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[fenicsproject.org]

I FEniCS is a software for solving PDEs via the finite-element method
I FEniCS is an international open source software and research project
I FEniCS is user-friendly: estimated 103 − 104 users world-wide
I FEniCS is efficient: parallel performant up to (at least) 25 000 cores.
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FEniCS provides automated generation of bases for a wide
range of finite element spaces

from dolfin import ∗

# Import meshes
mesh = Mesh("cable.xml")
subdomains = MeshFunction("size t", mesh,

"cable vf.xml")

# Define finite element spaces
V = FunctionSpace(mesh, "CG", 1)
u = TrialFunction(V)
v = TestFunction(V)
T = Function(V)

# Problem specific variables
f= Expression("cos(x[0])∗exp(sin(x[1]))", degree=3)
lmb = Expression("...", degree=3)
T ex = 20.
c = 0.01

# Define variational form
a = inner(lmb∗grad(u), grad(v))∗dx+u∗v∗ds−c∗u∗v∗dx
l = f∗v∗dx+T ex∗v∗ds

# Solve a(T,v) = l(v) with respect to T
solve(a == l, T)
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FEniCS provides an expressive form language close to
mathematical syntax
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Language for variational forms

Generality Efficiency

Code Generation
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FEniCS provides automated form evaluation and assembly
of the linear system

from dolfin import ∗

# Import meshes
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# Problem specific variables
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c = 0.01

# Define variational form
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Mixed-dimensional methods1

1Cecile Daversin-Catty and Marie E. Rognes. “Automated abstractions for
Mixed-Dimensional Finite Element Methods”. In: Preparation ().
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Multi-physics problems require efficent mixed-dimensional
and mixed domain coupling: emerging features in FEniCS!

# W = V(Omega H) x V(Omega H U Omega T)
V = FunctionSpace(mesh, "Lagrange",1) # Heart + Torso
H = FunctionSpace(submesh heart , "Lagrange",1) # Heart
W = FunctionSpaceProduct(H,V)

# v, psi v in V(Omega H)
# u, psi u in V(Omega H U \Omega T)
(v,u) = TrialFunction(W)
(psi v ,psi u) = TestFunction(W)

# Integration on the heart domain Omega H
dH = Measure("dx",domain=W.sub space(0).mesh())
# Integration on the whole domain Omega H U Omega T
dV = Measure("dx",domain=W.sub space(1).mesh())

# Variational formulation
A = v∗psi v∗dH\

+ th∗dt∗Mi∗inner(grad(v),grad(psi v))∗dH
C = (dt/th)∗(Mi+Me)∗inner(grad(u),grad(psi u))∗dV\

+ (dt/th)∗Mt∗inner(grad(u),grad(psi u))∗dV
B = dt∗Mi∗inner(grad(u),grad(psi v))∗dH
BT = dt∗Mi∗inner(grad(v),grad(psi u))∗dH
a = A + C + B + BT
L = c + d

sol = Function(W)
solve(a == L, sol)

[C. Daversin-Catty, cecile@simula.no]
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] [
v
u

]
=

[
c
d

]
φiH : V (ΩH) basis functions

φiHT : V (ΩH ∪ ΩT ) basis functions

Aij =

∫
ΩH

φjHφ
i
H + θ∆t

∫
ΩH

Mi∇φjH · ∇φiH

Bij = ∆t

∫
ΩH

Mi∇φjH · ∇φiHT

Cij =
∆t

θ

∫
ΩH

(Mi + Me)∇φjHT · ∇φiHT

+
∆t

θ

∫
ΩT

MT∇φjHT · ∇φiHT
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CUT Finite Element Methods:
MultiMesh2

2August Johansson et al. “Finite Element Methods for Arbitrary Many
Intersecting Meshes: Multimesh”. In: Preparation ().
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The computational domain is represented by an arbitrary
number of overlapping meshes3

K̂h,0

K̂h,1

Λ1
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3August Johansson et al. “Finite Element Methods for Arbitrary Many
Intersecting Meshes: Multimesh”. In: Preparation ().
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A finite element function space is introduced on each
indvidual mesh, ignoring completely covered cells3
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3August Johansson et al. “Finite Element Methods for Arbitrary Many
Intersecting Meshes: Multimesh”. In: Preparation ().
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We illustrate the method by considering the stationary heat
equation with a reaction coefficient

−∇ · (λ∇T0)− cT0 = f in Ω0,

−∇ · (λ∇T )− cT = f in Ω,

λex
∂T0

∂n
+ (T0 − Tex) = 0 on Γex,

[T ]± = 0 on Γ1
int ,[

λ
∂T

∂n

]
±

= 0 on Γ1
int .

[T ] = 0 on Λ1,[
∂T

∂n

]
= 0 on Λ1. Distribution of the source f in

the computational domain.
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Continuity of the solution is enforced over the artificial
interface Λ1
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Schematic of the composition of
multiple overlapping meshes.
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We create a MultiCable in FEniCS by initializing the
MultiMesh object and add a background mesh

from dolfin import ∗

multimesh = MultiMesh()
multimesh.add(Mesh("outer cable.xml"))
for i in range(num cables):

cable = Mesh("inner cable.xml")
# Scale and move internal cables
# ....
multimesh.add(cable)

multimesh.build()

# Create function space for temperature
V = MultiMeshFunctionSpace(multimesh , "CG", 1)
T = MultiMeshFunction(V, name="Temperature")
u,v = TrialFunction(V), TestFunction(V)

# Problem Specific variables
f = Expression("sin(x[0]∗x[1])", degree=3)
lmb = Expression("...", degree=3)
T ex , c = 3.2,0.04

alpha, beta = 4.0,4.0
n = FacetNormal(multimesh)
h =2.0∗Circumradius(multimesh)
h = (h(’+’) + h(’−’)) / 2
F = inner(lmb∗grad(u), grad(v))∗dX \

−f∗v∗dX −c∗v∗u∗dX+ (u−T ex)∗v∗ds
F += − inner(avg(lmb∗grad(u)), jump(v, n))∗dI \

− inner(avg(lmb∗grad(v)), jump(u, n))∗dI \
+ alpha/h∗jump(u)∗jump(v)∗dI \
+ beta∗inner(jump(grad(u)), jump(grad(v)))∗dO

# Assemble multimesh form
A = assemble multimesh(lhs(F))
b = assemble multimesh(rhs(F))
solve(A, T.vector(), b, ’lu’)
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We add multiple internal cables on top of the background
cable
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Nitsches method for weak enforcement of boundary
conditions is used to obtain a stable finite element scheme

from dolfin import ∗

multimesh = MultiMesh()
multimesh.add(Mesh("outer cable.xml"))
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0 = Fs(T , v) + FN(T , v) + FO(T , v)

Fs(T , v) =
1∑

i=0

∫
Ωi

λ(∇T ,∇v)− cTv − fv dx

+

∫
Γex

(T0 − T ex)v ds = 0

FN(T , v) = −(〈λn1 · ∇T 〉, [v ])Λ1

− ([Th], 〈λn1 · ∇v〉)Λ1 +
β

h
([T ], [v ])Λ1 ,

FO(T , v) = ([∇T ], [∇v ])Ωh,0∩Ω1 .

Nitsche terms Jump Average Stability on overlap
FN(u, v) [w ] = w1 − w0 〈w〉 = w1+w0

2 FO(u, v)

9



Nitsches method for weak enforcement of boundary
conditions is used to obtain a stable finite element scheme

from dolfin import ∗

multimesh = MultiMesh()
multimesh.add(Mesh("outer cable.xml"))
for i in range(num cables):

cable = Mesh("inner cable.xml")
# Scale and move internal cables
# ....
multimesh.add(cable)

multimesh.build()

# Create function space for temperature
V = MultiMeshFunctionSpace(multimesh , "CG", 1)
T = MultiMeshFunction(V, name="Temperature")
u,v = TrialFunction(V), TestFunction(V)

# Problem Specific variables
f = Expression("sin(x[0]∗x[1])", degree=3)
lmb = Expression("...", degree=3)
T ex , c = 3.2,0.04

alpha, beta = 4.0,4.0
n = FacetNormal(multimesh)
h =2.0∗Circumradius(multimesh)
h = (h(’+’) + h(’−’)) / 2
F = inner(lmb∗grad(u), grad(v))∗dX \

−f∗v∗dX −c∗v∗u∗dX+ (u−T ex)∗v∗ds
F += − inner(avg(lmb∗grad(u)), jump(v, n))∗dI \

− inner(avg(lmb∗grad(v)), jump(u, n))∗dI \
+ alpha/h∗jump(u)∗jump(v)∗dI \
+ beta∗inner(jump(grad(u)), jump(grad(v)))∗dO

# Assemble multimesh form
A = assemble multimesh(lhs(F))
b = assemble multimesh(rhs(F))
solve(A, T.vector(), b, ’lu’)

0 = Fs(T , v) + FN(T , v) + FO(T , v)

Fs(T , v) =
1∑

i=0

∫
Ωi

λ(∇T ,∇v)− cTv − fv dx

+

∫
Γex

(T0 − T ex)v ds = 0

FN(T , v) = −(〈λn1 · ∇T 〉, [v ])Λ1

− ([Th], 〈λn1 · ∇v〉)Λ1 +
β

h
([T ], [v ])Λ1 ,

FO(T , v) = ([∇T ], [∇v ])Ωh,0∩Ω1 .

Nitsche terms Jump Average Stability on overlap
FN(u, v) [w ] = w1 − w0 〈w〉 = w1+w0

2 FO(u, v)

9



Nitsches method for weak enforcement of boundary
conditions is used to obtain a stable finite element scheme

from dolfin import ∗

multimesh = MultiMesh()
multimesh.add(Mesh("outer cable.xml"))
for i in range(num cables):

cable = Mesh("inner cable.xml")
# Scale and move internal cables
# ....
multimesh.add(cable)

multimesh.build()

# Create function space for temperature
V = MultiMeshFunctionSpace(multimesh , "CG", 1)
T = MultiMeshFunction(V, name="Temperature")
u,v = TrialFunction(V), TestFunction(V)

# Problem Specific variables
f = Expression("sin(x[0]∗x[1])", degree=3)
lmb = Expression("...", degree=3)
T ex , c = 3.2,0.04

alpha, beta = 4.0,4.0
n = FacetNormal(multimesh)
h =2.0∗Circumradius(multimesh)
h = (h(’+’) + h(’−’)) / 2
F = inner(lmb∗grad(u), grad(v))∗dX \

−f∗v∗dX −c∗v∗u∗dX+ (u−T ex)∗v∗ds
F += − inner(avg(lmb∗grad(u)), jump(v, n))∗dI \

− inner(avg(lmb∗grad(v)), jump(u, n))∗dI \
+ alpha/h∗jump(u)∗jump(v)∗dI \
+ beta∗inner(jump(grad(u)), jump(grad(v)))∗dO

# Assemble multimesh form
A = assemble multimesh(lhs(F))
b = assemble multimesh(rhs(F))
solve(A, T.vector(), b, ’lu’)

0 = Fs(T , v) + FN(T , v) + FO(T , v)

Fs(T , v) =
1∑

i=0

∫
Ωi

λ(∇T ,∇v)− cTv − fv dx

+

∫
Γex

(T0 − T ex)v ds = 0

FN(T , v) = −(〈λn1 · ∇T 〉, [v ])Λ1

− ([Th], 〈λn1 · ∇v〉)Λ1 +
β

h
([T ], [v ])Λ1 ,

FO(T , v) = ([∇T ], [∇v ])Ωh,0∩Ω1 .

Nitsche terms Jump Average Stability on overlap
FN(u, v) [w ] = w1 − w0 〈w〉 = w1+w0

2 FO(u, v)

9



Shape-optimization With
Overlapping Domains4

4Jørgen S. Dokken et al. “Shape Optimization on Multiple Meshes”. In:
Preparation ().
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Re-meshing guarantees good mesh-quality, but it is a very
costly operation
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Deformation of the mesh is cheaper than re-meshing but
degenerates for large changes

12



Deformation of the mesh is cheaper than re-meshing but
degenerates for large changes

12



Deformation of the mesh is cheaper than re-meshing but
degenerates for large changes

12



Multiple overlapping meshes is very efficient and preserves
mesh quality
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We propose a new algorithm for solving PDE-constrained
shape optimization problems

min
u,Ω

J(u,Ω) s.t. E (u,Ω) = 0.

Algorithm: Shape-optimization on multiple domains

Init : Domain composition Ω̂0 = ∪i=0,...NΩ̂0
i

Param: k = 0
while not converged do

Solve state equations on Ω̂k ;
Compute the shape-derivatives dJ/dΩ;
Update the subdomains,Ω̂k+1

i , i = 0, . . .N;
Increment k and set Ω̂k = ∪i=0,...NΩ̂k

i ;
end
Result: Optimized domain
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The solution of an optimization problem with three identical
cables is an equilateral triangle

min
Ω,T

J(Ω,T ) =

∫
Ω

1
3
|T |3dx ,

subject to

−∇ · (λ∇T )− cT = f in Ω,

∂T

∂n
+ (T − Tamb) = 0 on Γex.

[T ]± = 0 on Γint ,[
λ
∂T

∂n

]
±

= 0 on Γint

Three cables with the same
thermal diffusivity.
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A benchmark problem in shape-optimization is the optimal
shape of an obstacle in Stokes-flow5

min
(u,Ω)

: J(Ω) =

∫
Ω

2∑
i ,j=1

(
∂ui
∂xj

)2

dA

subject to

−∆u +∇p = 0 in Ω,

∇ · u = 0,
u = 0 on Γ2,

u = u0 on Γ1 ∪ Γ3,

p = 0 on Γ4,

C = C0,

Vol = Vol0.

Γ1

Γ1

Γ2
Γ3

Γ4

Initial setup of the domain.

5Olivier Pironneau. “On optimum design in fluid mechanics”. In: Journal
of Fluid Mechanics 64.1 (1974), pp. 97–110.

16



We achieve the analytical shape, a rugby-ball with a 90
degree front and back angle5

min
(u,Ω)
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∫
Ω

2∑
i ,j=1

(
∂ui
∂xj

)2
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∇ · u = 0,
u = 0 on Γ2,

u = u0 on Γ1 ∪ Γ3,

p = 0 on Γ4,

C = C0,

Vol = Vol0.

5Olivier Pironneau. “On optimum design in fluid mechanics”. In: Journal
of Fluid Mechanics 64.1 (1974), pp. 97–110.
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With multiple meshes, we can reduce the size of the mesh
that has to be deformed

16



With multiple meshes, we can reduce the size of the mesh
that has to be deformed

16



With multiple meshes, we can reduce the size of the mesh
that has to be deformed

16



Further work

I Extend the multiple mesh
formulation to to time
dependent problems such as
the NS-equation.

I Use shape-optimization to
optimize power-output of a
tidal turbine farm. [islayenergytrust.org.uk/tidal-energy-project/]
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Concluding, FEniCS is currently being extended to employ
mixed-domain method and CUT-FEM, where the latter has
been used for avoiding re-meshing in shape-optimization
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Invisible slide
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This trend is clear for both finer and coarser meshes.
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The shape-derivative of a functional constrained by PDEs is
found with the adjoint method and shape-calculus

min
Ω

J(u,Ω) s.t. E (u,Ω) = 0,

Ĵ(Ω) = J(u(Ω),Ω)

Lagrangian based adjoint equation

L(u,Ω) = J(u,Ω) + (λ,E (u(Ω),Ω)).

dĴ(Ω)[s] =
∂L
∂Ω

[s] =
∂J

∂Ω
[s] +

(
λ,
∂E

∂Ω
[s]

)
,

∂L
∂T

=
∂J

∂T
[d ] +

(
λ,
∂E

∂T
[d ]

)
= 0, ∀d .

21



The shape-derivative of a functional constrained by PDEs is
found with the adjoint method and shape-calculus

min
Ω

J(u,Ω) s.t. E (u,Ω) = 0,
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A linear state equation yields an adjoint equation similar to
the state equation

L(u,Ω) = J(u,Ω) + (λ,E (u(Ω),Ω)).

∂J

∂u
[d ] +

(
λ,
∂E

∂u
[d ]

)
= 0, ∀d .

E (u) = Au + b,(
λ
∂E

∂u
[d ]

)
= (λ,Ad).
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The shape-derivative is transformed into surface integrals
with the Hadamard theorem

L(u,Ω) = J(u,Ω) + (λ,E (u(Ω),Ω)).

dĴ(Ω)[s] =
∂L
∂Ω

[s] =
∂J

∂Ω
[s] +

(
λ,
∂E

∂Ω
[s]

)
,

Theorem (Hadamard Theorem)

Let Ĵ be shape differentiable. Then the relation

dĴ(Ω)[V ] =

∫
Γ
〈V , n〉g dS

holds for all vector fields.
23
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We consider minimization of the temperature in
current-carrying MultiCables as a first example

min
Ω,T

J(Ω,T ) =

∫
Ω

1
3
|T |3dx ,

subject to

−∇ · (λ∇T )− cT = f in Ω,

∂T

∂n
+ (T − Tamb) = 0 on Γex,

[T ]± = 0 on Γ1
int ,[

λ
∂T

∂n

]
±

= 0 on Γ1
int .

Three cables with the same
thermal diffusivity.
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The multiple meshes strong formulation has additional
terms for continuity over the artificial interface Λ1

−∇ · (λ∇T0)− cT0 = f in Ω0,

−∇ · (λ∇T )− cT = f in Ω,

λex
∂T0

∂n
+ (T0 − Tex) = 0 on Γex,

[T ]± = 0 on Γ1
int ,[

λ
∂T

∂n

]
±

= 0 on Γ1
int .

[u] = 0 on Λ1,[
∂u

∂n

]
= 0 on Λ1.

Ω̂0
Λ1

Ω̂1 = Ω1

Γ1
int

Γex
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Nitsches method for weak enforcement of boundary
conditions is used to obtain a stable finite element scheme

0 = Fs(T , v)

Fs(T , v) =

∫
Ω
λ(∇T ,∇v)− cTv − fv dx

1∑
i=0

+

∫
Γex

(T − T ex)v ds = 0

FS(T , v) = −(〈n1 · ∇T 〉, [v ])Λ1 − ([Th], 〈n1 · ∇v〉)Λ1 +
β

h
([T ], [v ])Λ1 ,

FO(T , v) = ([∇T ], [∇v ])Ωh,0∩Ω1 ,

Nitsche terms Jump Stability on overlap Average
FN(u, v) [w ] = w1 − w0 FO(u, v) 〈w〉 = w1+w0

2
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The implementation of the shape-gradient is verified with a
Taylor-test
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A first example is three internal cables with the same
material properties

min
Ω,T

J(Ω,T ) =

∫
Ω

1
3
|T |3dx ,

subject to

−∇ · (λ∇T )− cT = f in Ω,

∂T

∂n
+ (T − Tamb) = 0 on Γex.

[T ]± = 0 on Γ1
int ,[

λ
∂T

∂n

]
±

= 0 on Γ1
int

Three cables with the same
thermal diffusivity.
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Optimization of a more complex example with 5 cables with
different currents and sizes
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The state-equation has been implemented in FEniCS and
verified by the method of manufactured solutions

MultiMesh SingleMesh
Mesh size L2-error Rate Mesh size L2-error Rate
0.059 2.41e-04 2.116 0.062 2.27e-04 2.008
0.030 5.92e-05 2.067 0.031 5.65e-05 2.003
0.015 1.46e-05 2.055 0.016 1.41e-05 2.002
0.008 3.68e-06 1.999 0.008 3.52e-06 2.001

Table: Convergence rates of a manufactured Poisson problem.
Comparison between MultiMesh and the same mesh described as a single
mesh approximated by piece-wise continuous linear elements.
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The adjoint system for overlapping meshes has the same
stabilization at the artificial interface as the state equation
at the interface

N∑
i=0

(
λ∇p,∇v)Ωi

− (cp, v)Ωi

)
+ (α′(T )(T − T ex)p, v)Γex + (α(T )p, v)Γex = −

N∑
i=0

(T |T |, v)Ωi
.

+
N∑
i=1

(
− (〈λni · ∇p, 〉[v ])Λi

− ([p], 〈λni · ∇, v〉)Λi
+ (

β

h
[p], [v ])Λi

+ ([∇p], [∇v ])Ωh,0∩Ωi

)
= −

N∑
i=0

(T |T |, v)Ωi
.

Standard terms Nitsche terms Overlap terms
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A Laplacian deformation scheme is not suited for large
deformations

−∆w = 0 in Ω,

w = d · n on Γ,

w = 0 on ∂Ω\Γ.

Γ d · n
Moving Boundary Deformation
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The Eikonal convection equation ensures better mesh-quality

−h∆ε1 + ||∇ε1||22 = 1 in Ω,

ε1 = 0 on ∂Ω\Γ
−h∆ε2 + ||∇ε2||22 = 1 in Ω,

ε2 = 0 on Γ

−αε22∆w + div(ε1w ⊗∇ε2) = 0
w = d · n on Γ

w = 0 on partialΩ\Γ.

Γ ε1 ε2
Moving Boundary Dist. to Γ Dist. to ∂Ω\Γ.
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In the discrete case, the solution of a state equation u is
dependent of volume nodes

n

J(u(Ω),Ω) =

∫
Ω
u2dΩ

dJ(u(Ω),Ω)[V ] =
d

dΩ

(∫
Ω
u2dΩ

)
[V ],

V = Displacement function
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The new strong formulation now has additional terms for
continuity over the artificial interface Λ1

−∆ui = f in Ωi , i = 0, 1,

u1 +
∂u1

∂n
= 1 on Γ,

u0 +
∂u0

∂n
= 1 on ∂Ω

[u] = 0 on Λ1,[
∂u

∂n

]
= on Λ1,

Λ0 = ∂Ω
Ω0

Γ

Λ1

Ω1
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We need several extra terms to obtain a stable Finite
Element scheme

0 = as(u, v)− ls(v)

as(u, v) = (∇u,∇v)Ω + (u, v)∂Ω + (u, v)Γ,

1∑
i=0

1∑
i=0

ls(v) = (f , v)Ω + (1, v)∂Ω + (1, v)Γ

1∑
i=0

aN(u, v) = −(〈n1 · ∇u〉, [v ])Λ1 − ([uh], 〈n1 · ∇v〉)Λ1 +
β

h
([u], [v ])Λ1 ,

aO(u, v) = ([∇u], [∇v ])Ωh,0∩Ω1 ,

Nitsche terms Jump Stability on overlap Average
aN(u, v) [w ] = w1 − w0 aO(u, v) 〈w〉 = w1+w0

2
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aN(u, v) = −(〈n1 · ∇u〉, [v ])Λ1 − ([uh], 〈n1 · ∇v〉)Λ1 +
β

h
([u], [v ])Λ1 ,

aO(u, v) = ([∇u], [∇v ])Ωh,0∩Ω1 ,

Nitsche terms Jump Average Stability on overlap
aN(u, v) [w ] = w1 − w0 〈w〉 = w1+w0

2 aO(u, v)

37


