutions (i.e., stochastic parent 
selection) to produce offspring solutions, due to the selection mechanisms employed in the 
algorithms. For example, in binary tournament selection (commonly used in the literature 
[62, 63]), two solutions are randomly selected, and the better solution is selected as the 
parent. However, if the selected parent solutions are suboptimal in the population, it might 
result in offspring solutions with bad quality (i.e., the produced offspring solutions have 
worse value for the objectives as compared to the solutions in the populations). This may 
subsequently degrade the overall quality of the solutions in the next generation, and in the 
worst case, stochastic parent selection may prevent algorithms in finding optimal solutions. 
     To address this problem, we proposed a cluster-based genetic algorithm with elitist 
selection (CBGA-ES – Paper F) and its extension CBGA-ES+ (Paper C) for supporting 
multi-objective test optimization. The core-idea of CBGA-ES and CBGA-ES+ lies on 1) 
dividing the population into different clusters for grouping solutions with similar quality 
and 2) defining cluster dominance strategy to rank the different clusters and only choosing 
the solutions from the best clusters for producing offspring solutions. When a new 
population is created, this process will be repeated for producing the next generation until 
the termination conditions for the algorithm is met. The core difference between CBGA-
ES and CBGA-ES+ lies on how the solutions from the different clusters are selected. 
Specifically, CBGA-ES+ selects only non-dominated solutions from the best clusters, 
while CBGA-ES selects all the solutions from the best clusters, and in case the number of 
the solutions in the cluster is higher than the specified elite population size, random 
solutions are selected. 

To empirically evaluate CBGA-ES and CBGA-ES+, we employed multiple case studies 
for five different multi-objective test optimization problems (e.g., test case prioritization 
problem (Paper A), test case selection (Paper B)) using three industrial and five open 
source case studies. The other test optimization problems were borrowed from a well-
known Search-Based Software Engineering Repository hosted by the CREST center [64]. 
Finally, the results were compared with the state-of-the-art search algorithms. 
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4.2 Search-Based Test Case Implantation Approach 
Followed by the multi-objective test case optimization step, we focused on how to cost-
effectively test the untested configurations and test APIs in Cisco to address RQ2. 
Manually implementing test cases (e.g., specifying configurations, calling relevant test API 
commands, checking corresponding system status) to test configurations and test API 
commands require a large amount of manual work, which is practically infeasible. 
Moreover, we noticed that configuring each test case is expensive since the VCSs need to 
be reset and reconfigured according to the specific test case requirements and some test 
cases verify similar configurations, which can decrease the efficiency of testing. 

To address the above-mentioned challenge, we proposed a search-based test case 
implantation approach (named as SBI) in Paper D to automatically analyze and implant the 
existing test suite cost-effectively with the aim to test the untested configurations and test 
API commands. SBI consists of two key components (Fig. 6): test case analyzer and test 
case implanter. The test case analyzer component ensures that implanted test cases are 
semantically correct (e.g., two new statements need to be added in a particular order). For 
this, the test case analyzer component statically analyzes each test case in the original test 
suite to obtain the program dependence graph [65, 66] for each test method to obtain the 
dependencies among test case statements. After that, the test case implanter component 
uses multi-objective search to select suitable test case for implantation, and the selected 
test cases are modified using a mutation operator at the test case level using three 
operations: addition, modification, and selection. Specifically, changes are made to one or 
more test case statements using the program dependence graph obtained from the test case 
analyzer component as shown in Fig. 6. 

 
Fig. 6. Overview of SBI 
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statements, and estimated execution time of the test cases. The proposed approach was 
empirically evaluated with an industrial and an open source case study using three variants 
of SBI (using NSGA-II, weight-based genetic algorithm, and random search). 

4.3 Rule-Mining and Search-Based Dynamic Test Case Prioritization 
Approach  

There exists a huge amount of historical test case execution data in the industrial partner, 
which grows in size as more test cases are executed. Understanding the relationships 
among the test case execution results can help to find faults quicker. In this regard, we 
carefully investigated the historical test case execution data and observed that there exist 
underlying relations among the executions of test cases, which test engineers were not 
aware of when developing the test cases. For instance, when the test case (T1) that tests the 
amount of free memory left in VCS after pair to pair communication for a certain (e.g., 5 
minutes) fails, the test case (T2) verifying that the speed of fan in VCS locks near the speed 
set by the user always fails as well. In addition, we observed that when T2 is executed as 
pass, another test case (T3) that checks the CPU load measurement of VCS also always 
passes.  We observed this relation in spite of the fact that all test cases are supposed to be 
executed independently of one another.  

Mining such execution relations among test cases can improve the effectiveness of test 
case prioritization. For instance, if T1 is executed as fail, T2 should be executed as early as 
possible (e.g., right after executing T1) since T2 has a high chance to fail, i.e., detect a 
fault. In addition, if T2 is executed as pass, T3 should be executed later (i.e., the priority of 
T3 should be decreased). Therefore, it is essential to prioritize the test cases in a dynamic 
manner considering the runtime test case execution results. 

With such motivation in mind, we proposed a test case prioritization approach, REMAP 
(Paper G, and its extension Paper E), which uses rule mining and multi-objective search to 
prioritize the test cases. As shown in Fig. 7, REMAP consists of three key components: 
Rule Miner (RM), Static Prioritizer (SP), and Dynamic Executor and Prioritizer (DEP). 
First, RM defines fail rules and pass rules for representing the execution relations among 
test cases and mines these rules from the historical execution data using a rule-mining 
algorithm (e.g., RIPPER). Second, SP defines multiple objectives (e.g., fault detection 
capability) to statically prioritize the test cases using a multi-objective search algorithm 
(e.g., NSGA-II). Third, DEP executes the statically prioritized test cases obtained from the 
SP and dynamically updates the order of the unexecuted test cases based on the runtime 
test case execution results using the fail and pass rules from RM.  

We empirically evaluated 18 variants of REMAP using three rule mining algorithms 
(RIPPER, C4.5, and PART) and three muti-objective search algorithms (NSGA-II, IBEA, 
and SPEA2) using two different sets of objectives (two objectives and three objectives). 
The 18 variants of REMAP were compared against two variants of random seach, three 
variants of greedy, 18 variants of static search-based prioritization approaches, and six 
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variants of rule-based approaches by employing two industrial case studies and three open 
source case studies. 

 

 
Fig. 7. Overview of REMAP 
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5 Summary of Results 
In this section, a summary and key results are presented for each paper submitted as a part 
of this thesis. 

5.1 Paper A 
“STIPI: Using Search to Prioritize Test Cases Based on Multi-Objectives Derived from 
Industrial Practice”, D. Pradhan, S. Wang, S. Ali, T. Yue, and M. Liaaen. In: Proceedings 
of the 28th International Conference on Testing Software and Systems (ICTSS), pp. 172-
190. Springer, 2016. DOI: 10.1007/978-3-319-47443-4_11. 
 
This paper aims at tackling the test case prioritization problem. Specifically, test case 
prioritization is one of the most widely used test optimization approach with the aim to 
prioritize a set of test cases into an optimal order for achieving certain criteria (e.g., fault 
detection) as early as possible. While working on a research-based innovation project with 
Cisco to improve the reliability of Video Conferencing systems (VCSs), we noticed that 
testing VCSs there is a challenging task, and a large number of test cases have been 
designed and implemented, which take a lot of time to execute (e.g., the median execution 
time of a test case is 30 minutes). To address this challenge, we defined a multi-objective 
test case prioritization problem based on the context of testing VCSs. Specifically, the 
proposed approach named Search-based Test case prioritization based on Incremental 
unique coverage and Position Impact (STIPI) defines four objectives and incorporates two 
prioritization strategies to evaluate the quality of the prioritized solutions. After that, the 
fitness functions are incorporated with a multi-objective search algorithm.  

We evaluated STIPI (using NSGA-II) against random search (RS), greedy approach, 
and three approaches from the existing literature by employing three datasets from Cisco 
with four different time budgets: 25%, 50%, 75%, and 100%. Note that 100% time budget 
implies that time budget is equal to the overall execution time of the test suite. Therefore, 
in total 60 comparisons were made with STIPI (i.e., 5 approaches × 4 time budgets × 3 
datasets). The results showed that STIPI significantly outperformed the selected 
approaches for 90% of the comparisons (i.e., 54 out of 60). Moreover, STIPI achieved 
better performance than RS for on average 39.9%, 18.6%, 32.7%, and 43.9% in terms of 
average percentage of configuration coverage, average percentage of test API coverage, 
average percentage of status coverage, and measured fault detection capability, 
respectively. 

 
 
   



 
 

24 
 
 
 
 
 

5.2 Paper B 
“Search-Based Cost-Effective Test Case Selection within a Time Budget: An Empirical 
Study”, D. Pradhan, S. Wang, S. Ali, and T. Yue. In: Proceedings of Genetic and 
Evolutionary Computation Conference (GECCO), pp. 1085-1092. ACM, 2016. DOI:  
DOI: 10.1145/2908812.2908850. 
 
This paper focuses on the test case selection problem. Specifically, the problem focuses on 
selecting a subset of test cases from the existing test suite, where the order of the selected 
test cases does not matter. In some contexts (e.g., releasing the software to the customer at 
the data defined in the contract) it is known beforehand the time budget (i.e., duration) 
available for testing. However, it is often infeasible to execute all the test cases within the 
given time budget, and the test manager/test engineers need to select the optimal set of test 
cases that can be executed within the time budget. To address this challenge, we proposed 
a search-based multi-objective test case selection approach, where the test engineers can 
provide a preference for different objectives, e.g., give more weight to the test cases, which 
found faults in the earlier executions. 

To evaluate our approach, we performed an empirical study using 1) three different 
weight-based search algorithms: Alternating Variable Method (AVM) [67], GA, and (1+1) 
Evolutionary Algorithm (EA) [68], and 2) five different Pareto-based search algorithms: 
NSGA-II, MOCell, SPEA2, CellDE, and IBEA by employing a real-world case study and 
10 artificial problems with varying size. We created artificial problems by simulating the 
real-world case study. For each approach, two different weight assignment strategies: 1) 
Fixed weights and 2) Randomly assigned weights were applied, and RS was used for a 
sanity check. The results showed that all the search algorithms performed significantly 
better than RS, and SPEA2 with either of the weight assignment strategies performed the 
best among the search algorithms. Overall, SPEA2 managed to improve on average 32.7%, 
39%, and 33% in terms of MPR, MPO, and MC as compared to RS. 
 

5.3 Paper C  

“CBGA-ES+: A Cluster-Based Genetic Algorithm with Non-Dominated Elitist Selection for 
Supporting Multi-Objective Test Optimization”, D. Pradhan, S. Wang, S. Ali, T. Yue, and 
M. Liaaen. Published in IEEE Transactions on Software Engineering (TSE). DOI: 
10.1109/TSE.2018.2882176. 
 
Existing multi-objective search algorithms make choices based on random number 
generation when selecting parent solutions to produce offspring solutions (i.e., stochastic 
parent selection), due to the selection mechanisms employed in the algorithms. However, if 
the selected parent solutions are suboptimal in the population, it might result in offspring 
solutions with bad quality. This may subsequently degrade the overall quality of the 



 
 

25 
 
 
 
 
 

solutions in the next generation, and in the worst case, stochastic parent selection may 
prevent algorithms in finding optimal solutions. To address this issue, we proposed a 
cluster-based genetic algorithm with elitist selection (CBGA-ES) for supporting multi-
objective test optimization in Paper F.  

In this paper, we extended the CBGA-ES algorithm to select only the non-dominated 
solutions from different clusters to produce offspring solutions, CBGA-ES+. In addition, 
we extensively evaluated the performance of CBGA-ES+ by comparing it with predecessor 
CBGA-ES, RS, Greedy, and four selected search algorithms (i.e., NSGA-II, SPEA2, 
MOCell, and PAES) that managed to obtain better performance in literature. For the 
empirical evaluation, we employed five multi-objective test optimization problems: test 
case prioritization (TCP), test case selection (TCS), test suite minimization (TSM), testing 
resource allocation (TRA), and integration and test order (ITO). TSM problem aims to 
eliminate the redundant test cases from the existing test suite for the current system in 
order to reduce the cost of testing. TRA problem aims to optimally allocate the resources to 
different modules (that comprise the software system) for maximizing the reliability while 
minimizing the test resources (e.g., cost) [23]. ITO problem focuses on determining an 
order to integrate and test the units (e.g., classes) to minimize the stubbing cost, where a 
stub is an emulation of a unit that has not yet been implemented or integrated into the 
software [69].  

We used eight datasets (two industrial, one real world, and five open source) for the five 
multi-objective test optimization problems for a total of 20 experiments (i.e., TSM, TCP, 
and TCS × 6 datasets + 2 datasets for TRA and ITO). All the algorithms were compared 
with their best settings as obtained using the iRace optimization package [70]. To evaluate 
the results, we applied different evaluation metrics: hypervolume (HV), generational 
distance (GD), generated spread (GS), fault detection (FD), and the average percentage of 
fault detected (APFD). The results showed that CBGA-ES+ managed to significantly 
outperform 1) RS for 100%, 2) Greedy for 85%, and 3) CBGA-ES and the four selected 
search algorithms for an average of 66% of the experiments (in terms of the overall quality 
as indicated by HV). Moreover, for solutions in the same search space, CBGA-ES+ 
managed to perform better than CBGA-ES and the four selected algorithms for an average 
of 11.5% of the objectives. In addition, CBGA-ES+ achieved a better fault detection of 
more than 10% on average as compared to the selected search algorithms. 
 

5.4 Paper D 

“Automated Test Case Implantation to Test Untested Configurations: A Cost-Effective 
Search-Based Approach”, D. Pradhan, S. Wang, T. Yue, S. Ali, and M. Liaaen. Revision 
submitted to Journal of Information and Software Technology (IST), Elsevier. 
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Large-scale systems are highly configurable allowing the users to run the systems with 
many different configurations. Thus, the test engineers need to implement a large number 
of test cases, and even then, many configurations remain untested. Manually writing test 
cases to test those untested configurations require a large amount of manual work, which is 
practically infeasible. Moreover, certain test cases verify similar configurations decreasing 
the efficiency of testing.  

In this paper, we proposed a search-based test case implantation approach (SBI) to 
automatically implant an existing test suite with the aim to 1) achieve a higher coverage of 
configuration variable values, 2) cover more combinations of parameter values of test API 
commands, and 3) increase the efficiency of testing by modifying or removing redundant 
test methods that cover same configuration variable values or parameter values of test API 
commands. SBI includes two key components: 1) Test case analyzer that statically 
analyzes each test case to obtain the program dependence graph for the test statements; and 
2) Test case implanter that uses multi-objective search to select suitable test case for 
implantation using three operators: selection, crossover, and mutation, and implants the 
selected test cases using a mutation operator at the test case level using three operations: 
addition, modification, and deletion. 

Three variants of SBI (using NSGA-II, weight-based genetic algorithm, and random 
search) were evaluated with each other and against the original test suite using one case 
study from Cisco and an open source case study. All the algorithms were compared in their 
best settings obtained using the iRace optimization package. The results showed that all the 
three variants of SBI managed to significantly increase the effectiveness of the original test 
suite without significantly increasing the cost. Among the three variants of SBI, SBI with 
NSGA-II performed the best. Specifically, SBI with NSGA-II achieved on average 19.3% 
higher number of configuration variable values and 57.0% higher pairwise coverage of 
parameter values of test API commands for the two datasets. Additionally, for the open 
source case study, SBI with NSGA-II managed to improve statement coverage (SC), 
branch coverage (BC), and mutation score (MS) with on average 5.0%, 7.9%, and 3.2%, 
respectively. Note that we cannot apply SC, BC, and MS to the industrial case study since 
we do not have access to the source code. 

 

5.5 Paper E 
“Employing Rule Mining and Multi-Objective Search for Dynamic Test Case 
Prioritization”, D. Pradhan, S. Wang, S. Ali, T. Yue, and M. Liaaen. Submitted to Journal 
of Systems and Software (JSS), Elsevier. 
 
In practice, regression test cases are executed each time the source code of the system is 
changed. Therefore, as time passes, there is a huge amount of historical test case execution 
data. This data can be used to further refine the prioritized solutions in order to detect the 
fault as soon as possible. For instance, we noticed that in the context of Cisco there exists a 
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hidden execution result relation among the test cases. Based on this observation, we 
introduced a test case prioritization approach, REMAP in paper G, which uses rule mining 
and multi-objective search to dynamically prioritize the test cases. 

REMAP consists of three key components: Rule Miner (RM), Static Prioritizer (SP), 
and (DEP). First, RM defines fail rules and pass rules for representing the execution 
relations among test cases and mines these rules from the historical execution data using 
one of the most widely used rule-mining algorithms, RIPPER. Second, SP defines two 
objectives to statically prioritize the test cases using the algorithm NSGA-II. Third, DEP 
executes the statically prioritized test cases obtained from the SP and dynamically updates 
the test case order based on the runtime test case execution results using the fail and pass 
rules from RM.  

In this paper (Paper E), we conducted an extensive empirical evaluation of REMAP by 
employing three different rule mining algorithms and three different multi-objective search 
algorithms. Moreover, we evaluated REMAP with one additional objective (i.e., execution 
time) for a total of 18 different configurations (i.e., 3	𝑟𝑢𝑙𝑒	𝑚𝑖𝑛𝑖𝑛𝑔	𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠	×
	3	𝑠𝑒𝑎𝑟𝑐ℎ	𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠	×	2	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡	𝑠𝑒𝑡	𝑜𝑓	𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠) of REMAP. Specifically, we 
used three classification models: RIPPER, C4.5, and PART, and three representative multi-
objective search algorithms: NSGA-II, SPEA2, and IBEA. The 18 different configurations 
of RIPPER were compared with 1) two variants of RS, 2) three variants of Greedy, 3) 18 
variants of search-based approach (SBTP), and 4) six variants of rule-based prioritization 
approach (RBP) by employing five case studies (i.e., two industrial and five open source). 

The results showed that the test cases prioritized by all the 18 variants of REMAP 
performed significantly better than the two variants of RS for all the case studies. Also, the 
two best variants of REMAP with two objectives and three objectives (i.e., REMAP with 
RIPPER and SPEA2 with two objectives and REMAP with RIPPER and IBEA with three 
objectives) performed significantly better than the best variants of the selected competing 
approaches by 84.4% and 88.9% of the case studies. Overall on average, the two best 
variants of REMAP with two objectives and three objectives managed to achieve 14.2% 
(i.e., 13.2%, 15.9%, 21.5%, 13.3%, and 6.9%) and 18.8% (i.e., 10.4%, 27.3%, 33.7%, 
10.1%, and 12.2%) higher average percentage of faults detected per cost (APFDc) scores, 
respectively for the five case studies. 
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6 Future Directions  
This section discusses possible future directions based on the above-mentioned four testing 
problems: test case prioritization, test case selection, test case implantation, and dynamic 
test case prioritization together with the proposed cluster-based genetic algorithms for 
supporting multi-objective test optimization. 

For test case prioritization, the possible future direction is to compare our search-based 
test case prioritization approach based on incremental unique coverage and position impact 
with more state-of-the-art prioritization approaches using additional case studies with the 
larger scale to further generalize the results.  

Concerning test case selection, the short-term plan is to apply different evaluation 
metrics (e.g., generational distance [71]) to evaluate the different search algorithms, and 
provide a general recommendation of when to use which search algorithm for multi-
objective test case selection. Another possible future direction is to hybridize evolutionary 
algorithms with local search algorithms to evaluate whether a better performance can be 
achieved for our test case selection problem. 

Concerning test case implantation, we aim to conduct additional experiments to study 
the impact of the proposed fitness functions in configuration coverage, statement coverage, 
branch coverage, and mutation score. Moreover, the long-term plan is to employ more case 
studies to further strengthen the application of the proposed search based implantation 
approach. 

With regards to dynamic test case prioritization, we plan to involve test engineers from 
our industrial partner to deploy and assess the effectiveness of the best configuration of 
REMAP in real industrial settings. Additionally, we aim to conduct experiments with more 
case studies to further generalize the results.  

Regarding the proposed cluster-based genetic algorithms to support multi-objective test 
optimization, the first plan is to involve industrial practitioners to deploy and assess 
CBGA-ES and CBGA-ES+ in real industrial settings. The second plan is to study the 
impact of fitness evaluations (i.e., termination criteria) on the performance of the two 
algorithms. The third plan is to apply CBGA-ES and CBGA-ES+ for multi-objective 
software engineering optimization problems from different domains to further strengthen 
the two algorithms. 
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7 Conclusion 
This thesis proposed a set of methods based on evolutionary computation for cost-effective 
testing of large-scale systems. Driven by an industrial need, the methods aim to address 
four main problems: 1) test case prioritization, 2) test case selection, 3) test case 
implantation, and 4) dynamic test case prioritization. For each problem, we discussed the 
proposed method, and how it can address it. Moreover, we presented thorough empirical 
evaluation by comparing the proposed approach with the state-of-the-art techniques by 
employing various case studies (e.g., industrial, open source, real-world). Also, we 
provided tool support for each solution.  

Specifically, for test case prioritization (Paper A), we proposed a search-based test case 
prioritization approach based on incremental unique coverage and position impact (STIPI). 
STIPI prioritizes test cases by taking into account four objectives: maximizing 
configuration coverage (CC), test API coverage (APIC), status coverage (APIC), and fault 
detection capability (FDC). These objectives were defined based on the context of testing 
VCSs. The results showed that STIPI managed to significantly outperform the existing 
approaches, and thus it can help test engineers to prioritize the test cases effectively. 

For test case selection within a time budget (Paper B), we introduced a search-based 
multi-objective test case selection approach, which can incorporate user preference for 
different objectives. We defined four objectives to guide the search: maximizing mean 
priority (MPR), mean probability (MPO), mean consequence (MC), and minimizing time 
difference (TD). Also, an additional objective was introduced to incorporate user 
preference for different objectives for Pareto-based search algorithms. The results showed 
that search algorithms managed to perform significantly better than random search, and 
among the different search algorithms, SPEA2 managed to perform the best. Thus, it can 
be inferred from the results that it might be beneficial to use SPEA2 for similar test case 
selection problems. 

Regarding test case implantation (Paper D), we proposed a search-based test case 
implantation approach (named as SBI). Specifically, SBI includes two key components: 1) 
Test case analyzer that statically analyzes each test case in the original test suite to obtain 
the program dependence graph for the test statements; and 2) Test case implanter that uses 
multi-objective search to select suitable test cases for implantation and implants the 
selected test suites using a mutation operator at the test case level. SBI can automatically 
analyze and implant the test suite cost-effectively to test the untested configurations. The 
results of the evaluation showed that SBI significantly managed to significantly increase 
the effectiveness of the original test suite without significantly increasing the cost. This can 
help test engineers to improve the quality of the test cases and automatically cover more 
configurations automatically, which can improve the effectiveness of testing. 

For dynamic test case prioritization (Paper E), we proposed a rule mining and multi-
objective search-based test case prioritization approach (REMAP). REMAP consists of 
three key components: 1) Rule miner that defines fail rules and pass rules for representing 
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the execution relations among test cases and mines these rules from the historical 
execution data; 2) Static prioritizer that defines objectives and applies multi-objective 
search to statically prioritize the test cases; and 3) Dynamic executor and prioritizer that 
executes the statically prioritized test cases obtained from the static prioritizer and 
dynamically updates the test cases order based on the runtime test case execution results 
and the mined rules from rule miner. The results showed that REMAP managed to 
significantly improve the results as compared to the state-of-the-art test case prioritization 
techniques. Moreover, test cases prioritized using REMAP had better APFD and APFDc 

values, which implies that REMAP has better fault detection capabilities. 
In addition, the thesis proposed cluster-based genetic algorithms (Paper C and F) to 

support multi-objective test optimization problems. The core idea of these algorithms is to: 
1) divide the population into different clusters for grouping solutions with similar qualities; 
and 2) define cluster dominance strategy to rank the different clusters and only select the 
solutions from the best clusters for producing offspring solutions. These algorithms were 
compared with the state-of-the-art by employing multiple case studies (e.g., industrial, 
open source) for five different multi-objective test optimization problems (e.g., test case 
prioritization). The results showed that the proposed algorithms managed to significantly 
outperform the state-of-the-art search algorithms for these test optimization problems, 
which show the benefit of using them for similar problems. 
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Abstract  

The importance of cost-effectively prioritizing test cases is undeniable in automated testing 
practice in industry. This paper focuses on prioritizing test cases developed to test product 
lines of Video Conferencing Systems (VCSs) at Cisco Systems, Norway. Each test case 
requires setting up configurations of a set of VCSs, invoking a set of test APIs with specific 
inputs, and checking statuses of the VCSs under test. Based on these characteristics and 
available information related with test case execution (e.g., number of faults detected), we 
identified that the test case prioritization problem in our particular context should focus on 
achieving high coverage of configurations, test APIs, statuses, and high fault detection 
capability as quickly as possible. To solve this problem, we propose a search-based test 
case prioritization approach (named STIPI) by defining a fitness function with four 
objectives and integrating it with a widely applied multi-objective optimization algorithm 
(named Non-dominated Sorting Genetic Algorithm II). We compared STIPI with random 
search (RS), Greedy algorithm, and three approaches adapted from literature, using three 
real sets of test cases from Cisco with four time budgets (25%, 50%, 75% and 100%). 
Results show that STIPI significantly outperformed the selected approaches and managed 
to achieve better performance than RS for on average 39.9%, 18.6%, 32.7% and 43.9% for 
the coverage of configurations, test APIs, statuses and fault detection capability, 
respectively. 
 
Keywords: Test Case Prioritization; Search; Configurations; Test APIs. 

1 Introduction 

Testing is a critical activity for system or software development, through which 
system/software quality is ensured [1]. To improve the testing efficiency, a large number 
of researchers have been focusing on prioritizing test cases into an optimal execution order 
to achieve maximum effectiveness (e.g., fault detection capability) as quickly as possible 
[2-4]. In the industrial practice of automated testing, test case prioritization is even more 
critical because usually there is a limited budget (e.g., time) to execute test cases, and thus 
executing all available test cases at a given context is infeasible [1, 5]. 

Our industrial partner for this work is Cisco System, Norway, who develops product 
lines of Video Conferencing Systems (VCSs), which enable high quality conference 
meetings [4, 5]. To ensure the delivery of high quality VCSs to the market, test engineers 
of Cisco continually develop test cases to test software of VCSs under various hardware or 
software configurations, statuses (i.e., states) of VCSs with dedicated test APIs. A test case 
is typically composed of the following parts: 1) setting up test configurations of a set of 
VCSs under test; 2) invoking a set of test APIs of the VCSs; and 3) checking the statuses 
of the VCSs after invoking the test APIs to determine the success or failure of an execution 
of the test case. When executing test cases, several objectives need to be achieved, i.e., 
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covering the maximum number of possible configurations, test APIs, statuses and detecting 
as many faults as possible. However, given a number of available test cases, it is often 
infeasible to execute all of them in practice due to a limited budget of execution time (e.g., 
ten hours), and it is therefore important to seek an approach for prioritizing the given test 
cases to cover maximum number of configurations, test APIs, statuses and detect faults as 
quickly as possible. 

To address the above-mentioned challenge, we propose a search-based test case 
prioritization approach named Search-based Test case prioritization based on Incremental 
unique coverage and Position Impact (STIPI). STIPI defines a fitness function with four 
objectives to evaluate the quality of test case prioritization solutions, i.e., Configuration 
Coverage (CC), test API Coverage (APIC), Status Coverage (SC) and Fault Detection 
Capability (FDC), and integrates the fitness function with a widely-applied multi-objective 
search algorithm (i.e., Non-dominated Sorting Genetic Algorithm II) [6]. Moreover, we 
propose two prioritization strategies when defining the fitness function in STIPI: 1) 
Incremental Unique Coverage, i.e., for a specific test case, we only consider the 
incremental unique elements (e.g., test APIs) covered by the test case as compared with the 
elements covered by the already prioritized test cases; and 2) Position Impact, i.e., a test 
case with a higher execution position (i.e., scheduled to be executed earlier) has more 
impact on the quality of a prioritization solution. Notice that both of these strategies are 
defined to help search to achieve high criteria (i.e., CC, APIC, SC and FDC) as quickly as 
possible.  

To evaluate STIPI, we chose five approaches for the comparison: 1) Random Search 
(RS) to assess the complexity of the problem; 2) Greedy approach; 3) One existing 
approach [7] and two modified approaches from the existing literature [8, 9]. The 
evaluation uses in total 211 test cases from Cisco, which are divided into three sets with 
varying complexity. Moreover, four different time budgets are used for our evaluation, i.e., 
25%, 50%, 75% and 100% (100% refers to the total execution time of all the test cases in a 
given set). Notice that 12 comparisons were performed (i.e., three sets of test cases*four 
time budgets) for comparing STIPI with each approach, and thus in total 60 comparisons 
were conducted for the five approaches. Results show that STIPI significantly 
outperformed the selected approaches for 54 out of 60 comparisons (90%). In addition, 
STIPI managed to achieve higher performance than RS for on average 39.9% 
(configuration coverage), 18.6% (test API coverage), 32.7% (status coverage), and 43.9% 
(fault detection capability).  

The remainder of the paper is organized as follows: Section 2 presents the context, a 
running example and motivation. STIPI is presented in Section 3 followed by experiment 
design (Section 4). Section 5 presents experiment results and overall discussion. Related 
work is discussed in Section 6, and we conclude the work in Section 7. 
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2 Context, Running Example and Motivation 

Fig. A-1 presents a simplified context of testing VCSs (Systems Under Test (SUTs)), and 
Fig. A-2 illustrates (partial) configuration, test API and status information for testing a 
VCS. First, one VCS consists of one or more configuration variables (e.g., attribute 
protocol of class VCS in Fig. A-2), each of which can take two or more configuration 
variable values (e.g., literal SIP of enumeration Protocol). Second, a VCS holds one or 
more status variables defining the statuses of the VCS (e.g., NumberofActiveCalls), and 
each status variable can have two or more status variable values (e.g., 
NumberofActiveCalls taking values of 0, 1, 2, 3, and 4). Third, testing a VCS requires 
employing one or more test API commands (e.g., dial), each of which includes zero or 
more test API parameters (e.g., callType for dial). Each test API parameter can take two or 
more test API parameter values (e.g., Video and Audio for CallType). 

 

Fig. A-1. A simplified context of testing VCSs 
 

 
Fig. A-2. Partial configuration, status and test API Information for testing a VCS 

Fig. A-3 illustrates the key steps of a test case for testing VCSs. First, a test case 
configures one or more VCSs by assigning values to configuration variables. For example, 
the test case shown in Fig. A-3 configures the configuration variable protocol with SIP 
(line 1). Second, a test API command is invoked with appropriate values assigned to its 
input parameters, if any. For example, the test case in Fig. A-3 invokes the test API 
command dial consisting of the two test API parameter values: Video for callType and SIP 
for protocol). Third, the test case checks the actual statuses of VCSs. For example, the test 
case in Fig. A-3 checks the status of the VCS to see if NumberOfActiveCalls equals to 1. 
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1. protocol = SIP   //Configure the configuration variable 
2. dial(Video, SIP) //Employ test API command dial and assigning  
                      values to parameters: callType and protocol 
3. accept           //Employ test API command with no parameters 
4. assert (NumberOfActiveCalls=1,MaxNumberOfCalls=1,           
           MaxVideoCalls =1) //Check values of the status variables    
5. disconnect       //Employ test API command with no parameters 
6. assert(NumberofActiveCalls=0) //Check status 

Fig. A-3. An excerpt of a sanitized and simplified test case 

In the context of testing VCSs, test case prioritization is a critical task since it is 
practically infeasible to execute all the available test cases within a given time budget (e.g., 
five hours). Therefore, it is essential to cover maximum configurations (i.e., configuration 
variables and their values), test APIs (i.e., test API commands, parameters and their values) 
and statuses (i.e., status variables and their values), and detect faults as quickly as possible. 
For instance, Table A-1 lists five test cases (𝑇%,…, 𝑇T) with the information about 
configurations, test APIs and statuses. The test case in Fig. A-3 is represented as T1 in 
Table A-1, which 1) sets the configuration variable protocol as SIP; 2) uses three test API 
commands: dial with two parameters (callType, protocol), accept and disconnect; and 3) 
checks values of three status variables (e.g., MaxVideoCalls). 

Table A-1. Illustrating Test Case Prioritization* 

Test 
Case 

Configuration Test API Status 

protocol dial accept disco
nnect SV1 SV2 SV3 callType protocol 

T1 SIP Video SIP ✓ ✓ 0, 1 1 1 
T2 SIP Audio SIP ✓ ✓ 0, 1 1 0 
T3 SIP Audio SIP ✓  1 1 0 
T4 H323 Audio H323 ✓  0, 1, 2 2 0 
T5 H320 Audio H320 ✓  1 1 1 

* SV1: NumberOfActiveCalls, SV2: MaxNumberOfCalls, SV3: MaxVideoCalls. 
 

Notice that the five test cases in Table A-1 can be executed in 325 orders (i.e., 
𝐶 5,1 ×1! + 𝐶 5,2 ×2!+	, … ,+𝐶(5,5)×5!). When there is a time budget, each particular 
order can be considered as a prioritization solution. Given two prioritization solutions 𝑠% =
𝑇T, 𝑇%, 𝑇Y, 𝑇', 𝑇Z , 𝑠' = 𝑇%, 𝑇Z, 𝑇T, 𝑇', 𝑇Y , one can observe that 𝑠% is better than 𝑠' since 

the first three test cases in 𝑠% can cover all the configuration variables and their values, test 
API commands, test API parameters, test API parameter values, status variables and status 
variable values, while 𝑠' needs to execute all the five test cases to achieve the same 
coverage as 𝑠%. Therefore, it is important to seek an efficient approach to find an optimal 
order for executing a given number of test cases to achieve high coverage of 
configurations, test APIs and statuses, and detect faults as quickly as possible, which forms 
the motivation of this work. 
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3 STIPI: Search-based Test case prioritization based on 
Incremental unique coverage and Position Impact 

This section presents the problem representation (Section 3.1), four defined objectives, 
fitness function (Section 3.2) and solution encoding (Section 3.3). 

3.1 Basic Notations and Problem Representation  

Basic Notations. We provide the basic notations as below used throughout the paper. 
𝑇 = 𝑇%, 𝑇', … , 𝑇)  represents a set of n test cases to be prioritized.  
𝐸𝑇 = 𝑒𝑡%, 𝑒𝑡', … , 𝑒𝑡)  refers to the execution time for each test case in 𝑇. 
𝐶𝑉 = 𝑐𝑣%, 𝑐𝑣', … , 𝑐𝑣]^_  represents the configuration variables covered by 𝑇. For each 

𝑐𝑣+, 𝐶𝑉𝑉+ refers to the configuration variable values: 𝐶𝑉𝑉+ = 𝑐𝑣𝑣+%, … , 𝑐𝑣𝑣+^__ . 𝑚𝑐𝑣𝑣 is 
the total number of unique values for all the configuration variables, which can be 
calculated as: 𝑚𝑐𝑣𝑣 = 𝐶𝑉𝑉+]^_

+2% . 
𝐴𝐶 = 𝑎𝑐%, 𝑎𝑐', … , 𝑎𝑐]`^  represents a set of test API commands covered by 𝑇. For 

each 𝑎𝑐+, 𝐴𝑃+	denotes the test API parameters:	𝐴𝑃+ = 	 𝑎𝑝+%, … , 𝑎𝑝+`c . 𝑚𝑎𝑝 is the total 
number of unique test API parameters, calculated as: 𝑚𝑎𝑝 = | 𝐴𝑃+]`^

+2% |. For each 𝑎𝑝+, 
𝐴𝑉+ refers to the test API parameter values: 𝐴𝑉+ = 𝑎𝑣+%, … , 𝑎𝑣+`_ . 𝑚𝑎𝑣 is the total 
number of unique test API parameter values, i.e., 𝑚𝑎𝑣 = | 𝐴𝑉+

]`c
+2% |. 

𝑆𝑉 = 𝑠𝑣%, 𝑠𝑣', … , 𝑠𝑣]f_  represents a set of status variables covered by 𝑇. For each 
𝑠𝑣+, 𝑆𝑉𝑉+ refers to the status variable values: 𝑆𝑉𝑉+ = 𝑠𝑣𝑣+%, … , 𝑠𝑣𝑣+f__ . 𝑚𝑠𝑣𝑣 is the total 
number of unique status variable values,  calculated as: 𝑚𝑠𝑣𝑣 = 𝑆𝑉𝑉+]f_

+2% . 
𝐸𝑓𝑓𝑒𝑐𝑡 = 𝑒𝑓𝑓𝑒𝑐𝑡%, … , 𝑒𝑓𝑓𝑒𝑐𝑡)hiih^j 	defines a set of effectiveness measures. 
𝑆 = 𝑠%, 𝑠'	, … , 𝑠)f  represents a set of potential solutions, such that 𝑛𝑠 = 𝐶 𝑛, 1 ×1! +

𝐶 𝑛, 2 ×2!+,… ,+𝐶(𝑛, 𝑛)×𝑛!. Each solution 𝑠k consists of a set of prioritized test cases in 
𝑇: 𝑠k = 𝑇k%, … , 𝑇k) , where 𝑇k+ ∈ 𝑇 refers to the test case with the execution position i in 
the prioritized solution 𝑠k. Note that it is possible for the maximum number of test cases in 
𝑠k (i.e., 𝑗𝑛) to be less than the total number of test cases in 𝑇, since only a subset of T is 
prioritized during limited budget (e.g., time). 

Problem Representation. We aim to prioritize the test cases in 𝑇 in two contexts: 1) 
100% time budget and 2) less than 100% time budget (i.e., time-aware [1]). Therefore, we 
formulate the test case prioritization problem as follows: a) search a solution 𝑠l	with 𝑛𝑘 
test cases from the total number of 𝑛𝑠 solutions in 𝑆 to obtain the highest effectiveness; 
and b) a test case 𝑇kn in a particular solution (e.g.,	𝑠k) with a higher position 𝑝 has more 
influence for 𝐸𝑓𝑓𝑒𝑐𝑡 than the test case with a lower position 𝑞. 
1) With 100% time budget:  
∀+2%	jp	)hiih^j∀k2%	jp	)f	𝐸𝑓𝑓𝑒𝑐𝑡	(𝑠l, 𝑒𝑓𝑓𝑒𝑐𝑡+) ≥ 𝐸𝑓𝑓𝑒𝑐𝑡	 𝑠k, 𝑒𝑓𝑓𝑒𝑐𝑡+  
∨ 𝑒𝑓𝑓𝑒𝑐𝑡+ 𝑇kn, 𝑝 > ∀tu(cv%)𝑒𝑓𝑓𝑒𝑐𝑡+(𝑇kn, 𝑞). 
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where, 𝑒𝑓𝑓𝑒𝑐𝑡+ 𝑇kn, 𝑝  and 𝑒𝑓𝑓𝑒𝑐𝑡+ 𝑇kn, 𝑞  refer to the effectiveness measure 𝑖 for a 
test case 𝑇kn at position p and q, respectively for a particular solution 𝑠k. 
𝐸𝑓𝑓𝑒𝑐𝑡	(𝑠l, 𝑒𝑓𝑓𝑒𝑐𝑡+) and 𝐸𝑓𝑓𝑒𝑐𝑡	(𝑠k, 𝑒𝑓𝑓𝑒𝑐𝑡+) returns the effectiveness measure 𝑖 for 
solutions 𝑠l,	𝑠k respectively. 

2) With a time budget tb less than 100% time budget: 
∀+2%	jp	)hiih^j∀k2%	jp	)f	𝐸𝑓𝑓𝑒𝑐𝑡	(𝑠l, 𝑒𝑓𝑓𝑒𝑐𝑡+) ≥ 𝐸𝑓𝑓𝑒𝑐𝑡	 𝑠k, 𝑒𝑓𝑓𝑒𝑐𝑡+ 	 

∨ 𝐸𝑇y)l
y2% ≤ 𝑡𝑏, 𝑒𝑓𝑓𝑒𝑐𝑡+ 𝑇kn, 𝑝 > ∀tu(cv%)𝑒𝑓𝑓𝑒𝑐𝑡+(𝑇kn, 𝑞). 

3.2 Fitness Function 

Recall that we aim at maximizing the overall coverage for configuration, test API and 
status, and detect faults as quickly as possible (Section 2). Therefore, we define four 
objective functions for the fitness function to guide the search towards finding optimal 
solutions, which are presented in details as below. 

Maximize Configuration Coverage (CC). CC measures the overall configuration 
coverage of a solution 𝑠k with 𝑗𝑛 number of test cases, which is composed of Configuration 
Variable Coverage (CVC) and Configuration Variable Values Coverage (CVVC). We can 
calculate CVC and CVVC for 𝑠k as: 

 𝐶𝑉𝐶	fz =
{|}~z�	×

�����
�

z�
���

]^_
, and	𝐶𝑉𝑉𝐶	fz =

{|}}~z�	×
�����
�

z�
���

]^__
, where mcv and mcvv 

represent the total number of unique Configuration Variables (CV) and Configuration 
Variable Values (CVV) respectively covered by the total test cases in	𝑇 (e.g., in Table A-1, 
𝑚𝑐𝑣𝑣 = 3). Moreover, we propose two prioritization strategies for calculating 𝐶𝑉𝐶 and 
𝐶𝑉𝑉𝐶. The first one is Incremental Unique Coverage, i.e., 𝑈𝐶𝑉	�z� and 𝑈𝐶𝑉𝑉	�z� 
representing the number of incremental unique CV and CVV covered by 𝑇k+	 (Section 3.1). 
For example, in Table A-1, for one test case prioritization solution 
𝑠% = 𝑇T, 𝑇%, 𝑇Y, 𝑇', 𝑇Z , 𝑈𝐶𝑉𝑉	�� is 1 since 𝑇T is in the first execution position and covers 
one CVV (i.e., H320). 𝑈𝐶𝑉𝑉	��	and 𝑈𝐶𝑉𝑉	�� are at the second and third position, and cover 
one CVV each (i.e., SIP, H323). However, 𝑈𝐶𝑉𝑉	�� and 𝑈𝐶𝑉𝑉	��are 0, since they are 
already covered by 𝑈𝐶𝑉𝑉	��. This strategy is defined since test case prioritization in our 
case concerns how many configurations, test APIs, and statuses can be covered rather than 
how many times they can be covered.  

The second prioritization strategy is Position Impact, which is calculated as )�+v%
)

, 
where 𝑛 is the total number of test cases, and 𝑖 is a specific execution position in a 
prioritization solution. Thus, test cases with higher execution positions have higher impact 
on the quality of a prioritization solution, which fits the scope of test case prioritization that 
aims at achieving higher criteria as quickly as possible. For instance, using this strategy, 
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𝐶𝑉𝑉𝐶  for 𝑠%  is: 𝐶𝑉𝑉𝐶	f� =
%×��v%×

�
�v%×

�
�v�×

�
�v�×

�
�

Z
= 	0.8.  Moreover, CC for 𝑠k  is 

represented as:𝐶𝐶	fz = 	
|}|	�zv	|}}|	�z

'
. A higher value of CC shows a higher coverage of 

configuration. 

Maximize Test API Coverage (APIC). APIC measures the overall test API coverage of a 
solution 𝑠k with 𝑗𝑛 number of test cases. It consists of three sub measures: Test API 
Command Coverage (ACC), Test API Parameter Coverage (APC), and Test API parameter 
Value Coverage (AVC). ACC, APC and AVC can be calculated as below:  

	𝐴𝐶𝐶	fz =
{�|~z�	×

�����
�

z�
���

]`^
, 𝐴𝑃𝐶	fz =

{��~z�	×
�����
�

z�
���

]`c
, 𝐴𝑉𝐶	fz =

{�}~z�	×
�����
�

z�
���

]`_
. 

 Similarly, the same two strategies (i.e., Incremental Unique Coverage and Position 
Impact) are applied for calculating 𝐴𝐶𝐶, 𝐴𝑃𝐶 and 𝐴𝑉𝐶, where 𝑈𝐴𝐶	�z�, 𝑈𝐴𝑃	�z�	and 
𝑈𝐴𝑉	�z� denotes the number of unique test API commands (AC), test API parameters (AP), 
and test API parameter values (AV) respectively covered by 𝑇k+	 (Section 3.1). They are 
measured similar as for 𝑈𝐶𝑉𝑉	� in CVVC. 𝑚𝑎𝑐, 𝑚𝑎𝑝, and 𝑚𝑎𝑣 refer to the total number of 
unique AC, AP, and AV covered by the total number of test cases as explained for 𝑚𝑐𝑣𝑣 in 

CVVC. The APIC for 𝑠k is represented as: 𝐴𝑃𝐼𝐶	fz = 	
�||	�zv	��|	�zv	�}|	�z

Z
. A higher value 

of APIC shows a higher coverage of test APIs. 

Maximize Status Coverage (SC). SC measures the total status coverage of a solution 𝑠k. It 
consists of two sub measures: Status Variable Coverage (SVC) and Status Variable Value 

Coverage (SVVC), calculated as follow: 	𝑆𝑉𝐶	fz =
{�}~z�	×

�����
�

z�
���

]f_
, 

𝑆𝑉𝑉𝐶	fz =
{�}}~z�	×

�����
�

z�
���

]f__
. Similarly, 𝑈𝑆𝑉	�z� and 𝑈𝑆𝑉𝑉	�z� are the number of unique 

Status Variables (SV) and Status Variable Values (SVV) respectively covered by 𝑇k+	 
(Section 3.1), which are measured similar as	𝑈𝐶𝑉𝑉	� in 𝐶𝑉𝑉𝐶. 𝑚𝑠𝑣 and 𝑚𝑠𝑣𝑣 represent 
the total number of unique SV and SVV respectively measured similar as for 𝑚𝑐𝑣𝑣 in 

CVVC. The SC for 𝑠k is represented as: 𝑆𝐶	fz = 	
���	�zv	�}}|	�z

'
, with a higher value 

indicating a higher status coverage, and therefore representing a better solution. 

Maximize Fault Detection Capability (FDC). In the context of Cisco, FDC is defined as 
the detected number of faults for test cases in a solution 𝑠k [4, 5, 10-12].  The FDC for a 

test case 𝑇k+ is calculated as: 𝐹𝐷𝐶	�z� = 	
��]�hn	pi	j+]hf	j�`j	�z�	ip�)�	`	i`�yj
��]�hn	pi	j+]hf	j�`j	�z�	 `f	h¡h^�jh�

. Notice that the 

FDC of 𝑇k+ is calculated based on the historical information of executing 𝑇k+. For example, 
if 𝑡𝑐+ was executed 10 times, and it detected fault 4 times, the FDC for 𝑡𝑐+ is 0.4. We 

calculate FDC for a solution 𝑠k	as:	𝐹𝐷𝐶	fz =
¢£|~z�	×

�����
�

z�
���

]i�^
. 𝐹𝐷𝐶	�z� denotes the FDC for 
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a 𝑇k+	, 𝑚𝑓𝑑𝑐	represents the sum of all FDC of test cases, and a higher value of 𝐹𝐷𝐶 implies 
a better solution. Notice that we cannot apply the incremental unique coverage strategy for 
calculating 	𝐹𝐷𝐶	fz since the relations between faults and test cases are not known in our 
case (i.e., we only know whether the test cases can detect faults after executing it for a 
certain number of times rather than having access to the detailed faults detected). 

3.3 Solution Representation  

The test cases in 𝑇	are encoded as an array 𝐴 = 𝑣%, 𝑣' …𝑣) , where each variable 𝑣+ 
represents one test case in T, and holds a unique value from 0 to 1. We prioritize the test 
cases in 𝑇𝑆 by sorting the variables in 𝐴 in a descending order from higher to lower, such 
that 1 is the highest, and 0 is the lowest order. Initially, each variable in 𝐴 is assigned a 
random value between 0 and 1, and during search our approach returns solutions with 
optimal values for 𝐴 guided by the fitness function defined in Section 3.2. In terms of time-
aware test case prioritization (i.e., with a time budget less than 100%), we pick the 
maximum number of test cases that fit the given time budget. For example, in Table A-1 
for 𝑇𝑆 = 𝑇%,… , 𝑇T  with 𝐴 as 0.6, 0.2, 0.4, 0.9, 0.3  and the execution time (recorded as 
minutes) as 𝐸𝑇 = 4, 5, 6, 4, 3 , the prioritized test cases are 𝑇Y, 𝑇%, 𝑇Z, 𝑇T, 𝑇'  based on our 
encoding way for test case prioritization. If we have a time budget of 11 minutes, the first 
two test cases (in total 8 minutes for execution) are first added to the prioritized solution 𝑠k, 
and there are 3 minutes left, which is not sufficient for executing 𝑇Z (6 minutes). Thus, 𝑇Z 
is not added into 𝑠k, and the next test case is evaluated to see if the total execution time can 
fit the given time budget. 𝑇T with three minutes will be added into 𝑠k, since the inclusion of 
𝑇T will not make the total execution time exceed the time budget. Therefore, the new 
prioritized solution will be 𝑇Y, 𝑇%, 𝑇T . 

Moreover, we integrate our fitness function with a widely applied multi-objective 
search algorithm named Non-dominated Sorting Genetic Algorithm (NSGA-II) [6, 13, 14]. 
The tournament selection operator [6] is applied to select individual solutions with the best 
fitness for inclusion into the next generation. The crossover operator is used to produce 
offspring solutions from the parent solutions by swapping some of the parts (e.g., test cases 
in our context) of the parent solutions. The mutation operator is applied to randomly 
change the values of one or more variables (e.g., in our context, each variable represents a 
test case) based on the pre-defined mutation probability, e.g., %

(jpj`y	)�]�hn	pi	jhfj	^`fhf)
 in 

our context. 
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4 Empirical Study Design 

4.1 Research Questions 

RQ1: Is STIPI effective for test case prioritization as compared with RS (i.e., random 
prioritization)? We compare STIPI with RS for four time budgets: 100% (i.e., total 
execution time of all the test cases in a given set), 75%, 50% and 25%, to assess the 
complexity of the problem such that the use of search algorithms is justified.  

RQ2: Is STIPI effective for test case prioritization as compared with four selected 
approaches, in the contexts of four time budgets: 100%, 75%, 50% and 25%?  

RQ2.1: Is STIPI effective as compared with the Greedy approach (a local search 
approach)? RQ2.2: Is STIPI effective as compared with the approach used in [7] (named as 
A1 in this paper)? Notice that we chose A1 since it also proposed a strategy to give higher 
importance to test cases with higher execution positions.  

RQ2.3: Is STIPI effective as compared with the modified version of the approach proposed 
in [8] (named as A2 in this paper)? We chose A2 since it combines the Average Percentage 
of Faults Detected (APFD) metric and NSGA-II for test case prioritization without 
considering time budget. We modified it by defining Average Percentage of Configuration 
Coverage (APCC), Average Percentage of test API Coverage (APAC) and Average 
Percentage of Status Coverage (APSC) (Section 4.3) for assessing the quality of 
prioritization solutions for configurations, test APIs and statuses. 

RQ2.4: Is STIPI effective as compared with the modified version of the approach in [9] 
(named as A3 in this paper)?  We chose A3 since 1) it combines the ADFD with cost 
(APFDc) metric and NSGA-II for addressing time-aware test case prioritization problem. 
We revised A3 by defining Average Percentage of Configuration Coverage with cost 
(APCCc), Average Percentage of test API Coverage with cost (APACc) and Average 
Percentage of Status Coverage with cost (APSCc). For illustration, we provide a formula 
for Average Percentage of Configuration Variable Value Coverage with cost (APCVVCc) 

that is a sub-metric for APCCc as: 𝐴𝑃𝐶𝑉𝑉𝐶^ =
( hj§	�	

�
�hj~¨©©�

z�
§�~¨©©�

)ª«¬¬
���

hj§×]
z�
§�� ^__

. For a solution 

𝑠k with jn test cases, 𝑇𝐶𝑉𝑉­ is the first test case from 𝑠k that covers 𝐶𝑉𝑉­ (i.e., the ith 

configuration variable value), 𝑚𝑐𝑣𝑣 is the total number of unique configuration variable 
value, and 𝑒𝑡l	is the execution time for kth test case. Notice that the detailed formulas for 
APCCc, APACc and APSCc can be consulted in our technical report in [15]. 

We also compare the running time of STIPI with all the five chosen approaches, since 
STIPI is invoked very frequently (e.g., more than 50 times per day) in our context, i.e., the 
test cases require to be prioritized and executed often. Therefore, it would be practically 
infeasible if it takes too much time to apply STIPI. 
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4.2 Experiment Tasks 

As shown in Table A-2 (Experiment Task column), we designed two tasks (T1, T2) for 
addressing RQ1-RQ2. The task T1 is designed to compare STIPI with RS for the four time 
budgets (i.e., 100%, 75%, 50% and 25%) and three sets of test cases (i.e., 100, 150 and 
211). Similarly, the task T2 is designed to compare STIPI with the other four test case 
prioritization approaches, which is divided into four sub-tasks for comparing Greedy, A1, 
A2 and A3, respectively.  

Moreover, we employed 211 real test cases from Cisco for evaluation by dividing it into 
three sets with varying complexity (#Test Cases column in Table A-2). For the first set, we 
used all the 211 test cases. For the second set, we used 100 random test cases from the 211 
test cases. Finally, for the third set, we used the 150 test cases by choosing 111 test cases 
not selected in the second set (i.e., 100) and 39 random test cases from the second set. 
Notice that the goal for using three test case sets is to evaluate our approach with test 
datasets with different complexity. 

Table A-2. Overview of the Experiment Design 

RQ Experiment 
Task 

#Test 
Cases 

Time 
Budget% 

Evaluation 
Metric (EM) 

Quality  
Indicator 

Statistical 
Test 

1 T1: STIPI vs. 
RS 

100 
150 
211 

100 APCC, APAC, APSC - 

Vargha and 
Delaney 
𝐴%'Mann- 
Whitney U 

Test 

25, 50, 75 APCCp, APACp, APSCp, MFDC - 

2 

T2.1 
STIPI vs. 
Greedy 

100 APCC, APAC, APSC - 
25, 50, 75 APCCp, APACp, APSCp, MFDC - 

T2.2 
STIPI vs. 
A1 

100 APCC, APAC, APSC 

Hypervo-
lume(HV) 

25, 50, 75 APCCp, APACp, APSCp, MFDC 

T2.3 
STIPI vs. 

A2 
100 APCC, APAC, APSC 

25, 50, 75 APCCp, APACp, APSCp 

T2.4 
STIPI vs. 

A3 
100 APCC, APAC, APSC 

25, 50, 75 APCCp, APACp, APSCp 

4.3 Evaluation Metrics 

To answer the RQs, we defined in total seven EMs (Table A-3). Six are used to assess how 
fast the configurations, test APIs and statuses can be covered: 1) Average Percentage 
Configuration Coverage (APCC), 2) Average Percentage test API Coverage (APAC), 3) 
Average Percentage Status Coverage (APSC), 4) Average Percentage Configuration 
Coverage that penalizes missing configuration (APCCp), 5) Average Percentage test API 
Coverage that penalizes missing test API (APACp) and 6) Average Percentage Status 
Coverage with penalization for missing status (APSCp). We defined APCC, APAC and 
APSC for test case prioritization with 100% time budget based on the APFD metric [8, 16]. 
For example, for a solution 𝑠k with jn test cases and total number of test cases n from 𝑇 (a 
given number of test cases), 𝑇𝐶𝑉% is the first test case from 𝑠k that covers 𝐶𝑉% for the sub 
metric APCVC in Table A-3 (Section 3.1). Notice that n and jn are equal when there is 
100% time budget. 
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Table A-3. Different metrics for evaluating the approaches* 

EC Time 
Budget% EM Sub Metric Formula Name Formula 

Con 

100 APCC 
APCVC 1 −	

𝑇𝐶𝑉% +	𝑇𝐶𝑉' +	…	+ 	𝑇𝐶𝑉]^_
𝑛×𝑚𝑐𝑣

+	
1
2𝑛

 
𝐴𝑃𝐶𝐶 = 	

𝐴𝑃𝐶𝑉𝐶 + 𝐴𝑃𝐶𝑉𝑉𝐶
2

 
APCVVC 1 −	

𝑇𝐶𝑉𝑉% +	𝑇𝐶𝑉𝑉' +	…	+ 	𝑇𝐶𝑉𝑉]^__
𝑛×𝑚𝑐𝑣𝑣

+	
1
2𝑛

 

25 
50 
75 

APCCp 
APCVCp 1 −

𝑟𝑒𝑣𝑒𝑎𝑙 𝑐𝑣, 𝑠k]^_
^_2%

𝑗𝑛×𝑚𝑐𝑣
+

1
2𝑗𝑛

 
𝐴𝑃𝐶𝐶c = 	

𝐴𝑃𝐶𝑉𝐶c + 𝐴𝑃𝐶𝑉𝑉𝐶c
2

 
APCVVCp 1 −

𝑟𝑒𝑣𝑒𝑎𝑙 𝑐𝑣𝑣, 𝑠k]^__
^__2%

𝑗𝑛×𝑚𝑐𝑣𝑣
+

1
2𝑗𝑛

 

API 

100 APAC 

APACC 1 −	
𝑇𝐴𝐶% +	𝑇𝐴𝐶' +	…	+ 	𝑇𝐶𝐴]`^

𝑛×𝑚𝑎𝑐
+	

1
2𝑛

 
𝐴𝑃𝐴𝐶

= 	
𝐴𝑃𝐴𝐶𝐶 + 𝐴𝑃𝐴𝑃𝐶 + 𝐴𝑃𝐴𝑉𝐶

3
 

APAPC 1 −	
𝑇𝐴𝑃% +	𝑇𝐴𝑃' +	…	+ 	𝑇𝐴𝑃]`c

𝑛×𝑚𝑎𝑝
	+ 	

1
2𝑛

 

APAVC 1 −	
𝑇𝐴𝑉% +	𝑇𝐴𝑉' +	…	+ 	𝑇𝐴𝑉]`_

𝑛×𝑚𝑎𝑣
	+ 	

1
2𝑛

 

25 
50 
75 

APACp 

APACCp 1 −
𝑟𝑒𝑣𝑒𝑎𝑙 𝑎𝑐, 𝑠k]`^

`^2%

𝑗𝑛×𝑚𝑎𝑐
+

1
2𝑗𝑛

 
𝐴𝑃𝐴𝐶c

= 	
𝐴𝑃𝐴𝐶𝐶c + 𝐴𝑃𝐴𝑃𝐶c + 𝐴𝑃𝐴𝑉𝐶c

3
 

APAPCp 1 −
𝑟𝑒𝑣𝑒𝑎𝑙 𝑎𝑝, 𝑠k

]`c
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*EC: Evaluation Criteria, Con: Configuration, API: Test API, Stat: Status. 

4.4 Quality Indicator, Statistical Tests and Parameter Settings 

When comparing the overall performance of multi-objective search algorithms (e.g., 
NSGA-II [6]), it is common to apply quality indicators such as hypervolume (HV). 
Following the guideline in [10], we employ HV based on the defined EMs to address 
RQ2.2-RQ2.4 (i.e., tasks T2.2 – T2.4 in Table A-2). HV calculates the volume in the objective 
space covered by members of a non-dominated set of solutions (i.e., Pareto front) produced 
by search algorithms for measuring both convergence and diversity [17]. A higher value of 
HV indicates a better performance of the algorithm.  
 The Vargha and Delaney 𝐴%'	statistics [18] and Mann-Whitney U test are used to 
compare the EMs (T1 and T2), and HV (T2.2 – T2.4), as shown in Table A-2 by following the 
guidelines in [19]. The Vargha and Delaney 𝐴%'	statistics is a non-parametric effect size 
measure, and Mann-Whitney U test tells if results are statistically significant [20]. For two 
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algorithms A and B, A has better performance than B if 𝐴%' is greater than 0.5, and the 
difference is significant if p-value is less than 0.05. 

Notice that STIPI, A1, A2 and A3 are all combined with NSGA-II. Since tuning 
parameters to different settings might result in different performance of search algorithms, 
standard settings are recommended [19]. We used standard settings (i.e., population 
size=100, crossover rate=0.9, mutation rate=1/(number of test cases)) as implemented in 
jMetal [21]. The search process is terminated when the fitness function has been evaluated 
for 50,000 times. Since A2 does not support prioritization with a time budget, we collect 
the maximum number of test cases that can fit a given time budget. 

5 Results, Analysis and Discussion 

5.1 RQ1: Sanity Check (STIPI vs. RS) 

Results in Table A-4 and Table A-5 show that on average STIPI is higher than RS for all 
the EMs across the three sets of test cases. Moreover, for the three test sets using four time 
budgets, STIPI managed to achieve higher performance than RS for on average 39.9% 
(configuration coverage), 18.6% (test API coverage), 32.7% (status coverage), and 43.9% 
(FDC). In addition, results of the Vargha and Delaney statistics and the Mann Whitney U 
test show that STIPI significantly outperformed RS for all the EMs since all the values of 
𝐴%' are greater than 0.5 and all the p-values are less than 0.05.  

Table A-4. Average Values of the EMs with 100% and 75% Time Budget* 

#T 
100% time budget 75% time budget 

EM RS Gr A1 A2 A3 STIPI EM RS Gr A1 A2 A3 STIPI 
100 

CC 
0.7 0.76 0.75 0.77 0.75 0.77 

CCp 
0.63 0.71 0.73 0.74 0.73 0.74 

150 0.68 0.84 0.8 0.79 0.75 0.79 0.60 0.81 0.69 0.72 0.73 0.77 
211 0.74 0.83 0.83 0.85 0.81 0.85 0.67 0.76 0.79 0.80 0.79 0.81 
100 

AC 
0.83 0.74 0.85 0.85 0.84 0.86 

ACp 
0.78 0.70 0.83 0.82 0.84 0.83 

150 0.78 0.64 0.83 0.86 0.85 0.86 0.72 0.57 0.75 0.81 0.83 0.84 
211 0.82 0.67 0.85 0.89 0.89 0.89 0.77 0.56 0.83 0.87 0.87 0.88 
100 

SC 
0.73 0.65 0.76 0.82 0.76 0.82 

SCp 
0.67 0.60 0.73 0.79 0.79 0.81 

150 0.74 0.62 0.8 0.85 0.83 0.85 0.68 0.56 0.71 0.80 0.81 0.83 
211 0.78 0.64 0.79 0.85 0.82 0.85 0.72 0.56 0.79 0.84 0.85 0.86 
100 - - - - - - - 

MF 
0.78 0.79 0.91 - - 0.89 

150 - - - - - - - 0.79 0.80 0.70 - - 0.87 
211 - - - - - - - 0.77 0.63 0.91 - - 0.90 

*T: Test Case, Gr: Greedy, CC: APCC, AC: APAC, SC: APSC, CCp: APCCp, ACp: APACp, SCp: APSCp, MF: MFDC. 

5.2 RQ2: Comparison with the selected approaches 
We compared STIPI with Greedy, A1, A2 and A3 using the statistical tests (Vargha and 
Delaney statistics and Mann Whitney U test) for the four time budgets (25%, 50%, 75% 
and 100%), and the three sets of test cases (i.e., 100, 150, 211). Results are summarized in 
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Fig. A-4. For example, the first bar (i.e., Gr) in Fig. A-4 refers to the comparison between 
STIPI and Greedy for the 100% time budget where A= STIPI and B=Greedy. A>B means 
the percentage of EMs for which STIPI has significantly better performance than Greedy 
(𝐴%' > 0.5 && 𝑝 < 0.05), A<B means the opposite (𝐴%' < 0.5 && 𝑝 < 0.05), and A=B 
implies there is no significant difference in performance (𝑝 ≥ 0.05). 

Table A-5. Average Values of the EMs with 25% and 50% Time Budget 

EM #T 
25% time budget 50% time budget 

RS Gr A1 A2 A3 STIPI RS Gr A1 A2 A3 STIPI 

APCCp 
100 0.37 0.30 0.55 0.51 0.62 0.66 0.52 0.65 0.65 0.67 0.70 0.73 
150 0.35 0.59 0.52 0.45 0.66 0.71 0.50 0.81 0.74 0.63 0.72 0.74 
211 0.42 0.43 0.63 0.56 0.69 0.71 0.52 0.53 0.65 0.67 0.70 0.73 

APACp 
100 0.56 0.26 0.70 0.61 0.74 0.70 0.71 0.61 0.79 0.77 0.81 0.81 
150 0.50 0.35 0.59 0.55 0.74 0.75 0.64 0.54 0.76 0.74 0.81 0.82 
211 0.58 0.33 0.71 0.65 0.77 0.75 0.71 0.52 0.79 0.81 0.85 0.85 

APSCp 
100 0.42 0.14 0.59 0.55 0.70 0.66 0.57 0.51 0.68 0.72 0.76 0.76 
150 0.44 0.33 0.54 0.53 0.73 0.74 0.52 0.53 0.65 0.67 0.70 0.73 
211 0.48 0.24 0.66 0.62 0.78 0.77 0.63 0.52 0.74 0.78 0.84 0.85 

MFDC 
100 0.30 0.06 0.55 - - 0.50 0.54 0.45 0.77 - - 0.78 
150 0.30 0.19 0.40 - - 0.63 0.55 0.74 0.75 - - 0.76 
211 0.29 0.09 0.52 - - 0.44 0.53 0.48 0.75 - - 0.76 

 

 
Fig. A-4. Results of comparing STIPI with Greedy, A1, A2 and A3 for EMs. 

RQ2.1 (STIPI vs. Greedy). From Table A-4 and Table A-5, we can observe that the 
average values of STIPI are higher than Greedy for 93.3% (42/45)1 EMs across the three 
sets of test cases with the four time budgets. Moreover, from Fig. A-4, we can observe 
STIPI performed significantly better than Greedy for an average of 93.1% for the four time 
budgets (i.e., 88.9% for 100%, 91.7% for 75%, 91.7% for 50%, and 100% for 25% time 
budget). Detailed results are available in [15]. 

RQ2.2 (STIPI vs. A1). Based on Table A-4 and Table A-5, we can see that STIPI has a 
higher average value than A1 for 82.2% (37/45) EMs, and STIPI performed significantly 

                                                             
1 An EM has one average value for one set of test case with one time budget (Table A-4 and Table A-5). Thus, for 100% time budget 
with 3 EMs there are 9 values, and 45 average values for 4 time budgets and 4 EMs for other 3 time budgets. 
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better than A1 for an average of 76.4% EMs across the four time budgets, while there was 
no difference in performance for 14.6% from Fig. A-4. Fig. A-5 shows that for HV, STIPI 
outperformed A1 for all the three sets of test cases with the four time budgets, and such 
better results are statistically significant. Detailed results are in [15]. 

 
Fig. A-5. Results of comparing STIPI with A1, A2 and A3 for HV 

RQ2.3 (STIPI vs. A2). RQ2.3 is designed to compare STIPI with the approach A2 (Section 
4.1). Table A-4 shows that the two approaches had similar average for EMs with 100% 
time budget. Moreover, for 100% time budget, there was no significant difference in the 
performance between STIPI and A2 in terms of EMs and HV (Fig. A-4 and Fig. A-5). 
However, when considering the time budgets of 25%, 50% and 75%, STIPI had a higher 
performance for 96.3% (26/27) EMs (Table A-4 and Table A-5). Furthermore, the 
statistical tests in Fig. A-4 and Fig. A-5 show that STIPI significantly outperformed A2 for 
an average of 88.9% EMs and HV values across the three time budgets (25%, 50%, 75%), 
while there was no significant difference for 11.1%. 

RQ2.4 (STIPI vs. A3). Based on the results (Table A-4 and Table A-5), STIPI held a 
higher average values for 75% (27/36) EM values for the four time budgets and three sets 
of test cases. For 100%, 75%, and 50%, we can observe from Fig. A-4 that STIPI 
performed significantly better than A3 for an average of 74.1% EMs, while there was no 
significant difference for 22.2%. For the 25% time budget, there was no statistically 
significant difference in terms of EMs for STIPI and A3. However, when comparing the 
HV values, STIPI significantly outperformed A3 for an average of 91.7% across the four 
time budgets and three sets of test cases. 

Notice that 12 comparisons were performed when comparing STIPI with each of the 
five selected approaches (i.e., three test case sets * four time budgets), and thus in total 60 
comparisons were conducted. Based on the results, we can observe that STIPI significantly 
outperformed the five selected approaches for 54 out of 60 comparisons (90%), which 
indicate that STIPI has a good capability for solving our test case prioritization problem. In 
addition, STIPI took an average time of 36.5, 51.6 and 82 seconds (secs) for the three sets 
of test cases. The average running time for the five chosen approaches are: 1) RS: 18, 24.7 
and 33.2 secs; 2) Greedy: 42, 48 and 54 milliseconds; 3) A1: 35.7, 42.8 and 65.5 secs; 4) 
A2: 35.2, 42.2 and 55.4 secs; and 5) A3: 8.9, 33.4 and 41.2 secs. Notice that there is no 
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practical difference in terms of the running time for the approaches except Greedy, 
however the performance of Greedy is significantly worse than STIPI (Section 5.2), and 
thus Greedy cannot be employed to solve our test case prioritization problem. In addition, 
based on the domain knowledge of VCS testing, the running time in seconds is acceptable 
when deployed in practice. 

5.3 Overall Discussion 

For RQ1, we observed that STIPI performed significantly better than RS for all the EMs 
with the three sets of test cases under the four time budgets. Such an observation reveals 
that solving our test case prioritization problem is not trivial, which requires an efficient 
approach. As for RQ2, we compared STIPI with Greedy, A1, A2 and A3 (Section 4.1). 
Results show that STIPI performed significantly better than Greedy. This can be explained 
that Greedy is a local search algorithm that may get stuck in a local space during the search 
process, while STIPI employs mutation operator (Section 4.4) to explore the whole search 
space towards finding optimal solutions. In addition, Greedy converted our multi-objective 
optimization problem into a single-objective optimization problem by assigning weights to 
each objective, which may lose many other optimal solutions that hold the same quality 
[22], while STIPI (integrating NSGA-II) produces a set of non-dominated solutions (i.e., 
solutions with equivalent quality). 
 When comparing STIPI with A1, A2, and A3, the results of RQ2 showed that STIPI 
performed significantly better than A1, A2, and A3 by 83.3% (30/36). Overall STIPI 
outperformed the five selected approaches for 90% (54/60) comparisons. That might be 
due to two main reasons: 1) STIPI considers the coverage of incremental unique elements 
(e.g., test API commands) when evaluating the prioritization solutions, i.e., only the 
incremental unique elements covered by a certain test case are taken into account as 
compared with the already prioritized test cases; and 2) STIPI provides the test cases with 
higher execution positions more influence on the quality of a given prioritization solution. 
Furthermore, A2 and A3 usually work under the assumption that the relations between 
detected faults and test cases are known beforehand, which is sometimes not the situation 
in practice, e.g., in our case, we are only aware how many execution times a test case can 
detect faults rather than having access to the detailed faults detected. However, STIPI 
defined FDC to measure the fault detection capability (Section 3.2) without knowing the 
detailed relations between faults and test cases, which may be applicable to the similar 
other contexts when the detailed faults cannot be accessed. It is worth mentioning that the 
current practice of Cisco do not have an efficient approach for test case prioritization, and 
thus we are working on deploying our approach in their current practice for further 
strengthening STIPI. 
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5.4 Threats to Validity  

The internal validity threat arises due to using search algorithms with only one 
configuration setting for its parameters as we did in our experiment [23]. However, we 
used the default parameter setting from the literature [24], and based on our previous 
experience [5, 10], good performance can be achieved for various search algorithms with 
the default setting. To mitigate the construct validity threat, we used the same stopping 
criteria (50,000 fitness evaluations) for finding the optimal solutions. To avoid conclusion 
validity threat due to the random variations in the search algorithms, we repeated the 
experiments 10 times to reduce the possibility that the results were obtained by chance. 
Following the guidelines of reporting the results for randomized algorithms [19], we 
employed the Vargha and Delaney test as the effect size measure and Mann-Whitney test 
to determine the statistical significance of results. First external validity threat is that one 
may argue the comparison performed only included RS, Greedy, one existing approach and 
two modified versions of the existing approaches, which may not be sufficient. Notice that 
we discussed and justified why we chose these approaches in Section 4.1, and it is also 
possible to compare our approach with other existing approaches, which requires further 
investigation as the next step. Second external validity threat is due to the fact that we only 
performed the evaluation using one industrial case study. We need to mention that we 
conducted the experiment using three sets of test cases with four distinct time budgets 
based on the domain knowledge of VCS testing. 

6 Related Work 

In the last several decades, test case prioritization has attracted a lot of attention and 
considerable amount of work has been done [1-3, 8]. Several survey papers [25, 26] 
present results  that compare existing test case prioritization techniques from different 
aspects, e.g., based on coverage criteria. Followed by the aspects presented in [25], we 
summarize the related work close to our approach and highlight the key differences from 
the following three aspects: coverage criteria, search-based prioritization techniques 
(which is related with our approach) and evaluation metrics. 

Coverage Criteria. Existing works defined a number of coverage criteria for evaluating 
the quality of prioritization solutions [2, 3, 26] such as branch coverage and statement 
coverage, function coverage and function-level fault exposing potential, block coverage, 
modified condition/decision coverage, transition coverage and round trip coverage. As 
compared with the state-of-the-art, we proposed three new coverage criteria driven by the 
industrial problem (Section 3.2): 1) Configuration coverage (CC); 2) Test API coverage 
(APIC) and 3) Status coverage (SC). 

Search-Based Prioritization Techniques. Search-based techniques have been widely 
applied for addressing test case prioritization problem [3-5, 10]. For instance, Zhang et al. 
[3] defined a fitness function with three objectives (i.e., Block, Decision and Statement 
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Coverage) and integrated the fitness function with hill climbing and GA for test case 
prioritization. Arrieta et al. [7] proposed to prioritize test cases by defining a two-objective 
fitness function (i.e., test case execution time and fault detection capability) and evaluated 
the performance of several search algorithms. The authors of [7] also proposed a strategy 
to give higher importance to test cases with higher positions (to be executed earlier). A 
number of research papers have focused on addressing the test case prioritization problem 
within a limited budget (e.g., time and test resource) using search-based approaches. For 
instance, Walcott et al. [1] proposed to combine selection (of a subset of test cases) and 
prioritization (of the selected test cases) for prioritizing test cases within a limited time 
budget. Different weights are assigned to the selection part and prioritization part when 
defining the fitness function followed by solving the problem with GA. Wang et al. [5] 
focused on the test case prioritization within a given limited test resource budget (i.e., 
hardware, which is different as compared with the time budget used in this work) and 
defined four cost-effectiveness measures (e.g., test resource usage), and evaluated several 
search algorithms (e.g., NSGA-II).  

As compared with the existing works, our approach (i.e., STIPI) defines a fitness 
function that considers configurations, test APIs and statuses, which were not addressed in 
the current literature. When defining the fitness function, STIPI proposed two strategies, 
which include 1) only considering the unique elements (e.g., configurations) achieved; and 
2) taking the impact of test case execution orders on the quality of prioritization solutions 
into account, which is not the case in the existing works. 

Evaluation Metrics (EMs). APFD is widely used in the literature as an EM [2, 3, 8, 16]. 
Moreover, the modified version of APFD (i.e., APFDp) using time penalty [1, 16] is 
usually applied for test case prioritization with a time budget. Other metrics were also 
defined and applied as EMs [9, 26] such as Average Severity of Faults Detected, Total 
Percentage of Faults Detected and Average Percentage of Faults Detected per Cost 
(APFDc). As compared with the existing EMs, we defined in total six new EMs driven by 
our industrial problem for configurations, test APIs, and statuses (Table A-3), which 
include: 1) APCC, APAC, and APSC, inspired by APFD, when there is 100% time budget; 
and 2) APCCp, APACp, and APSCp inspired by APFDp, when there is a limited time budget 
(e.g., 25% time budget). Furthermore, we defined the seventh EM (MFDC) to assess to 
what extent faults can be detected when the time budget is less than 100% (Table A-3). To 
the best of our knowledge, there is no existing work that applies these seven EMs for 
assessing the quality of test case prioritization solutions. 

7 Conclusion and Future Work 

Driven by our industrial problem, we proposed a multi-objective search-based test case 
prioritization approach named STIPI for covering maximum number of configurations, test 
APIs, statuses, and achieving high fault detection capability as quickly as possible. We 
compared STIPI with five test case prioritization approaches using three sets of test cases 
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with four time budgets. The results show that STIPI performed significantly better than the 
chosen approaches for 90% of the cases. STIPI managed to achieve a higher performance 
than random search for on average 39.9% (configuration coverage), 18.6% (test API 
coverage), 32.7% (status coverage) and 43.9% (FDC). In the future, we plan to compare 
STIPI with more prioritization approaches from the literature using additional case studies 
with larger scale to further generalize the results.  
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Abstract 
Due to limited time and resources available for execution, test case selection always 
remains crucial for cost-effective testing. It is even more prominent when test cases 
require manual steps, e.g., operating physical equipment. Thus, test case selection must 
consider complicated trade-offs between cost (e.g., execution time) and effectiveness (e.g., 
fault detection capability). Based on our industrial collaboration within the Maritime 
domain, we identified a real-world and multi-objective test case selection problem in the 
context of robustness testing, where test case execution requires human involvement in 
certain steps, such as turning on the power supply to a device. The high-level goal is to 
select test cases for execution within a given time budget, where test engineers provide 
weights for a set of objectives, depending on testing requirements, standards, and 
regulations. 

To address the identified test case selection problem, we defined a fitness function 
including one cost measure, i.e., Time Difference (TD) and three effectiveness measures, 
i.e., Mean Priority (MPR), Mean Probability (MPO) and Mean Consequence (MC) that 
were identified together with test engineers. We further empirically evaluated eight multi-
objective search algorithms, which include three weight-based search algorithms (e.g., 
Alternating Variable Method) and five Pareto-based search algorithms (e.g., Strength 
Pareto Evolutionary Algorithm 2 (SPEA2)) using two weight assignment strategies 
(WASs). Notice that Random Search (RS) was used as a comparison baseline. We 
conducted two sets of empirical evaluations: 1) Using a real world case study that was 
developed based on our industrial collaboration; 2) Simulating the real world case study 
to a larger scale to assess the scalability of the search algorithms. Results show that 
SPEA2 with either of the WASs performed the best for both the studies. Overall, SPEA2 
managed to improve on average 32.7%, 39% and 33% in terms of MPR, MPO and MC 
respectively as compared to RS.  
 
Keywords: Test Case Selection; Search; Multi-Objective Optimization. 

1 Introduction 

Test case selection is very crucial in practice for cost-effective testing, especially when 
there is a given budget with limited time and resources that are the bottleneck for 
exhaustive testing [1]. The work presented in this paper is based on one of the research 
projects in the Certus Software Verification and Validation Center1 with an industrial 
partner from the Maritime domain. The project focuses on developing a new test case 
execution system for optimizing robustness test execution of their real-time embedded 
systems deployed in various maritime applications, e.g., dynamic positioning, vessel 
control, integrated process control.  

                                                             
1 www.certus-sfi.no 
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In our industrial context, test cases are created to test a System Under Test (SUT). The 
number of test cases increases over time, and it is practically infeasible to execute all 
available test cases for testing the SUT when a large number of test cases have to be 
executed manually, such as turning on the power supply to a device and recording 
observations. Therefore, test case selection is required in the current practice based on 
various cost (e.g., execution time of test cases) and effectiveness criteria (e.g., fault 
detection capability). The overall goal of test case selection is to select test cases that can 
be executed within a time budget, while optimally satisfying various cost and effectiveness 
objectives. Test engineers provide their preferences of these objectives as weights 
depending on the testing requirements, standards, and regulations. This type of multi-
objective test case selection problem can be formulated as a multi-objective optimization 
problem [2, 3]. 

In this paper, we propose a search-based test case selection approach for addressing the 
above-described problem. The proposed approach takes into account individual objectives 
with preferences (i.e., weights) and a time budget for executing test cases, which are 
specified by test engineers based on their preferences [3]. Together with test engineers 
from our industrial partner, we defined one cost measure, i.e., Time Difference (TD), which 
represents difference in period between a time budget and execution cost for a solution, 
and three effectiveness measures: Mean Priority (MPR), Mean Probability (MPO) and 
Mean Consequence (MC). Specifically, in our context, each test case has four attributes: 
time, priority, probability, and consequence.  

After the test cases have been executed, results of execution are automatically used to 
update values of the attribute probability of test cases. For test case selection, test 
engineers can select from five weight options of priority, three weight options of 
probability and five weight options of consequence, based on their preferences. When 
combining these weight options together, in total, there are 75 possible combinations of 
weights for test case selection. Notice that we studied all these 75 combinations of weights 
using two weight assignment strategies (WASs) (i.e., Fixed Weights (FW) and Randomly-
Assigned Weights (RAW). 

Furthermore, we conducted an extensive empirical evaluation by evaluating eight 
existing multi-objective search algorithms (i.e., three weight-based and five Pareto-based 
algorithms) with the aim to integrate the best algorithm into our test case selection 
approach. Random Search (RS) is used as a comparison baseline. For the three weight-
based search algorithms, we defined a fitness function by taking the four cost/effectiveness 
measures (e.g., TD) and user preferences into consideration. As for the five Pareto-based 
search algorithms, we incorporated the user preferences as an additional objective in 
addition to the cost and effectiveness measures.  

The empirical evaluation includes: 1) A real world case study that was created based on 
the real data of our industrial partner; and 2) A set of artificial problems inspired by the 
real world case study to assess the scalability of the search-based approach. Results show 
that Strength Pareto Evolutionary Algorithm 2 (SPEA2) with either of the WASs performed 
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the best among the search algorithms. When compared to RS, SPEA2 achieved on average 
32.7%, 39% and 33% better MPR, MPO, and MC respectively. Notice that we did not 
compare the results with the current practice of the industrial partner in this work, since we 
are in the process of developing a new test case selection system together with them. 

The main contributions of this paper can be summarized as: 1) A multi-objective test 
case selection problem with user preferences and a time budget is identified and 
formulated from an industrial maritime domain application through domain analysis; 2) 
One cost measure and three effectiveness measures are formally defined together with test 
engineers followed by proposing a fitness function based on the defined cost-effectiveness 
measures; and 3) A thorough empirical evaluation was performed that includes three 
weight-based and five Pareto-based search algorithms with two WASs using a real world 
case study and a large number of artificial problems with RS used as a comparison 
baseline.  

The rest of the paper is organized as follows:  Section 2 introduces the selected multi-
objective search algorithms and WASs; Section 3 gives a description of the industrial 
context; and our approach is described in Section 4. Section 5 discusses our experiment 
design followed by presenting the results in Section 6. Section 7 presents the related work, 
and the paper is concluded in Section 8. 

2 Background 

2.1 Multi-Objective Search Algorithms 

Weight-based search algorithms combine a multi-objective optimization problem into a 
single-objective optimization problem with a scalar objective function by assigning 
weights to each objective [3]. We used three weight-based search algorithms that include 
one local search algorithm (Alternating Variable Method (AVM) [4]), and two global 
search algorithms: Genetic Algorithm (GA) [2] and (1+1) Evolutionary Algorithm (EA) 
[5].  

Pareto-based search algorithms are based on the Pareto dominance theory where a set of 
non-dominated solutions is generated for different objectives. We investigated the existing 
Pareto-based search algorithms [6, 7], and chose five most-commonly used ones that apply 
different mechanisms, which includes: Nondominated Sorting Genetic Algorithm (NSGA)-
II [8], Multi-Objective Cellular (MOCELL) [9], Strength Pareto Evolutionary Algorithm 2 
(SPEA2) [10], CellDE [11] and Indicator Based Evolutionary Algorithm (IBEA) [12] with 
hypervolume (HV) [13] as the performance indicator to evaluate a set of solutions. 

2.2 Weight Assignment Strategies 

Two weight assignment strategies (WASs) are commonly applied in the existing literature 
[3], i.e., Fixed Weights (FW) and Randomly-Assigned Weights (RAW). FW assign fixed 
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normalized weights to each objective based on the domain knowledge (e.g., in the 
maritime domain, test engineers are more concerned about testing components that have 
higher chance to cause failure based on earlier testing experience when there is a need to 
test robustness of the systems) [3]. On the other hand, RAW is inspired by Random-
Weighted Genetic Algorithm (RWGA), where a randomly-generated set of weights 
(normalized) to each objective are dynamically assigned at each generation during the 
search [3]. Notice that the weights generated by RAW should satisfy user-defined 
constraints [3]. 

3 Industrial Context 

We first present the domain analysis conducted to identify key research challenges at our 
industrial partner’s current testing practice in Section 3.1 followed by the results in Section 
3.2.  

3.1 Domain Analysis 

Our industrial partner in this study is one of the leading oil & gas service companies in 
Norway, which develops general purpose, real -time process control computers used for 
controlling a wide variety of system application in both on and offshore installations. The 
department that we are working with focuses on robustness testing, and all their test cases 
need to be executed manually. Test engineers aim at executing the maximum number of 
robustness test cases based on different testing criteria (i.e., test important requirements) 
and within a defined time budget. They are also interested in developing a tool where a test 
engineer can specify the importance of testing objectives (e.g., detect more faults) for a 
particular SUT, which will then output a list of optimal test cases.  

Thus, the problem we identified can be summarized as a multi-objective test case 
selection problem, i.e., selecting maximum number of test cases for execution from the test 
suite within the time budget while achieving maximum pre-defined testing criteria. 
Additionally, we noticed that the test engineers manually add test cases based on different 
standards (e.g., Norsok standard common requirements U-CR-005), requirements from 
customers and domain knowledge, and the test cases are usually for system level. They 
select the test cases manually that is subjective and time consuming process as it relies on 
domain expertise. 

3.2 Results of Domain Analysis 

After five meetings and thorough discussions with the test engineers, we learnt that each 
test case should include four key attributes: 1) Priority refers to the importance of a test 
case that can be determined based on type of requirements under test, e.g., a test case 
testing safety requirements (e.g., electronics for subsea electronic module can stand a 
minimum temperature of 70oC as defined in the standard U-CR-003 has a higher priority 
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than a test case testing generation of alarm in an optional device); 2) Probability indicates 
the likelihood that a test case may find a fault, which can be calculated based on the 
execution history of the test case, e.g., a probability with 0.5 indicates out of two 
executions for a test case, fault was detected one time on average. The first time a test case 
is added in the repository, this attribute is classified manually based on the domain 
knowledge of test engineers; 3) Consequence determines the impact of a failure of a test 
case that the system can have on the environment once it is operational (e.g., test cases to 
check that valves are stable during operation have higher value since their failure can cause 
huge damage); 4) Time specifies the execution time to execute the test case. Notice test 
engineers enter the values for the attributes (e.g., priority) based on the domain knowledge, 
standards (e.g., U-CR-003), agreed upon customer requirements and user manuals of 
systems.  

4 Search-Based Approach 

We represent our search problem (Section 4.1), followed by defining four 
cost/effectiveness measures (Section 4.2) and fitness function based on these measures 
(Section 4.3). 

4.1 Search Problem Representation 

Based on the four identified test case attributes (Section 3.2), we identified four objectives 
that we classified into one cost and three effectiveness objectives (quantified using 
respective measures). The cost measure is calculated based on the execution time of a test 
case, and the effectiveness measures are calculated based on priority, probability and 
consequence of a specific test case. 

4.1.1 Basic Concepts 

Definition 1. A test suite including a set of test cases is defined as:   

𝑇𝑆 = 𝑡𝑐%, 𝑡𝑐', … , 𝑡𝑐)j , 𝑛𝑡 is the total number of test cases in 𝑇𝑆. 

Definition 2. A set of execution time for the test cases in 𝑇𝑆 is defined as: 𝐸𝑇 =
𝑒𝑡%, 𝑒𝑡', … 𝑒𝑡)j . Any test case 𝑡𝑐+ in 𝑇𝑆 has a corresponding execution time in	𝐸𝑇 i.e., 𝑒𝑡+. 

Definition 3. A set of priorities for test cases in 𝑇𝑆  is defined as: 𝑃𝑅 = 𝑝𝑟%,
𝑝𝑟', … , 𝑝𝑟)j . Each 𝑡𝑐+	has  a corresponding value for priority in 𝑃𝑅  (i.e., 𝑝𝑟+ ). Each 
priority has a set of five different options that can be configured for each test case with the 
range of values for the options divided evenly between 0 and 1. 
∀l2%	jp	)j𝑝𝑟l ∈ ℎ𝑖𝑔ℎ𝑒𝑟cn, ℎ𝑖𝑔ℎcn,𝑚𝑒𝑑𝑖𝑢𝑚cn, 𝑙𝑜𝑤cn, 𝑙𝑜𝑤𝑒𝑟cn , 𝑙𝑜𝑤𝑒𝑟cn = 0,… ,0.2 ,	 
𝑙𝑜𝑤cn = 0.21, … ,0.4 , 𝑚𝑒𝑑𝑖𝑢𝑚cn = 0.41, … ,0.6 , ℎ𝑖𝑔ℎcn = 0.61, … ,0.8 ,	 
	ℎ𝑖𝑔ℎ𝑒𝑟cn = 0.81, … ,1 . 
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Definition 4. A set of probabilities for test cases in 𝑇𝑆  is stated as:  𝑃𝑂 =
𝑝𝑜%, 𝑝𝑜', … , 𝑝𝑜)j . Each 𝑡𝑐+  has a corresponding value for probability in	𝑃𝑂	(i.e., 𝑝𝑜+). 

Each probability has three different options for each test case with range of values divided 
equally, i.e., ∀l2%	jp	)j𝑝𝑜l ∈ ℎ𝑖𝑔ℎcp,𝑚𝑒𝑑𝑖𝑢𝑚cp, 𝑙𝑜𝑤cp , 𝑙𝑜𝑤cp = 0,… ,0.33 ,
𝑚𝑒𝑑𝑖𝑢𝑚cp = 0.34,… ,0.66 ,	 ℎ𝑖𝑔ℎcp = 0.67, … ,1 . 

Definition 5. A set of consequences for a test case in 𝑇𝑆 is expressed as: 
𝐶 = 𝑐%, 𝑐', … , 𝑐)j . Each 𝑡𝑐+has a corresponding value of consequence in 𝐶 (i.e., 𝑐+). Each 
consequence has five different options for selection for each test case with the range of 
values divided equally across different options: 
∀l2%	jp	)j𝑐l ∈ ℎ𝑖𝑔ℎ𝑒𝑟 , ℎ𝑖𝑔ℎ^,𝑚𝑒𝑑𝑖𝑢𝑚^, 𝑙𝑜𝑤^, 𝑙𝑜𝑤𝑒𝑟 , 𝑙𝑜𝑤𝑒𝑟 = 0,… ,0.2 ,	 𝑙𝑜𝑤^ =
0.21, … ,0.4 ,			 𝑚𝑒𝑑𝑖𝑢𝑚^ = 0.41,… ,0.6 , ℎ𝑖𝑔ℎ^ = 0.61, … ,0.8 , ℎ𝑖𝑔ℎ𝑒𝑟 =
0.81,… ,1 . 

Definition 6. A set of cost measures is defined as: 
𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡%, 𝑐𝑜𝑠𝑡', … , 𝑐𝑜𝑠𝑡)^pfj	  

Definition 7. A set of effectiveness measures is defined as: 
𝐸𝑓𝑓𝑒𝑐𝑡 = 𝑒𝑓𝑓𝑒𝑐𝑡%, 𝑒𝑓𝑓𝑒𝑐𝑡', … , 𝑒𝑓𝑓𝑒𝑐𝑡)hiih^j	  

Definition 8. A set of potential solutions is represented as:  
𝑆 = 𝑠%, 𝑠'	, … , 𝑠)f ,	where each solution 𝑠k consists of a set of selected test cases from test 
suite 𝑇𝑆 for testing a particular System Under Test within a given time budget (cost 
measure) while achieving maximum for effectiveness measures (e.g., priority). 

4.1.2 Problem Representation 

Based on the above-mentioned concepts, our test case selection problem can be formulated 
as: Search a solution 𝑠l from the total number of 𝑛𝑠 solutions in 𝑆 to obtain highest 
effectiveness while having the cost as close to the time budget (i.e., 𝑡𝑏) as possible, such 
that the cost can not exceed the time budget: 
				∀+2%	jp	)hiih^j∀k2%	jp	)f	𝐸𝑓𝑓𝑒𝑐𝑡	(𝑠l, 𝑒𝑓𝑓𝑒𝑐𝑡+) ≥ 𝐸𝑓𝑓𝑒𝑐𝑡	(𝑠k, 𝑒𝑓𝑓𝑒𝑐𝑡+) 
				∀+2%	jp	)^pfj∀k2%	jp	)f	(𝐶𝑜𝑠𝑡	 𝑠l, 𝑐𝑜𝑠𝑡+ ≤ 𝑡𝑏) ∩ ( 𝑡𝑏 − 𝐶𝑜𝑠𝑡	 𝑠l, 𝑐𝑜𝑠𝑡+

≤ 𝑡𝑏 − 𝐶𝑜𝑠𝑡	 𝑠k, 𝑐𝑜𝑠𝑡+ )  
For a solution 𝑠k, 𝐸𝑓𝑓𝑒𝑐𝑡	(𝑠k, 𝑒𝑓𝑓𝑒𝑐𝑡+) returns the 𝑖j�effectiveness and 𝐶𝑜𝑠𝑡	(𝑠k, 𝑐𝑜𝑠𝑡+) 

returns the 𝑖j�cost. 

4.2 Cost/Effectiveness Measures 

Cost Measures Cost consists of one element in our context, i.e., time difference (TD), 
which is a difference in period between a time budget (𝑡𝑏) and execution cost (EC) for a 
solution 𝑠k. 
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Measure Formula 1. The execution cost (𝐸𝐶) is calculated with: 𝐸𝐶fz = 	 𝑒𝑡k+
·¸
+2% , where 

1	 ≤ 𝑛𝑗 ≤ 𝑛𝑡 and 𝑒𝑡k+ 	 ∈ 𝐸𝑇k. 

Measure Formula 2. The Time Difference (𝑇𝐷) for a solution 𝑠k  is measured as: 𝑇𝐷fz =
𝑡𝑏 − 𝐸𝐶fz. 

Effectiveness Measures Effect consists of three elements: Mean Priority (MPR), Mean 
Probability (MPO) and Mean Consequence (MC). Priority and consequence for each test 
case 𝑡𝑐+	has one value out of five different values (from Section 4.1.1). Test engineers can 
manually change these values. However, the probability of test case is calculated 
dynamically based on its execution history, for a test case 𝑡𝑐+: 

	𝐹𝑎𝑖𝑙𝑢𝑟𝑒	𝑅𝑎𝑡𝑒	j^� = 	
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑖𝑚𝑒𝑠	𝑡𝑐+	𝑓𝑜𝑢𝑛𝑑	𝑎	𝑓𝑎𝑢𝑙𝑡
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑖𝑚𝑒𝑠	𝑡𝑐+	𝑤𝑎𝑠	𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑

 

The Failure Rate of a test case is used to indicate options for probability of a test case 
using probability set (PO) as described in Section 4.1.1. For a solution 𝑠k with priority (pr), 
probability (po) and consequence (c): MPR, MPO and MC can be represented as:  

Measure Formula 3. MPR is the mean priority that measures the average priority for the 

optimized test cases in a solution, and can be calculated as: 	𝑀𝑃𝑅fz = 	
cnz�

�z
���
)k

, where 

𝑝𝑟k+ 	 ∈ 𝑃𝑅k. 

Measure Formula 4. MPO is the mean probability of all the test cases in a solution such 

that: 𝑀𝑃𝑂fz = 	
cpz�

�z
���
)k

, where 𝑝𝑜k+ 	 ∈ 𝑃𝑂k. 

Measure Formula 5. MC is the mean consequence of all the test cases in a solution 

expressed as:	𝑀𝐶fz = 	
^z�

�z
���
)k

, where 𝑐k+ 	 ∈ 𝐶k. 

All the effectiveness measures range from 0 to 1 with a higher value representing a 
better solution. 

4.3 Fitness Function 

As described in Section 2, weight-based and Pareto-based search algorithms have different 
working mechanisms. Since weight-based search algorithms convert a multi-objective 
problem into a single-objective problem, we can compare the values for fitness function to 
measure their performance [3]. However, Pareto-based search algorithms only require 
defining a set of objective functions (i.e., cost/effectiveness measures) without converting 
all the objective functions into one [3]. Thus, we define the fitness functions separately for 
them as below. 
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4.3.1 For Weight-Based Search Algorithms 

Since the values obtained by different cost/effectiveness measures may not be comparable, 
we normalize the values obtained by TD using the normalization function suggested in [14] 
to obtain values in the magnitude from 0 to 1:  𝑁𝑜𝑟	 𝐹 𝑥 = 	 ¢»	

¢»v%
. Notice that test 

engineers have user preferences for different cost and effectiveness measures (i.e., MPR, 
MPO, MC, TD) that are represented by assigning weights to each objective 
(i.e.,	𝑤cn, 𝑤cp, 𝑤^, 𝑤j) in our context. For each 𝑤cn	and 𝑤^, the test engineer selects one 
option out of the five (i.e., Higher, High, Medium, Low, Lower), and for 𝑤cp	one out of 
three different options (i.e., High, Medium, Low).  As for 𝑤j, test engineers can specify a 
fixed value beforehand based on the domain knowledge, e.g., 0.2 in our context. 

The fitness function for weight-based search algorithms can be calculated by: 
𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑢𝑛 𝐹𝐹 = 1 − 𝑀𝑃𝑅×𝑤cn¼ + 	𝑀𝑃𝑂	×𝑤cp¼ + 	𝑀𝐶×𝑤^¼ + 1 − 𝑁𝑜𝑟 𝑇𝐷 ×	𝑤j¼ . 
𝑤cn¼ , 𝑤cp¼ 	, 𝑤^¼		and 𝑤j¼		 are the weights that will be used during the search process 
calculated as:	 

𝑇𝑜𝑡𝑎𝑙 = 	𝑤cn + 𝑤cp + 𝑤^, 𝑤j = 	𝑤j¼, 𝑤cn¼ = 	  ½¾
�pj`y

	× 1 −	𝑤j  

𝑤cp¼ = 	  ½¿
�pj`y

	× 1 −	𝑤j , 𝑤^¼ = 	
 «

�pj`y
	× 1 −	𝑤j  

Notice that 𝑤cn¼ , 𝑤cp¼ 	, 𝑤^¼		and 𝑤j¼	 should satisfy: 𝑤cn¼ + 𝑤cp¼ + 𝑤^¼ +	𝑤j¼ 		= 	1, and we 
subtracted 1 in 𝐹𝐹 to imply that a value closer to 0 is better. 

4.3.2 For Pareto-Based Search Algorithms 

We select the cost measure (i.e., TD) after normalization:  𝑁𝑜𝑟	 𝐹 𝑥 = 	 ¢»	
¢»v%

, and the 

effectiveness measures (i.e., MPR, MPO, MC) as objective functions for the Pareto-based 
search algorithms after subtracting 1 in 𝑀𝑃𝑅fz,	𝑀𝑃𝑂fz, 𝑀𝐶fzto ensure that solution with 
values closer to 0 is better. Notice that Pareto-based search algorithms usually treat all the 
objectives equally [3], and we use the above-defined fitness function as the fifth objective 
for the selected Pareto-based algorithms to reflect user preferences. Therefore, for all the 
Pareto-based search algorithms, the above-defined five objective functions are applied to 
guide the search to find optimal solutions. 

5 Experiment Design 

In this section, we present the experiment design (as shown in Table B-1), which includes: 
1) research questions (Section 5.1); 2) real world case study and artificial problems 
(Section 5.2). After that, we provide the evaluation metrics for the experiments (Section 
5.3), describe our experiment design (Section 5.4), and present the parameter settings used 
in the algorithms (Section 5.5). 
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5.1 Research Questions 

RQ1: Are weight-based and Pareto-based search algorithms effective to solve our 
selection problem as compared with RS? 

RQ2: Among weight-based search algorithms with the two weight assignment strategies 
(WASs), which one can achieve the best performance in terms of solving our test case 
selection problem?  

RQ3: For Pareto-based search algorithms with the two WASs, which one can perform the 
best for our test case selection problem? 

RQ4: Between the best weight-based search algorithm and the best Pareto-based search 
algorithm, which one is better? 

RQ5: Are weight-based and Pareto-based search algorithms scalable for solving test case 
selection problems of varying complexity using the different WASs? 

Table B-1. An Overview of the Experiment Design* 

RQ T Description Algorithms WAS Evaluation 
Metric 

Statistical 
Tests Study 

1 
T1 

Comparison of algorithmswb with RS using 
each WAS 3 Weight-based 

FW 
RAW 

Fitness values 

Vargha and 
Delaney 
𝐴%', 

Mann-
Whitney U 

test 

𝐶𝑆% 
𝐶𝑆' 

T2 
Comparison of algorithmspb with RS using 
each WAS 5 Pareto-based HV 

2 T3 
Comparison of algorithmswb with each other 
using both WASs 3Weight-based Fitness values 

3 T4 
Comparison of algorithmspb with each other 
using both WASs 5 Pareto-based HV 

4 T5 
Comparison of the best weight based and 
Pareto-based search algorithm 

1Weight-based  
1 Pareto-based n/a HV 

5 
T6 Evaluation of the scalability of algorithmswb 3 Weight-based FW 

RAW 

Mean Fitness 
Value (MFVi) Kendall's 

Tau (τ) 𝐶𝑆' 
T7 Evaluation of the scalability of algorithmspb 5 Pareto-based Mean HV 

(MHVi) 

*T: Task, wb: Weight-based, pb: Pareto-based. 

5.2 Case Study and Artificial Problems 

Real World Case Study: Due to confidentiality issues with industrial data, we created a 
real world case study with high-level test cases for the key elements of Subsea Oil and Gas 
Production System based on the key attributes of test cases used at the industrial partner 
(Section 3). We used different standards (e.g., Design and operation of subsea production 
systems - ISO 13628-6:2006, Norsok standard common requirements U-CR-005, U-CR-
006Rev.1, U-CR-003), requirements from oil and gas companies available publicly in the 
internet; and domain knowledge to categorize the attributes priority and consequence, and 
fill execution time for each test case. 

Furthermore, to obtain the failure information of each test case, we checked different 
subsea components from OREDA Offshore Reliability Data Handbook [15]. Specifically, 
we investigated the mean failure rate (per 106) of the different components (e.g., sensors, 
valves), and distributed them equally across different options as defined in Section 4.1.1. 
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Based on the standards, public requirements and handbook, we created a real world case 
study (𝐶𝑆%) that includes 165 test cases, and each test case has the four key attributes (i.e., 
priority, probability, consequence, time). For our experiments, we map 𝑤cn, 𝑤cp  and 𝑤^  

with different options of 𝑝𝑟l, 𝑝𝑜l	and 𝑐l respectively. Recall (from Section 4.1.1) that 
𝑝𝑟l	has five options, 𝑝𝑜l	has three options and 𝑐l has five options. Note that we tried all 
the combinations of weights that a test engineer could assign when trying to optimize the 
tests for different objectives. Therefore, for a fixed number of test cases with specific value 
for 𝑤j (i.e., weight for TD), in total 75 problems were defined. 

We compare two WASs (i.e., FW, RAW) for assigning the weights of objectives. For 
FW, we assign a fixed weight for the different objectives: 𝑝𝑟l ∈ 1,0.8,0.6,0.4,0.2 , 𝑝𝑜l 	∈
1,0.66,0.33  and 𝑐l	 ∈ 1,0.8,0.6,0.4,0.2 , while for RAW we assign a random weight at 

each generation between the ranges of categories (from Section 4.1) for each problem. For 
example, for a problem with 𝑝𝑟+ 	= ℎ𝑖𝑔ℎ𝑒𝑟, 𝑝𝑜+ 	= 𝑙𝑜𝑤 and 𝑐+ 	= 𝑙𝑜𝑤𝑒𝑟 for FW: 𝑤cnÀÁ =
1,𝑤cpÀÁ = 0.33, 𝑤^ÀÁ = 0.2; for RAW: 𝑤cnÂÃÁ, 𝑤cpÂÃÁ	and 𝑤^ÂÃÁ	is random between 
0.81, … ,1, 0,… ,0.33, and 0,… ,0.2	respectively for each generation. After that we 
normalize the values of the weights (e.g., 𝑤cn) as in Section 4.3. We take 30% of the total 
test case execution time as the budget for test case selection to calculate cost measure (TD), 
since our industrial partner typically uses similar execution time for test case selection. For 
all our experiments the weight for time (𝑤j) is set constant as 0.2 based on our discussion 
with the test engineers at the industrial partner, i.e., 𝑤j = 0.2 for TD in Section 4.3. Thus, 
𝑤cn¼ + 𝑤cp¼ + 𝑤^¼ = 1 − 0.2 = 0.8.  

Artificial Problems: Based on the real world case study (𝐶𝑆%), we created artificial 
problems (𝐶𝑆'). 𝐶𝑆'  consists of ten test suites (𝑇𝑆s) with the number of test cases ranging 
from 100 to 1000 with an increment of 100.	The test cases are all randomly generated, 
such that the attributes (priority, probability and consequence) are distributed uniformly as 
defined in Section 4.1 and have execution time in the same range as in the real world case 
study (0.5 to 8 hours for each test case). We take 30% of total test execution time as the 
time budget in our experiments. We have a total of 750	problems for 𝐶𝑆', since there are 
75	problems for one 𝑇𝑆. 

5.3 Evaluation Metrics 

To address RQ1 and RQ2, we use the fitness values produced by them (using the fitness 
function in Section 4.3). We evaluate the three weight-based search algorithms (i.e., AVM, 
GA, (1+1) EA) and RS as shown in Table B-1. Similarly, to address RQ1 and RQ3, we 
employ a commonly-used quality indicator called hypervolume (HV) [13, 16]. We evaluate 
the overall performance of the five Pareto-based search algorithms (i.e., NSGA-II, SPEA2, 
CELLDE, IBEA, MOCELL) and RS (as shown in Table B-1). A higher value of HV 
indicates a better performance of the algorithm. Moreover, we use HV to evaluate the best 



 
 

73 
 
 
 
 
 

weight-based and Pareto-based search algorithms for addressing RQ4 as depicted in Table 
B-1. To address RQ5, we used two evaluation metrics as presented in Table B-1.  

1) Mean fitness value of a test suite (TS) i used for the weight-based search algorithms is 

calculated by:	∀+2%	jp	%�	𝑀𝐹𝑉+ =
	 ÃÀ©�zÀÁ
Ä�
z��

Ä� v	
	 ÃÀ©�zÂÃÁ
Ä�
z��

Ä�
'

, where 𝐴𝐹𝑉+kÀÁ and 𝐴𝐹𝑉+kÂÃÁ 
represent the average fitness values for TSi for the jth problem with FW and RAW 
respectively.  

2) Mean HV of a test suite (TS) i used for the Pareto-based search algorithms is computed 

by:	∀+2%	jp	%�	𝑀𝐻𝑉+ =
	 ÃÆ©�zÀÁ
Ä�
z��

Ä� v	
	 ÃÆ©�zÂÃÁ
Ä�
z��

Ä�
'

, where 𝐴𝐻𝑉+kÀÁ and 𝐴𝐻𝑉+kÂÃÁ represent 
the average HV for TSi for the jth problem with FW and RAW respectively. We combined 
the different WASs to a single metric (i.e., MFV and MHV) with the aim to evaluate the 
scalability of the algorithms. 

5.4 Experiment Tasks 

We used seven experiment tasks (T1 - T7) for answering RQ1 - RQ5 as presented in Table 
B-1. For example, to answer RQ1, we used T1 and T2 as shown in Table B-1. T1 is 
performed to compare three weight-based search algorithms with RS using each WAS (i.e., 
FW and RAW) by comparing the fitness values (from the fitness function in Section 5.3) as 
the evaluation metric using two statistical tests (Vargha and Delaney 𝐴%' that is a non-
parametric effect size measure [17] and Mann-Whitney U test that tells whether results are 
statistically significant [18] based on the guidelines for statistical tests for randomized 
algorithms [19]) for both real world case study (𝐶𝑆%) with 75 problems and artificial 
problems (𝐶𝑆') consisting of 750 problems. In T2, we compared five Pareto-based search 
algorithms using HV. 

5.5 Parameter Settings 

Notice that the selected search algorithms together with the quality indicator (i.e., HV) 
were implemented based on jMetal, which is a Java-based framework [20]. We have used 
similar parameter settings for all the algorithms to maintain consistency across them, and 
as used in jMetal [20] except with fitness evaluations of 20,000. Moreover, we executed 
each problem 100 times to account for random variation in the algorithms. We 
implemented a random number generator [21] in Java for RAW. All the experiments were 
executed on the Abel cluster at the University of Oslo (UiO) [22]. 



 
 

74 
 
 
 
 
 

6 Results and Analysis 

6.1. Real World Case Study 

RQ1: Recall that RQ1 is designed to check whether search algorithms are effective to 
solve our test case selection problem. This is done by checking whether the search 
algorithms perform better than RS. Using the Vargha and Delaney Statistics and the Mann 
Whitney U Test to analyse the results, we noticed that all the search algorithms performed 
significantly better than RS for all the problems, i.e., 𝐴%' for the search algorithms is 
greater than 0.5, and p-value is less than 0.05. Detailed results are available in [21].  

RQ2: This question is designed to evaluate the three weight-based search algorithms (i.e., 
AVM, GA, (1+1) EA) with the two WASs (i.e., FW, RAW).  We can analyse the results as 
shown in Fig. B-1. We split two algorithms A and B in Fig. B-1 to show results in regard to 
the two statistical tests (i.e., Vargha and Delaney Statistics and the Mann Whitney U Test). 
For example, AVM vs GA in Fig. B-1 implies A=AVM and B=GA. A>B means the 
number of problems out of 75 for which AVM has significantly better performance than 
GA (𝐴%' > 0.5	&&	𝑝 < 0.05), A<B means the opposite (𝐴%' < 0.5	&&	𝑝 < 0.05), and 
A=B means the number of problems for which there is no significant difference in 
performance between AVM and GA (𝑝 ≥ 0.05). 

 
Fig. B-1. Results for RQ2 using FW and RW 

Based on Fig. B-1, we can observe that (1+1) EA performed the best for both the WASs. 
When comparing the two WASs, (1+1) EA using FW (i.e., (1+1) EA_FW) performed 
significantly better than (1+1) EA using RAW for 95% (71/75) of the total problems. 

RQ3: RQ3 is designed to evaluate the selected five Pareto-based search algorithms (i.e., 
NSGA-II, SPEA2, CELLDE, IBEA, MOCELL) along with the two WASs for finding out 
which algorithm with which WAS performs the best. To summarize the key results, Table 
B-2 gives the percentage of problems where a Pareto-based search algorithm significantly 
outperforms (i.e., A%' > 0.5	&&	p < 0.05) all the other Pareto-based search algorithms 
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while using FW and RAW, respectively. Table B-2 also shows the results of comparison 
between the best Pareto-based search algorithms from the two WASs. Note that sum of 
percentage is less than or equal to 100%, since some of the results are not significant (i.e., 
p ≥ 0.05). More detailed results are in [21]. 

Table B-2. Percentage of Problems where One Pareto-based Search 
Algorithm Significantly Outperforms the Others* 

WAS 
Pareto-Based Algorithm Best Ap 

(AFW vs ARAW) A1 A2 A3 A4 A5 
FW 0.0 12.0 0.0 0.0 0.0 A1_FW 

(65.3) RAW 0.0 100 0.0 0.0 0.0 
*A1: NSGA-II, A2: SPEA2, A3: CELLDE, A4: IBEA, A5: MOCELL, Ap: Pareto-based algorithm, 

 AFW: Best Pareto-based algorithm using FW, ARAW: Best Pareto-based algorithm using RAW. 
From Table B-2, we can observe that SPEA2 performed the best for both WASs. SPEA2 

performed the best for 12% and 100% of the total problems using FW and RAW 
respectively. Furthermore, SPEA2 with FW (SPEA2_FW) performed better than SPEA2 
with RAW for 65.3% of the problems. 

RQ4: Recall that RQ4 is designed to compare the best weight-based search algorithm with 
the best Pareto-based search algorithm. With this aim, we compared (1+1) EA_FW (Fig. 
B-1) with SPEA2_FW (Table B-2); and the results show that SPEA2_FW performed 
significantly better for all the problems. 

The mean execution time of all the three weight-based search algorithms were between 
150 to 450 milliseconds (ms) to get a single solution with AVM taking the least amount of 
time (i.e., 150 ms). Similarly, five Pareto-based search algorithms took 750 to 4,000 ms 
with NSGA-II taking the least time (i.e., 796 ms) and IBEA taking the most time (i.e., 
3961 ms). However, it is worth mentioning that the proposed search-based approach is an 
offline-based solution for test case selection in our industrial context, and the execution 
time of the search algorithms is not a critical factor, since there is no large difference 
between them. 

Concluding Remarks: Based on the results, we can conclude that all the weight-based and 
Pareto-based search algorithms are effective to solve our test case selection problem 
(RQ1). For the weight-based search algorithms, (1+1) EA with FW achieved the best 
performance (RQ2), while for the Pareto-based search algorithms SPEA2 with FW 
performed the best although the results are not significant (RQ3). Finally, SPEA2 with FW 
significantly outperformed the best weight-based search algorithm (RQ4). 

6.2. Artificial Problems 

RQ1: All the weight-based search algorithms using FW significantly outperformed RS for 
all the problems, while weight-based search algorithms using RAW significantly 
outperformed RS for most of the problems (more than 65%). On the other hand, all the 
Pareto-based search algorithms with both the WASs significantly outperformed RS for all 
the problems. Complete results are at [21]. 
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RQ2: Table B-3 presents summarized results of the percentage of problems where a 
specific algorithm significantly outperforms the other algorithms for ten different test 
suites (each test suite has 75 problems) similar to Table B-2.  

Table B-3. Percentage of Problems where One Pareto-based Search  
Algorithm Significantly Outperforms the Others* 

# Test 
Cases 

FW RAW Best Aw 
(AFW vs 
ARAW) A1 A2 A3 A1 A2 A3 

100 0.0 0.0 100 0.0 12.0 85.3 A3_FW(100.0) 
200 13.3 0.0 86.7 0.0 36.0 64.0 A3_FW(100.0) 
300 6.7 0.0 93.3 0.0 88.0 9.3 A3_FW(100.0) 
400 13.3 0.0 86.7 0.0 96.0 2.7 A3_FW(100.0) 
500 100.0 0.0 0.0 1.0 93.3 4.0 A1_FW(100.0) 
600 100.0 0.0 0.0 0.0 93.3 6.7 A1_FW(100.0) 
700 100.0 0.0 0.0 0.0 93.3 5.3 A1_FW(100.0) 
800 100.0 0.0 0.0 0.0 94.7 5.3 A1_FW(100.0) 
900 100.0 0.0 0.0 0.0 94.7 5.3 A1_FW(100.0) 

1000 100.0 0.0 0.0 0.0 97.3 2.7 A1_FW(100.0) 
*A1: AVM, A2: GA, A3: (1+1) EA, Aw: Weight-based algorithm, AFW: Weight-based algorithm using FW,  

ARAW: Weight-based algorithm using RAW. 

For RQ2, we can observe from Table B-3 that (1+1) EA with FW performed the best 
for lower number of test cases (<=400), while AVM achieved the best performance when 
the size of test suite grows (>=500). On the other hand for RAW, (1+1) EA performed the 
best for lower number of test cases (<=200), and GA outperformed the other weight-based 
search algorithms for 300 and more number of test cases. Furthermore, Table B-3 also 
shows the results of comparing the best algorithms using FW and RAW, respectively. We 
can conclude RQ2 as: 1) For FW: a) (1+1) EA performed the best when the number of test 
cases is equal or less than 400; b) AVM achieved the best performance when the size of 
test suite is equal or more than 500, and 2) For RAW: a) (1+1) EA had the best 
performance for 200 or lower number of test cases; b) GA achieved the best results for 300 
and more test cases. 

Table B-4. Percentage of Problems where One Pareto-based Search 
Algorithm Significantly Outperforms the Others* 

#Test 
Cases 

FW RAW 
A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 

100 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
200 0.0 93.3 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
300 0.0 69.3 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
400 0.0 32.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
500 0.0 12.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
600 0.0 8.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
700 0.0 22.7 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
800 0.0 18.7 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
900 0.0 45.3 0.0 0.0 1.3 0.0 100.0 0.0 0.0 0.0 

1000 0.0 52.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 

RQ3: Table B-4 presents the summarized results of percentage of problems where an 
algorithm significantly outperformed all the other algorithms for both the WASs. Based on 
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Table B-4, we can see that SPEA2 performs the best among all the search algorithms using 
FW and RAW. However, when comparing the best algorithm using FW and RAW, the 
performance is not consistent; SPEA2 using FW performed the best (e.g., # of test cases 
=100, 200, 400, 600), and SPEA2 using RAW performed the best (e.g., # of test cases 
=300, 500, 700, 800, 1000). For 900 test cases, there was no significant difference between 
FW and RAW.  

RQ4: The results ([21]) show that the best Pareto-based search algorithm (i.e., SPEA2) 
significantly outperformed the best weight-based search algorithm (i.e., (1+1) EA or 
AVM) for more than 90% of the total problems for all the test suites.  

RQ5: For the weight-based search algorithms, we chose the mean fitness value (MFV) 
(Section 5.3) of all 75 problems in a test suite, and test the relationship between the MFV 
and number of test cases (increasing in a constant rate) with 10 test suites using Kendall’s 
Tau (τ) in Table B-5. Values of τ range from -1 (i.e., strong negative correlation) to +1 
(i.e., strong positive correlation), while a value of zero indicates that there is no correlation. 
Additionally, we use Prob>|𝜌| to report significance of correlation, where a value less than 
0.05 means that correlation is statistically significant. 

Table B-5. Kendall’s Correlation Analysis between MFV and Test Cases 

Algorithm FW RAW 
τ Prob>|𝝆| τ Prob>|𝝆| 

AVM -0.4667 0.0603 0.8222 0.0009 
GA 0.6000 0.0157 0.9556 0.0001 

(1+1) EA 0.2444 0.3252 0.9111 0.0002 

From Table B-5, we can observe that 1) For FW: there is a negative correlation between 
MFV and number of test cases for AVM (i.e., performance improves on increasing the 
number of test cases), however, the result is not significant. As for GA, there is a 
significantly positive correlation between MFV and number of test cases that indicates the 
performance of GA significantly decreases as increasing the number of test cases. For 
(1+1) EA, there is a positive correlation but not statistically significant; 2) For RAW: we 
can see that there is a significantly positive correlation between MFV and number of test 
cases for AVM, GA and (1+1) EA. 

For the Pareto-based search algorithms, we take the mean HV (Section 5.3) of all 75 
problems in a test suite, and analyse the relationship between the mean HV and number of 
test cases using Kendall’s Tau (τ). From Table B-6, we can observe that there is a 
significantly negative correlation between mean HV and number of test cases, i.e., the 
performance decreases as the number of test cases grows for all the Pareto-based search 
algorithms, while using both the WASs except for IBEA with FW where it is not major. 
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Table B-6. Kendall’s Correlation Analysis between HV and Test Cases 
Pareto-based 

Algorithm 
FW RAW 

τ Prob>|𝝆| τ Prob>|𝝆| 
NSGA-II -0.9556 0.0001 -0.9556 0.0001 
SPEA2 -0.9556 0.0001 -0.9556 0.0001 

CELLDE -1.0000 <0.0001 -1.0000 <0.0001 
IBEA 0.4222 0.0892 -0.9556 0.0001 

MOCELL -0.8667 0.0005 -0.9111 0.0002 

Concluding Remarks: Based on the results, all the weight-based and Pareto-based search 
algorithms are effective to solve our test case selection problem. For RQ2, (1+1) EA using 
FW performed the best for lower number of test cases (i.e., 400 or less), while AVM using 
FW performed better for higher number of test cases (i.e., 500 or more). Similarly, for RQ3 
and RQ4, we observed that SPEA2 using FW and RAW performed the best for different test 
suites among the eight search algorithms. The results for RQ1–RQ4 are consistent with the 
findings for the real world case study. For RQ5, the performance of all the search 
algorithms using the two WASs, i.e., FW and RAW (except AVM, (1+1) EA, and IBEA 
using FW) seem to decrease significantly with the increase in the number of test cases. 
However, the result is not significant for the remaining algorithms (i.e., AVM, (1+1) EA, 
and IBEA using FW). 

6.3. Overall Discussion 

All the three weight-based and five Pareto-based search algorithms with both the weight 
assignment strategies (i.e., FW and RAW) for 𝐶𝑆% and 𝐶𝑆' significantly outperformed RS 
(RQ1), which means that our test case selection problem is complex to solve. Regarding 
RQ2, using FW (1+1) EA performed the best for lower number of test cases (<=400) and 
AVM performed the best for higher number of test cases (>=500) due to the reason that 
with a smaller search space, the global search algorithms with a sufficient number of 
fitness evaluations (i.e., 20,000) manage to find a better solution by exploring more search 
space as compared to the local search algorithm. When the problems become more 
complex (>= 500), it may require more fitness evaluations for global search algorithms to 
find optimal solutions, which will be investigated in the future work. SPEA2 performed the 
best as compared with all the algorithms for the real world case study (75 problems) and 
750 artificial problems out of all Pareto-based search algorithms (RQ3) and weight-based 
search algorithms (RQ4). It might be explained as: SPEA2 provides an increasingly more 
diversity of solutions as the number of objectives are increased (greater than 2), which has 
been discussed in [10].  

For the weight-based search algorithms (RQ2), FW performed significantly better than 
RAW, whereas for the Pareto-based search algorithms there was no difference in the 
performance using either of them. This can be explained due to the fact that weight-based 
search algorithms converts a multi-objective optimization algorithm into a single-objective 
algorithm by assigning weights to each objective, where weights play a primary role for 
the performance of the weight-based search algorithms. In addition, the weights provided 
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by test engineers (FW) in our case are more accurate to guide search towards finding 
optimal solutions as compared with the randomly generated weights (RAW). However, for 
Pareto-based search algorithms, the weights are only embedded into one of the five 
objectives, which may not have a major impact on the performance of search algorithms.  

Table B-7. Average percentage for each objective where an algorithm 
is better than RS for both the studies* 

Algorithms WAS 𝑪𝑺𝟏 𝑪𝑺𝟐 
Obj 1 Obj 2 Obj 3 Obj 1 Obj 2 Obj 3 

AVM FW 28.5 -4.3 33.3 3.2 11.3 58.9 
RAW 13.0 0.9 13.4 6.8 6.4 6.6 

GA FW 35.2 1.8 44.3 2.9 9.7 50.4 
RAW 27.2 3.4 27.6 17.6 17.5 18.0 

(1+1) EA FW 39.8 9.4 50.6 6.9 17.0 58.2 
RAW 40.2 6.0 52.2 12.0 12.1 12.4 

NSGA-II FW 9.2 43.5 14.8 27.6 30.9 20.6 
RAW 11.3 40.5 18.8 24.2 28.5 23.6 

SPEA2 FW 26.9 38.4 31.3 38.7 43.0 31.0 
RAW 29.9 33.4 35.6 35.1 41.0 34.1 

CELLDE FW 8.5 22.5 9.6 9.3 9.3 -0.1 
RAW 11.6 18.4 14.8 4.2 5.5 4.3 

IBEA FW 51.1 19.1 58.2 36.4 39.5 34.9 
RAW 50.1 17.2 57.2 35.4 38.3 33.9 

MOCELL 
FW 19.7 31.8 25.8 24.3 28.2 24.1 

RAW 17.6 35.4 21.9 27.6 30.7 20.0 

* Obj 1: MPR, Obj 2: MPO, Obj 3: MC. 

Therefore, even test engineers provided an accurate set of weights, it is still possible 
that FW did not significantly outperform RAW. Furthermore, we studied to what extent the 
search algorithms can improve the effectiveness as compared with the random search. 
Table B-7 shows the average percentage by which an algorithm is able to improve the 
three effectiveness measures (objectives) using two different WASs with respect to the 
random search. Recall that for the cost measure, we take time difference (TD) to select 
maximum number of test cases (Section 4.2), and the results show that for all the artificial 
problems, AVM and (1+1) EA using FW were able to select test cases with execution time 
exactly equal to the time budget, while the selected test cases by other algorithms could not 
manage to use up the exact time budget. 

From Table B-7 we can see that for the real world case study (𝐶𝑆%), SPEA2 using FW 
performed better on average for 26.9%, 38.4% and 31.3% for the three objectives. 
Similarly, while using RAW: SPEA2 had an average better performance for 29.9%, 33.4% 
and 35.6% respectively for the three objectives. Likewise for 𝐶𝑆', SPEA2 performed better 
for 38.7%, 43.0% and 31.0% using FW; and 35.1%, 41.0% and 34.1% using RAW for the 
three objectives. For the overall improvement of SPEA2 as compared to RS, we calculated 
the average improvement for each objective. The performance of all the eight search 
algorithms decreased as the increasing number of test cases. This could be due to the 
reason that as the search space increases, the problem becomes more complex, and thus, it 
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is difficult to find better solution. However, note that the search algorithms were still much 
more efficient than the random search. 

6.4. Threats to Validity 

To reduce the construct validity threat, we used the same stopping criteria (20,000 fitness 
evaluations) to find the optimal solutions. Experiments with only one-default configuration 
settings for the parameters of the selected search algorithms is a potential threat for 
internal validity [23]. However, these settings conform with the common guidelines in the 
literature [24]. Moreover, to avoid conclusion validity due to the random variations, we 
repeated our experiments 100 times to reduce the probability of obtaining the results by 
chance. Additionally, we used the Vargha and Delaney test as the effect size measure and 
Mann-Whitney test to determine the statistical significance of results as suggested in the 
guidelines [19]. We used Kendall’s tau to measure the impact of increase in test case 
number on the performance of the algorithms since it is primarily used for non-parametric 
correlation [25]. It is worth mentioning that we did not compare our solution with the 
current practice in the industry since we are developing a new test case selection system 
together with test engineers. 

7 Related Work 

The work in [26] utilizes information from the previous test cycles (i.e., historical 
execution data) to select a subset of test cases for execution using regression test selection 
strategies (e.g., random/ad-hoc technique, minimization technique), such that test cases 
that have not been executed recently are assigned higher probabilities for test selection. 
However, all our cost/effectiveness measures are different compared to [26]. In [27], an 
approach was proposed where a two-objective problem (i.e., code coverage, execution 
time) was converted into a single-objective problem using weights for the fitness function. 
One objective was similar to our cost measure – Time Difference (TD), i.e., they also 
consider the testing time budget. However, it is different from our work since it focuses on 
the code level of the system (i.e., code coverage defined in [27]) unlike our industrial case 
study where the testing is focused on the system level (i.e., our effectiveness measures are 
also different). The authors in [28] selected test cases for problems with two objectives  
(i.e., code coverage and execution time) and three objectives with an addition of fault 
history by using two Pareto-based search algorithms (NSGA-II, and its variation: vNSGA-
II), and one weight-based search algorithm (i.e., Greedy). We use two similar objectives as 
theirs (i.e., execution time for Time Difference (TD) and fault history for Mean Probability 
(MPO)). However, we have defined other objectives (i.e., Mean Priority (MPR) and Mean 
Consequence (MC)) along with the time budget, and user preferences for objectives 
different to their work.  



 
 

81 
 
 
 
 
 

Search algorithms have been extensively applied for other testing problems as well [29-
31]. For instance, 1) Test suite minimization where three weight-based search algorithms 
were evaluated by defining three effectiveness measures [32]; 2) Test case generation by 
taking three objectives into account [33]; 3) Test case prioritization where the authors [34] 
defined one cost measure and three effectiveness measures. Our work is different due to 
different motivation, i.e., we focus on test case selection. Furthermore, totally different 
cost/effectiveness measures were defined in our work as compared with the above-
mentioned existing works.  

8 Conclusion 

This paper proposed a search-based test case selection approach by defining one cost 
measure, i.e., Time Difference (TD) and three effectiveness measures, i.e., Mean Priority 
(MPR), Mean Probability (MPO) and Mean Consequence (MC) based on the real 
requirements from our industrial partner. We empirically evaluated eight existing multi-
objective search algorithms, with two weight assignment strategies (e.g., Fixed Weights). 
The results show that Strength Pareto Evolutionary Algorithm 2 (SPEA2) significantly 
outperforms the other search algorithms, and it managed to improve on average 32.7%, 
39% and 33% for MPR, MPO and MC respectively as compared to random search. In the 
near future, we plan to apply other evaluation metrics (e.g., epsilon [35]) to evaluate the 
Pareto-based algorithms in a more thorough way. We also want to hybridize evolutionary 
algorithms with local search algorithms to see whether a better performance can be 
achieved for solving our test case selection problem. 
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Abstract 

Many real real-world test optimization problems (e.g., test case prioritization) are multi-
objective intrinsically and can be tackled using various multi-objective search algorithms 
(e.g., Non-dominated Sorting Genetic Algorithm (NSGA-II)). However, existing multi-
objective search algorithms have certain randomness when selecting parent solutions for 
producing offspring solutions. In a worst case, suboptimal parent solutions may result in 
offspring solutions with bad quality, and thus affect the overall quality of the solutions in 
the next generation. To address such a challenge, we propose CBGA-ES+, a novel cluster-
based genetic algorithm with non-dominated elitist selection to reduce the randomness 
when selecting the parent solutions to support multi-objective test optimization. We 
empirically compared CBGA-ES+ with random search and greedy (as baselines), four 
commonly used multi-objective search algorithms (i.e., Multi-objective Cellular genetic 
algorithm (MOCell), NSGA-II, Pareto Archived Evolution Strategy (PAES), and Strength 
Pareto Evolutionary Algorithm (SPEA2)), and the predecessor of CBGA-ES+ (named 
CBGA-ES) using five multi-objective test optimization problems with eight subjects (two 
industrial, one real world, and five open source). The results showed that CBGA-ES+ 
managed to significantly outperform the selected search algorithms for a majority of the 
experiments. Moreover, for the solutions in the same search space, CBGA-ES+ managed to 
perform better than CBGA-ES, MOCell, NSGA-II, PAES, and SPEA2 for 2.2%, 13.6%, 
14.5%, 17.4%, and 9.9%, respectively. Regarding the running time of the algorithm, 
CBGA-ES+ was faster than CBGA-ES for all the experiments. 
 
Keywords: Elitist Selection; Multi-Objective Genetic Algorithm; Multi-Objective Test 
Optimization; Search. 

1 Introduction 

Many real-world test optimization problems are multi-objective intrinsically, which 
requires considering multiple conflicting objectives when finding optimal solutions. For 
instance, based on our long-term collaboration with Cisco Systems [1, 2], we identified a 
test case prioritization problem [3] with four conflicting objectives (e.g., fault detection 
capability) to prioritize a given number of test cases into an optimal order. Another 
example is the testing resource allocation problem [4, 5] (i.e., allocating test resources 
optimally to different software modules), to minimize testing cost (e.g., testing time) and 
maximize the reliability of the modules. 

Search-Based Software Testing (SBST) has been widely applied to address various 
multi-objective test optimization problems [6-9]. The foundation of employing SBST is to 
formulate a testing problem into a mathematical optimization problem, which can be 
efficiently solved with metaheuristic optimization algorithms (e.g., Genetic Algorithm) 
[10-12]. Existing studies [8, 12-14] have shown that multi-objective search algorithms 
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(e.g., Non-dominated Sorting Genetic Algorithm II  (NSGA-II) [15]) are effective in 
solving different multi-objective test optimization problems, such as test suite 
minimization and test case prioritization..  

However, based on our experience of applying SBST techniques for addressing several 
multi-objective test optimization problems [2, 3, 16, 17], we observed that the 
representative set of multi-objective search algorithms make choices based on random 
number generation when selecting parent solutions (i.e., stochastic parent selection) to 
produce offspring solutions due to selection mechanisms employed in the algorithms [18]. 
For example, in binary tournament selection (commonly used in the literature [19, 20]), 
two solutions are randomly selected, and the better solution is selected as the parent. 
However, if the selected parent solutions are suboptimal in the population, it might result 
in offspring solutions with bad quality (i.e., the produced offspring solutions have worse 
values for the different objectives as compared to the solutions in the population). This 
may subsequently degrade the overall quality of the solutions in the next generation, and in 
the worst case, stochastic parent selection may prevent algorithms in finding optimal 
solutions. 

We argue that an efficient elitist strategy can largely reduce such randomness when 
selecting parent solutions to produce offspring solutions. Thus, we propose a Cluster-
Based Genetic Algorithm with Non-Dominated Elitist Selection (CBGA-ES+) for 
supporting multi-objective test optimization. The core idea of CBGA-ES+ lies in 1) 
dividing the initial population into different clusters, 2) defining cluster dominance 
strategy to rank the different clusters, and 3) selecting the non-dominated solutions from 
the best clusters for producing offspring solutions. When a new population is created, this 
process will be repeated for producing the next generation until the termination conditions 
for the algorithm are met. CBGA-ES+ extends our previous algorithm, Cluster-Based 
Genetic Algorithm with Elitist Selection (CBGA-ES) proposed in our conference paper 
[21]. The core difference between CBGA-ES+ and CBGA-ES lies in the strategy of 
selecting elite solutions, i.e., CBGA-ES+ selects only the non-dominated solutions from the 
best clusters while CBGA-ES selects all the solutions from the best clusters. Such a 
selection strategy lets CBGA-ES+ select better elite solutions from the population and thus 
improve the quality of offspring solutions. More specifically, two sub-algorithms are 
defined in CBGA-ES+ for selecting the non-dominated elite solutions (Section 3.2). 

We empirically evaluated CBGA-ES+ with five multi-objective test optimization 
problems (i.e., test suite minimization, test case prioritization, test case selection, testing 
resource allocation, and integration and test order problem) by employing eight subjects 
(two industrial, one real-world, and five subjects from open source projects) for a total of 
20 experiments. A comprehensive empirical evaluation was performed to compare CBGA-
ES+ with 1) baseline algorithms, i.e., random search (RS) and Greedy; 2) four 
representative multi-objective search algorithms from the literature [2, 12]: (NSGA-II) 
[15], Strength Pareto Evolutionary Algorithm (SPEA2) [22], Pareto Archived Evolution 
Strategy (PAES) [23], and Multi-objective Cellular Genetic Algorithm (MOCell) [24]; and 
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3) its predecessor, CBGA-ES [21]. These algorithms were selected because of their 
success in previous literature [2, 3, 5, 17, 25]. 

The results showed that CBGA-ES+ managed to significantly outperform the baseline 
algorithms (RS and Greedy), the four selected multi-objective search algorithms (e.g., 
NSGA-II) and CBGA-ES for the majority of experiments. Specifically, CBGA-ES+ 
significantly outperformed 1) RS for 100%, 2) Greedy for 85%, and 3) the five selected 
search algorithms for an average of 66% of the experiments. Overall, CBGA-ES+ managed 
to perform better than CBGA-ES, MOCell, NSGA-II, PAES, and SPEA2 for 2.2%, 13.6%, 
14.5%, 17.4%, and 9.9%, respectively for solutions within the same search space for the 
five test optimization problems. Moreover, the solutions produced by CBGA-ES+ had a 
better fault detection rate as compared to the selected algorithms for the majority of the 
experiments. Additionally, the running time of CBGA-ES+ is faster than CBGA-ES for all 
the experiments. 

This paper extends our previous work [21] with the following key improvements: 
1) CBGA-ES+ is extended from its predecessor (CBGA-ES [21]) by introducing non-

dominated elitist selection strategy, i.e., selecting only the  non-dominated elite 
solutions to form the elite population when producing offspring solutions (Section 
3.2); 

2) The empirical evaluation has been extended by involving: 1) two additional multi-
objective test optimization problems (i.e., test resource allocation, and integration 
and test order) with two open source subjects; and 2) three additional open source 
subjects for test suite minimization problem, test case prioritization problem, and 
test case selection problem (Section 4);  

3) Four additional metrics have been added to evaluate the quality of the algorithms 
(Section 6); 

4) A more in-depth discussion has been added based on the results (Section 7); 
5) Background and related work sections have been enhanced by a) introducing the 

five multi-objective test optimization problems in detail, b) discussing the working 
mechanisms of different multi-objective search algorithms (e.g., NSGA-II), and c) 
including more comparisons between CBGA-ES+ and the existing work (Section 2 
and Section 9).  

The remainder of the paper is organized as follows. Section 2 gives relevant 
background, and Section 3 describes our proposed algorithm, CBGA-ES+ for supporting 
multi-objective test optimization. The eight subjects are described in Section 4, and 
Section 5 describes the empirical study design. Section 6 presents the results of the 
empirical study, and overall discussion is presented in Section 7. Section 8 presents the 
threats to validity. Related work is reported in Section 9, and we conclude this paper in 
Section 10. 
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2 Background 

2.1 Multi-Objective Test Optimization 

In Search-Based Software Testing (SBST), multi-objective test optimization aims to find 
tradeoff solutions among multiple conflicting objectives (e.g., execution cost, 
effectiveness) for various software testing problems (e.g., test suite minimization (TSM) [2, 
11]).  Since there might exist more than one best solution, a set of solutions with equivalent 
quality (i.e., non-dominated solutions) is usually produced based on Pareto optimality, 
which is called as Pareto fronts [26-28]. More specifically, Pareto optimality defines the 
Pareto dominance to assess the quality of solutions [29]. Suppose there are 𝑚 objectives 
𝑂 = {𝑜%, 𝑜', … , 𝑜]} to be optimized for a multi-objective test optimization problem (e.g., 
test case prioritization (TCP)) and each objective can be measured using a fitness function 
𝑓k from 𝐹 = {𝑓%, 𝑓', … , 𝑓]}. If we aim to minimize the fitness function such that a lower 
value for an objective implies better performance, then solution A dominates solution B 
(i.e., 𝐴 ≻ 𝐵) iff  ∀+2%,',…,)𝑓+(𝐴) ≤ 𝑓+(𝐵)	⋀	∃+2%,',…,)𝑓+(𝐴) < 𝑓+(𝐵). 

Fig. C-1 presents a graphical representation of Pareto dominance for an optimization 
problem with two objectives for a minimization problem (i.e., a lower objective value is 
better) with five solutions: A, B, C, D, and E. In Fig. C-1, A dominates B, C, and D since 
the values of both the objectives (i.e., min F1 and min F2) for A is lower than B, C, and D. 
However, E and A are non-dominated solutions since for the objective function min F1, E is 
better than A while A is better than E for the objective function min F2. 

 
Fig. C-1. Pareto dominance for a minimization problem with two objectives 

2.2 Genetic Algorithms 

Metaheuristics combine basic heuristic methods in higher level frameworks to find 
solutions to combinatorial problems at a reasonable computational cost [8, 30]. Genetic 
Algorithms (GAs) are a form of metaheuristic inspired by the process of natural selection 
that optimize one or more objectives (e.g., maximizing code coverage while minimizing 
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the execution cost of test cases) using one or more fitness functions to assess the quality of 
solutions. GAs employ bio-inspired operators (i.e., selection, crossover, and mutation) for 
producing offspring solutions [31]. The selection operator selects best solutions based on 
the fitness function, while the crossover operator partially exchanges the selected two 
parent solutions. The mutation operator mutates a given solution by randomly changing 
parts (e.g., a test case) of the solution.  

We chose four representative multi-objective search algorithms from the literature [2, 
12]: Non-dominated Sorting Genetic algorithm II (NSGA-II) [15], Strength Pareto 
Evolutionary Algorithm (SPEA2) [22], Pareto Archived Evolution Strategy (PAES) [23], 
and Multi-objective Cellular Genetic Algorithm (MOCell) [24] for the evaluation. The 
selected four search algorithms are designed based on Pareto optimality (Section 2.1), and 
they have achieved good results for addressing multi-objective test optimization problems 
in state-of-the-art [2, 3, 5, 17, 25] as shown in Table C-1. The column Applied To in Table 
C-1 shows the multi-objective test optimization problem (out of the five considered multi-
objective test optimization problems) where the listed algorithm has been applied in the 
literature and achieved good results. 

Table C-1. Classification of the Selected Search Algorithms* 
Algorithm Category Algorithm Applied To 

GA Sorting-Based NSGA-II TSM, TCP, TCS, TRA, ITO 
Cellular-Based MOCELL TSM, TCP, TCS, TRA 

Strength Pareto EA SPEA2 TSM, TCP, TCS, ITO 
Evolution Strategies PAES TSM, TCP, TCS, TRA, ITO 

*TSM: Test Suite Minimization, TCP: Test Case Prioritization, TCS: Test Case Selection,  
TRA: Testing Resource Allocation, ITO: Integration and Test Order. 

In NSGA-II the solutions (chromosomes) in the population are sorted and placed into 
several fronts based on the ordering of Pareto dominance [15]. The individual solutions are 
selected from the non-dominated fronts, and if the number of the solutions from the non-
dominated front exceeds the specified population size, the solutions with a higher value of 
crowding distance are selected, where crowding distance is used to measure the distance 
between the individual solutions with the others in the population [32]. 

In SPEA2 the fitness value for each solution is calculated by adding up its raw fitness 
(based on the number of solutions it dominates) and density information (based on the 
distance between a solution and its nearest neighbors) [22]. Initially, SPEA2 creates an 
empty archive that is then filled by the non-dominated solutions from the population, and 
in the subsequent generations, the solutions from the archive and the non-dominated 
solution in the current population create a new population. If the combined non-dominated 
solutions are more than the maximum size of the specified population, the solution with the 
minimum distance to other solutions is selected by applying a truncation operator. 

MOCell is based on the cellular model of genetic algorithms with an assumption that an 
individual solution can only interact with its neighbors during the search process 
(neighborhood) [24]. More specifically, MOCell stores a set of non-dominated solutions in 
an external archive, and after each generation, MOCell replaces a fixed number of 
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randomly chosen individuals of the populations by solutions from the archive with a 
feedback procedure. Note that the replacement only occurs if the solutions from the 
population are worse than the solutions in the archive. 

PAES maintains an archive of non-dominated solutions. Initially, a random solution is 
added to the archive, and it is used to generate the offspring solution [23]. The newly 
generated solution is used to replace the parent solution if it is better, and it is further 
added to the archive if it is better than the existing solutions. If the generated solution is 
worse than the parent solution, it is discarded, and the parent solution is used to generate 
another solution. However, if the generated solution is neither dominating nor dominated 
by the archive, additional measures (similar to NSGA-II) are taken into account: if the 
generated solution lies in a more crowded part of the feasible place (with respect to 
members of the archive) as compared to the parent solution, it is disposed, else it replaces 
the parent solution. 

2.3 Greedy Algorithm 

The greedy algorithm works on the “next best” search principle, such that the element with 
the highest weight (e.g., statement coverage) is selected first [8]. It is then followed by the 
element with the second highest weight and so on until all the elements are selected, or 
termination criteria of the algorithm are met (e.g., the total execution time of the selected 
test cases meets the time budget). If there exist multiple elements with the same weight, 
one of them is randomly selected [33]. The greedy algorithm makes greedy choices at each 
step to ensure that the objective function is optimized (maximized or minimized). Note that 
Greedy algorithm does not go back and reverse the direction. 

For multi-objective optimization, Greedy algorithm converts a multi-objective 
optimization problem into a single optimization problem using the weighted-sum method 
[34] for fitness assignment, such that each objective is given equal weight (if all the 
objective holds equal importance). After that, the weight of each element is obtained by 
summing up the weighted objective values. 

2.4 Five Multi-Objective Test Optimization Problems 

We investigated in total five multi-objective test optimization problems: test suite 
minimization (TSM), test case prioritization (TCP), test case selection (TCS), testing 
resource allocation (TRA), and integration and test order (ITO) problem. All five multi-
objective test optimization problems have been widely investigated by the state-of-the-art 
[25, 35-38]. Notice that TSM, TCP, and TCS problems were extracted from two different 
domains (telecommunication and maritime) based on our collaboration with industrial 
partners, while TRA and ITO problems were obtained from a well-known Search-based 
Software Engineering Repository hosted by the CREST center [39]. We formally present 
each multi-objective test optimization problem in detail as below, and the details of the 
objective functions are provided in Section 4. 
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2.4.1 Test Suite Minimization (TSM) Problem 

Definition 1. Multi-Objective Test Suite Minimization: For a test suite 𝑇 = 𝑡%, 𝑡', … , 𝑡)  
and a vector of 𝑚 objective functions	𝐹 = {𝑓%, 𝑓', … , 𝑓]}, the problem consists in finding a 
Pareto optimal set of minimized test suites  𝑇¼ ⊂ 𝑇.  

The objective functions can be defined as various minimization criteria (e.g., higher 
code coverage [11]). 

2.4.2 Test Case Prioritization (TCP) Problem 

Definition 2. Multi-Objective Test Case Prioritization. Given a test suite 
𝑇 = 𝑡%, 𝑡', … , 𝑡) 	, the set of permutations of 𝑇:  𝑃𝑇, and a vector of 𝑚 objective 
functions: 𝐹 = {𝑓%, 𝑓', … , 𝑓]}, the problem consists in finding a Pareto optimal set of 
prioritized test suites  𝑇¼ ⊂ 𝑇 such that 𝑇¼ ∈ 𝑃𝑇 [14]. 

The objective functions represent the concerned prioritization criteria (e.g., higher 
statement coverage [10]). The test cases need to be executed in the order of the 
permutation that TCP produces, but testing can be terminated at any point in the testing 
process. 

2.4.3 Test Case Selection (TCS) Problem 

Definition 3. Multi-Objective Test Case Selection: Given a test suite 𝑇 = 𝑡%, 𝑡', … , 𝑡) , 
and a vector of 𝑚 objective functions, 𝐹 = {𝑓%, 𝑓', … , 𝑓]}, the problem consists in finding a 
Pareto optimal set of test suites with selected test cases 𝑇¼ ⊂ 𝑇.  

The objective functions can be defined as various selection criteria (e.g., execution cost 
[12]). Both TSM and TCS aim at choosing a subset of test cases from the existing test suite 
at the same time achieving pre-defined objectives. However, TSM eliminates the redundant 
test cases from the existing test suite for the current systems to reduce the cost of testing 
(e.g., cost), while TCS focuses on selecting a subset of test cases from the existing test suite 
to test a modified version of the systems [2, 37]. Therefore, we have classified TSM and 
TCS as separate problems as is often done in literature [37]. 

2.4.4 Testing Resource Allocation (TRA) Problem 

Definition 4. Multi-Objective Testing Resource Allocation: Given a set of 𝑜 modules, 𝑀 =
𝑚%, 	𝑚', … , 𝑚p , and a vector of 𝑚 objective functions: 𝐹 = {𝑓%, 𝑓', … , 𝑓]}, let 𝑠` =
ℎ`%, 	ℎ`', … , ℎ`p  be a solution such that ℎ`p represents a  set of testing hours to be 

allocated to module 𝑚p, and ℎ`+p
+2j�h	% ≤ 	𝐻]`¡, where 𝐻]`¡ is the maximum testing 

hours available. The TRA problem finds a Pareto optimal set of solutions with respect to 
the objective functions, 𝐹 = {𝑓%, 𝑓', … , 𝑓]}.  

TRA aims to optimally allocate the resources to different modules (that comprise the 
software system) for maximizing the reliability while minimizing the testing resources 
(e.g., cost, testing effort) [5]. TRA problem is not a permutation of the solution, but rather 
an allocation of different testing hours to the modules such that the total allocated hours for 
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the modules is less or equal to the maximum allocated hours and modules with higher 
reliability are allocated more testing hours. 

2.4.5 Integration and Test Order (ITO) Problem 

Definition 5. Multi-Objective Integration and Test Order: Given a set of units (i.e., classes 
or aspects), 𝑈 = 𝑢%, 𝑢', … , 𝑢c , the set of permutations of 𝑈:  𝑃𝑈, and a vector of 𝑚 
objective functions: 𝐹 = {𝑓%, 𝑓', … , 𝑓]}. The ITO aims to find a Pareto optimal set of 
solutions with respect to the objective functions, 𝐹 = {𝑓%, 𝑓', … , 𝑓]}, such that each 
solution is an element of 𝑃𝑈. 

The objective function can be defined as various criteria (e.g., the number of attributes 
that need to be emulated if the dependency between the classes is broken [40]). ITO 
problem focuses on determining an order/sequence to integrate and test the units (e.g., 
classes) to minimize the stubbing cost, where a stub is an emulation of a unit that has not 
yet been implemented or integrated into the software [25]. By rearranging the ordering of 
the units, the most required units can be integrated and tested first so that the next 
dependent units do not require a stub for that unit [35]. Even though both TCP and ITO 
problem include a permutation of the elements, they are different. This is because in TCP, 
irrespective of the test case order, test case time does not change, while, the coverage is 
dependent on the test case order. However, in ITO there are dependencies among certain 
units for all the objectives, and ITO aims to test the most required units first so that it is not 
required to create a stub for the dependent unit. Therefore, in ITO if the required units are 
already tested (i.e., they are scheduled earlier), the later units have no cost to develop stub. 
Moreover, in ITO if two units are independent of one another, their order does not matter. 

3 CBGA-ES+ Algorithm 

The core idea of CBGA-ES+ is to cluster a given number of candidate solutions (i.e., 
population) and select non-dominated elite ones for producing offspring solutions. This is 
done by grouping solutions with similar fitness into a cluster, sorting the clusters based on 
the cluster dominance strategy (defined in Section 3.1), and selecting the non-dominated 
solutions from the best clusters for the next generation for reproduction. We first introduce 
our cluster dominance strategy in Section 3.1 followed by the description of CBGA-ES+ in 
Section 3.2. 

3.1 Cluster Dominance Strategy 

The cluster dominance strategy is defined to identify the dominance relationship between 
two clusters in terms of pre-defined objectives for a multi-objective problem (MOP). Each 
cluster is composed of a set of similar candidate solutions for solving the MOP and holds a 
center that is a vector containing a specific value for each objective. The value for each 
center is the mean fitness of all the included solutions in the cluster for a particular 
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objective [41]. We illustrate our cluster dominance strategy with minimization problems, 
i.e., a solution with a lower value for an objective implies better performance than a 
solution with a higher value. 

Suppose there are two clusters 𝑐` and 𝑐� with centers 𝑚` = {𝑚`%,𝑚`', … ,𝑚`)} and 
𝑚� = {𝑚�%,𝑚�', … ,𝑚�)}, where 𝑛 is the number of objectives to optimize, we define 
cluster dominance and cluster partial dominance below. 

Cluster Dominance. 𝑐` dominates 𝑐� (i.e., 𝑐` ≻ 𝑐�) iff 

∀+2%,',…,)𝑚`+ ≤ 𝑚�+	⋀	∃+2%,',…,)𝑚`+ < 𝑚�+ 
𝑚`+ and 𝑚�+ refer to the values of the 𝑖th objective in 𝑚` and 𝑚�, respectively.  

Cluster Partial Dominance. 𝑐` partially dominates 𝑐� (i.e., 𝑐` ≽ 𝑐�) iff one of the 
following two cases hold true. 

Case1. 	𝑛	| 𝑖 = 1,2, … , 𝑛 𝑚`+ < 𝑚�+ > | 𝑖 = 1,2, … , 𝑛 𝑚`+ > 𝑚�+ , where 
| 𝑖 = 1,2, … , 𝑛 𝑚`+ < 𝑚�+ 	is the number of objectives in which the values of 𝑚` are 
lower (better) than values in 𝑚�, and | 𝑖 = 1,2, … , 𝑛 𝑚`+ > 𝑚�+ implies  the number of 
objectives in which the values of 𝑚� are better than values in 𝑚`. 

Case2. If | 𝑖 = 1,2, … , 𝑛 𝑚`+ < 𝑚�+  = | 𝑖 = 1,2, … , 𝑛 𝑚`+ > 𝑚�+ ,  

1) ]Ò��	]Ó�
]Ò�

)
+2% > 0 if ∀+2%,',…,)𝑚�+ > 0 

2) ]Ó��	]Ò�
]Ó�

)
+2% < 0 if ∀+2%,',…,)𝑚`+ > 0	 ∃+2%,',…,)𝑚�+ = 0 

3) 𝑚�+ −	𝑚`+
)
+2% > 0	if ∃+2%,',…,)𝑚�+ = 0 ∃+2%,',…,)𝑚`+ = 0 

Fig. C-2. Three clusters for a two objective minimization problem 
For instance, Fig. C-2 represents a two objective minimization problem consisting of 

three clusters: 𝑐`, 𝑐�, and 𝑐^ with centers 𝑚`, 𝑚�, and 𝑚^, such that 𝑚` = 0.3, 0.2 , 
𝑚� = 0.3, 0.8 , and 𝑚^ = 0.8, 0.6 . Based on our cluster dominance strategy, 𝑐` 
dominates both 𝑐� and 𝑐^ since all the values for 𝑚` are equal or lower than the values for 
𝑚� and 𝑚^. Similarly, based on our cluster partial dominance strategy, 𝑐� dominates 𝑐^ 
since both 𝑚� and 𝑚^ have better values for one objective (e.g., 0.3 < 0.8 and 0.8 > 0.6), 
however, the difference of two objectives is positive for 𝑚^, i.e., case 2, scenario 1. 
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3.2 CBGA-ES+ Algorithm 

Recall that CBGA-ES+ is designed to address various multi-objective test optimization 
problems. Thus, the input for CBGA-ES+ includes an original test suite T to be optimized 
and a set of parameters to be configured, i.e., population size, the number of clusters, and 
elite population minimum size. Elite population minimum size was defined to prevent 
premature convergence of the algorithm, which might arise due to the introduced elitist 
selection, as discussed in [42]. More specifically, if the number of elite solutions is small 
(e.g., two), it might prevent the diversity of the solutions in the population, and thus the 
algorithm might not be able to produce optimal solutions. We present the pseudo code of 
CBGA-ES+ in Algorithm C-1. 

CBGA-ES+ starts by creating an initial set of a random population (𝑃j) of the size I (line 
2 of Algorithm C-1). Afterward, Lloyd's algorithm (which is a commonly-used k-means 
clustering algorithm [41, 43]) is used to cluster solutions with similar fitness values for 𝑛 
objectives into 𝐾 clusters (line 4). More specifically, Lloyd's algorithm as shown in 
Algorithm C-2, first randomly chooses one solution from 𝑃j for each cluster in 𝐶 and treats 
the objective values of the solution (𝑛 objectives) as the cluster centers, respectively. 
Notice that the selected solutions for each cluster should be different such that no two 
clusters have the same centers. Furthermore, Euclidean distance is used to measure the 
distance between the cluster centers and a particular solution 𝑠k from 𝑃j (line 7), and the 
solution 𝑠k is added to a cluster with the least Euclidean distance between 𝑠k and the center 
of the cluster (lines 8-9). 

Algorithm C-1: CBGA-ES+ 

Input:	Original	test	suite	T,	population	size	𝐼,	number	of	clusters	𝐾,	elite	population	minimum	size	𝐸	
Output:	Optimal	test	suite	solutions	𝑆	
Begin	
1							t		⟵	0																																																																																																							//	current	generation	
2							𝑃j ⟵	Random-Population	(I)	
3						while	not	(termination_conditions_satisfied)	do	
4												𝐶	⟵		cluster	𝑃j	into	K	clusters	using	Lloyd's	algorithm		
5												𝐶¼	⟵Sort-Clusters	(𝐶)																																																																					//	sort	the	clusters	using	the	cluster	
																																																																																																																															dominance	strategy	
6												𝑃h ⟵ ∅																																																																																														//	initialize	the	elite	population	
7												𝑃h ⟵	Update-elite-population	(𝑃h,	𝑐%¼, |𝑐%¼|)	
8												while	(|𝑃h|< 𝐸)	do	
9																		𝑘 ⟵ 	𝑘 + 1	
10																Update-elite-population	(𝑃h,	𝑐l¼, 𝐸)	
11											𝑄j ⟵	Apply	crossover	and	mutation	operators	to	𝑃h	
12											𝑃jv% ⟵	𝑃h 	∪ 	𝑄j	
13											t		⟵	t	+	1																																																																																								//	increase	the	generation	
14					S	⟵	𝑃h	
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Once all the solutions are partitioned into 𝑘 clusters (lines 6-9 in Algorithm C-2), each 
cluster center 	𝑚+	is updated by taking the mean value of all the included solutions in the 
cluster for each objective (line 10 in Algorithm C-2). When the values of cluster centers 
change, all the solutions are re-partitioned into 𝑘 clusters by measuring the Euclidean 
distance between the solutions and the new cluster centers (lines 6-9 in Algorithm C-2). 
Afterward, all the cluster centers will be updated again, and such process is repeated until 
the values in the cluster center do not change in two consecutive iterations (lines 11-12 in 
Algorithm C-2). Finally, the produced clusters are returned (line 11), such that each cluster 
consists of a set of similar solutions with respect to the pre-defined objectives. 

Algorithm C-2: Lloyd's algorithm [41] 
Input:	Population	𝑃j = {𝑠%, … , 𝑠y},	number	of	clusters	𝐾	
Output:	Solutions	partitioned	into	clusters	𝐶	
Begin	
1					Randomly	pick	solutions	from	𝑃j	as	the	centers	for	𝐶	
2					𝐶 = {𝑐%, … , 𝑐l}																																																																					//	𝐾	clusters	
3					𝑚+	⟵		center	for	cluster	𝑐+	
4					while	(true)	do	
5									𝑜𝑙𝑑𝐶 = 𝑚																																																																							//	store	old	center	values	in	a	variable	
6									for	(𝑠k ∈ 𝑃j)	do	
7													∀+2%,',…,l𝑑fz]� = 𝑠k − 𝑚+ '

	

8														𝑖 ⟵ 𝑎𝑟𝑔𝑚𝑖𝑛%,',…,l𝑑fz]� 		

9														𝑐+	⟵	𝑐+ ∪ 𝑠k 																																																											//	add	solution	to	the	cluster	

10									∀+2%,',… ,l	𝑚+ = 	
%
)�

𝑠`fÓ∈|� 																																			//	recalculate	cluster	center	

																																																																																																							as	the	mean	of	the	solutions	in	the	cluster	
11										if	𝑜𝑙𝑑𝐶 = 𝑚	then																																																				//	check	if	cluster	center	changed	
12													break	
13					return	𝐶	

 
Algorithm C-3: Update-elite-population  

Input:	Elite	population	𝑃h,	cluster	𝑐,	population	size	𝑠	
Output:	Elite	population	𝑃h	with	solutions	added	from	𝑐	
Begin	
1							𝐟𝐨𝐫	(𝑠+ ∈ 𝑐)	𝐝𝐨	
2												𝑎𝑑𝑑 ⟵	𝑡𝑟𝑢𝑒	
3												𝐟𝐨𝐫	(𝑠k ∈ 𝑐	&	𝑖 ≠ j)	𝐝𝐨	
4																𝑟𝑒𝑠𝑢𝑙𝑡 ⟵	Dominance-comparator	(𝑠+,	𝑠k)	
5																𝐢𝐟	𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑡𝑟𝑢𝑒	then			
6																				𝑎𝑑𝑑 ⟵	𝑓𝑎𝑙𝑠𝑒	
7																				break			
8													𝐢𝐟	𝑎𝑑𝑑 = 𝑡𝑟𝑢𝑒	then		
9																	𝑃h	⟵	𝑃h ∪ 𝑠+	
10											𝐢𝐟	(|𝑃h|= 𝑠)	then			
11														break			
12					return	𝑃h	
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Afterward, the clusters obtained from Lloyd's algorithm are sorted based on the cluster 
dominance strategy (i.e., cluster dominance and cluster partial dominance) defined in 
Section 3.1, and the non-dominated solutions are added to the elite population from the 
cluster that dominates the other (line 7 in Algorithm C-1) using the algorithm update-elite 
–population (Algorithm C-3) that in turn uses the algorithm dominance-comparator 
(Algorithm C-4). More specifically, the algorithm update-elite-population adds the non-
dominated solutions from the best clusters to the elite population by comparing each 
solution with all other solutions in the cluster (line 4 in Algorithm C-3) using the algorithm 
dominance-comparator (Algorithm C-4).   

The algorithm dominance-comparator compares the values for each objective between 
two solutions 𝑠` and 𝑠� (lines 4-8 in Algorithm C-4) to check if the solution 𝑠` is 
dominated by the solution 𝑠� followed by returning the result of the comparison (line 9 in 
Algorithm C-4). If the solution is not dominated by any solutions in the cluster, it is added 
to the elite population (line 9 in Algorithm C-3). This process is repeated until all the 
solutions in the cluster are compared with one other or the size of the elite population is 
equal to the specified population size. After this, the elite population is returned in line 12 
in Algorithm C-3. If the size of the returned elite population is smaller than the specified 
minimum elite population size 𝐸, solutions from the next dominant cluster are chosen for 
the elite population using the same algorithm update-elite-population (Algorithm C-3) 
until the size of the elite population is equal to 𝐸 (lines 8 - 10 in Algorithm C-1). 

Algorithm C-4: Dominance-comparator 
Input:	Two	solutions	to	compare	𝑠`	and	𝑠�,	𝑂 = {𝑜%, … , 𝑜)}	the	set	of	𝑛	objectives	to	optimize	
Output:	Boolean	result	of	comparison	
Begin	
1							𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑` ⟵	false	
2							𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑� ⟵	false	
3							𝐟𝐨𝐫	(𝑜+ ∈ 𝑂)	𝐝𝐨	
4												𝐢𝐟	𝑠`+ < 𝑠�+	then			
5																		𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑� ⟵	true	
6												𝐞𝐥𝐬𝐞	𝐢𝐟	𝑠`+ > 𝑠�+	then			
7																		𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑` ⟵	true	
8							return	𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑`	&&	! 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑�	

Once the size of the elite population 𝑃h is fulfilled (i.e., the size	𝐸 is reached), crossover 
and mutation are applied to the elite population for generating offspring solutions (line 11 
in Algorithm C-1). More specifically, with respect to crossover, two parent solutions are 
selected at random from 𝑃h to produce offspring 𝑄j by swapping parts (e.g., test cases) 
from both of the parents. Moreover, the mutation operator is applied to randomly mutate 
test cases of a specific solution to obtain the offspring solution. Subsequently, 	𝑄j and 𝑃h 
are combined to form the population 𝑃jv% for the next generation without involving any 
replacement operator (line 12 in Algorithm C-1). This process of clustering the new 
population 𝑃jv%, selecting the elite population, and generating offspring solutions is 
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repeated until termination conditions for the algorithm are met, e.g., time budget for the 
algorithm. Once the termination conditions are satisfied, the elite solutions are given as 
optimal solutions for the selected test optimization problems (line 15 in Algorithm C-1). 

CBGA-ES+ is an extended algorithm based on the algorithm proposed in our previous 
work named CBGA-ES [21]. The key improvement of CBGA-ES+ compared with CBGA-
ES is that CBGA-ES+ has a non-dominated elitist selection strategy (Algorithms 3 and 4), 
which borrows core concepts from the literature [15, 22, 24]. This selection strategy helps 
CBGA-ES+ to select only non-dominated solutions from the best cluster, followed by the 
second best cluster and so on, while CBGA-ES selects all the solutions from the best 
cluster, followed by the second best and so on.  In case the number of solution in the 
cluster is higher than the specified elite population size, random solutions are selected [21], 
which reduces the probability of non-dominated solutions being selected. Thus, CBGA-
ES+ can choose better elite solutions than CBGA-ES and improve the quality of offspring 
solutions. For instance, suppose the cluster consists of 20 solutions in total with only one 
non-dominated solution. If only one more solution can be selected based on the specified 
elite population size, the probability of including the non-dominated solution into the elite 
population is only 5% for CBGA-ES, while CBGA-ES+ can have 100% probability of 
including this non-dominated solution into the elite population. 

4 Subjects 

To evaluate CBGA-ES+, we performed a total of 20 experiments with eight subjects for the 
five multi-objective test optimization problems (e.g., TSM defined in Section 2.4). The 
subjects include 1) Two industrial subjects [2, 3] from the telecommunication domain; 2) 
One real-world subjects study from the maritime domain [17]; and 3) Five subjects from 
open source project from [4, 5, 25, 35, 44]. The details of the subjects are summarized in 
Table C-2. 

4.1 Industrial Subjects (D1 and D2) 

The industrial subjects belong to the telecommunication domain. Our industrial partner 
Cisco Systems, Norway develops a product line of Video Conferencing Systems (VCSs) 
[2]. There is an average of three million lines of embedded C code in each VCS [16], and 
each VCS requires thorough testing before releasing them in the market. However, testing 
is expensive at Cisco (e.g., executing test cases need to set up different hardware and 
network environment), and thus, it requires optimizing the testing process to reduce the 
cost of testing while preserving effectiveness.  

1) D1: D1 consists of 489 test cases and based on our industrial collaboration in previous 
work for TSM [2], we derived five objectives as shown in Table C-2: maximizing test 
minimization percentage (TMP), feature pairwise coverage (FPC), fault detection 
capability (FDC) and average execution frequency (AEF), and minimizing  overall 
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execution time (OET). More specifically, 1) TMP measures the number of test cases that 
can be minimized as compared to the original test suite; 2) FPC measures how many pairs 
of features can be covered by the minimized test cases; 3) FDC measures the faults found 
by the minimized test cases within a specified time period (e.g., one week in the past); 4) 
AEF measures the average execution frequency of the minimized test cases during a given 
time period; and 5) OET measures the time duration for executing the minimized test 

cases. The AEF of a solution is: 𝐴𝐸𝐹 = 	 â¢ã«��
���

)
, where, n is the number of test cases in 

the minimized test suite, and 𝐸𝐹j^+ is the execution frequency for the test case 𝑡𝑐+ in a 
given time period (e.g., a week). The objectives are explained in detail in [2]. Similarly, for 
TCP, we defined four objectives: maximizing FPC, FDC and AEF, and minimizing OET. 
Finally, for TCS, we defined four objectives: maximizing FPC, FDC, and AEF, and 
minimizing TD, where TD measures the difference between the execution time of the 
selected test cases and the time budget available for testing [17] as shown in Table C-2. 

Table C-2. Overview of the Experiment Design* 

Domain D Problem Objectives Test Cases Faults Sourc 
Kloc 

Test 
Kloc Tests 

Telecomm
unication 

D1 
TSM TMP, FPC, FDC, AEF, 

OET 489 

N/A 

TCP FPC, FDC, OET, AEF 
TCS FPC, FDC, AEF, TD 

D2 

TSM FDC, SC, CC, TMP, 
APIC 

211 TCP FDC, SC, CC, APIC 

TCS FDC, SC, TD, CC, 
APIC 

Maritime D3 
TSM MPO, MC, TMP, MPR 

165 TCP MPO, MC, OET, MPR 
TCS MPO, MC, TD, MPR 

Open 
Source 

D4 
TSM STC, FDC, OET, TMP 

302 26 96 50 2205 TCP STC, FDC, OET 
TCS SC, FDC, TD 

D5 
TSM STC, FDC, OET, TMP 

125 27 28 53 4130 TCP STC, FDC, OET 
TCS STC, FDC, TD 

D6 
TSM STC, FDC, OET, TMP 

113 65 22 6 2245 TCP STC, FDC, OET 
TCS STC, FDC, TD 

D7 TRA R, C, TR N/A D8 ITO A, O, R, P 
*TMP: test minimization percentage, FPC: feature pairwise coverage, FDC: fault detection capability, AEF: average execution 
frequency, OET: overall execution time, TD: time difference, SC: status coverage, CC: configuration coverage, APIC: API coverage, 
MPO: mean probability, MC: Mean consequence, MPR: mean priority, STC: Statement coverage, R: Reliability, C: Cost, TR: Testing 
resource expenditure, A: number of attributes, O: number of operations, R: number of distinct return types, P: number of distinct 
parameter types. 

 
2) D2: D2 includes 211 test cases with four identified objectives for TCP from [3]: 
maximizing configuration coverage (CC), API coverage (APIC), status coverage (SC), and 
fault detection capability (FDC) as shown in Table C-2. Precisely, 1) CC measures the 
coverage of configuration variables and their values; 2) APIC measures the overall 
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coverage of test API commands, their parameters and their values; 3) SC measures the 
coverage of status variables and their values; and 4) FDC measures the number of detected 
faults within a specified time period (e.g., one month in the past). Detailed descriptions and 
the mathematical formulae of the objectives are provided in [3]. 

Additionally, for TSM, we defined five objectives in D2: maximizing FDC, SC, CC, 
TMP, and APIC. Finally, for TCS, we defined five objectives: maximizing FDC, SC, CC, 
and APIC, and minimizing TD (Table C-2). 

4.2 Real World Subject (D3) 

The real world subject (i.e., D3) is from the maritime domain, and it consists of 165 high-
level test cases (Table C-2) for testing some of the key elements of subsea oil and gas 
production systems [17]. The subject was created using different standards (e.g., design 
and operation of subsea production systems-ISO 13628-6:2006 [45]), OREDA Offshore 
Reliability Data Handbook [46], and requirements from different oil and gas companies 
publicly available.  

D3 focused on test case selection (TCS) problem within a time budget in [17]. For 
selecting test cases, we defined four objectives: maximizing mean priority (MPR), mean 
probability (MPO), mean consequence (MC), and minimizing time difference (TD) as 
shown in Table C-2. For the selected test cases, 1) MPR measures the average importance 
of the test cases based on the type of requirement the test cases check; 2) MPO measures 
the average likelihood that the test cases might find faults; 3) MC measures the average 
impact of failures of the test cases that the system can have on the environment once it is 
operational; and 4) TD measures the difference between the execution time of the selected 
test cases and the time budget available for testing. Moreover, for TSM, we defined four 
objectives for D3: maximizing MPO, MC, TMP, and MPR (Table C-2). Finally, for TCP, 
we defined four objectives: maximizing MPO, MC and MPR, and minimizing OET (Table 
C-2). 

4.3 Open Source Subjects (D4 – D8) 

We chose three subjects from DEFECTS4J [44], one from [4, 5], and one from [25, 35]. 

4.3.1 Subjects from DEFECTS4J [44] (D4 – D6) 

We chose three programs from the open source projects: JFreeChart1, Joda-Time2, and 
Apache Commons Lang3 from the DEFECTS4J (v1.1.0) [44] for all three problems: TSM, 
TCP, and TCS. The details of the three programs are provided in Table C-2. 

In Table C-2, the term test case refers to each JUnit class in the corresponding programs 
(e.g., JFreeChart) and the term test refers to each test method in the JUnit class as defined 

                                                             
1 http://jfree.org/jfreechart/ 
2 http://joda.org/joda-time/ 
3 http://commons.apache.org/lang 
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in the JUnit framework [47]. The tests verify different functionalities of the programs. For 
each fault, DEFECTS4J provides the information about the triggering tests (i.e., the test that 
failed when there was a problem with the particular functionality). Based on this, we can 
observe how many times the test failed. Therefore, we can count the number of times the 
test case failed based on the execution history of each test. Note that we have checked the 
root cause of the failing test cases manually to ensure that all the failing test cases were 
triggered by actual faults. The open source programs JFreeChart, Joda-Time, and 
Commons Lang are referred to as D4, D5 and D6, respectively in Table C-2. We have 
applied TSM, TCP, and TCS for each D4, D5 and D6.  

We defined four objectives for TSM. The objectives are maximizing statement coverage 
(STC), fault detection capability (FDC), test minimization percentage (TMP), and 
minimizing overall execution time (OET). For FDC we measure the number of times the 
test case found faults out of the total detected faults in Table C-2. Additionally, for TCP, 
we defined three objectives: maximizing STC and FDC, and minimizing OET. Finally, we 
defined three objectives for TCS: maximizing STC and FDC, and minimizing TD (Table C-
2). 

4.3.2 Subject from [4, 5] (D7) 

The subject from [4, 5] is used to tackle the testing resource allocation (TRA) problem (D7). 
The subject consists of eight modules, and the maximum testing resource is set as 10,000 
hours as in [4, 5]. In previous work [5], three objectives were identified for the TRA 
problem: maximize reliability (R), minimize cost (C) and minimize testing resource 
expenditure (TR). The reliability of the module is calculated based on the failure intensity 
of the model and allocated testing time, the cost is associated with the cost required to 
achieve the reliability of the module, and total testing resource measures the total allocated 
testing time for achieving the particular reliability of the systems. The details of the subject 
can be checked from [5]. 

4.3.3 Subject from BCEL (D8) 

An open source program “Commons Byte Code Engineering Library (BCEL)4 version 
5.0” was used in [25, 35] for integration and test order (ITO) problem. BCEL enables users 
to analyze, create and manipulate binary Java class files and includes 45 Java classes and 
289 dependencies. For the ITO problem, four objectives were used as identified in the prior 
work [25, 35]: number of attributes (A), number of operations (O), number of distinct 
return types (R), and number of distinct parameter types (P).  

More specifically, 1) A counts the maximum number of attributes that need to be 
handled in the stub if the dependency is broken; 2) O counts the number of operations that 
need to be emulated if the dependency is broken; 3) R counts the number of distinct return 
types (except the return type void) of the operations that need to be emulated if the 

                                                             
4 http://archive.apache.org/dist/jakarta/bcel/old/v5.0/ 
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dependency is broken; and 4) P counts the number of distinct parameters of the operations 
that need to be emulated if the dependency is broken. A detailed description of the subject 
can be checked from [25].  

We used different objectives for different subjects such as FPC and AEF for D1 based 
on our collaboration with the industrial partner and the test engineers at the industrial 
partner valued these objectives for different test optimization problems. However, it is very 
challenging to get identical information from the subjects from open source projects. 
Therefore, we used different objectives, such as STC, which is used quite often in literature 
for regression test optimization [8, 48, 49]. Additionally, testing at the industrial partner 
does not involve subjects as in DEFECTS4J; for example, testing is focused on different 
variants of video conferencing systems. Moreover, it is not possible to obtain similar 
information from the industrial partner, and the other two open source subjects (i.e., D7 and 
D8) also do not list them out. Therefore, we only provided information about different 
programs in DEFECTS4J in Table C-2.  

5 Empirical Study Design 

This section presents the detailed design of the empirical study (Table C-3), which 
includes: research questions (Section 5.1), evaluation metrics (Section 5.2), and statistical 
tests and experiment settings (Section 5.3). 

Table C-3. An Overview of the Experiment Design 
RQ Task Comparison Subject Problem Evaluation Metrics Statistical Tests 

1 
T1.1 

CBGA-ES+ with 
RS and Greedy 

D1 -D8 
TSM, TCP, 

TCS, TRA, ITO 

HV Vargha and Delaney, 
Mann-Whitney U Test 

T1.2 

CBGA-ES+ with 
CBGA-ES, 
MOCell, NSGA-
II, PAES, and 
SPEA2 

HV, GS, GD 

2 T2 
Mean fitness values per 
objective for solutions in 
the same region 

N/A 

3 
T3.1 D4 

D5 
D6 

TSM FD 
Vargha and Delaney, 

Mann-Whitney U Test 
T3.2 TCP APFD 
T3.3 TCS FD 

4 
T4.1 

D1 -D8 
TSM, TCP, 

TCS, TRA, ITO 

N/A N/A 

T4.2 
CBGA-ES+ with 
CBGA-ES 

HV 
Vargha and Delaney, 

Mann-Whitney U Test 

5.1 Research Questions 

RQ1. Sanity Check and comparison with the existing multi-objective search 
algorithms: This research question is further decomposed into two sub-questions: 
RQ1.1. Sanity Check: Is CBGA-ES+ effective as compared with RS and Greedy for 
addressing the five multi-objective test optimization problems? 
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If CBGA-ES+ outperforms RS and Greedy, the next step is to compare CBGA-ES+ 
with its predecessor CBGA-ES and a selected set of search algorithms that have 
performed well according to the literature [2, 3, 5, 17, 25]. 

RQ1.2. Comparison with the existing multi-objective search algorithms and 
predecessor CBGA-ES: Can CBGA-ES+ outperform the selected multi-objective search 
algorithms (i.e., MOCell, NSGA-II, PAES, and SPEA2) and its predecessor CBGA-ES 
for addressing the five multi-objective test optimization problems? If CBGA-ES+ 
performs better than the selected algorithms and CBGA-ES, we have to compute the 
extent of improvement, which motivates RQ2. 

RQ2. Extent of improvement as compared with CBGA-ES and the existing multi-
objective search algorithms: To what extent, can CBGA-ES+ improve the performance 
when comparing with CBGA-ES and the selected four search algorithms in terms of the 
objectives for addressing each multi-objective test optimization problem for the solutions 
in the same search space?  

RQ3. Performance in terms of fault detection: Does CBGA-ES+ has a better 
performance than CBGA-ES and the selected multi-objective search algorithms in terms 
of fault detection? 

RQ4. Running time analysis of CBGA-ES+ and the selected multi-objective search 
algorithms: Is there a significant difference in the running time of CBGA-ES+ as 
compared to the selected search algorithms? This is due to the fact that it would be 
infeasible to apply CBGA-ES+ in practice if CBGA-ES+ requires significantly more time to 
run (e.g., in seconds) than the selected algorithms or its predecessor CBGA-ES. 
Additionally, we run CBGA-ES+ and CBGA-ES for a fixed time to check if CBGA-ES+ 
can still perform better than CBGA-ES. 

5.2 Evaluation Metrics 
It is common to apply quality indicators such as hypervolume (HV) to compare the overall 
performance of multi-objective search algorithms [50, 51]. Therefore, for addressing RQ1 
using tasks T1.1 and T1.2 (Table C-3), we used HV as an evaluation metric to compare the 
performance of CBGA-ES+ with RS, Greedy, and the five selected search algorithms 
based on the guidelines provided in [29]. Specifically, HV calculates the volume in the 
objective space covered by a non-dominated set of solutions (e.g., Pareto front), which is 
considered as a combined measurement of both convergence and diversity [52].  

Moreover, we used the quality indicator Generated Spread (GS) to measure the 
diversity of the algorithms and the quality indicator Generational Distance (GD) to 
measure the convergence of the algorithms using T1.2. Specifically, GS extends the quality 
indicator Spread (which only works for two-objective problems), and it measures the 
extent of spread of the solutions produced by the algorithms [52, 53], while GD measures 
how far are the solutions produced by the algorithms from the nearest solutions in the 
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optimal Pareto front [54]. A higher value of HV demonstrates a better performance while a 
lower value of GS indicates that the generated solutions have better distribution and a value 
of 0 for GD indicates that the obtained solutions by a search algorithm are optimal.  

Each algorithm was executed 50 times, and each run produced a number of solutions. 
To address RQ2, we take a mean for each objective for the solutions produced by the 
search algorithms in the same region of the search space using task T2. Additionally, for 
the three open source subjects (i.e., D4 – D6), it is possible to find the failing test case for 
the last faulty version of the programs as explained in Section 4.3.1. Therefore, we use 
this information to evaluate the effectiveness of the search algorithms in detecting the 
faults. More specifically, we used the metric Fault Detection (FD) score [55, 56] to 
determine if the minimized test suite for TSM or selected test cases for TCS can detect the 
faults using T3.1 and T3.3 for RQ3. Similarly, we employ the widely used Average 
Percentage of Fault Detected (APFD) metric [48, 57] for the TCP problem using T3.2. The 
APFD metric has been widely used to measure the effectiveness of the prioritized test 
cases in terms of detecting the fault [8, 49, 58].  FD score can be calculated as: 𝐹𝐷 =
	#	pi	i`+y+)å	jhfjf	+)^y��h�
#	pi	jpj`y	i`+y+)å	jhfjf

. 

The FD score ranges between 0 (i.e., when no failing test is included) to 1 (i.e., when 
all the failing tests are included) inclusive with a higher value implying a better 
performance. APFD for a set of prioritized test cases (𝑠`) can be calculated as:  

𝐴𝑃𝐹𝐷 = 1 −	
𝑇𝐹+]

+2%

𝑢×𝑣 +	
1
2𝑢 

where, 𝑢 denotes the number of test cases in the 𝑠`, 𝑣 denotes the number of faults 
detected by 𝑠`, and 𝑇𝐹+ represents the first test case in 𝑠` that detects the fault 𝑖. A higher 
value of APFD implies a better fault detection rate. Finally, we compared the 
performance of CBGA-ES+ with CBGA-ES by running both of them for a fixed time (10 
seconds) for RQ4 using task T4.2 as shown in Table C-3. 

5.3 Statistical Tests and Experiment Settings 

5.3.1 Statistical Tests  

Based on the guidelines in [59], the Vargha and Delaney 𝐴%' statistics [60] and Mann-
Whitney U test [61] are used to statistically evaluate the results for RQ1, RQ3, and RQ4 as 
depicted in Table C-3. The Vargha and Delaney statistics is defined as a non-parametric 
effect size measure and evaluates the probability of yielding higher values for each 
objective and HV for two algorithms A and B. Additionally, Mann-Whitney U test is used 
to indicate whether the observations (e.g., objective values) in one data sample are likely to 
be larger than the observations in another sample, and p-value was used to check if the 
result is significant. We considered a p-value below 0.05 as statistically significant, which 
is a commonly used threshold in SBSE studies [59]. For two algorithms A and B, A has 
significantly better performance than B if 𝐴%' is higher than 0.5 and the p-value is less than 
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0.05. Notice that, we use the Vargha and Delaney comparison without transformation [62] 
since we are interested in any improvement for the performance of search algorithms [63, 
64]. 

5.3.2 Experiment Settings 

We implemented CBGA-ES+ using jMetal [65] since it integrates most of the existing 
search algorithms (e.g., SPEA2) and random search (RS), and it has been widely applied 
(e.g., [66-68]). Note that RS is treated as a multi-objective variant in jMetal. Moreover, the 
selected search algorithms together with HV, GS, and GD were implemented from jMetal, 
and we also encoded the eight subjects there. We used the same population size in all the 
search algorithms, which is the standard settings for configuring the search algorithms in 
jMetal, and we tuned the additional parameters of the six search algorithms across the eight 
subjects using the iRace optimization package [69]. Table C-4 presents the parameter 
settings of the search algorithms across the eight subjects. Additionally, we set the 
maximum number of fitness evaluations (i.e., termination criteria) as 50,000 for all the 
algorithms across the eight subjects. 

Table C-4. Parameter Settings of the Search Algorithms* 
Algorithm Parameter Settings PM D1 D2 D3 D4 D5 D6 D7 D8 

NSGA-II 
Population Size: 100; Selection of Parents: binary 
tournament + binary tournament; Recombination: 
simulated binary; Mutation: swap 

CR 0.93 0.87 0.94 0.93 0.84 0.26 0.95 0.39 

MR 0.59 0.01 0.01 0.02 0.01 0.05 0.13 0.04 

SPEA2 
Population Size: 100; Selection of Parents: binary 
tournament + binary tournament; Recombination: 
simulated binary; Mutation: swap; Archive size: 100 

CR 0.96 0.95 0.99 0.71 0.76 0.62 0.85 0.94 

MR 0.01 0.01 0.01 0.01 0.01 0.04 0.04 0.02 

MOCell 

Population Size: 100; Neighborhood: 1-hop neighbors 
(8 surrounding solutions); Selection of Parents: 
binary tournament + binary tournament; 
Recombination: simulated binary; Mutation: swap; 
Archive size: 100 

CR 0.70 0.60 0.40 0.84 0.91 0.61 0.88 0.97 

MR 0.64 0.01 0.01 0.01 0.01 0.06 0.03 0.04 

PAES Mutation: swap; Archive size: 100 MR 0.02 0.03 0.01 0.03 0.01 0.04 0.60 0.03 

CBGA-ES 
Population Size: 100; Recombination: simulated 
binary; Mutation: swap 

CR 0.73 0.61 0.62 0.67 0.91 0.78 0.74 0.97 
MR 0.02 0.01 0.03 0.03 0.02 0.02 0.04 0.02 
NC 4 18 7 6 8 6 6 10 
EP 76 71 63 57 92 84 81 96 

CBGA-ES+ Population Size: 100; Recombination: simulated 
binary; Mutation: swap 

CR 0.26 0.97 0.16 0.63 0.83 0.88 0.54 0.84 
MR 0.01 0.01 0.02 0.02 0.03 0.03 0.06 0.01 
NC 9 16 6 4 9 6 9 6 
EP 43 81 77 82 56 90 95 97 

* PM: Parameter, CR: Crossover Rate, MR: Mutation Rate, NC: Number of Cluster, EP: Size of Elite Population. 

As for the subjects (Section 4), we encoded the test suites in D1 - D6 for TSM, TCP, and 
TCS, the modules in D7 for TRA, and the classes and the dependencies between them for 
ITO in D8 as an abstract format, which contains the key information of the entity (e.g., test 
cases) for optimization, e.g., 1) test case id, historical execution time for each test case for 
D1 - D6, 2) module id, constants for each module for D7, and 3) class id, dependent class 
(es) id for each class for D8. Notice that the test cases, modules, and classes in the abstract 
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format can be easily mapped to the original test suite, module list, and class list, 
respectively using their ids. Afterward, the search algorithms (e.g., CBGA-ES+) are 
employed to produce the optimized solutions (e.g., a set of prioritized test cases for TCP) 
formed as the same abstract format, which consists of a list of optimized entities. Last, the 
optimized entities are selected for their respective purpose. For example, the test cases are 
selected from the original test suite using the test case id and put for execution for the TCS 
problem. 

Additionally, we used the open source tool EclEmma [70] to measure the statement 
coverage for D4, D5, and D6. Each algorithm was executed 50 times for each subjectto 
account for the random variation of search algorithms [59]. All the experiments were 
conducted on the Abel supercomputer at the University of Oslo [71]. 

Based on the eight subjects and five multi-objective test optimization problems (defined 
in Section 4), 20 experiments were performed in total for each optimization algorithm. 
Specifically, 18 experiments were performed with six subjects (D1 - D6) for three test 
optimization problems (TSM, TCP, and TCS), and two experiments were performed with 
two subjects (D7 and D8) for the remaining two test optimization problems (TRA and ITO). 
All the optimization problems were not applied to each subject because TSM, TCP, and 
TCS require subjects with test cases, while TRA and ITO require subjects with different 
units (e.g., classes). Thus, the total number of valid experiments is 20 for each optimization 
algorithm.  

6 Results and Analysis 

6.1 RQ1. Sanity Check and Comparison with the Selected Search 
Algorithms 

6.1.1 RQ1.1. Sanity Check  

In RQ1.1, CBGA-ES+ is compared with Greedy and RS in terms of HV for the eight 
subjects, such that all the values from the algorithms in 50 runs are considered for the 
comparison. Using the Vargha and Delaney 𝐴%' statistics and Mann-Whitney U test to 
analyze the results, we observed that CBGA-ES+ significantly outperformed: RS for 100% 
(i.e., 20 out of 20) of the experiments and Greedy for 85% (i.e., 17 out of 20) of the 
experiments since 𝐴%' for all the experiments is greater than 0.9, and p-value is less than 
0.05. 

6.1.2 RQ1.2. Comparison with the Selected Search Algorithms  

This section aims to answer RQ1.2 by comparing the performance of CBGA-ES+ with the 
five selected search algorithms: MOCell, NSGA-II, PAES, SPEA2, and CBGA-ES. 
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TSM. On employing the different quality indicators, it can be observed from Table C-5, 
that CBGA-ES+ achieved significantly higher values of HV for 60% (i.e., 18 out of 30) of 
the cases while there was no significant difference in the performance for an average of 
6.7% (i.e., 2 out of 30) of the cases. Regarding GS, CBGA-ES+ significantly outperformed 
the selected algorithms for an average of 16.7% (i.e., 5 out of 30) of the cases while there 
was no significant difference in the performance for an average of 13.3% (i.e., 4 out of 30) 
of the cases. Concerning GD, CBGA-ES+ achieved a significantly better performance for 
an average of 90% (i.e., 27 out of 30) of the cases, while there was no significant 
difference in the performance for an average of 3.3% of the cases as shown in Table C-5. 

Table C-5. Quality Indicators compared to CBGA-ES+ for TSM* 

D 
Compared 

with 
HV GS GD 

𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 

D1 

CBGA-ES 0.71 <0.05 0.98 <0.05 0.16 <0.05 
MOCell 0.77 <0.05 0.00 <0.05 1.00 <0.05 
NSGA-II 0.79 <0.05 0.00 <0.05 1.00 <0.05 

PAES 1.00 <0.05 0.98 <0.05 1.00 <0.05 
SPEA2 0.66 <0.05 0.00 <0.05 1.00 <0.05 

D2 

CBGA-ES 0.91 <0.05 0.99 <0.05 0.99 <0.05 
MOCell 0.79 <0.05 0.00 <0.05 1.00 <0.05 
NSGA-II 0.78 <0.05 0.00 <0.05 1.00 <0.05 

PAES 1.00 <0.05 1.00 <0.05 1.00 <0.05 
SPEA2 0.75 <0.05 0.00 <0.05 0.95 <0.05 

D3 

CBGA-ES 0.58 <0.05 0.44 <0.05 0.60 <0.05 
MOCell 0.80 <0.05 0.50 1.00 0.80 <0.05 
NSGA-II 0.51 0.33 0.50 1.00 0.51 0.33 

PAES 1.00 <0.05 0.00 <0.05 1.00 <0.05 
SPEA2 0.71 <0.05 0.50 1.00 0.71 <0.05 

D4 

CBGA-ES 0.58 0.16 0.00 <0.05 1.00 <0.05 
MOCell 0.00 <0.05 0.00 <0.05 1.00 <0.05 
NSGA-II 0.00 <0.05 0.00 <0.05 1.00 <0.05 

PAES 1.00 <0.05 0.00 <0.05 1.00 <0.05 
SPEA2 0.00 <0.05 0.00 <0.05 1.00 <0.05 

D5 

CBGA-ES 1.00 <0.05 0.41 0.12 1.00 <0.05 
MOCell 0.00 <0.05 0.00 <0.05 1.00 <0.05 
NSGA-II 0.00 <0.05 0.00 <0.05 1.00 <0.05 

PAES 0.00 <0.05 0.00 <0.05 1.00 <0.05 
SPEA2 0.00 <0.05 0.00 <0.05 1.00 <0.05 

D6 

CBGA-ES 0.67 <0.05 0.95 <0.05 0.01 <0.05 
MOCell 0.00 <0.05 0.00 <0.05 1.00 <0.05 
NSGA-II 0.00 <0.05 0.00 <0.05 1.00 <0.05 

PAES 1.00 <0.05 0.02 <0.05 0.93 <0.05 
SPEA2 0.00 <0.05 0.00 <0.05 1.00 <0.05 

*D: Subject; the bold numbers in the table imply that the results are statistically significant. 

TCP. It can be observed from Table C-6 that in terms of HV, CBGA-ES+ significantly 
outperformed the selected algorithms for an average of 66.7% (i.e., 20 out of 30) of the 



 
 

109 
 
 
 
 
 

cases. However, in terms of GD, CBGA-ES+ performed better than the selected algorithms 
for only 3.3% of the cases while there was no significant difference in the performance for 
an average of 6.7% (i.e., 2 out of 30) of the cases. Contrarily, with respect to GD, CBGA-
ES+ significantly outperformed the selected algorithms for an average of 96.7% (i.e., 29 
out of 30) of the cases (Table C-6). 

Table C-6. Quality Indicators compared to CBGA-ES+ for TCP* 

D Compared 
with 

HV GS GD 

𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-
value 

D1 

CBGA-ES 0.80 <0.05 0.46 0.46 0.74 <0.05 
MOCell 1.00 <0.05 0.00 <0.05 1.00 <0.05 
NSGA-II 1.00 <0.05 0.00 <0.05 1.00 <0.05 

PAES 1.00 <0.05 0.05 <0.05 1.00 <0.05 
SPEA2 0.62 <0.05 0.00 <0.05 0.86 <0.05 

D2 

CBGA-ES 0.73 <0.05 0.59 0.13 0.88 <0.05 
MOCell 0.93 <0.05 0.00 <0.05 1.00 <0.05 
NSGA-II 0.69 <0.05 0.00 <0.05 1.00 <0.05 

PAES 1.00 <0.05 0.00 <0.05 1.00 <0.05 
SPEA2 0.71 <0.05 0.00 <0.05 1.00 <0.05 

D3 

CBGA-ES 0.69 <0.05 0.00 <0.05 1.00 <0.05 
MOCell 0.75 <0.05 0.00 <0.05 1.00 <0.05 
NSGA-II 0.64 <0.05 0.00 <0.05 1.00 <0.05 

PAES 1.00 <0.05 0.00 <0.05 1.00 <0.05 
SPEA2 0.95 <0.05 0.00 <0.05 1.00 <0.05 

D4 

CBGA-ES 1.00 <0.05 0.03 <0.05 1.00 <0.05 
MOCell 0.00 <0.05 0.00 <0.05 1.00 <0.05 
NSGA-II 0.00 <0.05 0.00 <0.05 1.00 <0.05 

PAES 1.00 <0.05 0.00 <0.05 1.00 <0.05 
SPEA2 0.00 <0.05 0.00 <0.05 1.00 <0.05 

D5 

CBGA-ES 0.33 <0.05 0.76 <0.05 0.83 0.35 
MOCell 0.00 <0.05 0.00 <0.05 1.00 <0.05 
NSGA-II 0.00 <0.05 0.00 <0.05 1.00 <0.05 

PAES 1.00 <0.05 0.00 <0.05 1.00 <0.05 
SPEA2 0.00 <0.05 0.00 <0.05 1.00 <0.05 

D6 

CBGA-ES 0.63 <0.05 0.11 <0.05 1.00 <0.05 
MOCell 0.00 <0.05 0.00 <0.05 1.00 <0.05 
NSGA-II 0.00 <0.05 0.00 <0.05 1.00 <0.05 

PAES 1.00 <0.05 0.00 <0.05 1.00 <0.05 
SPEA2 0.00 <0.05 0.00 <0.05 1.00 <0.05 

*D: Subject; the bold numbers in the table imply that the results are statistically significant. 

TCS. Regarding HV, it can be observed from Table C-7 that CBGA-ES+ performed 
significantly better than the selected algorithms for an average of 80.0% (i.e., 24 out of 30) 
of the cases, while there was no significant difference in the performance for an average of 
13.3% (i.e., 4 out of 30) of the cases. Additionally, regarding GS, CBGA-ES+ significantly 
outperformed the selected algorithms for 6.7% of the cases, while there was no significant 
difference in the performance for 13.3% (i.e., 4 out of 30) of the cases (Table C-7). Finally, 
regarding GD, CBGA-ES+ achieved a better performance than the selected algorithms for 
an average of 76.7% (i.e., 23 out of 30) of the cases, while there was no significant 
difference in the performance for 10.3%. 
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Table C-7. Quality Indicators compared to CBGA-ES+ for TCS* 

Subject Compared with HV GS GD 
𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 

D1 

CBGA-ES 0.67 <0.05 0.00 <0.05 0.97 <0.05 
MOCell 1.00 <0.05 0.00 <0.05 1.00 <0.05 
NSGA-II 1.00 <0.05 0.00 <0.05 1.00 <0.05 

PAES 1.00 <0.05 0.00 <0.05 1.00 <0.05 
SPEA2 0.99 <0.05 0.00 <0.05 1.00 <0.05 

D2 

CBGA-ES 0.54 0.48 0.60 0.09 1.00 <0.05 
MOCell 0.71 <0.05 0.00 <0.05 1.00 <0.05 
NSGA-II 0.66 <0.05 0.00 <0.05 0.99 <0.05 

PAES 0.82 <0.05 0.00 <0.05 0.99 <0.05 
SPEA2 0.65 <0.05 0.00 <0.05 0.96 <0.05 

D3 

CBGA-ES 0.66 <0.05 0.44 0.29 0.55 0.35 
MOCell 0.81 <0.05 0.00 <0.05 1.00 <0.05 
NSGA-II 0.66 <0.05 0.00 <0.05 1.00 <0.05 

PAES 1.00 <0.05 0.00 <0.05 1.00 <0.05 
SPEA2 1.00 <0.05 0.00 <0.05 0.99 <0.05 

D4 

CBGA-ES 1.00 <0.05 0.12 <0.05 0.77 <0.05 
MOCell 0.51 0.93 0.27 <0.05 0.37 <0.05 
NSGA-II 0.38 <0.05 0.07 <0.05 0.80 <0.05 

PAES 1.00 <0.05 0.02 <0.05 0.99 <0.05 
SPEA2 0.66 <0.05 0.13 <0.05 0.52 0.68 

D5 

CBGA-ES 0.93 <0.05 0.37 <0.05 0.98 <0.05 
MOCell 0.44 0.27 0.65 <0.05 0.12 <0.05 
NSGA-II 0.36 <0.05 0.75 <0.05 0.03 <0.05 

PAES 1.00 <0.05 0.17 <0.05 0.99 <0.05 
SPEA2 0.46 0.54 0.57 0.26 0.02 <0.05 

D6 

CBGA-ES 1.00 <0.05 0.41 0.14 1.00 <0.05 
MOCell 0.95 <0.05 0.17 <0.05 0.74 <0.05 
NSGA-II 0.73 <0.05 0.20 <0.05 0.82 <0.05 

PAES 1.00 <0.05 0.20 <0.05 0.47 0.57 
SPEA2 0.76 <0.05 0.17 <0.05 0.61 <0.05 

*the bold numbers n the table imply that the results are statistically significant. 

TRA and ITO. As shown in Table C-8, for TRA, CBGA-ES+ significantly outperformed 
the selected algorithms for an average of 20% (i.e., 1 out of 5) of the cases and showed no 
difference for an average of 20% of the cases in terms of HV. Moreover, in terms of GS, 
CBGA-ES+ performed better than the selected algorithms for an average of only 20% (i.e., 
1 out of 5) of the cases. On the contrary, with respect to GD, CBGA-ES+ significantly 
outperformed the selected algorithms for an average of 100% of the cases. 

Table C-8. Quality Indicators compared to CBGA-ES+ for TRA and ITO* 

Problem Subject Compared with 
HV GS GD 

𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 

TRA D7 

CBGA-ES 0.44 0.29 0.69 <0.05 0.82 <0.05 
MOCell 0.04 <0.05 0.00 <0.05 1.00 <0.05 
NSGA-II 0.00 <0.05 0.00 <0.05 1.00 <0.05 

PAES 1.00 <0.05 0.00 <0.05 1.00 <0.05 
SPEA2 0.00 <0.05 0.00 <0.05 1.00 <0.05 

ITO D8 CBGA-ES 0.26 <0.05 1.00 <0.05 0.97 <0.05 
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MOCell 0.69 <0.05 0.59 0.02 0.59 0.13 
NSGA-II 0.64 <0.05 0.68 <0.05 0.68 <0.05 

PAES 0.98 <0.05 1.00 <0.05 1.00 <0.05 
SPEA2 0.61 0.05 0.63 <0.05 0.63 <0.05 

*the bold numbers in the table imply that the results are statistically significant. 

Additionally, for ITO, CBGA-ES+ significantly outperformed the selected algorithms 
for an average of 60% (i.e., 3 out of 5) of the cases and showed no significant difference 
for 20% of the cases in terms of HV. Moreover, in terms of GS, CBGA-ES+ performed 
significantly better than the selected algorithms for all the cases. Finally, with respect to 
GD, CBGA-ES+ significantly outperformed the selected algorithms for an average of 80% 
of the cases. 

Concluding Remarks. We can answer RQ1 as: CBGA-ES+ can significantly outperform 
the baseline algorithms (i.e., RS and Greedy) and the five selected algorithms for the 
majority of the five test optimization problems. Overall, CBGA-ES+ managed to 
significantly outperform RS for 100% (i.e., 20 out of 20) of the experiments and Greedy 
for 85% of the experiments in terms of HV. Moreover, as compared to the five selected 
algorithms, CBGA-ES+ produced better overall quality solutions (as indicated by HV) for 
an average of 66.0% (66 out of 100) of the cases (i.e., 5 selected search algorithms × 20 
experiments) while there were no significant differences for 8.0% (8 out of 100) of the 
cases, 2) CBGA-ES+ had significantly higher spread (as indicated by GS) for an average of 
14.0% (14 out of 100) of the cases while there were no significant differences for 10.0% 
(10 out of 100) of the cases, and 3) CBGA-ES+ managed to obtain significantly better 
quality solutions, i.e., close to the optimal Pareto front (as indicated by GD) for 88.0% (88 
out of 100) of the cases while there were no significant differences for 6.0% (6 out of 100) 
of the cases. 

6.2 RQ2. Extent of Improvement 

This research question aims to answer to what extent CBGA-ES+ can improve (i.e., 
perform better than) its predecessor CBGA-ES and the existing search algorithms (i.e., 
MOCell, NSGA-II, PAES, and SPEA2) in terms of each objective for the eight subjects 
(defined in Section 4) for solutions within the same regions of the search space. In our 
context, a search space region is defined by specifying a lower and/or an upper bound for 
each objective as done in [72]. First, a reference front is created by combining the non-
dominated solutions from all the selected algorithms. Second, some solutions are selected 
from the reference front, such that the selected solutions have the highest average values of 
all the defined objectives (by using a scalar objective function and providing equal weights 
to each objective). Third, a neighborhood is chosen and expressed in terms of an 
acceptable percentage variation in the objective value, e.g., 10% to ensure that all the 
selected algorithms have solutions in the selected search space. Fig. C-3 shows the 
percentage, by which CBGA-ES+ improved or deteriorated the performance as compared 
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to CBGA-ES, MOCell, NSGA-II, PAES, and SPEA2 for each objective in the eight 
subjects (i.e., D1 –D8) for the five multi-objective test optimization problems, i.e., a total of 
20 experiments.  

 
 
 

Fig. C-3. Percentage of objectives CBGA-ES+ is better/worse than CBGA-ES, MOCell, NSGA-II, PAES, and SPEA2 
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Table C-9 summarizes the improvement of CBGA-ES+ with respect to CBGA-ES, 
MOCell, NSGA-II, PAES, and SPEA2 for the five multi-objective test optimization 
problems with the eight subjects. For a specific subject focusing a particular problem, the 
average improvement of CBGA-ES+ against a particular search algorithm is calculated 
using the formula: 𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 	 chn��

���
)

, where, n is the number of 
objectives in the subject, and 𝑝𝑒𝑟+ is the percentage by which CBGA-ES+ performed 
better/worse than a particular search algorithm for the objective i in the subject. For 
instance, from Fig. C-3, for D1 in the TSM problem, as compared to MOCell, CBGA-ES+ 
had an average improvement of:	 

−0.5% + 48.6% + 36.8% + 1.0% − 3.4%
5 = 	16.5% 

 
Table C-9. Average Improvement Percentages Achieved by CBGA-ES+ 

Problem Subject CBGA-ES MOCell NSGA-II PAES SPEA2 

TSM 

D1 0.2 16.5 17.3 40.1 10.0 
D2 0.4 13.8 14.2 16.8 10.5 
D3 1.5 0.3 0.0 46.6 0.1 
D4 2.7 24.5 27.3 11.7 13.6 
D5 2.0 16.2 19.5 14.7 25.4 
D6 0.9 30.5 35.2 16.7 18.9 

TCP 

D1 9.4 41.7 43.3 20.7 21.4 
D2 0.3 8.5 7.9 5.0 4.8 
D3 0.7 2.4 1.9 4.3 1.6 
D4 3.3 8.9 11.0 9.7 4.8 
D5 0.4 8.8 10.7 7.6 4.6 
D6 0.7 8.7 10.9 13.7 6.7 

TCS 

D1 4.3 28.4 27.7 29.3 17.8 
D2 9.5 23.9 23.0 23.7 14.4 
D3 0.1 5.3 4.5 4.9 2.8 
D4 6.8 1.2 10.0 18.7 7.5 
D5 0.1 6.0 3.1 19.7 5.5 
D6 0.6 4.2 0.9 0.7 0.5 

TRA D7 0.9 21.7 22.1 36.1 26.4 
ITO D8 0.1 0.0 0.3 7.7 0.2 

Average 2.2 13.6 14.5 17.4 9.9 

Concluding Remarks. We can answer RQ2 as: CBGA-ES+ improves the performance of 
the majority of the individual objectives to a large extent as compared to the four selected 
search algorithms and to a smaller extent as compared to CBGA-ES for the solutions in the 
same region of the search space. In terms of practical implications, we can observe that 
CBGA-ES+ can generate better quality solutions in terms of the defined objectives, and 
thus improve the overall quality of testing. 

6.3 RQ3. Performance in Terms of Fault Detection 

Since the search algorithms are multi-objective in nature, each run produces many Pareto 
efficient solutions (solutions with similar quality) as described in Section 5.3.2. In this 
section, we evaluate the performance of CBGA-ES+ in terms of fault detection for TSM, 
TCP, and TCS. 
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6.3.1 TSM 

Table C-10 shows the result of comparing CBGA-ES+ with the selected five search 
algorithms in terms of FD using D4 – D6. Based on Table C-10, it can be observed that FD 
scores produced by CBGA-ES+ are significantly higher than the selected algorithms for an 
average of 80% (i.e., 12 out of 15) of the cases. Moreover, the solutions produced by 
CBGA-ES+ have a much higher chance to detect the faults, which is on average 17.8% 
higher (Fig. C-4). 

Table C-10. Comparison of FD with respect to CBGA-ES+ for TSM 

Algorithms 
D4 D5 D6 

𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 
CBGA-ES 0.52 <0.05 0.61 <0.05 0.59 <0.05 

MOCell 0.72 <0.05 0.48 <0.05 0.64 <0.05 
NSGA-II 0.72 <0.05 0.45 <0.05 0.66 <0.05 

PAES 0.54 <0.05 0.28 <0.05 0.80 <0.05 
SPEA2 0.65 <0.05 0.53 <0.05 0.66 <0.05 

 

 

Fig. C-4. Percentage of solutions that detected faults for TSM 

6.3.2 TCP 

As shown in Table C-11, in terms of APFD, CBGA-ES+ significantly outperformed the 
selected algorithms for an average of 86.7% (i.e., 13 out of 15) of the cases, and there was 
no significant difference in the performance for an average of 6.7% of the cases.  

 
Fig. C-5. APFD scores for TCP using D4 – D6 
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Table C-11. Comparison of APFD with respect to CBGA-ES+ for TCP  

Algorithms 
D4 D5 D6 

𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 
CBGA-ES 0.63 <0.05 0.46 <0.05 0.64 <0.05 

MOCell 0.86 <0.05 0.52 <0.05 0.89 <0.05 
NSGA-II 0.84 <0.05 0.50 0.84 0.91 <0.05 

PAES 0.90 <0.05 0.54 <0.05 0.96 <0.05 
SPEA2 0.83 <0.05 0.52 <0.05 0.91 <0.05 

Moreover, as shown in Fig. C-5, the solutions produced by CBGA-ES+ have 
comparatively higher median APFD scores as compared to the selected algorithms. 
Overall, the solutions produced by CBGA-ES+ had a comparatively higher mean APFD 
score of 18.2% on average as compared to the selected algorithms. 

6.3.3 TCS 

Table C-12 presents the result of comparing CBGA-ES+ with the selected five search 
algorithms in terms of FD using D4 – D6. As shown in Table C-12, CBGA-ES+ 
significantly outperformed the selected algorithms for an average of 80% (i.e., 12 out of 
15) of the cases while there was no significant difference for 6.7% of the cases.  

Table C-12. Comparison of FD with respect to CBGA-ES+ for TCS 

Algorithms 
D4 D5 D6 
𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 

CBGA-ES 0.50 0.53 0.62 <0.05 0.53 <0.05 
MOCell 0.54 <0.05 0.49 <0.05 0.57 <0.05 
NSGA-II 0.55 <0.05 0.49 <0.05 0.58 <0.05 
PAES 0.65 <0.05 0.72 <0.05 0.68 <0.05 
SPEA2 0.54 <0.05 0.51 <0.05 0.57 <0.05 

 

 
Fig. C-6. Percentage of solutions that detected fault for TCS 

The solutions produced by CBGA-ES+ have a much higher chance to detect the faults 
(Fig. C-6), which is on average 13.8% higher than the selected search algorithms. 
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Concluding Remarks. We can answer RQ3 as CBGA-ES+ significantly outperformed 
CBGA-ES and the selected four search algorithms in terms of fault detection for most of 
the experiments. Overall, the solutions produced by managed to detect faults 17.8% and 
13.5% higher on average as compared to CBGA-ES and the selected four search 
algorithms for TSM and TCS. Moreover, CBGA-ES+ had a comparatively higher mean 
APFD score of 18.2% on average than the selected algorithms. 

6.4 RQ4. Time Analysis 

In Table C-13 presents the average running time of CBGA-ES+ and the five selected search 
algorithms for the eight subjects across the five multi-objective optimization problems. 
Based on the results from Table C-13, we can observe that on average the running time of 
CBGA-ES+ is quite comparable to the four selected search algorithms and faster than 
CBGA-ES for all the 20 experiments across the eight subjects. 

Since the average improvement of CBGA-ES+ over CBGA-ES is on average 2.2% 
higher in terms of individual objectives (Table C-9), it is essential to check if the 
performance of CBGA-ES+ is similar to CBGA-ES by running them for a similar fixed 
time. Therefore, we compare the performance of CBGA-ES+ with CBGA-ES by running 
them for a same fixed time (i.e., 10 seconds) for eight subjects as shown in Table C-14. 
Based on the results from Table C-14, one can observe that CBGA-ES+ significantly 
outperformed CBGA-ES by 95% (i.e., 19 out of 20) of the experiments. 

Table C-13. Average Running Time of the Algorithms 

D 
Running Time (in seconds) 

CBGA-ES+ CBGA-ES MOCell NSGA-II PAES SPEA2 
D1 14.1 16.9 21.4 17.0 33.0 19.8 
D2 55.6 60.9 57.1 58.1 85.6 64.1 
D3 5.2 6.2 5.5 4.3 9.0 7.4 
D4 7.4 10.1 9.2 6.5 7.5 10.2 
D5 4.6 6.4 3.9 3.3 4.5 6.6 
D6 4.8 5.6 4.2 3.2 5.2 6.8 
D7 2.6 3.7 1.9 1.3 1.1 3.4 
D8 4.9 6.5 2.9 3.6 5.2 5.4 

 
Table C-14. Comparison of CBGA-ES+ and CBGA-ES using HV* 

D 
TSM TCP TCS TRA ITO 

𝑨𝟏𝟐 p-val 𝑨𝟏𝟐 p-val 𝑨𝟏𝟐 p-val 𝑨𝟏𝟐 p-val 𝑨𝟏𝟐 p-val 
D1 0.85 <0.05 0.91 <0.05 0.81 <0.05  

 
N/A 

 
 
 

D2 0.99 <0.05 0.95 <0.05 0.99 <0.05 
D3 0.57 <0.05 0.70 <0.05 0.96 <0.05 
D4 0.99 <0.05 0.94 <0.05 1.00 <0.05 
D5 1.00 <0.05 1.00 <0.05 1.00 <0.05 
D6 0.87 <0.05 0.88 <0.05 1.00 <0.05 
D7 N/A 0.55 0.42 N/A 
D8 N/A 0.83 <0.05 



 
 

117 
 
 
 
 
 

Concluding Remarks. We can conclude that 1) there is no practical difference in terms of 
running time for CBGA-ES+ as compared with the selected four search algorithms (i.e., 
MOCell, NSGA-II, PAES, and SPEA2) and 2) CBGA-ES+ is faster than CBGA-ES for all 
the five multi-objective test optimization problems. Moreover, CBGA-ES+ significantly 
outperformed CBGA-ES for almost all the problems after running for a fixed time of 10 
seconds. 

7 Overall Discussion 

For RQ1, we observed that CBGA-ES+ significantly outperformed RS for 100% of the 
experiments with the eight subjects (i.e., D1 – D8, Section 4) for five multi-objective test 
optimization problems. This observation suggests that our five multi-objective test 
optimization problems (i.e., TSM, TCP, TCS, TRA, and ITO) are not trivial to solve and 
require an efficient optimization approach. Moreover, CBGA-ES+ performed better than 
Greedy for 85% of the experiments for the five multi-objective test optimization problems 
(recall Section 6.1). This can be explained by the fact that Greedy greedily selects the best 
test case one at a time in terms of defined objectives until the termination conditions are 
met. Sometimes, Greedy may get stuck in local search space and result in sub-optimal 
solutions [73]. However, CBGA-ES+ employs mutation operator for exploring the global 
search space with the aim to obtain optimal solutions. Moreover, CBGA-ES+ produces a 
set of non-dominated solutions for preserving the optimal solutions with equivalent quality 
as compared to Greedy that might lose optimal solutions holding the same quality [32].  

The reason for the better performance of CBGA-ES+ as compared to the four selected 
search algorithms (i.e., MOCell, NSGA-II, PAES, and SPEA2) can be explained as 
follows: In each generation, CBGA-ES+ employs the elitist selection and k-means 
clustering algorithm to cluster and only select the best non-dominated solutions for 
applying crossover and mutation operators to generate offspring solutions. Our cluster 
dominance strategy (Section 3.1) helps to distinguish the performance of different clusters 
even when the clusters do not dominate other completely, which enables us to get elite 
solutions from a population, which will be used for producing offspring solutions. 

More specifically, suppose that the population size of NSGA-II, SPEA2, and MOCell is 
𝑁 and there are in total 𝑀 elite solutions	that exist in the best cluster from the population. 
𝑀 should be less than	𝑁 since it is practically infeasible that all the solutions from the 
population are elite. For NSGA-II, SPEA2, and MOCell, the parent solutions will be 
selected from the entire population, and thus, the probability of selecting two parent 
solutions can be measured as '

�×(��%)
. However, CBGA-ES+ only selects the parent 

solutions from the M elite solutions, and therefore the probability of selecting two parent 
solutions is '

ç×(ç�%)
. We can observe that CBGA-ES+ has less randomness than NSGA-II, 

SPEA2, and MOCell in terms of selecting two parent solutions. 
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Moreover, for NSGA-II, SPEA2 and MOCell, the probability of selecting elite solutions 
as two parent solutions for one reproduction is ç

�
×ç�%

��%
 (which is less than or equal to 1), 

while CBGA-ES+ can ensure that the elite solutions will be chosen for producing offspring 
solutions with a 100% probability. As for PAES, two parent solutions are randomly 
initialized for producing offspring solutions, which still makes the probability of selecting 
elite solutions as parent solutions less than 100% (since the number of elite solutions 
should be less than the total number of potential candidate solutions), which is the key 
reason to explain worse performance of PAES than CBGA-ES+. Furthermore, the 
performance of CBGA-ES+ is also significantly better than its predecessor CBGA-ES since 
CBGA-ES+ selects only the non-dominated solutions from the best clusters, unlike CBGA-
ES that selects all the best solutions (even the dominated ones) from the best clusters. This 
allows CBGA-ES+ to select better elite solutions for producing offspring solutions. 

CBGA-ES+ was not able to significantly outperform the selected search algorithms for 
some objectives (e.g., FPC in D1 for TSM in Fig. C-3) because it focuses on improving the 
majority of the objectives, and if the improvement of some objectives might result in a 
decrease in the performance of the majority of the objectives, it might ignore the 
improvement of these objectives. The search algorithms maintain a tradeoff between 
exploration (as indicated by GS) and exploitation (as indicated by GD) to produce the 
optimal solutions. CBGA-ES+ favors exploitation and tends to produce solutions that are 
closer to the optimal Pareto front. The logic for doing so is because normally in practice 
only one solution is executed from all the generated solutions, which the test engineers 
select randomly or based on domain expertise since there is no guideline on selecting the 
best solution. Therefore, all the generated solutions need to be better than those by the 
other algorithms based on the pre-defined evaluation criteria (e.g., number of fitness 
evaluations). As indicated by GD in Section 6.1.2, the solutions generated by CBGA-ES+ 
are much closer to the solutions in the optimal Pareto front as compared to the selected 
algorithms for 88% of the experiments. 

Regarding the parameter tuning with iRace, we ran 1000 experiments for each 
algorithm for each subject. iRace lists out one or more number of best candidate solutions 
based on the conducted experiments, for each subject, and we selected one of those 
parameter(s) for each subject in our experiments. To study the influence of fea features of 
the subject for the algorithm parameters requires another study, which will be conducted in 
the future. 

  Moreover, to evaluate whether the solutions produced by CBGA-ES+ can dominate the 
solutions produced by the selected search algorithms, we compare the non-dominated 
solutions produced by CBGA-ES, MOCell, NSGA-II, PAES, and SPEA2 with the non-
dominated solutions produced by CBGA-ES+ obtained in 50 runs. More specifically, after 
running the search algorithms 50 times each time to account for randomness, we retain 
only the non-dominated solutions for CBGA-ES+, CBGA-ES, MOCell, NSGA-II, PAES, 
and SPEA2. After that, we compare the non-dominated solutions from CBGA-ES+ with 
CBGA-ES, MOCell, NSGA-II, PAES, and SPEA2.  
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Fig. C-7 presents the percentage of non-dominated solutions of CBGA-ES, MOCell, 
NSGA-II, PAES, and SPEA2 that is dominated by CBGA-ES+ and vice versa on average 
for the five multi-objective test optimization problems. Based on Fig. C-7, it can be 
observed that CBGA-ES+ dominates on average 24.9%, 51.2%, and 62.4% of the non-
dominated solutions produced by the five selected algorithms for TSM, TCP, and TCS. For 
TRA, CBGA-ES+ dominates less than 1% of the non-dominated solutions produced by 
MOCell, NSGA-II, PAES, and SPEA2 and also has less diversity. This might be the 
reason for the worse overall quality of solutions for CBGA-ES+ (as indicated by HV). For 
D8, even though CBGA-ES+ dominates less than 1% of the non-dominated solutions 
produced by MOCell, NSGA-II, and SPEA2, CBGA-ES+ has both higher convergence and 
divergence, which is the reason for a higher HV. Overall, on average CBGA-ES+ 
dominated 33.8%, 24.7%, 27.7%, 54.0%, and 18.9% of the non- dominated on average 
4.5%, 2.2%, 1.4%, 0.0%, and 1.7% of the non-dominated solutions produced by CBGA-
ES+. 

Although the solutions produced by CBGA-ES+ had worse overall quality solutions (as 
indicated by HV) for TSM and TCP as compared to the selected search algorithms, they 
had higher fault detection rates (as indicated by FD and APFD) for most of the 
experiments. This is because CBGA-ES+ favors elite solutions and tend to produce better 
quality solutions. Therefore, even though the solutions generated by CBGA-ES+ have less 
diversity (as indicated by GS in Section 6.1.2), they have a better convergence (as 
indicated by GD) and overall better quality solutions (as indicated by HV in Section 6.1.2) 
on average. For D5, CBGA-ES+ did not have higher fault detection rates than the selected 
algorithms even though it has higher values for the objectives because higher values for the 
objectives do not always imply better fault detection. For instance, the test case that failed 
in the last version of D5 never failed before, and it did not have high statement coverage. 
Therefore, the failing test case had a lower value for the objectives. 

Fig. C-7. Percentage of non-dominated solutions by/of CBGA-ES+ with reference to the search algorithms* 
*Reference algorithm refers to CBGA-ES, MOCell, NSGA-II, PAES, or SPEA2, which is below the bar in the bar graphs. 
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8 Threats to Validity 

Threats to construct validity exists when the comparison measurements are not comparable 
for all the search algorithms [74]. To reduce construct validity threats, we used the same 
stopping criteria (i.e., 50,000 fitness evaluations) to find optimal solutions for all five 
multi-objective test optimization problems across the eight case studies. Another threat to 
construct validity arises when the measurement metrics do not sufficiently cover the 
concepts they are supposed to measure [8]. To mitigate this threat, we compared the 
different algorithms using the widely used evaluation metrics (e.g., HV, GS, GD, FD, and 
APFD). 

Threats to internal validity consider the internal factors (e.g., algorithm parameters) that 
could influence the obtained results [75]. In our experiments, we used the iRace 
optimization package [69] to run the algorithms with their best settings for the different 
case studies. Another possible internal validity concerns about the implementation of the 
algorithms. To mitigate this threat, we implemented all the experimented algorithms in the 
same tool (jMetal) and the genetic operators have used the same implementation settings.  

Threats to conclusion validity relate to the factors that influence the conclusion drawn 
from the results of the experiments [76]. The conclusion validity threat when using 
randomized algorithms is related to random variation in the produced results. To mitigate 
this threat, we repeated each experiment 50 times for each algorithm to reduce the 
possibility that the results were obtained by chance. Moreover, following the guidelines of 
reporting results for randomized algorithms [59], we employed the Vargha and Delaney 
statistics test as the effect size measure to determine the probability of yielding higher 
performance by different algorithms and Mann-Whitney U test for determining the 
statistical significance of results.  

Threats to external validity are related to the factors that affect the generalization of the 
results [75]. The first threat to external validity is the selection of search algorithms for our 
experiments. To mitigate this threat, we selected four different search algorithms that have 
managed to get good results in the literature [2, 3, 5, 17, 25] and the earlier version of the 
algorithm, CBGA-ES. The second threat to external validity concerns the number of case 
studies used to verify the results. To mitigate this threat, we used eight different case 
studies (that includes two industrial, one real world, and five open source case studies) 
focusing on five multi-objective test optimization problems (i.e., TSM, TCP, TCS, TRA, 
and ITO) for evaluating CBGA-ES+. Moreover, we have selected the five multi-objective 
test optimization problems from a well-known search based software engineering 
repository [39]. It is also worth mentioning that such threats to external validity are 
common in empirical studies [16, 64]. 
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9 Related Work 

Existing studies have shown that Search-Based Software Testing (SBST) can achieve 
promising results by employing multi-objective search algorithms (e.g., NSGA-II) for 
dealing with distinct testing problems [10, 12-14, 25, 36, 77-79]. A review of a set of 
testing problems where SBST has been applied is presented in [80, 81]. 

9.1 Multi-Objective Test Optimization Problems 

There is a large body of research using search-based approaches to solve multi-objective 
test optimization problems [10-14, 36, 38, 77-79, 82-84]. For instance, Epitropakis et al. 
[82] defined three objectives (e.g., fault history coverage) for the test case prioritization 
problem and solved it using seven algorithms (e.g., NSGA-II). Yoo and Harman [12] 
defined three objectives (e.g., code coverage) for the test case selection problem and solved 
it using a greedy algorithm and NSGA-II. Wang et al. [38] defined four objectives (e.g., 
test resource usage) for test case prioritization and solved it using seven algorithms (e.g., 
SPEA2, PAES, NSGA-II). For the testing resource allocation under uncertainty problem, 
Pietrantuono et al. [83] defined three objectives (e.g., fault correction) and solved it using 
four algorithms (e.g., MOCELL, PAES). 

Similarly, in our earlier work for addressing test suite minimization problem [2], we 
defined five objectives (e.g., fault detection capability) and empirically evaluated nine 
multi-objective search algorithms (e.g., NSGA-II). For prioritizing test cases, in our 
previous work [3], we defined four objectives (e.g., configuration coverage) and 
empirically evaluated NSGA-II with RS and Greedy. With respect to test case selection 
problem, four objectives (e.g., mean priority) were defined and in total seven multi-
objective search algorithms (e.g., SPEA2, PAES) were empirically evaluated [17]. 
Regarding the testing resource allocation problem, Wang et al. [5] defined three objectives 
(e.g., reliability) and empirically evaluated two multi-objective search algorithms (e.g., 
NSGA-II). With respect to the integration and test order problem, Assunção et al. [25] 
defined four objectives (e.g., number of attributes) that was also investigated in [35, 40, 
85], and empirically evaluated three multi-objective search algorithms (e.g., NSGA-II). 

As compared with the previous studies for multi-objective test optimization problems 
mentioned above, this work has a different focus, i.e., proposing a new algorithm (i.e., 
CBGA-ES+) by introducing non-dominated elitist strategy with the aim to further reduce 
the randomness that exists in the existing multi-objective search algorithms. Moreover, by 
employing the five case studies that were used in [2-5, 17, 25, 35] and three open source 
case studies from [44], we compared the performance of CBGA-ES+ with its predecessor 
CBGA-ES and four selected search algorithms that managed to achieve good results in the 
existing works [2, 3, 5, 17, 25]. Results show that CBGA-ES+ significantly outperformed 1) 
the four selected algorithms for solving all the five selected multi-objective test 
optimization problems and 2) CBGA-ES for solving four multi-objective test optimization 
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problems while there was no difference for one multi-objective test optimization problem 
(i.e., integration and test order problem). 

9.2 Multi-Objective Search Algorithms 

Pareto-efficient multi-objective evolutionary algorithms are being increasingly used for 
multi-objective test suite optimization to simultaneously optimize multiple objectives. 
There exist several multi-objective search algorithms that have been applied to address 
multi-objective test optimization problems [15, 16, 22-24, 67, 86]. For instance, Deb et al. 
[15] proposed NSGA-II, which ensures that non-dominated solutions are preferred over the 
dominated ones and if the number of selected solution exceeds the population size, the 
solutions with a higher value of crowding distance are selected (recall Section 2.2). SPEA2 
[22] combines the raw fitness of each solution with the density information and uses the 
non-dominated solutions from the population to fill the archive (Section 2.2). In [16] an 
algorithm, User-Preference Multi-Objective Optimization Algorithm (UPMOA) is 
proposed to incorporate the user preference for the different objectives. UPMOA is a 
modification of NSGA-II where the crowding distance indicator is replaced with the user-
preference indicator based on existing weight assignment strategies (e.g., fixed weights). 

As compared with the existing multi-objective algorithms, CBGA-ES+ is a new multi-
objective search algorithm that divides the population into different clusters and ranks the 
clusters based on the defined cluster dominance strategy (Section 3.1). The non-dominated 
solutions are further selected from the best clusters until the size of the selected population 
reaches the defined elite population minimum size. 

In our conference paper, we proposed CBGA-ES [21] that 1) divides the initial 
population into different clusters, 2) uses the defined cluster dominance strategy to rank 
the different clusters, and 3) selects the solutions from the best cluster (i.e., elite solutions) 
for producing offspring solutions. However, as compared to CBGA-ES, CBGA-ES+ further 
introduces non-dominated elitist selection strategy by selecting only the non-dominated 
elite solutions for producing the offspring solutions (Section 3.2). 

9.3 Cluster-Based Search Algorithms 

Multi-objective GA together with clustering has been increasingly applied for multi-
objective optimization of real-life applications such as software module clustering [87], 
web mining [88], and time series data analysis [89]. For instance, Aibinu et al. [90] 
proposed a clustering based GA (CGA) with the polygamy selection and dynamic 
population control for route optimization. CGA initializes candidate solutions based on the 
problem definition and clusters the solutions into two non-overlapping clusters. Solutions 
from the cluster with better fitness values are used for producing offspring using the 
crossover and mutation operators. 

Li et al. [91] proposed a clustering based GA for addressing four multi-objective 
benchmark problems from the literature [92]. The proposed GA [91] divided the whole 
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population into n clusters and placed similar solutions in a cluster. Afterward, the non-
dominated solutions from each cluster were gathered using the Arena principle [93], where 
each solution was compared with every other solution in the cluster to see if it was 
dominated. Zhu et al. [94] proposed a cluster-based orthogonal multi-objective genetic 
algorithm and evaluated it using five multi-objective benchmark problems from [15]. An 
initial population is generated by the orthogonal design, which scatters the individual 
solutions evenly in the feasible solution space [95]. The initial population was then 
partitioned into several clusters, and new solutions were generated in each cluster by using 
the crossover operator. Non-dominated sorting and crowding distance sorting [15] were 
further used to create a new population by selecting elite solutions from the parent 
population and generate offspring in each cluster. 

As compared with the above-mentioned existing studies, CBGA-ES+ is different from at 
least two perspectives: 1) we defined the cluster dominance strategy (Section 3.1) to 
determine the quality of different clusters; and the non-dominated solutions from the best 
clusters can be chosen for generating offspring solutions; 2) we defined the elite population 
minimum size to ensure that there are enough solutions in the population for maintaining 
diversity, which is not the case in the existing works. 

Moreover, niching approaches have been used in genetic algorithms to form niches (i.e., 
groups) of individuals (i.e., solutions) in a population [96]. The individuals within a niche 
are similar to each other and different across niches. Fitness sharing [97] is the most well-
known niching approach, which uses the sharing radius (𝜎f) to group together similar 
individuals. If the distance between the two individuals is lower than 𝜎f, they are placed in 
the same niche [96]. The distance between two individuals can be measured by using 
different distance metrics, e.g., Hamming distance and Euclidean distance. The individuals 
within the same niche share the fitness values that can be measured by 𝑓+¼ =

i�
]�

, where 𝑓+ is 

the original fitness value of an individual 𝑖 and 𝑚+ refers to the number of individuals in 
the niche [96]. Notice that the shared fitness values of individuals decrease when new 
individuals are introduced into the niche [96]. 

Our work (i.e., CBGA-ES+) is different from [96, 97] from at least two perspectives: 1) 
fitness sharing dynamically changes the shared fitness values for individuals whereas 
CBGA-ES+ does not influence the fitness values of individuals during the search process; 
and 2) fitness sharing uses the shared fitness values to compare individuals for obtaining 
optimal solutions while CBGA-ES+ employs the defined cluster dominance strategy 
(Section 3.1) to compare clusters for producing optimal solutions. 

10 Conclusion and Future Work 

This paper proposed a cluster-based genetic algorithm with non-dominated elitist selection 
(CBGA-ES+) for addressing multi-objective test optimization problems. CBGA-ES+ was 
empirically evaluated by comparing with its predecessor CBGA-ES (Section 3.2) and four 
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search algorithms (i.e., MOCELL, NSGA-II, PAES, and SPEA2), which performed well to 
address various multi-objective test optimization problems [2, 3, 5, 17, 25]. Results from 
the eight subjects show that CBGA-ES+ significantly outperformed its predecessor CBGA-
ES and the four selected algorithms for most of the considered multi-objective test 
optimization problems: test suite minimization (TSM), test case prioritization (TCP), test 
case selection (TCS), testing resource allocation (TRA), and integration and test order 
(ITO) problem. 

Shortly, we plan to apply more multi-objective software engineering optimization 
problems from different domains (e.g., requirement assignment problems [98]) to further 
strengthen CBGA-ES+. We also want to involve industrial practitioners to deploy and 
assess CBGA-ES+ in real industrial settings and study the impact of fitness evaluations 
(i.e., termination criteria) on the performance of CBGA-ES+. 
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Abstract 

Context: Modern large-scale software systems are highly configurable, and thus 
require a large number of test cases to be implemented and revised for testing a 
variety of system configurations. This makes testing highly configurable systems very 
expensive and time-consuming. 
Objective: Driven by our industrial collaboration with a video conferencing company, 
we aim to automatically analyze and implant existing test cases (i.e., an original test 
suite) to test the untested configurations. 
Method: We propose a search-based test case implantation approach (named as SBI) 
consisting of two key components: 1) Test case analyzer that statically analyzes each 
test case in the original test suite to obtain the program dependence graph for test 
case statements and 2) Test case implanter that uses multi-objective search to select 
suitable test cases for implantation using three operators, i.e., selection, crossover, 
and mutation (at the test suite level) and implants the selected test cases using a 
mutation operator at the test case level including three operations (i.e., addition, 
modification, and deletion). 
Results: We empirically evaluated SBI with an industrial case study and an open 
source case study by comparing the implanted test suites produced by three variants 
of SBI with the original test suite using evaluation metrics such as statement coverage 
(SC), branch coverage (BC), and mutation score (MS). Results show that for both the 
case studies, the test suites implanted by the three variants of SBI performed 
significantly better than the original test suites. The best variant of SBI achieved on 
average 19.3% higher coverage of configuration variable values for both the case 
studies. Moreover, for the open source case study, the best variant of SBI managed to 
improve SC, BC, and MS with 5.0%, 7.9%, and 3.2%, respectively. 
Conclusion: SBI can be applied to automatically implant a test suite with the aim of 
testing untested configurations and thus achieving higher configuration coverage. 

Keywords: Search; Multi-Objective Optimization; Genetic Algorithms; Test Case 
Implantation. 

1 Introduction 

Testing plays a key role to ensure that software systems can be released to market with 
high quality and more than 50% of time and budget are spent for testing [1]. It is even 
significantly worse when testing large-scale software systems that are usually highly 
configurable since test engineers need to spend a great deal of effort to implement and 
revise test cases for testing various configurations, which decreases the efficiency of 
testing [2]. 
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We have been working with a video conferencing company since 2009 with the aim to 
assist their current practice of testing large-scale Video Conferencing Systems (VCSs). For 
each VCS, there are more than 100 configuration variables (e.g., protocol), and each 
variable can be configured with a number of values (e.g., protocol can be SIP and H323). 
Such highly configurable VCSs bring great challenges for test engineers to manually and 
systematically design and develop test cases. For example, the calltype indicating a 
particular call type can be configured as video or audio and the callrate that specifies the 
call rate to be used when placing or receiving video calls can be configured with an integer 
from 64 to 6000. For the VCSs that support these two configuration variables, there are in 
total 2×5,937 =11,874 configurations that are needed to be thoroughly tested. For each 
configuration, a set of test API commands with a number of parameters has to be called 
(e.g., dial (calltype=video, callrate= 64)) and a set of corresponding system status variables 
need to be checked (e.g., assert (activecalls=1,videocalls=1)).  

Manually implementing such test cases (e.g., specifying configurations, calling relevant 
test API commands, checking corresponding system status) to test configurations require a 
large amount of manual work, which is practically infeasible. Test engineers at the 
company usually choose to develop a certain number of test cases by including a limited 
number of configurations (e.g., video with callrate 6000) based on their experience. Such 
practice may result in high chances that potential errors cannot be detected since some 
configurations might not be covered during testing. Our industrial partner develops VCSs 
in a continuous integration environment and changes made by developers are merged in 
the VCS codebase daily. Testing is performed each time a new change is committed to the 
VCS codebase. The median execution time of a test case is 30 minutes, and thus, they need 
the existing test cases to be as efficient as possible, i.e., testing different configurations to 
increase the configuration coverage.  

With the above-mentioned challenges in mind, we believe that it is worth investigating 
how to automatically and systematically analyze and implant existing test cases to increase 
the overall configuration coverage and thereby improve the efficiency of testing. 
Therefore, we propose a search-based test case implantation approach (named as SBI) to 
automatically analyze and implant an existing test suite with the aim to test the untested 
configurations. More specifically, SBI includes two key components: 1) Test case analyzer 
that statically analyzes each test case in the original test suite to obtain the program 
dependence graph for the statements; and 2) Test case implanter that uses multi-objective 
search to select suitable test cases for implantation using three operators, i.e., selection, 
crossover, and mutation (at the test suite level) and implants the selected test cases using a 
mutation operator at the test case level that includes three operations: addition, 
modification, and deletion. To assess the quality of the implanted test suites, we define five 
cost-effectiveness measures: number of configuration variable values covered (𝑁𝐶𝑉𝑉), 
pairwise coverage of parameter values of test API commands (𝑃𝐶𝑃𝑉), number of 
implanted test cases (𝑁𝐼𝑇), number of changed statements	(𝑁𝐶𝑆), and estimated execution 
time 𝐸𝐸𝑇 .  
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We evaluated three variants of SBI (using Non-dominated Sorting Genetic Algorithm II 
(NSGA-II) [3], weight-based genetic algorithm (WGA), and random search (RS)) with one 
industrial case study from a video conferencing company with a test suite including 118 
test cases and one open-source case study (i.e., SafeHome [4]) with 94 test cases. We also 
applied three evaluation metrics: statement coverage (SC), branch coverage 𝐵𝐶 , and 
mutation score (𝑀𝑆) to evaluate the three variants of SBI for the SafeHome case study by 
generating in total 1594 non-equivalent mutants. Note that we cannot apply these metrics 
(i.e., SC, BC, and MS) to the industrial case study since we do not have access to the source 
code. The evaluation results showed that the implanted test suites produced by all the three 
variants of SBI significantly outperformed the original suite for both the case studies. 
Among the different SBI variants, SBI with NSGA-II (i.e., SBINSGA-II) performed the best. 
Specifically, it achieved on average 19.3% higher 𝑁𝐶𝑉𝑉 and 57.0% higher 𝑃𝐶𝑃𝑉. 
Moreover, for the SafeHome case study, the test suites implanted by SBINSGA-II managed to 
improve 𝑆𝐶, 𝐵𝐶 and 𝑀𝑆 with on average 5.0%, 7.9%, and 3.2%, respectively. 

The key contributions of this paper include:  
1) A formalization of the test case implantation problem (Section 4.2);  
2) A mathematical definition of the five cost-effectiveness measures to assess the 

quality of implanted test suites (Section 4.3);  
3) SBI: A novel search-based test case implantation approach with two key 

components, i.e., test case analyzer and test case implanter (Section 5);  
4) An empirical evaluation of the three SBI variants (with NSGA-II, WGA, and RS) 

using the two case studies (Section 7). 
The rest of the paper is organized as follows: Section 2 gives relevant background. Section 
3 introduces a running example for illustrating SBI and the overall context, followed by the 
formalization of the problem (Section 4). Section 5 presents SBI in detail, followed by the 
experiment design (Section 6) and results of the empirical study (Section 7). Section 8 
presents the threats to validity. Section 9 discusses the related work, and Section 10 
concludes the paper. 

2 Background 

2.1 Multi-Objective Test Optimization 

Multi-objective test optimization aims to find solutions for software testing problems with 
tradeoff relationships among objectives (e.g., maximizing code coverage while minimizing 
execution cost), such as test case prioritization (TCP) [5, 6]. With multi-objective test 
optimization, a set of solutions with equivalent quality is usually produced based on Pareto 
optimality if there exists more than one best solution [7]. More specifically, Pareto 
optimality defines the Pareto dominance to assess the quality of solutions. Consider that 
there are a objectives = {𝑜%, 𝑜', … , 𝑜`} to be optimized for a multi-objective test 
optimization problem (e.g., TCP), and each objective can be calculated using a fitness 
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function 𝑓+ from 𝐹 = {𝑓%, 𝑓', … , 𝑓 }. Then if we aim to minimize the fitness function such 
that a lower value for an objective implies better performance, then solution Y dominates 
solution Z (i.e., 𝑌 ≻ 𝑍) iff ∀+2%,',…,`𝑓+(𝑌) ≤ 𝑓+(𝑍)	⋀	∃+2%,',…,`𝑓+(𝑌) < 𝑓+(𝑍). The test 
optimization approaches specific to this work are discussed in the related work section 
(Section 9). 

2.2 Genetic Algorithms 

Genetic Algorithms (GAs) are inspired by the process of natural selection to optimize one 
or more objectives (e.g., maximizing code coverage while minimizing the execution cost) 
using a fitness function(s) to assess the quality of solutions. A typical GA uses bio-inspired 
operators (i.e., selection, crossover, and mutation) to produce offspring solutions [8]. The 
selection operator selects the best solutions based on the fitness functions, the crossover 
operator partially exchanges the parent solutions, and the mutation operator mutates a 
given solution by changing part of the solutions.  

Weight-based GA (WGA) assigns a particular weight to each objective function (e.g., 
each objective is assigned equal weight if all the objectives hold equal importance) for 
converting a multi-objective problem into a single objective problem using a scalar 
objective function [9]. Non-dominated Sorting Genetic Algorithm II (NSGA-II) is a 
computationally fast and elitist multi-objective evolutionary algorithm [3]. In NSGA-II, 
solutions in a population are sorted and placed into several fronts based on the ordering of 
Pareto dominance. Individual solutions are selected from non-dominated fronts, and if the 
number of solutions from a non-dominated front exceeds the specified population size, the 
solution with a higher value of crowding distance is selected, where crowding distance is 
used to measure the distance between individual solutions in a population [9]. 

3 Running Example and Context 

The running example is an excerpt of a sanitized test case from a video conferencing 
company, which will be used to illustrate SBI throughout the paper. A typical test case at 
the video conferencing company consists of one setup class, one or more test methods, one 
teardown, and one teardown class (Table D-1) as recommended in the unit testing 
framework in python, PyUnit [10]. A setup class is for initializing and setting up the 
system under test (SUT) (e.g., registering SUT to a registrar at line 1 in Table D-1) to be 
ready for executing the test methods in the test case. The test methods are for testing SUT 
functionalities (e.g., the dial functionality for making a call from one system to another, as 
shown at line 4 in Table D-1). Teardown resets the SUT (e.g., disconnect the SUT, as 
shown at line 7 in Table D-1), and it is executed after each test method has been called. 
Lastly, teardown class is called after all the test methods have been executed to reset the 
statuses of the SUT that might have been modified at the setup class (e.g., disconnecting 
the SUT from the registrar).  
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Moreover, Fig. D-1 presents an overview of a typical testing process for testing VCSs, 
i.e., SUTs. As a first step, a test case makes the SUT ready for testing, e.g., registering the 
SUT to a registrar (line 1 in Table D-1) as a part of setup class. Secondly, the SUT is 
configured if necessary. For example, the configuration variable packetlossresilence at the 
SUT is configured with off in the test method (line 2 in Table D-1). In the third step, one or 
more test API command is executed on the SUT. For example, dial is executed, which 
consists of four parameters: protocol, calltype, callrate, and autoanswer assigned with 
values sip, video, 6000, and true, respectively in Table D-1. Then, the statuses of the SUT 
are verified with an assertion. For example, the assertion checks if the values of 
NumberOfActiveCalls and NumberOfVideoCalls are both 1 in Table D-1. Note that 
typically each test method consists of at least one test API command (e.g., dial) and an 
assertion. At last, the statuses of the SUT are reset to the original statuses, e.g., disconnect 
as a part of teardown. If the test case has more than one test method, the next test method is 
executed followed by the teardown, and this process is repeated until all the test methods in 
the test case are executed. At the final step, teardown class is called to reset the statuses of 
the SUT that might have been initialized at the setup class. 

Table D-1. An Excerpt of a Sanitized Test Case 
Part Line Example Comment 

Setup class 1 register SUT to a registrar Register SUT 

Test method 

2 packetlossresilence = off Configure SUT 
3 callrate_var = 6000 Assign variable 

4 
dial(protocol=sip,  calltype=video, callrate=callrate_var, 
autoanswer=true) 

Execute test API 
command on SUT 

5 wait(4) Wait 4 seconds 
6 assert(NumberOfActiveCalls=1, NumberofVideoCalls=1) Verify statuses of SUT 

Teardown 7 disconnect call Reset statuses 
Teardown class 8 disconnect SUT from the registrar Execution completed 
 

 
Fig. D-1. An overview of testing a VCS (SUT) 

 
Each VCS developed by the video conferencing company is highly configurable. For 

example, a VCS includes more than 100 configuration variables (e.g., packetlossresilence) 
and each configuration variable can take a set of values (e.g., packetlossresilence can take 
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two values: off and on). Moreover, each test API command requires configuring one or 
more parameters (e.g., four parameters need to be configured for the test API command 
dial), and each parameter in the test API command can take a number of different values. 
For example, the test API command dial allows values audio and video for calltype, values 
between 64 and 6000 inclusive for the callrate, and values true and false for autoanswer.  

Testing all the values for the configuration variables requires a large number of test 
methods if each test method covers one configuration variable. Moreover, testing all the 
combinations of parameter values for the test API commands also requires a large number 
of test methods. Additionally, if one test method includes more than one test API 
command, the combinations could exponentially increase, which makes the manual test 
case development expensive and even infeasible at certain contexts. Developing new test 
cases is practically expensive since each test case should include the setup class, teardown, 
and teardown class, which cause an extra overhead in terms of test case execution. This is 
due to the fact that the setup class (for setting up the SUT) and teardown class (for 
resetting the SUT) need to be executed for all the newly implemented test cases, which is 
quite time-consuming. However, if the new test methods can be directly added to the 
existing test cases, the overhead for executing the setup class and teardown class can be 
reduced and thereby improving the efficiency of testing. Moreover, using test reduction 
strategies (e.g., boundary value analysis [11-13]) can further reduce the number of 
combinations of variables/parameters without significantly decreasing the effectiveness of 
the test suite. 

Additionally, some existing test cases might test the same combinations of values for 
the configuration variables and test API command parameters. For example, when 
different test engineers develop test cases that require dial, it is possible that the same 
values for the parameters protocol, calltype, callrate, and autoanswer are taken, which can 
decrease the efficiency of testing since a different combination of configuration variable or 
test API command parameters could have been used. Notably, more diverse test cases (e.g., 
in terms of combinations of parameter values in our context) can lead to higher efficiency 
of testing [14, 15].  

Thus, the key objective of this work is to propose a cost-effective search-based 
approach to automatically implant an existing test suite with the aim to 1) achieve a higher 
coverage of configuration variable values, 2) cover more combinations of parameter values 
of test API commands, and 3) increase the efficiency of testing by modifying or removing 
redundant test methods that cover same configuration variable values or the same 
combinations of parameter values of test API commands. 

4 Problem Representation and Measures 

This section first defines basic notations (Section 4.1) and the test case implantation 
problem (Section 4.2), followed by presenting the five cost/effectiveness measures 
(Section 4.3). 
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4.1 Basic Notations 

We assume that a given original test suite consists of 𝑛 test cases 𝑇 = 𝑡%, 𝑡', … , 𝑡) . Each 
test case is composed of four parts (as mentioned in Table D-1): setup class, 𝑜 number of 
test methods, teardown, and teardown class, i.e., 𝑡 = 𝑠𝑐 ∪ 𝑡𝑚%,… , 𝑡𝑚p ∪ 𝑡𝑑 ∪ 𝑡𝑑𝑐, 
where 𝑠𝑐, 𝑡𝑚+, 𝑡𝑑 and 𝑡𝑑𝑐 represent setup class, test method i, teardown, and teardown 
class, respectively. 

Table D-2. Different Types of Statements in a Test Method 
Name Description Example 

Assignment Assign values to Numeric, Boolean, String variables callrate_var = 6000 

Conditional 
If-then statement represented 𝑝 → 𝑞, where 𝑝 is a 
hypothesis and	𝑞 is a conclusion 

if (wait > 4) 
    accept 

Configuration Configure the SUT packetlossresilence = off 

Execution 
Perform actions by executing test API commands on 
the SUT 

dial (protocol=SIP, calltype=video, 
callrate=6000, autoanswer=true) 

Assertion Check the statuses of the SUT assert(NumberofActiveCalls=1) 

Wait 
Hold the execution of the next statement(s) for a 
specific time 

wait (4) 

Each test method 𝑡𝑚+  is composed of a sequence of 𝑖, 𝑞  statements, 
𝑡𝑚+ = 𝑠𝑡+,%, … , 𝑠𝑡+,t  (e.g., the test method in Table D-1 has 5 statements). Thus, the total 
statements in a test case is: 𝑆𝑇 = 	⨄j]∈j𝐹(𝑡𝑚)	⨄𝐹(𝑠𝑐)⨄𝐹(𝑡𝑑)	⨄𝐹(𝑡𝑑𝑐) , 
where	𝐹 𝑡𝑚 , 𝐹 𝑠𝑐 , 𝐹(𝑡𝑑) and 𝐹(𝑡𝑑𝑐) are functions that return all the statements in the 
test method	𝑡𝑚, setup class 𝑠𝑐, teardown 𝑡𝑑, and teardown class 𝑡𝑑𝑐, respectively. 
Moreover, 𝑆𝑇 is a multiset, which is a collection of objects (e.g., statements in this context) 
that allows the objects to occur more than once in a set [16]. To enable the implantation, 
we need to get the statements structured, and therefore we classify them into six categories 
as shown in Table D-2. 

Each test case covers one or more configuration variables, and each configuration 
variable is configured with a configuration value. For example, in the running example (), 
the test case covers configuration variable packetlossresilence, which is configured by 
using the value off. We represent a set of 𝑟 configuration variables for test suite 𝑇 as 𝐶𝑉� =
𝑐𝑣%, … , 𝑐𝑣n . Thus, the configuration variable values covered by the test suite 𝑇 are 

defined as:  
𝐶𝑉𝑉� = 𝐹(𝑐𝑣)^_	∈	|}~   (1) 

Each test case executes one or more test API commands, each of which has one or more 
parameters. Each parameter is configured with a specific value at a test method for a test 
case. For example, in Table D-1, the test case covers the test API command dial, which 
has four parameters: protocol, calltype, callrate, and autoanswer with the values of SIP, 
Video, 6000, and true, respectively. We represent the 𝑢 number of test API commands 
covered by the test suite 𝑇 as 𝐴𝐶� = 𝑎𝑐%, 𝑎𝑐', … , 𝑎𝑐� . Each test API command 𝑎𝑐+ has 
𝑖, 𝑣 parameters (i.e., 𝑎𝑐+ = {𝑎𝑝+,�, … , 𝑎𝑝+,_}). Systematically considering interactions of 
parameters during testing can lead to a high chance of finding software faults [14, 15]. 
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Moreover, exhaustive testing (i.e., testing all combinations of parameters) is very 
expensive in practice. Therefore, pairwise testing has been proposed to reduce the number 
of interactions of test API parameters meanwhile maintain relatively high fault detection 
rates, from 50% to 97% as reported in [17]. Thus, we employ pairwise testing [18] in SBI. 
A set of pairwise tests 𝑃𝑇+ is required to cover all interactions of each pair of parameters 
for each test API command 𝑎𝑐+, such that each test case in 𝑃𝑇+ contains 𝑖, 𝑣 values, one for 
each parameter in 𝑎𝑐+. In other words, for each pair of parameter values 𝑎𝑝𝑣k,` and 𝑎𝑝𝑣l,�, 
where 𝑎𝑝𝑣k,` ∈ 	 𝑎𝑝k and 𝑎𝑝𝑣l,� ∈ 	 𝑎𝑝l, there exists at least one test in 𝑃𝑇+ that contains 
both 𝑎𝑝𝑣k,` and 𝑎𝑝𝑣l,� [14]. The set of pairwise tests required to cover all the pairwise 
interactions of each parameter pair for all the test API commands in the test suite is: 

	𝑃𝑇� = 𝑃𝑇+�
+2%               (2) 

where, 𝑢 is the number of test API commands covered by 𝑇, and 𝑃𝑇+ is the set of pairwise 
tests required for test API command 𝑖. 

Based on the above-mentioned notations, we define test case implantation as: 
automatically modifying and/or deleting existing statements from the original test suite 
and/or adding new statements, with the aim to construct a new test suite, which meets a set 
of predefined criteria, e.g., maximizing the pairwise coverage of parameter values of test 
API commands. Notably, the defined test case implantation does not increase the total 
number of test cases as compared with the original test suite. We use the following 
function to represent implanting 𝑡` into 𝑡`í: 	 

𝐼𝑚𝑝𝑙𝑎𝑛𝑡(𝑡`) → 𝑡`í  (3) 

4.2 Problem Representation 

Let 𝑆 = 𝑠%, 𝑠'	, … , 𝑠)f  represents a set of potential solutions, where 𝑛𝑠 = 2c − 1 and 𝑝 =
𝑛 𝑆𝑇jj∈� . Each solution 𝑠 = 𝑡%, 𝑡'	, … , 𝑡)  has the same number of test cases as the 

original test suite 𝑇, and some of the test cases from 𝑇 are chosen for implantation. 𝐶𝑜𝑠𝑡 =
𝑐𝑜𝑠𝑡%, … , 𝑐𝑜𝑠𝑡)^pfj  refers to a set of cost measures (e.g., execution time of the test suite) 

and 𝐸𝑓𝑓𝑒𝑐𝑡 = 𝑒𝑓𝑓𝑒𝑐𝑡%, … , 𝑒𝑓𝑓𝑒𝑐𝑡)hiih^j 	denotes a set of effectiveness measures (e.g., 
coverage of configuration variable values) for evaluating the quality of a solution.  

Problem: Search a solution 𝑠i from the total number of 𝑛𝑠 solutions in 𝑆 that can achieve 
the maximum effectiveness with minimum cost. 

∀+2%	jp	)hiih^j∀k2%	jp	)f	𝐸𝑓𝑓𝑒𝑐𝑡	(𝑠i, 𝑒𝑓𝑓𝑒𝑐𝑡+) ≥ 𝐸𝑓𝑓𝑒𝑐𝑡	 𝑠k, 𝑒𝑓𝑓𝑒𝑐𝑡+  
	⋂		∀l2%	jp	)^pfj∀k2%	jp	)f	𝐶𝑜𝑠𝑡	(𝑠i, 𝑐𝑜𝑠𝑡l) ≤ 𝐶𝑜𝑠𝑡	 𝑠k, 𝑐𝑜𝑠𝑡l  

𝐸𝑓𝑓𝑒𝑐𝑡	(𝑠k, 𝑒𝑓𝑓𝑒𝑐𝑡+) returns the 𝑖j� effectiveness measure of 𝑠k, and 𝐶𝑜𝑠𝑡	(𝑠k, 𝑐𝑜𝑠𝑡l) 
returns the 𝑘j� cost measure of 𝑠k. 
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4.3 Cost and Effectiveness Measures 

This section formally defines three cost measures (Section 4.3.1) and two effectiveness 
measures (Section 4.3.2) based on the problem defined in Section 4.2. 

4.3.1 Cost Measures 

Number of implanted test cases (NIT): Since not all the test cases in the original test 
suite are selected for implantation, we define 𝑁𝐼𝑇 to measure the total number of test cases 
chosen by the search for implantation, which can be calculated as the total number of test 
cases that exist in 𝑠 but not in the original test suite 𝑇. The number of implanted test cases 
can be calculated as: 

𝑁𝐼𝑇 = 𝑛 𝑡 ∶ 𝑡 ∉ 𝑇j	∈	f   (4) 
Our aim is to minimize 𝑁𝐼𝑇 so that changes are introduced to a minimum number of the 

existing test cases for simplifying maintenance [19, 20]. 

Number of changed statements (NCS): A statement is called a changed statement if an 
existing statement is modified or removed or a new statement is added to the test case. The 
number of changed statements in a solution 𝑠 is the sum of the numbers of modified 
statements (𝑀𝑆𝑇), deleted statements (𝐷𝑆𝑇), and added statements (𝐴𝑆𝑇) for each test case 
in 𝑠, such that: 

𝑁𝐶𝑆 = ∀j	∈	f(𝑛 𝑀𝑆𝑇j + 𝑛 𝐷𝑆𝑇j + 𝑛 𝐴𝑆𝑇j : 𝑡 ∉ 𝑇)   (5) 
If 	𝑡`í	is the implanted test case for the original test case 𝑡`: 

𝑀𝑆𝑇j`í = ∀j]	∈	j`í⨄fj	∈	j]𝑠𝑡 ∉ 𝑡`,𝐷𝑆𝑇j`í = ∀j]	∈	j`⨄fj∈	j]𝑠𝑡 ∉ 𝑡`í and 
𝐴𝑆𝑇j`í = 𝑛 𝑆𝑇j`í − 𝑛 𝑆𝑇j` + 𝐷𝑆𝑇j`í. 

We aim to minimize 𝑁𝐶𝑆 to ensure that a statement is only changed when necessary 
(e.g., to cover more configuration variable values). 

Estimated execution time (EET): The execution time of a solution (i.e., an implanted test 
suite) refers to the time required for executing all its test cases. The solutions update 
dynamically during search and many solutions are produced, which makes it difficult to 
execute the solutions for getting their execution time. For example, 25000 implanted test 
suites produced by search have to be executed 25000 times when the number of fitness 
evaluation is set as 25000, which is computationally expensive and infeasible. Thus, we 
propose to statically estimate the execution time of a test case in the solution based on the 
execution time of each statement of the test case. We measure the average execution time 
for each statement in a test case 𝑡k (𝐸𝑇𝐸𝑆k) using the historical execution time of the test 

case: 𝐸𝑇𝐸𝑆k = 	
hjz

)(��z)
, where 𝑒𝑡k is the historical execution time of the statement 

and	𝑛(𝑆𝑇k) is the number of statements included in 𝑡k. The estimated execution time of the 
test cases in the solution 𝑠 is: 

𝐸𝐸𝑇 = 	 𝑛(𝑆𝑇j)×𝐸𝑇𝐸𝑆jj	∈	f	   (6) 
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where, 𝑛(𝑆𝑇j) is the total number of statements in a test case. Our aim is to minimize the 
estimated execution time of the test cases included in a solution. 

To ensure that EET is accurate for estimation, we conducted a pilot experiment by 
producing 20 implanted test suites using our approach, executing them and comparing the 
real execution time with the estimated execution time (i.e., EET). We noticed that the 
difference between the real execution time and EET was on average 395 seconds, which 
has no practical differences. Therefore, we used EET to estimate the real execution time in 
our context. 

4.3.2 Effectiveness Measures 

Number of configuration variable values covered (NCVV): Based on equation 1, the set 
of configuration variable values covered by a solution 𝑠 is: 𝐶𝐶𝑉𝑉 = 𝐹(𝑐𝑣)^_	∈	|} , where 
𝐹(𝑐𝑣) is a function that returns the set of configuration variable values for 𝑐𝑣. The number 
of configuration variable values covered by 𝑠 can be calculated as:  

𝑁𝐶𝑉𝑉 = 𝑛(𝐶𝐶𝑉𝑉) (7) 
For example, for the sanitized test case in Table D-1, 𝑁𝐶𝑉𝑉 is one as it covers one 

configuration variable with one value (i.e., packetlossresilence with the value off). The 
goal is to achieve the maximum coverage of configuration variable values. 

Pairwise coverage of parameter values of test API commands (PCPV): 𝑃𝐶𝑃𝑉 is 
defined to measure how much pairwise coverage of parameter values of test API 
commands can be covered by a solution 𝑠, and it is calculated as below: 

𝑃𝐶𝑃𝑉 = ∀`^∈f∀+2%
) ¢(`^) 	∀k2+v%

) ¢(`^) 𝑛 𝐹(𝑎𝑝+) ×𝑛 𝐹(𝑎𝑝k)      (8) 

such that 𝑛 𝐹(𝑎𝑐) > 1, where 𝐹 𝑎𝑐  is a function that returns the set of API parameters 
for the test API command 𝑎𝑐, while 𝐹(𝑎𝑝+) and 𝐹(𝑎𝑝k) are functions that return the set of 
values in the test API parameters 𝑖 and 𝑗, respectively. For example, for a solution with 
only one test case (i.e., sanitized test case in Table D-1), 𝑃𝐶𝑃𝑉 is six since the test API 
command dial covers six pairs of parameter values. The goal is to maximize the pairwise 
coverage of parameter values of test API commands. 

Each objective function measures the quality of a solution from a particular user 
perspective. For example, objective function 𝑁𝐶𝑉𝑉 measures the quality of a solution in 
terms of the coverage of configuration variable values. These objectives are usually 
independent of one another. For instance, 𝑁𝐼𝑇 measures the number of implanted test 
cases while 𝑁𝐶𝑆 measures the number of changed statements. If all the test cases in a test 
suite are implanted, it has a maximum possible value for 𝑁𝐼𝑇 but it could have a low value 
of 𝑁𝐶𝑆 if the number of changed statements is few in each test case. Similarly, if a lot of 
changes are introduced in a few test cases, it could have a high value for 𝑁𝐶𝑆 but not for 
𝑁𝐼𝑇. Moreover, 𝐸𝐸𝑇 measures the execution time of a test case, which is independent of 
𝑁𝐶𝑆 and 𝑁𝐼𝑇. Additionally, 𝑁𝐶𝑉𝑉 measures the number of configuration variable values 
tested by a test case while 𝑃𝐶𝑃𝑉 measures the pairwise coverage of parameter values of 
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test API commands, which are different from the other objectives and also with each other 
(Sections 3 and 4). 

5 SBI: Search-Based Test Case Implantation Approach 
This section first provides an overview of SBI (Section 5.1) followed by the detailed 
presentation of test case analyzer (Section 5.2), and test case implanter (Section 5.3). 

5.1 Overview of SBI 

Fig. D-2 presents an overview of SBI consisting of two key components: test case analyzer 
and test case implanter. The test case analyzer component ensures that implanted test cases 
are semantically correct (e.g., two new statements should be added in a correct order). For 
this, the test case analyzer component statically analyzes each test case in the original test 
suite to obtain the program dependence graph [21, 22] for each test method, which is 
required to know dependences among statements. For example, on removing one statement 
another dependent statement(s) also need to be removed in the test method (see Section 
5.2). Nodes in the program dependence graph represent the statements in the test method 
and edges represent the control and data dependence edges [23]. Moreover, the test case 
analyzer component automatically classifies all statements into the six categories defined 
in using the statement information document (created one time), which is described in 
detail in Section 5.2. 

Fig. D-2: Overview of SBI 

As depicted in Fig. D-2, the original test suite is passed to the test case implanter 
component to generate solutions by changing the values of the configuration variables and 
test API parameters from the list of available values provided in the statement information 
document (detailed in Section 5.3). Each generated solution includes implanted test cases 
and remaining (unchanged) test cases in the original test suite that are not chosen for 
implantation. For implanting a test case, changes are made to one or more of its classified 
statement (recall Table D-2) using the test case implanter component and program 
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dependence graph produced by the test case analyzer component is used to change the 
affected statements. 

5.2 Test Case Analyzer 

For each test case in the original test suite, the test case analyzer component automatically 
classifies all the statements of the test case into the six categories (Table D-2) and 
constructs a program dependence graph for each test method. 

Statement classification. The test case analyzer component uses the statement 
information document (Fig. D-2) for classifying the statements in the test case. Generally, 
the statement information document includes: 1) keywords to distinguish between the 
different statements (e.g., for the sanitized test case in Section 3, packetlossresilence, dial, 
wait, and assert are defined as keywords to differentiate configuration, execution, wait, and 
assertion statements, respectively), 2) allowed values for the variables/parameters (that the 
test engineers need to test), and 3) domain specific rules for identifying the dependency 
between statements (e.g., later statement(s) in a test case may use same values for the same 
variable as the preceding statement). Notice that test engineers can build such statement 
information document based on their specific testing practice in any format (e.g., XML in 
our case). 

In our context, the list of configuration variable names and test API commands are 
specified in the statement information document to differentiate between configuration and 
execution statements. Moreover, assertion and wait statements are classified based on 
whether they contain the keyword “assert” or “wait”, respectively. The assignment 
statement is classified based on if they are used as a value at the 1) configuration variable 
or 2) test API parameter/s (e.g., callrate_var at line 3 in Table D-1 is used as a value in the 
parameter callrate in line 4). The program dependence graph is created using data and 
control dependences between statements, as explained below.  

Data dependence. There exists data dependence between two statements if the second 
statement refers to the data of the first statement [22]. We define two sets of data 
dependences: 1) general and 2) domain specific. General dependences apply to all 
contexts, whereas domain specific data dependences are specific to a particular domain. 
There exists general data dependence between two statements in a test method if a variable 
in one statement has an incorrect value when the two statements are reversed. For example, 
as shown in Table D-1, the statement in line 4 is data dependent on the statement in line 3 
as parameter callrate in dial is defined in line 4 (i.e., callrate_var). We use domain 
specific rules defined explicitly in the statement information document (as illustrated in 
Fig. D-2) to create domain specific data dependence. For example, in the context of the 
video conferencing company if there exist two or more execution statements such that the 
test API command in the execution statements use one or more same parameters (e.g., the 
test API commands dial and call_transfer have the same parameter protocol) the value of 
the parameter in the test API command in the second execution statement must take the 
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same value as the same parameter defined in the test API command at the first execution 
statement. 

Control dependence. Similar to data dependences, there exist general and domain specific 
control dependences. There exists a general control dependence between two statements if 
the value of the first statement controls the execution of the second statement [22]. For 
example, in the sequence, if (protocol = SIP) then accept, the statement accept depends on 
the predicate statement if (protocol = SIP) since the value of protocol determines if accept 
is executed. As in data dependence, domain specific control dependence is based on 
domain specific rules based on the statement information document (as illustrated in Fig. 
D-2). For example, in the context of the video conferencing company, if there are two 
execution statements (e.g., one with test API command dial and the other with 
call_transfer), the execution of the second execution statement (i.e., call_transfer) depends 
on the execution of the first execution statement. To capture this dependence, we keep 
track of the statement execution order at the test method in the test case. 

5.3 Test Case Implanter 

The test case implanter component includes two steps: test case selection and test case 
implantation. The first step is to select test cases from the original test suite for 
implantation. To this end, we use decision variables (Section 5.3.1) to guide the search for 
selecting test cases based on the defined fitness function. The second step is to implant the 
selected test cases by changing statement(s) (e.g., adding new statement) in test methods 
using a mutation operator with three operations (i.e., addition, modification, and deletion). 

5.3.1 Solution Representation 

We represent each solution at two different levels: test suite level and test case level, as 
shown in Fig. D-3. At the test suite level, test cases in solution 𝑠 are represented with an 
array of real variables,	𝑉 = 𝑣%, … , 𝑣) , where each variable 𝑣+ is associated with test case 
𝑡+ (Fig. D-3). The value of 𝑣+ ranges from 0 to 1, and this value indicates whether 𝑡+ is 
selected for implantation in 𝑠. A value greater than 0.5 indicates that the test case is 
selected for implantation, while a value less than or equal to 0.5 indicates otherwise. 
Initially, each variable in 𝑉 (i.e., 𝑣+) is assigned a random value from 0 to 1, and during the 
search, the test case implanter component of SBI returns the solutions guided by the fitness 
functions defined in the next section. 

Test Case 𝑡% 𝑡' 𝑡Z … 𝑡)�' 𝑡)�% 𝑡) 
Variable 𝑣% 𝑣' 𝑣Z … 𝑣)�' 𝑣)�% 𝑣) 

Test Suite Level 

Test Method 𝑡𝑚+,% … 𝑡𝑚+,p 
Statements 𝑠𝑡+%,%, … , 𝑠𝑡+%,t … 𝑠𝑡+p,%, … , 𝑠𝑡+p,t 

Test Case Level for Test Case 𝑡+ 
Fig. D-3. Two different levels in a solution 
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At the test case level, a particular test case is composed of a number of test methods and 
each test method includes a set of statements. Fig. D-3 depicts a set of test methods (𝑡𝑚+,k) 
for test case 𝑡+ with the total number of test methods being 𝑖, 𝑜. 

5.3.2 Fitness Function 

Recall that the goal of SBI is to cost-effectively implant existing test cases, while 1) 
maximizing the effectiveness (i.e., 𝑁𝐶𝑉𝑉 and 𝑃𝐶𝑃𝑉) and 2) minimizing the cost (i.e., 
𝑁𝐼𝑇, 𝑁𝐶𝑆, and 𝐸𝐸𝑇). With this goal in mind, we have defined the five cost-effectiveness 
measures in Section 4.3. Since values of different cost and effectiveness measures are not 
comparable, we use the normalization function suggested in [24] to normalize the values in 
the same magnitude of 0 and 1 for all the five cost and effectiveness measures: 
𝑁𝑜𝑟 𝐹 𝑥 = ¢(¡)

¢ ¡ v%
, where 𝐹(𝑥) is a function for 𝑁𝐼𝑇, 𝑁𝐶𝑆, 𝐸𝐸𝑇,𝑁𝐶𝑉𝑉, and 𝑃𝐶𝑃𝑉 

(equations 4 - 8). Thus, for the five cost and effectiveness measures (equations 4 – 8), we 
define the following five objective functions: 

	𝐹 𝑂% = 𝑁𝑜𝑟 𝑁𝐼𝑇 , 𝐹 𝑂' = 𝑁𝑜𝑟(𝑁𝐶𝑆), 𝐹 𝑂Z = 𝑁𝑜𝑟 𝐸𝐸𝑇  
𝐹 𝑂Y = 1 − 	𝑁𝑜𝑟 𝑁𝐶𝑉𝑉 , 𝐹 𝑂T = 1 − 	𝑁𝑜𝑟(𝑃𝐶𝑃𝑉) 

Note that we define our multi-objective search problem as a minimization problem, i.e., 
a solution with a lower value for an objective implies a better performance of a solution. 
Therefore, we subtracted 1 for the effectiveness measures: 𝐹 𝑂Y  and 𝐹 𝑂T . 

5.3.3 Test Case Implantation 

Test case implantation occurs at the test case level (Fig. D-3). For this, values of 
configuration variables in configuration statements or values of parameters in execution 
statements are based on their allowed values provided in the statement information 
document (Fig. D-2). When changing values of parameters, the pairwise testing strategy is 
applied as explained in Section 4.1. Recall that the statement classification is provided by 
the test case analyzer component (Section 5.2). When a particular statement in a test 
method is changed, forward and backward slicing [25] is applied to obtain affected 
statements of the test method (using the program dependence graph from the test case 
analyzer component) that should be changed as well. A slice refers to a set of statements 
that influence the value of a variable at a particular program location (i.e., the location of 
the changed statement in this context) [26]. The process is described in detail in the next 
section. 

Search Operators at the Test Suite Level: The test case analyzer component integrates 
the defined fitness function into a multi-objective search algorithm (e.g., NSGA-II [3]). We 
chose the widely used tournament selector [3] as the selection operator to select individual 
solutions with the best fitness for inclusion into the next generation. The crossover operator 
is applied at the test suite level, which randomly swaps parts of two parent solutions (i.e., 
test suites) to produce two offspring solutions. To this end, we chose a single point 
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crossover operator that randomly selects the same point in both the parent solutions for 
generating the offspring solutions as shown in Fig. D-4.  

Crossover point 
𝑡`,% 𝑡`,' 𝑡`,Z 𝑡`,) 

0.3 0.4 0.1 0.6 
Parent 1 (Solution    𝑠`) 

 
𝑡`,% 𝑡`,' 𝑡`,Z 𝑡�,) 

0.3 0.4 0.1 0.9 
Offspring Solution 1 

 
𝑡�,% 𝑡�,' 𝑡�,Z 𝑡�,) 

0.2 0.8 0.7 0.9 
Parent 2 (Solution 𝑠�) Offspring solution 2 

𝑡�,% 𝑡�,' 𝑡�,Z 𝑡`,) 
0.2 0.8 0.7 0.6 

Fig. D-4. Single Point Crossover applied between Two Solutions 
The generated offspring solutions contain the test cases and the variable values 

associated with the test cases from the parent solutions as shown in Fig. D-4. Note that we 
do not apply the crossover operator at the test case level since the setup class, teardown, 
and teardown class required for running the test methods may vary across test cases, which 
might lead to semantically incorrect test cases. 

We apply the mutation operator at both the test suite and test case levels (Fig. D-3). In 
terms of the test suite level, the mutation operator is defined to randomly swap the values 
of two variables (Section 5.3.1) based on the pre-defined mutation probability (e.g., 
1/(𝑠𝑖𝑧𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑡𝑒𝑠𝑡	𝑠𝑢𝑖𝑡𝑒)), and recall that each variable represents a test case in our 
context. After the values of the variables have been swapped, if the value of the variable is 
greater than 0.5, the test case represented by the variable is selected for implantation. For 
example, in Fig. D-4, if the mutation operator is applied to swap the values of the variables 
representing 𝑡`,% and 𝑡�,) in the offspring solution 1, the variable representing 𝑡`,% will 
have a new value 0.9 while the variable representing 𝑡�,) will have the value 0.3. This 
causes 𝑡`,% to be selected for implantation instead of 𝑡�,). 

Mutation Operator at the Test Case Level: With respect to the test case level (Fig. D-3), 
we defined three operations for the mutation operator: modification, addition, and deletion 
inspired from the work in [27, 28]. Each operation is randomly chosen with a probability 
of 1/3 for each test case selected for the implantation. Therefore, on average, at least one 
operation is applied to the selected test case for implantation. Moreover, for a test case 
𝑡+	with the number of test methods as 𝑜, i.e., 𝑡+ = 𝑡𝑚+,%, … , 𝑡𝑚+,p  in , each test method is 
mutated with a probability 1/𝑜 using the chosen operation (e.g., addition) for the mutation 
operator. Note that the operation is applied to the configuration or execution statement in a 
test case (Table D-2) because they determine the functionality of the SUT that is being 
tested. If 𝑡𝑚^ is the test method to be changed in the test case 𝑡+ with the number of 
configuration and execution statements 𝑒, each configuration or execution statement is 
mutated with a probability of 1/𝑒. Suppose 𝑠𝑡^ is the statement to be changed, we explain 
the three operations for the mutation operator below. 

Modification operation. The value of the configuration variable or parameter for the test 
API command in 𝑠𝑡^ is randomly changed to cover an uncovered 1) value of the 
configuration variable for configuration statement or 2) pairwise coverage of parameter 
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values of the test API commands for execution statement. After the statement 𝑠𝑡^ is 
modified, if there exists statement(s) dependent on 𝑠𝑡^ (Section 5.2), they are also modified 
using the statement dependencies obtained from the test case analyzer component (Section 
5.2). For example, in Table D-1 if the modification operation is applied to the execution 
statement at line 4, i.e., the test API command dial, the values of the parameters are 
randomly changed to increase the pairwise coverage. If the parameter callrate in dial 
(pointing to callrate_var) is required to be modified from 6000 to 64, the variable 
callrate_var is modified to 64. 

Addition operation. A copy of statement 𝑠𝑡^ (i.e.,	𝑠𝑡^í) is created with the random 
uncovered 1) value of the configuration variable for configuration statement or 2) pairwise 
coverage of parameter values of the test API commands for execution statement. The new 
statement 𝑠𝑡^í is then added to a new test method 𝑡𝑚^í, and 𝑡𝑚^í is filled with all the 
statements dependent on 𝑠𝑡^ in 𝑡𝑚^ (Section 5.2). If the values of the statement(s) depend 
upon 𝑠𝑡^¼, the dependent statement (s) are also modified after adding to the new test 
method. In the running example in Table D-1, if the configuration variable 
packetlossresilence at line 2 is selected for applying the addition operation, test case 
analyzer will add a new statement packetlossresilence with the uncovered value (i.e., on) 
in a new test method. Since the statements in lines 4, 5, and 6 are control dependent on line 
2 (Table D-1), they are also added in the new test method. Moreover, the statement in line 
4 is also added in the new test method since it is data dependent on line 3 (Table D-1). 

Deletion operation. A statement 𝑠𝑡^ is deleted from test method 𝑡𝑚^ if the values of the 
configuration variables or the parameters (for the pairwise coverage of parameter values of 
test API commands) tested by 𝑡𝑚^ have been already covered by other test cases in 
solution 𝑠. For example, if the deletion operation is applied in line 4 at Table D-1 (i.e., 
statement with dial) and the parameter values for dial (line 4 in Table D-1) are covered by 
another test case in solution 𝑠, then line 4 is removed from the test method in Table D-1. 
Moreover, lines 2, 3, 5, and 6 are dependent on line 4 in Table D-1, and therefore removed. 

6 Experiment Design 

In this section, we describe the experiment design (as shown in Table D-3), which includes 
the case studies (Section 6.1), research questions (Section 6.2), evaluation metrics (Section 
6.3), and statistical tests along with the experiment settings (Section 6.4). 

6.1 Case Studies 

To evaluate SBI, we chose one industrial case study from the video conferencing company 
referred as 𝐶𝑆%, and the open source case study of SafeHome [4] referred as 𝐶𝑆'. The 
industrial case study focuses on automated testing of large-scale VCSs developed by the 
video conferencing company. Each VCS has an average of three million lines of embedded 
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C code and requires a thorough testing before releasing them to the market. We chose a 
test suite containing 118 test cases for evaluation, where on average, each test case consists 
of 4 test methods and 30.8 statements (as defined in Section 3). 

Moreover, the SafeHome case study was constructed based on the open source 
implementation of a home security and surveillance system [29], which consists of in total 
13 Java classes. Each class has on average 263.4 lines of Java code and the detailed 
description of these classes can be consulted in [4]. Notice that the original implementation 
reported in [29] includes only 9 configuration variables (i.e., 6 Boolean variables and 3 
Integer variables) and lacks sufficient parameters to evaluate SBI (i.e., most of the test API 
commands have 0 or 1 parameter). Therefore, we extended the SafeHome case study by 
adding: 1) additional 19 configuration variables that include 8 String variables with on 
average 5 values to configure for each, 2 Integer variables, and 9 Boolean variables and 2) 
in total 37 methods in the source code (e.g., createUser). 3,424 lines of non-comment Java 
source code (calculated using sloccount [30]) were added in total for the case study.  

To obtain the original test suite for implantation for the SafeHome case study, we 
applied EvoSuite [31] to automatically generate in total 94 test cases (as the original test 
suite for implantation) including an average of 2.4 test methods and 19 statements for each 
test case. Note that our aim is to implant the original test suite for increasing the 
configuration coverage rather than comparing the performance between SBI and EvoSuite. 
To make the experiment reproducible, we have made the extended SafeHome case study 
publically available at [32]. 

Table D-3. An Overview of the Experiment Design* 

RQ Task Comparison Case Study Evaluation Metric 
Statistical 

Test 

1 

𝐽%.% 
SBINSGA-II, SBIRS, and SBIWGA 
with the original test suite 

𝐶𝑆%, 𝐶𝑆' 
𝑁𝐶𝑉𝑉, 𝑃𝐶𝑃𝑉 

One-sample 
Wilcoxon Test 

𝐽%.' 𝐸𝐸𝑇, 𝑁𝐼𝑇, 𝑁𝐶𝑆 
𝐽%.Z 

𝐶𝑆' 
𝑆𝐶, 𝐵𝐶 

𝐽%.Y 𝑀𝑆 

2 

𝐽'.% SBINSGA-II, SBIRS, and SBIWGA 
𝐶𝑆%, 𝐶𝑆' 

𝑁𝐶𝑉𝑉, 𝑃𝐶𝑃𝑉, 𝐸𝐸𝑇, 
𝑁𝐼𝑇, 𝑁𝐶𝑆 Vargha and 

Delaney, 
Mann-Whitney U 
Test 

𝐽'.' SBINSGA-II and SBIRS 𝐻𝑉 
𝐽'.Z 

SBINSGA-II, SBIRS, and SBIWGA 𝐶𝑆' 
𝑆𝐶, 𝐵𝐶 

𝐽'.Y 𝑀𝑆 
*𝑁𝐶𝑉𝑉: number of configuration variable values covered, 𝑃𝐶𝑃𝑉: pairwise coverage of parameter values of test API commands,	𝐸𝐸𝑇: 
estimated execution time, 𝑁𝐼𝑇: number of implanted test cases, 𝑁𝐶𝑆: number of changed statements, 𝑆𝐶 : statement coverage, 𝐵𝐶 : 
branch coverage, 𝑀𝑆: mutation score,	𝐻𝑉: hypervolume. 

6.2 Research Questions 

To evaluate SBI, we aim at addressing the following two research questions (RQs). 

RQ1. Sanity Check: This research question aims to compare the three SBI variants using 
NSGA-II (i.e., SBINSGA-II), RS (SBIRS), and weight-based GA (i.e., SBIWGA) against the 
original test suite. This RQ is divided into four sub RQs: 
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RQ1.1 Effectiveness. Can SBI significantly increase 1) the coverage of configuration 
variable values and 2) pairwise coverage of parameter values of test API commands 
(Section 4.3.2)? 

RQ1.2 (Acceptability). Can test suites implanted by the three variants of SBI maintain 
an acceptable cost in terms of estimated execution time, number of changed statements, 
and number of implanted test cases (defined in Section 4.3.1)?  

RQ1.3 (Coverage). Can SBI significantly increase the code coverage in terms of 
statement coverage (𝑆𝐶) and branch coverage (𝐵𝐶)? 

RQ1.4 (Mutation Analysis). Can the implanted test suites produced by SBI 
significantly improve the mutation score as compared with the original test suite? We 
performed mutation analysis to further assess the fault detection capability achieved by 
SBI. Since we do not have access to the source code of the industrial case study (i.e., 
𝐶𝑆%) due to confidential concerns, RQ1.3 and RQ1.4 are only addressed using 𝐶𝑆'.  
If SBI passes the sanity check, the next step is to check which variant of SBI performs 
the best, which forms RQ2. 

RQ2. Comparison across different variants of SBI: This RQ aims to find the best SBI 
variant. It is further divided into four sub RQs. 

RQ2.1 (Cost-Effectiveness). Which SBI variant has the best performance in terms of 
cost-effectiveness (Section 4.3)? 

RQ2.2 (Overall Quality of Solutions). Between SBINSGA-II and SBIRS, which SBI 
variant produces the best overall quality solution? Note that SBIWGA is not considered in 
this RQ since SBIWGA combines all the objectives into a single objective and only 
produces one solution at one run unlike SBINSGA-II and SBIRS, each of which produce 100 
solutions (i.e., defined as the population size) at each run. 

RQ2.3 (Coverage). Which SBI variant has the highest statement coverage (𝑆𝐶) and 
branch coverage (𝐵𝐶)? 

RQ2.4 (Mutation Analysis). Which SBI variant has the highest mutation score (𝑀𝑆)? 

6.3 Evaluation Metrics 
We used the evaluation metrics 𝑁𝐶𝑉𝑉 (equation 7) and 𝑃𝐶𝑃𝑉 (equation 8) to measure the 
effectiveness, and 𝐸𝐸𝑇,𝑁𝐼𝑇 and 𝑁𝐶𝑆 (equations 4 – 6) to measure the cost of the test 
suites using tasks 𝐽%.%, 𝐽%.', and 𝐽'.% (Table D-3). Tasks 𝐽%.Z and 𝐽'.Z were conducted to 
measure the code coverage with evaluation metrics 𝑆𝐶 and 𝐵𝐶. Specifically, 𝑆𝐶 measures 
the number of statements in the source code that are executed when executing a given test 
suite, while 𝐵𝐶 measures the number of possible branch(es) from each decision point that 
is executed [33]. RQ1.4 and RQ2.4 were addressed by tasks 𝐽%.Y and 𝐽'.Y using the mutation 
score (𝑀𝑆) [34] as the evaluation metric, which is the ratio of killed mutants out of the 
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total number of non-equivalent mutants [34], and it has been widely used to measure the 
fault detection capability of test suites [35-38].  

It is common to apply quality indicators such as hypervolume (𝐻𝑉) to compare the 
overall performance of multi-objective search algorithms [39, 40]. Therefore, we used 𝐻𝑉 
to compare the overall performance of SBINSGA-II and SBIRS based on the guidelines 
provided in [41] (task 𝐽'.'). Specifically, 𝐻𝑉 calculates the volume in the objective space 
covered by a non-dominated set of solutions (e.g., Pareto front), which is considered as a 
combined measurement of both convergence and diversity [42]. We however did not 
compare HV for the weight-based GA since it converts the multi-objective problem into a 
single objective and produces only one solution for each run. 

6.4 Statistical Tests and Experiment Settings 

6.4.1 Statistical Tests 

To choose an appropriate statistical test, we first performed the Shapiro-Wilk test [43, 44] 
to assess whether the data samples produced are normally distributed. The results of the 
Shapiro-Wilk test showed the obtained data samples were not normally distributed, and 
thus we chose the one-sample Wilcoxon test as recommended in [45] to statistically 
evaluate results of RQ1 (i.e., RQ1.1 -  RQ1.4), i.e., tasks 𝐽%.% - 𝐽%.Y (Table D-3). We used 
the one-sample Wilcoxon test (𝑝-value) since the coverage of the original test suite (e.g., 
𝑁𝐶𝑉𝑉, 𝑆𝐶) is fixed. Moreover, we compare mean values for the coverage of the original 
test suite and the test suites implanted by SBI to see in which direction the results are 
significant, i.e., which approach is better when the 𝑝-value is less than 0.05. 

Moreover, we used the Vargha and Delaney 𝐴%' statistics [46] and Mann-Whitney U 
test [47] to statistically evaluate the results of RQ2 (i.e., RQ2.1 – RQ2.4), i.e., tasks 𝐽'.% - 
𝐽'.Y (Table D-3), based on the guidelines in [45]. The Vargha and Delaney statistics is 
defined as a non-parametric effect size measure and evaluates the probability of yielding 
higher values for each evaluation metric for two algorithms 𝐴 and 𝐵. Additionally, the 
Mann-Whitney U test is used to indicate if observations (e.g., objective values) in one data 
sample are likely to be larger than observations in another sample, and 𝑝-value was used to 
check if the result is significant. For all the statistical tests, we considered a 𝑝-value below 
0.05 as statistically significant, a commonly used threshold in SBSE studies [45]. For two 
algorithms A and B, A has significantly better performance than B if 𝐴%' is higher than 0.5 
and the p-value is less than 0.05.  

6.4.2 Experiment Settings 

SBI is implemented using a Java framework jMetal [48], which has been widely used for 
various multi-objective optimization problems [49-51]. We use the same population size 
(i.e., 100) in all the algorithms (i.e., NSGA-II, RS, and WGA), which is the standard 
setting in jMetal. Moreover, we tuned crossover rate and mutation rate at the test suite 
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level using the iRace optimization package [52], which has been widely used in literature 
for automatic algorithm configuration [53-56]. Table D-4 presents the parameter settings 
(crossover rate and mutation rate) for NSGA-II and WGA for CS1 and CS2. Note that RS 
does not involve crossover and mutation. Additionally, we set the maximum number of 
fitness evaluations (i.e., termination criterion) as 25,000 for all the algorithms across the 
two case studies. 

Table D-4. Parameter Settings for NSGA-II and Weight-based GA 
Algorithm Case Study Crossover Rate Mutation Rate 

NSGA-II 
CS1 0.72 0.31 
CS2 0.78 0.24 

WGA 
CS1 0.74 0.25 
CS2 0.80 0.17 

SBI with NSGA-II (i.e., SBINSGA-II) and RS (i.e., SBIRS) produce 100 solutions (equal to 
population size) for each run in each case study, while SBI with weight-based GA (i.e., 
SBIWGA) produce only one solution for each run as discussed in Section 2.2. In practice, the 
decision maker(s) selects the solution from the final Pareto front based on their preference 
of the objective. For instance, if the decision maker(s) values pairwise coverage of 
parameter values of test API commands (𝑃𝐶𝑃𝑉) higher than the other objectives, he/she 
selects solutions with a higher value from the final Pareto front. Since it is not fixed which 
solution is actually picked by the decision maker(s), we have compared the quality of all 
the generated solutions for all the algorithms with SBI. 

Regarding SC and BC (RQ1.3 and RQ2.3), we used the open source tool Eclemma [57] 
to measure the SC and BC achieved by the implanted test suites and the original one. For 
mutation analysis (RQ1.4 and RQ2.4), we used the Java-based mutation tool PIT [58], 
which has been extensively used in mutation testing [59, 60]. All the seven basic mutation 
operators in PIT (i.e., conditionals boundary, increments, invert negatives, math, negate 
conditionals, return values, and void method calls) were applied and 1594 non-equivalent 
mutants were generated for 𝐶𝑆'. In addition, we ran SBI 10 times to account for the 
random variation for each case study. 

7 Results, Analysis, and Overall Discussion 

Results and analysis are presented in Sections 7.1 and 7.2, followed by the overall 
discussion (Section 7.3). 

7.1 RQ1. Sanity Check 

7.1.1 RQ1. Effectiveness 

Recall that RQ1.1 aims to assess the effectiveness of the implanted test suites produced by 
the three SBI variants (SBINSGA-II, SBIRS, and SBIWGA) in terms of the two effectiveness 
measures: the number of configuration variable values covered	(𝑁𝐶𝑉𝑉) and the pairwise 
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coverage of parameter values of test API commands (𝑃𝐶𝑃𝑉), as described in Section 
4.3.2. Table D-5 summarizes the values for the different evaluation metrics achieved by the 
SBI variants for the implanted test suites (i.e., solutions) and the original test suites of the 
two case studies (i.e., CS1 and CS2). Recall from Section 6.4.2 that SBI is executed 10 
times, and each run produces 100 optimal solutions for SBINSGA-II and SBIRS, and one 
optimal solution for SBIWGA.  

As shown in Table D-5, test suites generated by all the SBI variants have better values 
for 𝑁𝐶𝑉𝑉 and 𝑃𝐶𝑃𝑉. Specifically, the mean differences between the values for 𝑁𝐶𝑉𝑉 and 
𝑃𝐶𝑃𝑉 from the original test suites and the implanted test suite produced by 1) SBINSGA-II 
are 15.3 and 100.8 for CS1, and 11.4 and 158.3 for CS2, 2) SBIRS are 6.8 and 74.3 for CS1, 
and 5.0 and 29.6 for CS2, and 3) SBIWGA are 6.4 and 65.5 for CS1, and 5.3 and 13.8 for CS2. 
Moreover, all the mean differences are statistically significant since all the 𝑝-values are 
less than 0.05 (from the one-sample Wilcoxon test), which shows that all the SBI variants 
managed to perform significantly better than the original test suite regarding 𝑁𝐶𝑉𝑉 and 
𝑃𝐶𝑃𝑉. 

Table D-5. Results of Evaluation Metrics for the Original Test Suites and Implanted Test Suites* 

CS Test Suite NCVV PCPV EET NIT NCS SC BC 
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

CS1 

Original 86.0 N/A 212.0 N/A 8222.0 m N/A 
SBINSGA-II 101.3 10.3 312.8 72.9 8368.0m 657.2 39.9 16.1 733.7 942.9 

N/A SBIRS 92.8 2.6 286.3 18.8 8305.0m 77.5 19.7 4.5 88.5 51.6 
SBIWGA 92.4 1.6 277.5 15.1 8340.0m 53.5 13.8 1.3 54.8 37.9 

CS2 

Original 55.0 N/A 238.0 N/A 3.5s N/A 66.7 N/A 49.9 N/A 
SBINSGA-II 66.4 5.9 396.3 123.2 3.8s 0.3 33.3 15.7 263.8 295.9 71.7 3.6 57.8 5.7 

SBIRS 60.0 1.4 267.6 14.6 3.5s 0.0 15.3 4.2 43.8 13.5 67.5 0.6 51.3 1.0 
SBIWGA 60.3 0.7 251.8 6.0 3.6s 0.0 11.3 2.7 22.7 4.3 67.2 0.4 50.9 0.8 

*CS: case study, NCVV: number of configuration variable values covered, PCPV: pairwise coverage of parameter values of test API 
commands, EET: estimated execution time, NIT: number of implanted test cases, NCS: number of changed statements, SC: statement 
coverage, BC: branch coverage, SD: standard deviation, m: minutes, s: seconds. 

Since the results for CS1 and CS2 are consistent and all the implanted test suites have 
significantly higher 𝑁𝐶𝑉𝑉 and 𝑃𝐶𝑃𝑉	as compared to the original test suites, we can 
answer RQ1.1 as: the implanted test suites achieved significantly higher effectiveness than 
the original one, which demonstrates that SBI is effective. Moreover, the test suites 
implanted by the three SBI variants managed to achieve on average 11.0% higher 𝑁𝐶𝑉𝑉 
and 37.8% higher 𝑃𝐶𝑃𝑉 for CS1, and 13.1% and 28.2% higher 𝑃𝐶𝑃𝑉 for CS2. 

7.1.2 RQ1.2. Acceptability 

In terms of 𝐸𝐸𝑇, we can observe from Table D-5, that on average the implanted test suites 
produced by SBINSGA-II, SBIRS, and SBIWGA require 1.4% more 𝐸𝐸𝑇 for CS1 and 3.5% more 
EET for CS2. Moreover, in terms of 𝑁𝐼𝑇, the implanted test suites produced by the SBI 
variants modified 20.7% and 21.3% test cases for CS1 and CS2. Finally, in terms of 𝑁𝐶𝑆, 
the implanted test suites produced by the SBI variants modified on average 8.0%and 6.2% 
statements for CS1 and CS2. Additionally, all the mean differences for 𝐸𝐸𝑇, 𝑁𝐼𝑇, and 𝑁𝐶𝑆 
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are statistically significant since the 𝑝-values are less than 0.05 (obtained from the one-
sample Wilcoxon test). Therefore, we conclude that SBI can maintain acceptable cost 
without largely increasing the test case execution time indicating that SBI is cost-effective. 

7.1.3 RQ1.3. Code Coverage 

This RQ aims to evaluate whether SBI can increase the overall code coverage in terms of 
𝑆𝐶 and 𝐵𝐶 using the SafeHome case study (i.e., 𝐶𝑆'). From Table D-5, we can observe 
that the mean differences between the values produced by the original test suite and the 
implanted one by 1) SBINSGA-II are 5.0% and 7.9% for 𝑆𝐶 and 𝐵𝐶, 2) SBIRS are 0.8% and 
1.4% for 𝑆𝐶 and 𝐵𝐶, and 3) SBIWGA are 0.5% and 1.0% for 𝑆𝐶 and 𝐵𝐶. Additionally, all 
the mean differences are statistically significant since the 𝑝-values are less than 0.001 
(obtained from the one-sample Wilcoxon test). Thus, we summarize that SBI can 
significantly increase the code coverage of the original test suite. 

7.1.4 RQ1.4. Mutation Score 

This RQ aims to check if the test suites implanted by SBI have higher mutation scores 
(𝑀𝑆) than the original test suite. Each execution of SBINSGA-II and SBIRS produces 100 
optimal solutions (Section 6.4.2), and it is quite expensive to perform mutation analysis for 
all the 1000 solutions (produced by executing SBI 10 times) since it takes more than four 
minutes to perform mutation analysis for one solution. Thus, we chose only two solutions 
produced in each run of SBINSGA-II and SBIRS to perform mutation analysis. Based on the 
existing work [61, 62], we chose the solutions by following these two ways: 1) random, 
referred as random solution and 2) highest average value of all the defined cost-
effectiveness measures (Section 4.3) referred as selected solution. Note that for SBIWGA we 
perform mutation analysis for all the generated solutions since each run of SBIWGA 
produces only one solution.  

Table D-6. Mutation Scores for the Different Approaches* 
Solution MS Mean difference compared to original p-value 
Original 33.90 %                          N/A 

SBINSGA-II-RA 36.51 % 2.60 % 0.002 
SBINSGA-II-SA 37.52 % 3.70 % 0.002 

SBIRS-RA 35.14 % 0.93 % 0.014 
SBIRS-SA 35.35 % 1.60 % 0.002 
SBIWGA 34.67 % 0.77 % 0.006 

Table D-6 summarizes the results of MS for the original test suite, the average of 10 
random solutions and 10 selected solutions produced by SBINSGA-II and SBIRS, and 10 
solutions produced by SBIWGA. Moreover, Table D-6 shows the results of the mean 
differences and the one-sample Wilcoxon test between the 𝑀𝑆 produced by the original 
test suite and 10 random solutions and 10 selected solutions. From Table D-6, we can 
conclude for RQ1.4 that the solutions implanted by SBI have a significantly higher 𝑀𝑆 
since the 𝑝-values for the random solutions and selected solutions are less than 0.05 and 
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the mean difference is positive (e.g., 3.7% indicating that the selected solutions from 
SBINSGA-II improved on average 3.7% 𝑀𝑆 as compared to the original one). Thus, we can 
answer RQ1.4 as SBI can detect more faults (as indicated by a higher 𝑀𝑆) 

7.2 RQ2. Comparison of SBINSGA-II with the other SBI variants 

7.2.1 RQ2.1. Cost-Effectiveness 

In terms of effectiveness, it can be observed from Table D-7 that SBINSGA-II produced the 
highest mean values for 𝑁𝐶𝑉𝑉 and 𝑃𝐶𝑃𝑉. Specifically, test suites implanted by SBINSGA-II 
achieved a higher mean value for 𝑁𝐶𝑉𝑉 than the test suites implanted by 1) SBIRS for 
9.9% and 11.8% for CS1 and CS2, and 2) SBIWGA for 10.3% and 11.1% for CS1 and CS2. 
Moreover, test suites implanted by SBINSGA-II have a higher mean value for 𝑃𝐶𝑃𝑉 than the 
test suites implanted by 1) SBIRS for 12.5% and 54.1% for CS1 and CS2, and 2) SBIWGA for 
16.7% and 60.7% for CS1 and CS2. From Table D-7, one can observe that SBINSGA-II 
performed significantly better than 1) SBIRS for 𝑁𝐶𝑉𝑉 and 𝑃𝐶𝑃𝑉 for both CS1 and CS2, 
and 2) SBIWGA for 𝑃𝐶𝑃𝑉 for CS1 and both 𝑁𝐶𝑉𝑉 and 𝑃𝐶𝑃𝑉 for CS2. Note that there is no 
significant difference in the performance for 𝑁𝐶𝑉𝑉 for CS1 between SBINSGA-II and SBIWGA 
(since p-value >0.05). 

In terms of cost, test suites implanted by SBINSGA-II had higher mean values for 𝐸𝐸𝑇, 
𝑁𝐶𝑆, and 𝑁𝐼𝑇. More specifically, (i) in terms of 𝐸𝐸𝑇, test suites implanted by SBINSGA-II 
required 1) 0.8% and 6.7% more 𝐸𝐸𝑇 than SBIRS for CS1 and CS2, and 2) 0.4% and 6.4% 
more 𝐸𝐸𝑇 than SBIWGA for CS1 and CS2; ii) in terms of 𝑁𝐼𝑇, test suites implanted by 
SBINSGA-II had 1) 17.1% and 19.2% more 𝑁𝐼𝑇 than SBIRS for CS1 and CS2, and 2) 22.1% 
and 23.4% more 𝑁𝐼𝑇 than SBIWGA for CS1 and CS2; and iii) in terms of 𝑁𝐶𝑆, test suites 
implanted by SBINSGA-II had 1) 17.8% and 12.3% more 𝑁𝐶𝑆 than SBIRS for CS1 and CS2, 
and 2) 18.7% and 13.5% more 𝑁𝐶𝑆 than SBIWGA for CS1 and CS2.  Additionally, from 
Table D-7, one can observe that SBINSGA-II performed significantly worse than SBIRS and 
SBIWGA for 1) 𝑁𝐶𝑆 and 𝑁𝐼𝑇 for CS1, and 2) 𝑁𝐶𝑆, 𝑁𝐼𝑇, and 𝐸𝐸𝑇 for CS2. There was no 
significant difference in the performance of SBINSGA-II and SBIRS, and SBINSGA-II and SBIWGA 
for 𝐸𝐸𝑇 for CS1 (since p-value >0.05) as shown in Table D-7. 

Table D-7. Comparison of the Cost-Effectiveness Measures using the  
Vargha and Delaney Statistics and U Test* 

Evaluation Metric 
SBINSGA-II vs SBIRS SBINSGA-II vs SBIWGA 

CS1 CS2 CS1 CS2 
𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 

NCVV 0.56 <0.05 0.87 <0.05 0.62 0.21 0.97 <0.05 
PCPV 0.77 <0.05 0.83 <0.05 0.79 <0.05 0.80 <0.05 
NCS 0.24 <0.05 0.24 <0.05 0.15 <0.05 0.10 <0.05 
NIT 0.13 <0.05 0.19 <0.05 0.02 <0.05 0.10 <0.05 
EET 0.50 0.97 0.15 <0.05 0.54 0.69 0.24 <0.05 

*NCVV: number of configuration variable values covered, PCPV: pairwise coverage of parameter values of test API commands, EET: 
estimated execution time, NIT: number of implanted test cases, NCS: number of changed statements; the bold numbers in the table 
imply that the results are statistically significant. 
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Multi-objective search algorithm (e.g., NSGA-II) produce diverse solutions in the 
search space. Therefore, the implanted test suites have diverse values for the different 
objectives (as indicated by the high standard deviation in Table D-5). In order to check if 
SBINSGA-II still manages to obtain better solutions (i.e., implanted test suites) than SBIRS and 
SBIWGA for solutions within the same space, we compare the implanted test suites with 
similar EET (Table D-8). From Table D-8, one can observe that for similar 𝐸𝐸𝑇, test suites 
implanted by SBINSGA-II still managed to achieve 1) 2.5% and 1.4% higher 𝑁𝐶𝑉𝑉 than 
SBIRS for CS1 and CS2, and 2.9% and 0.4% higher NCVV as compared to SBIWGA, and 2) 
4.3% and 8.0% higher 𝑃𝐶𝑃𝑉 for CS1 and CS2 as compared to SBIRS, and 11.6% and 11.8% 
higher 𝑃𝐶𝑃𝑉 as compared to SBIWGA. Additionally, (i) in terms of 𝑁𝐼𝑇, the test suites 
implanted by SBINSGA-II had 1) 6.6% and 8.0% more NIT than SBIRS for CS1 and CS2, and 2) 
11.6% and 11.8% more 𝑁𝐼𝑇 than SBIWGA for CS1 and CS2; and (ii) in terms of 𝑁𝐶𝑆, the test 
suites implanted by SBINSGA-II had 1) 3.9% and 2.4% more 𝑁𝐶𝑆 than SBIRS for CS1 and CS2, 
and 2) 4.6% and 2.9% more 𝑁𝐶𝑆 than SBIWGA for CS1 and CS2. 

To summarize, SBINSGA-II manages to produce many diverse solutions with much higher 
effectiveness than SBIRS and SBIWGA. Moreover, for similar estimated execution time, the 
test suites implanted by SBINSGA-II have higher effectiveness. Therefore, we conclude that 
SBI is more cost-effective than SBIRS and SBIWGA. 

Table D-8. Results of Evaluation Metrics for Test Suites with similar Estimated Execution Time* 
Case Study Test Suite NCVV PCPV EET NIT NCS SC BC 

CS1 
SBINSGA-II 94.9 295.5 8305.0m 27.5 228.8 

N/A SBIRS 92.8 286.3 8305.0m 19.7 88.5 
SBIWGA 92.4 277.0 8313.1m 13.9 62.3 

CS2 
SBINSGA-II 60.7 282.6 3.5s 22.8 75.2 69.2 54.7 

SBIRS 60.0 267.6 3.5s 15.3 33.0 67.5 51.3 
SBIWGA 60.5 252.5 3.5s 11.8 22.7 67.3 50.8 

*CS: case study, NCVV: number of configuration variable values covered, PCPV: pairwise coverage of parameter values of test API 
commands, EET: estimated execution time, NIT: number of implanted test cases, NCS: number of changed statements, SC: statement 
coverage, BC: branch coverage, m: minutes, s: seconds. 

7.2.2 RQ2.2. Overall Quality of the Solutions 

Recall that RQ2.2 is for check if SBINSGA-II can manage to produce better overall quality 
solutions than SBIRS, i.e., test suites with overall better values for the five objectives 
defined in Section 4.3. Using the Vargha and Delaney Statistics and the Mann-Whitney U 
test to analyze the results based on 𝐻𝑉, we noticed that SBINSGA-II performed significantly 
better than SBIRS for both of the case studies, i.e., 𝐴%' for SBINSGA-II is greater than 0.8 and 
the p-value is less than 0.05. 

7.2.3 RQ2.3. Code Coverage 

One can observe from Table D-5 that on average the test suites implanted by SBINSGA-II 
have the highest code coverage. Specifically, the test suites implanted by SBINSGA-II have 1) 
4.2% and 6.5% higher 𝑆𝐶 and	𝐵𝐶 than SBIRS, and 2) 4.5% and 6.9% higher SC and BC 
than SBIWGA. Using the Vargha and Delaney Statistics and Mann-Whitney U test to analyze 
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the results, we observed that the test suites implanted by SBINSGA-II had significantly higher 
𝑆𝐶 and 𝐵𝐶 than both SBIRS and SBIWGA since 𝐴%' for both 𝑆𝐶 and 𝐵𝐶 are greater than 0.8 
and the p-values are less than 0.001. Additionally, on comparing the test suites with similar 
estimated execution time (Table D-8), the implanted test suites using SBINSGA-II achieved 1) 
1.6% and 1.9% higher 𝑆𝐶 and 𝐵𝐶 than SBIRS, and 2) 3.5% and 4.0% higher 𝑆𝐶 and 𝐵𝐶 
than SBIWGA. Therefore, we can conclude that SBINSGA-II can achieve the highest code 
coverage. 

7.2.4 RQ2.4. Mutation Score 

From Table D-6, we can observe that the test suites implanted by SBINSGA-II have the 
highest 𝑀𝑆. Specifically, first, the average 𝑀𝑆 of the random test suites implanted by 
SBINSGA-II have 1.37%, 1.16%, and 1.84% higher MS than the random test suites implanted 
by SBIRS, selected test suites (based on equal importance to all the objectives) implanted by 
SBIRS, and SBIWGA. Second, the average 𝑀𝑆 of the selected test suites (based on equal 
importance to all the objectives) implanted by SBINSGA-II have 2.38%, 2.17%, and 2.85% 
higher MS than the random test suites implanted by SBIRS, selected test suites implanted by 
SBIRS, and SBIWGA. Moreover, while using the Vargha and Delaney Statistics and Mann-
Whitney U test to analyze the results, we observed that the test suites implanted by 
SBINSGA-II have significantly higher 𝑀𝑆 than both SBIRS and SBIWGA since 𝐴%' is greater 
than 0.8 and the p-value is less than 0.001. Thus, we can answer RQ2.4 as SBI can detect 
the highest fault (based on 𝑀𝑆). 

Notice that running time is an important perspective when evaluating a search-based 
approach [6, 63], and thus we report the running time of SBI.  SBINSGA-II, SBIRS, and 
SBIWGA took an average of 48.1 minutes, 46.5 minutes, and 39.7 minutes for CS1, and 64.6 
minutes, 60.9 minutes, and 51.8 minutes for CS2. Such a running time of the algorithm has 
no practical impact on the use of our approach since test case implantation is a one-time 
effort for a given test suite. 

7.3 Overall Discussion 

For RQ1.1 and RQ1.2, we observed that SBI managed to significantly increase the 
effectiveness of the original test suite (measured by	𝑁𝐶𝑉𝑉 and 𝑃𝐶𝑃𝑉) without 
significantly increasing the cost (measured by 𝐸𝐸𝑇, 𝑁𝐼𝑇, and 𝑁𝐶𝑆). This is because SBI 
modifies the original test cases by changing (i.e., modifying/adding/removing) statements 
in test cases to maximize the effectiveness measures and minimize the cost measures as 
defined in Section 4.3. 
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Fig. D-5. Average SC and BC for the Original Test Suite and Test Suites Implanted with SBI variants* 

 
Fig. D-6.  Average MS for the Original Solution compared with solutions from the three SBI variants* 

*U: user, DWS: DeviceWindowSensor, SHC: SafeHomeConsole, ST: SensorTest, MD: MainDemo, DC: DeviceCamera, DMD: DeviceMotionDetector,   
DCP: DeviceControlPanelAbstract, CT: CameraTest, CV: CameraView, DST: DeviceSensorTester, UI: UserInterface, CP: ControlPanel. 

Regarding RQ1.3, the results showed that SBI did not manage to improve SC and BC by 
a large percentage for CS2. This is because SBI cannot further increase the code coverage if 
the original test suite has already covered all the parameters of a method in the source code 
or some methods are not targeted at all by the original test suite, which can be considered 
as the limitation of SBI and will be further investigated in the future. For instance, in the 
class SensorTest (available in [32]), all the parameters in method armMotionDetector have 
already been tested by the original test suite while method actionPerformed in the class 
was not targeted by the original test suite. Thus, SBI was not able to increase the code 
coverage for class SensorTest. Furthermore, Fig. D-5 presents 𝑆𝐶 and 𝐵𝐶 for the original 
test suite and the implanted test suites by SBI for 13 classes and the overall coverage (i.e., 
Total) that is the ratio of the total number of statements/branches covered and the total 
number of statements/branches present in the source code in CS2. From Fig. D-5, we can 
observe that SBI managed to improve SC and BC for 6 of the 13 classes, and there was no 
change for the remaining 7 classes (e.g., ControlPanel) since all the parameters in the 
methods have already been tested or the original test suite does not target the methods. 

Regarding RQ1.4, SBI increased MS for 5 classes (out of 13 classes) in 𝐶𝑆' as shown in 
Fig. D-6. Note that MS did not increase in all the classes where SC and BC increased. For 
instance, MS increased in class User where SC and BC also grew. Class DeviceCamera 
[32] had an increasing SC and BC, but MS remained similar as compared with the original 
test suite. Such observation is consistent with the findings of the state-of-the-art [35] 
showing that the code coverage (e.g., SC) is not strongly correlated with test suite 
effectiveness (e.g., MS). 

Regarding RQ2, SBINSGA-II performed the best among the three SBI variants. This 
observation suggested that our test case implantation problem is not trivial to solve and 
requires an efficient optimization approach. SBINSGA-II uses the crossover and mutation 
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operators to continuously evolve the original test suite as compared to SBIRS, which does 
not use these two operators and only modifies the current test suite. Moreover, SBINSGA-II 

produces a set of non-dominated solutions for preserving the optimal solutions with 
equivalent quality as compared to SBIWGA, which might lose optimal solutions holding the 
same quality since it only stores one solution. Additionally, a weight-based genetic 
algorithm converts a multi-objective optimization problem into a single-objective problem 
by assigning weights to each objective, where weights play a primary role in the 
performance of the weight-based search algorithms. However, in practice, it is very 
difficult to set particular weights for different objectives. 

Finally, for the real industrial case study, SBI needs to be run only once in practice 
(using 48.1 minutes for SBINSGA-II) to obtain an implanted test suite (including 118 test 
cases). This is equivalent to modifying one test case using on average 0.61 minutes 
(48.1/118) or 24.5 seconds. Clearly, modifying a test case manually within 24.5 seconds is 
practically impossible. In addition, SBI produces implanted test cases that satisfy various 
cost and effectiveness objectives (Section 4.3). Thus, we can conclude that SBI is 
beneficial in practice, at least for our industrial case study. 

8 Threats to Validity 

This section presents some of the potential threats to the validity of the two case studies 
investigated in this paper. 

Threats to internal validity consider the internal factors (e.g., algorithm parameters) that 
could influence the obtained results [64]. In our context, we used the iRace optimization 
package [52] to tune the algorithm parameters, which has been widely used in the existing 
literature for automatic algorithm configuration [53-56]. Regarding the mutation rate 
applied on the test case level, we chose a rate that has earlier been investigated in the 
literature [27]. Another threat to internal validity involves instrumentation effects, i.e., the 
quality of the coverage information and mutation score measured [6]. To mitigate this 
threat, we used open source tools Eclemma and PIT that have been widely used in the 
literature [59, 60, 65, 66]. Regarding the internal validity threat concerning the 
implementation of the algorithms, we used all the algorithms implemented from the same 
tool (i.e., jMetal). Another internal validity threat arises regarding the suitability of the 
proposed five fitness functions. To address this issue, we will conduct additional 
experiments in the future to study the impact of the different fitness functions for 
configuration coverage. 

Threats to external validity are related to the factors that affect the generalization of the 
results [64]. To mitigate this threat, we chose two different case studies (i.e., industrial case 
study and open source case study) for evaluating SBI. We plan to conduct more case 
studies in the future to generalize the results. It is also worth mentioning that such threats 
to external validity are common in empirical studies [67, 68]. Another external validity 
threat is due to the selection of search algorithms for SBI. To reduce this threat, we 
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selected the most widely used search algorithm (NSGA-II) that has been widely applied in 
different contexts [51, 67, 68], random search, and weight-based genetic algorithm. 

Threats to construct validity exist when the comparison measurements are not 
comparable for all the algorithms [69]. To reduce construct validity threats, we used the 
same stopping criteria (i.e., 25,000 fitness evaluations) to find optimal solutions for all the 
algorithms across both of the case studies. Another threat to construct validity arises when 
the measurement metrics do not sufficiently cover the concepts they are supposed to 
measure [6]. To mitigate this threat, we compare the implanted test suites by SBI and the 
original test suite based on evaluation metrics that have been widely adopted in the 
literature: statement coverage, branch coverage, mutation score, and running time.  

Threats to conclusion validity are related to the factors that influence the conclusion 
drawn from the results of the experiments [70]. The conclusion validity threat when using 
randomized algorithms is related to random variation in the produced results. To mitigate 
this threat, we repeated each experiment 10 times for each algorithm in SBI to reduce the 
possibility that the results were obtained by chance. Moreover, we carefully applied 
statistical tests by following the guidelines for reporting results for randomized algorithms 
[45]. 

9 Related Work 

There are a number of existing works related to code transplantation, test suite 
augmentation, test generation, and testing of highly configurable software systems that 
have certain similarities with our work (i.e., test case implantation). We discuss each of 
them in detail as below. 

9.1 Code Transplantation 

In recent years, there has been an increasing attention on code transplantation within/across 
software systems [71-74]. For instance, Weimer et al. [71] used genetic programming (GP) 
to evolve defective programs to fix defects while maintaining specified functionalities for 
automatic program repair. Petke et al. [73] used GP to evolve a program by transplanting 
code from other programs for improving the system’s performance. Barr et al. [72] 
automatically transplanted functionalities of programs across different software systems 
using GP and program slicing.  

As compared with the existing work for code transplantation (e.g., [71-73]), SBI has at 
least two key differences: 1) The goal is different, i.e., we aim at automatically implanting 
existing test cases to test untested configurations rather than transplanting software code; 
2) Five objectives (e.g., maximizing the number of configuration variable values covered) 
are defined to guide the search for selecting and implanting test cases. 
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9.2 Test Suite Augmentation 

There is a number of studies focusing on test suite augmentation that refers to identifying 
code elements affected by software changes as it evolves (e.g., new functionalities are 
added), and generating test cases to test those elements [75-79]. For instance, dependence 
analysis and partial symbolic execution were used in [77] to identify the changed test 
requirements when the program is evolved, however, they do not generate test cases. In 
[75] a directed test suite augmentation technique was proposed for 1) identifying the code 
affected by changes in the program and 2) generating new test cases for testing the affected 
code using a concolic test case generation approach [80].  

As compared with the above-mentioned literature, SBI aims to cost-effectively 
increase the configuration coverage of the original test suite rather than generating new test 
cases for testing the modified code. Furthermore, we defined three operations (i.e., 
addition, modification and deletion) to automatically implant the test cases, which is not 
the case in the existing work.  

9.3 Test Generation 

Different techniques have been used for test generation such as random testing [81], 
symbolic execution [82, 83] and search techniques [27, 31, 84-86] (that is the most 
relevant to this work). For instance, Miller et al. [85] used program dependence graphs and 
a genetic algorithm to generate test data for maximizing condition-decision coverage. Ali 
et al. [84] designed a search-based Object Constraint Language (OCL) constraint solver by 
defining branch distance functions to support test data generation for model-based testing. 
Fraser and Arcuri [27, 31] designed and implemented a tool (i.e., EvoSuite) to generate test 
cases with an aim to maximize different coverage criteria (e.g., line, branch) and mutation 
testing using search. As compared with the state-of-the-art for test generation, SBI focuses 
on automated implanting an existing test suite to test untested configurations instead of 
generating test cases from scratch.  

9.4 Testing of Highly Configurable Software Systems 

There is a large body of research with respect to the testing of highly configurable software 
systems with many configurations [87-93]. Existing works have proposed many sampling 
techniques to select a subset of representative configurations for testing [90-93]. For 
instance, Swanson [90] modeled a highly configurable system using a feature model 
followed by applying random sampling to repeatedly generate a random configuration 
from the feature model for testing. Qu et al. [91] and Yilmaz et al. [92] used covering array 
sampling method to generate at least one t-combination configuration (to be tested) for 
representing all valid t-combination configurations in the configuration space. Cohen et al. 
[94] combined pairwise algorithms (e.g., metaheuristic search algorithm) with Boolean 
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satisfiability (SAT) solvers to handle constraints while generating configurations for 
interaction testing of highly configurable systems.  

As compared with the existing studies of testing highly configurable software systems, 
the focus of our work is totally different, i.e., we aim at implanting an original test suite to 
test untested configurations, and thus increase the configuration coverage of the existing 
test suite. To achieve this goal, we proposed a search-based approach (i.e., SBI) for 
automated test case implantation (Section 5). 

9.5 Multi-Objective Regression Test Optimization 

Multi-objective regression test optimization aims to select a subset of test cases that gives 
the maximum cost-value benefit and ordering test cases such that early attainment of cost-
value tradeoff is achieved [95]. There exists a large body of research for multi-objective 
regression test optimization, e.g., [6, 96-98]. While those work focus on 
selecting/minimizing/prioritizing test cases based on particular objectives (e.g., 
maximizing code coverage) without changing the original test suite, SBI implants the 
original test suite to test untested configurations by modifying the test cases in a cost-
effective manner. After the original test suite has been implanted using SBI, the modified 
test cases can be prioritized/selected/minimized based on defined objectives for regression 
testing as discussed in some of our prior work [5, 62, 99, 100]. 

10 Conclusion 

This paper introduced a novel search-based test case implantation approach (SBI) 
including two key components (i.e., test case analyzer and test case implanter) with the 
aim to automatically analyze and implant the existing test cases to test the untested 
configurations. Three variants of SBI (with NSGA-II, weight-based GA, and RS) were 
evaluated using one industrial and one open source case studies. The results showed that 
the test suites implanted by all the three SBI variants performed significantly better than 
the original test suite for both the case studies. Additionally, SBI with NSGA-II performed 
the best of the three. Specifically, SBI significantly outperformed the original suite for both 
the case studies by achieving on average 19.3% higher number of configuration variables 
values and 57.0% higher pairwise coverage of parameter values of test API commands. 
Moreover, for the open source case study, the implanted test suites managed to improve 
statement coverage, branch coverage, and mutation score with on average 5.0%, 7.9%, and 
3.2%, respectively. 

As a future work, we plan to conduct additional experiments to study the impact of the 
proposed fitness functions in configuration coverage, statement coverage, branch coverage, 
and mutation score. Moreover, we plan to apply more case studies to further strengthen the 
applicability of SBI. 
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Abstract 
Test case prioritization (TP) is widely used in regression testing for optimal 
reordering of test cases to achieve specific criteria (e.g., higher fault detection 
capability) as early as possible. In our earlier work, we proposed an approach for 
black-box dynamic TP using rule mining and multi-objective search (named as 
REMAP) by defining two objectives (fault detection capability and test case reliance 
score) and considering test case execution results at runtime. In this paper, we 
conduct an extensive empirical evaluation of REMAP by employing three different 
rule mining algorithms and three different multi-objective search algorithms, and we 
also evaluate REMAP with one additional objective (estimated execution time) for a 
total of 18 different configurations (i.e., 3 rule mining algorithms× 3 search 
algorithms × 2 different sets of objectives) of REMAP. Specifically, we empirically 
evaluated the 18 variants of REMAP with 1) two variants of random search while 
using two objectives and three objectives, 2) three variants of greedy algorithm based 
on one objective, two objectives, and three objectives, 3) 18 variants of static search-
based prioritization approaches, and 4) six variants of rule-based prioritization 
approaches using two industrial and three open source case studies. Results showed 
that the two best variants of REMAP with two objectives and three objectives 
significantly outperformed the best variants of competing approaches by 84.4% and 
88.9%, and managed to achieve on average 14.2% and 18.8% higher Average 
Percentage of Faults Detected per Cost (APFDc) scores. 
 

Keywords: Multi-objective Optimization; Rule Mining; Dynamic Test case Prioritization; 
Search; Black-box Regression Testing. 

1 Introduction 

Modern software is developed at a rapid pace to add new features or fix detected bugs 
continuously. This can lead to new faults into the previously tested software and to ensure 
that no new bugs are introduced, regression testing is frequently applied in the industry [1-
3]. Specifically, in regression testing previously developed test cases are used to validate 
software changes. However, regression testing is an expensive maintenance process that 
can consume up to 80% of the overall testing budgets [4, 5], and it might not be possible to 
execute all the test cases when the testing resources (e.g., execution time) are limited. 

Test case prioritization (TP) is one of the most widely used approaches to improve 
regression testing to schedule test cases for achieving certain criteria (e.g., code coverage) 
as quickly as possible [6-9]. Most of the existing techniques for TP aim to find the faults as 
soon as possible, however, an ability of a test case to detect a fault is determined only after 
executing it. The execution results of the executed test cases at runtime are not usually 
used to prioritize the test cases dynamically by the existing TP techniques [7, 10-14], i.e., 
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they produce a list of static prioritized test cases. Based on our collaboration with Cisco 
Systems [15, 16] focusing on cost-effectively testing video conferencing systems (VCSs), 
we noticed that there might exist underlying relations among the executions of test cases, 
which test engineers are not aware of when developing these test cases. For example, when 
the test case (𝑇%) that tests the amount of free memory left in VCS after pair to pair 
communication for a certain time (e.g., 5 minutes) fails, the test case (𝑇') verifying that the 
speed of fan in VCS locks near the speed set by the user always fails as well. This is in 
spite of the fact that all test cases are supposed to be executed independently of one 
another. Moreover, we noticed that when 𝑇' is executed as pass, another test case (𝑇Z) that 
checks the CPU load measurement of VCS also always passes. 

With this motivation, we recently proposed a black-box TP approach (named as 
REMAP) [17] to prioritize test cases dynamically based on the runtime execution results of 
the test cases using rule mining and search. The proposed approach (i.e., REMAP) consists 
of three key components: Rule Miner (𝑅𝑀), Static Prioritizer (𝑆𝑃), and Dynamic Executor 
and Prioritizer (𝐷𝐸𝑃). First, 𝑅𝑀 defines fail rules and pass rules for representing the 
execution relations among test cases and mines these rules from the historical execution 
data using a rule mining algorithm (i.e., Repeated Incremental Pruning to Produce Error 
Reduction (RIPPER) [18]). Second, SP defines two objectives: Fault Detection Capability 
(𝐹𝐷𝐶) and Test Case Reliance Score (𝑇𝑅𝑆), and applies a multi-objective search algorithm 
(i.e., Non-dominated Sorting Genetic Algorithm II (NSGA-II) [19])  to statically prioritize 
test cases. Third, DEP executes the static prioritized test cases obtained from the SP and 
dynamically updates the test case order based on the runtime test case execution results 
together with the fail rules and pass rules from RM. 

In this paper, we conduct an extensive empirical evaluation of REMAP using 1) three 
different rule mining algorithms: a) RIPPER, b) C4.5 [20], and c) Pruning Rule-Based 
Classification (PART) [21] together with 2) three different search algorithms: a) NSGA-II, 
b) Strength Pareto Evolutionary Algorithm (SPEA2) [22], and c) Indicator-based 
Evolutionary Algorithm (IBEA) [23] for a total of nine different configurations of REMAP 
(i.e., three rule mining algorithms × three search algorithms). Additionally, we modify 𝑆𝑃 
in REMAP by defining one additional objective (i.e., Estimated Execution Time (𝐸𝐸𝑇)) 
and statically prioritize with three objectives to check if the additional objective can 
improve the performance of REMAP for TP. Thus, we compare a total of 18 
configurations of REMAP (i.e., nine configurations for REMAP with two objectives: 𝐹𝐷𝐶 
and 𝑇𝑅𝑆 + nine configurations for REMAP with three objectives: 𝐹𝐷𝐶, 𝑇𝑅𝑆, and 𝐸𝐸𝑇). 

To empirically evaluate REMAP, we employed a total of five case studies (two 
industrial ones and three open source ones): 1) two data sets from Cisco related with VCS 
testing, 2) two open data sets from ABB Robotics for Paint Control [24] and IOF/ROL 
[24], and 3) one open Google Shared Dataset of Test Suite Results (GSDTSR) [25]. We 
compared the 18 configurations of REMAP with 1) two variants of random search (RS) 
[10, 12, 26]: RS2obj based on 𝐹𝐷𝐶 and 𝑇𝑅𝑆, and RS3obj based on 𝐹𝐷𝐶, 𝑇𝑅𝑆, and 𝐸𝐸𝑇, 2) 
three prioritization approaches based on Greedy [6, 8, 27]: G1obj based on 𝐹𝐷𝐶, G2obj based 
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on 𝐹𝐷𝐶 and 𝑇𝑅𝑆, and G3obj based on 𝐹𝐷𝐶, 𝑇𝑅𝑆, and 𝐸𝐸𝑇, 3) 18 variants of search-based 
TP (SBTP) approaches [28-30]: nine each with two objectives and three objectives, and 3) 
six variants of rule-based TP (RBP) approaches [31] (using the mined rules from RM): 
three each with two objectives and three objectives. 

To assess the quality of the prioritized test cases, we use the Average Percentage of 
Faults Detected per Cost (𝐴𝑃𝐹𝐷^) metric. The results showed that the test cases prioritized 
by all the 18 variants of REMAP performed significantly better than RS for all the case 
studies, and the two best variants of REMAP with two objectives and three objectives 
performed significantly better than the best variants of the selected competing approaches 
by 84.4% and 88.9% of the case studies. Overall on average, the two best variants of 
REMAP with two objectives and three objectives managed to achieve on average 14.2% 
(i.e., 13.2%, 15.9%, 21.5%, 13.3%, and 6.9%) and 18.8% (i.e., 10.4%, 27.3%, 33.7%, 
10.1%, and 12.2%) higher 𝐴𝑃𝐹𝐷^ scores, respectively for the five case studies. 

Note that this paper extends our previous work [17] with the following key 
contributions: 
1) An extensive empirical evaluation of REMAP is performed by a) involving three rule 

mining algorithms together with three search algorithms for a total of nine 
configurations of REMAP and b) defining an additional objective for 𝑆𝑃 resulting in 
nine additional configurations of REMAP. The total evaluation included 18 
configurations of REMAP, whereas our earlier work only included one configuration of 
REMAP. 

2) Evaluation of REMAP is improved by involving 1) one additional variant of RS and 
Greedy, 2) 17 additional variants of SSBP approaches, and 3) five additional variants of 
RBP approaches. 

3) The background section has been added to introduce data mining and multi-objective 
optimization. 

4) The Average Percentage of Faults Detected per Cost (𝐴𝑃𝐹𝐷^ ) metric has been 
employed to evaluate the quality of the approaches to take into account the execution 
time of the test cases. 

5) A more in-depth discussion has been added based on the results. 
The remainder of the paper is organized as follows. Section 2 gives relevant 

background, and Section 3 motivates our work followed by a formalization of the TP 
problem in Section 4. Section 5 presents REMAP in detail, and Section 6 details the 
experiment design followed by presenting the results in Section 7. Overall discussion and 
threats to validity are presented in Section 8. Related work is presented in Section 9, and 
Section 10 concludes this paper. 
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2 Background 

2.1 Data Mining 

Data mining is the process of extracting hidden correlations, patterns, and trends from 
large data sets that are both understandable and useful to the data owner [32]. This process 
is achieved using pattern recognition technologies along with statistical and mathematical 
techniques [33]. Data mining techniques have been widely applied to problems from 
different domains (e.g., science, engineering), and it is one of the fastest growing fields in 
the computer industry [33]. 

Since all automated systems generate some form of data for diagnostic or analysis 
objectives, a large amount of data are produced [34]. However, the raw data might be 
collected from different formats, and the raw data might be unstructured and not 
immediately suitable for automated processing. Therefore, data mining consists of different 
phases such as data cleaning, feature extraction, and algorithmic design [34]. More 
specifically, the data cleaning and feature extraction phase converts the unstructured and 
complex data to a well-structured data set that can be effectively used by a computer 
program, which is then used by an algorithm to discover hidden patterns. 

There are two different types of data mining methods: supervised learning  (i.e., for 
labeled data) and unsupervised learning (i.e., for unlabeled data). Supervised learning aims 
to discover the relationship between input data (also called independent variables) and 
target attributes (also called dependent variable or outcome) [35]. On the other hand, 
unsupervised learning aims to identify hidden patterns inside input data without labeled 
responses. More specifically, unsupervised learning group instances without a pre-
specified dependent attribute [35]. Additionally, supervised learning uses class information 
of the training instances while unsupervised learning does not use the class information. In 
our context, we aim to find the hidden rules between the execution relations of the test 
cases such that each test case execution result (e.g., pass) is used as a class and the past 
execution history is used as the training instances. Therefore, we adopted supervised 
learning in our approach. 

There are two main types of supervised models: classification models and regression 
models. Classifiers map the input space into predefined classes, while regressor maps the 
input space into a real-valued domain [35]. Since we have predefined classes (i.e., test case 
execution results), we use classification models. The classification rules are constructed in 
two major ways: 1) Indirect method (e.g., C4.5 [20]), which learns decision trees then 
converts them to rules and 2) Direct method (e.g., Repeated Incremental Pruning to 
Produce Error Reduction (RIPPER) [18]), which extracts rules directly from the data. 
Specifically, C4.5 takes a set of labeled data as input, creates a decision tree and tests it 
against unseen labeled test data for generalization. On the other hand, RIPPER employs the 
separate-and-conquer rule technique to generate rules directly from the training dataset, 
such that the rules are learned incrementally. RIPPER was designed to be fast and effective 
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when dealing with large and noisy datasets as compared to decision trees [18]. While 
creating rules from decision tree is computationally expensive in the presence of noisy 
data, direct rule mining method has the over pruning (hasty generalization) problem [36]. 
The Pruning Rule-Based Classification (PART) [21] is derived from C4.5 and RIPPER to 
avoid their shortcomings. More specifically, PART creates partial trees and corresponding 
to each partial tree, a single rule is extracted for the branch that covers the maximum nodes 
[36]. 

2.2 Multi-Objective Test Prioritization 

Multi-objective test prioritization aims to find tradeoff solutions for test case prioritization 
where various objectives (e.g., execution cost) conflict with one another, and no single 
optimal solution exist. Multi-objective test prioritization produces a set of solutions with 
equivalent quality (i.e., non-dominated solutions) based on Pareto optimality, which is 
called as Pareto fronts [37-39]. Pareto optimality defines the Pareto dominance to assess 
the quality of solutions [40]. Suppose a multi-objective TP problem consists of 𝑚 
objectives to be optimized, 𝑂 = {𝑜%, 𝑜', … , 𝑜]}, and each objective can be measured using 
a fitness 𝑓+ from 𝐹 = {𝑓%, 𝑓', … , 𝑓]}. If we aim to minimize the fitness function such that a 
lower value for an objective implies better performance, then solution 𝑠` dominates 
solution 𝑠� (i.e., 𝑠` ≻ 𝑠�) iff : 

∀+2%,',…,]𝑓+(𝑠`) ≤ 𝑓+(𝑠�)	⋀	∃+2%,',…,]𝑓+(𝑠`) < 𝑓+(𝑠�). 
Multi-objective search algorithms have been widely applied for different multi-

objective test prioritization problems.  We employed three representative multi-objective 
search algorithms from the literature [41]: Non-dominated Sorting Genetic Algorithm II 
(NSGA-II) [19], Strength Pareto Evolutionary Algorithm (SPEA2) [22], and Indicator-
based Evolutionary Algorithm (IBEA) [23]. 

NSGA-II is based on Pareto optimality, and in NSGA-II, the solutions (i.e., 
chromosomes) in the population are sorted into several fronts based on the ordering of 
Pareto dominance [19]. The individual solutions are selected from the non-dominated 
fronts, and if the number of solutions from the non-dominated front exceeds the specified 
population size, the solutions with a higher value of crowding distance are selected, where 
crowding distance is used to measure the distance between the individual solutions and the 
rest of the solutions in the population [39]. 

SPEA2 is also based on Pareto optimality, and in SPEA2, the fitness value for each 
solution is calculated by summing up its raw fitness (based on the number of solutions it 
dominates) and density information (based on the distance between a solution and its 
nearest neighbors) [22]. Initially, SPEA2 creates an empty archive and fills it with the non-
dominated solutions from the population. In the subsequent generations, the solutions from 
the archive and the non-dominated solution are used to create a new population. If the 
number of non-dominated solutions is more than the maximum size of the specified 
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population, the solution with the minimum distance to other solutions is selected by 
applying a truncation operator. 

IBEA uses performance indicators (e.g., hypervolume (HV)) instead of Pareto 
dominance to measure the quality of the solutions for multi-objective optimization [23]. 
Specifically, HV calculates the volume in the objective space covered by a non-dominated 
set of solutions (e.g., Pareto front) [42]. One potential downfall of using HV is the 
computational complexity of calculating the hypervolume measure as the number of 
objectives increase. 

The greedy algorithm has also been widely employed to solve single and multi-
objective test prioritization problem. Specifically, Greedy algorithms work on the “next 
best” search principle, such that the element (e.g., test case) with the highest weight (e.g., 
branch coverage) is selected first [8]. It is then followed by the element with the second 
highest weight and so on until all the elements have been selected or termination criteria of 
the algorithm are met (e.g., the total execution time of the selected test cases). The greedy 
algorithm makes greedy choices at each step to ensure that the objective function is 
optimized (i.e., maximized or minimized). For multi-objective optimization, Greedy 
algorithm converts a multi-objective optimization problem into a single optimization 
problem using the weighted-sum method [43] for assigning the fitness, such that each 
objective is given equal weight (i.e., if all the objective holds equal importance). After that, 
the weight of each element is obtained by adding the weighted objective values. 

3 Motivating Example 

We have been collaborating with Cisco Systems, Norway for more than nine years to 
improve the quality of their video conferencing systems (VCSs) [15, 16, 29]. The VCSs 
are used to organize high-quality virtual meetings without gathering the participants to one 
location. These VCSs are used in many organizations such as IBM and Facebook. Each 
VCS has on average three million lines of embedded C code, and they are developed 
continuously. Testing needs to be performed each time the software is modified. However, 
it is not possible to execute all the test cases since there is only a limited time for execution 
and each test case requires much time for execution (e.g., 10 minutes). Thus, the test cases 
need to be prioritized to execute the important test cases (i.e., test cases most likely to fail) 
as soon as possible. 

Through further investigation of VCS testing, we noticed that a certain number of test 
cases turned to pass/fail together, i.e., when a test case passes/fails some other test case(s) 
passed/failed almost all the time (with more than 90% probability). This is despite the fact 
that the test cases do not depend upon one another when implemented and are supposed to 
be executed independently. Moreover, the test engineers from our industrial partner are not 
aware of these execution relations (i.e., test case failing/passing together) when 
implementing and executing test cases. Note that we consider that each failed test case is 
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caused by a separate fault since the link between actual faults and executed test cases are 
not explicit in our context, and this has been assumed in other literature as well [9, 24, 31]. 

Fig. E-1 depicts a running example to explain our approach with six real test cases from 
Cisco along with their execution results within seven test cycles. A test cycle is performed 
each time the software is modified, where a set of test cases from the original test suite are 
executed. When a test case is executed, there exist two types of execution results, i.e., pass 
or fail. Pass implies that the test case did not find any fault(s), while Fail denotes that the 
test case managed to detect a fault(s). From Fig. E-1, we can observe that the execution of 
test cases 𝑇%, 𝑇', 𝑇Z, 𝑇Y, 𝑇T, and 𝑇õ failed four, two, three, three, one, and four times, 
respectively within the seven test cycles. Moreover, we can observe that there exist certain 
relations between the execution results of some test cases. For example, when 𝑇% is 
executed as fail/pass, 𝑇Z is always executed as fail/pass and vice versa, when both of them 
were executed.  

 
Fig. E-1. Sample data showing the execution history for six test cases* 

*NE: Not Executed 

Based on such observation, we can assume that internal relations for test case execution 
can be extracted from historical execution data, which can then be used to guide 
prioritizing test cases dynamically. More specifically, when a test case is executed as fail 
(e.g., 𝑇% in Fig. E-1), the corresponding fail test cases (e.g., 𝑇Z in Fig. E-1) should be 
executed earlier as there is a high chance that the corresponding test case(s) is executed as 
fail. On the other hand, if a test case is executed as pass (e.g., 𝑇Y in Fig. E-1), the priority 
of the related pass test case(s) (𝑇' in Fig. E-1) need to be decreased (i.e., they need to be 
executed later). We argue that identifying such internal execution relations among test 
cases can help to facilitate prioritizing test cases dynamically, which is the key motivation 
of this work. 

4 Basic Notations and Problem Representation 

This section presents the basic notations (Section 4.1) and problem representation (Section 
4.2). 
 

T1: Pass
T2: NE
T3: Pass
T4: Fail
T5: Fail
T6: NE

T1: Fail
T2: Pass
T3: Fail
T4: Pass
T5: Pass
T6: Fail

T1: Fail
T2: Fail
T3: Fail
T4: Fail
T5: Pass
T6: Fail

T1: Pass
T2: Pass
T3: Pass
T4: Pass
T5: Pass
T6: NE

T1: Fail
T2: Fail
T3: NE
T4: Fail
T5: Pass
T6: Fail

T1: Pass
T2: Pass
T3: Pass
T4: Pass
T5: Pass
T6: Fail

1 2 3 4 5 6
Test Cycle

T1: Fail
T2: Pass
T3: Fail
T4: Pass
T5: Pass
T6: NE

7
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4.1 Basic Notations 

Notation 1. 𝑇𝑆 is an original test suite to be executed with 𝑛 test cases, i.e., 
𝑇𝑆 = {𝑇%, 𝑇', … , 𝑇)}. For instance, in the running example (Fig. E-1), 𝑇𝑆 consists of six 
test cases. 

Notation 2. 𝑇𝐶 is a set of 𝑝 test cycles that have been executed, i.e., 
𝑇𝐶 = {𝑡𝑐%, 𝑡𝑐', … , 𝑡𝑐c}, such that one or more test cases are executed in each test cycle. 
For example, there are seven test cycles in the example (Fig. E-1), i.e., 𝑝=7. 

Notation 3. For a test case 𝑇+ executed in a test cycle 𝑡𝑐k, 𝑇+ has two possible verdicts, i.e., 
𝑣+k ∈ 𝑝𝑎𝑠𝑠, 𝑓𝑎𝑖𝑙 . For example, in Fig. E-1, the verdict for 𝑇% is fail, while the verdict for 
𝑇' is pass in 𝑡𝑐%. If a test case has not been executed in a test cycle, it has no verdict. For 
instance, in , 𝑇õ has no verdict (represented by 𝑁𝐸) in 𝑡𝑐Z. 𝑉 𝑇+  is a function that returns 
the verdict of a test case 𝑇+. 

Notation 4. For a test case 𝑇+ executed in a test cycle 𝑡𝑐k, 𝑒𝑡+k denotes the execution time 
of 𝑇+ in 𝑡𝑐k. 

4.2 Problem Representation 

Let 𝑆 represents all potential solutions for prioritizing TS to execute, 𝑆 = {𝑠%, 𝑠', … , 𝑠t}, 
where 𝑞 = 	𝑛!. For instance in the running example with six test cases (Fig. E-1), the total 
number of solutions 𝑞 = 720. Each solution 𝑠k is an order of test cases from TS, 
𝑠k = {𝑇k%, 𝑇k', … , 𝑇k)} where 𝑇k+ refers to a test case that will be executed in the 𝑖j� position 
for 𝑠k. 

Test Case Prioritization (TP) Problem: TP problem aims to find a solution 
𝑠i = {𝑇i%, 𝑇i', … , 𝑇i)}   such that: 𝐹(𝑇i+) ≥ 	𝐹(𝑇il), 𝑤ℎ𝑒𝑟𝑒	𝑖 < 𝑘	 ∧ 	1 ≤ 	𝑖 ≤ 𝑛 −
1and	𝐹(𝑇i+) is an objective function that represents the fault detection capability of a test 
case in the 𝑖j� position for the solution 𝑠i. 

Dynamic TP Problem: The goal of dynamic TP is to dynamically prioritize test cases in 
the solution based on the runtime test case execution results to detect faults as soon as 
possible. For a solution 𝑠i = {𝑇i%, 𝑇i', … , 𝑇i)}, the dynamic TP problem aims to update the 
execution order of the test cases in 𝑠i to obtain a solution 𝑠i¼ = {𝑇i%¼, … , 𝑇i)¼}, such that 
𝐹(𝑠i¼) ≥ 𝐹(𝑠i). 𝐹(𝑠i¼) is a function that returns the value for the Average Percentage of 
Faults Detected per Cost for 𝑠i¼. 
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5 Approach: REMAP 

This section first presents an overview of our approach for dynamic TP that combines rule 
mining and search in Section 5.1 followed by detailing its three key components (Section 
5.2  – Section 5.4). 

5.1 Overview of REMAP 

Fig. E-2 presents an overview of REMAP consisting of three key components: Rule Miner 
(RM), Static Prioritizer (SP), and Dynamic Executor and Prioritizer (DEP). The core of 
RM is to mine the historical execution results of test cases and produce a set of execution 
relations (i.e., Rules depicted in Fig. E-2) among test cases, e.g., if 𝑇Z fails then 𝑇% fails in 
Section 3. Afterward, SP takes the mined rules and historical execution results of test cases 
as input to statically prioritize test cases for execution. Finally, DEP executes the statically 
prioritized test cases obtained from the SP one at a time and dynamically updates the order 
of the unexecuted test cases based on the runtime test case execution results (Fig. E-2) to 
detect the fault(s) as soon as possible. 

 
Fig. E-2. Overview of REMAP 

5.2 Rule Miner (RM) 

We first define two types of rules, i.e., fail rule and pass rule for representing the execution 
relations among test cases. 

A fail rule specifies an execution relation between two or more test cases if a verdict of 
a test case(s) is linked to the fail verdict of another test case. The fail rule is formed as: 

(𝑉 𝑇+)	𝐴𝑁𝐷,… , 𝐴𝑁𝐷	𝑉(𝑇l )
i`+y

𝑉 𝑇k = 𝑓𝑎𝑖𝑙 ∧ 𝑇k ∉ {𝑇+, … , 𝑇l}, where 𝑉 𝑇+  is a 
function that returns the verdict of a test case  𝑇+ (i.e., pass or fail). Note that for a fail rule, 
the execution relation must hold true for the specific test cases with more than 90% 
probability (i.e., confidence) as is often used in literature [44-47]. For example, in Fig. E-1, 

there exists a fail rule between 𝑇% and 𝑇Z: (𝑉(𝑇%) = 𝑓𝑎𝑖𝑙)
i`+y

(𝑉(𝑇Z) = 𝑓𝑎𝑖𝑙), i.e., when 
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𝑇% has a verdict fail (executed as fail), 𝑇Z	 always has the verdict fail and this rule holds 
true with 100% probability in the historical execution data (Fig. E-1). With fail rules, we 
aim to prioritize and execute the test cases that are more likely to fail as soon as possible. 
For instance, for the motivating example in Section 3, 𝑇Z should be executed as early as 
possible when 𝑇% is executed as fail. 

A pass rule specifies an execution relation between two or more test cases if a verdict of 
a test case(s) is linked to the pass verdict of another test case. The pass rule is in the form: 

𝑉(𝑇+)	𝐴𝑁𝐷,… , 𝐴𝑁𝐷	𝑉(𝑇l )
c`ff

𝑉 𝑇k = 𝑝𝑎𝑠𝑠 ∧ 𝑇k ∉ {𝑇+, … , 𝑇l}  where 𝑉 𝑇+  is a 
function that returns the verdict of test case 𝑇+ (i.e., pass or fail). Similarly, for a pass rule, 
the execution relation must hold true with more than 90% probability (i.e., confidence) 
[44-47]. For instance, in Fig. E-1, there exists a pass rule between 𝑇' and 𝑇Y:	(𝑉(𝑇Y) =

𝑝𝑎𝑠𝑠)
c`ff

(𝑉(𝑇') = 𝑝𝑎𝑠𝑠), i.e., when 𝑇Y has a verdict pass (executed as pass), the verdict 
of 𝑇' is pass and this rule holds true with 100% probability based on the historical 
execution data (Fig. E-1). With pass rules, we aim to deprioritize the test cases that are 
likely to pass and execute them as late as possible. For instance, for the motivating 
example in Section 3, 𝑇' should be executed as late as possible when 𝑇Y is executed as 
pass. 

Input:	Set	of	test	cycles	𝑇𝐶 = {𝑡𝑐%, 𝑡�', … , 𝑡𝑐c}	,	set	of	test	cases	𝑇𝑆 = {𝑇%, 𝑇', … , 𝑇)}	
Output:	A	set	of	fail	rules	and	pass	rules	
Begin:	
				1					for	(𝑇 ∈ 𝑇𝑆)	do																																																													//	for	all	the	test	cases	
				2										𝑅𝑢𝑙�𝑆𝑒𝑡 ⟵ ∅	
				3										𝑅𝑢𝑙𝑒𝑆𝑒𝑡 ⟵ 𝑅𝑀𝐴(𝑇, 𝑇𝐶)																																					//	mine	rules	for	𝑇	using	𝑇𝐶	
				4										for	(𝑟𝑢𝑙𝑒	𝑖𝑛	𝑅𝑢𝑙𝑒𝑆𝑒𝑡)	do																																						//	for	each	mined	rule	
				5															if	(𝑉 𝑇 = 𝑓𝑎𝑖𝑙)	then																																						//	classify	as	fail	rule	
				6																				𝑓𝑎𝑖𝑙_𝑟𝑢𝑙𝑒 ⟵ 𝑓𝑎𝑖𝑙_𝑟𝑢𝑙𝑒 ∪ 𝑟𝑢𝑙𝑒	
				7														else	if	(𝑉 𝑇 = 𝑝𝑎𝑠𝑠)	then																													//	classify	as	pass	rule	
				8																		𝑝𝑎𝑠𝑠_𝑟𝑢𝑙𝑒 ⟵ 𝑝𝑎𝑠𝑠_𝑟𝑢𝑙𝑒 ∪ 𝑟𝑢𝑙𝑒	
				9					return	(𝑓𝑎𝑖𝑙n�yh, 𝑝𝑎𝑠𝑠n�yh)			

End 
Fig. E-3. Overview of rule miner 

To mine fail rules and pass rules, our RM employs a rule mining algorithm  (i.e., C4.5, 
RIPPER, or PART). More specifically, RM takes as input a test suite with	𝑛 test cases, 
historical test case execution data (with a set of test cycles that lists the verdict of all the 
test cases). After that, RM produces a set of fail rules and pass rules as output. Fig. E-3 
demonstrates the overall process of RM. Recall that there are two possible verdicts for each 
executed test case (Section 4.1): pass or fail. For each test case in 𝑇𝑆, RM uses the rule 
mining algorithm (e.g., RIPPER) to mine rules based on the historical execution data (i.e., 
𝑇𝐶) (lines 1-3 in Fig. E-3). Afterward, the mined rules are classified into a fail rule or pass 
rule one at a time (lines 4-8 in Fig. E-3) until all of them are classified. If the verdict of the 
particular test case is fail, the rule related to this test case is classified as a fail rule (lines 5-
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6 in Fig. E-3); otherwise, the rule is classified as a pass rule (lines 7 and 8 in Fig. E-3). For 
instance, in Fig. E-1, two rules are mined for 𝑇%  using RIPPER: 

(𝑉(𝑇Z) = 𝑓𝑎𝑖𝑙)
i`+y

(𝑉(𝑇%) = 𝑓𝑎𝑖𝑙) as a fail rule and (𝑉(𝑇Z) = 𝑝𝑎𝑠𝑠)
c`ff

(𝑉(𝑇%) =
𝑝𝑎𝑠𝑠)  as a pass rule. This process of rule mining and classification is repeated for all the 
test cases in the test suite (lines 1-8 in Fig. E-3), and finally, the mined fail rule and pass 
rule are returned (line 9 in Fig. E-3). 

In this way, a set of fail rules and pass rules can be obtained from RM. For instance, in 
the motivating example, we can obtain four fail rules and three pass rules for the six test 
cases from the seven test cycles (Fig. E-1) using RIPPER as shown in Table E-1.  

Table E-1. Fail rule and pass rule from the motivating example using RIPPER 
# Fail Rule # Pass Rule 

1 (𝑉(𝑇%) = 𝑓𝑎𝑖𝑙)
i`+y

(𝑉(𝑇Z) = 𝑓𝑎𝑖𝑙) 5 (𝑉(𝑇%) = 𝑝𝑎𝑠𝑠)
c`ff

(𝑉(𝑇Z) = 𝑝𝑎𝑠𝑠) 

2 (𝑉(𝑇') = 𝑓𝑎𝑖𝑙)
i`+y

(𝑉(𝑇Y) = 𝑓𝑎𝑖𝑙) 6 (𝑉(𝑇Z) = 𝑝𝑎𝑠𝑠)
c`ff

(𝑉(𝑇%) = 𝑝𝑎𝑠𝑠) 

3 (𝑉(𝑇Z) = 𝑓𝑎𝑖𝑙)
i`+y

(𝑉(𝑇%) = 𝑓𝑎𝑖𝑙) 7 (𝑉(𝑇Y) = 𝑝𝑎𝑠𝑠)
c`ff

(𝑉(𝑇') = 𝑝𝑎𝑠𝑠) 

4 (𝑉(𝑇Y) = 𝑓𝑎𝑖𝑙)
i`+y

(𝑉(𝑇') = 𝑓𝑎𝑖𝑙)   

5.3 Static Prioritizer (SP) 

History-based TP techniques have been widely applied to prioritize the test cases based on 
their historical failure data, i.e., test cases that failed more often should be given higher 
priorities [12, 13, 24, 48, 49]. For example, 𝑇% and 𝑇õ failed the highest number of times 
(i.e., four times) in Fig. E-1, and therefore they should be given the highest priorities for 
execution out of the six test cases. Moreover, we argue that the execution relations among 
the test cases should also be taken into account for TP. The test cases whose results can be 
used to predict the results for more test cases (using fail rules and pass rules) need to be 
given higher priorities since their execution result can help predict the result of other test 
cases. For example in Fig. E-1, the execution result of 𝑇% is related to one test case 𝑇Z, 
while the execution result of 𝑇T is not related to any test case as shown in Table E-1. Thus, 
it is ideal to execute 𝑇% earlier than 𝑇T since based on the execution result of 𝑇%, the related 
test case (i.e., 𝑇Z) can be prioritized  (if 𝑇% fails) or deprioritized (if 𝑇% passes).  

Thus, our Static Prioritizer (SP) defines two objectives: Fault Detection Capability 
(𝐹𝐷𝐶) and Test Case Reliance Score (𝑇𝑅𝑆), and uses multi-objective search to statically 
prioritize test cases before execution (as shown in Fig. E-2).  Note that in some context the 
execution time of the test cases is also available, which can be also be used for TP. 
Therefore, we have defined a third objective: Estimated Execution Time (𝐸𝐸𝑇) to use the 
execution time of the test cases, and we empirically evaluate if using three objectives can 
help obtain a better performance as compared to using two objectives. We formally define 
the objectives to guide the search toward finding optimal solutions in detail below. 

Fault Detection Capability (𝑭𝑫𝑪): The 𝐹𝐷𝐶 for a test case is defined as the rate of failed 
execution of a test case in a given time period, and it has been frequently applied in the 
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literature [13, 29]. The 𝐹𝐷𝐶 for a test case is calculated as: 𝐹𝐷𝐶	�+ =
	��]�hn	pi	j+]hf	j�`j	��	ip�)�	`	i`�yj
��]�hn	pi	j+]hf	j�`j	��	 `f	h¡h^�jh�

. 𝐹𝐷𝐶 of 𝑇+ is calculated based on the historical 

execution information of 𝑇+. For instance, in Fig. E-1, the 𝐹𝐷𝐶 for 𝑇Y is 0.43 since it found 
fault three times out of seven executions. The 𝐹𝐷𝐶 for a solution 𝑠k can be calculated as: 

	𝐹𝐷𝐶	fk =
¢£|~�×

�����
�

�
���

]i�^
, where,	𝑠k represents any solution 𝑗 (e.g., {𝑇%, 𝑇Y, 𝑇Z, 𝑇õ, 𝑇', 𝑇T} in 

Fig. E-1), 𝑚𝑓𝑑𝑐 represents the sum of 𝐹𝐷𝐶 of all the test cases in	𝑠k, and 𝑛 is the total 
number of test cases in 𝑠k. Notice that a higher value of 𝐹𝐷𝐶 implies a better solution. The 
goal is to maximize the 𝐹𝐷𝐶 of a solution since we aim to execute the test cases that fail 
(i.e., detect faults) as early as possible. 

Test Case Reliance Score (𝑻𝑹𝑺): The 𝑇𝑅𝑆 for a solution 𝑠k is computed as:		𝑇𝑅𝑆	fk =
�ü�~�×

�����
�

�
���

pjncf
 , where	𝑜𝑡𝑟𝑝𝑠 represents the sum of 𝑇𝑅𝑆 of all the test cases in	𝑠k, 𝑛 is the 

total number of test cases in 𝑠k, and 𝑇𝑅𝑆�+ is the test case reliance score (𝑇𝑅𝑆) for the test 
case 𝑇+. The 𝑇𝑅𝑆 for a test case 𝑇+ is defined as the number of unique test cases whose 
results can be predicted by executing 𝑇+ using the defined fail rules and pass rules 
extracted from RM (Section 5.2). For instance, in Fig. E-1, 𝑇𝑅𝑆 for 𝑇% is 1 since the 
execution of 𝑇% can only be used to predict the execution result of 𝑇Z based on the rule 
number 1 and 5 (Table E-1) while 𝑇𝑅𝑆 for 𝑇T is 0 as there is no test case that can be 
predicted based on the execution result of 𝑇T. The goal is to maximize the 𝑇𝑅𝑆 of a 
solution since we aim to execute the test cases that can predict the execution results of 
other test cases as early as possible. 

Estimated Execution Time (EET): The EET of a test case is defined as the average 
execution time of the test case in a given time period. 𝐸𝐸𝑇 of a test case 𝑇+ executed 𝑚 

times in a given time period is computed as: 	𝐸𝐸𝑇�+ =
hj�zª

z��

]
, where 𝑒𝑡+k denotes the 

execution time of 𝑇+ in a test cycle 𝑡𝑐k. For instance, in Fig. E-1, if the execution time of 𝑇% 
for seven executions in the seven test cycles is 10.2 minutes (m), 10.8m, 10.4m, 9.6m, 
9.9m, 10.3m, 10.6m; then the 𝐸𝐸𝑇 of 𝑇% is 10.3m. The 𝐸𝐸𝑇 for a solution 𝑠k can be 

calculated as: 	𝐸𝐸𝑇	fk =
ââ�~�×

�����
�

�
���

ââ�~��
���

. Note that a lower value of 𝐹𝐷𝐶 implies a better 

solution. The goal is to minimize the 𝐸𝐸𝑇 of a solution since we aim to execute the test 
cases with lower execution time earlier than the test cases with higher execution time. 

We further integrated these two objectives (i.e., 𝐹𝐷𝐶 and 𝑇𝑅𝑆) and three objectives 
(i.e., 𝐹𝐷𝐶, 𝑇𝑅𝑆, and 𝐸𝐸𝑇) with multi-objective search algorithms (i.e., IBEA, NSGA-II, or 
SPEA2). Note that SP produces a set of non-dominated solutions based on Pareto 
optimality [37-39] with respect to the defined objectives. The Pareto optimality theory 
states that a solution 𝑠` dominates another solution 𝑠� if 𝑠` is better than 𝑠� in at least one 
objective and for all other objectives 𝑠` is not worse than 𝑠� [50]. Note that we randomly 
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choose one solution from the generated non-dominated solutions as input for the 
component Dynamic Executor and Prioritizer (DEP) since all the solutions produced by 
SP have equivalent quality. 

5.4 Dynamic Executor and Prioritizer (DEP) 

The core of DEP is to execute the statically prioritized test cases obtained from SP 
(Section 5.3) and dynamically update the test case order using the fail rules and pass rules 
mined from RM (Section 5.2) as shown in Fig. E-2. Thus, the input for DEP is a 
prioritization solution (i.e., static prioritized test cases) from SP and a set of mined rules 
(e.g., fail rules) from RM. The overall process of DEP is presented in Fig. E-4, and it is 
explained using the example (Section 3) in Fig. E-5. 

Let us assume a prioritization solution is obtained as {𝑇%, 𝑇Y, 𝑇Z, 𝑇õ, 𝑇', 𝑇T}  (Fig. E-5) 
from SP for the test cases in the motivating example (Section 3). Moreover, seven fail 
rules and pass rules are extracted from RM as shown in Table E-1. Initially, DEP checks if 
there are any test case(s) that always had the verdict fail or pass in the historical execution 
data. If there exists any such test case(s), DEP adds them to the set 𝐴𝐹 (if the verdict is 
always fail) or the set 𝐴𝑃 (if the verdict is always pass) (lines 2 and 3 in Fig. E-4). For 
example in Fig. E-1, 𝑇õ always had the verdict fail in historical execution data, and thus 𝑇õ 
is added to 𝐴𝐹.  

 
Input:	Solution	𝑠i = {𝑇i%, … , 𝑇i)},	pass	rules	𝑃𝑅,	fail	rules	𝐹𝑅	
Output:	Dynamically	prioritized	test	cases	
Begin:	
1		𝑘 ⟵ 1	
2		𝐴𝐹 ⟵ 𝐴𝑙𝑤𝑎𝑦𝑠𝐹𝑎𝑖𝑙𝑖𝑛𝑔(𝑠i)																																																																										//	set	of	test	cases	that	always	fail	
3		𝐴𝑃 ⟵ 𝐴𝑙𝑤𝑎𝑦𝑠𝑃𝑎𝑠𝑠𝑖𝑛𝑔(𝑠i)																																																																									//	set	of	test	cases	that	always	pass	
		4		while	(𝑘 ≤ 𝑛)	and	(termination_conditions_not_satisfied)	do		
		5							𝑇𝐸 ⟵ 𝐺𝑒𝑡 − 𝑡𝑒𝑠𝑡 − 𝑐𝑎𝑠𝑒 − 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝑠i, 𝐴𝐹, 𝐴𝑃)		
		6							𝑣𝑒𝑟𝑑𝑖𝑐𝑡 ⟵ 𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝑇𝐸)																																																																								//	execute	the	test	case	
		7							if	(𝑣𝑒𝑟𝑑𝑖𝑐𝑡	=	‘pass’)	then	
		8											if	(𝑇𝐸 ∈ 𝑃𝑅)	then																																																																																		//	if	the	test	case	has	a	pass	rule		
		9															move	the	related	test	cases	backward	to	the	end	of	the	solution	
		10					else	if	(𝑣𝑒𝑟𝑑𝑖𝑐𝑡	=	‘fail’)	then	
		11									if	(𝑇𝐸 ∈ 𝐹𝑅)	then																																																																																	//	if	the	test	case	has	a	fail	rule	
		12													move	the	related	test	cases	forward	to	execute	next	
		13						𝑠i+)`y ⟵ 𝑠i+)`y ∪ 𝑇𝐸																																																																													//	dynamically	prioritized	solution		
		14						𝑘 ⟵ 𝑘 + 1	
		15						remove	𝑇𝐸	from	𝑠i																																																																															//	remove	executed	test	case	from	𝑠i	
		16		return	𝑠i+)`y	
End 

Fig. E-4. Sample data showing the execution history for six test cases 
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Afterward, DEP identifies the test cases to execute using the algorithm Get-test-case-
execution (Algorithm E-1). More specifically, Get-test-case-execution uses the statically 
prioritized solution, a set of always fail test cases 𝐴𝐹, and a set of always pass test cases 
𝐴𝑃, to find the test case to execute. If there exists any test case in 𝐴𝐹 (line 1 in Algorithm 
E-1), it is selected for execution (line 2 in Algorithm E-1), removed from 𝐴𝐹 (line 3 in 
Algorithm E-1), and returned (line 12 in Algorithm E-1) to DEP (Fig. E-4). For instance, 
initially, 𝑇õ is selected for execution from 𝐴𝐹 in Fig. E-5. Afterward, the selected test case 
(i.e., 𝑇õ) is executed (line 6 in Fig. E-4), and based on the verdict of the executed test case, 
the pass rule or fail rule is employed if it exists (lines 7-12 in Fig. E-4). Then, the executed 
test case is added to the final solution (line 13 in Fig. E-4) and removed from the statically 
prioritized solution for execution (line 15 in Fig. E-4). If there exists no related test case(s), 
the next test case is selected for execution (line 5 in Fig. E-4). 

 
Fig. E-5. Example of dynamic test case execution and prioritization 

Algorithm G-1: Get-test-case-execution 
Input:	Solution	𝑠i = {𝑇i%, … , 𝑇i)},	set	of	always	fail	test	cases	𝐴𝐹,	set	of	always	pass	test	cases	𝐴𝑃		
Output:	A	test	case	for	execution	
Begin:	
				1					if	(|𝐴𝐹|> 0)	then												
				2									𝑇𝐸 ⟵ 𝐹(𝐴𝐹�)																																													//	get	the	first	fail	test	case	
				3									remove	𝐴𝐹�	from	𝐴𝐹																																	//	remove	the	fail	test	case	
				4					else	𝑇𝐸 ⟵ 𝐹(𝑠i�)																																									//	if	there	are	not	any	test	cases	in	𝐴𝐹	
				5										𝑚𝑜𝑣𝑒_𝑇 ⟵ 𝑇𝑟𝑢𝑒																																					//	initially	test	cases	can	be	moved	
				6										𝑓𝑖𝑟𝑠𝑡_𝑇 ⟵ 𝑇𝐸	
				7										while	(𝑇𝐸	in	𝐴𝑃	and	𝑚𝑜𝑣𝑒_𝑇)	do					
				8															move	𝑠i�	to	end	of	𝑠i																										//	move	test	case	to	the	end	
				9															𝑇𝐸 ⟵ 𝐹(𝑠i�)				
				10													if	(𝑓𝑖𝑟𝑠𝑡_𝑇 = 𝑇𝐸)	then	
				11																	𝑚𝑜𝑣𝑒_𝑇 ⟵ 𝐹𝑎𝑙𝑠𝑒																										//	do	not	move	test	case	anymore		
				12				return	𝑇𝐸	
End	

 

T6 executed

T4 
executed

T2 
executed

T1 
executed

T1 T4 T3 T6 T2 T5 T1 T4 T3 T6 T2 T5

T6 T1 T4 T3 T2 T5T6 T1 T4 T3 T2 T5

T6 T1 T3 T4 T2 T5

T6 T1 T3 T4 T5 T2T6 T1 T3 T4 T5 T2

T6 T1 T3 T4 T5 T2

T5 executed

T3 executed

Initial prioritized solution from SP

Final prioritized solution from DEP
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To select the next test cases, Algorithm E-1 is employed again. If there exists no more 
test case in 𝐴𝐹, the first test case from the statically prioritized solution is selected for 
execution if it is not present in the set of pass test cases 𝐴𝑃 (lines 4-7 in Algorithm E-1). 
However, if a test case is present in 𝐴𝑃, the next test case is selected from the static 
prioritized solution (lines 7-11 in Algorithm E-1). For example, 𝑇% is executed after 𝑇õ in 
Fig. E-5 since it is the first test case from the statically prioritized solution obtained from 
SP, and it is not included in 𝐴𝑃. Based on the verdict of the test case (line 6 in Fig. E-4), 
pass rule or fail rule is employed once more (lines 7-12 in Fig. E-4). If the test case has the 
verdict fail (line 10 in Fig. E-4), it is checked if it is a part of any fail rule (line 11 in Fig. 
E-4). If it is indeed a part of a fail rule, the related fail test case(s) is moved to the front of 
the solution 𝑠i (line 12 in Fig. E-4), e.g., 𝑇Z is moved in front of 𝑇Y in Fig. E-5 since there 
exists a fail rule between 𝑇% and 𝑇Z. 

Alternatively, if the test case has a verdict pass, it is checked if it is a part of any pass 
rules (line 7 in Fig. E-4). If so, the related test case(s) is moved at the end of the solution. 
For example, 𝑇' is moved after 𝑇T in Fig. E-5 since 𝑇Y passed and there is a pass rule 
between 𝑇Y and 𝑇' as shown in Table E-1. This process of executing and moving the test 
case is repeated until all the test cases are executed  (e.g., all six test cases are executed 
shown in Fig. E-5) or the termination criteria (e.g., a predefined time budget) for the 
algorithm is met. The final solution lists the optimal order of the test cases that were 
executed. For example, the final execution order of these six test cases in Fig. E-5 
is:	{𝑇õ, 𝑇%, 𝑇Z, 𝑇Y, 𝑇T, 𝑇'} with three fail test cases: 𝑇õ, 𝑇%, and 𝑇Z. Finally, at the end of the 
test cycle, the historical execution results of test cases are updated based on the verdicts of 
the executed test cases as shown in Fig. E-2. Note that REMAP updates the mined rules 
after each test cycle rather than after executing each test case since the mined rules will not 
be changed largely if updated after executing each test case and rule mining is 
computationally expensive [51, 52]. 

Note that REMAP includes Static Prioritizer (i.e., SP in Section 5.3) before Dynamic 
Exe cutor and Prioritizer  (i.e., DEP in Section 5.4) since we observed that not all the test 
cases can be associated with fail rules and pass rules (Section 5.2). For instance, in the 
motivating example (Section 3), the test case 𝑇T can be associated with no fail rules and 
pass rules (Section 5.2). Thus, as compared with randomly choosing a test case for 
execution when there is no mined rule to rely on, SP can help to improve the effectiveness 
of TP. 

6 Empirical Evaluation Design 

In this section, we present the experiment design (Table E-2) with research questions 
(Section 6.1), case studies (Section 6.2), experiment tasks and evaluation metric (Section 
6.3), and statistical tests and experiment settings (Section 6.4). 
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Table E-2. Overview of the experiment design 

RQ Task Description Algorithms CS 
Evaluation 

Metric 
Statistical Tests 

1 

T1.1 
Comparison of 18 variants of REMAP 
(with two objectives and three 
objectives) against RS2obj 

9 REMAP2obj,  
9 REMAP3obj, 
RS2obj  

CS1- 
CS5 

APFDc 

Mann-
Whitney U 

Test 

Vargha 
and 

Delaney 
𝐴%' 

 
 
 

T1.2 
Comparison of 18 variants of REMAP 
(with two objectives and three 
objectives) against RS3obj 

9 REMAP2obj,  
9 REMAP3obj, 
RS3obj 

2 

T2.1 
Comparison of nine variants of 
REMAP with two objectives among 
each other 

9 REMAP2obj Kruskal-
Wallis Test, 
Dunn’s test 

T2.2 
Comparison of nine variants of 
REMAP with three objectives among 
each other 

9 REMAP3obj 

T2.3 
Comparison of the two best variants of 
REMAP with two objectives and three 
objectives 

BestREMAP2obj, 
BestREMAP3obj 

Mann-
Whitney U 

Test 
3 

T3.1 
Comparison of the best variant of 
REMAP with two objectives against 
three variants of Greedy 

BestREMAP2obj, 
G1obj, G2obj, G3obj  

T3.2 
Comparison of the best variant of 
REMAP with three objectives against 
three variants of Greedy 

BestREMAP3obj, 
G1obj, G2obj, G3obj 

4 

T4.1 
Comparison of nine variants of SSBP 
with two objectives among each other 

9 SSBP2obj  Kruskal-
Wallis Test, 
Dunn’s test T4.2 

Comparison of nine variants of SSBP 
with three objectives among each other 

9 SSBP3obj 

T4.3 

Comparison of the best variant of 
REMAP with two objectives against 
the two best variants of SSBP with two 
objectives and three objectives 

BestREMAP2obj, 
BestSSBP2obj,    
BestSSBP3obj   Mann-

Whitney U 
Test 

T4.4 

Comparison of the best variant of 
REMAP with three objectives against 
the two best variants of SSBP with two 
objectives and three objectives 

BestREMAP3obj, 
BestSSBP2obj,  
BestSSBP3obj    

5 

T5.1 
Comparison of three variants of RBP 
with two objectives 

3 RBP2obj Kruskal-
Wallis Test, 
Dunn’s test T5.2 

Comparison of three variants of RBP 
with three objectives 

3 RBP3obj 

T5.3 

Comparison of the best variant of 
REMAP with two objectives against 
the best variants of RBP with two 
objectives and three objectives 

BestREMAP2obj, 
BestRBP2obj,  
BestRBP3obj     Mann-

Whitney U 
Test 

T5.4 

Comparison of the best variant of 
REMAP with three objectives against 
the best variants of RBP with two 
objectives and three objectives 

BestREMAP3obj, 
BestRBP2obj,  
BestRBP3obj      
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6.1 Research Questions 

RQ1. Sanity Check: Is REMAP better than random search (RS) for all the five case 
studies? This research question is defined to check if our TP problem is non-trivial to 
solve. We assessed three rule mining algorithms in combination with three search 
algorithms for a total of nine different REMAP configurations while using 1) two 
objectives (𝐹𝐷𝐶 and 𝑇𝑅𝑆) and 2) three objectives for the search algorithms (𝐹𝐷𝐶, 𝑇𝑅𝑆, 
and 𝐸𝐸𝑇) defined in Section 5.3. The assessed REMAP configurations are: 1) 
REMAPC4.5+IBEA(2obj), 2) REMAPC4.5+NSGA-II(2obj), 3) REMAPC4.5+SPEA2(2obj), 4) 
REMAPRIPPER+IBEA(2obj), 5) REMAPRIPPER+NSGA-II(2obj), 6) REMAPRIPPER+SPEA2(2obj), 7) 
REMAPPART+IBEA(2obj), 8) REMAPPART+NSGA-II(2obj), 9) REMAPPART+SPEA2(2obj), 10) 
REMAPC4.5+IBEA(3obj), 11) REMAPC4.5+NSGA-II(3obj), 12) REMAPC4.5+SPEA2(3obj), 13) 
REMAPRIPPER+IBEA(3obj), 14) REMAPRIPPER+NSGA-II(3obj), 15) REMAPRIPPER+SPEA2(3obj), 16) 
REMAPPART+IBEA(3obj), 17) REMAPPART+NSGA-II(3obj), 18) REMAPPART+SPEA2(3obj).  Moreover, we 
used RS with two objectives (i.e., RS2obj) and three objectives (i.e., RS3obj). 

RQ2. Which configuration of REMAP performs the best while using two objectives 
and three objectives for the five case studies? Additionally, which is the best 
configuration of REMAP among the two objectives and three objectives? This 
research question aims to find the best configuration of REMAP among the nine 
configurations of REMAP while using 1) two objectives and 2) three objectives for the 
search algorithms. Additionally, we aim to find the best configuration of REMAP among 
the best configuration of REMAP with two objectives and three objectives. 

RQ3. Is REMAP better than different variations of Greedy algorithm? This research 
question is defined to check if the best configuration of REMAP performs better than 
Greedy algorithm with one objective (G1obj), two objectives (G2obj), and three objectives 
(G3obj). G1obj prioritizes the test cases based on the objective 𝐹𝐷𝐶, G2obj prioritizes the test 
cases based on the objectives 𝐹𝐷𝐶 and 𝑇𝑅𝑆 giving equal weight to the objectives, and G3obj 
prioritizes the test cases based on 𝐹𝐷𝐶, 𝑇𝑅𝑆, and 𝐸𝐸𝑇 giving equal weight to each 
objective. 

RQ4. Is REMAP better than the static search-based TP approach (SSBP), i.e., static 
prioritization solutions obtained from 𝑺𝑷 (Section 5.3)? This research question is 
defined to evaluate if dynamic prioritization (𝐷𝐸𝑃 in Section 5.4) can indeed help to 
improve the effectiveness of TP as compared with TP approaches without considering 
runtime test case execution results. More specifically, we compare the best configurations 
of REMAP with two objectives and three objectives against the best static search-based TP 
approaches with two objectives and three objectives. Note that there are also 18 different 
static search-based approaches while using two objectives and three objectives (similar as 
REMAP in RQ1) since the rules for the objective 𝑇𝑅𝑆 are based on the specific rule 
mining algorithm (Section 5.3): 1) SSBPC4.5+IBEA(2obj), 2) SSBPC4.5+NSGA-II(2obj) , 3) 
SSBPC4.5+SPEA2(2obj) , 4) SSBPRIPPER+IBEA(2obj) , 5) SSBPRIPPER+NSGA-II(2obj) , 6) SSBPRIPPER+SPEA2(2obj) , 
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7) SSBPPART+IBEA(2obj) , 8) SSBPPART+NSGA-II (2obj), 9) SSBPPART+SPEA2(2obj) , 10) SSBPC4.5+IBEA(3obj) , 
11) SSBPC4.5+NSGA-II(3obj) , 12) SSBPC4.5+SPEA2(3obj) , 13) SSBPRIPPER+IBEA(3obj) , 14) 
SSBPRIPPER+NSGA-II(3obj), 15) SSBPRIPPER+SPEA2(3obj), 16) SSBPPART+IBEA(3obj) , 17) SSBPPART+NSGA-

II(3obj) , 18) SSBPPART+SPEA2(3obj).  

RQ5. Is REMAP better than the best rule-based TP approach (RBP), i.e., TP only 
based on the fail rules and pass rules from RM (Section 5.2)? Answering this research 
question can help us to know if SP together with DEP can help improve the effectiveness 
of TP as compared with the rule-based approach. Based on [31], we designed rule-based 
TP approach (RBP) by applying the RM and DEP components. Note that the difference 
between RBP and our approach REMAP is that RBP uses the solutions produced by RS, 
i.e., RS2obj and RS3obj (from RQ1) as input rather than statically prioritized solutions from 
SP. Since there are three different rule-mining algorithms (e.g., C4.5) and two different 
versions of RS (e.g., RS2obj and RS3obj), there are a total of six configurations for RBP: 1) 
RBPC4.5-2obj, 2) RBPRIPPER-2obj, 3) RBPPART-2obj, 4) RBPC4.5-3obj, 5) RBPRIPPER-3obj, and 6) RBPPART-

3obj. Therefore, we compare the best configurations of REMAP with two objectives and 
three objectives against the best configurations of RBP with two objectives and three 
objectives. 

6.2 Case Studies 

To evaluate the 18 variants of REMAP (i.e., 3 rule mining algorithms × 3 search 
algorithms × 2 set of objectives: two and three), we selected a total of five case studies: 
two case studies for two different VCS products from Cisco (i.e., CS1 and CS2), two open 
source case studies from ABB Robotics for Paint Control (CS3) [24] and IOF/ROL (CS4) 
[24], and Google Shared Dataset of Test Suite Results (GSDTSR) (CS5) [25]. For each 
case study, test case execution result is linked to a particular test cycle such that each test 
cycle is considered as an occurrence of regression testing. More specifically, each case 
study contains historical execution data of the test cases for more than 300 test cycles as 
shown in Table E-3. The historical execution data of the test cases are used to mine 
execution relations using the RM (Section 5.2) and calculate the 𝐹𝐷𝐶 for each test case 
(Section 5.3). Note that the open source case studies for CS3 - CS5 are publicly available at 
[53]. 

Table E-3. Overview of the case studies used for mining rules 
Case Study Data Set #Test Cases #Test Cycles #Verdicts 

CS1 Cisco Data Set1 60 8,322 296,042 
CS2 Cisco Data Set2 624 6,302 149,039 
CS3 ABB Paint Control 89 351 25,497 
CS4 ABB IOF/ROL 1,941 315 32,162 
CS5 Google GSDTSR 5,555 335 1,253,464 
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6.3 Experiment Tasks and Evaluation Metric 

6.3.1 Experiment Tasks 

To tackle RQ1, T1.1 and T1.2 are performed to compare the 18 variants of REMAP (i.e., 
using three rule mining algorithms and three search algorithms with two objectives and 
three objectives) against random search with two objectives (RS2obj) and three objectives 
(RS3obj) as shown in Table E-2. For RQ2, T2.1 and T2.2 are performed to find the best 
variants of REMAP with two objectives and three objectives, respectively, and T2.3 is done 
to compare the two best variants of REMAP with two objectives and three objectives. For 
RQ3, T3.1 and T3.2 are performed to compare the best variant of REMAP with two 
objectives and three objectives against the three variants of Greedy algorithms (i.e., G1obj, 
G2obj, and G3obj), respectively as presented in Table E-2. Furthermore, T4.1 and T4.2 are 
employed to find the best variants of SSBP with two objectives and three objectives, which 
are then compared against the best variant of REMAP with two objectives and three 
objectives using T4.3 and T4.4 to address RQ4 as shown in Table E-2. Finally, to address 
RQ5, T5.1 and T5.2 are employed to find the best variant of RBP with two objectives and 
three objectives, which are then compared with the best variant of REMAP with two 
objectives and three objectives using T5.3 and T5.4. 

For the industrial case studies (i.e., CS1 and CS2), we dynamically prioritize and execute 
the test cases in VCSs for the next test cycle (that has not been executed yet, e.g., test cycle 
6,303 for CS2) and evaluate the different variants of the approaches: RS, Greedy, SSBP, 
RBP, and REMAP. However, for the open source case studies (i.e., CS3 - CS5), we do not 
have access to the actual test cases to execute them as mentioned in Section 6.1. Thus, we 
use the historical test execution results without the latest test cycle for prioritizing the test 
cases and compare the performance of different approaches based on the actual test case 
execution results from the latest test cycle. For instance, for CS5, which has execution 
results for 336 test cycles [53], we used historical results from 335 test cycles to prioritize 
test cases for the next test cycle (i.e., 336). More specifically, we look at the execution 
result of each test case from the latest test cycle to know if the verdict of a test case is fail 
or pass, and accordingly, we apply the fail rules or pass rules. Note that such a way of 
comparison has been applied in the literature when it is difficult to execute the test cases at 
runtime in practice [24, 31]. 

6.3.2 Evaluation Metric 

We used Average Percentage of Fault Detected per Cost metric (APFDc) proposed by 
Elbaum et al. [26] as the evaluation metric to compare the performance of different 
approaches. APFDc is an extended version of the Average Percentage of Faults Detected 
(APFD) metric [7] to consider the test case execution cost (e.g., execution time). 
Specifically, APFDc measures the effectiveness of a test case ordering by summing up the 
cost of the first test cases that can detect the faults, and it has been widely applied in the 
literature when test case cost is available [54-56]. The APFDc for a solution can be 
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calculated as: 𝐴𝑃𝐹𝐷^ = 	
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, where 𝑛 denotes the number of test cases 

in the test suite 𝑇𝑆, 𝑚 denotes the number of faults detected by 𝑇𝑆, 𝑒𝑡k is the execution 
time of test case 𝑇k in 𝑇𝑆, and 𝑇𝐹+ represents the first test case in the solution that reveals 
fault 𝑖. Note that the value of APFDc is between 0 and 1 (0 - 100%) and higher the APFDc 
score, lower the average cost is needed to detect the same number of faults. 

6.4 Statistical Tests and Experiment Settings 

6.4.1 Statistical Tests 

Using the guidelines from [57], the Vargha and Delaney 𝐴%'	statistics [58], Mann-Whitney 
U test [59], Kruskal-Wallis test [60], and Dunn’s test [61] with Bonferroni Correction [62] 
are used to statistically evaluate the results for the five research questions as shown in 
Table E-2. The Vargha and Delaney	statistics is a non-parametric effect size measure and 
evaluates the probability of yielding higher values for the evaluation metric (i.e., APFDc) 
for two approaches. Mann-Whitney U test is used to indicate whether the observations 
(i.e., APFDc) in one data sample are likely to be larger than the observations in another 
sample. Kruskal-Wallis test indicates if there is a significant difference among the selected 
approaches. Dunn’s test is based on rank sums and is used often [63] as a post hoc 
procedure following rejection of a Kruskal-Wallis test to indicate which approach has a 
significant difference with which other approach.  

Specifically, for each pair of comparison, we used Vargha and Delaney 𝐴%'	statistics as 
an effect size measure and Mann Whitney U Test to assess the statistical significance of 
the results. When comparing the different approaches with one another (e.g.,9C2, i.e., 36 
pairwise comparisons for REMAP with two objectives in 𝑇'.%), we used Kruskal-Wallis 
test to evaluate if statistically significant difference exists among the approaches. After 
that, we used Dunn’s test with Bonferroni Correction to evaluate in which pair statistical 
significant exists. Note that for Mann-Whitney, Kruskal-Wallis, and Dunn’s test we chose 
the significance level of 0.05, i.e., a value less than 0.05 shows statistically significant 
differences.  

6.4.2 Experiment Settings 

We used the WEKA data mining software [64] to implement the component RM 
(Section 5.2). The input data format to be used by our RM is a file composed of instances 
that contain test case verdicts such that each instance in the file represents a test cycle. We 
employed a widely-used Java framework jMetal [65] to implement the component SP 
(Section 5.3), and the standard settings were applied to configure the search algorithms 
(e.g., NSGA-II) as are usually recommended [57]. More specifically, the population size is 
set as 100, the crossover rate is 0.9, the mutation rate is 1/(Total number of test cases), and 
the maximum number of fitness evaluation (i.e., termination criteria of the algorithm) is set 
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as 50,000.  For the case studies, we encoded each test suite to be prioritized as an abstract 
format (i.e., JSON file), which contains the key information of the test cases for 
prioritization, e.g., test case id, 𝐹𝐷𝐶. Afterward, a search algorithm (e.g., NSGA-II) is 
employed to produce the prioritized test suite that is formed as the same abstract format 
(i.e., JSON file), which consists of a list of prioritized test cases. Finally, the prioritized test 
cases are selected from the original test suite using the test case id and put for execution. 
All the experiments were conducted on the Abel cluster at the University of Oslo [66]. 

7 Results and Analysis 

7.1 RQ1. Sanity Check (18 variations of REMAP vs. RS2obj and RS3obj) 

Recall that RQ1 aims to assess the effectiveness of 18 variations of REMAP with two 
objectives (e.g., REMAPC4.5+IBEA(2obj)) and three objectives (e.g., REMAPPART+NSGA-II(3obj)) as 
compared to RS with two objectives (i.e., RS2obj) and three objectives (i.e., RS3obj) in terms 
of APFDc. Using the Vargha and Delaney statistics and the Mann Whitney U test to 
analyze the results, we observed that all the 18 variations of REMAP performed 
significantly better than RS2obj and RS3obj for all the five case studies, i.e., 𝐴%' for the 18 
variations of REMAP are greater than 0.7 and the p-values are less than 0.0001. The 
detailed results are presented in our technical report in [67]. 

Moreover, Table E-4 presents the average APFDc scores produced by RS2obj and RS3obj 
for the five case studies. As compared to RS2obj and RS3obj, on average different variations 
of REMAP achieved a better APFDc score of 1) 25.8% by REMAPC4.5+IBEA(2obj), 2) 25.4% by 
REMAPC4.5+NSGA-II(2obj), 3) 25.3% by REMAPC4.5+SPEA2(2obj), 4) 26.8% by 
REMAPRIPPER+IBEA(2obj), 5) 26.9% by REMAPRIPPER+NSGA-II(2obj), 6) 26.8% by 
REMAPRIPPER+SPEA2(2obj), 7) 24.3% by REMAPPART+IBEA(2obj), 8) 23.7% by REMAPPART+NSGA-

II(2obj), 9)  24.3% by REMAPPART+SPEA2(2obj), 10) 29.7% by REMAPC4.5+IBEA(3obj), 11) 26.3% by 
REMAPC4.5+NSGA-II(3obj), 12) 28.1% by REMAPC4.5+SPEA2(3obj), 13) 31.4% by 
REMAPRIPPER+IBEA(3obj), 14) 27.0% by REMAPRIPPER+NSGA-II(3obj), 15) 29.5% by 
REMAPRIPPER+SPEA2(3obj), 16) 28.9% by REMAPPART+IBEA(3obj), 17) 25.0% REMAPPART+NSGA-

II(3obj), 18)  27.6% REMAPPART+SPEA2(3obj). The APFDc scores for the 18 variations of REMAP 
can be consulted from our technical report in [67]. Fig. E-6 presents the boxplot of APFDc 
produced by RS2obj and RS3obj.  

Thus, we can answer RQ1 as REMAP can significantly outperform RS for all the five 
case studies defined in Section 6.1. Overall, on average, the different variants of REMAP 
with 18 different configurations achieved a better APFDc score of 26.8% as compared to 
RS2obj and RS3obj. 
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Table E-4. APFDc scores in percentage for different approaches for the case studies 

Approach 
Case Study 

Approach 
Case Study 

CS1 CS2 CS3 CS4 CS5 CS1 CS2 CS3 CS4 CS5 
RS2obj 53.37 51.86 48.91 51.99 54.59 SSBPRIPPER+IBEA(3obj) 58.86 83.02 54.40 79.47 83.83 
RS3obj 52.87 51.79 54.49 51.49 52.42 RBPRIPPER-2obj 69.09 66.91 64.48 83.94 78.47 
G1obj 61.61 35.50 38.81 94.22 89.36 RBPRIPPER-3obj 69.25 66.80 68.67 83.86 78.37 
G2obj 68.04 62.54 21.45 88.11 90.13 REMAPRIPPER+SPEA2(2obj) 76.21 77.03 67.63 90.91 84.27 
G3obj 68.04 64.70 21.45 88.11 90.10 REMAPRIPPER+IBEA(3obj) 73.44 88.40 79.83 87.78 89.61 

SSBPRIPPER+

SPEA2(2obj) 
66.09 66.87 42.26 77.67 79.13   

7.2 RQ2. Comparison of different variants of REMAP 

This research question aims to find the best configuration of REMAP with two objectives 
and three objectives, and among one another using the APFDc score. The Kruskal-Wallis 
test was first performed for all the samples obtained by the 1) nine variants of REMAP 
with two objectives and 2) nine variants of REMAP with three objectives. We obtained p-
values less than 0.0001 which shows that there exists at least one variant of REMAP with 
significant difference for each REMAP with two objectives and three objectives.  

Therefore, for the post-hoc comparison we used the Vargha and Delaney statistics and 
Dunn’s test with Bonferroni correction to rank the different variants of REMAP such that 
for two algorithms 𝐴 and 𝐵, 𝐴 is ranked higher than 𝐵 if 𝐴%' is higher than 0.5 and the p-
value is less than 0.05 or vice versa as mentioned in Section 6.4.1. If the p-value is higher 
than 0.05, the algorithms 𝐴 and 𝐵 are ranked in the same position. Specifically, our post-
hoc analysis consists of 9C2 = 36 combinations for each REMAP with two objectives and 
three objectives.  
 

Table E-5. Ranking of 18 variants of REMAP with two objectives  
and three objectives for the five case studies* 

CS # of 
obj 

Rank 
1 2 3 4 5 6 7 8 9 

CS1 
2 REMAP6/REMAP4 REMAP5 REMAP1/REMAP2 REMAP3 REMAP8 REMAP7/REMAP9 
3 REMAP4 REMAP5 REMAP6 REMAP1 REMAP2 REMAP3 REMAP8 REMAP9 REMAP7 

CS2 
2 REMAP7 REMAP9 REMAP4 REMAP6/REMAP8 REMAP1/REMAP5 REMAP2/REMAP3 
3 REMAP4 REMAP7 REMAP1 REMAP9 REMAP3 REMAP2 REMAP5 REMAP6 REMAP8 

CS3 
2 REMAP6 REMAP5 REMAP4 REMAP3 REMAP9 REMAP1/REMAP7 REMAP2/REMAP8 
3 REMAP4 REMAP7 REMAP1 REMAP6 REMAP3 REMAP9 REMAP5 REMAP2 REMAP8 

CS4 
2 REMAP1 REMAP3 REMAP2 REMAP5/REMAP6/REMAP7/REMAP8/REMAP9 REMAP4 
3 REMAP7 REMAP3 REMAP9 REMAP1 REMAP2 REMAP4 REMAP6 REMAP5 REMAP8 

CS5 
2 REMAP5 REMAP3 REMAP2 REMAP1 REMAP4/REMAP6/REMAP7/REMAP8/REMAP9 
3 REMAP9 REMAP4 REMAP6 REMAP1 REMAP3 REMAP7 REMAP8 REMAP2 REMAP5 

*REMAP1: REMAPC4.5+IBEA, REMAP2: REMAPC4.5+NSGA-II, REMAP3: REMAPC4.5+SPEA2, REMAP4: REMAPRIPPER+IBEA, REMAP5: REMAPRIPPER+NSGA-II, 
REMAP6: REMAPRIPPER+SPEA2, REMAP7: REMAPPART+IBEA, REMAP8: REMAPPART+NSGA-II, REMAP9: REMAPPART+SPEA2. 

Table E-5 shows the rank of different variants of REMAP with two objectives and three 
objectives such that a lower rank implies a better performance. Based on Table E-5, we can 
observe that REMAPRIPPER+SPEA2(2obj) and REMAPRIPPER+IBEA(3obj) performed the best on 
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average among the different variants of REMAP with two objectives and three objectives, 
respectively. The detailed results (i.e., 𝐴%' values, p-values, and APFDc scores for the 18 
variations of REMAP) can be consulted from our technical report in [67].  

Additionally, on comparing the best variant of REMAP with two objectives (i.e., 
REMAPRIPPER+SPEA2(2obj)) against the best variant of REMAP with three objectives 
(REMAPRIPPER+IBEA(3obj)), we noticed that REMAPRIPPER+IBEA(3obj) performed significantly 
better than REMAPRIPPER+SPEA2(2obj) for 60% (i.e., three case studies) as shown in Table E-6. 
On average, REMAPRIPPER+IBEA(3obj) achieved an overall higher APFDC score of 4.6% as 
compared to REMAPRIPPER+SPEA2(2obj) for the five case studies as shown in Table E-4. 
Moreover, Fig. E-6 presents the boxplot of APFDC scores produced by 
REMAPRIPPER+SPEA2(2obj) and REMAPRIPPER+IBEA(3obj), which shows that overall 
REMAPRIPPER+IBEA(3obj) achieved a higher median APFDC score than REMAPRIPPER+SPEA2(2obj). 

 
Table E-6. Comparison of APFDc with respect to REMAPRIPPER+SPEA2(2obj) using the 

Vargha and Delaney Statistics and U test* 

Comparison 
CS1 CS2 CS3 CS4 CS5 

𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 
REMAP4-3obj vs. 

REMAP6-2obj 
0.23 <0.0001 1.00 <0.0001 0.97 <0.0001 0.24 <0.0001 0.92 <0.0001 

*REMAP4-3obj: REMAPRIPPER+IBEA(3obj) , REMAP6-2obj: REMAPRIPPER+SPEA2(2obj). 

Thus, we can answer RQ2 as REMAPRIPPER+SPEA2(2obj), and REMAPRIPPER+IBEA(3obj) 
performed the best among the different variants of REMAP with two objectives and three 
objectives, respectively. Additionally, REMAPRIPPER+IBEA(3obj) performed the best on average 
among the 18 variants of REMAP with two objectives and three objectives. 

7.3 RQ3. Comparison of the best variants of REMAP with Greedy 

Recall that this research question aims to compare the performance of best variants of 
REMAP with two objectives (i.e., REMAPRIPPER+SPEA2(2obj)) and three objectives (i.e., 
REMAPRIPPER+IBEA(3obj)) against the three variants of Greedy: G1obj, G2obj, and G3obj. Table E-7 
presents the results of comparing REMAPRIPPER+SPEA2(2obj) against G1obj, G2obj, and G3obj. Based 
on the results from Table E-7, it can be observed that REMAPRIPPER+SPEA2(2obj) significantly 
outperformed the three variants of Greedy for 73.3% (11 out of 15) of the case studies. 
Moreover, we can observe from Table E-4 that on average REMAPRIPPER+SPEA2(2obj) achieved 
a better APFDc score of 15.3%, 13.2%, and 12.7% as compared to G1obj, G2obj, and G3obj. 

Similarly, Table E-8 presents the result of comparing REMAPRIPPER+IBEA(3obj) against 
G1obj, G2obj, and G3obj, which shows that it significantly outperformed G1obj, G2obj, and G3obj 
for 66.7% (10 out of 15) of the case studies and there was no significant difference in the 
performance for 6.7% (1 out of 15) of the case studies. Additionally, it can be observed 
from Table E-4 that REMAPRIPPER+IBEA(3obj) attained a higher APFDc score of 19.9% (i.e., 
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), 17.8%, and 17.3% 
relative to G1obj, G2obj, and G3obj. 
 

Table E-7. Comparison of APFDc with respect to REMAPRIPPER+SPEA2(2obj) using the 
Vargha and Delaney Statistics and U test 

RQ Comparison 
CS1 CS2 CS3 CS4 CS5 

𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 

3 
G1obj 1.00 <0.0001 1.00 <0.0001 1.00 <0.0001 0.17 <0.0001 0.01 <0.0001 
G2obj 1.00 <0.0001 1.00 <0.0001 1.00 <0.0001 0.85 <0.0001 0.01 <0.0001 
G3obj 1.00 <0.0001 0.99 <0.0001 1.00 <0.0001 0.85 <0.0001 0.01 <0.0001 

4 
SSBPRIPPER+SPEA2 (2obj) 1.00 <0.0001 0.95 <0.0001 1.00 <0.0001 0.95 <0.0001 0.83 <0.0001 
SSBPRIPPER+IBEA(3obj) 1.00 <0.0001 0.09 <0.0001 0.98 <0.0001 0.96 <0.0001 0.50 0.862 

5 
RBPRIPPER-2obj 0.82 <0.0001 0.89 <0.0001 0.60 <0.0001 0.86 <0.0001 0.85 <0.0001 
RBPRIPPER-3obj 0.80 <0.0001 0.90 <0.0001 0.46 <0.0001 0.86 <0.0001 0.86 <0.0001 

 
Table E-8. Comparison of APFDc with respect to REMAPRIPPER+IBEA(3obj) using the 

Vargha and Delaney Statistics and U test 

RQ Comparison 
CS1 CS2 CS3 CS4 CS5 

𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 
p-

value 𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 𝑨𝟏𝟐 p-value 

3 
G1obj 1.00 <0.0001 1.00 <0.0001 1.00 <0.0001 0.01 <0.0001 0.61 <0.0001 
G2obj 0.92 <0.0001 1.00 <0.0001 1.00 <0.0001 0.43 <0.0001 0.48 0.021 
G3obj 0.92 <0.0001 1.00 <0.0001 1.00 <0.0001 0.43 <0.0001 0.49 0.184 

4 
SSBPRIPPER+SPEA2(2obj) 0.94 <0.0001 1.00 <0.0001 1.00 <0.0001 0.86 <0.0001 0.98 <0.0001 
SSBPRIPPER+IBEA(3obj) 1.00 <0.0001 0.95 <0.0001 1.00 <0.0001 0.91 <0.0001 0.87 <0.0001 

5 
RBPRIPPER-2obj 0.70 <0.0001 1.00 <0.0001 0.89 <0.0001 0.72 <0.0001 0.98 <0.0001 
RBPRIPPER-3obj 0.69 <0.0001 1.00 <0.0001 0.82 <0.0001 0.72 <0.0001 0.98 <0.0001 

Thus, we can answer RQ2 as the two best variants of REMAP with two objectives (i.e., 
REMAPRIPPER+SPEA2(3obj)) and three objectives (i.e., REMAPRIPPER+IBEA(3obj)) performed 
significantly better than G1obj, G2obj, and G3obj for more than 65% of the case studies 
defined in Section 6.1. Overall, as compared to G1obj, G2obj, and G3obj, 
REMAPRIPPER+SPEA2(3obj) and REMAPRIPPER+IBEA(3obj) achieved a better APFDc score of 
13.7% and 18.3%, respectively. 

7.4 RQ4. Comparison of the best variants of REMAP with the best 
variants of SSBP 

This RQ aims to compare the best variant of REMAP with two objectives (i.e., 
REMAPRIPPER+SPEA2(2obj)) and three objectives (i.e., REMAPRIPPER+IBEA(3obj)) against the best 
variants of SSBP with two objectives and three objectives. First, Kruskal-Wallis test was 
first performed for all the samples obtained by the 1) nine variants of SSBP with two 
objectives and 2) nine variants of SSBP with three objectives. We obtained p-values less 
than 0.0001, which shows that there exists at least one variant of SSBP with a significant 
difference for each SSBP with two objectives and three objectives.  
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Table E-9 shows the rank of nine variants of SSBP for each SSBP with two objectives 
and three objectives such that a lower rank implies a better performance using the Vargha 
and Delaney statistics and the Dunn’s test with Bonferroni Correction as done in Section 
7.2. Based on Table E-9, we can observe that on average SSBPRIPPER+SPEA2(2obj) and 
SSBPRIPPER+IBEA(3obj) performed the best with two objectives and three objectives, 
respectively. The raw 𝐴%' values, p-values, and APFDc scores for the 18 variations of 
SSBP are provided in [67].  

 
Table E-9. Ranking of 18 variants of SSBP with two objectives and three objectives* 

CS 
# of 
obj 

Rank 
1 2 3 4 5 6 7 8 9 

CS1 
2 SSBP6 SSBP4 SSBP5 SSBP2 SSBP1 SSBP3 SSBP7 SSBP8 SSBP9 
3 SSBP4 SSBP5 SSBP6 SSBP2 SSBP7 SSBP9 SSBP8 SSBP1 SSBP3 

CS2 
2 SSBP7 SSBP9 SSBP8 SSBP1 SSBP3 SSBP2 SSBP4 SSBP6 SSBP5 
3 SSBP7 SSBP1 SSBP4 SSBP9 SSBP3 SSBP6 SSBP8 SSBP2 SSBP5 

CS3 
2 SSBP6 SSBP9 SSBP3 SSBP5 SSBP2 SSBP8 SSBP1 SSBP4 SSBP7 
3 SSBP3 SSBP9 SSBP4 SSBP6 SSBP7 SSBP2 SSBP1 SSBP8 SSBP5 

CS4 
2 SSBP7 SSBP1 SSBP3 SSBP2 SSBP6 SSBP8 SSBP5 SSBP4 SSBP9 
3 SSBP7 SSBP4 SSBP3 SSBP1 SSBP9 SSBP6 SSBP5 SSBP2 SSBP8 

CS5 
2 SSBP5 SSBP2 SSBP6 SSBP8 SSBP3 SSBP4 SSBP1/SSBP7/SSBP9 
3 SSBP1 SSBP3 SSBP6 SSBP9 SSBP7 SSBP4 SSBP2 SSBP5 SSBP8 

*SSBP1: SSBPC4.5+IBEA, SSBP2: SSBPC4.5+NSGA-II, SSBP3: SSBPC4.5+SPEA2, SSBP4: SSBPRIPPER+IBEA, SSBP5: SSBPRIPPER+NSGA-II, 
SBPS6: SSBPRIPPER+SPEA2, SBPS7: SSBPPART+IBEA, SSBP8: SSBPPART+NSGA-II, SSBP9: SSBPPART+SPEA2. 

Based on Table E-7, it can be observed that REMAPRIPPER+SPEA2(2obj) significantly 
outperformed SSBPRIPPER+SPEA2(2obj) and SSBPRIPPER+IBEA(3obj) for 80% (8 out of 10) of the case 
studies, while there was no significant difference for 10% (1 out of 10) of the case studies. 
Moreover, REMAPRIPPER+SPEA2(2obj) achieved a higher APFDc score of 12.8% and 7.3% on 
average as compared to SSBPRIPPER+SPEA2(2obj) and SSBPRIPPER+IBEA(3obj). Similarly, we can 
observe from Table E-8 that REMAPRIPPER+IBEA(3obj) performed significantly better than 
SSBPRIPPER+SPEA2(2obj) and SSBPRIPPER+IBEA(3obj) for 100% (10 out of 10) of the case studies. 
Additionally, REMAPRIPPER+IBEA(3obj) obtained a better APFDc score of 17.4% and 11.9% as 
compared to SSBPRIPPER+SPEA2(2obj) and SSBPRIPPER+IBEA(3obj). Fig. E-6 shows that the median 
APFDc scores produced by REMAPRIPPER+SPEA2(2obj), REMAPRIPPER+IBEA(3obj) are much higher 
than SSBPRIPPER+SPEA2(2obj) and SSBPRIPPER+IBEA(3obj). 

Thus, we can answer RQ4 as the best variants of REMAP with two objectives, and three 
objectives managed to significantly outperform the best variants of SSBP for more than 
80% of the case studies. Overall, as compared to the best variants of SSBP with two and 
three objectives, the best variants of REMAP with two objectives and three objectives 
achieved a better APFDc score of 10.1% and 14.7% on average. 
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7.5 RQ5. Comparison of the best variants of REMAP with the best 
variants of RBP 

Recall that this RQ aims to compare the best variants of RBP using RS2obj (i.e., RBPRIPPER-

2obj) and RS3obj (i.e., RBPRIPPER-3obj) against the best variants of REMAP with two objectives 
and three objectives obtained in Section 7.2. The Kruskal-Wallis test was first performed 
for all the samples obtained by the 1) three variants of RBP with two objectives and 2) 
three variants of RBP with three objectives. We obtained p-values less than 0.0001, which 
shows that there exists at least one variant of RBP with a significant difference for each 
RBP with two objectives and three objectives. 
 

Table E-10: Ranking of six variants of RBP with two objectives and three objectives 

CS 
Initial 

Solution 
Rank 

1 2 3 

CS1 
RS2obj RBPRIPPER-2obj RBPPART-2obj RBPC4.5-2obj 
RS3obj RBPRIPPER-3obj RBPPART-2obj RBPC4.5-2obj 

CS2 
RS2obj RBPRIPPER-2obj RBPC4.5-2obj RBPPART-2obj 
RS3obj RBPRIPPER-3obj RBPC4.5-3obj RBPPART-3obj 

CS3 
RS2obj RBPRIPPER-2obj RBPC4.5-2obj RBPPART-2obj 
RS3obj RBPRIPPER-3obj RBPC4.5-2obj RBPPART-2obj 

CS4 
RS2obj RBPRIPPER-2obj RBPC4.5-2obj RBPPART-2obj 
RS3obj RBPRIPPER-2obj RBPC4.5-2obj RBPPART-2obj 

CS5 
RS2obj RBPPART-2obj RBPC4.5-2obj RBPRIPPER-2obj 
RS3obj RBPPART-2obj RBPC4.5-2obj RBPRIPPER-2obj 

We use the Vargha and Delaney statistics and the Dunn’s test with Bonferroni 
Correction to rank the different variants of RBP (as done in Section 7.2) in Table E-10 
such that a lower rank implies better performance. We can observe from Table E-10 that 
RBPRIPPER-2obj and RBPRIPPER-3obj performed the best with two objectives and three objectives. 
The detailed results (e.g., APFDc scores for the six variations of RBP) can be consulted 
from our technical report in [67].  

Table E-7 and Table E-8 presents the result of comparing the two best variants of 
REMAP with two objectives (i.e., REMAPRIPPER+SPEA2(2obj)) and three objectives (i.e., 
REMAPRIPPER+IBEA(3obj)) against the two best variants of RBP (i.e., RBPRIPPER-2obj and 
RBPRIPPER-3obj). It can be observed from Table E-7 and Table E-8 that as compared to 
RBPRIPPER-2obj and RBPRIPPER-3obj, 1) REMAPRIPPER+SPEA2(2obj) performs significantly better for 
90% (i.e., 9 out of 10) and 2) REMAPRIPPER+IBEA(3obj) performs significantly better for 100% 
(i.e., 10 out of 10) of the case studies. Furthermore, as observed from Table E-4, 
REMAPRIPPER+SPEA2(2obj) and REMAPRIPPER+IBEA(3obj) achieved on average a better APFDc score 
of 6.2% and 10.8%, respectively. Moreover, the boxplot in Fig. E-6 shows that the median 
APFDc score produced by REMAPRIPPER+SPEA2(2obj), REMAPRIPPER+IBEA(3obj) are higher than 
RBPRIPPER-2obj, and RBPRIPPER-3obj. 

Therefore, we can answer RQ5 as the two best variants of REMAP with two objectives, 
and three objectives performed significantly better than the two best variants of RBP for 
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more than 90% of the case studies. Overall on average, the best variants of REMAP with 
two objectives and three objectives achieved a better APFDc score of 6.2% and 10.8% as 
compared to the best variants of RBP with two objectives and three objectives. 

          
                             CS1                                                                                      CS2                                                                                      CS3 

              
                                                      CS4                                                                                                    CS5 

Fig. E-6. Boxplot of APFDc produced by different approaches for the case studies* 
*A1: REMAPRIPPER+SPEA2(2obj), A2: REMAPRIPPER+IBEA(3obj), A3: RS2obj, A4: RS3obj, A5: SSBPRIPPER+SPEA2(2obj),  

A6: SSBPRIPPER+IBEA(3obj),A7: RBPRIPPER-2obj, A8: RBPRIPPER-3obj. 

8 Overall Discussion and Threats to Validity 

8.1 Overall Discussion 

For RQ1, all the 18 variations of REMAP significantly outperformed the two variants of 
random search (i.e., RS2obj and RS3obj) for all the five case studies, which imply that the TP 
problems are not trivial to solve and require an efficient TP approach. Regarding RQ2, 
REMAP with the configuration of RIPPER and SPEA2 performed the best among the nine 
variants of RIPPER with two objectives, while REMAP with the configuration of RIPPER 
and IBEA performed the best among the nine variants of RIPPER with three objectives. 
This is in consistent with the performance of the individual algorithms in different 
approaches, for instance, 1) RIPPER performed the best among the three variants of RBP 
with both two objectives and three objectives (Section 7.5), and 2) RIPPER with SPEA2 
and IBEA performed the best among the nine variants of SSBP with two objectives and 
three objectives, respectively (Section 7.4). Moreover, REMAP with the configuration of 
RIPPER and IBEA performed the best overall on average, which implies that using the 
execution time of the test cases as an objective can help improve TP. Therefore, if the 
execution time of the test cases is available, it is beneficial to use three objectives and 
REMAP with RIPPER and IBEA. 

For RQ3, the best configuration of REMAP with two objectives and three objectives 
outperformed all the three variants of the Greedy algorithm (i.e., G1obj, G2obj, and G3obj) for 
an average of 73.3% (11 out of 15) and 66.7% (10 out of 15) of case studies, respectively. 
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The better performance of REMAP can be explained by the fact that Greedy algorithm 
greedily prioritizes the best test case one at a time in terms of the defined objectives until 
the termination conditions are met. However, the variants of Greedy may get stuck in local 
search space and result in sub-optimal solutions [68]. Moreover, REMAP dynamically 
prioritizes the test cases based on the execution result of the test case using the mined rules 
defined in Section 5.2, which helps REMAP to prioritize and execute the faulty test cases 
as soon as possible while executing the test cases less likely to find fault later. On the 
contrary, for 26.7% of the case studies Greedy algorithm outperforms the best variants of 
REMAP. This can be explained by the fact that all test cases that failed in those case 
studies had a comparatively high value of 𝐹𝐷𝐶 (e.g., >0.9 for CS4), and the different 
variants of Greedy algorithm greedily prioritizes the test cases, e.g., G1obj prioritizes the test 
cases based only on 𝐹𝐷𝐶. However, note that higher 𝐹𝐷𝐶 does not always imply better 
APFDc as shown in where the three variants of the Greedy algorithm have even worse 
performance than two variants of RS for CS3. 

Regarding RQ4, as compared to the best variants of SSBP with two objectives and three 
objectives, the best variant of REMAP with 1) two objectives performed significantly 
better for 80% and 2) three objectives performed significantly better for 100% of the case 
studies. This implies that it is essential to consider the runtime test case execution results in 
addition to the historical execution data when addressing TP problem. More specifically, 
the mined fail rules (Section 5.2) help to prioritize the related test cases likely to fail (to 
execute earlier) while the mined pass rules (Section 5.2) assist in deprioritizing the test 
cases likely to pass (to execute later). The best variant of REMAP with two objectives did 
not perform significantly better than the best variant of SSBP with three objectives for 20% 
of the case studies, which implies that the execution time of the test case needs to be 
considered for TP. 

For RQ5, the best variant of SSBP with two objectives and three objectives significantly 
outperformed the best variants of RBP for 90% and 100% of the case studies. This can be 
explained by the fact that RBP has no heuristics to prioritize the initial set of test cases for 
execution and certain randomness is introduced when there are no mined rules that can be 
used to choose the next test cases for execution. As compared with RBP, REMAP uses SP 
(Section 5.3) to prioritize the test cases and take them as input for Dynamic Executor and 
Prioritizer (DEP). Therefore, the randomness of selecting the test cases for execution can 
be reduced when no mined rules can be applied. 

Furthermore, Fig. E-7 shows the percentage of faults detected when executing the test 
suite execution budget for the five case studies using the average of the best variants for 
the five approaches. : 1) RS (i.e., RS1obj and RS2obj), 2) Greedy (i.e., G1obj, G2obj, and G3obj), 
3) SSBP (SSBPRIPPER+SPEA2(2obj), SSBPRIPPER+IBEA(3obj)), 4) RBP (RBPRIPPER-2obj, RBPRIPPER-3obj), 
and 5) REMAP (REMAPRIPPER+SPEA2(2obj), REMAPRIPPER+IBEA(3obj)). As shown in Fig. E-7, the 
two best variants of REMAP manage to detect the faults faster than the other approaches 
for almost all the case studies. On an average, the two best variants of REMAP only 
required 24% of the overall test suite execution budget to detect 82% of the faults for the 
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five case studies while the best variants of RS, Greedy, SSBP, and RBP took 60%, 47%, 
42%, and 36% of the overall test suite execution budget, respectively to detect the same 
amount of faults as detected by the two best variants of REMAP. 

For CS2, the mean 𝐴𝑃𝐹𝐷 produced by G1obj is worse than RS2obj and RS3obj (Table E-4) 
since the test cases that failed in CS2 had a very low value for	𝐹𝐷𝐶 (<0.2), i.e., the test 
cases did not fail many times in the past executions. Additionally, for CS3, the mean 𝐴𝑃𝐹𝐷 
obtained by G1obj, G2obj, G3obj and the best variants of SSBP is worse than RS2obj and RS3obj 
(as shown in Table E-4) due to the fact that the test cases that failed in CS3 had also a 
low	𝐹𝐷𝐶 (<0.5), and one test case that failed in CS3 had the 𝐹𝐷𝐶 value as 0. Thus, the best 
variants of SSBP, G1obj, G2obj, G3obj are not able to prioritize that fail test case (with 𝐹𝐷𝐶 
value of 0) and it is executed very late (i.e., after executing more than 85% of the total test 
suite execution time) as shown in Fig. E-7. However, the best variants of REMAP and 
RBP still managed to find that fail test case by executing less than half the test suite 
execution budget. This is due to the fact that the mined rules help to deprioritize the test 
cases likely to pass, and thus, they are able to execute the test case for execution faster. 

      
                                      CS1                                                                                        CS2                                                                                         CS4 

        
                                                               CS3                                                                                                              CS5 

Fig. E-7. Percentage of total faults detected on executing test suite total execution budget* 
A1: avg(REMAPRIPPER+SPEA2(2obj), REMAPRIPPER+IBEA(3obj)), A2: avg(SSBPRIPPER+SPEA2(2obj), SSBPRIPPER+IBEA(3obj)),  

A3: avg(RBPRIPPER-2obj, RBPRIPPER-3obj), A4: avg(RS2obj, RS3obj), A5: avg(G1obj, G2obj, G3obj). 
 

8.2 Threats to Validity 

The threats to internal validity consider the internal parameters (e.g., algorithm parameters) 
that might influence the obtained results [69]. In our experiments, internal validity threats 
might arise due to experiments with only one set of configuration settings for the algorithm 
parameters [70]. However, note that these settings are from the literature [71]. Moreover, 
to mitigate the internal validity threat due to parameter settings of the rule mining 
algorithms (e.g., PART, RIPPER), we used the default parameter settings that have 
performed well in the state-of-the-art [64, 72-74].  
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Threats to construct validity arise when the measurement metrics do not sufficiently 
cover the concepts they are supposed to measure [8]. To mitigate this threat, we compared 
the different approaches using the Average Percentage of Fault Detected per Cost metric 
(APFDc) metric that has been widely employed in the literature when test case cost is 
available [54-56]. Another threat to construct validity is the assumption that each failed test 
case indicates a different failure in the system under test. However, the mapping between 
fault and test case is not easily identifiable for both the two industrial case studies and three 
open source ones, and thus we assumed that each failed test case is assumed to cause a 
separate fault. Note that such assumption is held in many works in the literature [9, 24, 31]. 
Moreover, we did not execute the test cases from the three open source case studies since 
we do not have access to the actual test cases. Therefore, we looked at the latest test cycle 
to obtain the test case results, which have been done in the existing literature when it is 
challenging to execute the test cases [24, 31]. 

The threats to conclusion validity relate to the factors that influence the conclusion 
drawn from the experiments [75].  In our context, conclusion validity threat arises due to 
the use of randomized algorithms that is responsible for the random variation in the 
produced results. To mitigate this threat, we repeated each experiment 30 times for each 
case study to reduce the probability that the results were obtained by chance. Moreover, 
following the guidelines of reporting results for randomized algorithms [57], we employed 
the Vargha and Delaney statistics test statistics as the effect size measure to determine the 
probability of yielding higher performance by different algorithms and Mann-Whitney U 
test for determining the statistical significance of results.  

The threats to external validity are related to the external factors that affect the 
generalization of the results [69]. The first threat to external validity concerns the number 
of case studies used to verify the results. To mitigate this threat, we chose five case studies 
(two industrial ones and three open source ones) to evaluate REMAP empirically. It is also 
worth mentioning that such threats to external validity are common in empirical studies 
[50]. The second threat to external validity is the selection of rule mining and search 
algorithms. To mitigate this threat we selected three different rule mining algorithms from 
the three possible paradigms for supervised rule mining, and we also employed three 
representative multi-objective search algorithms from the literature [41]. 

9 Related Work 

There exists a large body of research on TP [7, 8, 26, 28, 76-78], and a broad view of the 
state-of-the-art on TP is presented in [79, 80]. Different kinds of literature have presented 
different prioritization techniques such as search-based [8, 28, 76] and linear programming 
based [27, 81, 82]. Since our approach REMAP is based on historical execution results and 
rule mining, we discuss the related work from these two angles. 
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9.1 History-Based TP (SP) 
History-based prioritization techniques prioritize test cases based on their historical 
execution data with the aim to execute the test cases most likely to fail first [12]. History-
based prioritization techniques can be classified into two categories: static prioritization 
and dynamic prioritization. Static prioritization produces a static list of test cases that are 
not changed while executing the test cases while dynamic prioritization changes the order 
of test cases at runtime. 

Static TP: Most of the history-based prioritization techniques produce a static order of test 
cases [9, 12-14, 48, 83, 84]. For instance, Kim et al. [12] prioritized test cases based on the 
historical execution data where they consider the number of previous faults exposed by the 
test cases as the key prioritizing factor. Elbaum et al. [9] used time windows from the test 
case execution history to identify how recently test cases were executed and detected 
failures for prioritizing test cases. Park et al. [83] considered the execution cost of the test 
case and the fault severity of the detected faults from the test case execution history for TP. 
Wang et al. [16, 29] defined fault detection capability (𝐹𝐷𝐶) as one of the objectives for 
TP while using multi-objective search. As compared to the above-mentioned works, 
REMAP poses at least three differences: 1) REMAP defines two types of rules: fail rule 
and pass rule (Section 5.2) and mines these rules from historical test case execution data 
with the aim to support TP; 2) REMAP defines a new objective (i.e., test case reliance 
score for the component SP in Section 5.3) to measure to what extent, executing a test case 
can be used to predict the execution results of other test cases, which is not the case in the 
existing literature; and 3) REMAP proposes a dynamic method to update the test case order 
based on the runtime test case execution results. 

Dynamic TP: Qu et al. [85] used historical execution data to prioritize test cases statically 
and after that, the runtime execution result of the test case(s) is used for dynamic 
prioritization using the relation among test cases. To obtain relation among the test cases, 
they [85] group together the test cases that detected the same fault in the historical 
execution data such that all the test cases in the group are related. Our work is different 
from [85] in at least three aspects: 1) REMAP uses rule-mining to mine two types of 
execution rules  among test cases (Section 5.2), which is not the case in [85]; 2) sensitive 
constant needs to be set up manually to prioritize/deprioritize test cases in [85], however, 
REMAP does not require such setting; 3) REMAP uses either a) 	𝐹𝐷𝐶 and 𝑇𝑅𝑆 or b) 
	𝐹𝐷𝐶, 𝑇𝑅𝑆, and 𝐸𝐸𝑇 (Section 5.3) for static prioritization unlike [85] whereas only 𝐹𝐷𝐶 is 
considered for static prioritization in [85]. 

9.2 Rule Mining for Regression Testing 
There are only a few works that focus on applying rule mining techniques for TP [86, 87]. 
The authors in [86, 87] modeled the system using Unified Modeling Language (UML) and 
maintained a historical data store for the system. Whenever the system is changed, 
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association rule mining is used to obtain the frequent pattern of affected nodes that are then 
used for TP. As compared with these studies [86, 87], REMAP is different in at least two 
ways: 1) REMAP uses the execution result of the test cases to obtain fail rules and pass 
rules; 2) REMAP dynamically updates the test order based on the test case execution 
results. Another work [31] proposed a rule mining based technique for improving the 
effectiveness of the test suite for regression testing. More specifically, they use association 
rule mining to mine the execution relations between the smoke test failures (smoke tests 
refer to a small set of test cases that are executed before running the regression test cases) 
and test case failures using the historical execution data. When the smoke tests fail, the 
related test cases are executed. As compared to this approach, REMAP has at least three 
key differences: 1) we aim at addressing test case prioritization problem while the test case 
order is not considered in [31]; 2) REMAP uses a search-based test case prioritization 
component to obtain the static order of test case before execution, which is different than 
[31] that executes a set of smoke test cases to select the test cases for execution; 3) 
REMAP defines two sets of rules (i.e., fail rule and pass rule) while only fail rule is 
considered in [31]. 

In our conference paper [17], we proposed a TP approach, REMAP that uses rule 
mining (using RIPPER) and multi-objective search (using NSGA-II) for dynamic test case 
prioritization. The performance of REMAP is assessed using Average Percentage of Faults 
Detected (𝐴𝑃𝐹𝐷) metric and compared with one variant of RS, two variants of Greedy, 
one variant of SSBP, and one variant of RBP. As compared to this work, our current paper 
has at least four key differences: 1) an extensive evaluation of REMAP is conducted using 
a combination of three rule mining algorithms (i.e., C4.5, RIPPER, and PART) and three 
search algorithms (i.e., NSGA-II, SPEA2, IBEA) for a total of nine different 
configurations of REMAP; 2) an additional objective (i.e., EET) for SP in REMAP is 
defined and, nine more configurations of REMAP are evaluated (i.e., in total we evaluate 
18 configurations of REMAP); 3) the performance of the approaches are assessed using the 
Average Percentage of Faults Detected per Cost (𝐴𝑃𝐹𝐷^) metric that takes into account the 
execution time of the test cases; 4) different variants of REMAP are compared with two 
variants of RS, three variants of Greedy, 18 variants of SSBP, and six variants of RBP. 

10 Conclusion 

This paper introduces and conducts an extensive empirical evaluation of a rule mining and 
search-based dynamic prioritization approach (named as REMAP) that has three key 
components (i.e., Rule Miner, Static Prioritizer, and Dynamic Executor and Prioritizer) 
with the aim to detect faults earlier. REMAP was extensively evaluated by employing five 
case studies: two industrial ones and three open source ones using 1) three rule mining 
algorithms, 2) three search algorithms, and 3) two different set of objectives (i.e., two and 
three). REMAP with the configuration of RIPPER and SPEA2 performed the best while 
using two objectives while REMAP with the configuration of RIPPER and IBEA 



 
 

207 
 
 
 
 
 

performed the best while using three objectives among the 18 variations of REMAP. The 
results showed that the best variants of REMAP with two objectives and three objectives 
achieved a higher Average Percentage of Faults Detected per Cost (𝐴𝑃𝐹𝐷^) of 14.2% (i.e., 
13.2%, 15.9%, 21.5%, 13.3%, and 6.9%) and 18.8% (i.e., 10.4%, 27.3%, 33.7%, 10.1%, 
and 12.2%) as compared to the best variants of random search, greedy, static search-based 
prioritization, and rule-based prioritization with two objectives and three objectives. In the 
future, we plan to involve test engineers from our industrial partner to deploy and assess 
the effectiveness of the best configuration of REMAP in real industrial settings. 
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