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Abstract. It is well known that replacing the irreducible polynomial
used in the AES one can produce 240 dual ciphers. In this paper we
present 9120 other representations of GF (28), producing more ciphers
dual to the AES. We also show that if the matrix used in the S-box
of Rijndael is linear over a larger field than GF (2), this would have
implications for the XSL attack.

1 Introduction

The cipher Rijndael [1] has been selected by NIST as the AES. Most of the
operations in Rijndael are based on the field GF (28), and several researchers
have made comments on the algebraic structures found in the cipher [3, 4, 5].
At ASIACRYPT 2002 Barkan and Biham [5] showed that the ciphers produced
when changing the polynomial used in AES are duals of Rijndael. In this paper
we construct many more duals of the AES.

Also at ASIACRYPT 2002 Courtois and Pieprzyk [6] described a possible
attack on the AES, using a large system of equations. We will show that one of
the dual ciphers could produce a much smaller system, that should be easier to
solve. However, we have checked that the matrix used in the affine transformation
in the S-box is not among those which would simplify the system of equations.

At EUROCRYPT 2003 Biryukov et al. [7] presented a tool for finding affine
equivalent S-boxes. This can be used to find 2040 pairs of affine mappings that
can be inserted in the AES, without changing the permutation induced by the
cipher. By replacing the field polynomial in the AES with one of the 30 other
irreducible polynomials, one is likely to be able to produce as many as 61,200
different versions of the duals of the AES found in [5]. This class can probably
be extended using the duals presented here.

In Section 2 we give a brief description of Rijndael, and the definition of a
dual cipher. In Section 3 we show how to construct 1170 different representations
of GF (28), each one resulting in 8 ciphers dual to the AES. In Section 4 we check
whether the system of equations in the XSL-attack can be simplified. Conclusions
are made in Section 5.

2 Description of Rijndael

We here give a brief description of Rijndael, omitting the key schedule. A more
detailed description can be found in [1].
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Rijndael is a 128-bit block cipher with key sizes of 128, 192 or 256 bits. The
cipher consists of a round function that is repeated 10, 12 or 14 times according
to the length of the key. The cipher block and the round keys are viewed as
4 × 4-matrices of bytes. In some operations these bytes are viewed as elements
of GF (28), as well as 8-bit strings. The irreducible polynomial over GF (2) used
to represent GF (28) is x8 + x4 + x3 + x + 1.

There are four operations in the round function of Rijndael. These are used
in the following order:

– SubBytes
– ShiftRows
– MixColumns
– AddRoundKey

SubBytes replaces each byte of the cipher block. Each byte is first replaced by its
inverse, when viewed as an element of GF (28) (0−1 = 0), and then passed through
an affine transformation Ax + b as an 8-bit vector. The constants A and b are

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ShiftRows takes row i of the cipher block, containing four bytes, and shifts
it i positions to the left. The top row is row 0 and the bottom is row 3.

MixColumns views the cipher state as a 4 × 4-matrix over GF (28), and pre-
multiplies it with a constant 4 × 4-matrix with elements from GF (28).

AddRoundKey simply xors the cipher block with the key for the current
round.

An AddRoundKey is applied to the plaintext before the first round, and in
the last round MixColumns is removed.

2.1 Dual Ciphers

We give here the definition of a dual cipher from [5].

Definition 2.1. Two ciphers E and E′ are called dual ciphers if there exists
invertible transformations f, g and h such that

∀P,K f(EK(P )) = E′
g(K)(h(P )).

In the case for Rijndael in this paper we will have f = g = h. The transfor-
mation f will be an isomorphism of GF (28) applied on all 16 bytes in the cipher
block in parallel.
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3 Different Representations of GF (28)

The designers of Rijndael chose the irreducible polynomial r(x) = x8 +x4 +x3 +
x + 1 to construct GF (28). In the following let α be a root of r(x). Elements of
GF (2)[α] (all sums and products of elements from GF (2)∪{α}) may be written
as polynomials in α over GF (2), with degree at most 7. The elements of GF (28)
are sometimes regarded as 8-bit vectors, with the natural mapping

c7α
7 + . . . + c1α + c0 ←→ (c7, . . . , c1, c0).

When an element of GF (28) is written as a column vector c0 is at the top and
c7 is at the bottom.

3.1 Dual Ciphers by Replacing r(x)

There are 30 irreducible polynomials of degree 8 over GF (2). As pointed out in
[5], we may define β to be a root of any one of these polynomials, and construct
GF (28) = GF (2)[β]. The isomorphism φ between GF (2)[α] and GF (2)[β] is
established when we find a root of r(x) in GF (2)[β], and let this root be the
image of α.

This isomorphism is a linear mapping. Let Mφ be the 8×8-matrix over GF (2)
whose column i is φ(αi), where column 0 is the leftmost column and column 7
is the rightmost column. Then φ(a) can be computed as φ(a) = Mφ · a, where
a ∈ GF (2)[α] is written as a column vector.

Denote encryption of plaintextP under keyK usingRijndael byEK(P ). Let the
cipher we get by replacing all constants in GF (28) in Rijndael by their image under
φ, and replacing A with MφAM−1

φ be called E′. Then we have the duality [5]:

φ(EK(P )) = E′
φ(K)(φ(P )),

where we understand φ to be applied to each of the GF (28)-elements in the blocks
P,K and EK(P ).

Since there are 8 different roots of r(x) in GF (28), we get 8 different iso-
morphisms between GF (2)[α] and each representation of GF (28). With 30 ir-
reducible polynomials of degree 8 over GF (2) we therefore get a total of 240
different matrices Mφ.

3.2 Other Representations of GF (28)

There are other ways of constructing GF (28) than by using an irreducible poly-
nomial of degree 8 over GF (2). This is shown by the following example.

First we create GF (22) = GF (2)[β] with β2 + β + 1 = 0. Then we can make
GF (28) with t(x) = x4 + βx3 + x + (β + 1), an irreducible polynomial of degree
4 over GF (2)[β]. Defining γ to be a root of t(x), the elements of GF (28) can be
written as polynomials in γ of degree at most 3 with coefficients from GF (2)[β].
Writing elements of GF (22) as polynomials in β of degree at most 1 over GF (2),
we get a natural mapping between 8-bit strings and elements of GF (2)[β, γ]:

(c7β + c6)γ3 + (c5β + c4)γ2 + . . . + (c1β + c0) ←→ (c7, . . . , c0). (1)
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With this mapping the isomorphism φ : GF (2)[α] −→ GF (2)[β, γ] can now be
realized as a matrix-multiplication in the same way as in the single extension
case. We find a root of r(x) in GF (2)[β, γ] and let this element be φ(α). Then
Mφ = [1, φ(α), φ(α2), . . . , φ(α7)].

3.3 All Possible Representations of GF (28) Using Irreducible
Polynomials

Here we will show that there are 1170 different representations of GF (28) using
roots from irreducible polynomials. We have the following inclusions of subfields
of GF (28):

GF (2) ⊂ GF (22) ⊂ GF (24) ⊂ GF (28).

This induces four different chains of fields starting with GF (2) and ending in
GF (28), these chains are listed below. The number above an arrow in GF (2i) n−→
GF (2di) means there are n irreducible polynomials of degree d over GF (2i).

– GF (2) 30−→ GF (28): 30 representations.

– GF (2) 1−→ GF (22) 60−→ GF (28): 60 representations.

– GF (2) 3−→ GF (24) 120−→ GF (28): 360 representations.

– GF (2) 1−→ GF (22) 6−→ GF (24) 120−→ GF (28): 720 representations.

Adding the numbers together we get 1170 representations of GF (28).
The mapping between 8-bit strings and field elements for the last two chains

can be done as follows.
GF (2) −→ GF (24) −→ GF (28): Let β be a root of an irreducible polynomial

of degree 4 over GF (2), and let γ be a root of an irreducible polynomial of degree
2 over GF (2)[β]. The conversion is then

(c7β
3 + . . . + c4)γ + (c3β

3 + . . . + c0) ←→ (c7, . . . , c0).

GF (2) −→ GF (22) −→ GF (24) −→ GF (28): Let β be a root of x2 + x + 1,
γ a root of an irreducible polynomial of degree 2 over GF (2)[β], and δ a root of
an irreducible polynomial of degree 2 over GF (2)[β, γ]. The mapping becomes

((c7β + c6)γ + (c5β + c4))δ + ((c3β + c2)γ + (c1β + c0)) ←→ (c7, . . . , c0).

For each representation there are 8 choices for the element φ(α). In total we
then get 8 · 1170 = 9360 matrices Mφ yielding isomorphisms, and so 9360 duals
of the AES. We have generated all these matrices, and checked that they are all
different (However, it can be shown that there are 60 pairs of matrices {M,M ′}
such that the first 4 columns of M and M ′ are equal).

It should be noted that the idea of constructing GF (28) using two field ex-
tensions and applying it to Rijndael is not new. It has been done in [8], for the
purpose of making an efficient hardware implementation of inversion in GF (28).
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4 Implications for the XSL-Attack

The XSL attack is described in [6]. The basis of the attack is the fact that the
non-linear part of the S-box in Rijndael is inversion in the field GF (28). If X is
the input to the inversion and Y is the output, we have the relation XY = 1
(except for X = 0). By writing X as x7α

7 + . . . + x0 and Y as y7α
7 + . . . + y0,

the expression

(x7α
7 + . . . + x0)(y7α

7 + . . . + y0) = 0 · α7 + . . . + 0 · α + 1

will give us 8 quadratic equations in the variables x0, . . . , x7, y0, . . . , y7.

4.1 Brief Summary of the XSL Attack

At some point in each round, we give variable names to the bits of the cipher
block. Since all the operations in Rijndael except the field inversion are linear
over GF (2), the input and output of the inversion are linear expressions in
these variables. By using the relation of the field inversion described above, we
can create an equation system in the key bits and the intermediate ciphertext
bits using one known plaintext/ciphertext pair. All of these equations will be
quadratic, and for the 128-bit key case the system should define the key uniquely.

The rest of the attack is to try to solve this equation system by creating
new equations using multiplication with monomials, and in the end using re-
linearization. If the XSL attack works, it is important that it is faster than
exhaustive search. One crucial point for the complexity of solving the system is
the number of variables it contains, and for the re-linearization, the number of
monomials.

4.2 Matrix in S-Box GF (22)-Linear?

Let us assume for a little while that the matrix used in the S-box of Rijndael is
linear over GF (22). The other linear operations are linear over GF (28), and in
particular over GF (22). This means that Rijndael can be described completely
in terms of GF (22), it will never be necessary to go down to bit level in any
of the operations. Since all the linear operations of Rijndael are GF (22)-linear,
we can make an equation system like the one used in the XSL-attack, but now
with variables and coefficients from GF (22). Since two and two bits are melted
together to form one variable, we will only get half as many variables as in the
original system, and only about one fourth of the number of quadratic monomi-
als. Since the number of monomials is significantly smaller in the system over
GF (22), and since we only have half as many variables, it should be easier to
reach the point where re-linearization can be applied.

The number of invertible 8×8-matrices over GF (2) is about 262.2, and of these
only about 231.5 are linear over GF (22). This means a random invertible GF (2)-
matrix have a probability of less than 2−30 of being GF (22)-linear. A check has
indeed verified that the matrix used in the S-box of Rijndael is not GF (22)-linear,
and so the system can not be simplified this way. To our knowledge this is the
first time it has been checked whether this matrix is linear over a larger field.
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5 Conclusions

In this paper we have increased the list of ciphers dual to Rijndael from 240 to
9360. If this will have any impact on the security of Rijndael remains to be seen.
Many properties of Rijndael, such as differential and linear probabilities, carry
over to any of the duals, but other things can change. The designers of Rijndael
stated in [2] that the constant b in the affine transformation of the S-box was
chosen so the S-box would have no fixed points. However, some of the duals have
an S-box with four fixed points.

The idea of describing one of the duals of Rijndael completely in terms of
GF (22) did not pay off this time, but we hope it could serve as an inspiration
to do more algebraic analysis of the AES.
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