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Cardiac
pulsations drive
oscillatory
motion in the
cranial cavity

[Nevit Dilmen, NPH patient,

Wikimedia Commons, 2010 ] 2



The disbalance of arterial inflow and venous
outflow drives pressure pulsations and CSF flow

[Balédent, Olivier. "Imaging of the cerebrospinal fluid circulation" Adult hydrocephalus (2014)] 3



A computational framework for intracanial
pulsatility

a) Stokes flow - CSF-filled spaces - 

ρ  ∂  u −  div [2μ  ϵ(u) − p  I]F t F F

 div u

= 0

= 0

b) Poroelasticity (Biot) - brain tissue - 

−div[2μ  ϵ(d) + λ div d − αp  I]S p

c  ∂  p  − α∂   div d +  div   ∇p  0 t p t (
μ  F

κ
p)

= 0

= g

c) Interface conditions on 

Ω  f

Ω  p

Σ
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The disbalance of arterial inflow and venous
outflow drives intracranial pulsatile motion

(I) early systole - high net
blood inflow

(I) end of net blood inflow

(III) brain equilibrium phase

(IV) high net outflow of blood

varying in time, spatially

uniform mass source term g
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The model is based on a detailed, MRI-derived
geometry
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The fluid-poroelastic coupling is based on first
principles

Mass conservation on 

u ⋅ n = ∂  d +  ∇p  ⋅( t
μ  F

κ
P ) n

Momentum conservation on 

2μ  ϵ(u) − p  I n =( F F ) 2μ  ϵ(d) − ϕI n( S )

Balance of total normal stress on 

p  +p n ⋅ 2μ  ϵ(u) − p  I n =( F F ) 0

Beavers-Joseph-Saffman condition on 

−n ⋅ 2μ  ϵ(u) − p  I τ  =( F F ) i  u − ∂  d ⋅
 κ

γμ  F ( t ) τ  i

with the tangential vectors , 

Σ Σ

Σ Σ

τ  i i = 1, 2
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The boundary conditions represent a rigid skull and
a compliant spinal compartment

Rigid skull

u = 0  on Γ  skull

Spinal coord

d = 0  and   ∇p  ⋅
μ  f

κ
p n = 0  on Γ  SC

Spinal SAS

2μ  ϵ(u) − p  I ⋅( f f ) n = −n p ⋅0 10  on ΓΔV  (t)/PVI  out SC
SAS

with ΔV  (t) =out   u ⋅∫
0

t

∫
Γ  SAS

n ds dt 8



The model is solved using a monolithic finite
element approach

total pressure formulation for Biot

Taylor-Hood type elements (P2-P1-P2-P1-P1)

implicit Euler time discretization

Block System

At each time step, find , ,  ,   and  such

that
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Implementation

direct solver (MUMPS)

implementation based
on Fenics & Multiphenics 

 

u  h
n+1 pF ,h

n+1 d  h
n+1 p  P ,h

n+1 ϕ
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Variations in the ICP are dominated by their
temporal amplitude
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Cardiac pulsations cause substantial pressure
variations and complex flow patterns
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The largest peak flow rates occure into the spinal
canal
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The largest peak flow rates occure into the spinal
canal
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The brain tissue rotates and exhibits a funel-
shaped motion at the brain stem
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We compute the effect of a selection of parameter
deviations

Model
modified

parameter
value interpretation

Standard - - -

A
pressure-volume
index

ml greater spinal compliance

B Young Modulus stiffer brain parenchyma

C Poisson ratio
greater compressibility of parenchymal
tissue

D storage coefficient greater cranial compliance

PVI = 10

E =
3000 Pa

ν = 0.4

c =
10 Pa−5 −1

15



Model variations
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In conclusion, we present a new computational
framework of cardiac-induced intracranial motion

our model predicts ICP, CSF flow
and tissue displacement with high
resolution in space and time

new insights into intracranial
pulsatility in health and disease
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