
Shape Optimization with Multiple Meshes in the
FEniCS-framework

Jørgen S. Dokken1 , Simon W. Funke1, August Johansson1,
Marie E. Rognes1, Stephan Schmidt2

Simula Research Laboratory, Fornebu, Norway1,
University of Würzburg, Würzburg, Germany2

September 28, 2017

[fenicsproject.org]

I FEniCS is a software for solving PDEs via the finite-element method
I FEniCS is an international open source software and research project
I FEniCS is user-friendly: estimated 103 − 104 users world-wide
I FEniCS is efficient: parallel performant up to (at least) 25 000 cores.

2

FEniCS provides automated generation of bases for a wide
range of finite element spaces

from dolfin import ∗

Import meshes
mesh = Mesh("cable.xml")
subdomains = MeshFunction("size t", mesh,

"cable vf.xml")

Define finite element spaces
V = FunctionSpace(mesh, "CG", 1)
u = TrialFunction(V)
v = TestFunction(V)
T = Function(V)

Problem specific variables
f= Expression("cos(x[0])∗exp(sin(x[1]))", degree=3)
lmb = Expression("...", degree=3)
T ex = 20.
c = 0.01

Define variational form
a = inner(lmb∗grad(u), grad(v))∗dx+u∗v∗ds−c∗u∗v∗dx
l = f∗v∗dx+T ex∗v∗ds

Solve a(T,v) = l(v) with respect to T
solve(a == l, T)

3

FEniCS provides an expressive form language close to
mathematical syntax

from dolfin import ∗

Import meshes
mesh = Mesh("cable.xml")
subdomains = MeshFunction("size t", mesh,

"cable vf.xml")

Define finite element spaces
V = FunctionSpace(mesh, "CG", 1)
u = TrialFunction(V)
v = TestFunction(V)
T = Function(V)

Problem specific variables
f= Expression("cos(x[0])∗exp(sin(x[1]))", degree=3)
lmb = Expression("...", degree=3)
T ex = 20.
c = 0.01

Define variational form
a = inner(lmb∗grad(u), grad(v))∗dx+u∗v∗ds−c∗u∗v∗dx
l = f∗v∗dx+T ex∗v∗ds

Solve a(T,v) = l(v) with respect to T
solve(a == l, T)

Language for variational forms

Generality Efficiency

Code Generation

3

FEniCS provides automated form evaluation and assembly
of the linear system

from dolfin import ∗

Import meshes
mesh = Mesh("cable.xml")
subdomains = MeshFunction("size t", mesh,

"cable vf.xml")

Define finite element spaces
V = FunctionSpace(mesh, "CG", 1)
u = TrialFunction(V)
v = TestFunction(V)
T = Function(V)

Problem specific variables
f= Expression("cos(x[0])∗exp(sin(x[1]))", degree=3)
lmb = Expression("...", degree=3)
T ex = 20.
c = 0.01

Define variational form
a = inner(lmb∗grad(u), grad(v))∗dx+u∗v∗ds−c∗u∗v∗dx
l = f∗v∗dx+T ex∗v∗ds

Solve a(T,v) = l(v) with respect to T
solve(a == l, T)

i0

i1

i2

j0 j1 j2

1

2

3

1 2 3

A21

Automated assembly

High performance linear algebra

3

Mixed-dimensional methods1

1Cecile Daversin-Catty and Marie E. Rognes. “Automated abstractions for
Mixed-Dimensional Finite Element Methods”. In: Preparation ().

4

Multi-physics problems require efficent mixed-dimensional
and mixed domain coupling: emerging features in FEniCS!

W = V(Omega H) x V(Omega H U Omega T)
V = FunctionSpace(mesh, "Lagrange",1) # Heart + Torso
H = FunctionSpace(submesh heart , "Lagrange",1) # Heart
W = FunctionSpaceProduct(H,V)

v, psi v in V(Omega H)
u, psi u in V(Omega H U \Omega T)
(v,u) = TrialFunction(W)
(psi v ,psi u) = TestFunction(W)

Integration on the heart domain Omega H
dH = Measure("dx",domain=W.sub space(0).mesh())
Integration on the whole domain Omega H U Omega T
dV = Measure("dx",domain=W.sub space(1).mesh())

Variational formulation
A = v∗psi v∗dH\

+ th∗dt∗Mi∗inner(grad(v),grad(psi v))∗dH
C = (dt/th)∗(Mi+Me)∗inner(grad(u),grad(psi u))∗dV\

+ (dt/th)∗Mt∗inner(grad(u),grad(psi u))∗dV
B = dt∗Mi∗inner(grad(u),grad(psi v))∗dH
BT = dt∗Mi∗inner(grad(v),grad(psi u))∗dH
a = A + C + B + BT
L = c + d

sol = Function(W)
solve(a == L, sol)

[C. Daversin-Catty, cecile@simula.no]

5

Multi-physics problems require efficent mixed-dimensional
and mixed domain coupling: emerging features in FEniCS!

W = V(Omega H) x V(Omega H U Omega T)
V = FunctionSpace(mesh, "Lagrange",1) # Heart + Torso
H = FunctionSpace(submesh heart , "Lagrange",1) # Heart
W = FunctionSpaceProduct(H,V)

v, psi v in V(Omega H)
u, psi u in V(Omega H U \Omega T)
(v,u) = TrialFunction(W)
(psi v ,psi u) = TestFunction(W)

Integration on the heart domain Omega H
dH = Measure("dx",domain=W.sub space(0).mesh())
Integration on the whole domain Omega H U Omega T
dV = Measure("dx",domain=W.sub space(1).mesh())

Variational formulation
A = v∗psi v∗dH\

+ th∗dt∗Mi∗inner(grad(v),grad(psi v))∗dH
C = (dt/th)∗(Mi+Me)∗inner(grad(u),grad(psi u))∗dV\

+ (dt/th)∗Mt∗inner(grad(u),grad(psi u))∗dV
B = dt∗Mi∗inner(grad(u),grad(psi v))∗dH
BT = dt∗Mi∗inner(grad(v),grad(psi u))∗dH
a = A + C + B + BT
L = c + d

sol = Function(W)
solve(a == L, sol)

[
A B
BT C

] [
v
u

]
=

[
c
d

]
φiH : V (ΩH) basis functions

φiHT : V (ΩH ∪ ΩT) basis functions

Aij =

∫
ΩH

φjHφ
i
H + θ∆t

∫
ΩH

Mi∇φjH · ∇φiH

Bij = ∆t

∫
ΩH

Mi∇φjH · ∇φiHT

Cij =
∆t

θ

∫
ΩH

(Mi + Me)∇φjHT · ∇φiHT

+
∆t

θ

∫
ΩT

MT∇φjHT · ∇φiHT

[C. Daversin-Catty, cecile@simula.no]

5

Multi-physics problems require efficent mixed-dimensional
and mixed domain coupling: emerging features in FEniCS!

[C. Daversin-Catty, cecile@simula.no]

5

Multi-physics problems require efficent mixed-dimensional
and mixed domain coupling: emerging features in FEniCS!

[C. Daversin-Catty, cecile@simula.no]

5

Multi-physics problems require efficent mixed-dimensional
and mixed domain coupling: emerging features in FEniCS!

[C. Daversin-Catty, cecile@simula.no]

5

Multi-physics problems require efficent mixed-dimensional
and mixed domain coupling: emerging features in FEniCS!

[C. Daversin-Catty, cecile@simula.no]

5

CUT Finite Element Methods:
MultiMesh2

2August Johansson et al. “Finite Element Methods for Arbitrary Many
Intersecting Meshes: Multimesh”. In: Preparation ().

6

The computational domain is represented by an arbitrary
number of overlapping meshes3

K̂h,0

K̂h,1

Λ1

Λ1

Ω̂0

Ω̂1

Ω1

Ω0

Λ1

Λ0 = Γex

3August Johansson et al. “Finite Element Methods for Arbitrary Many
Intersecting Meshes: Multimesh”. In: Preparation ().

7

A finite element function space is introduced on each
indvidual mesh, ignoring completely covered cells3

Kh,0

Kh,1

Λ1

Λ1

Ωh,1

Ω1

Ω0

Λ1

Λ0 = Γex

Ωh,0

3August Johansson et al. “Finite Element Methods for Arbitrary Many
Intersecting Meshes: Multimesh”. In: Preparation ().

7

We illustrate the method by considering the stationary heat
equation with a reaction coefficient

−∇ · (λ∇T0)− cT0 = f in Ω0,

−∇ · (λ∇T)− cT = f in Ω,

λex
∂T0

∂n
+ (T0 − Tex) = 0 on Γex,

[T]± = 0 on Γ1
int ,[

λ
∂T

∂n

]
±

= 0 on Γ1
int .

[T] = 0 on Λ1,[
∂T

∂n

]
= 0 on Λ1. Distribution of the source f in

the computational domain.

8

We illustrate the method by considering the stationary heat
equation with a reaction coefficient

−∇ · (λ∇T0)− cT0 = f in Ω0,

−∇ · (λ∇T)− cT = f in Ω,

λex
∂T0

∂n
+ (T0 − Tex) = 0 on Γex,

[T]± = 0 on Γ1
int ,[

λ
∂T

∂n

]
±

= 0 on Γ1
int .

[T] = 0 on Λ1,[
∂T

∂n

]
= 0 on Λ1. Heat diffusion coefficient λ in

the computational domain.

8

Continuity of the solution is enforced over the artificial
interface Λ1

−∇ · (λ∇T0)− cT0 = f in Ω0,

−∇ · (λ∇T)− cT = f in Ω,

λex
∂T0

∂n
+ (T0 − Tex) = 0 on Γex,

[T]± = 0 on Γ1
int ,[

λ
∂T

∂n

]
±

= 0 on Γ1
int .

[T] = 0 on Λ1,[
∂T

∂n

]
= 0 on Λ1.

Ω̂0
Λ1

Ω̂1 = Ω1

Γ1
int

Γex

Schematic of the composition of
multiple overlapping meshes.

8

Continuity of the solution is enforced over the artificial
interface Λ1

−∇ · (λ∇T0)− cT0 = f in Ω0,

−∇ · (λ∇T1)− cT1 = f in Ω1,

λex
∂T0

∂n
+ (T0 − Tex) = 0 on Γex,

[T]± = 0 on Γ1
int ,[

λ
∂T

∂n

]
±

= 0 on Γ1
int

[T] = 0 on Λ1,[
∂T

∂n

]
= 0 on Λ1.

Ω̂0
Λ1

Ω̂1 = Ω1

Γ1
int

Γex

Schematic of the composition of
multiple overlapping meshes.

8

We create a MultiCable in FEniCS by initializing the
MultiMesh object and add a background mesh

from dolfin import ∗

multimesh = MultiMesh()
multimesh.add(Mesh("outer cable.xml"))
for i in range(num cables):

cable = Mesh("inner cable.xml")
Scale and move internal cables
....
multimesh.add(cable)

multimesh.build()

Create function space for temperature
V = MultiMeshFunctionSpace(multimesh , "CG", 1)
T = MultiMeshFunction(V, name="Temperature")
u,v = TrialFunction(V), TestFunction(V)

Problem Specific variables
f = Expression("sin(x[0]∗x[1])", degree=3)
lmb = Expression("...", degree=3)
T ex , c = 3.2,0.04

alpha, beta = 4.0,4.0
n = FacetNormal(multimesh)
h =2.0∗Circumradius(multimesh)
h = (h(’+’) + h(’−’)) / 2
F = inner(lmb∗grad(u), grad(v))∗dX \

−f∗v∗dX −c∗v∗u∗dX+ (u−T ex)∗v∗ds
F += − inner(avg(lmb∗grad(u)), jump(v, n))∗dI \

− inner(avg(lmb∗grad(v)), jump(u, n))∗dI \
+ alpha/h∗jump(u)∗jump(v)∗dI \
+ beta∗inner(jump(grad(u)), jump(grad(v)))∗dO

Assemble multimesh form
A = assemble multimesh(lhs(F))
b = assemble multimesh(rhs(F))
solve(A, T.vector(), b, ’lu’)

9

We add multiple internal cables on top of the background
cable

from dolfin import ∗

multimesh = MultiMesh()
multimesh.add(Mesh("outer cable.xml"))
for i in range(num cables):

cable = Mesh("inner cable.xml")
Scale and move internal cables
....
multimesh.add(cable)

multimesh.build()

Create function space for temperature
V = MultiMeshFunctionSpace(multimesh , "CG", 1)
T = MultiMeshFunction(V, name="Temperature")
u,v = TrialFunction(V), TestFunction(V)

Problem Specific variables
f = Expression("sin(x[0]∗x[1])", degree=3)
lmb = Expression("...", degree=3)
T ex , c = 3.2,0.04

alpha, beta = 4.0,4.0
n = FacetNormal(multimesh)
h =2.0∗Circumradius(multimesh)
h = (h(’+’) + h(’−’)) / 2
F = inner(lmb∗grad(u), grad(v))∗dX \

−f∗v∗dX −c∗v∗u∗dX+ (u−T ex)∗v∗ds
F += − inner(avg(lmb∗grad(u)), jump(v, n))∗dI \

− inner(avg(lmb∗grad(v)), jump(u, n))∗dI \
+ alpha/h∗jump(u)∗jump(v)∗dI \
+ beta∗inner(jump(grad(u)), jump(grad(v)))∗dO

Assemble multimesh form
A = assemble multimesh(lhs(F))
b = assemble multimesh(rhs(F))
solve(A, T.vector(), b, ’lu’)

9

We add multiple internal cables on top of the background
cable

from dolfin import ∗

multimesh = MultiMesh()
multimesh.add(Mesh("outer cable.xml"))
for i in range(num cables):

cable = Mesh("inner cable.xml")
Scale and move internal cables
....
multimesh.add(cable)

multimesh.build()

Create function space for temperature
V = MultiMeshFunctionSpace(multimesh , "CG", 1)
T = MultiMeshFunction(V, name="Temperature")
u,v = TrialFunction(V), TestFunction(V)

Problem Specific variables
f = Expression("sin(x[0]∗x[1])", degree=3)
lmb = Expression("...", degree=3)
T ex , c = 3.2,0.04

alpha, beta = 4.0,4.0
n = FacetNormal(multimesh)
h =2.0∗Circumradius(multimesh)
h = (h(’+’) + h(’−’)) / 2
F = inner(lmb∗grad(u), grad(v))∗dX \

−f∗v∗dX −c∗v∗u∗dX+ (u−T ex)∗v∗ds
F += − inner(avg(lmb∗grad(u)), jump(v, n))∗dI \

− inner(avg(lmb∗grad(v)), jump(u, n))∗dI \
+ alpha/h∗jump(u)∗jump(v)∗dI \
+ beta∗inner(jump(grad(u)), jump(grad(v)))∗dO

Assemble multimesh form
A = assemble multimesh(lhs(F))
b = assemble multimesh(rhs(F))
solve(A, T.vector(), b, ’lu’)

9

Nitsches method for weak enforcement of boundary
conditions is used to obtain a stable finite element scheme

from dolfin import ∗

multimesh = MultiMesh()
multimesh.add(Mesh("outer cable.xml"))
for i in range(num cables):

cable = Mesh("inner cable.xml")
Scale and move internal cables
....
multimesh.add(cable)

multimesh.build()

Create function space for temperature
V = MultiMeshFunctionSpace(multimesh , "CG", 1)
T = MultiMeshFunction(V, name="Temperature")
u,v = TrialFunction(V), TestFunction(V)

Problem Specific variables
f = Expression("sin(x[0]∗x[1])", degree=3)
lmb = Expression("...", degree=3)
T ex , c = 3.2,0.04

alpha, beta = 4.0,4.0
n = FacetNormal(multimesh)
h =2.0∗Circumradius(multimesh)
h = (h(’+’) + h(’−’)) / 2
F = inner(lmb∗grad(u), grad(v))∗dX \

−f∗v∗dX −c∗v∗u∗dX+ (u−T ex)∗v∗ds
F += − inner(avg(lmb∗grad(u)), jump(v, n))∗dI \

− inner(avg(lmb∗grad(v)), jump(u, n))∗dI \
+ alpha/h∗jump(u)∗jump(v)∗dI \
+ beta∗inner(jump(grad(u)), jump(grad(v)))∗dO

Assemble multimesh form
A = assemble multimesh(lhs(F))
b = assemble multimesh(rhs(F))
solve(A, T.vector(), b, ’lu’)

0 = Fs(T , v) + FN(T , v) + FO(T , v)

Fs(T , v) =
1∑

i=0

∫
Ωi

λ(∇T ,∇v)− cTv − fv dx

+

∫
Γex

(T0 − T ex)v ds = 0

FN(T , v) = −(〈λn1 · ∇T 〉, [v])Λ1

− ([Th], 〈λn1 · ∇v〉)Λ1 +
β

h
([T], [v])Λ1 ,

FO(T , v) = ([∇T], [∇v])Ωh,0∩Ω1 .

Nitsche terms Jump Average Stability on overlap
FN(u, v) [w] = w1 − w0 〈w〉 = w1+w0

2 FO(u, v)

9

Nitsches method for weak enforcement of boundary
conditions is used to obtain a stable finite element scheme

from dolfin import ∗

multimesh = MultiMesh()
multimesh.add(Mesh("outer cable.xml"))
for i in range(num cables):

cable = Mesh("inner cable.xml")
Scale and move internal cables
....
multimesh.add(cable)

multimesh.build()

Create function space for temperature
V = MultiMeshFunctionSpace(multimesh , "CG", 1)
T = MultiMeshFunction(V, name="Temperature")
u,v = TrialFunction(V), TestFunction(V)

Problem Specific variables
f = Expression("sin(x[0]∗x[1])", degree=3)
lmb = Expression("...", degree=3)
T ex , c = 3.2,0.04

alpha, beta = 4.0,4.0
n = FacetNormal(multimesh)
h =2.0∗Circumradius(multimesh)
h = (h(’+’) + h(’−’)) / 2
F = inner(lmb∗grad(u), grad(v))∗dX \

−f∗v∗dX −c∗v∗u∗dX+ (u−T ex)∗v∗ds
F += − inner(avg(lmb∗grad(u)), jump(v, n))∗dI \

− inner(avg(lmb∗grad(v)), jump(u, n))∗dI \
+ alpha/h∗jump(u)∗jump(v)∗dI \
+ beta∗inner(jump(grad(u)), jump(grad(v)))∗dO

Assemble multimesh form
A = assemble multimesh(lhs(F))
b = assemble multimesh(rhs(F))
solve(A, T.vector(), b, ’lu’)

0 = Fs(T , v) + FN(T , v) + FO(T , v)

Fs(T , v) =
1∑

i=0

∫
Ωi

λ(∇T ,∇v)− cTv − fv dx

+

∫
Γex

(T0 − T ex)v ds = 0

FN(T , v) = −(〈λn1 · ∇T 〉, [v])Λ1

− ([Th], 〈λn1 · ∇v〉)Λ1 +
β

h
([T], [v])Λ1 ,

FO(T , v) = ([∇T], [∇v])Ωh,0∩Ω1 .

Nitsche terms Jump Average Stability on overlap
FN(u, v) [w] = w1 − w0 〈w〉 = w1+w0

2 FO(u, v)

9

Nitsches method for weak enforcement of boundary
conditions is used to obtain a stable finite element scheme

from dolfin import ∗

multimesh = MultiMesh()
multimesh.add(Mesh("outer cable.xml"))
for i in range(num cables):

cable = Mesh("inner cable.xml")
Scale and move internal cables
....
multimesh.add(cable)

multimesh.build()

Create function space for temperature
V = MultiMeshFunctionSpace(multimesh , "CG", 1)
T = MultiMeshFunction(V, name="Temperature")
u,v = TrialFunction(V), TestFunction(V)

Problem Specific variables
f = Expression("sin(x[0]∗x[1])", degree=3)
lmb = Expression("...", degree=3)
T ex , c = 3.2,0.04

alpha, beta = 4.0,4.0
n = FacetNormal(multimesh)
h =2.0∗Circumradius(multimesh)
h = (h(’+’) + h(’−’)) / 2
F = inner(lmb∗grad(u), grad(v))∗dX \

−f∗v∗dX −c∗v∗u∗dX+ (u−T ex)∗v∗ds
F += − inner(avg(lmb∗grad(u)), jump(v, n))∗dI \

− inner(avg(lmb∗grad(v)), jump(u, n))∗dI \
+ alpha/h∗jump(u)∗jump(v)∗dI \
+ beta∗inner(jump(grad(u)), jump(grad(v)))∗dO

Assemble multimesh form
A = assemble multimesh(lhs(F))
b = assemble multimesh(rhs(F))
solve(A, T.vector(), b, ’lu’)

0 = Fs(T , v) + FN(T , v) + FO(T , v)

Fs(T , v) =
1∑

i=0

∫
Ωi

λ(∇T ,∇v)− cTv − fv dx

+

∫
Γex

(T0 − T ex)v ds = 0

FN(T , v) = −(〈λn1 · ∇T 〉, [v])Λ1

− ([Th], 〈λn1 · ∇v〉)Λ1 +
β

h
([T], [v])Λ1 ,

FO(T , v) = ([∇T], [∇v])Ωh,0∩Ω1 .

Nitsche terms Jump Average Stability on overlap
FN(u, v) [w] = w1 − w0 〈w〉 = w1+w0

2 FO(u, v)

9

Shape-optimization With
Overlapping Domains4

4Jørgen S. Dokken et al. “Shape Optimization on Multiple Meshes”. In:
Preparation ().

10

Re-meshing guarantees good mesh-quality, but it is a very
costly operation

11

Re-meshing guarantees good mesh-quality, but it is a very
costly operation

11

Re-meshing guarantees good mesh-quality, but it is a very
costly operation

11

Deformation of the mesh is cheaper than re-meshing but
degenerates for large changes

12

Deformation of the mesh is cheaper than re-meshing but
degenerates for large changes

12

Deformation of the mesh is cheaper than re-meshing but
degenerates for large changes

12

Multiple overlapping meshes is very efficient and preserves
mesh quality

13

Multiple overlapping meshes is very efficient and preserves
mesh quality

13

Multiple overlapping meshes is very efficient and preserves
mesh quality

13

We propose a new algorithm for solving PDE-constrained
shape optimization problems

min
u,Ω

J(u,Ω) s.t. E (u,Ω) = 0.

Algorithm: Shape-optimization on multiple domains

Init : Domain composition Ω̂0 = ∪i=0,...NΩ̂0
i

Param: k = 0
while not converged do

Solve state equations on Ω̂k ;
Compute the shape-derivatives dJ/dΩ;
Update the subdomains,Ω̂k+1

i , i = 0, . . .N;
Increment k and set Ω̂k = ∪i=0,...NΩ̂k

i ;
end
Result: Optimized domain

14

We propose a new algorithm for solving PDE-constrained
shape optimization problems

min
u,Ω

J(u,Ω) s.t. E (u,Ω) = 0.

Algorithm: Shape-optimization on multiple domains

Init : Domain composition Ω̂0 = ∪i=0,...NΩ̂0
i

Param: k = 0
while not converged do

Solve state equations on Ω̂k ;
Compute the shape-derivatives dJ/dΩ;
Update the subdomains,Ω̂k+1

i , i = 0, . . .N;
Increment k and set Ω̂k = ∪i=0,...NΩ̂k

i ;
end
Result: Optimized domain

14

We propose a new algorithm for solving PDE-constrained
shape optimization problems

min
u,Ω

J(u,Ω) s.t. E (u,Ω) = 0.

Algorithm: Shape-optimization on multiple domains

Init : Domain composition Ω̂0 = ∪i=0,...NΩ̂0
i

Param: k = 0
while not converged do

Solve state equations on Ω̂k ;
Compute the shape-derivatives dJ/dΩ;
Update the subdomains,Ω̂k+1

i , i = 0, . . .N;
Increment k and set Ω̂k = ∪i=0,...NΩ̂k

i ;
end
Result: Optimized domain

14

We propose a new algorithm for solving PDE-constrained
shape optimization problems

min
u,Ω

J(u,Ω) s.t. E (u,Ω) = 0.

Algorithm: Shape-optimization on multiple domains

Init : Domain composition Ω̂0 = ∪i=0,...NΩ̂0
i

Param: k = 0
while not converged do

Solve state equations on Ω̂k ;
Compute the shape-derivatives dJ/dΩ;
Update the subdomains,Ω̂k+1

i , i = 0, . . .N;
Increment k and set Ω̂k = ∪i=0,...NΩ̂k

i ;
end
Result: Optimized domain

14

We propose a new algorithm for solving PDE-constrained
shape optimization problems

min
u,Ω

J(u,Ω) s.t. E (u,Ω) = 0.

Algorithm: Shape-optimization on multiple domains

Init : Domain composition Ω̂0 = ∪i=0,...NΩ̂0
i

Param: k = 0
while not converged do

Solve state equations on Ω̂k ;
Compute the shape-derivatives dJ/dΩ;
Update the subdomains,Ω̂k+1

i , i = 0, . . .N;
Increment k and set Ω̂k = ∪i=0,...NΩ̂k

i ;
end
Result: Optimized domain

14

We propose a new algorithm for solving PDE-constrained
shape optimization problems

min
u,Ω

J(u,Ω) s.t. E (u,Ω) = 0.

Algorithm: Shape-optimization on multiple domains

Init : Domain composition Ω̂0 = ∪i=0,...NΩ̂0
i

Param: k = 0
while not converged do

Solve state equations on Ω̂k ;
Compute the shape-derivatives dJ/dΩ;
Update the subdomains,Ω̂k+1

i , i = 0, . . .N;
Increment k and set Ω̂k = ∪i=0,...NΩ̂k

i ;
end
Result: Optimized domain

14

The solution of an optimization problem with three identical
cables is an equilateral triangle

min
Ω,T

J(Ω,T) =

∫
Ω

1
3
|T |3dx ,

subject to

−∇ · (λ∇T)− cT = f in Ω,

∂T

∂n
+ (T − Tamb) = 0 on Γex.

[T]± = 0 on Γint ,[
λ
∂T

∂n

]
±

= 0 on Γint

Three cables with the same
thermal diffusivity.

15

The solution of an optimization problem with three identical
cables is an equilateral triangle

min
Ω,T

J(Ω,T) =

∫
Ω

1
3
|T |3dx ,

subject to

−∇ · (λ∇T)− cT = f in Ω,

∂T

∂n
+ (T − Tamb) = 0 on Γex.

[T]± = 0 on Γint ,[
λ
∂T

∂n

]
±

= 0 on Γint

Initial cable positioning and
corresponding temperature.

15

The solution of an optimization problem with three identical
cables is an equilateral triangle

min
Ω,T

J(Ω,T) =

∫
Ω

1
3
|T |3dx ,

subject to

−∇ · (λ∇T)− cT = f in Ω,

∂T

∂n
+ (T − Tamb) = 0 on Γex.

[T]± = 0 on Γint ,[
λ
∂T

∂n

]
±

= 0 on Γint

Optimal cable distribution and
temperature.

15

A benchmark problem in shape-optimization is the optimal
shape of an obstacle in Stokes-flow5

min
(u,Ω)

: J(Ω) =

∫
Ω

2∑
i ,j=1

(
∂ui
∂xj

)2

dA

subject to

−∆u +∇p = 0 in Ω,

∇ · u = 0,
u = 0 on Γ2,

u = u0 on Γ1 ∪ Γ3,

p = 0 on Γ4,

C = C0,

Vol = Vol0.

Γ1

Γ1

Γ2
Γ3

Γ4

Initial setup of the domain.

5Olivier Pironneau. “On optimum design in fluid mechanics”. In: Journal
of Fluid Mechanics 64.1 (1974), pp. 97–110.

16

We achieve the analytical shape, a rugby-ball with a 90
degree front and back angle5

min
(u,Ω)

: J(Ω) =

∫
Ω

2∑
i ,j=1

(
∂ui
∂xj

)2

dA

subject to

−∆u +∇p = 0 in Ω,

∇ · u = 0,
u = 0 on Γ2,

u = u0 on Γ1 ∪ Γ3,

p = 0 on Γ4,

C = C0,

Vol = Vol0.

5Olivier Pironneau. “On optimum design in fluid mechanics”. In: Journal
of Fluid Mechanics 64.1 (1974), pp. 97–110.

16

With multiple meshes, we can reduce the size of the mesh
that has to be deformed

16

With multiple meshes, we can reduce the size of the mesh
that has to be deformed

16

With multiple meshes, we can reduce the size of the mesh
that has to be deformed

16

Further work

I Extend the multiple mesh
formulation to to time
dependent problems such as
the NS-equation.

I Use shape-optimization to
optimize power-output of a
tidal turbine farm. [islayenergytrust.org.uk/tidal-energy-project/]

17

Further work

I Extend the multiple mesh
formulation to to time
dependent problems such as
the NS-equation.

I Use shape-optimization to
optimize power-output of a
tidal turbine farm. [islayenergytrust.org.uk/tidal-energy-project/]

17

Concluding, FEniCS is currently being extended to employ
mixed-domain method and CUT-FEM, where the latter has
been used for avoiding re-meshing in shape-optimization

10.849

21.698

32.547

 0.0

43.4
T

Questions?

This project is funded by the

18

Concluding, FEniCS is currently being extended to employ
mixed-domain method and CUT-FEM, where the latter has
been used for avoiding re-meshing in shape-optimization

10.849

21.698

32.547

 0.0

43.4
T

Questions?

This project is funded by the

18

Invisible slide

19

This trend is clear for both finer and coarser meshes.

20

The shape-derivative of a functional constrained by PDEs is
found with the adjoint method and shape-calculus

min
Ω

J(u,Ω) s.t. E (u,Ω) = 0,

Ĵ(Ω) = J(u(Ω),Ω)

Lagrangian based adjoint equation

L(u,Ω) = J(u,Ω) + (λ,E (u(Ω),Ω)).

dĴ(Ω)[s] =
∂L
∂Ω

[s] =
∂J

∂Ω
[s] +

(
λ,
∂E

∂Ω
[s]

)
,

∂L
∂T

=
∂J

∂T
[d] +

(
λ,
∂E

∂T
[d]

)
= 0, ∀d .

21

The shape-derivative of a functional constrained by PDEs is
found with the adjoint method and shape-calculus

min
Ω

J(u,Ω) s.t. E (u,Ω) = 0,

Ĵ(Ω) = J(u(Ω),Ω)

Lagrangian based adjoint equation

L(u,Ω) = J(u,Ω) + (λ,E (u(Ω),Ω)).

dĴ(Ω)[s] =
∂L
∂Ω

[s] =
∂J

∂Ω
[s] +

(
λ,
∂E

∂Ω
[s]

)
,

∂L
∂u

=
∂J

∂u
[d] +

(
λ,
∂E

∂u
[d]

)
= 0, ∀d .

21

A linear state equation yields an adjoint equation similar to
the state equation

L(u,Ω) = J(u,Ω) + (λ,E (u(Ω),Ω)).

∂J

∂u
[d] +

(
λ,
∂E

∂u
[d]

)
= 0, ∀d .

E (u) = Au + b,(
λ
∂E

∂u
[d]

)
= (λ,Ad).

22

A linear state equation yields an adjoint equation similar to
the state equation

L(u,Ω) = J(u,Ω) + (λ,E (u(Ω),Ω)).

∂J

∂u
[d] +

(
λ,
∂E

∂u
[d]

)
= 0, ∀d .

E (u) = Au + b,(
λ
∂E

∂u
[d]

)
= (λ,Ad).

22

The shape-derivative is transformed into surface integrals
with the Hadamard theorem

L(u,Ω) = J(u,Ω) + (λ,E (u(Ω),Ω)).

dĴ(Ω)[s] =
∂L
∂Ω

[s] =
∂J

∂Ω
[s] +

(
λ,
∂E

∂Ω
[s]

)
,

Theorem (Hadamard Theorem)

Let Ĵ be shape differentiable. Then the relation

dĴ(Ω)[V] =

∫
Γ
〈V , n〉g dS

holds for all vector fields.
23

The shape-derivative is transformed into surface integrals
with the Hadamard theorem

L(u,Ω) = J(u,Ω) + (λ,E (u(Ω),Ω)).

dĴ(Ω)[s] =
∂L
∂Ω

[s] =
∂J

∂Ω
[s] +

(
λ,
∂E

∂Ω
[s]

)
,

Theorem (Hadamard Theorem)

Let Ĵ be shape differentiable. Then the relation

dĴ(Ω)[V] =

∫
Γ
〈V , n〉g dS

holds for all vector fields.
23

We consider minimization of the temperature in
current-carrying MultiCables as a first example

min
Ω,T

J(Ω,T) =

∫
Ω

1
3
|T |3dx ,

subject to

−∇ · (λ∇T)− cT = f in Ω,

∂T

∂n
+ (T − Tamb) = 0 on Γex,

[T]± = 0 on Γ1
int ,[

λ
∂T

∂n

]
±

= 0 on Γ1
int .

Three cables with the same
thermal diffusivity.

24

We consider minimization of the temperature in
current-carrying MultiCables as a first example

min
Ω,T

J(Ω,T) =

∫
Ω

1
3
|T |3dx ,

subject to

−∇ · (λ∇T)− cT = f in Ω,

∂T

∂n
+ (T − Tamb) = 0 on Γex,

[T]± = 0 on Γ1
int ,[

λ
∂T

∂n

]
±

= 0 on Γ1
int .

Initial cable positioning and
corresponding temperature.

24

We consider minimization of the temperature in
current-carrying MultiCables as a first example

min
Ω,T

J(Ω,T) =

∫
Ω

1
3
|T |3dx ,

subject to

−∇ · (λ∇T)− cT = f in Ω,

∂T

∂n
+ (T − Tamb) = 0 on Γex,

[T]± = 0 on Γ1
int ,[

λ
∂T

∂n

]
±

= 0 on Γ1
int .

10.849

21.698

32.547

 0.0

43.4
T

Optimal cable distribution and
temperature.

24

The multiple meshes strong formulation has additional
terms for continuity over the artificial interface Λ1

−∇ · (λ∇T0)− cT0 = f in Ω0,

−∇ · (λ∇T)− cT = f in Ω,

λex
∂T0

∂n
+ (T0 − Tex) = 0 on Γex,

[T]± = 0 on Γ1
int ,[

λ
∂T

∂n

]
±

= 0 on Γ1
int .

[u] = 0 on Λ1,[
∂u

∂n

]
= 0 on Λ1.

Ω̂0
Λ1

Ω̂1 = Ω1

Γ1
int

Γex

25

The multiple meshes strong formulation has additional
terms for continuity over the artificial interface Λ1

−∇ · (λ∇T0)− cT0 = f in Ω0,

−∇ · (λ∇T1)− cT1 = f in Ω1,

λex
∂T0

∂n
+ (T0 − Tex) = 0 on Γex,

[T]± = 0 on Γ1
int ,[

λ
∂T

∂n

]
±

= 0 on Γ1
int

[u] = 0 on Λ1,[
∂u

∂n

]
= 0 on Λ1.

Ω̂0
Λ1

Ω̂1 = Ω1

Γ1
int

Γex

26

Nitsches method for weak enforcement of boundary
conditions is used to obtain a stable finite element scheme

0 = Fs(T , v)

Fs(T , v) =

∫
Ω
λ(∇T ,∇v)− cTv − fv dx

1∑
i=0

+

∫
Γex

(T − T ex)v ds = 0

FS(T , v) = −(〈n1 · ∇T 〉, [v])Λ1 − ([Th], 〈n1 · ∇v〉)Λ1 +
β

h
([T], [v])Λ1 ,

FO(T , v) = ([∇T], [∇v])Ωh,0∩Ω1 ,

Nitsche terms Jump Stability on overlap Average
FN(u, v) [w] = w1 − w0 FO(u, v) 〈w〉 = w1+w0

2

27

Nitsches method for weak enforcement of boundary
conditions is used to obtain a stable finite element scheme

0 = Fs(T , v)

Fs(T , v) =
1∑

i=0

∫
Ωi

λ(∇T ,∇v)− cTv − fv dx

+

∫
Γex

(T0 − T ex)v ds = 0

FS(T , v) = −(〈n1 · ∇T 〉, [v])Λ1 − ([Th], 〈n1 · ∇v〉)Λ1 +
β

h
([T], [v])Λ1 ,

FO(T , v) = ([∇T], [∇v])Ωh,0∩Ω1 ,

Nitsche terms Jump Stability on overlap Average
FN(u, v) [w] = w1 − w0 FO(u, v) 〈w〉 = w1+w0

2

27

Nitsches method for weak enforcement of boundary
conditions is used to obtain a stable finite element scheme

0 = Fs(T , v) + FN(T , v)

Fs(T , v) =
1∑

i=0

∫
Ωi

λ(∇T ,∇v)− cTv − fv dx

+

∫
Γex

(T0 − T ex)v ds = 0

FN(T , v) = −(〈n1 · ∇T 〉, [v])Λ1 − ([Th], 〈n1 · ∇v〉)Λ1 +
β

h
([T], [v])Λ1 ,

FO(T , v) = ([∇T], [∇v])Ωh,0∩Ω1 ,

Nitsche terms Jump Average Stability on overlap
FN(u, v) [w] = w1 − w0 〈w〉 = w1+w0

2 FO(u, v)

27

Nitsches method for weak enforcement of boundary
conditions is used to obtain a stable finite element scheme

0 = Fs(T , v) + FN(T , v) + FO(T , v)

Fs(T , v) =
1∑

i=0

∫
Ωi

λ(∇T ,∇v)− cTv − fv dx

+

∫
Γex

(T0 − T ex)v ds = 0

FN(T , v) = −(〈n1 · ∇T 〉, [v])Λ1 − ([Th], 〈n1 · ∇v〉)Λ1 +
β

h
([T], [v])Λ1 ,

FO(T , v) = ([λ∇T], [∇v])Ωh,0∩Ω1 .

Nitsche terms Jump Average Stability on overlap
FN(u, v) [w] = w1 − w0 〈w〉 = w1+w0

2 FO(u, v)

27

The implementation of the shape-gradient is verified with a
Taylor-test

28

A first example is three internal cables with the same
material properties

min
Ω,T

J(Ω,T) =

∫
Ω

1
3
|T |3dx ,

subject to

−∇ · (λ∇T)− cT = f in Ω,

∂T

∂n
+ (T − Tamb) = 0 on Γex.

[T]± = 0 on Γ1
int ,[

λ
∂T

∂n

]
±

= 0 on Γ1
int

Three cables with the same
thermal diffusivity.

29

A first example is three internal cables with the same
material properties

min
Ω,T

J(Ω,T) =

∫
Ω

1
3
|T |3dx ,

subject to

−∇ · (λ∇T)− cT = f in Ω,

∂T

∂n
+ (T − Tamb) = 0 on Γex.

[T]± = 0 on Γ1
int ,[

λ
∂T

∂n

]
±

= 0 on Γ1
int

Initial cable positioning and
corresponding temperature.

29

A first example is three internal cables with the same
material properties

min
Ω,T

J(Ω,T) =

∫
Ω

1
3
|T |3dx ,

subject to

−∇ · (λ∇T)− cT = f in Ω,

∂T

∂n
+ (T − Tamb) = 0 on Γex.

[T]± = 0 on Γ1
int ,[

λ
∂T

∂n

]
±

= 0 on Γ1
int

Optimal cable distribution and
temperature.

29

Optimization of a more complex example with 5 cables with
different currents and sizes

30

The state-equation has been implemented in FEniCS and
verified by the method of manufactured solutions

MultiMesh SingleMesh
Mesh size L2-error Rate Mesh size L2-error Rate
0.059 2.41e-04 2.116 0.062 2.27e-04 2.008
0.030 5.92e-05 2.067 0.031 5.65e-05 2.003
0.015 1.46e-05 2.055 0.016 1.41e-05 2.002
0.008 3.68e-06 1.999 0.008 3.52e-06 2.001

Table: Convergence rates of a manufactured Poisson problem.
Comparison between MultiMesh and the same mesh described as a single
mesh approximated by piece-wise continuous linear elements.

31

The adjoint system for overlapping meshes has the same
stabilization at the artificial interface as the state equation
at the interface

N∑
i=0

(
λ∇p,∇v)Ωi

− (cp, v)Ωi

)
+ (α′(T)(T − T ex)p, v)Γex + (α(T)p, v)Γex = −

N∑
i=0

(T |T |, v)Ωi
.

+
N∑
i=1

(
− (〈λni · ∇p, 〉[v])Λi

− ([p], 〈λni · ∇, v〉)Λi
+ (

β

h
[p], [v])Λi

+ ([∇p], [∇v])Ωh,0∩Ωi

)
= −

N∑
i=0

(T |T |, v)Ωi
.

Standard terms Nitsche terms Overlap terms
32

The adjoint system for overlapping meshes has the same
stabilization at the artificial interface as the state equation
at the interface

N∑
i=0

(
λ∇p,∇v)Ωi

− (cp, v)Ωi

)
+ (α′(T)(T − T ex)p, v)Γex + (α(T)p, v)Γex = −

N∑
i=0

(T |T |, v)Ωi
.

+
N∑
i=1

(
− (〈λni · ∇p, 〉[v])Λi

− ([p], 〈λni · ∇v〉)Λi
+ (

β

h
[p], [v])Λi

)
= −

N∑
i=0

(T |T |, v)Ωi
.

Standard terms Nitsche terms Overlap terms
32

The adjoint system for overlapping meshes has the same
stabilization at the artificial interface as the state equation
at the interface

N∑
i=0

(
λ∇p,∇v)Ωi

− (cp, v)Ωi

)
+ (α′(T)(T − T ex)p, v)Γex + (α(T)p, v)Γex = −

N∑
i=0

(T |T |, v)Ωi
.

+
N∑
i=1

(
− (〈λni · ∇p, 〉[v])Λi

− ([p], 〈λni · ∇v〉)Λi
+ (

β

h
[p], [v])Λi

+ ([λ∇p], [∇v])Ωh,0∩Ωi

)
= −

N∑
i=0

(T |T |, v)Ωi
.

Standard terms Nitsche terms Overlap terms
32

A Laplacian deformation scheme is not suited for large
deformations

−∆w = 0 in Ω,

w = d · n on Γ,

w = 0 on ∂Ω\Γ.

Γ d · n
Moving Boundary Deformation

33

The Eikonal convection equation ensures better mesh-quality

−h∆ε1 + ||∇ε1||22 = 1 in Ω,

ε1 = 0 on ∂Ω\Γ
−h∆ε2 + ||∇ε2||22 = 1 in Ω,

ε2 = 0 on Γ

−αε22∆w + div(ε1w ⊗∇ε2) = 0
w = d · n on Γ

w = 0 on partialΩ\Γ.

Γ ε1 ε2
Moving Boundary Dist. to Γ Dist. to ∂Ω\Γ.

34

The Eikonal convection equation ensures better mesh-quality

−h∆ε1 + ||∇ε1||22 = 1 in Ω,

ε1 = 0 on ∂Ω\Γ
−h∆ε2 + ||∇ε2||22 = 1 in Ω,

ε2 = 0 on Γ

−αε22∆w + div(ε1w ⊗∇ε2) = 0
w = d · n on Γ

w = 0 on ∂Ω\Γ.

Γ ε1 ε2
Moving Boundary Dist. to Γ Dist. to ∂Ω\Γ.

34

The Eikonal convection equation ensures better mesh-quality

−h∆ε1 + ||∇ε1||22 = 1 in Ω,

ε1 = 0 on ∂Ω\Γ
−h∆ε2 + ||∇ε2||22 = 1 in Ω,

ε2 = 0 on Γ

−αε22∆w + div(ε1w ⊗∇ε2) = 0
w = d · n on Γ

w = 0 on ∂Ω\Γ.

Γ ε1 ε2
Moving Boundary Dist. to Γ Dist. to ∂Ω\Γ.

34

In the discrete case, the solution of a state equation u is
dependent of volume nodes

n

J(u(Ω),Ω) =

∫
Ω
u2dΩ

dJ(u(Ω),Ω)[V] =
d

dΩ

(∫
Ω
u2dΩ

)
[V],

V = Displacement function

35

In the discrete case, the solution of a state equation u is
dependent of volume nodes

n

J(u(Ω),Ω) =

∫
Ω
u2dΩ

dJ(u(Ω),Ω)[V] =
d

dΩ

(∫
Ω
u2dΩ

)
[V],

V = Displacement function

35

The new strong formulation now has additional terms for
continuity over the artificial interface Λ1

−∆ui = f in Ωi , i = 0, 1,

u1 +
∂u1

∂n
= 1 on Γ,

u0 +
∂u0

∂n
= 1 on ∂Ω

[u] = 0 on Λ1,[
∂u

∂n

]
= on Λ1,

Λ0 = ∂Ω
Ω0

Γ

Λ1

Ω1

36

We need several extra terms to obtain a stable Finite
Element scheme

0 = as(u, v)− ls(v)

as(u, v) = (∇u,∇v)Ω + (u, v)∂Ω + (u, v)Γ,

1∑
i=0

1∑
i=0

ls(v) = (f , v)Ω + (1, v)∂Ω + (1, v)Γ

1∑
i=0

aN(u, v) = −(〈n1 · ∇u〉, [v])Λ1 − ([uh], 〈n1 · ∇v〉)Λ1 +
β

h
([u], [v])Λ1 ,

aO(u, v) = ([∇u], [∇v])Ωh,0∩Ω1 ,

Nitsche terms Jump Stability on overlap Average
aN(u, v) [w] = w1 − w0 aO(u, v) 〈w〉 = w1+w0

2

37

We need several extra terms to obtain a stable Finite
Element scheme

0 = as(u, v)− ls(v)

as(u, v) =
1∑

i=0

[(∇u,∇v)Ωi
] + (u0, v0)∂Ω + (u1, v1)Γ,

ls(v) =
1∑

i=0

(f , v)Ωi
+ (1, v0)∂Ω + (1, v1)Γ.

aN(u, v) = −(〈n1 · ∇u〉, [v])Λ1 − ([uh], 〈n1 · ∇v〉)Λ1 +
β

h
([u], [v])Λ1 ,

aO(u, v) = ([∇u], [∇v])Ωh,0∩Ω1 ,

Nitsche terms Jump Stability on overlap Average
aN(u, v) [w] = w1 − w0 aO(u, v) 〈w〉 = w1+w0

2

37

We need several extra terms to obtain a stable Finite
Element scheme

0 = as(u, v)− ls(v)

as(u, v) =
1∑

i=0

[(∇u,∇v)Ωi
] + (u0, v0)∂Ω + (u1, v1)Γ,

ls(v) =
1∑

i=0

(f , v)Ωi
+ (1, v0)∂Ω + (1, v1)Γ.

aN(u, v) = −(〈n1 · ∇u〉, [v])Λ1 − ([uh], 〈n1 · ∇v〉)Λ1 +
β

h
([u], [v])Λ1 ,

aO(u, v) = ([∇u], [∇v])Ωh,0∩Ω1 ,

Nitsche terms Jump Average Stability on overlap
aN(u, v) [w] = w1 − w0 〈w〉 = w1+w0

2 aO(u, v)

37

We need several extra terms to obtain a stable Finite
Element scheme

0 = as(u, v)− ls(v)

as(u, v) =
1∑

i=0

[(∇u,∇v)Ωi
] + (u0, v0)∂Ω + (u1, v1)Γ,

ls(v) =
1∑

i=0

(f , v)Ωi
+ (1, v0)∂Ω + (1, v1)Γ.

aN(u, v) = −(〈n1 · ∇u〉, [v])Λ1 − ([uh], 〈n1 · ∇v〉)Λ1 +
β

h
([u], [v])Λ1 ,

aO(u, v) = ([∇u], [∇v])Ωh,0∩Ω1 ,

Nitsche terms Jump Average Stability on overlap
aN(u, v) [w] = w1 − w0 〈w〉 = w1+w0

2 aO(u, v)

37

