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Abstract—The rapid development of industrial Internet
of Things (IIoT) requires industrial production towards
digitalization to improve network efficiency. Digital Twin
is a promising technology to empower the digital trans-
formation of IIoT by creating virtual models of physical
objects. However, the provision of network efficiency in
IIoT is very challenging due to resource-constrained de-
vices, stochastic tasks, and resources heterogeneity. Dis-
tributed resources in IIoT networks can be efficiently ex-
ploited through computation offloading to reduce energy
consumption while enhancing data processing efficiency.
In this article, we first propose a new paradigm digital
twin network to build network topology and the stochas-
tic task arrival model in IIoT systems. Then, we formulate
the stochastic computation offloading and resource alloca-
tion problem to minimize the long-term energy efficiency.
As the formulated problem is a stochastic programming
problem, we leverage Lyapunov optimization technique to
transform the original problem into a deterministic per-time
slot problem. Finally, we present asynchronous actor-critic
algorithm to find the optimal stochastic computation of-
floading policy. Illustrative results demonstrate that our
proposed scheme is able to significantly outperforms the
benchmarks.

Index Terms—Computation offloading, deep reinforce-
ment learning (DRL), digital twin, industrial Internet of
Things (IIoT).

I. INTRODUCTION

THE INDUSTRIAL Internet of Things (IIoT) is an enabling
technology of cyber-physical systems that can equip the

industrial units, such as sensors, instruments, and devices with
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Fig. 1. Concept of digital twin.

the ability to communicate and interact with each other. The IIoT
has undergone rapid technological development in recent years.
According to the report from International Data Corporation [1],
the number of connected devices will reach 41.6 billion and these
devices are predicted to generate nearly 80 zettabytes of data by
2025. The high spread of IIoT requires industrial production
towards network and digitalization.

Digital twin is a powerful technology to enable the digital
transformation by creating virtual models of physical objects
in the digital way, as shown in Fig. 1. The virtual models can
understand the state of the physical entities through sensing data,
so as to predict, estimate, and analyze the dynamic changes.
The concept of digital twin is first proposed in [2] and applied
by NASA to comprehensive diagnosis and maintenance of flight
systems. Recently, digital twin has been expanded to smart cities,
manufacturing and IIoT. Exploiting digital twin, the network
topology and physical elements in IIoT can be well mirrored and
we can make system management based on the mirrored models.
However, there are many technical challenges in applying digital
twins to IIoT. First, massive data collected from various IIoT
devices needs to be processed timely. But the limited computing
resources available at the local servers cannot support fast data
processing and digital twin modeling in IIoT networks [3], [4].
Second, the interaction between the virtual models and the phys-
ical objects in a digital twin-enabled network requires frequent
communication between them. Moreover, since the communi-
cation is wireless, the stochastic associated with the wireless
channel may result in a poor transmission link, correspondingly
longer service delay.

The IIoT applications, such as data analytics and smart man-
ufacturing, involve plenty of computation tasks. To improve
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data/task processing efficiency and prolong battery lifetime of
IIoT devices, computation offloading is a promising approach
which offloads the collected data and computation tasks to dis-
tributed servers to process, such as base stations, access points,
and road-side units in an IIoT network [5], [6]. There has been
considerable amount of work focusing on computation offload-
ing in wireless networks and vehicular networks. The authors
in [7] proposed to offload computation tasks to lightweight and
distributed roadside units to minimize task processing latency
in vehicular networks. The authors in [8] proposed a joint com-
putation offloading, power allocation, and channel assignment
problem to maximize the achievable sum rate for 5G-enabled
traffic management systems. The authors in [9] proposed to
offload computation tasks to multiple distributed small-cell base
stations (SBS) and macrocell base stations (MBS) to mini-
mize energy consumption in 5G networks. The abovementioned
works typically assumed that each device executes a single
computation task without considering the randomness of task
arrivals [10], [11]. Such assumptions make the computation
offloading design not practical for IIoT networks. Since devices
in IIoT networks continuously generate data, stochastic task
arrival model is more reasonable and long-term computation
performance needs to be considered. Moreover, in an IIoT net-
work with heterogeneous resources, it is challenging to jointly
optimize offloading decision, transmission power, bandwidth,
and computation resource while also incorporating time-varying
channel condition.

Deep reinforcement learning (DRL) is an emerging technique
to address problems with time-varying feature [12], [13]. State-
of-the-art works have utilized DRL for optimizing computation
offloading in wireless networks and vehicular networks. For
instance, the authors in [14] proposed a deep-Q network (DQN)
based task offloading scheme to select the optimal edge server
and the optimal transmission mode to maximize task offloading
utility in vehicular networks. The authors in [15] proposed the
double DQN based backscatter-aided hybrid data offloading
scheme to reduce power consumption for data transmission. The
authors in [16] proposed a deep deterministic policy gradient
based computation offloading and resource allocation scheme
to minimize system energy consumption in wireless networks.
These works however mainly focus on to choosing whether to
execute tasks locally or offload to edge servers with a deter-
ministic task arrival model. These solutions are not directly
applicable to IIoT networks since the task arrival model is
stochastic.

In this article, we first propose a digital twin network (DTN)
which utilizes digital twin to establish an efficient mapping
between IIoT and digital systems. In the proposed DTN network,
virtual models of IIoT entities can be created by monitoring
real-time states of devices and base stations. Then, we formulate
stochastic computation offloading problem as an optimization
problem. Based on the virtual models and monitored information
of digital twin, we design a DRL-based algorithm to solve the
formulated problem. Our main contributions in this article are
summarized as follows.

1) We propose an architecture to integrate digital twin with
the IIoT network to model network topology, physical
devices, and base stations.

2) We formulate stochastic computation offloading problem
as an optimization problem, and utilize Lyapunov opti-
mization technique to transform the original problem into
a deterministic per-time slot problem.

3) We adopt asynchronous actor-critic (AAC), a DRL-based
algorithm, to solve the computation offloading and re-
source allocation problem. Numerical results demonstrate
that our proposed algorithm significantly outperforms the
benchmark policies.

II. SYSTEM MODEL DESCRIBED BY DIGITAL TWIN

A. Digital Twin Network

Our DTN architecture is shown in Fig. 2, which consists of
physical IIoT network and digital twin.

The physical IIoT network has three major components, i.e.,
distributed IIoT devices, SBSs, and centralized MBS. Each
device collects the data from sensors and on-device applications,
and they need to analyze the collected data. As data analysis is
computation-intensive, devices with limited computation capa-
bility and battery, may not be able to complete them timely.
So they have to offload these tasks to edge servers for a high
level of quality of computation experience. SBSs are equipped
with edge servers and they can provide devices computation
resources. However, since an SBS often serves several devices,
to ensure the requirements of all devices are satisfied, SBSs need
to optimize computation resources, bandwidth and transmission
power. The MBS is equipped with an edge server and an DRL
agent, thus the MBS has sufficient communication, computation,
and AI-enabled processing capabilities.

The digital twin is a virtual model of physical elements and
a digital representation of the physical system. Different from
a virtual prototype, digital twin not only mirrors the charac-
teristic of physical elements/system but also makes prediction,
simulates the system, and can play a crucial role in optimizing
the resources. In our DTN, we can utilize digital twin to 1)
construct the network topology of physical IIoT, 2) monitor net-
work parameters and models, i.e., dynamic changes of resources
and stochastic task arrival processes, 3) optimize offloading
and resource allocation policy. Specifically, we deploy different
functions on devices, SBSs and the MBS to build DTN. Devices
run two DT functions: data collection and parameter synchro-
nization. SBSs also run two DT functions: building local virtual
models of devices and SBSs, and synchronizing parameters. The
main functions of the MBS are to construct the network topology
of the physical network and to design offloading and scheduling
policy.

B. Network Model

Based on digital twin, the digital representation (i.e., virtual
models) of the physical network is created (i.e., virtual world).
The digital models here contain wireless network topology,
communication model between devices and base stations, and
the stochastic task queueing model.
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Fig. 2. Digital twin network.

1) Network Topology and Communication Model for DTN:
Digital twin first models the wireless edge network as a dis-
crete time-slotted system. A directed graph G = (U ,B, ε) is
used to represent the network, where U = {u1, .., uN} and
B = {b0, b1, . . ., bM} denote the set of devices and base stations
(b0 is the index for MBS), respectively. ε denotes the association
between devices and base stations. That is, if device ui is
connected to SBS bj , the link will be recorded in edge set ε. Then,
the digital twin uses a 3-tuple DTi(t) to characterize devices,
i.e.,

DTi(t) = {pi,max(t), li(t), f
l
i} (1)

where pi,max(t) denotes the maximal transmission power at time
slot t, li(t) denotes the current location of ui, and f l

i denotes the
computation resources of local server. Similarly, the digital twin
uses a 3-tuple DTj(t) to characterize base stations, i.e.,

DTj(t) = {lj(t), wj , f
e
j } (2)

where lj(t) denotes the current location of bj , wj denotes the
channel bandwidth of bj , fe

j denotes the computation resource.
The task offloading between devices and base stations is

facilitated through wireless communication. According to [9],
wireless data rate is related to spectrum, interference, and band-
width. In wireless networks, to utilize spectrum efficiently, SBSs
reuse the MBS’s frequency resource and orthogonal frequency
division multiple access (OFDMA) is often adopted to suppress
the interference. Thus, the interference between the MBS and
SBSs can be ignored. Here, we consider devices communicate
with the nearest base station to perform computation offloading.
γs
j is defined as the coverage radius of SBS bj . If the distance

between device ui and SBS bj is less than γs
j (i.e., rsij(t) < γs

j ),
device ui can communicate with bj . The wireless communica-
tion data rate between device ui and SBS bj can be expressed
as

Rs
ij(t) = wij(t) log

(
1 +

pi(t)h
s
ij(t)r

s
ij(t)

−α

σ2 + I

)
(3)

where wij(t) (wij(t) ≤ wj) is the bandwidth that SBS bj allo-
cates to device ui at time slot t, hs

ij(t) is the current channel
gain, α is path loss exponent, σ2 is noise power, and rsij(t) is
calculated based on the location of li(t) and lj(t) (i.e., rsij(t) =

‖ li(t)− lj(t) ‖). I =
∑

i′∈U/{i},j′∈B/{j} pi′(t)h
s
i′j′(t)r

s
i′j′(t)

−α

is the interference from other SBSs.
If device ui does not lie within the coverage of any SBS, it

will communicate with the MBS. The wireless communication
data rate between device ui and the MBS is

Rm
i0 (t) = wi0(t) log

(
1 +

pi(t)h
m
i0 (t)r

m
i0 (t)

−α

σ2

)
(4)

where wi0(t) (wi0(t) ≤ w0) is the channel bandwidth between
device ui and the MBS at time slot t, hm

i0 (t) is the channel
gain between device ui and the MBS at time slot t, rmi0 (t) =
‖ li(t)− l0(t) ‖ is the distance between device ui and the MBS.

2) Stochastic Task Queueing Model for DTN: At the begin-
ning of time slot t, deviceui generates and stores λi(t) (bits/slot)
of computation tasks into the local dataset. Without loss of gener-
ality, we assume λi(t) in different time slots is independent, and
E[λi(t)] = λ. Due to the limitation of computation resources,
each device executes part of the computation tasks at its local
server and offloads part of them to the associated base station.
The rest will be queueing in the local task buffer and we consider
the buffer has sufficient capacity. We denote the size of the
computation tasks executed locally as Dl

i(t) and the size of the
computation tasks offloaded to base station bj(j ∈ B) asDe

ij(t).
The queue length of local task buffer at the beginning of time
slot t on device uj is denoted as Ql

i(t) and the queue length is
dynamically updated with the following equation:

Ql
i(t+ 1) = max{Ql

i(t)−Ψi(t), 0}+ λi(t) (5)

where Ψi(t) = Dl
i(t) +De

ij(t) is the size of the computation
tasks that leaves the task buffer of device ui during time slot t.

Each edge server also has a task buffer to store the offloaded
but not yet executed task. We denote the queue length of edge
task buffer at the beginning of time slot t on base station bj(j ∈
B) as Qe

j(t). The queue length is dynamically updated by

Qe
j(t+ 1) = max{Qe

j(t)−Ψj(t), 0}+
∑
i∈U

De
ij(t) (6)

where
∑

i∈U D
e
ij(t) is the amount of tasks offloaded from de-

vices during time slot t. Ψj(t) is the size of the computation
tasks that departs edge task buffer (i.e., executed by edge server).
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According to the definition of stability in [17], task queue is
stable if all computation tasks satisfy the following constraints:

lim
T→∞

1
T

T−1∑
t=0

∑
i∈U

E{Ql
i(t)} <∞ (7a)

lim
T→∞

1
T

T−1∑
t=0

∑
j∈B

E{Qe
j(t)} <∞. (7b)

C. Task Offloading Model

During time slot t, device ui executes Dl
i(t) locally and

offloads De
ij(t) to base station bj . Next, we will calculate

the energy consumption of local execution and computation
offloading.

1) Local Execution: Let f l
i (t) denote the computation re-

source (i.e., CPU cycles per second) of deviceui during time slot
t. c denotes the required number of CPU cycles for executing
one bit of computation task. Thus, the size of computation tasks
executed locally will be

Dl
i(t) =

τf l
i (t)

c
(8)

where τ is duration of the time slot.
The energy consumption of unit computation resource is

ς(f l
i )

2, where ς is the effective switched capacitance depending
on the chip architecture [9]. We denote local energy consumption
for computing task Dl

i(t) as El
i(t), which can be defined as

El
i(t) = ςτf l

i (t)
3. (9)

2) Edge Server Execution: Devices offload their tasks to
base stations via wireless communication. Since devices are
associated with different base stations, the offloaded tasks of
device ui during time slot t can be expressed as

De
ij(t) =

{
Rs

ij(t)τ j ∈ B/{b0}
Rm

i0 (t)τ j = b0.
(10)

The energy consumption in this case consists of three parts.
The first one is the energy consumption of uplink wireless trans-
mission for offloading. The second one is the computation en-
ergy consumption which is related to the allocated computation
resources. The third one is the energy consumption of downlink
wireless transmission for offloading computation result to the
devices. Since the size of the result is very small, we ignore
the energy consumption for downlink transmission. Thus, the
energy consumption for executing task De

ij(t) on base station
bj is given by

Ee
ij(t) = pi(t)τ +

De
ij(t) ∗ c
fe
ij(t)

∗ ε (11)

where fe
ij(t) is the computation resource that bj allocates to

device ui at time slot t, ε is the energy consumption for unit
computation on edge servers.

The total energy consumption is consisted of the energy
consumption of task execution in the local and edge servers, as
well as the transmission energy consumption for computation

offloading. Therefore, the total energy consumption can be
expressed as

Etol(t) =
∑
i∈U

El
i(t) +

∑
i∈U

∑
j∈B

Ee
ij(t). (12)

III. PROBLEM FORMULATION

In this section, we first formulate the stochastic computation
offloading problem of DTN as an optimization problem, and
then transform the formulated problem based on Lyapunov
optimization.

A. Stochastic Computation Offloading Problem

The objective of stochastic computation offloading problem
is to minimize network efficiency ηEE . ηEE is defined as the
ratio of long-term total energy consumption to the corresponding
long-term aggregate accomplished computation tasks, i.e.,

ηEE =
limT→∞

1
T

∑T−1
t=0 E{Etol(t)}

limT→∞
1
T

∑T−1
t=0

∑
i∈U

∑
j∈B E{Dt

i(t) +De
ij(t)}

.

(13)
The system operation at time slot t can be de-

noted as a(t) = [w(t),p(t),Ψ(t), f l(t), fe(t)], where w(t) =
[w10(t), . . ., wNM (t)] is bandwidth allocation vector, p(t) =
[p1(t), . . ., pN (t)] is transmission power vector, Ψ(t) =
[Ψ0(t), . . .,ΨM (t)] is the vector associated with the compu-
tation task that leaves edge servers, f l(t) = [f l

1(t), . . ., f
l
N (t)]

and fe(t) = [fe
10(t), . . ., f

e
NM (t)] are the vector of computation

resource that edge servers allocate to devices. Taking network
stability constraint into account, the optimization problem for
minimizing ηEE can be formulated as

P1 : min
a(t)

ηEE

s.t.
∑
i∈U

wij(t)

wj
≤ 1, wij(t) ≥ 0 (14a)

0 � pi(t) � pi,max(t), (14b)

0 � f l
i (t) � f l

i , (14c)∑
i∈U

fe
ij(t) ≤ fe

j , fe
ij(t) ≥ 0 (14d)

Ψj(t) ∗ c ≤ fe
j τ, Ψj(t) ≥ 0

(7a)–(7b). (14e)

Constraint (14a) is the bandwidth allocation constraint. Con-
straints (14b) and (14c) denote the transmission power and
computation resource constraints, respectively. Constraint (14d)
ensures that the sum of the computation resource of each base
station allocated to all devices does not exceed the total amount
of computation resource the base station has. Constraint (14e)
implies that the amount of computation resource for processing
task Ψj cannot exceed the available computation resources.
Constraints (7a) and (7b) guarantee that the stability of all task
queues.
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Since computation resource, transmission power and band-
width need to be determined at each time slot, P1 is a stochastic
optimization problem, which is challenging to solve by apply-
ing classic convex optimization algorithms such as interior-
point method and Lagrangian duality theory. From (10) and
(11), wireless communication rate and allocated computation
resource jointly determine the energy consumption of edge
server execution. Thus, the radio resource management problem
is coupled with the computation resource allocation problem.
Moreover, in radio resource management problem, bandwidth
and transmission power are also highly coupled. The complex
coupling among optimization variables and mixed combinatorial
feature make it difficult to solve P1. Furthermore, the stochastic
task arrival, dynamic channel state information and dynamic task
buffer make designing an efficient resource management policy
for devices and edge servers quite challenging.

Lyapunov optimization is a powerful methodology for solving
optimization problems with long-term objective and constraints,
which requires less prior information on the task arrival, channel
state information, and task buffer. The principal idea behind
Lyapunov optimization is to transform the optimization problem
with long-term objective into a series of subproblems with short-
term objective, and to transform the long-term constraints into
constraints with queue stability. Besides, Lyapunov optimization
is of low computational complexity by optimizing subproblem
through an online algorithm. In this article, we exploit Lyapunov
optimization to transform the original stochastic optimization
problem as a deterministic per-time block problem and propose
a stochastic computation offloading algorithm to solve P1.

B. Lyapunov-Based Problem Transformation
and Digital Twin-Predicted Perturbation

To construct a Lyapunov optimization framework, we add a
perturbation vector β = [β1, . . ., βN ] in Lyapunov function to
keep the value of this function always small. The perturbation
parameters are simulated in the digital twin and they will be
given in the following. We define the quadratic Lyapunov func-
tion as the sum of squared queue backlogs

L(Θ(t)) =
1
2

⎧⎨
⎩
∑
i∈U

[Ql
i(t)− βi]

2 +
∑
j∈B

Qe
j(t)

2

⎫⎬
⎭ (15)

where Θ(t) = [Ql(t), Qe(t)] represents current task queue
lengths of devices and edge servers. Furthermore, we define the
conditional drift as


L(Θ(t)) = E[L(Θ(t+ 1))− L(Θ(t))|Θ(t)]. (16)

By minimizing
L(Θ(t)), we can short the length of task queues
towards a smaller value.

Accordingly, the Lyapunov drift-plus-penalty function can be
expressed as


V L(Θ(t)) = 
L(Θ(t)) + V E[ηEE(t)|Θ(t)] (17)

where ηEE(t) = Etol(t)/
∑

i∈U
∑

j∈B(D
t
i(t) +De

ij(t)), V is a
nonnegative weight parameter. By minimizing
V L(Θ(t)), we
can ensure network stability, and meanwhile minimize network

EE. We derive the upper bound of
V L(Θ(t)) as


V L(Θ(t)) ≤ C −
∑
i∈U

[Ql
i(t)− βi]E[Ψi(t)− λi(t)|Θ(t)]

−
∑
j∈B

Qe
j(t)E

[
Ψj(t)−

∑
i∈U

De
ij(t)|Θ(t)

]
}

+ V E[ηEE(t)|Θ(t)] (18)

where C=
1
2
{∑i∈U [Ψ

2
i,max + λ2

i,max] +
∑

j∈B[Ψ
2
j,max + (

∑
i∈U

De
ij,max)

2]} and Ψi,max, λi,max,Ψj,max, and De
ij,max are the upper

bounds of Ψi(t), λi(t),Ψj(t), and De
ij(t), respectively.

Based on the Lyapunov optimization theory, we can minimize
the right side of the inequality in (18) to obtain the optimal
solution of P1. According to [18], perturbation vector β is very
important as it influences the performance of optimization of
the designed algorithm. Based on the definition of perturbation
vector in [18], β is the maximal lower bound of local task queue.
Since digital twin is a mirror of physical network, it can easy
get any information of the network and predicts each one of β
based on

βi = V η′EE(t) + Ψmax (19)

where Ψmax = max(Ψi(t)).
Thus, we first utilize digital twin to simulate the perturbation

parameter of devices and then optimize the right side of the
inequality in (18) in each time slot. The proposed stochastic
computation offloading algorithm for DTN is shown in Al-
gorithm 1, where P2 needs to be solved per-time slot. The
traditional method to solve P2 is to decompose it into sev-
eral subproblems and alternatively solving subproblems until it
converges to the global optimal solution. However, when wire-
less channels change or task queues update, each subproblem
needs to recalculate the optimal solution. Frequent operations
to solve subproblems will influence the convergence. DRL is an
emerging technique which can find a near optimal solution in
a real-time manner. Thus, we design a DRL-based algorithm to
find the optimal solution of P2.

IV. DRL-EMPOWERED STOCHASTIC COMPUTATION

OFFLOADING ALGORITHM FOR DTN

The framework of the digital twin enabled DRL algorithm is
illustrated in Fig. 3. Digital twin mirrors, the network topology,
and parameters of physical wireless network and transmits net-
work state to DRL. DRL derives the best strategy to minimize
network energy efficiency.

A. Digital Twin-Simulated Network Environment

To solve P2, the system first constructs Markov decision
process, i.e.,M = (S,A,P,R), and then use DRL algorithm to
explore actions. From Fig. 3, the network state s(t) is constructed
by digital twin and outputted to DRL agent.

To gather network environment information, digital twin
needs to predict location, energy, and the generated task flow of
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Fig. 3. Digital twin enabled DRL algorithm.

Algorithm 1: The Stochastic Computation Offloading Al-
gorithm With Digital Twin-Predicted Perturbation for DTN.

1: At the beginning of each time slot, digital twin first
predicts perturbation vector β based on local task
queue and (19),

2: Digital twin observes Θ(t) and λi(t) and determines
a(t) by solving the following problem in each time slot

P2 : min
a(t)

V

⎡
⎣Etol(t)− ηEE(t)

∑
i∈U

∑
j∈B

(Dt
i(t) +De

ij(t))

⎤
⎦

+
∑
j∈B
{Qe

j(t)

[∑
i∈U

De
ij(t)−Ψj(t)

]
}

−
∑
i∈U

[Ql
i(t)− βi][Ψi(t)− λi(t)]

s.t. (7a)–(7b), (14a)–(14e) (20)

3: Updates Ql
i(t) and Qe

j(t) based on (5) and (6),
4: t = t+ 1.

devices and base stations. Digital twin can adopt the existing K-
nearest neighbors classification method and position prediction
algorithm in [19] to predict users’ location. The maximal current
transmission power pi,max(t) at time slot t is the summarize
of the predicted energy and the pi,max(t− 1). The generated
task flow is based on the application running on each device.
After gathering the network information, digital twin updates
network topology, channel condition, and queueing model. The
main operation in the update of network topology is to make
user association decision, which decides the connection between
devices and base stations. Here, we adopt online user association
method in [20]. Then, digital twin generates current state and
transmits it to the DRL agent.

Thus, at the beginning of time slot t, the DRL agent construct
system state which includes transmission data rates between
devices and base stations, available bandwidth, computation
resources, transmission power, and queue length. We can define

system state s(t) ∈ S at time slot t as

s(t) = {R(t),F,pmax(t),w,Θ(t)}. (21)

The state space S is as follows.
1) R(t) = {[Rs

11(t), . . ., R
s
1 M (t)], . . ., [Rs

N1(t), . . ., R
s
NM (t)],

[Rm
10(t), . . ., R

m
N0(t)]}: N × (M + 1) wireless data rate

matrix where Rs
ij(t) ≥ 0 and Rm

i0 (t) ≥ 0.
2) F = [f l

1, . . ., f
l
N , fe

0 , .., f
e
M ]: 1× (N +M + 1) compu-

tation resource vector where f l
i ≥ 0 and fe

j ≥ 0.
3) pmax(t) = [p1,max(t), . . ., pN,max(t)]:N × 1 transmission

power vector at time slot t;
4) w = [w0, . . ., wj ]: 1× (M + 1) bandwidth vector.
5) Θ(t) = [Ql(t), Qe(t)], where Ql(t) =

[Ql
1(t), . . ., Q

l
N (t)] indicates the queue length of the

local task buffer and Qe(t) = [Qe
0(t), . . ., Q

e
M (t)] is the

queue length of the task buffer on edge servers.
Since a(t) = [w(t),p(t),Ψ(t), f l(t), fe(t)] in P2 denotes

system operation at time slot t, we define it as the output from the
DRL agent (i.e., action). The action spaceA includes following
fields.

1) w(t) = [w10(t), . . ., wNM (t)]:N × (M + 1) bandwidth
allocation matrix where wij(t) ∈ [0, wj ].

2) p(t) = [p1(t), . . ., pN (t)]: represents N × 1 transmis-
sion power vector where pi(t) ∈ [0, pi,max(t)].

3) Ψ(t) = [Ψ0(t), . . .,ΨM (t)]: 1× (M + 1) vector where
0 ≤ Ψj(t) ≤ fe

j τ/c is the computation task that leaves
edge server j.

4) f l(t) = [f l
1(t), . . ., f

l
N (t)]: N × 1 computation resource

allocation vector where f l
i (t) ∈ [0, f l

i ].
5) fe(t) = [fe

10(t), . . ., f
e
NM (t)] : N × (M + 1) computa-

tion resource allocation matrix where fe
ij(t) ∈ [0, f j

e ].
It is worth noting that all variables in action a(t) are continu-

ous. Thus, we will utilize a policy gradient-based DRL algorithm
to explore policy.

After executing action a(t), digital twin updates system
state and estimates immediate reward Rimm(s(t), a(t)). In
a traditional Markov decision process, the system updates
its state based on the given transition probability Pr(s(t+
1)|s(t), a(t)). However, in DRL, the distribution of transition
probability is often unknown. The DRL agent utilizes deep
neural network to approximate it.
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The immediate reward function is defined as the objective of
P2 problem, i.e.,

Rimm(s(t), a(t)) = −V
[
Etol(t)− ηEE(t)

∑
i∈U

∑
j∈B

(Dt
i(t)

+De
ij(t))

]
+
∑
i∈U

{
Qe

j(t)

[
Ψj(t)−

∑
i∈U

De
ij(t)

]}

+
∑
i∈U

[
Ql

i(t)− βi

]
[Ψi(t)− λi(t)] . (22)

After computing immediate reward, the system updates its state
from s(t) to s(t+ 1) based on action a(t).

The objective of the DRL agent is to maximize the cumulative
reward

R = maxE

[
T−1∑
t=0

δtRimm(s(t), a(t))

]
(23)

where δ ∈ [0, 1] is the discount factor. If all tasks are satisfying
the constraints of P2, DRL agent gets a total reward. Otherwise,
the agent receives a penalty, which is a negative constant.

B. AAC Algorithm

The DRL algorithm is classified into value-based and policy
gradient-based. Value-based DRL algorithms, such as DQN
and double DQN, estimate Q-values and ε-greedy strategy to
explore policy with discrete action space. But value-based DRL
algorithms are of limited value for problems with continuous
action space. Policy gradient-based DRL can learn stochastic
policies effectively for tackling problems with continuous action
space problems. The main idea of this method is to optimize a
parameterized stochastic policy by estimating the gradient of the
expected reward of the policy and then updating the parameters
of the policy in the gradient direction. We deploy AAC algorithm
in digital twin to optimize cumulative reward R.

AAC is an asynchronous learning algorithm which utilizes
multiple agents to interact with its own environment and each
agent contains a replica of the environment [21]. A specific AAC
agent is Actor-Critic-based, where Actor is used to generate
actions and Critic is used to evaluate and criticize the current
policy by processing the reward obtained from the environment.

1) Actor-Critic-Based Policy Gradient Training: a(t) =
π(s(t)|θπ) denotes the policy learned from current state, where
π(s(t)|θπ) is the explored offloading and resource allocation
policy produced by deep neural network of actor network. The
network parameter of actor network is denoted as θπ and it is
trained through the policy gradient method [21]. The gradient
of the expected cumulative discounted reward is calculated by

�θ
π
Eπ

[ ∞∑
t=0

δtRimm(t)

]
= Eπ[�θπ log π(s(t)|θπ)Aπ(s, a)]

(24)
where Aπ(s, a) is the difference between the expected cumula-
tive discounted reward starting from state s when agent chooses
action a and follows policy π. Here, Aπ(s, a) is called the
advantage function which indicates whether things get better

or worse than expected. Aπ(s, a) is calculated using

Aπ(s, a) = Rimm(s(t), a(t)) + δvθv (s(t+ 1))− vθv (s(t)).
(25)

The parameter θπ is updated based on

θπ = θπ + απ

∑
t

�θπ log π(s(t)|θπ)Aπ(s, a)] (26)

where απ is the learning rate of the actor network. We use critic
network to estimate the cumulative discounted reward of each
state following the current actor networks policy, which is also
expressed as the value of each state, vθv (s(t)). θv is the network
parameter of critic network. The parameter θv is updated as
follows:

θv = θv + αv

∑
t

�θv (Rimm(s(t), a(t))

+ δvθv (s(t+ 1))− vθv (s(t)))
2

(27)

where αv is the learning rate of the critic network.
After the value function approximation vθv (s(t)) and param-

eter θv are updated by critic process, actor network then uses the
advantage function Aπ(s, a) outputted from the critic process to
update its policy parameters.

2) Asynchronous Learning With Experience Replay: In
DQN algorithm, there is an important component, i.e., replay
memory, which disrupts the correlation between the experi-
ences such that the sequence in DRL meets the independent
and identical distribution. However, replay memory needs an
off-policy learning algorithm to generate experiences and needs
large amount of memory to store the generated experience. AAC
is an online DRL algorithm that can reduce correlation between
adjacent samples by asynchronous learning with considerably
less amount of computation. To implement AAC, DTN sets up a
global agent and multiple learning agents. The algorithms to be
carried by learning agent and global agent are given in Algorithm
2 and Algorithm 3, respectively. Learning agent is deployed
at SBS and it can interact with its own environment and the
environment of all agents has same settings and structures. The
learning agents parallelly explore and accumulate offloading and
resource allocation policy. After every tmax learning steps, agents
will send the accumulated updates to the global agent. The global
agent is deployed in MBS and it asynchronously updates θπ and
θv. Tmax represents the max training episodes.

V. NUMERICAL RESULTS

We consider a network topology with one MBS,M = 3 SBSs,
and N = 20 devices. We consider Rayleigh fading channels.
The maximum transmission power of devices is set to 100 mW.
The noise power is σ2 = 10−11 mW. The bandwidth of the
MBS and each SBSs are 10 MHz and 5 MHz, respectively.
In addition, τ = 100 ms, c = 100 cycles/bit. The CPU com-
putation capabilities of the devices, the SBSs and the MBS, are
0.5, 10, and 50GHz, respectively. The actor network of AAC
has three fully-connected hidden layers each with 128 neurons
whose activation function is ReLU and an output layer with 8
neurons using softmax function as the activation function. The
critic network has three fully-connected hidden layers each with
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Algorithm 2: AAC Algorithm for Each Learning Agent.

1: Assume agent parameter θ′π and θ′v
2: Initialize learning step counter t = 1;
3: repeat
4: Synchronize agent parameter θ′π = θπ and θv
5: Update global shared counter T
6: tstart = t
7: Use digital twin to construct current state s(t)
8: repeat
9: Perform action a(t) for problem P2 based on policy

π(s(t)|θ′π)
10: Transfer to new state s(t+ 1) and calculate immediate

reward Rimm(s(t), a(t))
11: t← t+ 1
12: T ← T + 1
13: until t− tstart == tmax

14: R = vθ′v (s(t))
15: for i ∈ {t− 1, . . ., tstart} do
16: reward.append(Rimm(s(t), a(t)) + δR)
17: end for
18: send reward to global agent
19: until T > Tmax

Algorithm 3: AAC Algorithm for Global Agent.
1: Assume global shared parameter θπ and θv, and global

shared counter T ′ = 0
2: while receive reward from agent do
3: for i ∈ {t− 1, . . ., tstart} do
4: Accumulate gradients with respect to θ′π and θ′v:
5: dθπ ← dθπ + απ

∑
i�θ′π log π(s(t)|θ′π)Aπ(s, a)]

6: dθv ← dθv + αv

∑
i�θ′vA

2
π(s, a)

7: end for
8: perform asynchronous update of θπ using dθπ and

θv using dθv
9: if T > Tmax then

10: break
11: end if
12: end while

128 neurons whose activation function is ReLU and one linear
neuron as output. We use Python and TensorFlow to evaluate the
performance of our proposed stochastic computation offloading
algorithm. Based on the definition of immediate reward (22), the
minimization of P2 is equivalent to the maximization of DRL
reward. For ease of observation, we define the objective of P2
as system cost and the system cost equals to the negative value
of the DRL cumulative reward.

Fig. 4 illustrates the relationship between system cost and
training episodes under different schemes. The blue curve rep-
resents joint optimization of computation offloading, bandwidth,
and transmission power, but without computation resource allo-
cation. The green curve shows the performance of the proposed
scheme with computation offloading and computation resource
allocation optimization but without bandwidth and transmission

Fig. 4. System cost under different schemes.

Fig. 5. System cost with respect to the number of SBSs.

power allocation. From Fig. 4, we can see the performance
of the red curve outperforms the two benchmarks, since it
can concurrently optimize computation offloading, bandwidth,
and transmission power, and computation resource allocation.
Besides, the system cost of the blue curve is lower than the
system cost of the green curve. This means, compared with
the optimization of computation resource, the optimization of
bandwidth and transmission power has a greater influence on
the performance.

Fig. 5 plots the comparison of the system cost with respect to
the number of SBSs. We observe that when N = 40, the value
of system cost decreases with the increase of the number of
SBS. When N = 20, the value of system cost does not change
much with the increase of the number of SBS. This indicates,
when the number of devices is large, increasing the number of
SBSs can reduce system cost. When the number of devices is
small, increasing the number of base stations has little effect on
reducing system cost.

Fig. 6 shows the comparison of the system cost with respect to
the number of devices under different schemes. The number of

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on October 12,2021 at 20:04:38 UTC from IEEE Xplore.  Restrictions apply. 



4976 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 7, JULY 2021

Fig. 6. System cost with respect to the number of devices under
different schemes.

Fig. 7. System cost with respect to the number of devices under
different DRL algorithms.

devices ranges from 10 to 40. From Fig. 6, we can draw several
observations. First, the system cost of three different schemes
respectively increases as the number of devices becomes large.
The reason is that the growth of devices leads to more offloading
requests, which results in the consumption of more communica-
tion and computation resource. Second, the performance of the
proposed algorithm outperforms two benchmarks by jointly op-
timizing computation offloading, bandwidth, and transmission
power, and computation resource allocation.

Fig. 7 illustrates the comparison of system cost with respect
to number of devices under different DRL algorithms. The
number of devices ranges from 5 to 20. We can observe that the
system cost increases with the increase in the number of devices.
For given amount of computation resources, a large number of
devices results in a low task execution rate and high energy con-
sumption. This inevitably increases system cost. Moreover, our
AAC-based algorithm performs considerably better compared to

Fig. 8. Impact of the learning rate on performance.

the DQN. The main reason is that action discretization in DQN
may lead to skipping better actions. Fig. 8 shows the impact
of learning rate on the performance of the proposed algorithm.
We can see, when learning rate is 0.001, the system cost of the
proposed algorithm converges to the lowest value. Thus, 0.001
is the best learning rate for the proposed algorithm.

VI. CONCLUSION

In this article, we proposed a DTN architecture for IIoT,
which utilized digital twin to construct the network topology
and stochastic task arrival model in IIoT networks. Then, we
formulated the stochastic computation offloading and resource
allocation problem to jointly optimize offloading decision, trans-
mission power, bandwidth, and computation resource. As the
formulated problem is a nonconvex stochastic programming
problem, we leveraged the Lyapunov optimization technique to
equivalently transform the original problem to a deterministic
per-time slot problem. Finally, we utilized AAC algorithm to
solve the computation offloading and resource allocation prob-
lem. Numerical results demonstrate that our proposed algorithm
significantly outperforms the benchmarks.
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