Shape Optimization with Multiple Meshes in the FEniCS-framework

Jørgen S. Dokken ${ }^{1}$, Simon W. Funke ${ }^{1}$, August Johansson ${ }^{1}$, Marie E. Rognes ${ }^{1}$, Stephan Schmidt ${ }^{2}$

Simula Research Laboratory, Fornebu, Norway ${ }^{1}$, University of Würzburg, Würzburg, Germany ${ }^{2}$

September 28, 2017

The FEniCS computing platform

FEniCS is a popular open-source (LGPLv3) computing platform for solving partial differential equations (PDEs). FEniCS enables users to quickly translate scientific models into efficient finite element code. With the high-level Python and C++ interfaces to FEniCS, it is easy to get started, but FEniCS offers also powerful capabilities for more experienced programmers. FEniCS runs on a multitude of platforms ranging from laptops to high-performance clusters.

- FEniCS is a software for solving PDEs via the finite-element method
- FEniCS is an international open source software and research project
- FEniCS is user-friendly: estimated $10^{3}-10^{4}$ users world-wide
- FEniCS is efficient: parallel performant up to (at least) 25000 cores.

FEniCS provides automated generation of bases for a wide range of finite element spaces

```
from dolfin import *
# Import meshes
mesh = Mesh("cable.xml")
subdomains = MeshFunction("size_t", mesh,
    "cable_vf.xml")
# Definemintite element spaces
V = FunctionSpace(mesh, "CG", 1)
u = Irialrunction(V)
v = TestFunction(V)
T = Function(V)
# Problem specific variables
f= Expression("cos(x[0])*exp(sin(x[1]))", degree=3)
lmb = Expression("...", degree=3)
T_ex = 20.
c = 0.01
# Define variational form
a = inner(lmb*grad(u), grad(v)) *dx+u*v*ds-c*u*v*dx
l = f*v*dx+T_ex*v*ds
# Solve a(T,v) = l(v) with respect to T
solve(a == l, T)
```


FEniCS provides an expressive form language close to mathematical syntax

```
from dolfin import *
# Import meshes
mesh = Mesh("cable.xml")
subdomains = MeshFunction("size_t", mesh,
            "cable_vf.xml")
# Define finite element spaces
V = FunctionSpace(mesh, "CG", 1)
u = TrialFunction(V)
v = TestFunction(V)
T = Function(V)
# Problem specific variables
f= Expression("cos(x[0])*exp(sjM(x[1]))", degree=3)
lmb = Expression("...", degrep=3)
T_ex = 20.
c = 0.01
# Derlne variational form
a= inner(lmb*grad(u), grad(v))*dx+u*v*ds-c*u*v*dx
    =f*v*dx+T_ex*v*ds
# Solve a(T,v) = I(v) with respect to T
solve(a == 1, T)
```


FEniCS provides automated form evaluation and assembly of the linear system

Mixed-dimensional methods ${ }^{1}$

${ }^{1}$ Cecile Daversin-Catty and Marie E. Rognes. "Automated abstractions for Mixed-Dimensional Finite Element Methods". In: Preparation ().

Multi-physics problems require efficent mixed-dimensional and mixed domain coupling: emerging features in FEniCS!

[C. Daversin-Catty, cecile@simula.no]

Multi-physics problems require efficent mixed-dimensional and mixed domain coupling: emerging features in FEniCS!

W = V(Omega_H) x V(Omega_H U Omega_T)

W = V(Omega_H) x V(Omega_H U Omega_T)

V = FunctionSpace(mesh, "Lagrange",1) \# Heart + Torso
V = FunctionSpace(mesh, "Lagrange",1) \# Heart + Torso
H = FunctionSpace(submesh_heart, "Lagrange",1) \# Heart
H = FunctionSpace(submesh_heart, "Lagrange",1) \# Heart
W = FunctionSpaceProduct(H,V)
W = FunctionSpaceProduct(H,V)

v, psi_v in V(Omega_H)

v, psi_v in V(Omega_H)

u, psi_u in V(Omega_H U \Omega_T)

u, psi_u in V(Omega_H U \Omega_T)

(v,u) = TrialFunction(W)
(v,u) = TrialFunction(W)
(psi_v,psi_u) = TestFunction(W)
(psi_v,psi_u) = TestFunction(W)

Integration on the heart domain Omega_H

Integration on the heart domain Omega_H

dH = Measure("dx",domain=W.sub_space(Q).mesh())
dH = Measure("dx",domain=W.sub_space(Q).mesh())

Integration on the whole domain Omega_H U Omega_T

Integration on the whole domain Omega_H U Omega_T

dV = Measure("dx", domain=W.sub_space (1).mesh())
dV = Measure("dx", domain=W.sub_space (1).mesh())

Variational formulation

Variational formulation

A = v*psi_v*dH
A = v*psi_v*dH
+ th*dt*Mi*inner(grad(v),grad(psi_v))*dH
+ th*dt*Mi*inner(grad(v),grad(psi_v))*dH
C = (dt/th)*(Mi+Me)*inner (grad}(u),\operatorname{grad}(psi_u))*dV
C = (dt/th)*(Mi+Me)*inner (grad}(u),\operatorname{grad}(psi_u))*dV
B = dt*Mi*inner (grad (u),grad(psi_v)) *dH
B = dt*Mi*inner (grad (u),grad(psi_v)) *dH
BT = dt*Mi*inner (grad (v),grad}(psi_u))*d
BT = dt*Mi*inner (grad (v),grad}(psi_u))*d
a=R_B+BT
a=R_B+BT
L = c + d
L = c + d
sol = Function(W)
sol = Function(W)
solve(a == L, sol)
solve(a == L, sol)

$$
\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right]\left[\begin{array}{l}
v \\
u
\end{array}\right]=\left[\begin{array}{l}
c \\
d
\end{array}\right]
$$

$$
\phi_{H}^{i}: V\left(\Omega_{H}\right) \text { basis functions }
$$

$$
\phi_{H T}^{i}: V\left(\Omega_{H} \cup \Omega_{T}\right) \quad \text { basis functions }
$$

$$
\begin{aligned}
A_{i j} & =\int_{\Omega_{H}} \phi_{H}^{j} \phi_{H}^{i}+\theta \Delta t \int_{\Omega_{H}} M_{i} \nabla \phi_{H}^{j} \cdot \nabla \phi_{H}^{i} \\
B_{i j} & =\Delta t \int_{\Omega_{H}} M_{i} \nabla \phi_{H}^{j} \cdot \nabla \phi_{H T}^{i} \\
C_{i j} & =\frac{\Delta t}{\theta} \int_{\Omega_{H}}\left(M_{i}+M_{e}\right) \nabla \phi_{H T}^{j} \cdot \nabla \phi_{H T}^{i} \\
& +\frac{\Delta t}{\theta} \int_{\Omega_{T}} M_{T} \nabla \phi_{H T}^{j} \cdot \nabla \phi_{H T}^{i}
\end{aligned}
$$

Multi-physics problems require efficent mixed-dimensional and mixed domain coupling: emerging features in FEniCS!

Multi-physics problems require efficent mixed-dimensional and mixed domain coupling: emerging features in FEniCS!

Multi-physics problems require efficent mixed-dimensional and mixed domain coupling: emerging features in FEniCS!

Multi-physics problems require efficent mixed-dimensional and mixed domain coupling: emerging features in FEniCS!

CUT Finite Element Methods: MultiMesh ${ }^{2}$

[^0]The computational domain is represented by an arbitrary number of overlapping meshes

August Johansson et al. "Finite Element Methods for Arbitrary Many Intersecting Meshes: Multimesh". In: Preparation ().

A finite element function space is introduced on each indvidual mesh, ignoring completely covered cells

August Johansson et al. "Finite Element Methods for Arbitrary Many Intersecting Meshes: Multimesh". In: Preparation ().

We illustrate the method by considering the stationary heat equation with a reaction coefficient

$$
\begin{aligned}
-\nabla \cdot(\lambda \nabla T)-c T & =f & & \text { in } \Omega, \\
\lambda_{e x} \frac{\partial T}{\partial n}+\left(T-T_{e x}\right) & =0 & & \text { on } \Gamma^{\mathrm{ex}} \\
{[T]_{ \pm} } & =0 & & \text { on } \Gamma_{i n t}^{1} \\
{\left[\lambda \frac{\partial T}{\partial n}\right]_{ \pm} } & =0 & & \text { on } \Gamma_{i n t}^{1} .
\end{aligned}
$$

Distribution of the source f in the computational domain.

We illustrate the method by considering the stationary heat equation with a reaction coefficient

$$
\begin{aligned}
-\nabla \cdot(\lambda \nabla T)-c T & =f & & \text { in } \Omega, \\
\lambda_{e x} \frac{\partial T}{\partial n}+\left(T-T_{e x}\right) & =0 & & \text { on } \Gamma^{\mathrm{ex}} \\
{[T]_{ \pm} } & =0 & & \text { on } \Gamma_{i n t}^{1} \\
{\left[\lambda \frac{\partial T}{\partial n}\right]_{ \pm} } & =0 & & \text { on } \Gamma_{i n t}^{1} .
\end{aligned}
$$

Heat diffusion coefficient λ in the computational domain.

Continuity of the solution is enforced over the artificial interface Λ_{1}

$$
\begin{aligned}
-\nabla \cdot(\lambda \nabla T)-c T & =f & & \text { in } \Omega, \\
\lambda_{e x} \frac{\partial T}{\partial n}+\left(T-T_{e x}\right) & =0 & & \text { on } \Gamma^{\mathrm{ex}} \\
{[T]_{ \pm} } & =0 & & \text { on } \Gamma_{i n t}^{1} \\
{\left[\lambda \frac{\partial T}{\partial n}\right]_{ \pm} } & =0 & & \text { on } \Gamma_{i n t}^{1} .
\end{aligned}
$$

Schematic of the composition of multiple overlapping meshes.

Continuity of the solution is enforced over the artificial interface Λ_{1}

$$
\begin{array}{rlrl}
-\nabla \cdot\left(\lambda \nabla T_{0}\right)-c T_{0} & =f & \text { in } \Omega_{0}, \\
-\nabla \cdot\left(\lambda \nabla T_{1}\right)-c T_{1} & =f & \text { in } \Omega_{1}, \\
\lambda_{e x} \frac{\partial T_{0}}{\partial n}+\left(T_{0}-T_{e x}\right) & =0 & & \text { on } \Gamma^{\mathrm{ex}}, \\
{[T]_{ \pm}} & =0 & & \text { on } \Gamma_{i n t}^{1}, \\
{\left[\lambda \frac{\partial T}{\partial n}\right]_{ \pm}} & =0 & & \text { on } \Gamma_{\text {int }}^{1} \\
{[T]} & =0 & & \text { on } \Lambda_{1}, \\
{\left[\frac{\partial T}{\partial n}\right]} & =0 & & \text { on } \Lambda_{1} .
\end{array}
$$

Schematic of the composition of multiple overlapping meshes.

We create a MultiCable in FEniCS by initializing the MultiMesh object and add a background mesh

from dolfin import *
multimesh $=$ MultiMesh()
multimestradd(Mesh("outer cable xml"))
for i in range(num_cables):
cable $=$ Mesh("inner_cable.xml")
\# Scale and move internal cables
multimesh.add (cable)
multimesh.build()
\# Create function space for temperature
$\mathrm{V}=$ MultiMeshFunctionSpace(multimesh, "CG", 1)
$T=$ MultiMeshFunction(V, name="Temperature")
$\mathrm{u}, \mathrm{v}=$ TrialFunction(V), TestFunction(V)
\# Problem Specific variables
$\mathrm{f}=$ Expression("sin (x[0]*x[1])", degree=3)
lmb $=$ Expression ("...", degree=3)
T_ex, $c=3.2,0.04$
alpha, beta $=4.0,4.0$
$\mathrm{n}=$ FacetNormal (multimesh)
$\mathrm{h}=2.0 *$ Circumradius(multimesh)
$\mathrm{h}=\left(\mathrm{h}\left({ }^{\prime}+{ }^{\prime}\right)+\mathrm{h}\left({ }^{\prime}-{ }^{\prime}\right)\right) / 2$
$\mathrm{F}=\operatorname{inner}(\operatorname{lmb} * \operatorname{grad}(\mathrm{u}), \operatorname{grad}(\mathrm{v})) * \mathrm{dX}$
$-f * v * d X-c * v * u * d X+\left(u-T _e x\right) * v * d s$
$\begin{aligned} \mathrm{F}+= & -\operatorname{inner}(\operatorname{avg}(\operatorname{lmb} * \operatorname{grad}(\mathrm{u})), \operatorname{jump}(\mathrm{v}, \mathrm{n})) * \mathrm{dI} \\ & -\operatorname{inner}(\operatorname{avg}(\operatorname{lmb} * \operatorname{grad}(\mathrm{v})), \operatorname{jump}(\mathrm{u}, \mathrm{n})) * \mathrm{dI} \\ & +\operatorname{alpha} / \mathrm{h} * \operatorname{jump}(\mathrm{u}) * \operatorname{jump}(\mathrm{v}) * \mathrm{dI} \\ & +\operatorname{beta} * \operatorname{inner}(\operatorname{jump}(\operatorname{grad}(\mathrm{u})), \operatorname{jump}(\operatorname{grad}(\mathrm{v}))) * \text { d0 }\end{aligned}$
solve(A, T.vector (), b, 'lu')

 $\mathrm{b}=$ assemble_multimesh (rhs (F))

We add multiple internal cables on top of the background cable

```
from dolfin import *
multimesh = MultiMesh()
multimesh.add(Mesh("outer_cable.xml"))
for i in range(num_cables):
    cable = Mesh("inner_cable.xml")
    multimesh.add (cable)
multmmech build()
# Create function space for temperature
V = MultiMeshFunctionSpace(multimesh, "CG", 1)
T = MultiMeshFunction(V, name="Temperature")
u,v = TrialFunction(V), TestFunction(V)
# Problem Specific variables
f= Expression("sin(x[0]*x[1])", degree=3)
lmb = Expression("...", degree=3)
T_ex, c = 3.2,0.04
alpha, beta = 4.0,4.0
n = FacetNormal(multimesh)
h =2.0*Circumradius(multimesh)
h}=(\textrm{h}('+') + h('-')) / 2
F}=\operatorname{inner}(\operatorname{lmb}*\operatorname{grad}(u),\operatorname{grad}(v))*dx
    -f*v*dX -c*v*u*dX+ (u-T_ex)*v*ds
F += - inner(avg(lmb*grad (u)), jump (v, n))*dI
    - inner(avg(lmb*grad(v)), jump(u, n))*dI
    + alpha/h*jump(u)*jump(v)*dI
    + beta*inner(jump(grad(u)), jump(grad(v)))*d0
# Assemble multimesh form
A = assemble_multimesh(lhs(F))
b = assemble_multimesh(rhs(F))
solve(A, T.vector(), b, 'lu')
```


We add multiple internal cables on top of the background cable

```
from dolfin import *
multimesh = MultiMesh()
multimesh.add(Mesh("outer_cable.xml"))
for i in range(num_cables):
    cable = Mesh("inner_cable.xml")
    ##...
multlmeeh build()
# Create function space for temperature
V = MultiMeshFunctionSpace(multimesh, "CG", 1)
T = MultiMeshFunction(V, name="Temperature")
u,v = TrialFunction(V), TestFunction(V)
# Problem Specific variables
f= Expression("sin(x[0]*x[1])", degree=3)
lmb = Expression("...", degree=3)
T_ex, c = 3.2,0.04
alpha, beta = 4.0,4.0
n = FacetNormal(multimesh)
h =2.0*Circumradius(multimesh)
h}=(\textrm{h}('+') + h('-')) / 2
F}=\operatorname{inner}(\operatorname{lmb}*\operatorname{grad}(u),\operatorname{grad}(v))*dx
    -f*v*dX -c*v*u*dX+ (u-T_ex)*v*ds
F += - inner(avg(lmb*grad (u)), jump (v, n))*dI
    - inner(avg(lmb*grad(v)), jump(u, n))*dI
    + alpha/h*jump(u)*jump(v)*dI
    + beta*inner(jump(grad(u)), jump(grad(v)))*d0
# Assemble multimesh form
A = assemble_multimesh(lhs(F))
b = assemble_multimesh(rhs(F))
solve(A, T.vector(), b, 'lu')
```


Nitsches method for weak enforcement of boundary conditions is used to obtain a stable finite element scheme

```
from dolfin import *
multimesh = MultiMesh()
multimesh.add(Mesh("outer_cable.xml"))
for i in range(num_cables):
    cable = Mesh("inner_cable.xml")
    # Scale and move internal cables
    # .....
    multimesh.add(cable)
multimesh.build()
# Create function space for temperature
V = MultiMeshFunctionSpace(multimesh, "CG", 1)
T = MultiMeshFunction(V, name="Temperature")
u,v = TrialFunction(V), TestFunction(V)
# Problem Specific variables
f = Expression("sin(x[0]*x[1])", degree=3)
lmb = Expression("...", degree=3)
T_ex, c = 3.2,0.04
alpha, beta = 4.0,4.0
n = FacetNormal(multimesh)
h =2.0*Circumradius(multimesh)
h}=(h(h)+h(-'))/
    inner(lmb*grad(u), grad(v))*dx \
            -f*v*dX -c*v*u*dX+(u-T_ex)*v*ds
F +=- Imes(avg(lmb*grad(u)), iump(v,n))
    - inner (avg(lmb*grad(v)), jump (u, n))*dI
    + alpha/h*jump(u)*jump(v)*dI \
    + beta*inner(jump(grad(u)), jump(grad(v)))*d0
# Assemble multimesh form
A = assemble_multimesh(lhs(F))
b = assemble_multimesh(rhs(F))
solve(A, T.vector(), b, 'lu')
```


Nitsches method for weak enforcement of boundary conditions is used to obtain a stable finite element scheme

```
from dolfin import *
multimesh = MultiMesh()
multimesh.add(Mesh("outer_cable.xml"))
for i in range(num_cables):
    cable = Mesh("inner_cable.xml")
    # Scale and move internal cables
    # .....
    multimesh.add(cable)
multimesh.build()
# Create function space for temperature
V = MultiMeshFunctionSpace(multimesh, "CG", 1)
T = MultiMeshFunction(V, name="Temperature")
u,v = TrialFunction(V), TestFunction(V)
# Problem Specific variables
f = Expression("sin(x[0]*x[1])", degree=3)
lmb = Expression("...", degree=3)
T_ex, c = 3.2,0.04
alpha, beta = 4.0,4.0
n = FacetNormal(multimesh)
h =2.0*Circumradius(multimesh)
h = (h('+') + h('-')) / 2
F}=\operatorname{inner(lmb*grad}(u),\operatorname{grad}(v))*dX
E}=-\quad\mathrm{ - inner (avg(lmb*grad}(u)), jump (v, n))*dI
    - inner(avg(lmb*grad(v)), jump (u, n))*dI
    alpha/h*jump(u)*jump(v)*dI
    + beta*inner(fump(grad(u)), Jump(grad(v))) *d0
# Assemble multimesh form
A = assemble_multimesh(lhs(F))
b = assemble_multimesh(rhs(F))
solve(A, T.vector(), b, 'lu')
```

$$
\begin{aligned}
0 & =F_{s}(T, v)+F_{N}(T, v) \\
F_{s}(T, v) & =\sum_{i=0}^{1} \int_{\Omega_{i}} \lambda(\nabla T, \nabla v)-c T v-f v \mathrm{~d} x \\
& +\int_{\Gamma \mathrm{ex}}\left(T_{0}-T^{\mathrm{ex}}\right) v \mathrm{~d} s=0 \\
F_{N}(T, v) & =-\left(\left\langle\lambda \mathbf{n}_{1} \cdot \nabla T\right\rangle,[v]\right)_{\Lambda_{1}} \\
& -\left(\left[T_{h}\right],\left\langle\lambda \mathbf{n}_{1} \cdot \nabla v\right\rangle\right)_{\Lambda_{1}}+\frac{\beta}{h}([T],[v])_{\Lambda_{1}}
\end{aligned}
$$

Nitsche terms	Jump	Average	
$F_{N}(u, v)$	$[w]=w_{1}-w_{0}$	$\langle w\rangle=\frac{w_{1}+w_{0}}{2}$	

Nitsches method for weak enforcement of boundary conditions is used to obtain a stable finite element scheme

```
from dolfin import *
multimesh = MultiMesh()
multimesh.add(Mesh("outer_cable.xml"))
for i in range(num_cables):
    cable = Mesh("inner_cable.xml")
    # Scale and move internal cables
    # .....
    multimesh.add(cable)
multimesh.build()
# Create function space for temperature
V = MultiMeshFunctionSpace(multimesh, "CG", 1)
T = MultiMeshFunction(V, name="Temperature")
u,v = TrialFunction(V), TestFunction(V)
# Problem Specific variables
f = Expression("sin(x[0]*x[1])", degree=3)
lmb = Expression("...", degree=3)
T_ex, c = 3.2,0.04
alpha, beta = 4.0,4.0
n = FacetNormal(multimesh)
h =2.0*Circumradius(multimesh)
h = (h('+') + h('-')) / 2
F}=\operatorname{inner(lmb*grad}(u),\operatorname{grad}(v))*dX
        -f*v*dX -c*v*u*dX+ (u-T_ex)*v*ds
F += - inner(avg(lmb*grad(u)), jump(v, n))*dI
    - inner(avg(lmb*grad(v)), jump(u, n))*dI
    + alpha/h*iumn(u)*iump(v)*dT
    + beta*inner(jump(grad(u)), jump(grad(v)))*d0
# Assemble multimesh form
A = assemble_multimesh(lhs(F))
b = assemble_multimesh(rhs(F))
solve(A, T.vector(), b, 'lu')
```

$$
\begin{aligned}
0 & =F_{s}(T, v)+F_{N}(T, v)+F_{O}(T, v) \\
F_{s}(T, v) & =\sum_{i=0}^{1} \int_{\Omega_{i}} \lambda(\nabla T, \nabla v)-c T v-f v \mathrm{~d} x \\
& +\int_{\text {rex }}\left(T_{0}-T^{\mathrm{ex}}\right) v \mathrm{~d} s=0 \\
F_{N}(T, v) & =-\left(\left\langle\lambda \mathbf{n}_{1} \cdot \nabla T\right\rangle,[v]\right)_{\Lambda_{1}} \\
& -\left(\left[T_{h}\right],\left\langle\lambda \mathbf{n}_{1} \cdot \nabla v\right\rangle\right)_{\Lambda_{1}}+\frac{\beta}{h}([T],[v])_{\Lambda_{1}}, \\
F_{O}(T, v) & =([\nabla T],[\nabla v])_{\Omega_{h, 0} \cap \Omega_{1}} .
\end{aligned}
$$

Nitsche terms	Jump	Average	Stability on overlap
$F_{N}(u, v)$	$[w]=w_{1}-w_{0}$	$\langle w\rangle=\frac{w_{1}+w_{0}}{2}$	$F_{O}(u, v)$

Shape-optimization With Overlapping Domains ${ }^{4}$

${ }^{4}$ Jørgen S. Dokken et al. "Shape Optimization on Multiple Meshes". In: Preparation ().

Re-meshing guarantees good mesh-quality, but it is a very costly operation

Re-meshing guarantees good mesh-quality, but it is a very costly operation

Re-meshing guarantees good mesh-quality, but it is a very costly operation

Deformation of the mesh is cheaper than re-meshing but degenerates for large changes

Deformation of the mesh is cheaper than re-meshing but degenerates for large changes

Deformation of the mesh is cheaper than re-meshing but degenerates for large changes

Multiple overlapping meshes is very efficient and preserves mesh quality

Multiple overlapping meshes is very efficient and preserves mesh quality

Multiple overlapping meshes is very efficient and preserves mesh quality

We propose a new algorithm for solving PDE-constrained shape optimization problems

$$
\min _{u, \Omega} J(u, \Omega) \quad \text { s.t. } \quad E(u, \Omega)=0 \text {. }
$$

We propose a new algorithm for solving PDE-constrained shape optimization problems

$$
\min _{u, \Omega} J(u, \Omega) \quad \text { s.t. } \quad E(u, \Omega)=0
$$

Algorithm: Shape-optimization on multiple domains
Init : Domain composition $\hat{\Omega}^{0}=\cup_{i=0, \ldots N} \hat{\Omega}_{i}^{0}$
Param: $k=0$
while not converged do

end
Result: Optimized domain

We propose a new algorithm for solving PDE-constrained shape optimization problems

$$
\min _{u, \Omega} J(u, \Omega) \quad \text { s.t. } \quad E(u, \Omega)=0
$$

```
Algorithm: Shape-optimization on multiple domains
Init : Domain composition \(\hat{\Omega}^{0}=\cup_{i=0, \ldots N} \hat{\Omega}_{i}^{0}\)
Param: \(k=0\)
while not converged do
    Solve state equations on \(\hat{\Omega}^{k}\);
end
Result: Optimized domain
```

We propose a new algorithm for solving PDE-constrained shape optimization problems

$$
\min _{u, \Omega} J(u, \Omega) \quad \text { s.t. } \quad E(u, \Omega)=0
$$

```
Algorithm: Shape-optimization on multiple domains
Init : Domain composition \(\hat{\Omega}^{0}=\cup_{i=0, \ldots N} \hat{\Omega}_{i}^{0}\)
Param: \(k=0\)
while not converged do
    Solve state equations on \(\hat{\Omega}^{k}\);
    Compute the shape-derivatives \(\mathrm{d} J / \mathrm{d} \Omega\);
end
Result: Optimized domain
```

We propose a new algorithm for solving PDE-constrained shape optimization problems

$$
\min _{u, \Omega} J(u, \Omega) \quad \text { s.t. } \quad E(u, \Omega)=0
$$

```
Algorithm: Shape-optimization on multiple domains
Init : Domain composition \(\hat{\Omega}^{0}=\cup_{i=0, \ldots N} \hat{\Omega}_{i}^{0}\)
Param: \(k=0\)
while not converged do
    Solve state equations on \(\hat{\Omega}^{k}\);
    Compute the shape-derivatives \(\mathrm{d} J / \mathrm{d} \Omega\);
    Update the subdomains, \(\hat{\Omega}_{i}^{k+1}, i=0, \ldots N\);
end
Result: Optimized domain
```

We propose a new algorithm for solving PDE-constrained shape optimization problems

$$
\min _{u, \Omega} J(u, \Omega) \quad \text { s.t. } \quad E(u, \Omega)=0
$$

```
Algorithm: Shape-optimization on multiple domains
Init : Domain composition \(\hat{\Omega}^{0}=\cup_{i=0, \ldots N} \hat{\Omega}_{i}^{0}\)
Param: \(k=0\)
while not converged do
    Solve state equations on \(\hat{\Omega}^{k}\);
    Compute the shape-derivatives \(\mathrm{d} J / \mathrm{d} \Omega\);
    Update the subdomains, \(\hat{\Omega}_{i}^{k+1}, i=0, \ldots N\);
    Increment \(k\) and set \(\hat{\Omega}^{k}=\cup_{i=0, \ldots N} \hat{\Omega}_{i}^{k}\);
end
Result: Optimized domain
```

The solution of an optimization problem with three identical cables is an equilateral triangle

$$
\min _{\Omega, T} J(\Omega, T)=\int_{\Omega} \frac{1}{3}|T|^{3} \mathrm{~d} x,
$$

subject to

$$
\begin{aligned}
-\nabla \cdot(\lambda \nabla T)-c T & =f & & \text { in } \Omega, \\
\frac{\partial T}{\partial n}+\left(T-T_{a m b}\right) & =0 & & \text { on } \Gamma^{\mathrm{ex}} \\
{[T]_{ \pm} } & =0 & & \text { on } \Gamma_{i n t} \\
{\left[\lambda \frac{\partial T}{\partial n}\right]_{ \pm} } & =0 & & \text { on } \Gamma_{i n t}
\end{aligned}
$$

Three cables with the same thermal diffusivity.

The solution of an optimization problem with three identical cables is an equilateral triangle

$$
\min _{\Omega, T} J(\Omega, T)=\int_{\Omega} \frac{1}{3}|T|^{3} \mathrm{~d} x,
$$

subject to

$$
\begin{aligned}
-\nabla \cdot(\lambda \nabla T)-c T & =f & & \text { in } \Omega, \\
\frac{\partial T}{\partial n}+\left(T-T_{a m b}\right) & =0 & & \text { on } \Gamma^{\mathrm{ex}} \\
{[T]_{ \pm} } & =0 & & \text { on } \Gamma_{i n t} \\
{\left[\lambda \frac{\partial T}{\partial n}\right]_{ \pm} } & =0 & & \text { on } \Gamma_{i n t}
\end{aligned}
$$

Initial cable positioning and corresponding temperature.

The solution of an optimization problem with three identical cables is an equilateral triangle

$$
\min _{\Omega, T} J(\Omega, T)=\int_{\Omega} \frac{1}{3}|T|^{3} \mathrm{~d} x,
$$

subject to

$$
\begin{aligned}
-\nabla \cdot(\lambda \nabla T)-c T & =f & & \text { in } \Omega, \\
\frac{\partial T}{\partial n}+\left(T-T_{a m b}\right) & =0 & & \text { on } \Gamma^{\mathrm{ex}} \\
{[T]_{ \pm} } & =0 & & \text { on } \Gamma_{i n t} \\
{\left[\lambda \frac{\partial T}{\partial n}\right]_{ \pm} } & =0 & & \text { on } \Gamma_{i n t}
\end{aligned}
$$

Optimal cable distribution and temperature.

A benchmark problem in shape-optimization is the optimal shape of an obstacle in Stokes-flow
$\min _{(u, \Omega)}: J(\Omega)=\int_{\Omega} \sum_{i, j=1}^{2}\left(\frac{\partial u_{i}}{\partial x_{j}}\right)^{2} \mathrm{~d} A$
subject to

$$
\begin{aligned}
-\Delta u+\nabla p & =0 \quad \text { in } \Omega, \\
\nabla \cdot u & =0, \\
u & =0 \quad \text { on } \Gamma_{2}, \\
u & =u_{0} \quad \text { on } \Gamma_{1} \cup \Gamma_{3}, \\
p & =0 \quad \text { on } \Gamma_{4}, \\
C & =C_{0}, \\
\mathrm{Vol} & =\mathrm{Vol}_{0} .
\end{aligned}
$$

Olivier Pironneau. "On optimum design in fluid mechanics". In: Journal of Fluid Mechanics 64.1 (1974), pp. 97-110.

We achieve the analytical shape, a rugby-ball with a 90 degree front and back angle ${ }^{5}$

$$
\min _{(u, \Omega)}: J(\Omega)=\int_{\Omega} \sum_{i, j=1}^{2}\left(\frac{\partial u_{i}}{\partial x_{j}}\right)^{2} \mathrm{~d} A
$$

subject to

$$
\begin{aligned}
-\Delta u+\nabla p & =0 \quad \text { in } \Omega, \\
\nabla \cdot u & =0, \\
u & =0 \quad \text { on } \Gamma_{2}, \\
u & =u_{0} \quad \text { on } \Gamma_{1} \cup \Gamma_{3}, \\
p & =0 \quad \text { on } \Gamma_{4}, \\
C & =C_{0}, \\
\mathrm{Vol} & =\mathrm{Vol}_{0} .
\end{aligned}
$$

${ }^{5}$ Olivier Pironneau. "On optimum design in fluid mechanics". In: Journal of Fluid Mechanics 64.1 (1974), pp. 97-110.

With multiple meshes, we can reduce the size of the mesh that has to be deformed

With multiple meshes, we can reduce the size of the mesh that has to be deformed

With multiple meshes, we can reduce the size of the mesh that has to be deformed

Further work

- Extend the multiple mesh formulation to to time dependent problems such as the NS-equation.
- Use shape-optimization to optimize power-output of a tidal turbine farm.

Further work

- Extend the multiple mesh formulation to to time dependent problems such as the NS-equation.
- Use shape-optimization to optimize power-output of a tidal turbine farm.

[islayenergytrust.org.uk/tidal-energy-project/]

Concluding, FEniCS is currently being extended to employ mixed-domain method and CUT-FEM, where the latter has been used for avoiding re-meshing in shape-optimization

This project is funded by the $\begin{aligned} & \text { The Resear } \\ & \text { of Norway }\end{aligned}$

Concluding, FEniCS is currently being extended to employ mixed-domain method and CUT-FEM, where the latter has been used for avoiding re-meshing in shape-optimization

Questions?
This project is funded by the $\begin{aligned} & \text { The Resear } \\ & \text { of Norway }\end{aligned}$

This trend is clear for both finer and coarser meshes.

The shape-derivative of a functional constrained by PDEs is found with the adjoint method and shape-calculus

$$
\begin{gathered}
\min _{\Omega} J(u, \Omega) \text { s.t. } E(u, \Omega)=0, \\
\hat{j}(\Omega)=J(u(\Omega), \Omega)
\end{gathered}
$$

The shape-derivative of a functional constrained by PDEs is found with the adjoint method and shape-calculus

$$
\begin{gathered}
\min _{\Omega} J(u, \Omega) \text { s.t. } E(u, \Omega)=0, \\
\hat{j}(\Omega)=J(u(\Omega), \Omega)
\end{gathered}
$$

Lagrangian based adjoint equation

$$
\begin{aligned}
\mathcal{L}(u, \Omega) & =J(u, \Omega)+(\lambda, E(u(\Omega), \Omega)) \\
\mathrm{d} \hat{J}(\Omega)[s] & =\frac{\partial \mathcal{L}}{\partial \Omega}[s]=\frac{\partial J}{\partial \Omega}[s]+\left(\lambda, \frac{\partial E}{\partial \Omega}[s]\right), \\
\frac{\partial \mathcal{L}}{\partial u} & =\frac{\partial J}{\partial u}[d]+\left(\lambda, \frac{\partial E}{\partial u}[d]\right)=0, \quad \forall d .
\end{aligned}
$$

A linear state equation yields an adjoint equation similar to the state equation

$$
\begin{gathered}
\mathcal{L}(u, \Omega)=J(u, \Omega)+(\lambda, E(u(\Omega), \Omega)) . \\
\frac{\partial J}{\partial u}[d]+\left(\lambda, \frac{\partial E}{\partial u}[d]\right)=0, \quad \forall d .
\end{gathered}
$$

A linear state equation yields an adjoint equation similar to the state equation

$$
\begin{gathered}
\mathcal{L}(u, \Omega)=J(u, \Omega)+(\lambda, E(u(\Omega), \Omega)) . \\
\frac{\partial J}{\partial u}[d]+\left(\lambda, \frac{\partial E}{\partial u}[d]\right)=0, \quad \forall d . \\
E(u)=A u+b, \\
\left(\lambda \frac{\partial E}{\partial u}[d]\right)=(\lambda, A d) .
\end{gathered}
$$

The shape-derivative is transformed into surface integrals with the Hadamard theorem

$$
\begin{aligned}
\mathcal{L}(u, \Omega) & =J(u, \Omega)+(\lambda, E(u(\Omega), \Omega)) . \\
\mathrm{d} \hat{J}(\Omega)[s] & =\frac{\partial \mathcal{L}}{\partial \Omega}[s]=\frac{\partial J}{\partial \Omega}[s]+\left(\lambda, \frac{\partial E}{\partial \Omega}[s]\right),
\end{aligned}
$$

Theorem (Hadamard Theorem)

The shape-derivative is transformed into surface integrals with the Hadamard theorem

$$
\begin{aligned}
\mathcal{L}(u, \Omega) & =J(u, \Omega)+(\lambda, E(u(\Omega), \Omega)) \\
\mathrm{d} \hat{J}(\Omega)[s] & =\frac{\partial \mathcal{L}}{\partial \Omega}[s]=\frac{\partial J}{\partial \Omega}[s]+\left(\lambda, \frac{\partial E}{\partial \Omega}[s]\right),
\end{aligned}
$$

Theorem (Hadamard Theorem)
Let $\hat{\jmath}$ be shape differentiable. Then the relation

$$
\mathrm{d} \hat{J}(\Omega)[V]=\int_{\Gamma}\langle V, n\rangle g \mathrm{~d} S
$$

holds for all vector fields.

We consider minimization of the temperature in current-carrying MultiCables as a first example

$$
\min _{\Omega, T} J(\Omega, T)=\int_{\Omega} \frac{1}{3}|T|^{3} \mathrm{~d} x,
$$

subject to

$$
\begin{aligned}
-\nabla \cdot(\lambda \nabla T)-c T & =f & & \text { in } \Omega, \\
\frac{\partial T}{\partial n}+\left(T-T_{a m b}\right) & =0 & & \text { on } \Gamma^{\mathrm{ex}} \\
{[T]_{ \pm} } & =0 & & \text { on } \Gamma_{i n t}^{1}, \\
{\left[\lambda \frac{\partial T}{\partial n}\right]_{ \pm} } & =0 & & \text { on } \Gamma_{i n t}^{1} .
\end{aligned}
$$

Three cables with the same thermal diffusivity.

We consider minimization of the temperature in current-carrying MultiCables as a first example

$$
\min _{\Omega, T} J(\Omega, T)=\int_{\Omega} \frac{1}{3}|T|^{3} \mathrm{~d} x,
$$

subject to

$$
\begin{aligned}
-\nabla \cdot(\lambda \nabla T)-c T & =f & & \text { in } \Omega, \\
\frac{\partial T}{\partial n}+\left(T-T_{a m b}\right) & =0 & & \text { on } \Gamma^{\mathrm{ex}} \\
{[T]_{ \pm} } & =0 & & \text { on } \Gamma_{i n t}^{1}, \\
{\left[\lambda \frac{\partial T}{\partial n}\right]_{ \pm} } & =0 & & \text { on } \Gamma_{i n t}^{1} .
\end{aligned}
$$

Initial cable positioning and corresponding temperature.

We consider minimization of the temperature in current-carrying MultiCables as a first example

$$
\min _{\Omega, T} J(\Omega, T)=\int_{\Omega} \frac{1}{3}|T|^{3} \mathrm{~d} x,
$$

subject to

$$
\begin{aligned}
-\nabla \cdot(\lambda \nabla T)-c T & =f & & \text { in } \Omega, \\
\frac{\partial T}{\partial n}+\left(T-T_{a m b}\right) & =0 & & \text { on } \Gamma^{\mathrm{ex}}, \\
{[T]_{ \pm} } & =0 & & \text { on } \Gamma_{i n t}^{1}, \\
{\left[\lambda \frac{\partial T}{\partial n}\right]_{ \pm} } & =0 & & \text { on } \Gamma_{i n t}^{1} .
\end{aligned}
$$

Optimal cable distribution and temperature.

The multiple meshes strong formulation has additional terms for continuity over the artificial interface Λ_{1}

$$
\begin{aligned}
-\nabla \cdot(\lambda \nabla T)-c T & =f & & \text { in } \Omega, \\
\lambda_{\text {ex }} \frac{\partial T}{\partial n}+\left(T-T_{\text {ex }}\right) & =0 & & \text { on } \Gamma^{\text {ex }}, \\
{[T]_{ \pm} } & =0 & & \text { on } \Gamma_{\text {int }}^{1}, \\
{\left[\lambda \frac{\partial T}{\partial n}\right]_{ \pm} } & =0 & & \text { on } \Gamma_{\text {int }}^{1} .
\end{aligned}
$$

The multiple meshes strong formulation has additional terms for continuity over the artificial interface Λ_{1}

$$
\begin{array}{rlrl}
-\nabla \cdot\left(\lambda \nabla T_{0}\right)-c T_{0} & =f & \text { in } \Omega_{0}, \\
-\nabla \cdot\left(\lambda \nabla T_{1}\right)-c T_{1} & =f & \text { in } \Omega_{1}, \\
\lambda_{e x} \frac{\partial T_{0}}{\partial n}+\left(T_{0}-T_{e x}\right) & =0 & & \text { on } \Gamma^{\mathrm{ex}}, \\
{[T]_{ \pm}} & =0 & & \text { on } \Gamma_{i n t}^{1}, \\
{\left[\lambda \frac{\partial T}{\partial n}\right]_{ \pm}} & =0 & & \text { on } \Gamma_{\text {int }}^{1} \\
{[u]} & =0 & & \text { on } \Lambda_{1}, \\
{\left[\frac{\partial u}{\partial n}\right]} & =0 & & \text { on } \Lambda_{1} .
\end{array}
$$

Nitsches method for weak enforcement of boundary conditions is used to obtain a stable finite element scheme

$$
\begin{aligned}
0 & =F_{s}(T, v) \\
F_{s}(T, v) & =\int_{\Omega} \lambda(\nabla T, \nabla v)-c T v-f v \mathrm{~d} x \\
& +\int_{\Gamma \mathrm{ex}}\left(T-T^{\mathrm{ex}}\right) v \mathrm{~d} s=0
\end{aligned}
$$

Nitsches method for weak enforcement of boundary conditions is used to obtain a stable finite element scheme

$$
\begin{aligned}
0 & =F_{s}(T, v) \\
F_{s}(T, v) & =\sum_{i=0}^{1} \int_{\Omega_{i}} \lambda(\nabla T, \nabla v)-c T v-f v \mathrm{~d} x \\
& +\int_{\Gamma \mathrm{ex}}\left(T_{0}-T^{\mathrm{ex}}\right) v \mathrm{~d} s=0
\end{aligned}
$$

Nitsches method for weak enforcement of boundary conditions is used to obtain a stable finite element scheme

$$
\begin{aligned}
0 & =F_{s}(T, v)+F_{N}(T, v) \\
F_{s}(T, v) & =\sum_{i=0}^{1} \int_{\Omega_{i}} \lambda(\nabla T, \nabla v)-c T v-f v \mathrm{~d} x \\
& +\int_{\Gamma \mathrm{ex}}\left(T_{0}-T^{\mathrm{ex}}\right) v \mathrm{~d} s=0 \\
F_{N}(T, v) & =-\left(\left\langle\mathbf{n}_{1} \cdot \nabla T\right\rangle,[v]\right)_{\Lambda_{1}}-\left(\left[T_{h}\right],\left\langle\mathbf{n}_{1} \cdot \nabla v\right\rangle\right)_{\Lambda_{1}}+\frac{\beta}{h}([T],[v])_{\Lambda_{1}},
\end{aligned}
$$

Nitsche terms	Jump	Average	
$F_{N}(u, v)$	$[w]=w_{1}-w_{0}$	$\langle w\rangle=\frac{w_{1}+w_{0}}{2}$	

Nitsches method for weak enforcement of boundary conditions is used to obtain a stable finite element scheme

$$
\begin{aligned}
0 & =F_{s}(T, v)+F_{N}(T, v)+F_{O}(T, v) \\
F_{s}(T, v) & =\sum_{i=0}^{1} \int_{\Omega_{i}} \lambda(\nabla T, \nabla v)-c T v-f v \mathrm{~d} x \\
& +\int_{\Gamma \mathrm{ex}}\left(T_{0}-T^{\mathrm{ex}}\right) v \mathrm{~d} s=0 \\
F_{N}(T, v) & =-\left(\left\langle\mathbf{n}_{1} \cdot \nabla T\right\rangle,[v]\right)_{\Lambda_{1}}-\left(\left[T_{h}\right],\left\langle\mathbf{n}_{1} \cdot \nabla v\right\rangle\right)_{\Lambda_{1}}+\frac{\beta}{h}([T],[v])_{\Lambda_{1}}, \\
F_{O}(T, v) & =([\lambda \nabla T],[\nabla v])_{\Omega_{h, 0} \cap \Omega_{1}} .
\end{aligned}
$$

Nitsche terms	Jump	Average	Stability on overlap
$F_{N}(u, v)$	$[w]=w_{1}-w_{0}$	$\langle w\rangle=\frac{w_{1}+w_{0}}{2}$	$F_{O}(u, v)$

The implementation of the shape-gradient is verified with a Taylor-test

A first example is three internal cables with the same material properties

$$
\min _{\Omega, T} J(\Omega, T)=\int_{\Omega} \frac{1}{3}|T|^{3} \mathrm{~d} x,
$$

subject to

$$
\begin{aligned}
-\nabla \cdot(\lambda \nabla T)-c T & =f & & \text { in } \Omega, \\
\frac{\partial T}{\partial n}+\left(T-T_{a m b}\right) & =0 & & \text { on } \Gamma^{\mathrm{ex}} \\
{[T]_{ \pm} } & =0 & & \text { on } \Gamma_{\text {int }}^{1} \\
{\left[\lambda \frac{\partial T}{\partial n}\right]_{ \pm} } & =0 & & \text { on } \Gamma_{\text {int }}^{1}
\end{aligned}
$$

Three cables with the same thermal diffusivity.

A first example is three internal cables with the same material properties

$$
\min _{\Omega, T} J(\Omega, T)=\int_{\Omega} \frac{1}{3}|T|^{3} \mathrm{~d} x,
$$

subject to

$$
\begin{aligned}
-\nabla \cdot(\lambda \nabla T)-c T & =f & & \text { in } \Omega, \\
\frac{\partial T}{\partial n}+\left(T-T_{a m b}\right) & =0 & & \text { on } \Gamma^{\mathrm{ex}} \\
{[T]_{ \pm} } & =0 & & \text { on } \Gamma_{i n t}^{1} \\
{\left[\lambda \frac{\partial T}{\partial n}\right]_{ \pm} } & =0 & & \text { on } \Gamma_{i n t}^{1}
\end{aligned}
$$

Initial cable positioning and corresponding temperature.

A first example is three internal cables with the same material properties

$$
\min _{\Omega, T} J(\Omega, T)=\int_{\Omega} \frac{1}{3}|T|^{3} \mathrm{~d} x,
$$

subject to

$$
\begin{aligned}
-\nabla \cdot(\lambda \nabla T)-c T & =f & & \text { in } \Omega, \\
\frac{\partial T}{\partial n}+\left(T-T_{a m b}\right) & =0 & & \text { on } \Gamma^{\mathrm{ex}} \\
{[T]_{ \pm} } & =0 & & \text { on } \Gamma_{i n t}^{1}, \\
{\left[\lambda \frac{\partial T}{\partial n}\right]_{ \pm} } & =0 & & \text { on } \Gamma_{i n t}^{1}
\end{aligned}
$$

Optimal cable distribution and temperature.

Optimization of a more complex example with 5 cables with different currents and sizes

The state-equation has been implemented in FEniCS and verified by the method of manufactured solutions

MultiMesh				SingleMesh		
Mesh size	L^{2}-error	Rate	Mesh size	L^{2}-error	Rate	
0.059	$2.41 \mathrm{e}-04$	2.116	0.062	$2.27 \mathrm{e}-04$	2.008	
0.030	$5.92 \mathrm{e}-05$	2.067	0.031	$5.65 \mathrm{e}-05$	2.003	
0.015	$1.46 \mathrm{e}-05$	2.055	0.016	$1.41 \mathrm{e}-05$	2.002	
0.008	$3.68 \mathrm{e}-06$	1.999	0.008	$3.52 \mathrm{e}-06$	2.001	

Table: Convergence rates of a manufactured Poisson problem.
Comparison between MultiMesh and the same mesh described as a single mesh approximated by piece-wise continuous linear elements.

The adjoint system for overlapping meshes has the same stabilization at the artificial interface as the state equation at the interface

$$
\begin{aligned}
& \left.\sum_{i=0}^{N}(\lambda \nabla p, \nabla v)_{\Omega_{i}}-(c p, v)_{\Omega_{i}}\right) \\
& +\left(\alpha^{\prime}(T)\left(T-T^{\mathrm{ex}}\right) p, v\right)_{\mathrm{rex}^{2}}+(\alpha(T) p, v)_{\mathrm{rex}^{2}}=-\sum_{i=0}^{N}(T|T|, v)_{\Omega_{i}} .
\end{aligned}
$$

The adjoint system for overlapping meshes has the same stabilization at the artificial interface as the state equation at the interface

$$
\begin{aligned}
& \left.\sum_{i=0}^{N}(\lambda \nabla p, \nabla v)_{\Omega_{i}}-(c p, v)_{\Omega_{i}}\right) \\
& +\left(\alpha^{\prime}(T)\left(T-T^{\mathrm{ex}}\right) p, v\right)_{\Gamma \mathrm{ex}}+(\alpha(T) p, v)_{\Gamma \mathrm{ex}} \\
& +\sum_{i=1}^{N}\left(-\left(\left\langle\lambda \mathrm{n}_{i} \cdot \nabla p,\right\rangle[v]\right)_{\Lambda_{i}}-\left([p],\left\langle\lambda \mathbf{n}_{i} \cdot \nabla v\right\rangle\right)_{\Lambda_{i}}+\left(\frac{\beta}{h}[p],[v]\right)_{\Lambda_{i}}\right) \\
& =-\sum_{i=0}^{N}(T|T|, v)_{\Omega_{i}} .
\end{aligned}
$$

The adjoint system for overlapping meshes has the same stabilization at the artificial interface as the state equation at the interface

$$
\begin{aligned}
& \left.\sum_{i=0}^{N}(\lambda \nabla p, \nabla v)_{\Omega_{i}}-(c p, v)_{\Omega_{i}}\right) \\
& +\left(\alpha^{\prime}(T)\left(T-T^{\mathrm{ex}}\right) p, v\right)_{\Gamma \mathrm{ex}}+(\alpha(T) p, v)_{\Gamma \mathrm{ex}} \\
& +\sum_{i=1}^{N}\left(-\left(\left\langle\lambda \mathbf{n}_{i} \cdot \nabla p,\right\rangle[v]\right)_{\Lambda_{i}}-\left([p],\left\langle\lambda \mathbf{n}_{i} \cdot \nabla v\right\rangle\right)_{\Lambda_{i}}+\left(\frac{\beta}{h}[p],[v]\right)_{\Lambda_{i}}\right. \\
& \left.+([\lambda \nabla p],[\nabla v])_{\Omega_{h, 0} \cap \Omega_{i}}\right)=-\sum_{i=0}^{N}(T|T|, v)_{\Omega_{i}} .
\end{aligned}
$$

A Laplacian deformation scheme is not suited for large deformations

$$
\begin{aligned}
-\Delta w & =0 \text { in } \Omega \\
w & =d \cdot n \text { on } \Gamma \\
w & =0 \text { on } \partial \Omega \backslash \Gamma .
\end{aligned}
$$

「	$d \cdot n$
Moving Boundary	Deformation

The Eikonal convection equation ensures better mesh-quality

$$
\begin{gathered}
-h \Delta \epsilon_{1}+\left\|\nabla \epsilon_{1}\right\|_{2}^{2}=1 \text { in } \Omega, \\
\epsilon_{1}=0 \text { on } \partial \Omega \backslash \Gamma
\end{gathered}
$$

「	ϵ_{1}	
Moving Boundary	Dist. to Γ	

The Eikonal convection equation ensures better mesh-quality

$$
\begin{aligned}
-h \Delta \epsilon_{1} & +\left\|\nabla \epsilon_{1}\right\|_{2}^{2}=1 \text { in } \Omega, \\
\epsilon_{1} & =0 \text { on } \partial \Omega \backslash \Gamma \\
-h \Delta \epsilon_{2} & +\left\|\nabla \epsilon_{2}\right\|_{2}^{2}=1 \text { in } \Omega, \\
\epsilon_{2} & =0 \text { on } \Gamma
\end{aligned}
$$

Γ	ϵ_{1}	ϵ_{2}
Moving Boundary	Dist. to Γ	Dist. to $\partial \Omega \backslash$.

The Eikonal convection equation ensures better mesh-quality

$$
\begin{aligned}
-h \Delta \epsilon_{1} & +\left\|\nabla \epsilon_{1}\right\|_{2}^{2}=1 \text { in } \Omega, \\
\epsilon_{1} & =0 \text { on } \partial \Omega \backslash \Gamma \\
-h \Delta \epsilon_{2} & +\left\|\nabla \epsilon_{2}\right\|_{2}^{2}=1 \text { in } \Omega, \\
\epsilon_{2} & =0 \text { on } \Gamma \\
-\alpha \epsilon_{2}^{2} \Delta w & +\operatorname{div}\left(\epsilon_{1} w \otimes \nabla \epsilon_{2}\right)=0 \\
w & =d \cdot n \text { on } \Gamma \\
w & =0 \text { on } \partial \Omega \backslash \Gamma .
\end{aligned}
$$

Γ	ϵ_{1}	ϵ_{2}
Moving Boundary	Dist. to Γ	Dist. to $\partial \Omega \backslash \Gamma$.

In the discrete case, the solution of a state equation u is dependent of volume nodes

$$
J(u(\Omega), \Omega)=\int_{\Omega} u^{2} \mathrm{~d} \Omega
$$

In the discrete case, the solution of a state equation u is dependent of volume nodes

$$
\begin{aligned}
J(u(\Omega), \Omega) & =\int_{\Omega} u^{2} \mathrm{~d} \Omega \\
\mathrm{~d} J(u(\Omega), \Omega)[V] & =\frac{\mathrm{d}}{\mathrm{~d} \Omega}\left(\int_{\Omega} u^{2} \mathrm{~d} \Omega\right)[V] \\
V & =\text { Displacement function }
\end{aligned}
$$

The new strong formulation now has additional terms for continuity over the artificial interface Λ_{1}

$$
\begin{array}{rlrl}
-\Delta u_{i} & =f \text { in } \Omega_{i}, \quad i=0,1, & \Lambda_{0}=\dot{\partial} \Omega \\
u_{1}+\frac{\partial u_{1}}{\partial n} & =1 \text { on } \Gamma, & & \Omega_{0} \\
u_{0}+\frac{\partial u_{0}}{\partial n} & =1 \text { on } \partial \Omega & \\
{[u]} & =0 \text { on } \Lambda_{1}, & \\
{\left[\frac{\partial u}{\partial n}\right]} & =\text { on } \Lambda_{1}, & & \\
\Omega_{1} &
\end{array}
$$

We need several extra terms to obtain a stable Finite Element scheme

$$
\begin{aligned}
0 & =a_{s}(u, v)-l_{s}(v) \\
a_{s}(u, v) & =(\nabla u, \nabla v)_{\Omega}+(u, v)_{\partial \Omega}+(u, v)_{\ulcorner } \\
l_{s}(v) & =(f, v)_{\Omega}+(1, v)_{\partial \Omega}+(1, v)_{\Gamma}
\end{aligned}
$$

We need several extra terms to obtain a stable Finite Element scheme

$$
\begin{aligned}
0 & =a_{s}(u, v)-I_{s}(v) \\
a_{s}(u, v) & =\sum_{i=0}^{1}\left[(\nabla u, \nabla v)_{\Omega_{i}}\right]+\left(u_{0}, v_{0}\right)_{\partial \Omega}+\left(u_{1}, v_{1}\right)_{\Gamma} \\
l_{s}(v) & =\sum_{i=0}^{1}(f, v)_{\Omega_{i}}+\left(1, v_{0}\right)_{\partial \Omega}+\left(1, v_{1}\right)_{\Gamma} .
\end{aligned}
$$

We need several extra terms to obtain a stable Finite Element scheme

$$
\begin{aligned}
0 & =a_{s}(u, v)-l_{s}(v) \\
a_{s}(u, v) & =\sum_{i=0}^{1}\left[(\nabla u, \nabla v)_{\Omega_{i}}\right]+\left(u_{0}, v_{0}\right)_{\partial \Omega}+\left(u_{1}, v_{1}\right)_{\Gamma}, \\
I_{s}(v) & =\sum_{i=0}^{1}(f, v)_{\Omega_{i}}+\left(1, v_{0}\right)_{\partial \Omega}+\left(1, v_{1}\right)_{\Gamma} . \\
a_{N}(u, v) & =-\left(\left\langle\mathbf{n}_{1} \cdot \nabla u\right\rangle,[v]\right)_{\Lambda_{1}}-\left(\left[u_{h}\right],\left\langle\mathbf{n}_{1} \cdot \nabla v\right\rangle\right)_{\Lambda_{1}}+\frac{\beta}{h}([u],[v])_{\Lambda_{1}},
\end{aligned}
$$

Nitsche terms	Jump	Average	
$a_{N}(u, v)$	$[w]=w_{1}-w_{0}$	$\langle w\rangle=\frac{w_{1}+w_{0}}{2}$	

We need several extra terms to obtain a stable Finite Element scheme

$$
\begin{aligned}
0 & =a_{s}(u, v)-I_{s}(v) \\
a_{s}(u, v) & =\sum_{i=0}^{1}\left[(\nabla u, \nabla v)_{\Omega_{i}}\right]+\left(u_{0}, v_{0}\right)_{\partial \Omega}+\left(u_{1}, v_{1}\right)_{\Gamma}, \\
I_{s}(v) & =\sum_{i=0}^{1}(f, v)_{\Omega_{i}}+\left(1, v_{0}\right)_{\partial \Omega}+\left(1, v_{1}\right)_{\Gamma} . \\
a_{N}(u, v) & =-\left(\left\langle\mathbf{n}_{1} \cdot \nabla u\right\rangle,[v]\right)_{\Lambda_{1}}-\left(\left[u_{h}\right],\left\langle\mathbf{n}_{1} \cdot \nabla v\right\rangle\right)_{\Lambda_{1}}+\frac{\beta}{h}([u],[v])_{\Lambda_{1}}, \\
a_{O}(u, v) & =([\nabla u],[\nabla v])_{\Omega_{h, 0} \cap \Omega_{1}},
\end{aligned}
$$

Nitsche terms	Jump	Average	Stability on overlap
$a_{N}(u, v)$	$[w]=w_{1}-w_{0}$	$\langle w\rangle=\frac{w_{1}+w_{0}}{2}$	$a_{O}(u, v)$

[^0]: ${ }^{2}$ August Johansson et al. "Finite Element Methods for Arbitrary Many Intersecting Meshes: Multimesh". In: Preparation ().

