Towards Hybrid Constraint Solving with Reinforcement Learning and
Constraint-Based Local Search

Helge Spieker and Arnaud Gotlieb
Simula Research Laboratory
Fornebu, Norway
{helge,arnaud } @simula.no

Abstract

This paper proposes a framework for solving con-
straint problems with neural networks trained with
reinforcement learning (RL) and constraint-based
local search (CBLS). We approach constraint solv-
ing as a declarative machine learning problem,
where for a variable-length input sequence an out-
put sequence has to be predicted. Using gener-
ated instances from the constraint model and feed-
back from the CBLS solver, a problem-specific RL
agent is trained to solve the problem. The pre-
dicted solution candidate of the RL agent is verified
and repaired by CBLS to ensure feasible solutions,
that satisfy the constraint model. We introduce the
framework and its components and discuss results
and future applications of this method.

1 Learning and Constraint Solving

In this work, we present a constraint solving framework
combining data-driven reinforcement learning (RL) and con-
straint solvers. The goal of this approach is to build problem-
specific machine learning models, that are able to support
solving problems as they occur in constraint programming
(CP). Constraint solvers are highly optimized, still, searching
for good or even optimal solutions often is a time-consuming
task due to large search spaces that have to be traversed. So
far, constraint solvers mostly ignore the fact, that in real-
world applications, the same problem has to be solved re-
peatedly with different inputs. Solving a problem repeatedly
provides data and insights into the problem structure and from
earlier experiences, it is possible to learn an optimized behav-
ior for future instances.

The advantage at hand for machine learning in this sce-
nario are the shorter inference times compared to the solving
times of constraint solvers. Still, a constraint solver can guar-
antee to find a solution, which satisfies all constraints, but for
data-driven machine learning (ML), this is not possible with
current methods. To overcome this challenge, the presented
method combines the ML/RL with a constraint-based local
search (CBLS) [Hentenryck and Michel, 2009] method which
can verify and repair an initial solution candidate assignment,
such that it satisfies a constraint model.

Whereas many machine learning models are trained in a
supervised way by providing both inputs and expected out-
puts during training, it is challenging to generate a suffi-
ciently large training corpus for constraint problems. Be-
sides generating the problem instance, it also requires solving
the problem to generate the optimal labels. This is a com-
putationally expensive process and it also leads the machine
learning model to imitate exactly the solutions found by the
solver used to build the training dataset and does not gener-
alize [Bello et al., 2017]. Especially if an instance has mul-
tiple optimal solutions, using one specific solution limits the
ability to generalize to an individual problem-solving strat-
egy. In RL, it is not necessary to have solved all instances
of the training set, because only scalar reward, formed by the
number of constraint violations and the objective value of the
solution candidate, is necessary as feedback, which is easier
to compute than an optimal or high-quality solution. Learn-
ing from rewards allows to find individual solving strategies
and to abstract from the direct input-output mapping of su-
pervised learning. Linking a machine learning model and its
training to the abstract constraint model allows encapsulation
of the domain knowledge and does not require additional ex-
pertise in machine learning to use the framework.

In constraint modeling, a domain expert explicitly models a
problem in terms of constraints, variables, their domains, and,
in case of optimization, an objective function. A constraint
model is thereby a distillation of domain and expert knowl-
edge, necessary to find feasible solutions to all instances of
the problem. There are several abstract constraint model-
ing languages that support this modeling step in a solver-
independent manner, e.g. MiniZinc, Essence or XCSP. Such
an abstract constraint model can be described as a function,
that takes a set of instance parameters as an input, and, with
the help of a constraint solver, solves the instance for which
then the solution is returned as a set of output variables, i.e.
the assigned variables. For example, in the model in Figure 2,
the inputs are n and limits, and the output is x. The size of
both limits and x depend on n, which makes the in-/output
to be of variable length. This formulation hides the notion of
constraints, domains, and relations and is a simplified view
of a constraint problem. However, when building a problem-
specific ML model, the hidden components are constants and
part of the function to be approximated, which allows easier
representation of the problem in ML methods.

2 Related Work

The proposed integration, consisting of interacting CP and
ML components, can be embedded in terms of the inductive
constraint programming loop (ICP) [Bessiere er al., 2017].
This recently proposed framework formulates the combina-
tion of a CP component, an ML component, and their inter-
action with each other and an external environment. Both the
CP and ML component stimulate and receive feedback from
each other. ICP is defined in a general way without being fo-
cused on one specific task but provides a general background
for the close integration of CP and ML as independent com-
ponents. In terms of ICP, our framework mainly relies on the
links ML-to-CP, to verify and repair solution candidates, and
CP-to-ML, to give feedback to the RL agent, but also all other
links in the ICP model are relevant to some degree.

Another recent approach is empirical decision model learn-
ing [Lombardi et al., 2017]. Here, a learning method is
trained and then embedded into the constraint model. ML
inference can thereby be used within the constraint solving
process and be integral to the decisions made during search.
Once an RL agent is sufficiently trained, empirical decision
model learning can be a way to deploy a trained agent into
the constraint model.

Solving combinatorial optimization problems with deep
learning, and especially reinforcement learning, is an ac-
tive research area. Recent works [Vinyals er al., 2015;
Bello et al., 2017; Dai et al., 2017, Selsam et al., 2018] pro-
pose different approaches to learn how to solve combinatorial
optimization problems and report successes. However, the
problem sizes for which these approaches are effective are
limited and not competitive to constraint solvers.

Other integrations of ML and CP have been evaluated in a
large body of work. For an overview, and besides the given
references, we refer to [Freuder, 2018].

3 Proposed Method

3.1 Framework and Process

The hybrid constraint solver consists of three main compo-
nents: a) a constraint model, on which the hybrid solver is
trained b) a feedback-enabled constraint solver ¢) an RL-
based ML component. In Figure 1, the overall scheme and
process of the hybrid solving method is shown.

At first, an instance is an input to the hybrid solver. We
distinguish two kinds of instance sources, although they do
not make a difference for the solver or the process. One type
are generated problem instances, which are especially used
for the initial training phase of the solver. The other type
of instances are real-world instances, that is, those instances
that stem from other sources and which are not only solved to
generate a training feedback.

Within the solving component, the RL agent calculates a
solution for the problem instance. Calculating the solution
candidate is done via a neural network (NN), that receives
an encoding of the problem instance as an input and predicts
the solution candidate as an output. The network architecture
is a separate module in the RL agent and further research is
required to evaluate which is most effective.

The solution candidate can, and after a sufficient training
period should be a feasible or close to a feasible solution
for any given instance. However, due to the nature of both
machine learning and constraint optimization, guaranteeing
feasible solutions is a challenging task. The CBLS compo-
nent receives the solution candidate, as well as the constraint
model, as inputs with the task to both verify the feasibility of
the solution candidate and, if necessary, repair it to be feasi-
ble. In case of an unsatisfiable instance, this is detected by
the CBLS component, too. Also, it would be possible to give
the solver additional time to find an improved solution.

3.2 Instance Generator

The constraint model is defined in an abstract constraint mod-
eling language by an expert with domain knowledge. It is
itself applicable to solve a problem instance together with a
solver. The constraint model can be transformed into an in-
stance generator by declaring the instance parameters as out-
put variables, which are then included in the search. Addi-
tionally, in case of an optimization problem, the model is
declared as a satisfaction problem. The resulting generator
model is then solved with random variable and value selec-
tion to find random instances for the original problem. This
method to transform a constraint model was presented in
[Gent et al., 2014] to generate discriminating instances for
constraint model selection.

Nevertheless, transforming the optimization model to a
generator model is one way to use the encoded domain
knowledge and reuse for training the machine learning model.

3.3 Reinforcement Learning Agent

In RL, an agent interacts with its environment, such that it
receives a state information as an input and selects an action
as a result. Afterwards, it receives feedback from the envi-
ronment, called a reward. From this reward, the agent adjusts
its experience and behavior. Predicting a solution for a con-
straint problem has the challenge, that the action space, that
is possible output variable assignment, has a huge size and
it will not be possible to explore all possible actions. It is
therefore necessary to introduce advanced RL methods.

We propose to train the ML model by an advantage actor-
critic RL method (A2C) [Mnih ef al., 2016] for sequence-
to-sequence problems [Nguyen ef al., 2017]. An A2C agent
consists of two neural networks, an actor and a critic. The
actor-network is responsible for action selection based on the
input, whereas the critic-network estimates the expected re-
ward for an action. That is, the critic-network serves as a sur-
rogate model for the reward and approximates the objective
function of the constraint model, which stabilizes learning.

There are alternative ways to represent a problem instance,
the network input, and the solution candidate, the output. As
constraint problems often handle integer values, it is both fea-
sible to directly input these values into the neural network. An
alternative would be to use an embedding, as it is done for
text processing, which represents each possible integer value
with a vector of float values. Using embeddings is a dense
representation and allows to learn relations between values,
which are not directly given by their ordinal integer relation.

EF Real-World | Solution Candidate

A 4

Constraint-Based
Local Search

|

Feasible Solution

Instances ! [

RL Agent
Instance A
Generator

Feedback

Figure 1: Process overview for hybrid constraint solving loop. Constraint-based local search both ensures a feasible solution and feedback
for the learning component. During training, a generator provides instances.

For these reasons, we use an embedding of the possible inte-
ger values as inputs and outputs. The agent returns all output
variables of the constraint model. Only the objective vari-
able is excluded, because it can be calculated from the other
variables and the often large domain of the objective variable
unnecessarily increases the embedding size and thereby the
model complexity.

3.4 Solver Feedback and Rewards

The reward for a solution candidate is formed by the number
of violated constraints in the solution candidate and its objec-
tive value. If the solution candidate is a feasible solution and
satisfies all constraints, the reward is equal to the objective
value of the solution (in case of maximization):

if violations > 0

ey

[—violations
| objective else

This reward function puts emphasis on the feasibility of
the solution candidate by giving low rewards for unfeasible
candidates without considering the objective.

An alternative formulation of a reward function is used
in CBLS methods, where violations are acceptable during
search. Here, the number of violations and the objective of
a solution are combined to quantify the value of the current
solution: r = « * violations + 3 * objective with « and 3 be-
ing (adaptive) configuration parameters [Bjordal et al., 2015].
This reward function emphasizes finding solution candidates
which are close too high-quality solutions but are not neces-
sarily feasible. Due to the additional complexity introduced
by configuration « and 3, we do not consider this second re-
ward function further for the experiments in this paper.

4 [Experiments

4.1 Constraint Optimization Problem

The optimization problem, maximum alldifferent with limits
(MAWL), is a maximization problem with the goal to find
the maximum sum of a list under given limits and with an
alldifferent global constraint which enforces all list values to
be unique. The length of the list n and the maximum values
per position, limits, are given as instance parameters, i.e.
input variables. The output is x, the list of assigned values. A
MiniZinc [Nethercote et al., 2007] formulation of MAWL is
shown in Figure 2.

The training corpus consists of 50,000 instances and their
optimal solution for an initial supervised pre-training phase

include ~alldifferent.mzn”;
include “increasing.mzn”;
int: n; % Input

array [1..n] of 0..1000: limits; % Input

array [1..n] of var int: x; % Output

constraint alldifferent(x);

constraint increasing(x);

constraint forall(i in I..n)(x[i] < limits[i]);

var int: objective = sum(x);
solve maximize objective;

Figure 2: Maximum alldifferent with limits (MAWL)

and 100,000 instances for the main training phase. The val-
idation test set contains 1000 instances. All instances have
been sampled from a transformed model (as described in Sec-
tion 3.2) with n € [2, 250] and duplicates have been removed.

4.2 Training Settings

The actor and the critic are modeled as encoder-decoder net-
works with global attention [Luong et al., 2015] as described
in [Nguyen et al., 2017]. In an encoder-decoder network,
the encoder transforms a variable-length input sequence into
a fixed size hidden representation. The decoder then trans-
forms this representation into the output sequence. An atten-
tion mechanism allows selectively highlighting parts of the
input sequence during encoding and decoding. Both the en-
coder and decoder are single-layer LSTMs with an embed-
ding and hidden size of 500 cells. The dictionary size is de-
rived from the constraint model and contains 1005 elements,
consisting of the numbers [0, 1000] and four helper elements
to mark beginning and end of a sequence, unknown elements,
and for padding.

Rewards are calculated by a modified version of Choco 4
[Prud’homme et al., 20171, a constraint solver with local
search functionality.

4.3 Results and Analysis

Figure 3 shows the number of feasible solutions for the val-
idation set and the total rewards received. After 10 epochs
of supervised pre-training, the training method is switched to
reinforcement learning, which improves the performance on
the validation test set. Whereas the supervised training pre-
dicts 32% feasible solution candidates, after one epoch of RL,
this value increases to 88% and after some epochs to 92%.
Both the number of feasible solutions and the total reward
converges after 20 epochs.

S %0 1250000
»n o
(=} =
2 1000000
=
2 60 8
I~
A 750000 —
[P} -
—_ . o
2 40 Eeasible 500000 &
L Reward (right)
20 i 250000
10 20 30
Epoch

Figure 3: Feasible solutions for validation instances. Supervised
pre-training until epoch 10, reinforcement learning afterwards.

To evaluate the influence of both pre-training and RL, we
train once with each technique only. Running the supervised
training for 20 epochs increases the performance to 33% fea-
sible solutions and stagnates afterward. Running only RL,
the agent initially does not produce valid outputs to form so-
lution candidates and has to learn the structure of a solution
first. Here, training did not produce an usable agent.

It is not fair to compare the outcomes of both trainings, due
to the different training corpus sizes. However, comparing
the results to the combination of pre-training and RL shows
a clear difference in performance and the advantage of RL
beyond training set size.

We also evaluate the minimum reward on the validation set
to gain insights on the worst performance of the RL agent.
At the end of the pre-training phase, the minimal reward is
—8&8, i.e. the worst solution candidate has 88 violations. After
convergence, the worst solution candidate has 10 violations,
i.e. areward of —10.

The results on MAWL show the ability to learn solution
candidate prediction and underline the motivation to use re-
inforcement learning for training. Besides the reduced effort
in training data generation, without having to solve the train-
ing instances to an optimal solution, giving a scalar reward
instead of a feasible solution shows better generalization.

5 Conclusion

In this work, we present a hybrid framework for constraint
solving, consisting of a machine learning model to predict
a solution and a CBLS solver to verify or repair this solu-
tion. The machine learning model is trained via reinforce-
ment learning using feedback from the CBLS solver. Com-
bining RL and CBLS allows to exploit historical information
and learn from the constraint model. Providing an RL agent
shifts computational load from solving time to training time.

The two main components of the framework, the RL agent
and the CBLS solver, are modular. One open task for further
research is to evaluate the different network architectures and
ways to represent problem instances and solutions as inputs
and outputs to the network.

A preliminary evaluation shows general applicability on a
constraint optimization problem. The agent learns to produce
solution candidates, which are feasible to a large degree and
receives high rewards.

References

[Bello et al., 2017] Irwan Bello, Hieu Pham, Quoc V. Le,
Mohammad Norouzi, and Samy Bengio. Neural Combi-
natorial Optimization. ICLR, 2017.

[Bessiere et al., 2017] Christian Bessiere, Luc De Raedt,
Tias Guns, Lars Kotthoff, Mirco Nanni, Siegfried Nijssen,
Barry OSullivan, Anastasia Paparrizou, Dino Pedreschi,
and Helmut Simonis. The Inductive Constraint Program-
ming Loop. IEEE Intelligent Systems, 2017.

[Bjordal et al., 2015] Gustav Bjordal, Jean-Noél Monette,
Pierre Flener, and Justin Pearson. A constraint-based local
search backend for MiniZinc. Constraints, 2015.

[Dai et al., 2017] Hanjun Dai, Elias Khalil, Yuyu Zhang,
Bistra Dilkina, and Le Song. Learning Combinatorial Op-
timization Algorithms over Graphs. In NIPS, 2017.

[Freuder, 2018] Eugene C Freuder.
Holy Grail. Constraints, 2018.

[Gent et al., 2014] Tan P Gent, Bilal Syed Hussain, Christo-
pher Jefferson, Lars Kotthoff, Tan Miguel, Glenna F
Nightingale, and Peter Nightingale. Discriminating in-
stance generation for automated constraint model selec-
tion. In CP, 2014.

[Hentenryck and Michel, 2009] Pascal Van Hentenryck and
Laurent Michel. Constraint-Based Local Search. The MIT
Press, 2009.

[Lombardi et al., 2017] Michele Lombardi, Michela Milano,
and Andrea Bartolini. Empirical decision model learning.
Artificial Intelligence, 244:343-367, 2017.

[Luong et al., 2015] Thang Luong, Hieu Pham, and Christo-
pher D. Manning. Effective Approaches to Attention-
based Neural Machine Translation. In EMNLP, 2015.

[Mnih ez al., 2016] Volodymyr Mnih, Adria Puigdomenech
Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy P. Lillicrap, Tim Harley, David Silver, and Ko-
ray Kavukcuoglu. Asynchronous Methods for Deep Rein-
forcement Learning. In ICML, 2016.

[Nethercote et al., 2007] Nicholas Nethercote, Peter
Stuckey, Ralph Becket, Sebastian Brand, Gregory
Duck, and Guido Tack. MiniZinc: Towards a standard CP
modelling language. In CP, 2007.

[Nguyen ef al., 2017] Khanh Nguyen, Hal Daumé III, and
Jordan Boyd-Graber. Reinforcement Learning for Bandit
Neural Machine Translation with Simulated Human Feed-
back. In EMNLP, 2017.

[Prud’homme et al., 2017] Charles Prud’homme, Jean-
Guillaume Fages, and Xavier Lorca. Choco Documenta-
tion, 2017.

[Selsam et al., 2018] Daniel Selsam, Matthew Lamm,
Benedikt Biinz, Percy Liang, Leonardo de Moura, and
David L. Dill. Learning a SAT Solver from Single-Bit
Supervision. arXiv:1802.03685, 2018.

[Vinyals ef al., 2015] Oriol Vinyals, Meire Fortunato, and
Navdeep Jaitly. Pointer Networks. In NIPS, 2015.

Progress towards the

