
Simula Research Laboratory, Technical Report 2018-05 May 2018

Employing Multi-Objective Search and Machine Learning

to Mine Cross Product Line Rules: A Technical Report

Safdar Aqeel Safdar1,2, Tao Yue1, Shaukat Ali1, Hong Lu1

1Simula Research Laboratory, Oslo, Norway
2University of Oslo, Oslo, Norway

{safdar, tao, shaukat, honglu}@simula.no

ABSTRACT

Modern systems are being developed by integrating multiple products within/across product lines that communicate with each

other through information networks. Runtime behaviors of such systems are related to product configurations and information

networks. Cost-effectively supporting Product Line Engineering (PLE) of such systems is challenging mainly because of

lacking the support of automation of the configuration process. Capturing rules is the key for automating the configuration

process in PLE. However, there does not exist explicitly-specified rules constraining configurable parameter values of such

products and product lines. Manually specifying such rules is tedious and time-consuming. To address this challenge, in this

paper, we present an improved version (named as SBRM+) of our previously proposed Search-based Rule Mining (SBRM)

approach. SBRM+ incorporates two machine learning algorithms (i.e., C4.5 and PART) and two multi-objective search

algorithms (i.e., NSGA-II and NSGA-III), employs a clustering algorithm (i.e., k-means) for classifying rules as high or low

confidence rules, which are used for defining three objectives to guide the search. To evaluate SBRM+ (i.e., SBRM+
NSGA-II-C45,

SBRM+
NSGA-III-C45, SBRM+

NSGA-II-PART, and SBRM+
NSGA-III-PART), we performed two case studies (Cisco and Jitsi) and

conducted three types of analyses of results: difference analysis, correlation analysis, and trend analysis. Results of the

analyses show that all the SBRM+ approaches performed significantly better than two Random Search-based approaches

(RBRM+-C45 and RBRM+-PART) in terms of fitness values, six quality indicators, and 17 machine learning quality

measurements (MLQMs). As compared to RBRM+ approaches, SBRM+ approaches have improved the quality of rules based

on MLQMs up to 27% for the Cisco case study and 28% for the Jitsi case study.

KEYWORDS

Product Line; Configuration; Rule Mining; Multi-Objective Search; Machine Learning; Interacting Products

1. INTRODUCTION

Product Line Engineering (PLE) is a well-acknowledged paradigm to improve the productivity of developing products with

higher quality and at a lower cost. By benefiting from PLE, more and more systems are developed by integrating different

products, which often belong to different product lines, and communicate and interact with each other through information

networks [1, 2]. An example of such systems is video conferencing systems [3] (VCSs). These systems are highly configurable

as each product has a large number of configurable parameters (e.g., a VCS product developed by Cisco1 can have more than

120 configurable parameters) offering different configuration options to users (Figure 1). For example, in case of VCSs, users

can select different protocols for making a call. Each product has a set of operations that enable it to communicate/interact

with other products (Figure 1). Each product has state variables for defining system states. At runtime, configured products

belonging to multiple product lines communicate (e.g., via information networks) with each other [1, 2] (Figure 1). Thus,

runtime behaviors of such systems not only depend on the configuration of these communicating products but are also

influenced by information networks (also named as communication medium). Note that configuration in our context is about

assigning a set of values to configurable parameters (i.e., including communication medium specific) of communicating

products.

Cost-effective PLE is challenging mainly because of the lack of the support for automation of the configuration process

[4, 5]. Capturing rules is the key to enabling automation of various configuration functionalities (e.g., consistency checking,

1 www.cisco.com/c/en/us/products/collaboration-endpoints/index.html

Simula Research Laboratory, Technical Report 2018-05 May 2018

decision propagation, and decision ordering) [6-9]. In our context, such rules describe how configurations of communicating

products within/across product lines impact their runtime interactions via information networks. We name such rules as Cross

Product Lines (CPL) rules. CPL rules are important for two reasons. First, they can be used to identify invalid configurations

where products may fail to interact due to, for example, violated dependencies among features of interacting products [10].

Identified invalid configurations can help developers to maintain current product lines or develop future product lines. Second,

CPL rules can provide support for enabling (automated or semi-automated) configurations of products of future deployments.

However, the literature does not provide sufficient support to mine such rules, as it mainly focuses on mining rules constraining

product configurations within a single product line [5, 11].

As mentioned in [10], rules (i.e., configuration constraints) can be identified from either domain knowledge or testing of

the system. Manually specifying such rules based on domain knowledge is tedious and time-consuming, and heavily relies on

experts’ knowledge of the domain. Moreover, certain information is only known at runtime (e.g., network related information

such as bandwidth, traffic congestion , and maximum transmission unit (MTU) size) [10], which makes CPL rules only

possible to be captured at runtime. Identifying CPL rules via testing has its own challenges, as the configuration space is

typically very large and testing all possible configurations is infeasible. Besides, in practice, testers often use valid

configurations to test a system [10]. Therefore, identifying CPL rules requires an automated approach without exhaustively

exploring all possible configurations of communicating products within/across product lines.

Figure 1:The overall context and scope of SBRM and SBRM+

In [11], a rule mining approach was proposed to mine rules for a product line where product configurations are generated

randomly and labeled as faulty or non-faulty. Labeled product configurations are the input to the classification algorithm of

J48 [12] to mine rules. However, randomly generating configurations to mine rules is inefficient, as rules with all classes are

not equally important (i.e., rules with faulty classes are more important than non-faulty ones). We advanced one step further

by employing search to generate product configurations with three heuristics and our initial investigation was presented in our

previous work [13], where we proposed an approach, named as Search-based Rule Mining (SBRM), combining multi-objective

search with machine-learning to mine CPL rules. The three heuristics aim to generate configurations maximally violating high

confidence rules with non-faulty classes and satisfying low confidence rules with non-faulty classes and rules with faulty

classes). SBRM has three major components (Figure 1): 1) Initial Configuration Generation: randomly generating an initial

set of configurations for communicating products; 2) Rule Mining: taking the generated configurations as input along with

corresponding system states and applying the machine learning algorithm to mine CPL rules; and 3) Search-based

Configuration Generation: taking the mined CPL rules as input and generating an another set of configurations using multi-

objective search algorithm, which are combined with the previously generated configurations to mine a refined set of CPL

Simula Research Laboratory, Technical Report 2018-05 May 2018

rules. SBRM obtains CPL rules with different degrees of confidence (i.e., the probability of being correct) with an emphasis

on mining rules that can reveal invalid configurations by specifying the configurations that may lead to abnormal (i.e.,

unwanted) system states [14]. Instead of collecting a large amount of data required for machine learning all at once, we obtain

input data incrementally with multiple iterations. During each iteration, we use rules mined from the previous iteration to guide

the search for generating configurations. Newly generated configurations are combined with those from all the previous

iterations to incrementally refine the aforementioned rules.

In our previous investigation [13], we applied the PART algorithm as the learning algorithm and NSGA-II as the search

algorithm in SBRM. We validated the approach using a relatively small-sized real-world case study of two communicating

VCS products belonging to two different product lines with 17 configurable parameters. In this paper, we extend the prior

work by making several additional contributions:

• A significantly improved version of SBRM (called SBRM+) is proposed for mining CPL rules constraining

configurations of communicating products across/within product lines.

o A clustering algorithm (i.e., k-means) is employed in SBRM+ (as compared to using thresholds in SBRM) for

classifying rules as high and low confidence rules, which are used for defining the three heuristics/objectives.

o Two multi-objective search algorithms NSGA-II and NSGA-III are integrated into SBRM+, whereas in SBRM, we

used only NSGA-II.

o Two decision tree based rule mining algorithms PART and C4.5 are integrated into SBRM+ (referred as

SBRM+
NSGA-II-C45, SBRM+

NSGA-III-C45, SBRM+
NSGA-II-PART, and SBRM+

NSGA-III-PART in the rest of the paper),

whereas in SBRM, we used only PART.

• The SBRM+ approaches were evaluated by performing a real-world case study of three communicating VCS products

belonging to three different product lines (Cisco) with 27 configurable parameters and a real-world open source case

study of three products of Audio/Video Internet Phone and Instant Messenger, belonging to the same product line (Jitsi)

with 39 configurable parameters. Note that evaluation results presented in this paper are based on new experiments

conducted using two relatively larger case studies (with 27 and 39 configurable parameters) of three communicating

products and no results were taken from our previous work [13].

• We conducted three types of analyses of results for both case studies: difference analysis, correlation analysis, and

trend analysis.

o We conducted difference analysis to compare the performance of NSGA-II and NSGA-III combined with PART

and C4.5 with Random Search (RS) combined with PART and C4.5 in terms of fitness values, six commonly used

quality indicators (i.e., Hyper Volume (HV), Inverted Generational Distance (IGD), Epsilon (ϵ), Euclidean

Distance from the Ideal Solution (ED), Generational Distance (GD), and Generalized Spread (GS)), and 17

machine learning quality measurements (MLQMs), in comparison with the prior work where we evaluated NSGA-

II and RS using fitness values, HV, and six MLQMs. Furthermore, we have also compared the performance of the

four SBRM+ approaches in terms of the 17 MLQMs to identify the best-suited approach for mining CPL rules.

o We conducted correlation analysis to study the correlation between the quality of rules in terms of MLQMs and

average fitness values and quality indicators, which was not performed in our prior work.

o We conducted trend analysis to see the trend in the quality of rules based on MLQMs across different iterations

of SBRM+ (also not performed in the prior work).

• We also significantly extended the related work.

Evaluation results show that SBRM+ is effective to produce high-quality rules as compared to RS based rule mining

approach (i.e., RBRM+), as in 7 out of 8 comparisons for the two case studies, the SBRM+ approaches significantly

outperformed the RBRM+ approaches in terms of the majority of MLQMs. In eighth comparison, neither one of the two

approaches dominates other. Among the four SBRM+ approaches, SBRM+
NSGA-II-C45 produced the highest quality rules based

on MLQMs for the Cisco case study and SBRM+
NSGA-II-PART for the Jitsi case study. Correlation analysis suggests that in

most of the cases lower average fitness values, lower values of quality indicators (except for HV) and higher HV values mean

overall higher quality rules in terms of MLQMs. Moreover, trend analysis shows an increasing trend of the quality of rules in

terms of MLQMs for all the four SBRM+ approaches across the five iterations.

The rest of the paper is organized as follows: Section 2 provides the background knowledge. In Section 3, we give an

overview of SBRM+ followed by the search-based approach for generating configurations in Section 4. In Section 5, we present

Simula Research Laboratory, Technical Report 2018-05 May 2018

experiment design and execution. In Section 6, we present results and analyses, followed by the overall discussion and threats

to validity. Section 7 summarizes the literature review, and finally, in Section 8, we conclude the paper.

2. Background

In this section, we briefly introduce relevant knowledge on multi-objective search (Section 2.1), machine learning techniques

for rule mining and clustering (Section 2.2), and branch distance calculation heuristic (Section 2.3).

2.1 Multi-objective Search

Multi-objective search has been widely applied to address different software engineering optimization problems such as test

case prioritization, cost estimation, and configuration generation [15-18]. Multi-objective search algorithms are designed to

solve problems where various objectives are competing with each other, and no single optimal solution exists. They aim to

find a set of non-dominated solutions for trading off different objectives.

To address our problem, we selected the most commonly used Non-dominated Sorting Genetic Algorithm (NSGA-II) [19,

20], which has proven to be effective for solving various software engineering problems such as test case prioritization and

cost estimation [20, 21]. NSGA-II relies on the Pareto dominance theory, which yields a set of non-dominated solutions for

multiple objectives [19]. At first, candidate solutions (i.e., the population) are sorted into various non-dominated fronts using

a ranking algorithm. Then, individual solutions are selected from non-dominated fronts based on the crowd distance, which

measures the distance between the individual solutions and the rest of the solutions in the population [22]. If two solutions

belong to the same non-dominated front, then the solution with a higher crowd distance will be selected to increase the diversity

of solutions.

We also selected a relatively new multi-objective algorithm NSGA-III [23, 24], which has shown to perform better than

NSGA-II in several contexts [25]. The basic working procedure of NSGA-III is quite similar to the NSGA-II but with

significant changes in its selection operator. Unlike NSGA-II, NSGA-III’s selection process utilizes well-spread reference

points to apply the selection pressure to maintain the diversity among population members. We use Random Search (RS) as

the comparison baseline.

2.2 Machine Learning

Machine learning is typically used for classifying, clustering, and identifying/predicting patterns in data [26]. It has also been

used for inferring rules [11, 27]. Machine learning techniques can be classified into supervised learning (i.e., for labeled data)

and unsupervised learning (i.e., for unlabeled data). Supervised learning aims to find relations between input data and its

outcome whereas unsupervised learning is for identifying hidden patterns inside input data without labeled responses. We

adopted supervised learning in our approach, as we aim to find rules between product configurations (i.e., input) and system

states indicating the states of products’ interaction (i.e., outcome).

There are two major paradigms of rule generation: 1) creating rules from decision trees, converting the trees into rules and

pruning them as opted by C4.5 [28]; 2) employing the separate-and-conquer rule learning technique used by Repeated

Incremental Pruning to Produce Error Reduction [29]. Creating rules from decision trees is computationally expensive in the

presence of noisy data, and the separate-and-conquer rule learning technique has the over pruning (hasty generalization)

problem [30]. The Pruning Rule-Based Classification algorithm (PART) combines the two paradigms mentioned above of rule

generation while avoiding their shortcomings. PART generates partial decision trees, and corresponding to each partial tree, a

single rule is extracted for the branch that covers maximum nodes [30]. Therefore, in our previous study [13], we opted for

PART. In this study, we also included C4.5, as it is the most popular algorithm in the research community as well as industry

[31].

We used Lloyd’s algorithm [32] for clustering rules, a commonly used k-means algorithm, which minimizes the average

squared distance between points within the same cluster. Initially, it selects k data points randomly as centers of k clusters.

Furthermore, it uses the Euclidean distance function [33] to calculate the distances between each data point and centers of k

clusters, and assign each data point to its nearest cluster. After assigning all the data points to k clusters, it updates the centers

of k clusters by calculating the mean of all the data points within each cluster. Once centers are updated, it recalculates the

Euclidean distance for all the data points and reassigns them to k clusters. This process continues until the centers of k cluster

do not change in two consecutive iterations.

Simula Research Laboratory, Technical Report 2018-05 May 2018

2.3 Branch Distance Calculation Heuristic

Branch distance is a heuristic used in search-based software engineering, which indicates to what extent the given data satisfy

the predicate (aka condition or clause) in the rule/constraint. For measuring the branch distance between a configuration of a

configurable parameter and a predicate in the rule, we opted the branch distance calculation approach provided in [34, 35]. In

Table 1, we summarize the distance calculation formula corresponding to different operations for numerical and enumerated

data.

Table 1: Branch distance functions [34] *

Predicate type Operation Distance function

Predicates with relational operators
a=b 0

a!=b a!=b → 0 else nor(|a−b| +1) *k

Predicate with a Boolean condition True → 0 else k

Logical connective of two predicates Pr1∧ Pr2 Pr1 + Pr2 (sum of branch distances for both predicates)

* k is a positive constant greater than zero, we used k=1; nor gives a normalized value between zero and one.

3. OVERVIEW

Figure 2 presents an overview of SBRM+, which relies on machine learning and multi-objective search to mine CPL rules in

an iterative and incremental process. As shown in Figure 2, the whole process consists of seven steps, which are organized

into four types of activities: Generation, Execution, Mining, and Clustering. Generation related steps (i.e., Steps 1 and 5) are

about generating configurations for the selected products within/across product lines, using a search algorithm (e.g., NSGA-

II) or RS. Execution-related steps (i.e., Steps 2 and 6) configure the selected products with generated configurations and

obtaining their consequent system states to label the configurations. Mining-related steps (i.e., Steps 3 and 7) combine all

generated configurations with system states and apply machine learning algorithms (e.g., PART) to mine rules. Clustering

Step 4 clusters and classifies the mined rules into categories with a clustering algorithm (e.g., k-means). Based on the

categories, we defined three search objectives for guiding the search for generating configurations (Step 5).

As shown in Figure 2, in the first step, an initial set of configurations is randomly generated for configurable parameters

of the selected products within/across product lines. The second step obtains the system states indicating the states of

interaction among selected products. During the second step, we configure the selected products with randomly generated

configurations, execute certain functionalities to enable the communication among the selected products, and capture the

system states to know if the products communicated successfully (as intended). In our context, an interaction can be defined

as a communication between two or more products communicating via a communication medium. An interaction can be

enabled by executing certain functionalities (i.e., a sequence of operations) of the communicating products to make them

communicate with each other.

In step 3, we feed the set of generated configurations (as Attributes) and their corresponding system states (as Classes) to

Weka [12] as the initial input and apply a rule mining algorithm (e.g., PART or C4.5) to mine the initial set of rules. Normally,

a classifier (e.g., C4.5 and PART) trains a model using a training dataset and then validates the model using a test dataset. In

our case, the input configurations are used as the training dataset. For validation, we used 10 times 10-fold stratified cross-

validation as it presents all classes (approximately) equally across each test fold [31, 36]. This means both PART and C4.5

use 10% of the training data (i.e., generated configurations with corresponding system states provided as input) in each test

fold to validate the model. Note, PART gives a set of rules as the outcome. However, C4.5 gives a decision tree, where a non-

leaf node in a branch represents a predicate specifying the configuration value for a particular configurable parameter and the

leaf node represents the predicted Class (e.g., the call status ConnectedConnected in our context). From each branch of a

generated tree, we extract a rule by joining all non-leaf nodes in the branch with the AND operator to form the antecedent of

the rule and using the leaf node as its consequent. We provide the code for extracting the rules from the tree in the Bitbucket

repository2.

In step 4, the mined rules are clustered using the k-means clustering algorithm (Section 2.2) and classified into different

categories. The classified rules are fed to NSGA-II or NSGA-III for generating configurations for the next iteration in step 5.

In step 6, we repeat step 2 but take the configurations generated from the search instead of the random one. In step 7, we

2 https://bitbucket.org/safdaraqeel/ase-ruleextraction

Simula Research Laboratory, Technical Report 2018-05 May 2018

combine all the configurations generated from steps 1 and 5 and collected system states captured from steps 2 and 6, and feed

all the data to Weka to mine a refined set of rules. This rule set is then used in the next iteration (starting from step 4) to

generate more configurations and further refine the rules.

Figure 2: Overview of the proposed approach (SBRM+)

In each iteration, newly generated configurations with collected system states are added to the dataset from the previous

iteration to mine a new set of rules. We repeat the process (step 4 to step 7) until we meet the stopping criteria, e.g., a fixed

number of iterations and/or when the rules mined from two consecutive iterations are similar. We used a fixed number of

iterations in our experiments, as we have limited available resources for mining rules. Getting similar rules from consecutive

iterations indicates that it is very unlikely to refine the rules further. All the iterations (e.g., five iterations in our experiment)

used for refining the rules and repeated before meeting the stopping criteria make a complete cycle. We consider step 4 (i.e.,

classification of rules) and step 5 (i.e., using search to generate configurations), as the innovative part of the whole approach,

i.e., SBRM+. This is because using Weka to mine rules is an application of the rule mining algorithm (e.g., PART or C4.5), but

applying search requires carefully designing a fitness function. Similarly, classification of rules requires applying the k-means

clustering algorithm based on certain attributes, ranking the clusters using specific formula and classify the rules into different

categories, which are consequently fed to the search algorithm (e.g., NSGA-III) to generate configurations. Both steps 4 and

5 are discussed in detail in the following section.

Pseudocode 1 is the pseudocode of SBRM+, where in L1, we encode the configuration generation problem by representing

all the configurable parameters as numerical variables (Integer or Real) and restricting their domains by defining their upper

and lower limits. In L2-L5 (i.e., Zero-Iteration), we generate the initial set of configurations randomly, decode them, and mine

the initial set of rules. Similarly, in L6-L19, we cluster and classify the rules (L7), generate configurations (L8) using the

search (e.g., NSGA-II), decode the configurations (L9), and mine the refined set of rules (L10-L11). Note, encoding and

decoding are discussed in detail in Section 4.3, whereas the mining and clustering are introduced in Section 4.2.

Simula Research Laboratory, Technical Report 2018-05 May 2018

Input: A set of 𝑛 configurable parameters 𝐶𝑃 = {𝑐𝑝1, 𝑐𝑝2, . . , 𝑐𝑝𝑛} with their sets of possible values 𝐶𝑃𝑉 =
{𝐶𝑃𝑉1 , 𝐶𝑃𝑉2 , . . , 𝐶𝑃𝑉𝑛 }, Number of intial randomly generated configurations 𝑁𝐶𝑅𝐺, Number of iterations 𝑁𝐼, and Number of

configurations to be generated per iteration 𝑁𝐶𝑃𝐼, a set of parameters for search algorithm 𝑃𝑆𝐴

Output: A set of rules 𝑅𝑅𝑆

Begin

// ………………… Encoding Configuration Generation Problem …………….

L1. 𝐸𝐶𝑃, 𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝑠, 𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝑠  Encode_Configurations_Generation_Problem (𝐶𝑃, 𝐶𝑃𝑉)

// ………………… Generating Initial Set of Rules based on Randomly Generated Configurations…………….

L2. 𝐼 ∶= 0 // Zero-Iteration where we use configurations generated randomly

L3. 𝐸𝐶𝑅𝐺  Generate_Configurations_Randomly (𝐸𝐶𝑃, 𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝑠, 𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝑠, 𝑁𝐶𝑅𝐺)

L4. 𝐷𝐶𝑅𝐺  Decode_Configurations (𝐸𝐶𝑅𝐺, 𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝑠, 𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝑠)

L5. 𝑅𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙  Mine_Initial_RuleSet (𝐷𝐶𝑅𝐺)

 // ……… Generating Refined Set of Rules Based on Configurations Generated Using Search Algorithms………

L6. 𝐼 ∶= 𝐼 + 1 // First iteration where we use configurations generated by search algorithms

L7. 𝐶𝑅𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙  Cluster_And_Catergorize_Rules(𝑅𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙)

L8. 𝐸𝐶𝑆𝐵𝐺  Generate_Configurations_Using_Search (𝐸𝐶𝑃, 𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝑠, 𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝑠, 𝑁𝐶𝑃𝐼, 𝐶𝑅𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑃𝑆𝐴)

L9. 𝐷𝐶𝑆𝐵𝐺  Decode_Configurations (𝐸𝐶𝑆𝐵𝐺 , 𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝑠, 𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝑠)

L10. 𝐷𝐶𝑅𝐺+𝑆𝐵𝐺  Combine_Configurations (𝐷𝐶𝑅𝐺, 𝐷𝐶𝑆𝐵𝐺)

L11. 𝑅𝑆𝑅𝑒𝑓𝑖𝑛𝑒𝑑  Mine_Refine_RuleSet (𝐷𝐶𝑆𝐵𝐺+𝑅𝐺)

L12. while (𝐼 ≤ 𝑁𝐼) do

L13. 𝐼 ∶= 𝐼 + 1

L14. 𝐶𝑅𝑆𝑅𝑒𝑓𝑖𝑛𝑒𝑑  Cluster_And_Classify_Rules(𝑅𝑆𝑅𝑒𝑓𝑖𝑛𝑒𝑑)

L15. 𝐸𝐶𝑆𝐵𝐺  Generate_Configurations_Using_Search (𝐸𝐶𝑃, 𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝑠, 𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝑠, 𝑁𝐶𝑃𝐼, 𝐶𝑅𝑆𝑅𝑒𝑓𝑖𝑛𝑒𝑑 , 𝑃𝑆𝐴)

L16. 𝐷𝐶𝑆𝐵𝐺  Decode_Configurations (𝐸𝐶𝑆𝐵𝐺 , 𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝑠, 𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝑠)

L17. 𝐷𝐶𝑅𝐺+𝑆𝐵𝐺  Combine_Configurations (𝐷𝐶𝑅𝐺+𝑆𝐵𝐺 , 𝐷𝐶𝑆𝐵𝐺)

L18. 𝑅𝑆𝑅𝑒𝑓𝑖𝑛𝑒𝑑  Mine_Refine_RuleSet (𝐷𝐶𝑅𝐺+𝑆𝐵𝐺)

L19. return 𝑅𝑆𝑅𝑒𝑓𝑖𝑛𝑒𝑑

Pseudocode 1: Search Based Rule Mining (SBRM+)

4. SEARCH-BASED CONFIGURATION GENERATION APPROACH

Sections 4.1 presents formal definitions required to define the configuration generation problem. In Section 4.2, we present

details about the classification of CPL rules whereas solution encoding in Section 4.3. Section 4.4 presents the objectives and

effectiveness measures, followed by the fitness function in Section 4.5.

4.1 Formalization of Configuration Generation Problem

We formalize relevant concepts and exemplify them with an example of three communicating VCS products belonging to two

different product lines (Figure 4). The definitions, formal representations, and examples of the concepts related to the product

lines and rule mining are presented in Table 2. Moreover, we also constructed a class diagram shown in Figure 3 to

conceptually describe how the defined concepts are related to each other.

As shown in Figure 3, each product line has two or more products, which are communicating via a communication medium

(e.g., Wired Internet, Wireless Internet, Bluetooth). A product has one or more configurable parameters, state variables, and

operations. Each configurable parameter has two or more configurable parameter values. Similarly, each state variable has two

or more state values. An operation can take zero or more operation parameters as input, where each operation parameter has

two or more operation parameter values. The operation parameter values assigned to the operation parameters of the operation

may affect the behavior of the operation. Different products can communicate with each other by enabling a particular

interaction. Enabling a particular interaction requires executing a sequence of operations belonging to one or more

communicating products. State rules defined on state variables of the communicating products can be used to define the system

states, which indicate whether products interact/communicate successfully (as intended). The configurable parameter values

assigned to the configurable parameters of the communicating products determine the success of the interaction. Moreover,

the communication medium may also influence the interaction. An interaction has at least one source product and one or more

Simula Research Laboratory, Technical Report 2018-05 May 2018

target products. An interaction is homogeneous if the communicating products belong to the same product line otherwise

heterogeneous. The communication between products enabled by an interaction can be unidirectional or bidirectional.

In Figure 4, VCS-PL1 and VCS-PL2 are two VCS product lines. VCS1, VCS2, and VCS3 are three products communicating

through WiredInternet, where VCS1 and VCS2 belong to VCS-PL1, and VCS3 belongs to VCS-PL2. VCS1 has three

configurable parameters (e.g., VCS1.defaultProtocol), three state variables (e.g., VCS1.callStatus), and five operations (e.g.,

VCS1.dial()). Similarly, VCS2 has three configurable parameters, one state variable, and three operations whereas VCS3 has

four configurable parameters, one state variables, and three operations. dial() operation of all three VCS products has three

operation parameters including protocol, callRate, and callType.

Table 2. Formalization of concepts*

Def# Concept Definition and formal representation with examples

1 Product line

A product line can be defined as a set of products sharing explicitly defined and managed common and variable features and

relying on the same domain architecture. A set of 𝑛𝑝𝑙 product lines for a particular application domain can be presented as:

𝑃𝐿 = {𝑝𝑙1, 𝑝𝑙2, . . , 𝑝𝑙𝑛𝑝𝑙}, where 𝑝𝑙𝑖 represents the ith product line. For example, {VCS-PL1, VCS-PL2} is a set of two product

lines.

2 Product

A product can be defined as a triplet (𝐶𝑃, 𝑆𝑉, 𝑂𝑃), where 𝐶𝑃, 𝑆𝑉, and 𝑂𝑃 are sets of configurable parameters, state variables,

and operations. A set of 𝑖𝑛𝑝 products for a product line 𝑝𝑙𝑖 can be presented as: 𝑃𝑖 = {𝑝𝑖1, 𝑝𝑖2, . . , 𝑝𝑖𝑛𝑝}, where 𝑝𝑖𝑗represents the

jth product of 𝑝𝑙𝑖. For example, {VCS1, VCS2} represent a set of products for VCS-PL1.

3
Configurable

parameter

A configurable parameter is a numerical (e.g., integer, real) or non-numerical (e.g., binary, ordinal, nominal) type variable,

which can take different values [37]. The possible values of a numerical type configurable parameter can be specified by defining

the constraints on its upper and lower limits whereas, for a non-numerical type configurable parameter, they can be specified as

a set of predefined values. A set of 𝑖𝑛𝑐𝑝 configurable parameters for a product 𝑝𝑖 can be presented as: 𝐶𝑃𝑖 =
{𝑐𝑝𝑖1, 𝑐𝑝𝑖2, . . , 𝑐𝑝𝑖𝑛𝑐𝑝}, where 𝑐𝑝𝑖𝑗 represents the jth configurable parameter of 𝑝𝑖. For example, {defaultProtocol, encryption,

defaultCallRate} is a set of configurable parameters of product VCS1, where defaultProtocol and encryption are non-numerical

and defaultCallRate a numerical type configurable parameters.

4
Configurable

parameter value

A configurable parameter value is a value that can be assigned to a configurable parameter. A set of 𝑖𝑛𝑐𝑝𝑣 configurable

parameter values for each 𝑐𝑝𝑖 can be presented as: 𝐶𝑃𝑉𝑖 = {𝑐𝑝𝑣𝑖1, 𝑐𝑝𝑣𝑖2, . . , 𝑐𝑝𝑣𝑖𝑛𝑐𝑝𝑣}, where 𝑐𝑝𝑣𝑖𝑗 represents the jth value of

𝑐𝑝𝑖. For a real type configurable parameter, 𝑖𝑛𝑐𝑝𝑣 will be infinity because such configurable parameter can take infinite values

between its upper and lower limits. For example, defaultProtocol can be configured with SIP, H323, and AIM whereas

defaultCallRate can take a value between 64 to 6000.

5 State variable

State variables are variables used to describe the state of the system. A set of 𝑖𝑛𝑠𝑣 state variables for a product 𝑝𝑖 can be

presented as 𝑆𝑉𝑖 = {𝑠𝑣𝑖1, 𝑠𝑣𝑖2, . . , 𝑠𝑣𝑖𝑛𝑠𝑣} , where 𝑠𝑣𝑖𝑗 represents the jth state variable for the product 𝑝𝑖 . For example,

{callStatus, numberOfActiveCalls, isPresentationShared} is a set of state variables of VCS1.

6 State value

A state value is a possible value of a state variable, specific to one product. A set of 𝑖𝑛𝑣 possible state values for a state

variable 𝑠𝑣𝑖 , can be presented as 𝑉𝑖 = {𝑣𝑖1, 𝑣𝑖2, . . , 𝑣𝑖𝑛𝑣 }, where 𝑣𝑖𝑗 represents the jth state value of 𝑠𝑣𝑖 . For example,

{Connected, Failed} represents a set of state values for callStatus of VCS1.

7 Operation

An operation is a function implemented in a product. A set of 𝑖𝑛𝑜𝑝 operations for a product 𝑝𝑖 can be presented as: 𝑂𝑃𝑖 =
{𝑜𝑝𝑖1, 𝑜𝑝𝑖2, . . , 𝑜𝑝𝑖𝑛𝑜𝑝 }, where 𝑜𝑝𝑖𝑗 represents the jth operation of 𝑝𝑖 . For example, {dial(), accept(), disconnect(),

startPresentation(), stopPresentation()} is a set of operations for VCS1.

8
Operation
parameter

An operation parameter is a variable of numerical (e.g., integer, real) or non-numerical (e.g., binary, ordinal, nominal) type,

provided as input to an operation. A set of 𝑖𝑛𝑝𝑚 parameters for an operation 𝑜𝑝𝑖 can be presented as 𝑃𝑀𝑖 =
{𝑝𝑚𝑖1, 𝑝𝑚𝑖2, . . , 𝑝𝑚𝑖𝑛𝑝𝑚}, where 𝑝𝑚𝑖𝑗 represents the jth operation parameter for the operation 𝑜𝑝𝑖. For example, {protocol,

callRate, callType} represents a set of operation parameters for dial() operation of VCS1.

9
Operation

parameter value

An operation parameter value is a value that can be assigned to an operation parameter. A set of 𝑖𝑛𝑝𝑣 parameter values for an

operation parameter 𝑝𝑚𝑖 can be presented as 𝑃𝑉𝑖 = {𝑝𝑣𝑖1, 𝑝𝑣𝑖2, . . , 𝑝𝑣𝑖𝑛𝑝𝑣}, where 𝑝𝑣𝑖𝑗 represents the jth operation parameter

value of 𝑝𝑚𝑖. For example, {Audio, Video} represents a set of operation parameter values for callType operation parameter

corresponding to the dial() operation of VCS1.

10 Interaction

An interaction is communication between at least one source product and one or more target products communicating via a

communication medium, enabled by a sequence of operations belonging to the source and target products. A set of 𝑖𝑛𝑖𝑛

interactions supported by a product 𝑝𝑖 to communicate with other products can be presented as: 𝐼𝑁𝑖 = {𝑖𝑛𝑖1, 𝑖𝑛𝑖2, . . , 𝑖𝑛𝑖𝑛𝑖𝑛},

where 𝑖𝑛𝑖𝑗 represents the jth interaction supported by product 𝑝𝑖. For example, {making-call, sharing-presentation} represents

a set of interactions supported by VCS1.

11
Selected

products

A set of 𝑛𝑠𝑝 communicating products under study can be presented as: 𝑆𝑃 = {𝑝1, 𝑝2, . . , 𝑝𝑛𝑠𝑝}, where 𝑝𝑖 represents the ith

product in the set of communicating products. Such products may belong to different product lines or same product line. For
example, SP = {VCS1, VCS2, VCS3} represented a set of selected products where VCS1 and VCS2 belong to VCS-PL1, and

VCS3 belongs to VCS-PL2.

12
Selected

interactions

A set of 𝑛𝑠𝑖𝑛 selected interactions for the selected products can be defined as: 𝑆𝐼𝑁𝑆𝑃 = {𝑖𝑛1 , 𝑖𝑛2, . . , 𝑖𝑛𝑛𝑠𝑖𝑛 }, where 𝑖𝑛𝑗

represents the jth selected interaction. For example, SINSP = {making-call} represents the set of selected interactions.

13
Selected

operations

 For each selected interaction 𝑖𝑛𝑖 , a sequence of operations required to enable interaction 𝑖𝑛𝑖 can be defined as: 𝑂𝑃𝑆𝑖 =
(𝑜𝑝𝑖1, 𝑜𝑝𝑖2, . . , 𝑜𝑝𝑖𝑛𝑠𝑜𝑝), where 𝑜𝑝𝑖𝑗 represents the jth operation (in order) required to enable interaction 𝑖𝑛𝑖 . For example,

(VCS1.dial(), VCS2.accept(), VCS3.accept(), VCS1.disconnect()) represents the sequence of operations required to enable

making-call interaction.

Simula Research Laboratory, Technical Report 2018-05 May 2018

14
Selected

configurable

parameters

A set of 𝑛𝑠𝑐𝑝 selected configurable parameters for all the selected products can be defined as: 𝑆𝐶𝑃𝑆𝑃 = {𝑐𝑝1, 𝑐𝑝2, . . , 𝑐𝑝𝑛𝑠𝑐𝑝},

where 𝑐𝑝𝑖 represents the ith configurable parameter of the selected product. For example, SCPSP={VCS1.defaultProtocol,
VCS1.defaultCallRate, VCS1.encryption, VCS2.encryption, VCS3.encryption} represents the set of selected configurable

parameters for the selected products.

15
Selected state

variables

A set of 𝑛𝑠𝑠𝑣 selected state variables for all the selected products related to the selected interaction can be defined as 𝑆𝑆𝑉𝑆𝑃 =
{𝑠𝑣1 , 𝑠𝑣2, . . , 𝑠𝑣𝑛𝑠𝑠𝑣}, where 𝑣𝑠𝑖 represents the ith state variable. The selected state variables may belong to different products.

For example, {VCS2.callStatus, VCS3.callStatus} represents the set of selected state variables.

16 System states

System states are the combinatorial states for all the products involved in the selected interactions, which indicate whether

products communicated successfully (as intended). Such states are described by defining the state rules on the selected state

variables. A set of 𝑛𝑖𝑠 possible system states corresponding to the selected interactions can be defined as: 𝑆𝑆 =

{s𝑠1 , 𝑠𝑠2, . . , 𝑠𝑠𝑛𝑖𝑠 }, where 𝑠𝑠𝑖 represents the jth system state. For example, {ConnectedConnected, ConnectedFailed,

FailedConnected, FailedFailed} represents a set of system states, which are specified by concatenating (state rule) the states

values of the selected state variables.

17 Predicate

A predicate is a conditional statement in a rule with one configurable parameter and its value joined by one of the relational

operators (i.e., =, ≠, <, ≤, >, ≥). For example, “VCS1.encryption = On” and “VCS1. defaultCallRate > 1000” are two

predicates.

18 Rule

In the context of rule mining, a rule with 𝑛𝑝𝑟 predicates can be represented as: 𝑟𝑖 = 𝑝𝑟1 𝐴𝑁𝐷 𝑝𝑟2 𝐴𝑁𝐷 … 𝐴𝑁𝐷 𝑝𝑟𝑛𝑝𝑟 ∶ 𝑠𝑠𝑘,

where 𝑝𝑟𝑗 represents the jth predicate of rule 𝑟𝑖 and 𝑠𝑠𝑘 represents kth system state. For example, 𝑟1: “VCS1.encryption = On

AND VCS2.encryption = Off AND VCS3.encryption = BestEffort: ConnectedFailed” and 𝑟2: “VCS1.encryption = On AND
VCS2.encryption = BestEffort AND VCS3.encryption = On: ConnectedConnected” are two rules.

19
Confidence of a

rule

For a rule 𝑟𝑖, 𝐶𝑓(𝑟𝑖) represents the confidence of 𝑟𝑖, which is between 0 and 1. Confidence for a rule 𝑟𝑖 can be calculated as:

𝐶𝑓(𝑟𝑖) =
(𝑆𝑃𝑖 − 𝑉𝑖)

(𝑆𝑃𝑖 + 𝑉𝑖)
, where 𝑆𝑃𝑖 represents the number of instances for which 𝑟𝑖 holds true (i.e., support) and 𝑉𝑖 represents the

number of instances that violate 𝑟𝑖 (i.e., violation). An instance represents a set of configurable parameter values for the selected

configurable parameters of the communicating products and corresponding system state.

20
Configuration

solution

A configuration solution {𝑠𝑗} is a set of configurable parameter values assigned to all the selected configurable parameters,

which mathematically can be represented as: 𝑠𝑗 = {𝑐𝑝𝑣𝑗1 , . . , 𝑐𝑝𝑣𝑗𝑛𝑠𝑐𝑝}, where 𝑐𝑝𝑣𝑗𝑖 represents the configurable parameter

value assigned to the ith configurable parameter (i.e., 𝑐𝑝𝑖) in {𝑠𝑗} . For example, {SIP, 5000, On, BestEffort, Off} is a

configuration solution.

21
Configuration

space

A set of 𝑛𝑠 potential configuration solutions (i.e., configuration space) can be defined as: 𝑆 = {{𝑠1}, {𝑠2}, . . , {𝑠𝑛𝑠}}, where {𝑠𝑖}

represents the ith configuration solution. 𝑛𝑠 can be calculated as the cardinality of the Cartesian product of configurable
parameter values’ sets for all the selected configurable parameters, which can be represented mathematically as:

|𝐶𝑃𝑉1 ×. .× 𝐶𝑃𝑉𝑛𝑠𝑐𝑝|. The configuration space for the Cisco’s case study contains approximately 1.03e33 configuration solutions

and 6.54e60 for the Jitsi case study

22
Effectiveness

measures
A set of 𝑛𝑒 effectiveness measures can be defined as: 𝐸 = {𝑒1, 𝑒2, . . , 𝑒𝑛𝑒 }, where 𝑒𝑖 represents the ith effectiveness measure. For

example, a set of three effectiveness measures (i.e., AHNS, NLNS, and NAS) defined in Section 4.3

23
Explored

solutions

A set of 𝑛𝑒𝑠 configuration solutions explored during the search is a proper subset of 𝑆, which mathematically can be represented

as: 𝑆𝐸𝑥 = {{𝑠1}, {𝑠2}, . . , {𝑠𝑛𝑒𝑠}}, where 𝑛𝑒𝑠 < 𝑛𝑠.

* Note: All the examples provided are based on the running example. Also, by selected elements (e.g., products, configurable parameters), we mean elements

under study for learning CPL rules.

Figure 3. A conceptual model for interacting products

Simula Research Laboratory, Technical Report 2018-05 May 2018

Figure 4. Exemplifying concepts related to the product interaction

Based on the concepts presented in Table 2, our configuration generation problem can be formulated as searching a solution

set 𝑆𝑅 from a set of explored solutions (i.e., 𝑆𝐸𝑋) such that 𝑆𝑅 ⊂ 𝑆𝐸𝑥 , and all the solutions in 𝑆𝑅 have highest effectiveness in

terms of effectiveness measures 𝐸 than all the other explored solutions in {𝑆𝑅\𝑆𝐸𝑥}.

∀𝑠𝑟∈ 𝑆𝑅
 ∀𝑠𝑖∈ 𝑆𝐸𝑥

 ∀𝑒𝑗∈ E 𝑠𝑖 ∉ 𝑆𝑅 𝛬 𝐸𝑓𝑓𝑒𝑐𝑡(𝑠𝑟 , 𝑒𝑗) ≥ 𝐸𝑓𝑓𝑒𝑐𝑡 (𝑠𝑖 , 𝑒𝑗)

𝛬 ∃𝑒𝑘∈ E 𝐸𝑓𝑓𝑒𝑐𝑡(𝑠𝑟 , 𝑒𝑘) > 𝐸𝑓𝑓𝑒𝑐𝑡 (𝑠𝑖 , 𝑒𝑘) (1)

where 𝐸𝑓𝑓𝑒𝑐𝑡 (𝑠𝑖 , 𝑒𝑗) gives the value of the jth effectiveness measure (Section 4.4) for configuration solution 𝑠𝑖 .

4.2 Clustering and Classification of CPL Rules

Generally, from the user perspective, the system states (Table 2) can be categorized as normal states and abnormal states. Normal

states indicate that interaction was enabled successfully and selected products interacted/communicated successfully as intended

whereas abnormal states show that interaction failed and selected products did not interact/communicate successfully.

Consequently, CPL rules can be classified into two categories: 𝑅𝐴 = {𝑟𝑎1, 𝑟𝑎2, 𝑟𝑎3, … , 𝑟𝑛𝑎𝑟 } for abnormal states (Category-I),

where 𝑟𝑎𝑖 represents the ith rule with abnormal state and 𝑛𝑎𝑟 represents the total number of rules with abnormal states; 𝑅𝑁 =

{𝑟𝑛1, 𝑟𝑛2, 𝑟𝑛3, … , 𝑟𝑛𝑛𝑟} is for normal states, where 𝑟𝑛𝑖 represents the ith rule with normal state and 𝑛𝑛𝑟 represents the total number

of rules with normal states.

We apply k-means (Section 2.2) to cluster 𝑅𝑁 into three clusters based on three attributes of rules: confidence, support, and

violation. Support and violation have a different scale than confidence, and generally, clustering algorithm does not work with

attributes of different scales [38]. Thus, we divided support and violation by the sum of maximum support and maximum

violation in order to normalize support and violation. After clustering the rules, we calculate the rank for each cluster as:

 𝑅𝑎𝑛𝑘 (𝑐𝑖) = (𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑐𝑖) + 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑐𝑖) − 𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑐𝑖)) (2)

Where 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑐𝑖) , 𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑐𝑖) , and 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑐𝑖) are mean values of normalized support, violation, and

confidence for all the rules belonging to cluster 𝑐𝑖 . Based on the calculated ranks of the three clusters, all the rules are classified

into two categories: 𝑅𝑁1 represents high-confidence rules belonging to a cluster with the highest rank (Category-II) whereas

𝑅𝑁2 represents low-confidence rules belonging to other two clusters with the lowest and medium ranks (Category-III). In

Table 2 (Def# 18), we present two CPL rules 𝑟1 and 𝑟2 where 𝑟1 is a rule with an abnormal state ConnectedFailed and 𝑟2 is a

rule with a normal state ConnectedConnected. For example, 𝑟1 describes that if the encryption of VCS1 (i.e., Caller) is set to

be “On”, encryption of VCS2 (i.e., Callee1) is set to be “Off”, and encryption of VCS3 (i.e., Callee2) is set to be “BestEffort”,

the conference call will connect to the VCS2 but will fail to connect with the VCS3. Rule 𝑟1 is an abnormal state rule, as the

Simula Research Laboratory, Technical Report 2018-05 May 2018

consequent of 𝑟1 (i.e., ConnectedFailed) is an abnormal system state. Similarly, 𝑟2 is a normal state rule because its consequent

(i.e., ConnectedConnected) is a normal system state.

4.3 Solution Encoding and Decoding

As mentioned in Table 2 (Def#3), a configurable parameter can be a numerical (e.g., Integer) or non-numerical (e.g., Boolean,

Nominal) type variable. Thus, to apply search algorithms for the configuration generation problem, we encode all the

configurable parameters as a vector of integer variables to represent the configuration solutions. Considering three configurable

parameters encryption (i.e., Nominal), remoteAccess (i.e., Boolean), and callRate (i.e., Integer) of three communicating

products VCS1, VCS2, and VCS3 in Figure 5, encryption can take one of the three values (On, Off, and BestEffort) and

remoteAccess can take True or False whereas callRate can take a value from 64 to 6000.

To encode the non-numerical configurable parameters, we map all the configurable parameter values to a sequence of

numbers (Figure 5). For example, we mapped On, Off, and BestEffort to 1, 2, and 3 respectively in order to encode encryption.

The configuration solution is represented as a vector of integer variables (i.e., e_encryption, e_remoteAccess, and e_callRate)

where each variable represents a particular configurable parameter. For example, e_encryption represents encryption in Figure

5. To decode a particular configuration solution, we replace the integer values in the vector with the configurable parameter

values of corresponding configurable parameters. For example, in Figure 5, we replace values 3 and 1 with BestEffort and

True to get the final decoded configuration solution: <BestEffort, True, 5000>.

Figure 5: Exemplifying the encoding and decoding mechanism employed in SBRM+

4.4 Objectives and Effectiveness Measures

CPL rules could reveal invalid configurations that lead to unwanted states of the system (i.e., abnormal states) are more

important, therefore, the invalid configurations are of more interest. This encouraged us to use the search to generate

configurations in a smart way. To be more specific, by applying search heuristics, we embrace configurations under which

communicating products may fail to interact/communicate with each other and avoid configurations that lead to successful

interactions among products. To achieve this goal, we define three objectives based on the distances between a configuration

solution and the three categories of rules (Category-I, Category-II, Category-III). Before presenting the objectives and

effectiveness measures, we first define the distance function that is used to assess the effectiveness measures. The distance

function indicates to what extent a configuration solution conforms to a rule.

𝐷(𝑟𝑖 , 𝑠𝑟) =
∑ 𝑑(𝑝𝑟𝑗, 𝑐𝑝𝑣𝑟)

𝑛𝑝𝑟

𝑗=1

𝑚𝑛𝑝
 (3)

where 𝐷(𝑟𝑖 , 𝑠𝑟) calculates the distance between rule 𝑟𝑖 and configuration solution 𝑠𝑟 . In equation (3),

𝑑(𝑝𝑟𝑗 , 𝑐𝑝𝑣𝑟) calculates the branch distance between jth predicate 𝑝𝑟𝑗 from rule 𝑟𝑖 and corresponding configurable parameter

value 𝑐𝑝𝑣𝑟 of the configurable parameter involved in predicate 𝑝𝑟𝑗 from configuration solution 𝑠𝑟 . 𝑛𝑝𝑟 represents the total

number of predicates in rule 𝑟𝑖 whereas 𝑚𝑛𝑝 represents the number of predicates in a rule with the maximum number of

Simula Research Laboratory, Technical Report 2018-05 May 2018

predicates. To calculate the distance between 𝑝𝑟𝑗 and 𝑐𝑝𝑣𝑟 as a branch distance, we use the distance calculation formula

provided in [34] (Section 2.3).

Objective-1: This objective is to avoid generating configurations that completely or close to satisfy rules in Category-II.

The effectiveness measure 𝐴𝐻𝑁𝑆 corresponding to this objective can be calculated as:

𝐴𝐻𝑁𝑆(𝑅𝑁 , 𝑠𝑟) = ∑ 𝐶𝑓(𝑟𝑖) ∗ 𝐷(𝑟𝑖, 𝑠𝑟) | 𝑛𝑛𝑟
𝑖=1 𝑟𝑖 ∈ 𝑅𝑁1 (4)

where 𝐴𝐻𝑁𝑆(𝑅𝑁 , 𝑠𝑟) takes 𝑅𝑁 (the set of rules related to the normal states) and one configuration solution 𝑠𝑟 as input and

gives the effectiveness measure as output. To determine 𝐴𝐻𝑁𝑆, we calculate the sum of weighted distances for all the rules in

Category-II (i.e., 𝑅𝑁1), where each rule belongs to the cluster with the highest rank. The weighted distance of 𝑟𝑖 is calculated

by multiplying 𝐶𝑓(𝑟𝑖) with 𝐷(𝑟𝑖 , 𝑠𝑟).

Objective-2: This objective is to generate configurations within the configuration space that satisfy Category-III (i.e., 𝑅𝑁2)

as well as its nearby space. The nearby space contains configurations for which the distance to the rules in Category-III is

close to 0 but not exactly 0. These configurations might help to either improve the confidence of correct rules by increasing

their support or filter out incorrect ones by increasing their violation and hence reducing their confidence. The effectiveness

measure 𝑁𝐿𝑁𝑆 related to the second objective can be calculated as:

𝑁𝐿𝑁𝑆(𝑅𝑁 , 𝑠𝑟) = ∑ 𝐶𝑓(𝑟𝑖) ∗ (1 − 𝐷(𝑟𝑖 , 𝑠𝑟)) |
𝑛𝑛𝑟

𝑖=1
𝑟𝑖 ∈ 𝑅𝑁2 (5)

where 𝑁𝐿𝑁𝑆(𝑅𝑁 , 𝑠𝑟) takes 𝑅𝑁 (the set of rules associated with the normal states) and configuration solution 𝑠𝑟 as input

and outputs 𝑁𝐿𝑁𝑆. Since we want to explore the configuration space near the configurations satisfying the rules in Category-

III, configurations with a smaller distance to the rules in Category-III are preferred. Therefore, we use (1 − 𝐷(𝑟𝑖, 𝑠𝑟)) in the

𝑁𝐿𝑁𝑆(𝑅𝑁 , 𝑠𝑟). To calculate 𝑁𝐿𝑁𝑆, we calculate the sum of the weighted distance (i.e., calculated by multiplying 𝐶𝑓(𝑟𝑖) with

(1 − 𝐷(𝑟𝑖 , 𝑠𝑟))) of a configuration solution to all the rules in Category-III (i.e., 𝑅𝑁2), where each rule belongs to a cluster with

middle rank or lowest rank.

 Objective-3: This objective is to generate configurations within the configuration space that satisfy Category-I and

its nearby space. The rules in Category-I are of high interest in our context because they indicate situations where interactions

of the selected products fail. The effectiveness measure 𝑁𝐴𝑆 for this objective can be calculated as:

𝑁𝐴𝑆(𝑅𝐴 , 𝑠𝑟) = ∑ 𝐶𝑓(𝑟𝑖) ∗ (1 − 𝐷(𝑟𝑖, 𝑠𝑟))
𝑛𝑎𝑟

𝑖=1
 (6)

where 𝑁𝐴𝑆(𝑅𝐴 , 𝑠𝑟) takes rule set 𝑅𝐴 (related to the abnormal states) and configuration solution 𝑠𝑟 as input. To calculate

𝑁𝐴𝑆, we calculate the sum of weighted distances for all the rules in 𝑅𝐴 (Category-I).

4.5 Fitness Function

We first normalize the three effectiveness measures using the simple yet robust unity-based normalization function

𝑛𝑜𝑟(𝐹(𝑥)) = (
𝐹(𝑥)−𝐹𝑚𝑖𝑛

𝐹𝑚𝑎𝑥−𝐹𝑚𝑖𝑛
)[39, 40], where 𝐹(𝑥) is an effectiveness measure function, 𝐹𝑚𝑎𝑥 and 𝐹𝑚𝑖𝑛 are the maximum and

minimum values of the effectiveness measure. For 𝐴𝐻𝑁𝑆, 𝐹𝑚𝑖𝑛 is 0 when the distance between all the rules in Category-II and

configuration solution 𝑠𝑟 is 0. 𝐹𝑚𝑎𝑥 can be calculated as ∑ 𝐶𝑓(𝑟𝑖)𝑛𝑛𝑟
𝑖=1 where the distance between all the rules in Category-II

and configuration solution 𝑠𝑟 is 1. For 𝑁𝐿𝑁𝑆 and 𝑁𝐴𝑆, 𝐹𝑚𝑖𝑛 is 0 when the distance between all the rules in the corresponding

category and configuration solution 𝑠𝑟 is 1. Corresponding to 𝑁𝐿𝑁𝑆 and 𝑁𝐴𝑆, 𝐹𝑚𝑎𝑥 can be calculated as ∑ 𝐶𝑓(𝑟𝑖)
𝑛𝑛𝑟
𝑖=1 and

∑ 𝐶𝑓(𝑟𝑖)𝑛𝑎𝑟
𝑖=1 respectively, where the distance between all the rules and configuration solution 𝑠𝑟 is 0.

With the three effectiveness measures, we define the fitness function based on the three objectives as follow:

𝐹(𝑂1) = 1 − 𝑁𝑜𝑟 (𝐴𝐻𝑁𝑆(𝑅𝑁 , 𝑠𝑟)) (7)

𝐹(𝑂2) = 1 − 𝑁𝑜𝑟 (𝑁𝐿𝑁𝑆(𝑅𝑁 , 𝑠𝑟)) (8)

𝐹(𝑂3) = 1 − 𝑁𝑜𝑟 (𝑁𝐴𝑆(𝑅𝐴 , 𝑠𝑟) (9)

Note that, in the above equations, we define our search problem as a minimization problem by subtracting each normalized

effectiveness measure from 1 to ensure that a configuration solution with a value closer to 0 is better.

The fitness function with the three objectives is combined with NSGA-II and NSGA-III to address the configuration

generation optimization problem. We implemented our problem in jMetal by encoding all the configurable parameters in the

configuration solution 𝑠𝑟 as integer variables (Section 4.3). Besides the possible values for all the variables that are specified

by constraining their upper and lower limits, there are no additional constraints. Initially, all the variables in 𝑠𝑟 are initialized

with random values between their upper and lower limits. During the search, SBRM+ generates optimized solutions guided by

Simula Research Laboratory, Technical Report 2018-05 May 2018

the fitness function. The jMetal based implementation of our configuration generation problems for both of the case studies

are provided in the Bitbucket repositories3.

5. Evaluation

The overall objective of the evaluation is to assess the effectiveness of combining two different machine learning algorithms

(i.e., PART and C4.5) with NSGA-II and NSGA-III to mine CPL rules. In Section 5.1, we present experiment design, followed

by the experiment execution (Section 5.2).

5.1 Experiment Design

We present research questions in Section 5.1.1, the two case studies in Section 5.1.2, evaluation metrics in Section 5.1.3,

evaluation tasks and parameter settings in Section 5.1.4, and statistical tests used for analysis in Section 5.1.5. In Table 3, we

provide a summary of the experiment design.

5.1.1 Research Questions

The overall objective of the evaluation is to investigate if NSGA-II and NSGA-III are effective, as compared to RS, in terms

of solving the configuration generation problem, and assess the quality of rules mined using two machine learning algorithms

(PART and C4.5) when combined with NSGA-II and NSGA-III. The overall objective can be achieved by answering the

following research questions:

RQ1. Are NSGA-II and NSGA-III effective to generate configurations for the purpose of mining rules as compared to RS?

RQ2. Does SBRM+ produce better quality rules (in terms of machine learning measurements) than RBRM+?

RQ3. To what extent the quality of rules improved using SBRM+ in comparison to RBRM+ (after the final iteration)?

RQ4. Which one of NSGA-II and NSGA-III is more effective to generate configurations for mining rules?

RQ5. Which one of PART and C4.5, when combined with NSGA-II and NSGA-III, produces better quality rules?

RQ6. How is the quality of rules correlated with average fitness values and quality indicators?

RQ7. What is the trend of the quality of rules produced by SBRM+ across the iterations?

RQ8. Is it feasible to apply SBRM+ in practice in terms of time required for employing search to generate configurations?

 Table 3: Overall design of the experiment*

RQs Tasks Evaluation metrics Comparison/Treatment
Statistical tests and plot

types

1

T1-comparing fitness values and six

quality indicators for SBRM+
NSGA-II-

PART and SBRM+
NSGA-III-PART with

RBRM+-PART, and SBRM+
NSGA-II-

C45 and SBRM+
NSGA-III-C45 with

RBRM+-C45

− FV-O1

− FV-O2

− FV-O3

− OFV

− Hyper Volume (HV)

− Inverted Generational Distance (IGD)

− Epsilon (ϵ)

− Euclidean Distance (ED)

− Generational Distance (GD)

− Generated Spread (GS)

− SBRM+
NSGA-II-PART

vs. RBRM+-PART

− SBRM+
NSGA-III-PART

vs. RBRM+-PART

− SBRM+
NSGA-II-C45 vs.

RBRM+-C45

− SBRM+
NSGA-III-C45 vs.

RBRM+-C45

− Mann-Whitney U-test

− Vargha and Delaney’s Â12

statistics

2

T2-comparing the quality of rules for

SBRM+
NSGA-II-PART and SBRM+

NSGA-

III-PART with RBRM+-PART, and

SBRM+
NSGA-II-C45 and SBRM+

NSGA-III-

C45 with RBRM+-C45

− Accuracy

− MAE

− RMSE

− RAE

− RRSE

− CC/FF/CF/FC-Precision

− CC/FF/CF/FC-Recall

− CC/FF/CF/FC-FMeasure

3

T3-quantifying the average relative

improvements in the quality of rules

based on MLQMs at the end of a cycle

for SBRM+
NSGA-II-PART, SBRM+

NSGA-

− ARI in Accuracy

− ARI in MAE

− ARI in RMSE

− ARI in RAE

− ARI in RRSE

− Column plot using average

values

3 https://bitbucket.org/safdaraqeel/sbrm-jitsi/, https://bitbucket.org/safdaraqeel/sbrm-cisco

https://bitbucket.org/safdaraqeel/sbrm-jitsi/

Simula Research Laboratory, Technical Report 2018-05 May 2018

III-PART, SBRM+
NSGA-II-C45, and

SBRM+
NSGA-III-C45

− ARI in CC/FF/CF/FC-Precision

− ARI in CC/FF/CF/FC-Recall

− ARI in CC/FF/CF/FC-FMeasure

4

T4-comparing fitness values and six
quality indicators for SBRM+

NSGA-II-

C45 and SBRM+
NSGA-II-PART with

SBRM+
NSGA-III-C45 and SBRM+

NSGA-

III-PART

− FV-O1

− FV-O2

− FV-O3

− OFV

− Hyper Volume (HV)

− Inverted Generational Distance (IGD)

− Epsilon (ϵ)

− Euclidean Distance (ED)

− Generational Distance (GD)

− Generated Spread (GS)

− SBRM+
NSGA-II-C45 vs.

SBRM+
NSGA-III-C45

− SBRM+
NSGA-II-PART

vs. SBRM+
NSGA-III-

PART

− Mann-Whitney U-test

− Vargha and Delaney’s Â12

statistics

5

T5-comparing the quality of rules for

SBRM+
NSGA-II-PART, SBRM+

NSGA-III-

PART, SBRM+
NSGA-II-C45, and

SBRM+
NSGA-III-C45

− Accuracy

− MAE

− RMSE

− RAE

− RRSE

− CC/FF/CF/FC-Precision

− CC/FF/CF/FC-Recall

− CC/FF/CF/FC-FMeasure

− SBRM+
NSGA-II-C45 vs.

SBRM+
NSGA-II-PART

− SBRM+
NSGA-III-C45 vs.

SBRM+
NSGA-III-PART

− Winner (SBRM+
NSGA-

II-C45 vs. SBRM+
NSGA-

II-PART) vs. Winner

(SBRM+
NSGA-III-C45

vs. SBRM+
NSGA-III-

PART)

− Mann-Whitney U-test

Vargha and Delaney’s Â12

statistics

6

T6-assessing the correlation of average
fitness values and quality indicators

with MLQMs for SBRM+
NSGA-II-PART,

SBRM+
NSGA-III-PART, SBRM+

NSGA-II-

C45, and SBRM+
NSGA-III-C45

− All the MQLMS vs. AFV-O1

− All the MQLMS vs. AFV-O2

− All the MQLMS vs. AFV-O3

− All the MQLMS vs. OAFV

− All the MQLMS vs. HV

− All the MQLMS vs. IGD

− All the MQLMS vs. ϵ

− All the MQLMS vs. ED

− All the MQLMS vs. GD

− All the MQLMS vs. GS

− SBRM+
NSGA-II-C45

− SBRM+
NSGA-III-C45

− SBRM+
NSGA-II-PART

− SBRM+
NSGA-III-PART

− Spearman’s correlation

7

T7-assessing the trend of the quality of

rules based on MLQMs across the

iterations for SBRM+
NSGA-II-PART,

SBRM+
NSGA-III-PART, SBRM+

NSGA-II-

C45, and SBRM+
NSGA-III-C45

− Accuracy

− MAE

− RMSE

− RAE

− RRSE

− CC/FF/CF/FC-Precision

− CC/FF/CF/FC-Recall

− CC/FF/CF/FC-FMeasure

− Scatter plot

− Linear Regression

8

T8-assessing the feasibility of applying

search based on the average time
required to generate configurations

− ATPI

− ATPC

− SBRM+
NSGA-II-C45

− SBRM+
NSGA-III-C45

− RBRM+-C45

− SBRM+
NSGA-II-PART

SBRM+
NSGA-III-PART

− RBRM+-PART

− Average values

* FV-O1= Fitness values for the first objective, FV-O2= Fitness values for the second objective, FV-O3= Fitness values for the third objective, OFV = Overall

fitness values, MAE= Mean Absolute Error, RMSE= Root Mean Squared Error, RAE= Relative Absolute Error, RRSE= Root Relative Squared Error,

CC=ConnectedConnected, FF= FailedFailed, FC= FailedConnected, CF= ConnectedFailed, ARI= Average Relative Improvement, AFV-O1= Average fitness

values for the first objective, AFV-O2= Average fitness values for the second objective, AFV-O3= Average fitness values for the third objective, OAFV=

Overall average fitness values, ATPI= Average time (minutes) required to generate configurations per iteration, ATPC= Average time (minutes) required to

generate configurations per cycle.

5.1.2 Case Studies

Cisco Systems4, Norway provides a variety of VCSs to facilitate high-quality virtual meetings [41]. Cisco has developed

several product lines for VCS including C-Series, MX-Series, and SX-Series. Each product from these different product lines

has several configurable parameters (e.g., defaultProtocol and encryption), which need to be configured before making calls.

For each VCS, we have a set of state variables representing the states of VCS (e.g., callStatus, numberOfActiveCalls,

cameraConnected) that vary according to different hardware and software configurations. Each product has several operations

(e.g., dial(), disconnect(), hold(), accept(), transfer()) to support different interactions (e.g., making a call, sharing presentation)

4 www.cisco.com/c/en/us/products/collaboration-endpoints/index.html

Simula Research Laboratory, Technical Report 2018-05 May 2018

supported by the product. An operation can also take several parameters as input (e.g., callType, callRate, and Protocol for

dial() operation). For our experiment, we used three real products C60, SX20, and MX300 developed by Cisco, which belong

to three different product lines C-series, SX-series, and MX-series. We selected 27 configurable parameters (i.e., including

network specific ones) for the Cisco case study, which were related to the call functionality. Simula Research Laboratory has

a long-term collaboration with Cisco, Norway under Certus-SFI [42]. As part of our collaboration, we have access to several

VCSs at our lab, and thus we used these systems for our experiments. Therefore, our case study is real, but the experiment was

not performed in the real industrial setting of Cisco.

Jitsi [43] is a real-world open source Audio/Video Internet Phone, and Instant Messenger developed in Java, which supports

several known protocols including SIP, AIM, and ICQ. Jitsi was developed based on the OSGI architecture using Apache-

Felix implementation. Jitsi provides a large number of features such as encrypted audio/video conference calls, messaging,

desktop sharing, call hold, transfer, and call recording. Jitsi has several configurable parameters (e.g., sIPZtpr, defaultProtocol,

audioCodec) and state variables (e.g., callStatus, numberOfConferenceParticipants). Just like the Cisco case study, Jitsi also

has several operations such as dial(), accept(), and hold(). We extended the case study by adding a new OSGI bundle to

introduce several new configurable parameters (e.g., defaultCallRate, MTU) and implemented several rules constraining the

configurable parameter values. These implemented rules determine the success of a call connection based on configurable

parameter values assigned to the configurable parameters of the caller and two callees, as we used three instances (products)

of Jitsi in our experiment as for the Cisco case study. The total number of the configurable parameters selected for the Jitsi

case study is 39.

For both Cisco and Jitsi case studies, we selected making a call as the interaction because making a call is the main

functionality of a VCS/VoIP and other functionalities depend on it. The call statuses of both callees were therefore selected as

the state variables. Based on the two-state variables (i.e., call statuses for both callees) system states were defined by

concatenating their state values, which were used to classify the configurations. For both case studies (i.e., Cisco and Jitsi),

we have one normal system state ConnectedConnected (CC) and three abnormal system states FailedFailed (FF),

FailedConnected (FC), and ConnectedFailed (CF), constituting four classes in our rule-mining problem, which is in nature a

classification problem in machine learning. The ConnectedConnected shows that caller is connected to both of the callees

successfully and FailedFailed indicates that the caller is failed to establish connections with the two callees. FailedConnected

shows that the caller is connected to the second callee and failed to connect with the first callee whereas ConnectedFailed

shows that caller is successfully connected with the first callee but failed to connect with the second callee. For both case

study, to enable the making a call interaction, we used two operations dial() and disconnect() of the caller, one operation

accept() for both callees.

5.1.3 Evaluation Metrics

To answer RQ1 (Table 3), we compared NSGA-II and NSGA-III with RS in terms of FV-O1, FV-O2, FV-O3, and OFV. FV-

O1, FV-O2, and FV-O3 are fitness values of Objective-1, Objective-2, and Objective-3 respectively (Section 4.4) whereas

OFV is the overall fitness. OFV is calculated by taking the average of FV-O1, FV-O2, and FV-O3, as common practice [44].

Additionally, we compared NSGA-II and NSGA-III with RS in terms of six quality indicators: Hypervolume (HV), Inverted

Generational Distance (IGD), Epsilon (𝜖), Euclidean Distance from the Ideal Solution (ED), Generational Distance (GD),

and Generated Spread (GS). These quality indicators have been used in the existing literature [16, 25, 45-65] to measure the

quality of solutions produced by the search algorithms in terms of convergence and diversity. The selected quality indicators

are as follow:

• Hypervolume (HV) calculates the volume in the objective space covered by members of a Pareto front 𝑃𝐹𝑐 produced

by a particular search algorithm to measure both convergence and diversity [66]. A higher value of HV indicates better

performance of the algorithm in terms of convergence and diversity.

• Inverted Generational Distance (IGD) calculates the average distance of the solutions in optimal Pareto front 𝑃𝐹𝑜 to

the closest solution in computed Pareto front 𝑃𝐹𝑐 [67]. A lower IGD shows better performance of the algorithm in

terms of convergence and diversity.

• Epsilon (𝜖) calculates the shortest distance required to transform every solution in the computed Pareto front 𝑃𝐹𝑐 to the

closest solution in optimal Pareto front 𝑃𝐹𝑜 [68, 69]. A lower value of ε indicates better performance of the algorithm

in terms of convergence and diversity.

Simula Research Laboratory, Technical Report 2018-05 May 2018

• Euclidean Distance from the Ideal Solution (ED) measures the Euclidean distance between the ideal solution and the

closest solution in 𝑃𝐹𝑐 [70]. The ideal solution is created by selecting the optimal value of each objective (e.g.,

minimum values for a minimization problem) obtained from all the non-dominated solutions in 𝑃𝐹𝑐. A value of 0 for

ED shows that 𝑃𝐹𝑐 includes the ideal solution.

• Generational Distance (GD) calculates the average Euclidean distance between solutions in the computed Pareto front

𝑃𝐹𝑐 and the optimal Pareto front 𝑃𝐹𝑜. A lower value of GD shows better performance of the algorithm in terms of

convergence.

• Generated Spread (GS) measures the extent of spread for the solutions in computed Pareto front 𝑃𝐹𝑐 produced by a

search algorithm [71-73]. A lower value of GS shows better performance of the algorithm in terms of diversity.

Since the optimal Pareto font 𝑃𝐹𝑜 is not known for our problem like most of the real-world problems, thus, we used

reference Pareto front to compute the values of indicators. To compute the reference Pareto front, we combined the Pareto

fronts produced by all the search algorithms. Note, we computed two separate reference Pareto fronts for the approaches using

C45 and PART as rule mining algorithms.

To answer RQ2 (Table 3), we compared SBRM+
NSGA-II-C45 and SBRM+

NSGA-III-C45 with RBRM+-C45, and SBRM+
NSGA-II-

PART and SBRM+
NSGA-III-PART with RBRM+-PART based on 17 (i.e., five related to the classifier and 12 related to the four

classes) machine-learning quality measurements (MLQMs): Accuracy, Mean Absolute Error (MAE), Root Mean Squared

Error (RMSE), Relative Absolute Error (RAE), and Root Relative Squared Error (RRSE) of a classifier and Precision, Recall,

and FMeasure for the four classes [31]. To differentiate Precision, Recall, and FMeasure corresponding to four classes, we

used abbreviations of the classes with Precision, Recall, and FMeasure. For example, Precision for ConnectedConnected is

represented as CC-Precision.

• Accuracy indicates the overall performance of rule mining algorithms (e.g., C4.5, PART) by specifying the

percentage of instances that conform to mined rules [26], where one instance contains one specific configuration

(i.e., a set of configurable parameter values for the selected configurable parameters of the communicating

products) and corresponding system state.

• Precision represents the percentage of instances that are correctly classified divided by the total number of

instances covered by rules associated with a specific system state (i.e., defined based on the call statuses of both

callees in our case). For example, 98% FF-Precision means that, according to the mined rules, there are 2% of

instances whose configurations are identified as invalid ones, which led to the FailedFailed state. But actually,

they lead to the other states (e.g., ConnectedConnected, FailedConnected, ConnectedFailed).

• Recall represents the percentage of instances that are correctly classified divided by the total number of instances

corresponding to a particular system state. For example, 90% FF-Recall means that configurations of 10%

instances are not associated with the FailedFailed state according to the mined rules, but these instances actually

lead to the FailedFailed state.

• FMeasure is the harmonic mean of Precision and Recall [26].

• Mean Absolute Error (MAE) represents an average of individual errors (i.e., differences between values predicted

by the classifier and the actual observed values) without considering the sign of the error.

• Root Mean Squared Error (RMSE) is the square root of the mean of the absolute squared error (i.e., square of

MAE). RMSE amplify the effect of outliers (i.e., individuals with large errors) by squaring their errors.

• Relative Absolute Error (RAE) is calculated as MAE divided by the error of the default predictor (i.e., ZeroR

classifier, which simply selects the most frequent value from training dataset (if nominal) or the average value (if

numerical).

• Root Relative Squared Error (RRSE) is the square root of the relative mean squared error (i.e., square of RAE)

[31].

For calculating the values for the MLQMs mentioned above, we used 10 times 10-fold stratified cross-validation [31, 36],

as stratified cross-validation ensures that each class is (approximately) equally represented across each test fold [31] (Section

3).

For answering RQ3 (Table 3), we calculate the average relative improvements (ARIs) in terms of 17 MLQMs mentioned

above achieved at the end of each cycle (i.e., after iteration-5) using SBRM+
NSGA-II-C45 and SBRM+

NSGA-III-C45 in comparison

to RBRM+-C45, and SBRM+
NSGA-II-PART and SBRM+

NSGA-III-PART in comparison to RBRM+-PART. We calculated the ARIs

Simula Research Laboratory, Technical Report 2018-05 May 2018

for Accuracy of classifier and Precision, Recall, and FMeasure for all the classes with respect to SBRM+
NSGA-II-C45,

SBRM+
NSGA-III-C45, SBRM+

NSGA-II-PART, and SBRM+
NSGA-III-PART as:

𝐴𝑅𝐼 =
∑ (𝑆(𝑥𝑖𝑐)−𝑅(𝑥𝑖𝑐))10

𝑐=1

10
 (10)

where 𝑆(𝑥𝑖𝑐) and 𝑅(𝑥𝑖𝑐) give the values of ith MLQM in iteration-5 for cth cycle corresponding to SBRM+
NSGA-II-C45 or

SBRM+
NSGA-III-C45 (SBRM+

NSGA-II-PART or SBRM+
NSGA-III-PART) and RBRM+-C45(RBRM+-PART), respectively. To calculate

the ARIs for MAE, RAE, RMSE, and RRSE with respect to SBRM+
NSGA-II-C45, SBRM+

NSGA-III-C45, SBRM+
NSGA-II-PART, and

SBRM+
NSGA-III-PART we used the following formula:

𝐴𝑅𝐼 =
∑ (𝑅(𝑥𝑖𝑐)−𝑆(𝑥𝑖𝑐))10

𝑐=1

10
 (11)

For RQ4 (Table 3), we compared NSGA-II with NSGA-III in terms of FV-O1, FV-O2, FV-O3, OFV, and six quality

indicators as we did in RQ1 for comparing NSGA-II and NSGA-III with RS. For RQ5, we compared the quality of the rules

produced from SBRM+
NSGA-II-C45, SBRM+

NSGA-III-C45, SBRM+
NSGA-II-PART, and SBRM+

NSGA-III-PART, based on 17 MLQMs

mentioned above to find the best-suited search algorithm combined with rule mining algorithm for mining CPL rules. To

answer RQ6 (Table 3), we computed the correlation estimates (𝜌) and the p-values using the Spearman’s test corresponding

to all the 17 MLQMs in correlation to the average fitness values for the three individual objectives (i.e., AFV-O1, AFV-O2,

and AFV-O3), overall average fitness (OAFV), and six quality indicators (i.e., HV, IGD, ϵ, ED, GD, and GS). AFV-O1, AFV-

O2, AFV-O3, and OAFV are calculated based on the values of FV-O1, FV-O2, FV-O3, and OFV respectively, corresponding

to each iteration of all the runs. For example, AFV-O1 corresponding to one iteration can be calculated as: 𝐴𝐹𝑉 − 𝑂1 =
∑ 𝐹𝑉−𝑂1𝑖

500
 𝑖=1

500
, where 500 is the total number of fitness values. For RQ7 (Table 3), we assessed the trend of the quality of rules in

terms of above-mentioned 17 MLQMs for SBRM+
NSGA-II-C45, SBRM+

NSGA-III-C45, SBRM+
NSGA-II-PART, and SBRM+

NSGA-III-

PART, across the five iterations. To answer RQ8 (Table 3), we calculated the average time required by NSGA-II in SBRM+
NSGA-

II-C45 and SBRM+
NSGA-II-PART, NSGA-III in SBRM+

NSGA-III-C45 and SBRM+
NSGA-III-PART, and RS in RBRM+-C45 and

RBRM+-PART for generating configurations per iteration (ATPI) and per cycle (ATPC). ATPI is calculated as: 𝐴𝑇𝑃𝐼 =
∑ ∑ 𝑇𝑖𝑐

 10
 𝑐=1

5
 𝑖=1

50
, where 𝑇𝑖𝑐 represents the time required by the approach in the ith iteration of the cth cycle. ATPC is calculated as:

𝐴𝑇𝑃𝐶 = ∑ (5
 𝑖=1

∑ 𝑇𝑖𝑐
10
 𝑐=1

10
).

5.1.4 Experimental Tasks and Parameter Settings

As shown in Table 3, we designed eight tasks (T1-T8) for addressing RQ1-RQ8. We used the default settings for NSGA-II and

NSGA-III as implemented in jMetal [71, 74]. The single point crossover and bit-flip mutation, implemented in jMetal were

applied as crossover and mutation operators, respectively with 0.9 crossover rate and (1/total number of configurable

parameters) mutation rate. We used a population size of 500 and 50,000 fitness evaluations where we selected all the Pareto

Non-dominated configuration solutions for mining the rules. NSGA-III produces 92 solutions for three objective problems

regardless the larger population size [23], thus, we executed it using multiple threads to get 500 solutions in one run. We used

five iterations per cycle, and in each iteration, we run the search algorithm (NSGA-II, NSGA-III, or RS) once, which means

we have five runs of the search algorithm in a complete cycle. We used total 10 cycles (i.e., 50 runs of the search algorithm)

for our experiment to cater the randomness inherited in the search algorithms.

Since selecting the best set of parameters is application dependent [11], we used the default settings provided by Weka

[12] for both PART and C4.5. Default settings have been used in various contexts such as mining rules for video generator

product line [11] and comparing the performance of different classification algorithms [75]. We used 0.25 and 2 for

minConfidence (i.e., the minimum confidence for a rule) and minNumObj (i.e., the minimum number of instances for a rule)

respectively.

5.1.5 Statistical Analyses

As inspired by [76], we systematically conducted three types of analyses: difference analysis, correlation analysis, and trend

analysis to answer RQ1-RQ2 and RQ4-RQ7 (Section 5.1.1). To answer RQ3 and RQ8, we report descriptive statistics, as for

RQ3 we intend to assess the magnitude of ARI achieved by SBRM+
NSGA-II-C45, SBRM+

NSGA-III-C45, SBRM+
NSGA-II-PART, and

SBRM+
NSGA-III-PART whereas, for RQ8, we aim to show the total time required for generating configurations.

Simula Research Laboratory, Technical Report 2018-05 May 2018

Difference analysis is the most commonly used analysis, which studies the distributions of a single measure between two

groups. We carried out the difference analysis to compare rule mining approaches (e.g., SBRM+
NSGA-II-C45, RBRM+-C45) in

terms of fitness values, quality indicators, and MLQMs (Table 3) to answer RQ1, RQ2, RQ4, and RQ5. To conduct the

difference analysis, we use the non-parametric Mann-Whitney U-test as recommended in [77] with a significance level of 0.05

and the Vargha and Delaney’s Â12 statistics as an effect size measure [78]. For comparing the Accuracy, Precision, Recall, F-

measure, and HV for a comparison pair (Ai vs. Aj), if Â12 is greater than 0.5, Ai is better than Aj, and a value less than 0.5 means

vice versa. Similarly, in the case of fitness values, IGD, ϵ, ED, GD, GS MAE, RMSE, RAE, and RRSE, if Â12 is less than 0.5,

Ai is better than Aj, otherwise, Aj is better than Ai. Ai >Aj shows that approach Ai performed significantly better than Aj based

on the results of the Mann-Whitney U-test and Vargha and Delaney’s Â12 statistics. Similarly, Ai <Aj shows that Aj

significantly outperformed Aj whereas Ai =Aj indicates no significant difference between the two approaches being compared.

Correlation analysis evaluates the correlation (positive/negative) between two variables (e.g., x and y) and its statistical

significance. To find the correlation of MLQMs with average fitness values and six quality indicators (RQ6), we applied the

nonparametric Spearman’s test [79] and reported the correlation coefficients (𝜌) and p-values. The value of 𝜌 ranges from -1

to 1 where a value of 𝜌 > 0 (or 𝜌 < 0) shows a positive (or negative) correlation between x and y, whereas 𝜌 = 0 indicates

no correlation. The p-value lower than 0.05 shows the correlation is statistically significant. The analysis aims to test whether

Accuracy, Precision, Recall, and FMeasure are positively correlated with HV and negatively correlated with average fitness

values, IGD, ϵ, ED, GD, and GS and MAE, RMSE, RAE, and RRSE have a negative correlation with HV and a positive

correlation with average fitness values, IGD, ϵ, ED, GD, and GS (i.e., hypothesis). Satisfying the hypothesis is regarded as

good performance of the approach because we believe that smaller fitness and indicator values (except for HV, as the larger

HV is better) lead to better quality of rules in terms of MLQMs.

To discover the trend of the quality of rules based on MLQMs (RQ7), we constructed 2D scatter plots and fitted linear

regression lines. In 2D plots, the x-axis represents the iteration number in one cycle, and the y-axis represents different machine

learning quality measurements such as Accuracy. This kind of analyses indicates variation in the quality of rules across the

iterations.

For assessing the magnitude of average relative improvements (ARIs) in the quality of rules in terms of MLQMs (RQ3),

we reported mean, min, and max values. Similarly, for assessing the feasibility of applying NSGA-II in SBRM+
NSGA-II-C45 and

SBRM+
NSGA-II-PART, NSGA-III in SBRM+

NSGA-III-C45 and SBRM+
NSGA-III-PART based on the time required for generating

configurations (RQ8), we reported average values of time required to generate configurations per iteration (i.e., ATPI) and per

cycle (ATPC).

5.2 Experiment Execution

Figure 6 presents an overview of the experiment execution. As shown in Figure 6, at the first step, we randomly generated a

set of 2000 configurations corresponding to the three selected products (Caller, Callee1, and Callee2) for each case study. For

the Cisco case study, we selected C60 (i.e., Caller), MX300 (i.e., Callee1), and SX20 (i.e., Callee2). For the Jitsi case study,

we used three instances (products) belonging to the same product line. At the second step, we configured the Caller, Callee1,

and Callee2 using randomly generated configurations and made a call from Caller to Callee1 and Callee2 for 10 seconds (step

3). We made the call for 10 seconds to give sufficient time for establishing the call connection. To make the call, first, we

execute the dial() operation of Caller and then accept() operation of Callee1 and Callee2. In step 4, we captured call statuses

of Callee1 and Callee2 to get the system state and added the current configuration being executed and its corresponding system

state to the executed configurations (step 5) whereas, in step 6, we disconnected the call by executing the disconnect() operation

of Caller. We repeated step 2 to step 6 until all the configurations (2000 configurations) are executed. In step 7, we input

executed configurations containing 2000 configurations along with their corresponding system states to Weka [12] and applied

PART [14] and C4.5 to mine the initial set of rules.

Simula Research Laboratory, Technical Report 2018-05 May 2018

Figure 6: An overview of the experiment execution

To refine the rules, we used the initial set of rules to guide the search algorithms (i.e., NAGA-II, NAGA-III, and RS) to

generate 500 more configurations (step 8). For mining the refined set of rules, we repeated the same process starting from step

2 to step 7 (i.e., configuring the products, making the calls, adding the configurations and associated system states to the

executed configurations, disconnecting the calls, and mining the rules using all the executed configurations). We repeated this

incremental and iterative process for five iterations in a complete cycle and mined the final set of rules based on a dataset (i.e.,

represented as executed configurations in Figure 6) containing 4500 configurations and corresponding system states. We used

five iterations as a stopping criterion.
For generating configurations using NSGA-II, NSGA-III, or RS for both case studies, we ran the experiment on a laptop

with Intel Core i7 2.8 GHz CPU and 16GB RAM running the macOS Sierra v10.12.5 operating system. To make calls for the

Jitsi case study, we installed three instances of Jitsi (Caller, Callee1, Callee2) on three computers. Caller was installed on the

laptop mentioned above (i.e., the one used for generating configurations). Caller1 was installed on a desktop (iMac) with Intel

Core i5 CPU 2.7 GHz and 8GB RAM running the macOS Sierra v10.12.4 operating system. Caller2 was installed on a laptop

with Intel Core i7 CPU 2.5 GHz and 16GB RAM running the Windows-7 (x64) operating system. For the Cisco case study,

all the three products have their dedicated hardware.

6. RESULTS AND ANALYSIS

In this section, we present the results and analysis of the evaluation and answer the research questions for both of the case

studies (i.e., Cisco and Jitsi).

6.1 Effectiveness of Search (RQ1)

To answer RQ1, we compare SBRM+
NSGA-II-C45 and SBRM+

NSGA-III-C45 with RBRM+-C45 and SBRM+
NSGA-II-PART and

SBRM+
NSGA-III-PART with RBRM+-PART regarding the fitness values (i.e., FV-O1, FV-O2, FV-O3, and OFV) and six quality

indicators corresponding to five individual iterations as well as overall, for both of the two case studies. In Table 4, we

summarize the results for answering RQ1 whereas whereas the detailed results can be found in Appendix B.

The results of Man-Whitney U-test and Vargha and Delaney’s Â12 for all the fitness values (i.e., FV-O1, FV-O2, FV-O3,

and OFV) show that SBRM+ (i.e., SBRM+
NSGA-II-C45, SBRM+

NSGA-III-C45, SBRM+
NSGA-II-PART and SBRM+

NSGA-III-PART)

significantly outperformed RBRM+ (i.e., RBRM+-C45 and RBRM+-PART) corresponding to both the Cisco and Jitsi case

Simula Research Laboratory, Technical Report 2018-05 May 2018

studies. Similarly, from the results of the quality indicators (Table 4), we noticed that SBRM+ significantly outperformed

RBRM+ in terms of the majority of the comparisons (i.e., minimum 25 and maximum 32 out of 36 comparisons). Note, for

each comparison pair, we have six comparisons (five individual iterations and overall) in terms of a particular quality indicator

for one case study (i.e., total 36 comparisons for six indicators per case study and 48 comparisons for one quality indicator for

all comparisons pairs and two case studies). We observed that for five indicators (except for GS), SBRM+ significantly

outperformed RBRM+ for 221 out of 240 comparisons whereas RBRM+ significantly outperformed SBRM+ in terms of GS for

32 out of 48 comparisons for both of the case studies. Based on the results of RQ1, it can be concluded that NSGA-II and

NSGA-III are more effective than RS for configuration generation problem. The detailed results of RQ1 can be found in

Appendix B

Table 4: Comparing SBRM+ with RBRM in terms of the quality indicators*

Case study

Comparison Pair

A1 vs A5 A2 vs A5 A3 vs A6 A4 vs A6

A1>A5 A1<A5 A1=A5 A2>A5 A2<A5 A2=A5 A3>A6 A3<A6 A3=A6 A4>A6 A4<A6 A4=A6

Cisco 25/36 6/36 5/36 32/36 0/36 4/36 28/36 6/36 2/36 30/36 3/36 3/36

Jitsi 32/36 1/36 3/36 29/36 6/36 1/36 27/36 4/36 5/36 27/36 6/36 3/36

*A1= SBRM+
NSGA-II-C45, A2= SBRM+

NSGA-III-C45, A2= SBRM+
NSGA-II-PART, A4= SBRM+

NSGA-III-PART, A5= RBRM+-C45, A6= RBRM+-PART

6.2 Comparing SBRM+ with RBRM+ (RQ2)

To answer RQ2, we compare SBRM+
NSGA-II-C45 and SBRM+

NSGA-III-C45 with RBRM+-C45, and SBRM+
NSGA-II-PART and

SBRM+
NSGA-III-PART with RBRM+-PART in terms of MLQMs based on the rules mined from each iteration as well as Overall

(i.e., combining the results of all the five iterations), for both case studies. In Table 5, we summarize the results for answering

RQ2. Detailed results are provided in Appendix B for reference.

Table 5: Comparing SBRM+ with RBRM in terms of MLQMs*

Case study

Comparison Pair

A1 vs A5 A2 vs A5 A3 vs A6 A4 vs A6

A1>A5 A1<A5 A1=A5 A2>A5 A2<A5 A2=A5 A3>A6 A3<A6 A3=A6 A4>A6 A4<A6 A4=A6

Cisco 78/90 0/90 12/90 54/90 7/90 29/90 70/93 3/93 20/93 57/93 3/93 33/93

Jitsi 86/102 0/102 16/102 19/102 20/102 63/102 88/102 0/102 14/102 48/102 38/102 16/102

*A1= SBRM+
NSGA-II-C45, A2= SBRM+

NSGA-III-C45, A2= SBRM+
NSGA-II-PART, A4= SBRM+

NSGA-III-PART, A5= RBRM+-C45, A6= RBRM+-PART

As shown in Table 5, for the Cisco case study, SBRM+
NSGA-II-C45 and SBRM+

NSGA-III-C45 significantly outperformed

RBRM+-C45 in 87% (i.e., 78/90) and 60% (i.e., 54/90) of the total comparisons. Respectively. SBRM+
NSGA-II-PART and

SBRM+
NSGA-III-PART significantly outperformed RBRM+-PART in 75% (i.e., 70/93) and 61% (i.e., 57/93) of the total

comparisons. In 8% (i.e., 7/90) of the total comparisons, RBRM+-C45 significantly outperformed SBRM+
NSGA-III-C45 whereas

for 3% (3/90) and 3%(3/93) of the total comparisons RBRM+-PART significantly outperformed SBRM+
NSGA-II-PART and

SBRM+
NSGA-III-PART, respectively. For the remaining comparisons, there was no significant difference between the SBRM+

approaches and the RBRM+ approaches.

Corresponding to the Jitsi case study, SBRM+
NSGA-II-C45 and SBRM+

NSGA-III-C45 significantly outperformed RBRM+-C45

in 84% (i.e., 86/102) and 19% (i.e., 19/102) of the total comparisons respectively, whereas SBRM+
NSGA-II-PART and

SBRM+
NSGA-III-PART significantly outperformed RBRM+-PART in 86% (i.e., 88/102) and 47% (i.e., 48/102) of the total

comparisons. In 20% (i.e., 20/102) and 37% (i.e., 38/102) of total comparisons RBRM+-C45 and RBRM+-PART significantly

outperformed SBRM+
NSGA-III-C45 and SBRM+

NSGA-III-PART respectively, whereas for the remaining comparisons there was no

significant difference between the SBRM+ (SBRM+
NSGA-II-C45, SBRM+

NSGA-III-C45, SBRM+
NSGA-II-PART, and SBRM+

NSGA-III-

PART) and RBRM+(RBRM+ -C45 and RBRM+-PART).

Since for both of the case studies, SBRM+ significantly outperformed RBRM+ in terms of the majority of MLQMs (i.e.,

84% for SBRM+
NSGA-II-C45, 86% for SBRM+

NSGA-II-PART, and 47% for SBRM+
NSGA-III-PART) except for SBRM+

NSGA-III-C45

corresponding to the Jitsi case study where neither one of the two approaches (i.e., SBRM+
NSGA-III-C45 and RBRM+-C45)

dominates the other. Thus, we can conclude that given the same context (i.e., the same case study, machine learning algorithm

and its parameter settings) SBRM+ tends to produce rules with higher quality as compared to RBRM+ with respect to the

MLQMs. In the worst case, SBRM+ produces rules with the same quality as for RBRM+.

Simula Research Laboratory, Technical Report 2018-05 May 2018

6.3 Average Relative Improvements in the Quality of Rules (RQ3)

For RQ3, we computed the average relative improvements (ARIs) in terms of MLQMs achieved at the end of the cycle (i.e.,

after iteration-5) using SBRM+ (SBRM+
NSGA-II-C45, SBRM+

NSGA-III-C45, SBRM+
NSGA-II-PART, and SBRM+

NSGA-III-PART) in

comparison to RBRM+(RBRM+ -C45 and RBRM+-PART) (Section 5.1.3). In Figure 7 and Figure 8, we present the ARIs in

terms of all the MLQMs for SBRM+
NSGA-II-C45, SBRM+

NSGA-III-C45, SBRM+
NSGA-II-PART, and SBRM+

NSGA-III-PART

corresponding to the Cisco and Jitsi case studies respectively. Moreover, the detailed results are presented in Appendix B.

Figure 7: ARI achieved by SBRM+
NSGA-II-C45, SBRM+

NSGA-III-C45, SBRM+
NSGA-II-PART, and SBRM+

NSGA-III-PART

for the Cisco case study

As shown in Figure 7, for the Cisco case study, on average SBRM+ achieved 8% to 13% higher Accuracy than RBRM+ and

4% to 27% lower values for the four error-related MLQMs (i.e., MAE, RMSE, RAE, and RRSE). The ARIs in terms of FF-

Precision, FF-Recall, and FF-FMeasure for SBRM+ range between 4% and 9% and for CC-Precision, CC-Recall, and CC-

FMeasure, the ARIs are up to 16%. The ARIs corresponding to FC-Precision, FC-Recall, and FC-FMeasure for SBRM+
NSGA-

II-C45 range between 11% and 23%, while SBRM+
NSGA-III-C45, SBRM+

NSGA-II-PART, and SBRM+
NSGA-III-PART have negative

ARIs ranging from -16% to -2%. This is because they did not produce rules related to FailedConnected due to less number of

configurations leading to FailedConnected system state. About CF-Precision, CF-Recall, and CF-FMeasure, the ARIs for

SBRM+ are between 5% and 21%.

Figure 8: ARI achieved by SBRM+
NSGA-II-C45, SBRM+

NSGA-III-C45, SBRM+
NSGA-II-PART, and SBRM+

NSGA-III-PART

for the Jitsi case study

As shown in Figure 8, for the Jitsi case study, on average SBRM+ achieved up to 12% higher Accuracy and 19% lower

values for error-related MLQMs (i.e., MAE, RMSE, RAE, and RRSE) as compared to RBRM+. In terms of FF-Precision, FF-

Recall, and FF-FMeasure, the ARIs for SBRM+ are between -1% and 12% whereas for CC-Precision, CC-Recall, and CC-

FMeasure, the ARIs range between 2% and 20%. Concerning FC-Precision, FC-Recall, and FC-FMeasure, the ARIs for

SBRM+ are up to 8% whereas the ARIs in terms of CF-Precision, CF-Recall, and CF-FMeasure are up to 28%. However, we

observed that for some MLQMs (e.g., CF-Precision, CF-Recall) for SBRM+
NSGA-III-PART have negative ARIs.

Simula Research Laboratory, Technical Report 2018-05 May 2018

From Figure 7, one can observe that SBRM+ has positive improvements for the majority of the MLQMs (i.e., 85%) with

an ARI up to 27% for the Cisco case study. Similarly, for the Jitsi case study, Figure 8 shows that SBRM+ has positive values

for ARIs corresponding to the majority of the MLQMs (i.e., 90%) with an ARI up to 28%. This shows that for both of the case

studies, SBRM+ has significantly improved the quality of rules in terms of MLQMs as compared to RBRM+, as also suggested

by the statistical analysis results (Section 6.2).

6.4 Comparing the Effectiveness of NSGA-II and NSGA-III (RQ4)

To answer RQ4, we compare SBRM+
NSGA-II-C45 with SBRM+

NSGA-III-C45 and SBRM+
NSGA-II-PART with SBRM+

NSGA-III-PART

in terms of the fitness values (i.e., FV-O1, FV-O2, FV-O3, and OFV) and the six quality indicators (Section 5.1.3) for both of

the two case studies. Table 6 summarizes the results of RQ4 whereas detailed results are presented in Appendix B.

Table 6: Comparing SBRM+
NSGA-II-C45 with SBRM+

NSGA-III-C45 and SBRM+
NSGA-II-PART with SBRM+

NSGA-III-PART

in terms of fitness values and quality indicators*

Case study Fitness value based comparison Quality indicators based comparison

 A1 vs. A2 A3 vs. A4 A1 vs. A2 A3 vs. A4
 A1>A2 A1<A2 A1=A2 A3>A4 A3<A4 A3=A4 A1>A2 A1<A2 A1=A2 A3>A4 A3<A4 A3=A4

Cisco 7/24 16/24 1/24 4/24 16/24 4/24 2/36 23/36 11/36 2/36 28/36 6/36

Jitsi 7/24 17/24 0/24 5/24 15/24 4/24 18/36 4/36 14/36 5/36 4/36 27/36
*A1= SBRM+

NSGA-II-C45, A2= SBRM+
NSGA-III-C45, A2= SBRM+

NSGA-II-PART, A4= SBRM+
NSGA-III-PART

As shown in Table 6, for the Cisco (Jitsi) case study, SBRM+
NSGA-III-C45 significantly outperformed SBRM+

NSGA-II-C45 for

16/24 (17/24) fitness-based comparisons and SBRM+
NSGA-III-PART significantly outperformed SBRM+

NSGA-II-PART for 16/24

(15/24) comparisons whereas in only 7/24 (7/24) and 4/24 (5/24) fitness-based comparisons SBRM+
NSGA-II-C45 and

SBRM+
NSGA-II-PART significantly outperformed SBRM+

NSGA-III-C45 and SBRM+
NSGA-III-PART respectively.

In terms of quality indicators, Table 6 shows that for the Cisco case study, SBRM+
NSGA-III-C45 (SBRM+

NSGA-III-PART)

significantly outperformed SBRM+
NSGA-II-C45 (SBRM+

NSGA-II-PART) for 23/36 (28/36) indicator-based comparisons whereas

for only 2/36 (2/36) indicator-based comparisons SBRM+
NSGA-II-C45 (SBRM+

NSGA-II-PART) significantly outperformed

SBRM+
NSGA-III-C45 (SBRM+

NSGA-III-PART). Similarly, for the Jitsi case study, SBRM+
NSGA-II-C45 (SBRM+

NSGA-II-PART)

significantly outperformed SBRM+
NSGA-III-C45 (SBRM+

NSGA-III-PART) in terms of the quality indicators for 18/36 (5/36)

comparisons whereas for only 4/36 (4/36) SBRM+
NSGA-III-C45 (SBRM+

NSGA-III-PART) significantly outperformed SBRM+
NSGA-

II-C45 (SBRM+
NSGA-II-PART). To summarize the results of RQ4, we can notice that in most of the cases NSGA-III significantly

outperformed NSGA-II in terms of fitness values and quality indicators, however, in some cases (e.g., for GS) we observed

otherwise.

6.5 Comparing the quality of rules for SBRM+ (RQ5)

To answer RQ5, we compare the four SBRM+ approaches in terms of MLQMs based on the rules from each iteration and

Overall (i.e., the rules of all the five iterations) for both of the case studies. To do so, first, we compare SBRM+
NSGA-II-C45 with

SBRM+
NSGA-III-C45 and SBRM+

NSGA-II-PART with SBRM+
NSGA-III-PART and then we compare the two better performing

approaches from these two comparisons to find the best. Table 7 summarizes the results of RQ5 whereas the details results

can be found in Appendix B.

Table 7: Comparing the quality of rules for the SBRM+ approaches in terms of MLQMs*

Case study

Comparison Pair

A1 vs. A2 A3 vs. A4 W1 vs. W2

A1>A2 A1<A2 A1=A2 A3>A4 A3<A4 A3=A4 W1>W2 W1<W2 W1=W2

Cisco 49/90 6/90 35/90 24/84 6/84 54/84 74/90 3/90 13/90

Jitsi 85/102 2/102 15/102 60/102 35/102 7/102 2/102 82/102 18/102

*A1= SBRM+
NSGA-II-C45, A2= SBRM+

NSGA-III-C45, A2= SBRM+
NSGA-II-PART, A4= SBRM+

NSGA-III-PART, W1= Winner of A1 vs. A2, W2= Winner of A3 vs. A4

As shown in Table 7, for the two case studies, SBRM+
NSGA-II-C45 significantly outperformed SBRM+

NSGA-III-C45 in 54%

(i.e., 49/90) and 83% (i.e., 85/102) of the total comparisons respectively whereas in only 7% (i.e., 6/90) and 2% (i.e., 2/102)

of the total comparisons SBRM+
NSGA-III-C45 significantly outperformed SBRM+

NSGA-II-C45. Similarly, SBRM+
NSGA-II-PART

significantly outperformed SBRM+
NSGA-III-PART in 29% (i.e., 24/84) and 59% (i.e., 60/102) of total comparisons for the Cisco

Simula Research Laboratory, Technical Report 2018-05 May 2018

and Jitsi case studies respectively whereas in 7% (i.e., 6/84) and 34% (i.e., 35/102) of total comparisons SBRM+
NSGA-III-PART

significantly performed better than SBRM+
NSGA-II-PART. Since SBRM+

NSGA-II-C45 and SBRM+
NSGA-II-PART are two winners

from the first two comparisons, we use these two approaches as the third comparison pair to find the best for both case studies.

Table 7 indicates that in 82% (i.e., 74/90) of the total comparisons, SBRM+
NSGA-II-C45 significantly outperformed

SBRM+
NSGA-II-PART whereas in only 3% (i.e., 3/90) SBRM+

NSGA-II-PART significantly performed better than SBRM+
NSGA-II-

C45 for the Cisco case study. Similarly, for Jitsi, in 80% (i.e., 82/102) of the total comparisons, SBRM+
NSGA-II-PART

significantly outperformed SBRM+
NSGA-II-C45 while in only 2% (i.e., 2/102) of the total comparisons SBRM+

NSGA-II-C45

significantly performed better than SBRM+
NSGA-II-PART.

Since SBRM+
NSGA-II-C45 significantly outperformed other the other three SBRM+ approaches in terms of MLQMs for the

Cisco case study and SBRM+
NSGA-II-PART for the Jitsi case study, we can conclude that given the default parameter settings

for both the machine learning algorithms and the search algorithms, SBRM+
NSGA-II-C45 and SBRM+

NSGA-II-PART produce better

rules with respect to MLQMs for the Cisco and Jitsi case studies, respectively.

6.6 Correlation Analysis (RQ6)

To answer RQ6, we compute the correlation coefficients (𝜌) and p-values using Non-Parametric Spearman’s test for all the

MLQMs in correlation to the average fitness values (AFV) for the three individual objectives (i.e., AFV-O1, AFV-O2 and AFV-

O3), overall average fitness values (OAFV) and six quality indicators corresponding to both case studies. Through correlation

analysis, we intend to test our hypothesis, i.e., Accuracy, Precision, Recall, and FMeasure have positive correlations with HV

and negative correlations with the average fitness values and the other five quality indicators whereas MAE, RMSE, RAE, and

RRSE are negatively correlated with HV and positively correlated with the average fitness values and the other five quality

indicators (Section 5.1.5). The results of RQ6 are summarized in Table 8 for both Cisco and Jitsi case studies whereas the

detailed results can be found in Appendix B.

Table 8: Summary of the correlation analysis’ results (RQ6) *

 SBRM+
NSGA-II-C45 SBRM+

NSGA-III-C45 SBRM+
NSGA-II-PART SBRM+

NSGA-III-PART

Case study HS HR NS HS HR NS HS HR NS HS HR NS

Cisco 28/170 11/170 131/170 30/140 52/140 58/140 25/140 44/140 71/140 39/140 11/140 90/140

Jitsi 91/170 11/170 68/170 60/170 16/170 94/170 74/170 16/170 80/170 29/170 22/170 119/170

*HS= Hypothesis satisfied, HR= Hypothesis rejected, NS= Not significant

As shown in Table 8, for the Cisco case study, 23% (i.e., 39/170), 59% (i.e., 82/140), 49% (i.e., 69/140), and 36% (i.e.,

50/140) of the total correlations are significant for SBRM+
NSGA-II-C45, SBRM+

NSGA-III-C45, SBRM+
NSGA-II-PART, and

SBRM+
NSGA-III-PART respectively, where 72% (i.e., 28/39), 37% (i.e., 30/82), 36% (i.e., 25/69), and 78% (i.e., 39/50) of

significant correlations satisfy our hypothesis (Section 5.1.5). Similarly, for the Jitsi case study, 60% (i.e., 102/170), 45% (i.e.,

76/170), 53% (i.e., 90/170), and 30% (i.e., 51/170) of the total correlations are significant for SBRM+
NSGA-II-C45, SBRM+

NSGA-

III-C45, SBRM+
NSGA-II-PART, and SBRM+

NSGA-III-PART respectively, where 89% (i.e., 91/102), 79% (i.e., 60/76), 82% (i.e.,

74/90), and 57% (i.e., 29/51) of significant correlations satisfy our hypothesis (Section 5.1.5).

6.7 Trend Analysis of the Quality of Rules Across the Iterations (RQ7)

To answer RQ7, we study the variation in the quality of rules in terms of MLQMs across the iterations (from iteration-1 to

iteration-5) for the SBRM+ approaches for both case studies. To do so, we plotted the scatter plots and fitted Linear Regression

lines for all the MLQMs. The results of the trend analysis are summarized below, and the plotted graphs are provided in

Appendix B.

Table 9: Summary of trend analysis’ results (RQ7) *

 SBRM+
NSGA-II-C45 SBRM+

NSGA-III-C45 SBRM+
NSGA-II-PART SBRM+

NSGA-III-PART

Case study IT DT ST IT DT ST IT DT ST IT DT ST

Cisco 15/17 1/17 1/17 10/17 0/17 7/17 14/17 0/17 3/17 10/17 2/17 5/17

Jitsi 14/17 0/17 3/17 16/17 1/17 0/17 17/17 0/17 0/17 14/17 0/17 3/17
*IT= Increasing trend of the quality of rules, DT= Decreasing trend of the quality of rules, ST= Straight line (no change in the quality of rules)

Simula Research Laboratory, Technical Report 2018-05 May 2018

As shown in Table 9, for both case studies, we observed an increasing trend of quality of rules in terms of the majority

(81%, i.e., 110/136) of the MLQMs for all the four SBRM+ approaches across the iterations. Also, for both case studies, we

witnessed a slightly decreasing trend in only 3% (i.e., 4/136) of MLQMs for all the four SBRM+ approaches whereas in the

remaining 16% (i.e., 22/136), we observed a straight line. Note that the quality of rules in terms of the MLQMs increases if

values of error related MLQMs (i.e., MAE, RAE, RMSE, and RRSE) decrease and other MLQMs increase.

6.8 Cost of Applying Search to Generate Configurations (RQ8)

To answer RQ8, we calculated the average time required by NSGA-II (in SBRM+
NSGA-II-C45 and SBRM+

NSGA-II-PART), NSGA-

III (in SBRM+
NSGA-III-C45 and SBRM+

NSGA-III-PART), and RS (in RBRM+-C45 and RBRM+-PART) to generate configurations

per iteration (i.e., ATPI) as well as per cycle (i.e., ATPC) (Section 5.1.3). Table 10 shows the average time required by

SBRM+
NSGA-II-C45, SBRM+

NSGA-III-C45, SBRM+
NSGA-II-PART, SBRM+

NSGA-III-PART, RBRM+-C45, and RBRM+-PART to

generate configurations per iteration and per cycle for both of the case studies.

Table 10: Average time (minutes) required for generating configurations

Case

Study
Metric SBRM+

NSGA-II-C45
SBRM+

NSGA-III-

C45
RBRM+-C45

SBRM+
NSGA-II-

PART

SBRM+
NSGA-III-

PART

RBRM+-

PART

Cisco
ATPI 22 3224 18 23 8765 22

ATPC 108 16118 90 116 43824 108

Jitsi
ATPI 32 22527 40 10 10179 21

ATPC 159 112636 199 52 50896 103

From Table 10, we can observe that the costs of generating configurations using SBRM+
NSGA-II-C45, SBRM+

NSGA-II-PART,

RBRM+-C45, and RBRM+-PART are quite comparable. However, SBRM+
NSGA-III-C45 and SBRM+

NSGA-III-PART took

significantly more time than the others, because NSGA-III is significantly slower than NSGA-II and RS. Also, NSGA-III

produces only 92 solutions for the three objective problems regardless of its population size [23], thus, we executed it multiple

times to get 500 configuration solutions corresponding to each iteration. We used a fixed number of fitness evaluations instead

of time budget as the termination criterion of the search because 1) different frameworks for multi-objective optimization with

metaheuristics (e.g., jMetal [71]) use fitness evaluations instead of time budget; 2) A fixed number of fitness evaluations are

widely applied in SBSE [80-83]; 3) We used 50,000 fitness evaluations as termination criterion, because we were able to

obtain good results in our earlier studies involving industrial datasets [41, 81]; and 4) We think comparing search algorithms

based on fixed time is biased towards faster algorithms, as a slower one gets less chance to evolve towards a better solution,

particularly in the context where the time cost of executing an approach is not important which is the case of applying our

approach.

From Table 10, we can also notice that SBRM+
NSGA-II-C45, SBRM+

NSGA-III-C45, and RBRM+-C45 took more time than

SBRM+
NSGA-II- PART, SBRM+

NSGA-III- PART, and RBRM+- PART respectively. This can be explained as C4.5 produced lengthier

rules (i.e., more predicates) than PART (Table 11). Thus, approaches producing lengthier rules have a higher cost of calculating

fitness values and consequently higher execution time. On average, C4.5 produced 1.7 and 2 more predicates per rule than

PART for the Cisco and Jitsi case studies, respectively.

Table 11: Average number of predicates for the Cisco and Jitsi case studies

Approach

Cisco Jitsi

Avg. predicates per rule Avg. predicates per run Avg. predicates per rule Avg. predicates per run

SBRM+
NSGA-II-C45 5.2 14420 4.6 100095

SBRM+
NSGA-II-PART 3.6 17102 2.7 22764

SBRM+
NSGA-III-C45 5.7 14853 5.5 134451

SBRM+
NSGA-III-PART 4.0 20668 2.7 20498

RBRM+-C45 5.6 21763 4.0 106454

RBRM+-PART 3.9 26632 2.6 25208

Simula Research Laboratory, Technical Report 2018-05 May 2018

6.9 Discussion

For RQ1, we noticed that NSGA-II and NSGA-III significantly outperformed RS in terms of all the fitness values and majority

of the quality indicators for both of the case studies (Section 6.1). This can be simply explained as NSGA-II and NSGA-III

generate and select better solutions using operators such as mutation and crossover. We also noticed that RS performed better

than NSGA-II and NSGA-III in terms of GS (representing the diversity of obtained solutions) for 15/24 and 17/24 comparisons

for the Cisco and Jitsi case studies, respectively. This is because 1) for our problem, higher convergence to the objectives (e.g.,

Objective-1 avoids generating configurations satisfying high confidence rules with normal states) may reduce the search space

to be explored, which consequently affects diversity negatively; and 2) RS explores the search space more uniformly as

compared to other algorithms [84], thus, the solutions produced by RS has high diversity but low convergence as shown by

the results of RQ1 (Section 6.1).

For RQ2, we observed that in 7 out of 8 comparisons for both of the case studies, SBRM+ performed significantly better

than the two RBRM+ approaches in terms of the majority of MLQMs whereas in one of the 8 comparisons there was no

significant difference observed between the two approaches (i.e., SBRM+
NSGA-III-C45 and RBRM+-C45) (Section 6.2).

SBRM+
NSGA-II-C45, SBRM+

NSGA-III-C45, SBRM+
NSGA-II-PART, and SBRM+

NSGA-III-PART have achieved an ARI up to 27%, 22%,

18%, and 21% for the Cisco case study respectively (Section 6.3). Similarly, for the Jitsi case study, SBRM+
NSGA-II-C45,

SBRM+
NSGA-III-C45, SBRM+

NSGA-II-PART, and SBRM+
NSGA-III-PART have achieved an ARI up to 28%, 4%, 8%, and 12%

respectively (Section 6.3). This is because the three objectives use previously mined rules for guiding the search to generate

configurations that increase the support of the correct rules and filter out incorrect ones. In addition, the operators of NSGA-

II and NSGA-III help SBRM+ to converge faster than RBRM+.

For RQ4, NSGA-III significantly outperformed NSGA-II in terms of fitness values and the quality indicators in most of
the cases. For RQ5, SBRM+

NSGA-II-C45 significantly outperformed other three SBRM+ approaches in producing better quality

rules in terms of MLQMs for the Cisco case study and SBRM+
NSGA-II-PART for the Jitsi case study. This deviation in the results

for the two case studies could be explained as follow: 1) The number of categorical configurable parameters is different (15

for Cisco and 27 for Jitsi); 2) The maximum number of possible configurations for a categorical configuration parameter is

different (4 for Cisco and 16 for Jitsi); 3) The total number of configurable parameters is different (27 for Cisco and 39 for

Jitsi); and 4) the configuration spaces are different (1.03e33 for Cisco and 6.54e60 for Jitsi). The categorical parameters are of

more importance because satisfying the predicates with the categorical parameters in the rules is more difficult than satisfying

the predicates with numerical parameters. This is because usually in the rules, predicates with numerical parameters allow a

large number of values to satisfy the predicates, whereas satisfying predicates with categorical parameters requires exact values

from predefined candidate values. The different characteristics of the case studies could make different algorithms suitable for

mining the rules. Based on the characteristics of the two selected case studies and their corresponding results, we can argue

that PART is a preferred choice to integrate with NSGA-II (i.e., SBRM+
NSGA-II-PART) for mining rules for a relatively larger

case study whereas C4.5 (SBRM+
NSGA-II-C45) is a better choice in the case of a smaller sized case study. Nevertheless, these

results cannot be generalized based on the evaluation of merely two case studies. Besides, the selection of the machine learning

algorithms and their parameter settings are usually application dependent. Thus, generalizing the results further requires a

much larger scale empirical evaluation with more case studies.

From the correlation analysis for RQ6, we noticed that the majority of cases satisfy our hypothesis (Section 5.1.5) that the

overall quality of rules in terms of MLQMs improves by reducing the average fitness values and quality indicators (except for

HV) and increasing HV. However, smaller average fitness values and quality indicators (except for HV) and larger HV do not

mean that all the MLQMs will always be improved, as we observed several cases (e.g., correlations of FF-Precision and CF-

Recall with AFV-O3 corresponding to SBRM+
NSGA-II-PART for the Cisco case study, correlations of CC-Recall and CC-

FMeasure with AFV-O1 corresponding to SBRM+
NSGA-II-PART for the Jitsi case study) that reject our hypothesis. It is quite

possible that certain MLQMs are affected negatively due to several reasons, 1) Objective-1 avoids generating the

configurations satisfying high confidence rules with ConnectedConnected class due to which mining algorithm will give more

preference to other classes (i.e., FailedFailed, FailedConnected, and ConnectedFailed), therefore, MLQMs such as CC-Recall

and CC-FMeasure may decrease with the decrement in AFV-O1 as it did for the Jitsi case study; 2) Objective-2 and Objective-

3 generate configurations satisfying low confidence (i.e., higher violation and lower support) rules with normal and abnormal

states, which increase the violation of low confidence rules that may affect MLQMs negatively in certain cases (e.g., when

Simula Research Laboratory, Technical Report 2018-05 May 2018

violation of rules increased but not enough to remove them from rule set) as it did for the Cisco case study. In such cases,

MLQMs may decrease with the reduction in AFV-O2 and AFV-O3.

For RQ7, we noticed an increasing trend of the quality of rules based on the majority of MLQMs for all the four SBRM+

approaches for both case studies. This is because, in each new iteration, we refined the rules by generating the configurations

based on the rules mined from the previous iteration and mining a new set of refined rules, which improves the quality based

on MLQMs in each new iteration. Thus, the incremental, iterative process refines rules across iterations, and the number of

iterations does have an impact on the results. For RQ8, the best performing SBRM+
NSGA-II-C45 took 108 minutes for the Cisco

case study whereas SBRM+
NSGA-II-PART took 52 minutes corresponding to the Jitsi case study, for generating configurations

for a complete cycle, which is acceptable as it is a one-time process.

Furthermore, to know the distribution of the mined rules associated with the four system states (ConnectedConnected,

FailedFailed, ConnectedFailed, and FailedConnected) in the five iterations for both case studies, we plotted stacked column

plots. Note, we have also presented the distribution of the rules for the iteration zero, to be complete. Figure 9 presents the

average numbers of rules mined with the different approaches for the Cisco case study. From Figure 9, we can see that RBRM+-

C45 (RBRM+-PART) produced more rules than SBRM+
NSGA-II-C45 and SBRM+

NSGA-III-C45 (SBRM+
NSGA-II-PART and

SBRM+
NSGA-III-PART) in all the five iterations except that SBRM+

NSGA-II-C45 produced slightly more rules than RBRM+-C45 in

iteration-1 and iteration-2. We can also notice that no rules were produced for FailedConnected in the first three iterations

and significantly fewer numbers of rules produced for FailedConnected (to compare with the other categories) in only

iteration-4 and iteration-5.

Figure 9: Average numbers of rules mined in each iteration for the Cisco case study*

*A1= SBRM+
NSGA-II-C45, A2= SBRM+

NSGA-III-C45, A3= SBRM+
NSGA-II-PART, A4= SBRM+

NSGA-III-PART, A5= RBRM+-C45, A6= RBRM+-PART

Simula Research Laboratory, Technical Report 2018-05 May 2018

Figure 10 presents the average numbers of rules mined for the Jitsi case study. From the figure, we can observe that RBRM+-

C45 (RBRM+-PART) produced more rules than SBRM+
NSGA-II-C45 and SBRM+

NSGA-III-C45 (SBRM+
NSGA-II-PART and

SBRM+
NSGA-III-PART) in all the iterations just as for the Cisco case study. For both of the case studies, we observed that the

SBRM+ approaches produced less number of rules than the two RBRM+ approaches. This is because the three objectives refine

the rules by removing low confidence incorrect rules and the search operators (i.e., mutation, crossover, and selection) help

SBRM+
NSGA-II-C45 and SBRM+

NSGA-II-PART to get optimal configurations in terms of three objectives.

Figure 10: Average numbers of rules mined in each iteration for the Jitsi case study*

*A1= SBRM+
NSGA-II-C45, A2= SBRM+

NSGA-III-C45, A3= SBRM+
NSGA-II-PART, A4= SBRM+

NSGA-III-PART, A5= RBRM+-C45, A6= RBRM+-PART

Figure 11 shows the distribution of rules with respect to normal and abnormal system states, obtained using SBRM+ for

both case studies. From Figure 12, one can see that the majority of the rules produced are rules with abnormal system state,

which is expected because SBRM+ focused on generating invalid configurations.

Simula Research Laboratory, Technical Report 2018-05 May 2018

Figure 11: Rules distribution w.r.t. system states

To see the distribution of configurations with respect to the corresponding system states (i.e., valid or invalid), we collected

the statistics about configurations generated using SBRM+ for both case studies, which are shown in Figure 12. However, it is

worth mentioning that the distribution of generated configurations is greatly influenced by the input rules provided to the

search algorithms.

Figure 12: Average numbers configurations with of valid and invalid system states per run

Moreover, we intend to assess if adding more iterations increases the quality of rules significantly. Due to high execution

cost of the experiments, we combined configurations from 10 runs of already executed experiments and mine rules to see the

trend of quality improvement of rules with respect to the dataset size. More specifically, first, we mine the rules using

configurations of the first run and then incrementally add the configurations from other nine runs and mine the rules. Note, for

the first run we used all the 4500 configurations whereas, for other 9 runs, we have added only 2500 configurations per run

(i.e., for five iterations) because the initial 2000 configurations (i.e., randomly generated) are common across all the runs. To

show the trend, we plotted the MLQMs against the number of instances (i.e., configurations) in the dataset. Due to limited

space, we have selected Accuracy as a representative MLQM to illustrate the trend (Figure 13 and Figure 14).

Simula Research Laboratory, Technical Report 2018-05 May 2018

Figure 13: Accuracy vs. number of instances in the dataset for Cisco

As shown in Figure 13 and Figure 14, for both of the case studies, there is an improvement in the quality of rules, but not

significant. From 4500 to 22,500 instances (i.e., configurations), we get up to 5% of improvement for the Cisco case study and

6% for the Jitsi case study. Note, for the other MLQMs, we also observed similar results.

Figure 14: Accuracy vs. number of instances in the dataset for Jitsi

We assess the trend of quality of rules against different dataset sizes. However, one can argue that we added the

configurations generated using rules from iteration zero to iteration-4 and adding configurations generated using rules from

iteration 5 and onwards would have improved the quality of rules significantly. To cater this argument, we selected the best

performing approaches SBRM+
NSGA-II-C45 for the Cisco case study and SBRM+

NSGA-II-PART for the Jitsi case study and

conducted the experiment with these two approaches to obtain five more iterations (i.e., in total 10 iterations) with the Jitsi

case study. This is done only for the Jitsi case study because the experiment can be run on a cluster. However, for the Cisco

case study, running the experiment needs dedicated hardware equipment and we cannot run the experiment in parallel due to

the limited number of VCSs available, which makes the experiment extremely time-consuming. Figure 15 shows the average

Accuracy (i.e., calculated as the average of 10 runs for each iteration) across the 10 iterations. From Figure 15, we can observe

an improvement in the quality of rules across the iterations, however, we got an improvement of 4% at maximum for any

approach from iteration-5 to iteration-10. On the other hand, when looking at the improvement from iteration-1 to iteration-5,

we got an improvement of 13% for SBRM+
NSGA-II-C45 and 10% for SBRM+

NSGA-II-PART. Thus, it would be fair to say that after

a number of iterations (e.g., five in our case), the improvement will be very slow. This suggests that using a fixed number of

iterations is a practical and wise approach to terminate the process.

Figure 15: Average accuracy across 10 iterations for the Jitsi case study

6.10 Threats to Validity

In Section 6.10.1, we discuss threats to the internal validity followed by threats to the construct validity in Section 6.10.2. We

discuss threats to the conclusion validity and external validity in Section 6.10.3 and Section 6.10.4, respectively.

Simula Research Laboratory, Technical Report 2018-05 May 2018

6.10.1 Internal Validity

Threats to the internal validity exist when the results are influenced by the internal factors such as parameter settings [85]. The

first threat to the internal validity is the selection of search algorithms in our study. To mitigate this threat, we selected the

most widely used NSGA-II algorithm, which has shown promising results in different contexts [19, 20]. Moreover, we have

selected a relatively new multi-objective search algorithms, i.e., NSGA-III, which also has good performance on addressing

many objective problems [25]. The second threat is the selection of algorithms for rule mining. We selected PART as it has

been proven to be more effective than many well-known algorithms [14, 30] and C4.5, the most popular algorithm in industry

and the research community [31, 86]. The third threat is the selection of parameter settings for the selected search algorithm.

To mitigate this threat, we used default parameter settings, which have exhibited promising results [87]. Similarly, for the

machine-learning algorithms, we also used the default parameters settings, which perform reasonably well [12, 31]. Another

threat is the selection of the Confidence measure for calculating fitness values, as there exist other measures (e.g., Lift). We

acknowledge that this is a threat to the internal validity and dedicated experiments are needed for further investigation.

6.10.2 Construct Validity

Threats to the construct validity exist when the measurement metrics do not sufficiently cover the concepts they are supposed

to measure [85, 88]. To mitigate this threat, we compared different approaches using the same comprehensive set of measures:

fitness values, quality indicators, and 17 MLQMs, which are commonly used in the literature [31, 36, 89].

6.10.3 Conclusion Validity

Threats to the conclusion validity concern with the factors influencing the conclusion drawn from the results of the experiment

[90]. The most probable threat to the conclusion validity is due to the random variation inherent in search algorithms. To

minimize this threat, we repeated the experiment 10 times (i.e., total 50 runs of each search algorithm) to reduce the effect

caused by randomness, as recommended in [74, 91]. Moreover, we also applied the Mann-Whitney test to determine the

statistical significance of the results and the Vargha and Delaney 𝐴̂12 statistics as the effect size measure, which are

recommended for randomized algorithms [74, 91].

6.10.4 External Validity

The external validity concerns with the generalization of the experiment results to other contexts [85]. The threat to the external

validity for our experiment is the case studies selected for the evaluation. In our study, we used a real-world case study (i.e.,

Cisco Video Conferencing Systems) and an open source case study Jitsi of different sizes. Furthermore, one can argue that the

complexity of case studies (i.e., a large number of configurable parameters and system states) may affect the performance of

proposed approach. We would like to argue that multi-objective search algorithms such as NSGA-II and NSGA-III have been

applied to problems of different complexity, and they have proven to be quite effective [15-17, 25, 46, 88]. However, higher

dimensional datasets (more attributes) for complex case studies, may reduce the performance (e.g., accuracy, precision) of

machine learning algorithms but the impact will be the same for both SBRM+ and RBRM+, as both approaches employ a

machine learning algorithm.

7. RELATED WORK

Search algorithms have been used to solve many problems in the context of PLE [15-17, 46, 88]. In this paper, we also

combined the search with machine learning techniques to mine the rules in the context of PLE. The related work to this research

stream focuses on existing studies presenting the approaches to mine the rules in the context of PLE. In Section 7.1, we discuss

dedicated approaches that focus on mining rules from different artifacts (e.g., source code, configuration file, feature model)

of product lines. Furthermore, in Section 7.2, we discuss approaches such as feature extraction, feature construction and feature

recommendation, which mine crosstree constraints. Finally, in Section 7.3, we summarize the related work and compare it

with our work.

Simula Research Laboratory, Technical Report 2018-05 May 2018

Table 12: Characteristics of existing rule mining approaches*

Reference Topic Input Output
ML Technique

for mining rules

Configurable

parameter

type

Data

generation/selection

of

classes
Evaluation Case study

[11]

Configuration

constraint

extraction for PL

A FM and an

oracle

(computer

vision

algorithm)

A set of

configuration

constraints

Binary Decision

Tree-J48

(implementation

of C4.5)

Numerical and

Categorical
Randomly 2

Precision,

Recall, and

expert opinion

A real-world PL

of video

generator

[92]

Constraint

extraction for

FM

A FM (features,

feature

description, and

known binary

crosstree

constraints)

A set of

crosstree

constraints

LIBSVM

classifier and

genetic algorithm

Categorical Randomly 3

Precision,

Recall, and

FMeasure

Two open source

feature models of

Weather Station

and Graph PL

[93]

Constraint

extraction for

FM

Configuration

files

A set of

crosstree

constraints

Apriori algorithm Categorical NA NA
Support and

confidence

An industrial PL

of embedded

systems

[94], [10]

Configuration

constraint

extraction

C code

A set of

hierarchy and

crosstree

constraints

Static analysis

(Build and code

analysis)

Categorical NA NA

Accuracy

measured in

reference to

the rules

defined by the

expert and

recoverability

Four open source

case studies

(uClibc,

BusyBox, eCos,

and the Linux

kernel)

[95]

Introducing

probabilistic FM

and provide a

process to

extract the

crosstree

constraints for

FM

Formally

defined FM

inform of

propositional

formula

A set of

crosstree

constraints

Apriori algorithm

and an algorithm

presented in [96]

Categorical NA NA
Support and

confidence

A small sized PL

of Java applets

[97], [98]

Feature

extraction and

constraint

extraction for

recommending

features

Product

descriptions

available on

internet and

user

requirements

FM along with

crosstree

constraints

CFP-growth

algorithm and

Apriori algorithm

Categorical NA NA
Support and

confidence

A PL of remote

collaboration and

description of 20

PL collected

from SoftPedia

[5]

Feature

extraction and

constraint

extraction

Product

description,

product

comparison

metrics,

manually added

Attributed FM

with crosstree

constraints

Proposed

algorithms

implemented in

Scala and SAT4J

solver for

computation of or-

group

Numerical and

Categorical
Randomly NA

Quality of the

rules was not

evaluated

242

configuration

matrices

generated

randomly and a

real-world case

study of

Simula Research Laboratory, Technical Report 2018-05 May 2018

domain

knowledge

bestbuy.com

[27]

Feature

extraction and

constraint

extraction

Product

descriptions

FM with

crosstree

constraints

CFP-growth

algorithm and

Apriori algorithm

Categorical NA NA

Support,

confidence,

accuracy with

respect to

manually

constructed

FM

A PL of antivirus

collected from

SoftPedia

[99]

Feature

extraction and

recommendation

Feature

description and

user

requirements

Feature

recommendation

based on the

association rules

Apriori algorithm Categorical NA NA
Support and

confidence

A large number

of datasets

collected from

three repositories

SoftPedia,

SourceForge, and

FreeCode

* FM= feature model, PL= product line, NA= Not applicable, ML= Machine learning, LDA= Latent Dirichlet Allocation

Simula Research Laboratory, Technical Report 2018-05 May 2018

7.1 Dedicated Rule Mining Approaches

The work in [11] applies Binary Decision Tree-J48 (machine learning algorithm) to infer the constraints from a set of randomly

generated product configurations. To classify the configurations as faulty and non-faulty, a computer vision algorithm was

used as an oracle. To validate the approach, it was applied to an industrial video generator product line. Rules were evaluated

based on expert’s opinion and machine-learning measurements such as Precision and Recall. Results show that on average

86% Precision and 80% Recall rate can be achieved using the proposed approach.

In [92], an approach for mining the crosstree binary constraints (i.e., requires, excludes) corresponding to a feature model

is presented. The approach takes a feature model as input containing the features, their descriptions, and some known crosstree

binary constraints. First, it trains LIBSVM classifier (an extension of support vector machine) with existing crosstree binary

constraints where the parameters of the classifier are optimized using the genetic algorithm to minimize the error rate of the

classifier. Second, it extracts all the feature pairs, and finally, the optimized classifier finds the candidate features of binary

constraints. The approach was validated using two feature models collected from SPLOT repository. Results show that rules

with high Recall (i.e., close to 100%) and the variable low Precision (on average 42%) can be achieved using proposed

approach.

In [93], another approach is presented for mining the crosstree constraints. It constructs configuration matrix (i.e., product-

features matrix) from configuration files and extracts crosstree constraints using an association rule mining technique (i.e.,

Apriori algorithm). Rules are pruned using minimum support and minimum confidence thresholds. The approach was

evaluated using a large-scale industrial software product line for embedded systems. The evaluation shows that a large number

of rules with variable support (i.e., 80% to 99%) and confidence (i.e., 90% to 100%) can be identified. The majority of the

rules were identified with support ranging from 80% to 85%.

The work in [94] presents an approach to extract configuration constraints from existing C codebases using static analysis.

It uses build time errors (e.g., preprocessor, parser, type, and link errors) as the oracle to classify the low-level system

configurations (i.e., build and code files) and mine the constraints. To assess the accuracy of extracted rules, they were

compared with the existing constraints specified in developer’s created variability models. The approach was validated using

four open source case studies (uClibc, BusyBox, eCos, and the Linux kernel). Results show that up to 19% of the total

constraints can be recovered automatically from the source code, which assures successful build with the accuracy of 93%. In

[10], an extension of [94] is presented in which the authors improved the static analysis and increased the recoverability rate

by 9%. Additionally, an empirical study is also presented that identifies the sources of constraints.

7.2 Non-Dedicated Rule Mining Approaches

The work in [100] reported a Systematic Literature Review (SLR) of 13 approaches for feature extraction from natural

language requirements. The results of SLR show that hybrid natural language processing approaches are commonly used in

the overall feature extraction process. Various clustering approaches from data mining and information retrieval are used to

group the common features. Moreover, several approaches have also employed association mining techniques to discover the

pattern of the features to recommend the relevant features to the stakeholders. In [95], an extension of feature model called

probabilistic feature model is introduced. To extract crosstree constraints from existing formally defined products, a rule

mining process is presented that uses an association mining technique (i.e., Apriori Algorithm) to mine the conjunctive

association rule and an algorithm proposed in [96] to mine the Disjunctive association rules. The proposed mining process was

applied to a small case study of Java Applets. Rules were evaluated based on machine-learning measurements (i.e., support

and confidence).

In [97], an approach is proposed to model and recommend product features for any particular domain based on the product

description provided by the domain expert. To mine association rules between product features, association rule mining

techniques are applied to configuration matrix (i.e., product-features matrix). The proposed approach was validated with 20

different product categories using product descriptions available at SoftPedia. Hariri et al. [98] extended the work presented

in [97]. In [98], different clustering algorithms used to cluster the features and construct products by feature matrix were

compared. The evaluation was also improved by applying the approach on diverse domains as well as a large project of a

software suite for remote collaboration. Results show that rules with different Precision and Recall rates can be mined

according to the threshold set for the confidence.

Simula Research Laboratory, Technical Report 2018-05 May 2018

The work in [5] presents an approach to synthesize attributed feature models (AFM) from a set of product descriptions in

the form of tables (i.e., configuration matrix). An algorithm is proposed that uses implication graph and mutex graph

constructed from configuration matrix to extract the crosstree constraints. For extracting the relational constraints defined on

values of attributes, the algorithm uses domain knowledge or selects the boundary values of attributes randomly when domain

knowledge is not provided. The approach was validated using random configuration matrices as well as a real-world case

study. Results show that the proposed algorithm can be used to mine a large number of rules for large-scale case studies.

The work in [27] proposed an approach to construct a feature model automatically from informal product descriptions

available over the Internet. To mine the implication rules of features, CFP-growth algorithm and Apriori algorithm are applied

to configuration matrix (i.e., product-features matrix). The proposed approach was applied to a case study of antivirus software

using the product descriptions available at SoftPedia.

In [99], an approach is proposed to extract the features from multiple web repositories, organize, analyze, and recommend

the high-quality features to the stakeholders. The proposed approach first extracts the information from the Internet repositories

and then builds feature ontologies by employing Latent Dirichlet Allocation and clustering. To mine the hidden relationships

among software features and to recommend high-quality features to the stakeholders, the proposed approach employs the

association rule mining technique (i.e., the Apriori algorithm). The proposed approach is validated using a large number of

datasets collected from three repositories (i.e., SoftPedia, SourceForge, and FreeCode).

7.3 Summary

In Table 12, we summarize the existing rule mining techniques and highlight their characteristics. From Table 12, one can

see that, (1) all the techniques except [11] are focusing on mining binary crosstree constraints (requires and excludes) between

different features of a product line or rules constraining the values of features’ attributes in the case of [5]; (2) the majority of

the approaches except two ([11] and [92]) are using unsupervised learning based association mining techniques such as Apriori

algorithm and FP-growth algorithm; (3) none of the existing approaches have any sophisticated way to select/generate the

configurations, and usually, configurations are generated/selected randomly or used existing configurations; (4) the majority

of the approaches except two are focusing on only categorical type configurable parameters, however, [11] and [5] are also

catering numerical configurable parameters; (5) all the existing approaches are using machine learning quality measurements

such as Precision, Recall, Support, and Confidence; and 6) above all, none of the existing approaches are mining the rules for

interacting products within/across the product lines.

In contrast to the existing rule mining techniques, we have proposed an incremental and iterative approach in which we

generate the configurations smartly and feed the configurations to the machine-learning tool and apply supervised learning

based rule mining techniques (i.e., PART and C45), to mine the rules between configurable parameters and system behaviors

of interacting products across product lines. The innovative part of our approach is the data generation strategy and

incremental, iterative nature, which helps to achieve rules with higher quality as compared to randomly selected configurations

based approaches. To generate the configurations, we defined three objectives (Section 4.2) and combined them with the search

algorithms (i.e., NSGA-II and NSGA-III). To evaluate the quality of rules, we used machine learning quality measurements,

which are also used by existing rule-mining approaches in the literature.

8. CONCLUSION AND FUTURE WORK

Today, systems are being developed by integrating multiple products within/across the product lines that communicate with

each other through different communication mediums (e.g., the Internet). The runtime behavior of these systems does not only

depend on product configurations, but also on the communication medium. To identify the invalid configurations where these

products may fail to communicate, we mine the Cross-Product Line (CPL) rules. To do so, in our previous work, we proposed

an incremental and iterative approach named as Search-Based Rule Mining (SBRM), in which we combined the widely used

multi-objective search algorithm (NSGA-II) with the machine learning algorithm (PART). To use the search in the rule mining

process, we defined three objectives and integrated them with the multi-objective optimization algorithm NSGA-II. In this

paper, we improved the previously proposed SBRM (named as SBRM+) and incorporated two multi-objective search algorithms

(i.e., NSGA-II and NSGA-III) and two machine learning algorithms (i.e., C4.5 and PART) to mine the rules. Moreover, in

SBRM+, we also integrated a clustering algorithm (i.e., k-means) to classify the CPL rules as high or low confidence rules,

which are used for defining the three objectives to guide the search.

Simula Research Laboratory, Technical Report 2018-05 May 2018

To evaluate the SBRM+ (SBRM+
NSGA-II-C45, SBRM+

NSGA-III-C45, SBRM+
NSGA-II-PART, and SBRM+

NSGA-III-PART), we

conducted experiments using two real case studies (Cisco and Jitsi) and performed three types of analyses: difference analysis,

correlation analysis, and trend analysis. Difference analysis shows that SBRM+ approaches performed significantly better than

two random search-based approaches (RBRM+-C45 and RBRM+-PART) in terms of the fitness values, six quality indicators,

and 17 MLQMs corresponding to both case studies. Among the four SBRM+ approaches, SBRM+
NSGA-II-C45 produced the

highest quality rules based on MLQMs for the Cisco case study and SBRM+
NSGA-II-PART for the Jitsi case study. Correlation

analysis suggests that in most of the cases lower average fitness values and quality indicators (except for HV) and higher HV

mean overall higher quality rules in terms of MLQMs. Furthermore, trend analysis shows an increasing trend of the quality of

rules in terms of MLQMs for all the four SBRM+ approaches across the five iterations.

Our future work includes: (1) Evaluating the performance of different search algorithms for generating configurations and

mining the rules; (2) Using different parameter settings for machine learning algorithms and search algorithms; 3) Evaluating

the performance of proposed approach using more complex case studies; and (4) Recommending configurations for the

selected products based on the mined rules.

ACKNOWLEDGEMENT
This work was supported by the Zen-Configurator project funded by the Research Council of Norway (Grant No. 240024/F20)

under the category of Young Research Talents of the FRIPO funding scheme. Tao Yue and Shaukat Ali are also supported by

the Co-evolver project funded by the Research Council of Norway (grant no. 286898/LIS) under the category of Researcher

Projects of the FRIPO funding scheme.“

REFERENCES
 [1] G. Holl, P. Grünbacher, and R. Rabiser, “A systematic review and an expert survey on capabilities supporting multi

product lines,” Information and Software Technology (IST), vol. 54, no. 8, pp. 828-852, 2012.

[2] M. Rosenmüller, and N. Siegmund, "Automating the Configuration of Multi Software Product Lines." pp. 123-30.

[3] S. Wang, A. Gotlieb, M. Liaaen, and L. C. Briand, “Automatic selection of test execution plans from a video

conferencing system product line,” in Proceedings of the VARiability for You Workshop: Variability Modeling Made

Useful for Everyone, Innsbruck, Austria, 2012, pp. 32-37.

[4] T. Yue, S. Ali, and B. Selic, "Cyber-Physical System Product Line Engineering: Comprehensive Domain Analysis

and Experience Report." pp. 338-347.

[5] G. Bécan, R. Behjati, A. Gotlieb, and M. Acher, "Synthesis of attributed feature models from product descriptions."

pp. 1-10.

[6] K. Nie, T. Yue, S. Ali, L. Zhang, and Z. Fan, "Constraints: the core of supporting automated product configuration

of cyber-physical systems." pp. 370-387.

[7] E. Bagheri, T. Di Noia, A. Ragone, and D. Gasevic, "Configuring software product line feature models based on

stakeholders’ soft and hard requirements." pp. 16-31.

[8] R. Mazo, C. Dumitrescu, C. Salinesi, and D. Diaz, "Recommendation heuristics for improving product line

configuration processes," Recommendation Systems in Software Engineering (RSSE), pp. 511-537: Springer, 2014.

[9] H. Lu, T. Yue, S. Ali, and L. Zhang, “Model-based Incremental Conformance Checking to Enable Interactive Product

Configuration,” Information and Software Technology (IST), vol. 72, pp. 68-89, 2015.

[10] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki, “Where do configuration constraints stem from? an extraction

approach and an empirical study,” IEEE Transactions on Software Engineering (TSE), vol. 41, no. 8, pp. 820-841,

2015.

[11] P. Temple, J. A. G. Duarte, M. Acher, and J.-M. Jézéquel, "Using Machine Learning to Infer Constraints for Product

Lines." pp. 209-218.

[12] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical machine learning tools and techniques, 4th ed.,

Switzerland: Morgan Kaufmann, 2016.

[13] S. A. Safdar, L. Hong, Y. Tao, and A. Shaukat, "Mining Cross Product Line Rules with Multi-Objective Search and

Machine Learning ". pp. 1319-1326.

[14] E. Frank, and I. H. Witten, "Generating accurate rule sets without global optimization." pp. 144-151.

[15] R. E. Lopez-Herrejon, L. Linsbauer, and A. Egyed, “A systematic mapping study of search-based software

engineering for software product lines,” Information and Software Technology (IST), vol. 61, pp. 33-51, 2015.

[16] M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke, and Y. Zhang, "Search based software engineering for

software product line engineering: a survey and directions for future work." pp. 5-18.

Simula Research Laboratory, Technical Report 2018-05 May 2018

[17] A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar, "Scalable product line configuration: A straw to break the

camel's back." pp. 465-474.

[18] J. Guo, J. H. Liang, K. Shi, D. Yang, J. Zhang, K. Czarnecki, V. Ganesh, and H. Yu, “SMTIBEA: A hybrid multi-

objective optimization algorithm for configuring large constrained software product lines,” Software & Systems

Modeling (SoSyM), vol. 16, no. 4, pp. 1-20, 2017.

[19] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,”

IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002.

[20] F. Sarro, A. Petrozziello, and M. Harman, "Multi-objective software effort estimation." pp. 619-630.

[21] D. Pradhan, S. Wang, S. Ali, T. Yue, and M. Liaaen, "STIPI: Using Search to Prioritize Test Cases Based on Multi-

objectives Derived from Industrial Practice." pp. 172-190.

[22] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization using genetic algorithms: A tutorial,”

Reliability Engineering & System Safety (RESS), vol. 91, no. 9, pp. 992-1007, 9//, 2006.

[23] K. Deb, and H. Jain, “An evolutionary many-objective optimization algorithm using reference-point-based

nondominated sorting approach, part I: Solving problems with box constraints,” IEEE Trans. Evolutionary

Computation, vol. 18, no. 4, pp. 577-601, 2014.

[24] H. Jain, and K. Deb, “An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based

Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach,” IEEE

Trans. Evolutionary Computation, vol. 18, no. 4, pp. 602-622, 2014.

[25] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó Cinnéide, "High dimensional search-based software

engineering: finding tradeoffs among 15 objectives for automating software refactoring using NSGA-III." pp. 1263-

1270.

[26] J. Han, M. Kamber, and J. Pei, Data mining: concepts and techniques, 3rd ed.: Elsevier, 2012.

[27] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang, and P. Heymans, "Feature model extraction from

large collections of informal product descriptions." pp. 290-300.

[28] J. R. Quinlan, C4.5: Programming for machine learning, 1st ed., London, UK: Morgan Kauffmann, 1993.

[29] W. W. Cohen, "Fast effective rule induction." pp. 115-123.

[30] G. Holmes, M. Hall, and E. Prank, "Generating rule sets from model trees." pp. 1-12.

[31] I. H. Witten, and E. Frank, Data Mining: Practical machine learning tools and techniques, 2nd ed., San

Francisco,USA: Diane Cerra, 2005.

[32] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on Information Theory, vol. 28, no. 2, pp. 129-

137, 1982.

[33] "Euclidean distance," https://wikipedia.org/wiki/Euclidean_distance.

[34] P. McMinn, “Search-based software test data generation: a survey,” Software Testing Verification and Reliability

(STVR), vol. 14, no. 2, pp. 105-156, 2004.

[35] S. Ali, M. Z. Iqbal, A. Arcuri, and L. C. Briand, “Generating test data from OCL constraints with search techniques,”

IEEE Transactions on Software Engineering (TSE), vol. 39, no. 10, pp. 1376-1402, 2013.

[36] M. Sokolova, and G. Lapalme, “A systematic analysis of performance measures for classification tasks,” Information

Processing & Management (IPM), vol. 45, no. 4, pp. 427-437, 2009.

[37] S. A. Safdar, T. Yue, S. Ali, and H. Lu, "Evaluating Variability Modeling Techniques for Supporting Cyber-Physical

System Product Line Engineering." pp. 1-19.

[38] J. Guérin, O. Gibaru, S. Thiery, and E. Nyiri, “Clustering for different scales of measurement-the gap-ratio weighted

k-means algorithm,” arXiv preprint arXiv:1703.07625, 2017.

[39] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. L. Traon, "Multi-objective test generation for software product

lines." pp. 62-71.

[40] R. T. Marler, and J. S. Arora, “Survey of multi-objective optimization methods for engineering,” Structural and

Multidisciplinary Optimization (SMO), vol. 26, no. 6, pp. 369-395, 2004.

[41] S. Wang, D. Buchmann, S. Ali, A. Gotlieb, D. Pradhan, and M. Liaaen, "Multi-objective test prioritization in software

product line testing: an industrial case study." pp. 32-41.

[42] S. Ali, M. Liaaen, S. Wang, and T. Yue, "Empowering Testing Activities with Modeling-Achievements and Insights

from Nine Years of Collaboration with Cisco." pp. 581-589.

[43] "Jitsi "; http://www.jitsi.org/.

[44] D. Pradhan, S. Wang, S. Ali, T. Yue, and M. Liaaen, "CBGA-ES: a cluster-based genetic algorithm with elitist

selection for supporting multi-objective test optimization." pp. 367-378.

[45] C. Henard, M. Papadakis, M. Harman, and Y. Le Traon, "Combining multi-objective search and constraint solving

for configuring large software product lines." pp. 517-528.

[46] A. S. Sayyad, T. Menzies, and H. Ammar, "On the Value of User Preferences in Search-Based Software Engineering:

A Case Study in Software Product Lines." pp. 492-501.

https://wikipedia.org/wiki/Euclidean_distance
http://www.jitsi.org/

Simula Research Laboratory, Technical Report 2018-05 May 2018

[47] J. M. Chaves-González, and M. A. Pérez-Toledano, “Differential evolution with Pareto tournament for the multi-

objective next release problem,” Applied Mathematics and Computation, vol. 252, pp. 1-13, 2015.

[48] J. K. Chhabra, "An empirical study of the sensitivity of quality indicator for software module clustering." pp. 206-

211.

[49] W. K. G. Assunção, T. E. Colanzi, S. R. Vergilio, and A. Pozo, “A multi-objective optimization approach for the

integration and test order problem,” Information Sciences, vol. 267, pp. 119-139, 2014.

[50] G. Guizzo, T. E. Colanzi, and S. R. Vergilio, "A pattern-driven mutation operator for search-based product line

architecture design." pp. 77-91.

[51] V. Hrubá, B. Křena, Z. Letko, H. Pluháčková, and T. Vojnar, "Multi-objective genetic optimization for noise-based

testing of concurrent software." pp. 107-122.

[52] M. R. Karim, and G. Ruhe, "Bi-objective genetic search for release planning in support of themes." pp. 123-137.

[53] L. Li, M. Harman, E. Letier, and Y. Zhang, "Robust next release problem: handling uncertainty during optimization."

pp. 1247-1254.

[54] R. E. Lopez-Herrejon, J. Ferrer, F. Chicano, A. Egyed, and E. Alba, "Comparative analysis of classical multi-

objective evolutionary algorithms and seeding strategies for pairwise testing of software product lines." pp. 387-396.

[55] F. Luna, D. L. González-Álvarez, F. Chicano, and M. A. Vega-Rodríguez, “The software project scheduling problem:

A scalability analysis of multi-objective metaheuristics,” Applied Soft Computing, vol. 15, pp. 136-148, 2014.

[56] M. W. Mkaouer, M. Kessentini, S. Bechikh, and M. Ó. Cinnéide, "A robust multi-objective approach for software

refactoring under uncertainty." pp. 168-183.

[57] S. Nejati, and L. C. Briand, "Identifying optimal trade-offs between cpu time usage and temporal constraints using

search." pp. 351-361.

[58] A. Ramírez, J. R. Romero, and S. Ventura, "On the performance of multiple objective evolutionary algorithms for

software architecture discovery." pp. 1287-1294.

[59] L. S. de Souza, R. B. Prudêncio, and F. d. A. Barros, "A comparison study of binary multi-objective particle swarm

optimization approaches for test case selection." pp. 2164-2171.

[60] A. Sureka, "Requirements prioritization and next-release problem under Non-additive value conditions." pp. 120-

123.

[61] W. K. G. Assunçao, T. E. Colanzi, S. R. Vergilio, and A. Pozo, "On the Application of the Multi-Evolutionary and

Coupling-Based Approach with Different Aspect-Class Integration Testing Strategies." pp. 19-33.

[62] M. Bozkurt, "Cost-aware pareto optimal test suite minimisation for service-centric systems." pp. 1429-1436.

[63] L. Briand, Y. Labiche, and K. Chen, "A multi-objective genetic algorithm to rank state-based test cases." pp. 66-80.

[64] M. W. Mkaouer, M. Kessentini, S. Bechikh, and D. R. Tauritz, "Preference-based multi-objective software

modelling." pp. 61-66.

[65] A. Ouni, M. Kessentini, H. Sahraoui, and M. S. Hamdi, "The use of development history in software refactoring using

a multi-objective evolutionary algorithm." pp. 1461-1468.

[66] A. J. Nebro, F. Luna, E. Alba, B. Dorronsoro, J. J. Durillo, and A. Beham, “AbYSS: Adapting scatter search to

multiobjective optimization,” Evolutionary Computation, IEEE Transactions on, vol. 12, no. 4, pp. 439-457, 2008.

[67] D. A. Van, V. Gary, and B. Lamont, “Multiobjective Evolutionary Algorithm Research: A History and Analysis,”

Evolutionary Computation vol. 8, no. 2, 1999.

[68] C. M. Fonseca, and P. J. Fleming, “Multiobjective optimization and multiple constraint handling with evolutionary

algorithms Part II: Application example,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 28

no. 1, pp. 38–47, 1998.

[69] M. Tanaka, H. Watanabe, Y. Furukawa, and T. Tanino, "GA-based decision support system for multicriteria

optimization." pp. 1556-1561.

[70] J. L. Cochrane, and M. Zeleny, Multiple Criteria Decision Making: University of South Carolina Press, 1973.

[71] J. J. Durillo, and A. J. Nebro, “jMetal: A Java framework for multi-objective optimization,” Advances in Engineering

Software, vol. 42, no. 10, pp. 760-771, 2011.

[72] A. J. Nebro, F. Luna, E. Alba, B. Dorronsoro, J. J. Durillo, and A. Beham, “AbYSS: Adapting scatter search to

multiobjective optimization,” IEEE Transactions on Evolutionary Computation, vol. 12, no. 4, pp. 439-457, 2008.

[73] A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, and E. Tsang, "Combining model-based and genetics-based offspring

generation for multi-objective optimization using a convergence criterion." pp. 892-899.

[74] A. Arcuri, and L. Briand, "A practical guide for using statistical tests to assess randomized algorithms in software

engineering." pp. 1-10.

[75] S. Ali, and K. A. Smith, “On learning algorithm selection for classification,” Applied Soft Computing, vol. 6, no. 2,

pp. 119-138, 2006.

[76] J. Wu, S. Ali, T. Yue, J. Tian, and C. Liu, “Assessing the quality of industrial avionics software: an extensive empirical

evaluation,” Empirical Software Engineering (EMSE), vol. 22, no. 4, pp. 1-50, 2016.

Simula Research Laboratory, Technical Report 2018-05 May 2018

[77] H. B. Mann, and D. R. Whitney, “On a test of whether one of two random variables is stochastically larger than the

other,” The Annals of Mathematical Statistics, vol. 18, no. 1, pp. 50-60, 1947.

[78] A. Vargha, and H. D. Delaney, “A critique and improvement of the CL common language effect size statistics of

McGraw and Wong,” Journal of Educational and Behavioral Statistics (JEBS), vol. 25, no. 2, pp. 101-132, 2000.

[79] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, 3rd ed., London,UK: Chapman

and Hall, CRC Press, 2007.

[80] J. B. Kollat, and P. M. Reed, “Comparing state-of-the-art evolutionary multi-objective algorithms for long-term

groundwater monitoring design,” Advances in Water Resources, vol. 29, no. 6, pp. 792-807, 2006.

[81] D. Pradhan, S. Wang, S. Ali, T. Yue, and M. Liaaen, “CBGA-ES+: A Cluster-Based Genetic Algorithm with Non-

Dominated Elitist Selection for Supporting Multi-Objective Test Optimization,” IEEE Transactions on Software

Engineering, 2018.

[82] A. E. Eiben, and S. K. Smit, “Parameter tuning for configuring and analyzing evolutionary algorithms,” Swarm and

Evolutionary Computation, vol. 1, no. 1, pp. 19-31, 2011.

[83] A. Baars, M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, P. Tonella, and T. Vos, "Symbolic search-based testing."

pp. 53-62.

[84] J. N. Alarcón-Jaén, “Multi-objective approach for the minimization of test cases in Software Production Lines,”

University of Malaga, Spain. , 2018.

[85] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case study research in software engineering: Guidelines and

examples, 1st ed., New Jersey, USA: John Wiley & Sons, 2012.

[86] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, and P. S. Yu,

“Top 10 algorithms in data mining,” Knowledge and Information Systems (KAIS), vol. 14, no. 1, pp. 1-37, 2008.

[87] A. Arcuri, and G. Fraser, "On parameter tuning in search based software engineering." pp. 33-47.

[88] S. Wang, S. Ali, and A. Gotlieb, “Cost-effective test suite minimization in product lines using search techniques,”

Journal of Systems and Software (JSS), vol. 103, pp. 370-391, 2014.

[89] D. Pradhan, S. Wang, S. Ali, and T. Yue, “Search-Based Cost-Effective Test Case Selection within a Time Budget:

An Empirical Study,” in Proceedings of the Genetic and Evolutionary Computation Conference 2016, Denver,

Colorado, USA, 2016, pp. 1085-1092.

[90] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslen, Experimentation in software

engineering: an introduction, 1st ed., Berlin, Germany: Kluwer Academic Publishers, 2000.

[91] S. Wang, S. Ali, T. Yue, Y. Li, and M. Liaaen, "A practical guide to select quality indicators for assessing pareto-

based search algorithms in search-based software engineering." pp. 631-642.

[92] L. Yi, W. Zhang, H. Zhao, Z. Jin, and H. Mei, "Mining binary constraints in the construction of feature models." pp.

141-150.

[93] B. Zhang, and M. Becker, "Mining complex feature correlations from software product line configurations." pp. 19-

25.

[94] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki, "Mining configuration constraints: Static analyses and empirical

results." pp. 140-151.

[95] K. Czarnecki, S. She, and A. Wasowski, "Sample spaces and feature models: There and back again." pp. 22-31.

[96] L. Zhao, M. J. Zaki, and N. Ramakrishnan, "BLOSOM: A framework for mining arbitrary boolean expressions." pp.

827-832.

[97] H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang, B. Mobasher, C. Castro-Herrera, and M. Mirakhorli, "On-

demand feature recommendations derived from mining public product descriptions." pp. 181-190.

[98] N. Hariri, C. Castro-Herrera, M. Mirakhorli, J. Cleland-Huang, and B. Mobasher, “Supporting domain analysis

through mining and recommending features from online product listings,” IEEE Transactions on Software

Engineering (TSE), vol. 39, no. 12, pp. 1736-1752, 2013.

[99] Y. Yu, H. Wang, G. Yin, and B. Liu, "Mining and recommending software features across multiple web repositories."

pp. 1-9.

[100] N. H. Bakar, Z. M. Kasirun, and N. Salleh, “Feature extraction approaches from natural language requirements for

reuse in software product lines: A systematic literature review,” Journal of Systems and Software (JSS), vol. 106, pp.

132-149, 2015.

Simula Research Laboratory, Technical Report 2018-05 May 2018

Appendix A: Examples of Generated Rules Using SBRM+

Table 13: Examples of CPL rules from Cisco and Jitsi case studies

Case study Rule example

Rule

formate

Product.ConfigurableParameter = ConfigurableParameterValue AND … AND Product.ConfigurableParameter =

ConfigurableParameterValue : SystemState (Support/Violation)

Cisco

VCS1.IP-Protocol = Sip AND VCS2.Listen-Port = Off AND VCS2.IP-Protocol = Sip AND Default-Transport =

Tls : FailedFailed (34/5)

VCS2.Max-Transmit-Callrate <= 5982 AND VCS1. IP-Protocol = Auto AND VCS1.Encryption = Off AND

VCS2.Encryption = BestEffort AND VCS3.Encryption = BestEffort AND VCS3.Max-Transmit-Callrate > 135 :

ConnectedConnected (103/1)

Jitsi

VCS1.IP-Pprotocol = AIM AND VCS3.Video-Codec = rtx AND VCS3.Audio-Codec = AMR-WB-16000 AND

VCS2.Audio-Codec = SILK-12000 AND VCS1.Video-Codec = VP8 AND VCS1.Encryption = On AND

VCS2.Encryption = BestEffort AND VCS1.Default-Callrate <= 5744 AND VCS2.Max-Receive-Callrate > 1680

AND VCS3.Max-Transmit-Callrate > 3005 : ConnectedFailed (30/1)

VCS2.Video-Codec = VP8 AND VCS3.Video-Codec = h264 AND VCS2.MTU > 702 AND VCS1.MTU > 760

AND VCS1.Audio-Codec = SILK-16000 AND VCS1.SIP-Listen-Port = Off AND VCS1.Encryption = BestEffort

AND VCS1.Video-Codec = VP8 AND VCS2.MTU > 806 : FailedConnected (32/9)

Appendix B: Descriptive Statistics and Detailed Results

In this section, we present the detailed results of our research questions corresponding to both of the case studies (i.e., Cisco

and Jitsi).

Detailed Results of RQ1

Table 14. Comparing SBRM+
NSGA-II-C45 and SBRM+

NSGA-III-C45 with RBRM+-C45 and SBRM+
NSGA-II-PART and

SBRM+
NSGA-III-PART with RBRM+-PART in terms of fitness values for both Cisco and Jitsi case studies*

MLQMs
FV-O1 FV-O2 FV-O3 OFV

p-value Â12 p-value Â12 p-value Â12 p-value Â12

Comparing SBRM+
NSGA-II-C45 with RBRM+-C45 for the Cisco case study

Iteration-1 <0.05 0.07 <0.05 0.30 <0.05 0.30 <0.05 0.04

Iteration-2 <0.05 0.31 <0.05 0.13 <0.05 0.08 <0.05 0.18

Iteration-3 <0.05 0.35 <0.05 0.10 <0.05 0.18 <0.05 0.27

Iteration-4 <0.05 0.31 <0.05 0.13 <0.05 0.12 <0.05 0.11

Iteration-5 <0.05 0.34 <0.05 0.33 <0.05 0.03 <0.05 0.08

Overall <0.05 0.33 <0.05 0.19 <0.05 0.16 <0.05 0.16

Comparing SBRM+
NSGA-III-C45 with RBRM+-C45 for the Cisco case study

Iteration-1 <0.05 0.19 <0.05 0.39 <0.05 0 <0.05 0

Iteration-2 <0.05 0.33 <0.05 0.32 <0.05 0 <0.05 0.05

Iteration-3 <0.05 0.22 <0.05 0.21 <0.05 0 <0.05 0.02

Iteration-4 <0.05 0.15 <0.05 0.20 <0.05 0 <0.05 0

Iteration-5 <0.05 0.34 <0.05 0.38 <0.05 0 <0.05 0

Overall <0.05 0.28 <0.05 0.30 <0.05 0 <0.05 0.02

Comparing SBRM+
NSGA-II-PART with RBRM+-PART for the Cisco case study

Iteration-1 <0.05 0.16 <0.05 0.15 <0.05 0.14 <0.05 0.01

Iteration-2 <0.05 0.15 <0.05 0.36 <0.05 0.23 <0.05 0.07

Iteration-3 <0.05 0.01 <0.05 0.18 <0.05 0.08 <0.05 0

Iteration-4 <0.05 0.32 <0.05 0.20 <0.05 0.15 <0.05 0.01

Iteration-5 <0.05 0.36 <0.05 0.09 <0.05 0.15 <0.05 0

Overall <0.05 0.23 <0.05 0.19 <0.05 0.27 <0.05 0.17

Comparing SBRM+
NSGA-III-PART with RBRM+-PART for the Cisco case study

Iteration-1 <0.05 0.07 <0.05 0.26 <0.05 0.03 <0.05 0.01

Iteration-2 <0.05 0.04 <0.05 0.35 <0.05 0 <0.05 0

Iteration-3 <0.05 0.11 <0.05 0.12 <0.05 0 <0.05 0

Iteration-4 <0.05 0.42 <0.05 0.08 <0.05 0 <0.05 0

Iteration-5 <0.05 0.41 <0.05 0.08 <0.05 0 <0.05 0

Overall <0.05 0.24 <0.05 0.17 <0.05 0.02 <0.05 0

Simula Research Laboratory, Technical Report 2018-05 May 2018

Comparing SBRM+
NSGA-II-C45 with RBRM+-C45 for the Jitsi case study

Iteration-1 <0.05 0 <0.05 0.39 <0.05 0.33 <0.05 0

Iteration-2 <0.05 0.22 <0.05 0.02 <0.05 0 <0.05 0.01

Iteration-3 <0.05 0.18 <0.05 0 <0.05 0 <0.05 0

Iteration-4 <0.05 0.31 <0.05 0.01 <0.05 0 <0.05 0.01

Iteration-5 <0.05 0.15 <0.05 0.01 <0.05 0 <0.05 0

Overall <0.05 0.17 <0.05 0.08 <0.05 0.08 <0.05 0.05

Comparing SBRM+
NSGA-III-C45 with RBRM+-C45 for the Jitsi case study

Iteration-1 <0.05 0.06 <0.05 0.05 <0.05 0 <0.05 0

Iteration-2 <0.05 0.45 <0.05 0.01 <0.05 0 <0.05 0

Iteration-3 <0.05 0.43 <0.05 0.01 <0.05 0 <0.05 0

Iteration-4 <0.05 0.27 <0.05 0 <0.05 0 <0.05 0

Iteration-5 <0.05 0.41 <0.05 0.01 <0.05 0 <0.05 0

Overall <0.05 0.34 <0.05 0.02 <0.05 0.01 <0.05 0.02

Comparing SBRM+
NSGA-II-PART with RBRM+-PART for the Jitsi case study

Iteration-1 <0.05 0.16 <0.05 0.45 <0.05 0.47 <0.05 0

Iteration-2 <0.05 0.44 <0.05 0.01 <0.05 0 <0.05 0

Iteration-3 <0.05 0.36 <0.05 0 <0.05 0 <0.05 0

Iteration-4 <0.05 0.35 <0.05 0.02 <0.05 0.01 <0.05 0

Iteration-5 <0.05 0.31 <0.05 0.01 <0.05 0 <0.05 0

Overall <0.05 0.38 <0.05 0.15 <0.05 0.17 <0.05 0.33

Comparing SBRM+
NSGA-III-PART with RBRM+-PART for the Jitsi case study

Iteration-1 <0.05 0.41 <0.05 0.04 <0.05 0 <0.05 0

Iteration-2 <0.05 0.33 <0.05 0.08 <0.05 0.19 <0.05 0.12

Iteration-3 <0.05 0.08 <0.05 0.11 <0.05 0 <0.05 0

Iteration-4 <0.05 0.28 <0.05 0.09 <0.05 0.01 <0.05 0.02

Iteration-5 <0.05 0.24 <0.05 0.02 <0.05 0 <0.05 0.08

Overall <0.05 0.30 <0.05 0.09 <0.05 0.07 <0.05 0.05

Table 15. Comparing SBRM+NSGA-II-C45 and SBRM+NSGA-III-C45 with RBRM+-C45 and SBRM+NSGA-II-

PART and SBRM+NSGA-III-PART with RBRM+-PART in terms of indicators for both Cisco and Jitsi case studies*

MLQMs
HV IGD 𝛜 ED GD GS

p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12

Comparing SBRM+
NSGA-II-C45 with RBRM+-C45 for the Cisco case study

Iteration-1 <0.05 1 <0.05 0 0.17 0.40 <0.05 0 <0.05 0 <0.05 1

Iteration-2 <0.05 0.89 <0.05 0.07 <0.05 0.07 <0.05 0.09 <0.05 0.14 <0.05 0.92

Iteration-3 <0.05 0.77 <0.05 0.16 <0.05 0.17 <0.05 0.09 <0.05 0.10 <0.05 0.84

Iteration-4 <0.05 0.78 <0.05 0.13 <0.05 0.13 0.44 0.39 0.39 0.38 <0.05 0.82

Iteration-5 <0.05 0.89 <0.05 0.01 <0.05 0.03 0.31 0.36 0.25 0.34 <0.05 0.97

Overall <0.05 0.82 <0.05 0.11 <0.05 0.16 <0.05 0.26 <0.05 0.25 <0.05 0.91

Comparing SBRM+
NSGA-III-C45 with RBRM+-C45 for the Cisco case study

Iteration-1 <0.05 1 <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0

Iteration-2 <0.05 0.95 <0.05 0 <0.05 0 <0.05 0.04 <0.05 0 0.05 0.24

Iteration-3 <0.05 0.98 <0.05 0.02 <0.05 0 <0.05 0.08 <0.05 0 <0.05 0.17

Iteration-4 <0.05 1 <0.05 0 <0.05 0 <0.05 0.03 <0.05 0.01 <0.05 0.16

Iteration-5 <0.05 0.85 <0.05 0 <0.05 0 0.12 0.29 0.09 0.27 0.91 0.48

Overall <0.05 0.95 <0.05 0.02 <0.05 0 <0.05 0.15 <0.05 0.09 <0.05 0.25

Comparing SBRM+
NSGA-II-PART with RBRM+-PART for the Cisco case study

Iteration-1 <0.05 1 <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 1

Iteration-2 <0.05 0.90 <0.05 0.16 <0.05 0.22 0.16 0.31 <0.05 0.08 <0.05 0.86

Iteration-3 <0.05 1 <0.05 0.01 <0.05 0.06 <0.05 0.22 <0.05 0 <0.05 0.88

Iteration-4 <0.05 0.85 <0.05 0.10 <0.05 0.15 <0.05 0.16 <0.05 0 <0.05 0.78

Iteration-5 0.14 0.70 <0.05 0.13 <0.05 0.16 <0.05 0.22 <0.05 0.12 <0.05 0.81

Overall <0.05 0.76 <0.05 0.22 <0.05 0.26 <0.05 0.27 <0.05 0.11 <0.05 0.84

Comparing SBRM+
NSGA-III-PART with RBRM+-PART for the Cisco case study

Iteration-1 <0.05 1 <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 1

Iteration-2 <0.05 1 <0.05 0 <0.05 0 <0.05 0.17 <0.05 0.06 <0.05 0.79

Iteration-3 <0.05 1 <0.05 0 <0.05 0 <0.05 0.08 <0.05 0 0.74 0.55

Iteration-4 <0.05 1 <0.05 0 <0.05 0 <0.05 0.07 <0.05 0.01 0.62 0.43

Simula Research Laboratory, Technical Report 2018-05 May 2018

Iteration-5 <0.05 1 <0.05 0 <0.05 0 <0.05 0.09 <0.05 0.03 0.97 0.49

Overall <0.05 0.99 <0.05 0 <0.05 0.02 <0.05 0.08 <0.05 0.03 <0.05 0.73

Comparing SBRM+
NSGA-II-C45 with RBRM+-C45 for the Jitsi case study

Iteration-1 <0.05 1 <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0.85

Iteration-2 <0.05 1 <0.05 0 <0.05 0 <0.05 0.04 <0.05 0.14 <0.05 0.12

Iteration-3 <0.05 1 <0.05 0 <0.05 0 <0.05 0.12 <0.05 0.06 <0.05 0.03

Iteration-4 <0.05 0.97 <0.05 0 <0.05 0.06 0.19 0.33 0.05 0.24 <0.05 0.12

Iteration-5 <0.05 1 <0.05 0 <0.05 0 0.07 0.26 <0.05 0.05 <0.05 0.10

Overall <0.05 0.98 <0.05 0.03 <0.05 0.03 <0.05 0.14 <0.05 0.07 <0.05 0.24

Comparing SBRM+
NSGA-III-C45 with RBRM+-C45 for the Jitsi case study

Iteration-1 <0.05 1 <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 1

Iteration-2 <0.05 1 <0.05 0 <0.05 0 <0.05 0 <0.05 0.01 <0.05 1

Iteration-3 <0.05 1 <0.05 0 <0.05 0.12 <0.05 0.21 <0.05 0.07 <0.05 1

Iteration-4 <0.05 1 <0.05 0 <0.05 0 0.55 0.59 <0.05 0.20 <0.05 0.89

Iteration-5 <0.05 1 <0.05 0 <0.05 0.09 <0.05 0.22 <0.05 0.07 <0.05 1

Overall <0.05 0.97 <0.05 0 <0.05 0.03 <0.05 0.17 <0.05 0.08 <0.05 0.98

Comparing SBRM+
NSGA-II-PART with RBRM+-PART for the Jitsi case study

Iteration-1 <0.05 1 <0.05 0.10 <0.05 0.10 <0.05 0.10 <0.05 0 <0.05 1

Iteration-2 <0.05 0.83 <0.05 0 0.17 0.31 <0.05 0.09 <0.05 0.10 0.12 0.71

Iteration-3 <0.05 0.98 <0.05 0 0.08 0.26 <0.05 0.02 <0.05 0 <0.05 0.93

Iteration-4 <0.05 0.83 <0.05 0 0.06 0.25 <0.05 0.10 <0.05 0.09 <0.05 0.77

Iteration-5 <0.05 0.92 <0.05 0 <0.05 0.20 <0.05 0 <0.05 0 0.28 0.65

Overall <0.05 0.89 <0.05 0.15 <0.05 0.26 <0.05 0.08 <0.05 0.07 <0.05 0.74

Comparing SBRM+
NSGA-III-PART with RBRM+-PART for the Jitsi case study

Iteration-1 <0.05 1 <0.05 0 <0.05 0 <0.05 0.19 <0.05 0.05 <0.05 0.95

Iteration-2 <0.05 0.79 <0.05 0.10 0.44 0.39 <0.05 0.18 <0.05 0.13 <0.05 0.93

Iteration-3 <0.05 1 <0.05 0.01 <0.05 0.15 <0.05 0.13 <0.05 0.10 <0.05 1

Iteration-4 <0.05 0.92 <0.05 0.02 0.22 0.33 <0.05 0.11 <0.05 0.09 <0.05 0.95

Iteration-5 <0.05 0.90 <0.05 0 0.12 0.29 <0.05 0 <0.05 0 <0.05 0.91

Overall <0.05 0.92 <0.05 0.03 <0.05 0.29 <0.05 0.11 <0.05 0.08 <0.05 0.95

Detailed Results of RQ2

Table 16: Comparing SBRM+
NSGA-II-C45 with RBRM+-C45 in terms of MLQMs for the Cisco case study*

MLQMs/Iterations
Iteration-1 Iteration-2 Iteration-3 Iteration-4 Iteration-5 Overall

p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12

Accuracy 0.104 0.72 <0.05 0.94 <0.05 0.99 <0.05 0.99 <0.05 1 <0.05 0.96

MAE <0.05 0.06 <0.05 0.05 <0.05 0 <0.05 0 <0.05 0 <0.05 0.01

RMSE <0.05 0.20 <0.05 0.04 <0.05 0 <0.05 0 <0.05 0 <0.05 0.03

RAE <0.05 0.01 <0.05 0.03 <0.05 0 <0.05 0 <0.05 0 <0.05 0.01

RRSE <0.05 0.08 <0.05 0.04 <0.05 0 <0.05 0 <0.05 0 <0.05 0.02

FF-Precision 0.405 0.62 <0.05 0.89 <0.05 0.98 <0.05 0.99 <0.05 0.99 <0.05 0.92

FF-Recall 0.256 0.66 0.226 0.67 <0.05 0.85 <0.05 0.79 0.063 0.75 <0.05 0.75

FF-FMeasure 0.307 0.64 <0.05 0.78 <0.05 0.98 <0.05 0.95 <0.05 0.91 <0.05 0.88

CC-Precision <0.05 0.89 <0.05 0.91 <0.05 1 <0.05 1 <0.05 1 <0.05 0.96

CC-Recall <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 0.99

CC-FMeasure <0.05 0.97 <0.05 0.98 <0.05 1 <0.05 1 <0.05 1 <0.05 0.99

FC-Precision - 0.50 - 0.50 - 0.50 - 0.50 0.132 0.30 0.060 0.44

FC-Recall - 0.50 - 0.50 - 0.50 - 0.50 0.132 0.30 0.060 0.44

FC-FMeasure - 0.50 - 0.50 - 0.50 - 0.50 0.132 0.30 0.060 0.44

CF-Precision <0.05 0.80 <0.05 0.80 <0.05 0.95 <0.05 0.92 <0.05 0.96 <0.05 0.88

CF-Recall <0.05 0.98 <0.05 1 <0.05 0.95 <0.05 1 <0.05 1 <0.05 0.98

CF-FMeasure <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

* “-” represents that a value of a particular MLQM corresponding to all the iterations in all the cycles is equal to zero for both of the approaches and

therefore p-value cannot be calculated.

Table 17: Comparing SBRM+
NSGA-III-C45 with RBRM+-C45 in terms of MLQMs for the Cisco case study*

MLQMs/Iterations
Iteration-1 Iteration-2 Iteration-3 Iteration-4 Iteration-5 Overall

p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12

Simula Research Laboratory, Technical Report 2018-05 May 2018

Accuracy 0.21 0.67 <0.05 0.88 <0.05 0.96 <0.05 0.97 <0.05 1 <0.05 0.93

MAE 0.31 0.36 <0.05 0.07 <0.05 0 <0.05 0.01 <0.05 0 <0.05 0.06

RMSE 0.21 0.33 <0.05 0.13 <0.05 0.04 <0.05 0.03 <0.05 0 <0.05 0.07

RAE 0.34 0.37 <0.05 0.12 <0.05 0.01 <0.05 0.03 <0.05 0 <0.05 0.07

RRSE 0.25 0.34 0.06 0.25 <0.05 0.04 <0.05 0.04 <0.05 0 <0.05 0.10

FF-Precision 0.10 0.72 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 0.97

FF-Recall 0.17 0.69 0.16 0.69 <0.05 0.89 <0.05 0.86 0.05 0.76 <0.05 0.77

FF-FMeasure 0.27 0.65 <0.05 0.95 <0.05 0.98 <0.05 0.97 <0.05 0.95 <0.05 0.93

CC-Precision 0.43 0.61 0.97 0.49 0.16 0.69 0.14 0.70 <0.05 1 <0.05 0.71

CC-Recall 0.43 0.39 <0.05 0.20 0.71 0.45 0.82 0.47 <0.05 0.78 0.78 0.48

CC-FMeasure 0.60 0.58 0.23 0.34 0.33 0.64 0.41 0.62 <0.05 0.98 <0.05 0.63

FC-Precision - 0.50 - 0.50 - 0.50 - 0.5 <0.05 0 <0.05 0.40

FC-Recall - 0.50 - 0.50 - 0.50 - 0.50 <0.05 0 <0.05 0.40

FC-FMeasure - 0.50 - 0.50 - 0.50 - 0.50 <0.05 0 <0.05 0.40

CF-Precision 0.22 0.67 0.50 0.60 <0.05 0.90 <0.05 0.90 <0.05 0.96 <0.05 0.82

CF-Recall 0.65 0.57 0.71 0.56 <0.05 0.81 <0.05 0.94 <0.05 1 <0.05 0.80

CF-FMeasure 0.23 0.67 0.34 0.63 <0.05 0.97 <0.05 1 <0.05 1 <0.05 0.88

Table 18: Comparing SBRM+
NSGA-II-PART with RBRM+-PART in terms of MLQMs for the Cisco case study*

 MLQMs/Iterations
Iteration-1 Iteration-2 Iteration-3 Iteration-4 Iteration-5 Overall

p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12

Accuracy <0.05 1 <0.05 0.93 <0.05 0.99 <0.05 0.99 <0.05 1 <0.05 0.99

MAE <0.05 0 <0.05 0.06 <0.05 0.01 <0.05 0.01 <0.05 0 <0.05 0.01

RMSE <0.05 0 <0.05 0.04 <0.05 0 <0.05 0 <0.05 0 <0.05 0.01

RAE <0.05 0 <0.05 0.02 <0.05 0.01 <0.05 0.01 <0.05 0 <0.05 0.01

RRSE <0.05 0 <0.05 0.02 <0.05 0 <0.05 0.01 <0.05 0 <0.05 0.01

FF-Precision <0.05 1 <0.05 0.92 <0.05 1 <0.05 0.99 <0.05 1 <0.05 0.99

FF-Recall <0.05 1 <0.05 0.94 <0.05 0.97 <0.05 1 <0.05 1 <0.05 0.98

FF-FMeasure <0.05 1 <0.05 0.93 <0.05 0.99 <0.05 1 <0.05 1 <0.05 0.99

CC-Precision 0.427 0.61 <0.05 0.93 <0.05 0.80 <0.05 0.89 <0.05 0.96 <0.05 0.84

CC-Recall <0.05 0.83 <0.05 0.86 <0.05 0.77 <0.05 0.93 <0.05 0.96 <0.05 0.86

CC-FMeasure 0.064 0.75 <0.05 0.90 <0.05 0.80 <0.05 0.93 <0.05 0.96 <0.05 0.85

FC-Precision - 0.50 - 0.50 - 0.50 0.168 0.40 0.078 0.35 <0.05 0.45

FC-Recall - 0.50 - 0.50 - 0.50 0.168 0.40 0.078 0.35 <0.05 0.45

FC-FMeasure - 0.50 - 0.50 - 0.50 0.168 0.40 0.078 0.35 <0.05 0.45

CF-Precision 0.472 0.60 0.821 0.47 0.241 0.66 <0.05 0.80 <0.05 0.87 <0.05 0.65

CF-Recall 1 0.51 0.384 0.38 0.529 0.59 0.173 0.69 <0.05 0.84 0.213 0.57

CF-FMeasure 0.705 0.56 0.545 0.42 0.353 0.63 <0.05 0.77 <0.05 0.88 0.054 0.61
* “-” represents that a value of a particular MLQM corresponding to all the iterations in all the cycles is equal to zero for both of the approaches and

therefore p-value cannot be calculated

Table 19: Comparing SBRM+
NSGA-III-PART with RBRM+-PART in terms of MLQMs for the Cisco case study

 MLQMs/Iterations
Iteration-1 Iteration-2 Iteration-3 Iteration-4 Iteration-5 Overall

p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12

Accuracy <0.05 1 <0.05 0.91 <0.05 0.95 <0.05 0.96 <0.05 1 <0.05 0.97

MAE <0.05 0 <0.05 0.08 <0.05 0.04 <0.05 0.03 <0.05 0 <0.05 0.02

RMSE <0.05 0 <0.05 0.03 <0.05 0.01 <0.05 0.03 <0.05 0 <0.05 0.01

RAE <0.05 0.03 <0.05 0.10 <0.05 0.10 <0.05 0.04 <0.05 0 <0.05 0.06

RRSE <0.05 0.05 <0.05 0.06 <0.05 0.04 <0.05 0.03 <0.05 0 <0.05 0.04

FF-Precision <0.05 1 <0.05 0.99 <0.05 0.99 <0.05 0.99 <0.05 1 <0.05 1

FF-Recall <0.05 1 <0.05 1 <0.05 1 <0.05 0.98 <0.05 0.99 <0.05 0.99

FF-FMeasure <0.05 1 <0.05 1 <0.05 1 <0.05 0.98 <0.05 1 <0.05 0.99

CC-Precision 0.76 0.46 0.47 0.40 0.29 0.36 0.60 0.43 0.68 0.44 0.14 0.42

CC-Recall 0.57 0.42 0.38 0.38 0.12 0.29 0.79 0.54 0.71 0.56 0.34 0.44

CC-FMeasure 0.65 0.44 0.38 0.38 0.16 0.31 0.68 0.44 0.97 0.49 0.19 0.42

FC-Precision - 0.50 - 0.50 - 0.50 0.17 0.40 0.08 0.35 <0.05 0.45

FC-Recall - 0.50 - 0.50 - 0.50 0.17 0.40 0.08 0.35 <0.05 0.45

FC-FMeasure - 0.50 - 0.50 - 0.50 0.17 0.40 0.08 0.35 <0.05 0.45

CF-Precision 0.22 0.67 0.71 0.45 0.68 0.56 <0.05 0.82 <0.05 0.92 <0.05 0.65

Simula Research Laboratory, Technical Report 2018-05 May 2018

CF-Recall 0.68 0.56 0.38 0.38 0.76 0.55 <0.05 0.79 <0.05 0.92 <0.05 0.62

CF-FMeasure 0.36 0.63 0.65 0.44 0.94 0.52 <0.05 0.80 <0.05 0.92 <0.05 0.63

Table 20: Comparing SBRM+
NSGA-II-C45 with RBRM+-C45 in terms of MLQMs for the Jitsi case study

MLQMs/Iterations
Iteration-1 Iteration-2 Iteration-3 Iteration-4 Iteration-5 Overall

p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12

Accuracy <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 0.98

MAE <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0.01

RMSE <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0.01

RAE <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0

RRSE <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0

FF-Precision <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 0.98

FF-Recall <0.05 0.99 <0.05 0.86 <0.05 0.92 <0.05 0.86 <0.05 0.84 <0.05 0.80

FF-FMeasure <0.05 1 <0.05 1 <0.05 1 <0.05 0.99 <0.05 0.97 <0.05 0.94

CC-Precision <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

CC-Recall <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

CC-FMeasure <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

FC-Precision 0.384 0.62 0.570 0.42 0.226 0.67 0.289 0.65 0.240 0.66 0.072 0.60

FC-Recall 0.162 0.69 1 0.50 0.095 0.73 0.199 0.68 0.289 0.65 <0.05 0.63

FC-FMeasure 0.211 0.67 0.970 0.49 0.120 0.71 0.226 0.67 0.325 0.64 <0.05 0.63

CF-Precision <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

CF-Recall <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

CF-FMeasure <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

Table 21: Comparing SBRM+
NSGA-III-C45 with RBRM+-C45 in terms of MLQMs for the Jitsi case study

MLQMs/Iterations
Iteration-1 Iteration-2 Iteration-3 Iteration-4 Iteration-5 Overall

p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12

Accuracy <0.05 0.95 0.68 0.56 0.79 0.46 0.73 0.55 0.63 0.57 0.43 0.55

MAE <0.05 0.80 <0.05 0.83 0.11 0.72 0.63 0.57 0.39 0.38 <0.05 0.62

RMSE <0.05 0.02 <0.05 0.19 0.22 0.33 0.14 0.30 0.15 0.31 <0.05 0.29

RAE <0.05 1 <0.05 0.89 0.17 0.69 0.74 0.45 <0.05 0.19 <0.05 0.63

RRSE 0.53 0.59 <0.05 0.21 <0.05 0.16 <0.05 0.11 <0.05 0.09 <0.05 0.20

FF-Precision <0.05 0.93 0.76 0.46 0.94 0.52 0.65 0.57 0.19 0.68 0.54 0.54

FF-Recall <0.05 1 <0.05 0.81 0.94 0.52 0.85 0.47 0.82 0.47 <0.05 0.64

FF-FMeasure <0.05 1 0.34 0.63 0.91 0.48 0.71 0.56 0.57 0.58 0.13 0.59

CC-Precision 0.08 0.26 <0.05 0.77 0.52 0.59 0.26 0.66 0.25 0.66 0.10 0.60

CC-Recall <0.05 0.10 0.91 0.52 0.73 0.45 0.34 0.63 0.23 0.67 0.81 0.49

CC-FMeasure <0.05 0.13 0.43 0.61 1 0.50 0.27 0.65 0.25 0.66 0.70 0.52

FC-Precision 0.06 0.25 0.43 0.61 0.20 0.68 <0.05 0.76 <0.05 0.79 <0.05 0.63

FC-Recall <0.05 0.14 0.82 0.47 0.38 0.62 0.35 0.63 0.16 0.69 0.99 0.50

FC-FMeasure <0.05 0.15 0.85 0.53 0.27 0.65 0.20 0.68 0.13 0.71 0.33 0.56

CF-Precision <0.05 0 <0.05 0 <0.05 0.12 0.21 0.33 0.91 0.48 <0.05 0.17

CF-Recall <0.05 0 <0.05 0 0.17 0.31 0.91 0.48 0.39 0.62 <0.05 0.28

CF-FMeasure <0.05 0 <0.05 0 0.05 0.24 0.48 0.40 0.52 0.59 <0.05 0.24

Table 22: Comparing SBRM+
NSGA-II-PART with RBRM+-PART in terms of MLQMs for the Jitsi case study

MLQMs/Iterations
Iteration-1 Iteration-2 Iteration-3 Iteration-4 Iteration-5 Overall

p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12

Accuracy <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 0.87

MAE <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0.12

RMSE <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0.11

RAE <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0.06

RRSE <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0.05

FF-Precision <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 0.88

FF-Recall <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 0.88

FF-FMeasure <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 0.88

CC-Precision <0.05 0.77 <0.05 0.85 0.070 0.75 <0.05 0.81 <0.05 0.92 <0.05 0.82

CC-Recall 0.344 0.63 0.121 0.71 <0.05 0.79 <0.05 0.80 <0.05 0.92 <0.05 0.79

Simula Research Laboratory, Technical Report 2018-05 May 2018

CC-FMeasure 0.212 0.67 <0.05 0.82 <0.05 0.79 <0.05 0.79 <0.05 0.93 <0.05 0.81

FC-Precision <0.05 1 <0.05 0.99 <0.05 0.97 <0.05 0.97 <0.05 1 <0.05 0.92

FC-Recall <0.05 0.95 <0.05 0.99 <0.05 0.94 <0.05 0.94 <0.05 0.98 <0.05 0.90

FC-FMeasure <0.05 1 <0.05 0.98 <0.05 0.96 <0.05 0.95 <0.05 1 <0.05 0.92

CF-Precision <0.05 0.83 <0.05 0.77 0.129 0.71 0.472 0.60 0.130 0.71 <0.05 0.69

CF-Recall 0.241 0.66 <0.05 0.82 0.571 0.58 1 0.50 0.121 0.71 <0.05 0.63

CF-FMeasure <0.05 0.78 <0.05 0.78 0.406 0.62 0.791 0.54 0.130 0.71 <0.05 0.67

Table 23: Comparing SBRM+
NSGA-III-PART with RBRM+-PART in terms of MLQMs for the Jitsi case study

MLQMs/Iterations
Iteration-1 Iteration-2 Iteration-3 Iteration-4 Iteration-5 Overall

p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12

Accuracy <0.05 1 <0.05 1 <0.05 1 <0.05 0.98 <0.05 1 <0.05 0.97

MAE <0.05 <0.05 <0.05 <0.05 <0.05 0.02 <0.05 0.02 <0.05 <0.05 <0.05 0.03

RMSE <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.02 <0.05 <0.05 <0.05 0.03

RAE <0.05 <0.05 <0.05 0.11 <0.05 0.09 <0.05 0.15 <0.05 0.04 <0.05 0.25

RRSE <0.05 <0.05 <0.05 0.16 <0.05 0.08 <0.05 0.07 <0.05 0.08 <0.05 0.24

FF-Precision <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 0.98

FF-Recall <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

FF-FMeasure <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

CC-Precision <0.05 0.10 0.05 0.24 0.68 0.44 1 0.50 0.24 0.66 <0.05 0.38

CC-Recall <0.05 0.16 <0.05 0.23 0.50 0.41 0.73 0.45 0.62 0.57 <0.05 0.36

CC-FMeasure <0.05 0.14 <0.05 0.23 0.39 0.38 0.74 0.45 0.55 0.59 <0.05 0.36

FC-Precision 0.41 0.39 <0.05 0.14 <0.05 0.20 0.15 0.31 0.05 0.24 <0.05 0.28

FC-Recall 0.10 0.28 <0.05 0.04 <0.05 0.14 <0.05 0.19 <0.05 0.20 <0.05 0.20

FC-FMeasure 0.16 0.31 <0.05 0.06 <0.05 0.16 0.07 0.26 <0.05 0.22 <0.05 0.23

CF-Precision <0.05 0.12 <0.05 0.08 <0.05 0.07 <0.05 0.03 <0.05 0.04 <0.05 0.07

CF-Recall <0.05 0.08 <0.05 0.09 <0.05 0.04 <0.05 0.03 <0.05 0.12 <0.05 0.07

CF-FMeasure <0.05 0.11 <0.05 0.08 <0.05 0.04 <0.05 0.03 <0.05 0.09 <0.05 0.07

Detailed Results of RQ3

Table 24: Descriptive statistics for ARI of SBRM+
NSGA-II-C45, SBRM+

NSGA-III-C45, SBRM+
NSGA-II-PART and

SBRM+
NSGA-III-PART for the Cisco case study (%)

MLQMs
SBRM+

NSGA-II-C45 SBRM+
NSGA-III-C45 SBRM+

NSGA-II-PART SBRM+
NSGA-II-PART

Max Min Mean Max Min Mean Max Min Mean Max Min Mean

Accuracy 26.5 5.3 13.4 18.7 3.0 12.2 16.9 4.6 10.1 11.4 0.5 8.0

MAE 14.3 4.9 9.1 11.0 3.3 8.1 8.7 2.2 5.3 5.8 0.5 4.3

RMSE 19.3 4.0 10.8 13.9 2.6 9.6 12.6 3.6 7.8 8.8 1.0 6.3

RAE 41.9 15.6 27.3 30.2 7.5 22.3 25.1 6.4 15.5 19.2 2.5 11.3

RRSE 45.8 10.2 25.7 32.0 4.6 20.9 28.6 8.3 17.6 22.8 3.6 13.1

FF-Precision 16.2 1.6 7.7 13.4 2.6 9.4 14.5 4.0 8.5 12.0 1.0 7.9

FF-Recall 17.9 -3.9 3.6 13.7 -4.5 4.0 14.2 3.4 8.3 10.8 1.0 7.4

FF-FMeasure 17.0 -0.9 5.8 13.6 -0.5 7.0 14.4 3.7 8.4 11.2 1.1 7.6

CC-Precision 25.5 11.6 15.7 16.2 4.9 12.0 11.0 1.3 5.5 8.1 -7.6 -0.5

CC-Recall 15.6 2.0 7.8 8.1 -2.8 3.1 10.2 1.0 5.2 7.1 -4.9 0.2

CC-FMeasure 20.9 7.1 11.9 11.6 1.3 7.8 10.7 1.2 5.4 7.6 -6.3 -0.1

FC-Precision 88.5 -18.2 11.2 -6.7 -34.3 -16.3 0.0 -16.7 -3.7 0.0 -16.7 -3.7

FC-Recall 94.1 -7.5 22.6 -1.1 -14.9 -6.2 0.0 -11.1 -2.4 0.0 -11.1 -2.4

FC-FMeasure 93.2 -10.7 19.3 -1.8 -17.9 -8.8 0.0 -12.5 -2.8 0.0 -12.5 -2.8

CF-Precision 35.6 3.4 13.3 41.0 -3.3 16.2 17.4 -1.1 6.1 36.1 -1.9 20.5

CF-Recall 33.2 4.4 14.5 54.0 5.2 20.5 15.2 -3.1 4.8 36.1 -1.1 20.1

CF-FMeasure 28.1 5.0 14.9 45.9 6.1 19.7 16.3 -2.2 5.4 35.8 -1.4 20.3

Table 25: Descriptive statistics for ARI of SBRM+
NSGA-II-C45, SBRM+

NSGA-III-C45, SBRM+
NSGA-II-PART and

SBRM+
NSGA-III-PART for the Jitsi case study (%)

MLQMs
SBRM+

NSGA-II-C45 SBRM+
NSGA-III-C45 SBRM+

NSGA-II-PART SBRM+
NSGA-III-PART

Max Min Mean Max Min Mean Max Min Mean Max Min Mean

Simula Research Laboratory, Technical Report 2018-05 May 2018

Accuracy 15.0 3.9 11.4 4.9 -5.0 0.3 10.7 3.0 6.5 16.6 1.2 11.6

MAE 8.0 2.7 6.3 1.7 -2.3 0.2 5.9 1.4 3.3 8.3 0.9 5.9

RMSE 8.3 2.6 6.3 2.9 -1.4 0.8 6.5 1.3 3.7 9.9 1.1 6.8

RAE 23.1 10.3 18.6 6.0 -2.2 2.2 10.2 5.4 7.9 7.0 -1.2 4.1

RRSE 19.3 8.0 14.9 5.4 -0.2 3.1 9.3 4.0 6.9 6.1 -0.6 3.3

FF-Precision 15.7 3.8 11.5 5.4 -4.1 1.1 9.4 3.7 5.6 11.9 2.9 9.2

FF-Recall 10.5 -3.3 4.4 6.7 -6.0 -0.8 9.5 0.3 4.8 12.7 4.2 10.0

FF-FMeasure 13.4 0.6 8.4 5.4 -5.0 0.2 9.5 2.0 5.2 12.1 3.5 9.7

CC-Precision 23.9 12.5 16.2 10.1 -6.0 3.2 12.3 -2.9 6.2 11.7 -8.8 2.0

CC-Recall 31.4 13.8 20.1 12.6 -6.2 3.5 16.2 -3.4 7.3 18.6 -10.2 2.0

CC-FMeasure 27.7 13.2 18.1 11.4 -6.1 3.4 13.1 -3.1 6.8 14.8 -9.5 2.0

FC-Precision 6.9 -3.3 1.4 9.6 -1.8 3.2 10.7 1.7 6.5 2.6 -12.8 -3.6

FC-Recall 11.7 -3.7 1.7 12.1 -6.1 2.6 15.2 2.6 7.5 0.8 -12.0 -4.6

FC-FMeasure 10.0 -2.8 1.6 11.0 -4.6 2.8 12.3 2.4 7.0 1.6 -12.4 -4.1

CF-Precision 34.0 14.3 23.3 9.1 -7.0 -0.2 5.7 -1.2 2.4 -1.1 -11.8 -7.1

CF-Recall 44.1 15.7 28.3 16.1 -6.9 2.6 8.6 -3.5 2.6 1.9 -16.5 -7.5

CF-FMeasure 41.8 15.2 26.8 13.9 -7.1 1.8 7.2 -2.0 2.5 0.4 -13.6 -7.3

Detailed Results of RQ4

Table 26. Comparing SBRM+
NSGA-II-C45 with SBRM+

NSGA-III-C45 and SBRM+
NSGA-II-PART with SBRM+

NSGA-III-PART

in terms of fitness values for both Cisco and Jitsi case studies*

MLQMs
FV-O1 FV-O2 FV-O3 OFV

p-value Â12 p-value Â12 p-value Â12 p-value Â12

Comparing SBRM+
NSGA-II-C45 with SBRM+

NSGA-III-C45 for the Cisco case study

Iteration-1 <0.05 0.33 <0.05 0.40 <0.05 1 <0.05 1

Iteration-2 0.53 0.50 <0.05 0.22 <0.05 0.90 <0.05 0.82

Iteration-3 <0.05 0.79 <0.05 0.24 <0.05 0.82 <0.05 0.89

Iteration-4 <0.05 0.63 <0.05 0.43 <0.05 1 <0.05 0.93

Iteration-5 <0.05 0.61 <0.05 0.45 <0.05 1 <0.05 1

Overall <0.05 0.59 <0.05 0.35 <0.05 0.94 <0.05 0.92

Comparing SBRM+
NSGA-II-PART with SBRM+

NSGA-III-PART for the Cisco case study

Iteration-1 <0.05 0.65 <0.05 0.31 <0.05 0.72 <0.05 0.39

Iteration-2 <0.05 0.59 0.21 0.49 <0.05 1 <0.05 1

Iteration-3 <0.05 0.45 <0.05 0.65 <0.05 1 <0.05 1

Iteration-4 <0.05 0.39 <0.05 0.67 <0.05 1 <0.05 1

Iteration-5 0.60 0.50 0.82 0.50 <0.05 1 <0.05 1

Overall 0.06 0.50 <0.05 0.53 <0.05 0.94 <0.05 0.97

Comparing SBRM+
NSGA-II-C45 with SBRM+

NSGA-III-C45 for the Jitsi case study

Iteration-1 <0.05 0.11 <0.05 0.90 <0.05 0.98 <0.05 0.89

Iteration-2 <0.05 0.24 <0.05 0.69 <0.05 0.79 <0.05 0.59

Iteration-3 <0.05 0.24 <0.05 0.66 <0.05 0.75 <0.05 0.57

Iteration-4 <0.05 0.41 <0.05 0.64 <0.05 0.63 <0.05 0.57

Iteration-5 <0.05 0.16 <0.05 0.63 <0.05 0.68 <0.05 0.47

Overall <0.05 0.24 <0.05 0.63 <0.05 0.64 <0.05 0.55

Comparing SBRM+
NSGA-II-PART with SBRM+

NSGA-III-PART for the Jitsi case study

Iteration-1 <0.05 0.22 <0.05 0.93 <0.05 1 <0.05 1

Iteration-2 <0.05 0.62 <0.05 0.43 <0.05 0.29 0.21 0.49

Iteration-3 <0.05 0.74 <0.05 0.38 <0.05 0.39 <0.05 0.57

Iteration-4 <0.05 0.53 <0.05 0.55 0.28 0.51 <0.05 0.53

Iteration-5 0.81 0.50 <0.05 0.58 <0.05 0.63 <0.05 0.58

Overall <0.05 0.55 <0.05 0.52 0.88 0.50 <0.05 0.57

Table 27. Comparing SBRM+NSGA-II-C45 with SBRM+NSGA-III-C45 and SBRM+NSGA-II-PART with

SBRM+NSGA-III-PART in terms of indicators for both Cisco and Jitsi case studies*

MLQMs
HV IGD 𝛜 ED GD GS

p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12

Comparing SBRM+
NSGA-II-C45 with SBRM+

NSGA-III-C45 for the Cisco case study

Simula Research Laboratory, Technical Report 2018-05 May 2018

Iteration-1 <0.05 0 <0.05 1 <0.05 1 <0.05 0.10 <0.05 0 <0.05 1

Iteration-2 <0.05 0.15 <0.05 0.86 <0.05 0.90 0.97 0.49 0.22 0.67 <0.05 1

Iteration-3 <0.05 0.04 <0.05 0.95 <0.05 0.80 0.24 0.34 0.58 0.58 <0.05 0.93

Iteration-4 <0.05 0.08 <0.05 1 <0.05 1 <0.05 0.83 <0.05 0.87 <0.05 0.85

Iteration-5 <0.05 0.23 <0.05 1 <0.05 1 0.62 0.57 0.39 0.62 <0.05 0.96

Overall <0.05 0.12 <0.05 0.94 <0.05 0.94 0.57 0.53 0.09 0.60 <0.05 0.95

Comparing SBRM+
NSGA-II-PART with SBRM+

NSGA-III-PART for the Cisco case study

Iteration-1 <0.05 0.90 <0.05 0.91 <0.05 1 <0.05 0.91 0.31 0.64 <0.05 0

Iteration-2 <0.05 0 <0.05 1 <0.05 1 0.07 0.74 <0.05 0.84 0.25 0.34

Iteration-3 <0.05 0 <0.05 1 <0.05 1 <0.05 0.90 <0.05 0.93 0.06 0.75

Iteration-4 <0.05 0 <0.05 1 <0.05 1 0.06 0.75 <0.05 0.89 0.05 0.77

Iteration-5 <0.05 0.05 <0.05 1 <0.05 1 <0.05 0.77 <0.05 0.85 <0.05 0.77

Overall <0.05 0.07 <0.05 0.99 <0.05 0.98 <0.05 0.72 <0.05 0.76 0.26 0.57

Comparing SBRM+
NSGA-II-C45 with SBRM+

NSGA-III-C45 for the Jitsi case study

Iteration-1 <0.05 0 <0.05 1 <0.05 1 <0.05 0.82 <0.05 0 <0.05 0

Iteration-2 <0.05 0.79 0.19 0.68 <0.05 0 0.91 0.52 0.74 0.55 <0.05 0.09

Iteration-3 <0.05 0.85 0.80 0.54 <0.05 0.10 0.68 0.44 0.58 0.42 <0.05 0

Iteration-4 0.25 0.66 0.68 0.44 <0.05 0.18 0.07 0.26 0.74 0.45 <0.05 0.08

Iteration-5 <0.05 0.93 <0.05 0.10 <0.05 0.04 0.84 0.53 0.25 0.66 <0.05 0

Overall <0.05 0.65 0.74 0.48 <0.05 0.27 0.29 0.44 <0.05 0.33 <0.05 0.03

Comparing SBRM+
NSGA-II-PART with SBRM+

NSGA-III-PART for the Jitsi case study

Iteration-1 <0.05 0 <0.05 1 <0.05 1 0.76 0.55 <0.05 0.05 <0.05 0.84

Iteration-2 0.85 0.53 0.06 0.25 0.91 0.52 0.27 0.35 0.48 0.60 0.06 0.25

Iteration-3 0.68 0.44 0.25 0.34 0.53 0.59 0.57 0.42 0.28 0.65 <0.05 0.14

Iteration-4 0.80 0.54 0.25 0.34 0.68 0.44 0.73 0.45 0.11 0.72 <0.05 0.16

Iteration-5 0.48 0.60 0.80 0.46 0.17 0.31 0.14 0.70 0.06 0.75 <0.05 0.20

Overall 0.34 0.44 0.36 0.45 0.55 0.54 0.49 0.46 0.12 0.59 <0.05 0.21

Detailed Results of RQ5

Table 28: Comparing SBRM+
NSGA-II-C45 with SBRM+

NSGA-III-C45 in terms of MLQMs for the Cisco case study*

MLQMs/Iterations
Iteration-1 Iteration-2 Iteration-3 Iteration-4 Iteration-5 Overall

p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12

Accuracy <0.05 0.87 <0.05 0.85 0.17 0.69 0.14 0.70 0.53 0.59 <0.05 0.65

MAE <0.05 0.02 <0.05 0.10 <0.05 0.14 <0.05 0.18 0.26 0.35 <0.05 0.31

RMSE <0.05 0.07 <0.05 0.10 0.14 0.30 0.14 0.30 0.48 0.40 <0.05 0.33

RAE <0.05 0 <0.05 0.09 <0.05 0.06 <0.05 0.14 0.03 0.21 <0.05 0.22

RRSE <0.05 0.01 <0.05 0.08 <0.05 0.08 <0.05 0.20 0.11 0.28 <0.05 0.25

FF-Precision <0.05 0.22 <0.05 0.10 <0.05 0.19 0.17 0.32 0.24 0.34 <0.05 0.32

FF-Recall 0.42 0.39 0.27 0.35 0.40 0.39 0.45 0.40 0.45 0.40 0.10 0.40

FF-FMeasure 0.06 0.25 <0.05 0.15 0.07 0.26 0.20 0.33 0.33 0.37 <0.05 0.35

CC-Precision <0.05 0.89 <0.05 0.95 <0.05 0.96 <0.05 0.94 0.01 0.86 <0.05 0.89

CC-Recall <0.05 1 <0.05 1 <0.05 1 <0.05 0.99 <0.05 0.94 <0.05 0.97

CC-FMeasure <0.05 1 <0.05 1 <0.05 0.99 <0.05 0.98 <0.05 0.92 <0.05 0.95

FC-Precision - 0.50 - 0.50 - 0.50 - 0.50 0.08 0.65 0.08 0.53

FC-Recall - 0.50 - 0.50 - 0.50 - 0.50 0.08 0.65 0.08 0.53

FC-FMeasure - 0.50 - 0.50 - 0.50 - 0.50 0.08 0.65 0.08 0.53

CF-Precision <0.05 0.91 <0.05 0.96 0.43 0.61 1 0.50 0.50 0.41 <0.05 0.67

CF-Recall <0.05 0.99 <0.05 1 0.41 0.62 0.68 0.44 0.88 0.53 <0.05 0.71

CF-FMeasure <0.05 1 <0.05 1 0.24 0.66 1 0.50 0.97 0.51 <0.05 0.73

* “-” represents that value of a particular MLQM corresponding to all the iterations in all the cycles is equal to zero for both approaches and p-value

cannot be calculated

Table 29: Comparing SBRM+
NSGA-II-PART with SBRM+

NSGA-III-PART in terms of MLQMs for the Cisco case study*

MLQMs/Iterations
Iteration-1 Iteration-2 Iteration-3 Iteration-4 Iteration-5 Overall

p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12

Accuracy 0.31 0.36 0.32 0.64 0.74 0.55 0.17 0.69 0.08 0.74 0.10 0.60

MAE 0.23 0.67 0.19 0.32 0.85 0.47 0.22 0.33 0.08 0.26 0.12 0.41

RMSE 0.31 0.64 0.48 0.40 0.91 0.48 0.23 0.34 0.19 0.32 0.18 0.42

Simula Research Laboratory, Technical Report 2018-05 May 2018

RAE 0.31 0.36 <0.05 0.18 <0.05 0.20 0.22 0.33 <0.05 0.18 <0.05 0.30

RRSE 0.53 0.41 <0.05 0.23 <0.05 0.20 0.31 0.36 0.05 0.24 <0.05 0.32

FF-Precision <0.05 0.04 0.07 0.26 0.08 0.27 1 0.50 0.60 0.58 0.08 0.40

FF-Recall <0.05 0.10 0.08 0.26 0.16 0.31 0.60 0.58 0.47 0.60 0.13 0.41

FF-FMeasure <0.05 0.05 0.10 0.28 0.14 0.30 0.85 0.53 0.41 0.62 0.13 0.41

CC-Precision 0.10 0.72 <0.05 0.92 <0.05 0.86 <0.05 0.94 <0.05 0.91 <0.05 0.89

CC-Recall <0.05 0.93 <0.05 0.89 <0.05 0.81 <0.05 0.90 <0.05 0.90 <0.05 0.87

CC-FMeasure <0.05 0.89 <0.05 0.91 <0.05 0.84 <0.05 0.95 <0.05 0.91 <0.05 0.89

FC-Precision - 0.50 - 0.50 - 0.50 - 0.50 - 0.50 - 0.50

FC-Recall - 0.50 - 0.50 - 0.50 - 0.50 - 0.50 - 0.50

FC-FMeasure - 0.50 - 0.50 - 0.50 - 0.50 - 0.50 - 0.50

CF-Precision 0.34 0.37 0.97 0.49 0.85 0.53 0.05 0.24 <0.05 0.20 0.26 0.43

CF-Recall 0.62 0.43 0.88 0.53 0.88 0.48 0.11 0.28 <0.05 0.16 0.21 0.43

CF-FMeasure 0.29 0.36 1 0.51 1 0.50 0.09 0.27 <0.05 0.18 0.24 0.43
* “-” represents that value of a particular MLQM corresponding to all the iterations in all the cycles is equal to zero for both approaches and p-value

cannot be calculate

Table 30: Comparing SBRM+
NSGA-II-C45 (W1) with SBRM+

NSGA-II-PART (W2) in terms of MLQMs for the Cisco case

study*

MLQMs/Iterations
Iteration-1 Iteration-2 Iteration-3 Iteration-4 Iteration-5 Overall

p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12

Accuracy <0.05 1 <0.05 0.96 <0.05 0.99 <0.05 0.98 <0.05 0.93 <0.05 0.96

MAE <0.05 0.09 <0.05 0.12 <0.05 0.08 <0.05 0.13 0.063 0.25 <0.05 0.26

RMSE <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0.07 <0.05 0.02

RAE <0.05 0 <0.05 0.08 <0.05 0.06 <0.05 0.08 <0.05 0.12 <0.05 0.16

RRSE <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0.02 <0.05 0

FF-Precision <0.05 0 <0.05 0.13 0.150 0.31 0.104 0.28 0.273 0.35 <0.05 0.28

FF-Recall <0.05 1 <0.05 1 <0.05 1 <0.05 0.98 <0.05 0.93 <0.05 0.99

FF-FMeasure <0.05 1 <0.05 0.89 <0.05 0.93 <0.05 0.87 <0.05 0.78 <0.05 0.82

CC-Precision <0.05 1 <0.05 0.98 <0.05 1 <0.05 1 <0.05 0.98 <0.05 0.99

CC-Recall <0.05 1 <0.05 1 <0.05 1 <0.05 0.99 <0.05 0.97 <0.05 0.98

CC-FMeasure <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 0.97 <0.05 0.99

FC-Precision - 0.50 - 0.50 - 0.50 - 0.50 0.078 0.65 0.082 0.53

FC-Recall - 0.50 - 0.50 - 0.50 - 0.50 0.078 0.65 0.082 0.53

FC-FMeasure - 0.50 - 0.50 - 0.50 - 0.50 0.078 0.65 0.082 0.53

CF-Precision <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

CF-Recall <0.05 1 <0.05 0.90 0.082 0.74 0.104 0.72 0.130 0.71 <0.05 0.81

CF-FMeasure <0.05 1 <0.05 1 <0.05 0.99 <0.05 1 <0.05 1 <0.05 1

* “-” represents that value of a particular MLQM corresponding to all the iterations in all the cycles is equal to zero for both approaches and p-value

cannot be calculated, W1 and W2 are two winners of first two comparisons.

Table 31: Comparing SBRM+
NSGA-II-C45 with SBRM+

NSGA-III-C45 in terms of MLQMs for the Jitsi case study*

MLQMs/Iterations
Iteration-1 Iteration-2 Iteration-3 Iteration-4 Iteration-5 Overall

p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12

Accuracy <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 0.97

MAE <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0.02

RMSE <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0.02

RAE <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0

RRSE <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0

FF-Precision <0.05 1 <0.05 1 <0.05 1 <0.05 0.99 <0.05 0.99 <0.05 0.94

FF-Recall <0.05 0.21 0.31 0.64 <0.05 0.95 <0.05 0.86 <0.05 0.89 <0.05 0.72

FF-FMeasure <0.05 1 <0.05 0.98 <0.05 0.99 <0.05 0.97 <0.05 0.94 <0.05 0.90

CC-Precision <0.05 0.99 <0.05 0.94 <0.05 0.95 <0.05 0.92 <0.05 0.99 <0.05 0.95

CC-Recall <0.05 0.98 <0.05 0.98 <0.05 0.98 <0.05 0.95 <0.05 1 <0.05 0.96

CC-FMeasure <0.05 0.99 <0.05 0.95 <0.05 0.97 <0.05 0.95 <0.05 1 <0.05 0.95

FC-Precision <0.05 0.82 0.29 0.36 0.85 0.47 0.47 0.40 <0.05 0.24 0.44 0.45

FC-Recall <0.05 0.98 0.97 0.49 0.73 0.55 0.97 0.51 0.76 0.46 0.10 0.60

FC-FMeasure <0.05 0.95 0.68 0.44 0.79 0.54 0.97 0.51 0.21 0.33 0.43 0.55

CF-Precision <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

Simula Research Laboratory, Technical Report 2018-05 May 2018

CF-Recall <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

CF-FMeasure <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

Table 32: Comparing SBRM+
NSGA-II-PART with SBRM+

NSGA-III-PART in terms of MLQMs for the Jitsi case study*

MLQMs/Iterations
Iteration-1 Iteration-2 Iteration-3 Iteration-4 Iteration-5 Overall

p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12

Accuracy <0.05 0 <0.05 0.21 <0.05 0.22 <0.05 0.18 <0.05 0.15 <0.05 0.30

MAE <0.05 1 <0.05 0.80 <0.05 0.79 <0.05 0.82 <0.05 0.85 <0.05 0.71

RMSE <0.05 1 <0.05 0.78 <0.05 0.79 <0.05 0.82 <0.05 0.85 <0.05 0.70

RAE <0.05 0.10 <0.05 0 <0.05 0.03 <0.05 0 <0.05 0.03 <0.05 0.21

RRSE <0.05 0.10 <0.05 0 <0.05 0.03 <0.05 0 <0.05 0.03 <0.05 0.21

FF-Precision <0.05 0 <0.05 0.24 0.06 0.25 <0.05 0.13 <0.05 0.10 <0.05 0.29

FF-Recall <0.05 0 <0.05 0.04 <0.05 0.11 <0.05 0.12 <0.05 0.08 <0.05 0.18

FF-FMeasure <0.05 0 <0.05 0.11 <0.05 0.16 <0.05 0.14 <0.05 0.10 <0.05 0.24

CC-Precision <0.05 1 <0.05 0.82 0.14 0.70 0.10 0.73 0.12 0.71 <0.05 0.77

CC-Recall <0.05 0.99 <0.05 0.81 <0.05 0.79 0.11 0.72 <0.05 0.77 <0.05 0.80

CC-FMeasure <0.05 1 <0.05 0.81 <0.05 0.77 0.11 0.72 0.09 0.73 <0.05 0.79

FC-Precision <0.05 0.98 <0.05 1 <0.05 1 <0.05 0.99 <0.05 1 <0.05 0.97

FC-Recall <0.05 0.96 <0.05 1 <0.05 0.99 <0.05 1 <0.05 1 <0.05 0.98

FC-FMeasure <0.05 0.96 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 0.98

CF-Precision <0.05 0.95 <0.05 0.98 <0.05 0.99 <0.05 0.97 <0.05 0.97 <0.05 0.97

CF-Recall <0.05 0.96 <0.05 0.98 <0.05 1 <0.05 0.96 <0.05 0.93 <0.05 0.96

CF-FMeasure <0.05 0.95 <0.05 0.98 <0.05 1 <0.05 0.97 <0.05 0.95 <0.05 0.97

Table 33: Comparing SBRM+
NSGA-II-C45 with SBRM+

NSGA-II-PART in terms of MLQMs for the Jitsi case study*

MLQMs/Iterations
Iteration-1 Iteration-2 Iteration-3 Iteration-4 Iteration-5 Overall

p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12

Accuracy <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0.08

MAE <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 0.95

RMSE <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 0.99 <0.05 0.88

RAE <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 0.98

RRSE <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 0.98 <0.05 0.89

FF-Precision <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0.02

FF-Recall <0.05 0.05 <0.05 0.06 <0.05 0.11 <0.05 0.15 <0.05 0.17 <0.05 0.24

FF-FMeasure <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0.01 <0.05 0.08

CC-Precision <0.05 0.13 <0.05 0.18 0.173 0.32 0.190 0.32 0.121 0.29 <0.05 0.26

CC-Recall <0.05 0.06 <0.05 0.14 <0.05 0.22 <0.05 0.21 <0.05 0.23 <0.05 0.19

CC-FMeasure <0.05 0.08 <0.05 0.15 0.123 0.29 0.063 0.25 <0.05 0.22 <0.05 0.21

FC-Precision <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0

FC-Recall <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0

FC-FMeasure <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0 <0.05 0

CF-Precision 0.064 0.25 0.290 0.65 0.186 0.68 <0.05 0.87 0.064 0.75 <0.05 0.64

CF-Recall <0.05 0 0.082 0.27 0.481 0.40 0.739 0.45 0.739 0.45 <0.05 0.33

CF-FMeasure <0.05 0 0.345 0.37 1 0.50 0.529 0.59 0.650 0.57 0.268 0.44
* W1 and W2 are two winners of first two comparisons.

Detailed Results of RQ6

Table 34: Correlation analysis of MLQMs with AFVs corresponding to SBRM+
NSGA-II-C45, SBRM+

NSGA-III-C45,

SBRM+
NSGA-II-PART, and SBRM+

NSGA-III-PART for the Cisco case study*

Correlation analysis of MLQMs with AFVs for SBRM+
NSGA-II-C45

MLQMs
AFV-O1 AFV-O2 AFV-O3 OAFV HV

𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value

Accuracy -0.18 0.20 -0.33 <0.05 -0.24 0.09 -0.39 <0.05 0.48 <0.05

MAE 0.15 0.30 0.34 <0.05 0.18 0.20 0.37 <0.05 -0.46 <0.05

RMSE 0.18 0.21 0.33 <0.05 0.23 0.11 0.40 <0.05 -0.49 <0.05

RAE 0.14 0.34 0.32 <0.05 0.19 0.18 0.37 <0.05 -0.46 <0.05

Simula Research Laboratory, Technical Report 2018-05 May 2018

RRSE 0.17 0.24 0.33 <0.05 0.24 0.09 0.40 <0.05 -0.49 <0.05

FF-Precision -0.15 0.31 -0.34 <0.05 -0.18 0.21 -0.35 <0.05 0.44 <0.05

FF-Recall -0.23 0.10 -0.21 0.14 -0.43 <0.05 -0.42 <0.05 0.46 <0.05

FF-FMeasure -0.23 0.11 -0.38 <0.05 -0.24 0.09 -0.41 <0.05 0.51 <0.05

CC-Precision -0.24 0.09 -0.37 <0.05 -0.21 0.15 -0.37 <0.05 0.45 <0.05

CC-Recall -0.15 0.30 -0.36 <0.05 -0.10 0.47 -0.35 <0.05 0.48 <0.05

CC-FMeasure -0.19 0.18 -0.37 <0.05 -0.19 0.19 -0.39 <0.05 0.50 <0.05

FC-Precision 0.19 0.19 0.15 0.31 -0.25 0.08 -0.22 0.12 0.19 0.19

FC-Recall 0.19 0.17 0.15 0.29 -0.25 0.08 -0.23 0.12 0.19 0.18

FC-FMeasure 0.19 0.19 0.15 0.31 -0.25 0.08 -0.22 0.12 0.19 0.19

CF-Precision -0.02 0.91 0.24 0.10 -0.32 <0.05 -0.03 0.84 0.04 0.81

CF-Recall 0.06 0.69 -0.01 0.93 0.10 0.49 0.16 0.28 -0.29 <0.05

CF-FMeasure 0.09 0.54 0.17 0.23 -0.13 0.37 0.09 0.55 -0.26 0.07

Correlation analysis of MLQMs with AFVs for SBRM+
NSGA-III-C45

MLQMs
AFV-O1 AFV-O2 AFV-O3 OAFV HV

𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value

Accuracy -0.21 0.14 -0.12 0.41 0.47 <0.05 0.42 <0.05 -0.22 0.13

MAE 0.23 0.10 0.09 0.55 -0.46 <0.05 -0.41 <0.05 0.23 0.11

RMSE 0.21 0.14 0.13 0.36 -0.47 <0.05 -0.42 <0.05 0.21 0.14

RAE 0.19 0.18 0.17 0.24 -0.44 <0.05 -0.41 <0.05 0.2 0.16

RRSE 0.17 0.23 0.21 0.15 -0.46 <0.05 -0.43 <0.05 0.2 0.16

FF-Precision -0.24 0.09 0.12 0.39 0.54 <0.05 0.45 <0.05 -0.36 <0.05

FF-Recall -0.17 0.24 0.02 0.90 0.44 <0.05 0.4 <0.05 -0.25 0.08

FF-FMeasure -0.19 0.19 0.05 0.71 0.49 <0.05 0.42 <0.05 -0.29 <0.05

CC-Precision -0.2 0.17 -0.18 0.20 0.26 0.06 0.25 0.08 -0.11 0.45

CC-Recall -0.1 0.49 -0.28 0.05 0.19 0.19 0.14 0.32 0 1

CC-FMeasure -0.16 0.27 -0.22 0.13 0.23 0.11 0.21 0.15 -0.06 0.65

FC-Precision - - - - - - - - - -

FC-Recall - - - - - - - - - -

FC-FMeasure - - - - - - - - - -

CF-Precision 0.11 0.46 -0.26 0.07 0.31 <0.05 0.33 <0.05 -0.09 0.53

CF-Recall 0.03 0.82 -0.18 0.2 0.38 <0.05 0.36 <0.05 -0.17 0.23

CF-FMeasure 0.08 0.58 -0.23 0.110 0.35 0.010 0.35 0.010 -0.12 0.400

Correlation analysis of MLQMs with AFVs for SBRM+
NSGA-II-PART

MLQMs
AFV-O1 AFV-O2 AFV-O3 OAFV HV

𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value

Accuracy -0.21 0.14 -0.12 0.41 0.47 <0.05 0.42 <0.05 -0.22 0.13

MAE 0.23 0.10 0.09 0.55 -0.46 <0.05 -0.41 <0.05 0.23 0.11

RMSE 0.21 0.14 0.13 0.36 -0.47 <0.05 -0.42 <0.05 0.21 0.14

RAE 0.19 0.18 0.17 0.24 -0.44 <0.05 -0.41 <0.05 0.20 0.16

RRSE 0.17 0.23 0.21 0.15 -0.46 <0.05 -0.43 <0.05 0.20 0.16

FF-Precision -0.24 0.09 0.12 0.39 0.54 <0.05 0.45 <0.05 -0.36 <0.05

FF-Recall -0.17 0.24 0.02 0.90 0.44 <0.05 0.40 <0.05 -0.25 0.08

FF-FMeasure -0.19 0.19 0.05 0.71 0.49 <0.05 0.42 <0.05 -0.29 <0.05

CC-Precision -0.20 0.17 -0.18 0.20 0.26 0.06 0.25 0.08 -0.11 0.45

CC-Recall -0.10 0.49 -0.28 0.05 0.19 0.19 0.14 0.32 <0.05 1

CC-FMeasure -0.16 0.27 -0.22 0.13 0.23 0.11 0.21 0.15 -0.06 0.65

FC-Precision - - - - - - - - - -

FC-Recall - - - - - - - - - -

FC-FMeasure - - - - - - - - - -

CF-Precision 0.11 0.46 -0.26 0.07 0.31 <0.05 0.33 <0.05 -0.09 0.53

CF-Recall 0.03 0.82 -0.18 0.20 0.38 <0.05 0.36 <0.05 -0.17 0.23

CF-FMeasure 0.08 0.58 -0.23 0.11 0.35 <0.05 0.35 <0.05 -0.12 0.40

Correlation analysis of MLQMs with AFVs for SBRM+
NSGA-III-PART

MLQMs
AFV-O1 AFV-O2 AFV-O3 OAFV HV

𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value

Accuracy -0.25 0.085 -0.04 0.770 0.25 0.078 -0.06 0.691 -0.25 0.076

MAE 0.24 0.098 0.08 0.578 -0.21 0.146 0.10 0.508 0.21 0.150

RMSE 0.28 <0.05 0.11 0.448 -0.15 0.292 0.18 0.222 0.14 0.319

Simula Research Laboratory, Technical Report 2018-05 May 2018

RAE 0.09 0.553 0.29 <0.05 0.07 0.643 0.22 0.132 -0.10 0.483

RRSE 0.14 0.319 0.31 <0.05 0.09 0.522 0.30 <0.05 -0.13 0.354

FF-Precision -0.35 <0.05 0.08 0.579 0.25 0.074 -0.11 0.465 -0.27 0.060

FF-Recall -0.34 <0.05 0.18 0.217 0.34 <0.05 0 0.986 -0.36 <0.05

FF-FMeasure -0.36 <0.05 0.14 0.340 0.32 <0.05 -0.05 0.731 -0.34 <0.05

CC-Precision 0.18 0.201 -0.01 0.931 0.15 0.285 0.33 <0.05 -0.19 0.186

CC-Recall 0.31 <0.05 -0.22 0.131 -0.08 0.601 0.18 0.200 0.01 0.934

CC-FMeasure 0.29 <0.05 -0.07 0.616 0.04 0.765 0.30 <0.05 -0.11 0.446

FC-Precision - - - - - - - - - -

FC-Recall - - - - - - - - - -

FC-FMeasure - - - - - - - - - -

CF-Precision 0.07 0.616 -0.39 <0.05 -0.34 <0.05 -0.42 <0.05 0.41 <0.05

CF-Recall 0.06 0.673 -0.38 <0.05 -0.38 <0.05 -0.44 <0.05 0.45 <0.05

CF-FMeasure 0.09 0.554 -0.38 <0.05 0.25 0.078 -0.43 <0.05 0.43 <0.05

* “-” = represents that the value of a particular MLQM corresponding to all the iterations in all the cycles is equal to zero

Table 35: Correlation analysis of MLQMs with six indicators corresponding to SBRM+
NSGA-II-C45, SBRM+

NSGA-III-

C45, SBRM+
NSGA-II-PART, and SBRM+

NSGA-III-PART for the Cisco case study*

Correlation analysis of MLQMs with AFVs for SBRM+
NSGA-II-C45

MLQMs

HV IGD 𝛜 ED GD GS

𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌
p-

value

Accuracy 0.13 0.38 -0.24 0.09 -0.28 0.05 0.17 0.25 0.34 0.02 -0.12 0.42

MAE -0.09 0.55 0.19 0.18 0.22 0.12 -0.20 0.17 -0.36 0.01 0.12 0.40

RMSE -0.12 0.41 0.25 0.08 0.27 0.05 -0.19 0.18 -0.36 0.01 0.13 0.36

RAE -0.10 0.50 0.20 0.16 0.23 0.11 -0.19 0.18 -0.36 0.01 0.12 0.39

RRSE -0.11 0.44 0.25 0.08 0.28 0.05 -0.19 0.18 -0.36 0.01 0.14 0.35

FF-Precision 0.08 0.57 -0.18 0.20 -0.21 0.14 0.18 0.21 0.33 0.02 -0.07 0.62

FF-Recall 0.21 0.15 -0.38 0.01 -0.46 0.00 0.11 0.44 0.19 0.20 -0.14 0.32

FF-FMeasure 0.14 0.33 -0.25 0.08 -0.27 0.05 0.14 0.33 0.29 0.04 -0.07 0.65

CC-Precision 0.17 0.24 -0.24 0.09 -0.26 0.07 0.10 0.49 0.31 0.03 -0.11 0.44

CC-Recall 0.10 0.47 -0.18 0.21 -0.15 0.28 0.29 0.04 0.44 0.00 -0.07 0.65

CC-FMeasure 0.13 0.37 -0.23 0.10 -0.24 0.09 0.20 0.16 0.38 0.01 -0.11 0.44

FC-Precision -0.16 0.25 -0.22 0.13 -0.24 0.09 0.08 0.59 0.14 0.32 -0.04 0.80

FC-Recall -0.17 0.23 -0.22 0.13 -0.24 0.09 0.09 0.55 0.15 0.30 -0.04 0.79

FC-FMeasure -0.16 0.25 -0.22 0.13 -0.24 0.09 0.08 0.59 0.14 0.32 -0.04 0.80

CF-Precision 0.02 0.90 -0.17 0.23 -0.32 0.03 0.01 0.94 -0.08 0.59 -0.20 0.15

CF-Recall 0.06 0.70 0.15 0.30 0.11 0.43 -0.21 0.15 -0.19 0.20 -0.06 0.65

CF-FMeasure 0.12 0.41 -0.03 0.82 -0.12 0.42 -0.12 0.40 -0.15 0.30 -0.25 0.08

Correlation analysis of MLQMs with AFVs for SBRM+
NSGA-III-C45

MLQMs

HV IGD 𝛜 ED GD GS

𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌
p-

value

Accuracy -0.50 0.00 0.53 0.00 0.48 0.00 0.10 0.51 0.18 0.21 0.31 0.03

MAE 0.47 0.00 -0.52 0.00 -0.48 0.00 -0.09 0.55 -0.18 0.22 -0.30 0.04

RMSE 0.54 0.00 -0.54 0.00 -0.49 0.00 -0.12 0.41 -0.21 0.15 -0.34 0.02

RAE 0.50 0.00 -0.51 0.00 -0.46 0.00 -0.11 0.46 -0.20 0.17 -0.28 0.05

RRSE 0.55 0.00 -0.53 0.00 -0.48 0.00 -0.12 0.42 -0.22 0.12 -0.29 0.04

FF-Precision -0.45 0.00 0.55 0.00 0.54 0.00 0.03 0.86 0.13 0.37 0.29 0.04

FF-Recall -0.45 0.00 0.50 0.00 0.47 0.00 0.10 0.50 0.21 0.15 0.29 0.04

FF-FMeasure -0.46 0.00 0.53 0.00 0.51 0.00 0.05 0.74 0.15 0.29 0.29 0.04

CC-Precision -0.36 0.01 0.33 0.02 0.29 0.04 0.14 0.32 0.20 0.17 0.18 0.20

CC-Recall -0.25 0.07 0.24 0.09 0.20 0.16 0.06 0.66 0.11 0.46 0.10 0.50

CC-FMeasure -0.32 0.03 0.29 0.04 0.25 0.08 0.13 0.38 0.17 0.25 0.14 0.32

FC-Precision - - - - - - - - - - - -

FC-Recall - - - - - - - - - - - -

FC-FMeasure - - - - - - - - - - - -

CF-Precision -0.53 0.00 0.37 0.01 0.31 0.03 0.28 0.05 0.34 0.01 0.22 0.12

Simula Research Laboratory, Technical Report 2018-05 May 2018

CF-Recall -0.53 0.00 0.41 0.00 0.38 0.01 0.20 0.16 0.25 0.08 0.20 0.16

CF-FMeasure -0.54 0.00 0.41 0.00 0.35 0.01 0.23 0.10 0.28 0.05 0.21 0.13

Correlation analysis of MLQMs with AFVs for SBRM+
NSGA-II-PART

MLQMs

HV IGD 𝛜 ED GD GS HV

𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌
p-

value

Accuracy 0.49 0.00 -0.49 0.00 -0.27 0.06 0.64 0.00 0.61 0.00 -0.26 0.07

MAE -0.54 0.00 0.55 0.00 0.37 0.01 -0.65 0.00 -0.66 0.00 0.26 0.07

RMSE -0.50 0.00 0.49 0.00 0.27 0.06 -0.66 0.00 -0.63 0.00 0.25 0.08

RAE -0.50 0.00 0.51 0.00 0.32 0.02 -0.61 0.00 -0.66 0.00 0.22 0.12

RRSE -0.49 0.00 0.48 0.00 0.23 0.11 -0.61 0.00 -0.60 0.00 0.23 0.11

FF-Precision 0.51 0.00 -0.52 0.00 -0.44 0.00 0.62 0.00 0.70 0.00 -0.23 0.11

FF-Recall 0.35 0.01 -0.34 0.02 -0.13 0.36 0.55 0.00 0.45 0.00 -0.30 0.04

FF-FMeasure 0.50 0.00 -0.50 0.00 -0.32 0.02 0.64 0.00 0.62 0.00 -0.29 0.04

CC-Precision 0.18 0.20 -0.16 0.27 0.02 0.89 0.46 0.00 0.45 0.00 -0.18 0.21

CC-Recall 0.13 0.36 -0.10 0.47 0.05 0.73 0.36 0.01 0.33 0.02 -0.12 0.39

CC-FMeasure 0.16 0.28 -0.12 0.40 0.07 0.65 0.45 0.00 0.41 0.00 -0.14 0.33

FC-Precision - - - - - - - - - - - -

FC-Recall - - - - - - - - - - - -

FC-FMeasure - - - - - - - - - - - -

CF-Precision 0.26 0.07 -0.32 0.02 -0.34 0.02 0.12 0.39 0.17 0.25 -0.23 0.10

CF-Recall 0.05 0.74 -0.10 0.48 -0.24 0.10 -0.08 0.58 0.13 0.36 0.04 0.78

CF-FMeasure 0.13 0.37 -0.20 0.17 -0.32 0.02 -0.01 0.96 0.18 0.21 -0.05 0.71

Correlation analysis of MLQMs with AFVs for SBRM+
NSGA-III-PART

MLQMs

HV IGD 𝛜 ED GD GS

𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌
p-

value

Accuracy 0.29 0.04 -0.30 0.04 -0.30 0.03 -0.03 0.86 0.18 0.20 -0.23 0.11

MAE -0.30 0.03 0.31 0.03 0.30 0.03 0.05 0.73 -0.18 0.21 0.22 0.13

RMSE -0.34 0.02 0.36 0.01 0.34 0.02 0.00 1.00 -0.23 0.11 0.24 0.10

RAE -0.18 0.21 0.26 0.07 0.19 0.20 -0.12 0.39 -0.29 0.04 0.23 0.11

RRSE -0.24 0.09 0.33 0.02 0.24 0.09 -0.19 0.19 -0.35 0.01 0.26 0.07

FF-Precision 0.40 0.00 -0.41 0.00 -0.40 0.00 0.03 0.82 0.27 0.06 -0.10 0.51

FF-Recall 0.35 0.01 -0.33 0.02 -0.36 0.01 0.04 0.78 0.19 0.20 -0.01 0.92

FF-FMeasure 0.39 0.00 -0.39 0.01 -0.40 0.00 0.03 0.82 0.24 0.10 -0.06 0.67

CC-Precision -0.10 0.49 0.19 0.18 0.07 0.65 -0.30 0.03 -0.30 0.04 -0.05 0.75

CC-Recall -0.24 0.09 0.27 0.06 0.23 0.11 -0.22 0.12 -0.26 0.06 -0.24 0.09

CC-FMeasure -0.20 0.16 0.27 0.06 0.18 0.22 -0.28 0.05 -0.32 0.02 -0.13 0.36

FC-Precision - - - - - - - - - - - -

FC-Recall - - - - - - - - - - - -

FC-FMeasure - - - - - - - - - - - -

CF-Precision 0.05 0.75 -0.24 0.10 -0.01 0.97 0.24 0.10 0.34 0.02 -0.22 0.12

CF-Recall 0.05 0.74 -0.23 0.10 0.00 0.99 0.21 0.14 0.38 0.01 -0.20 0.16

CF-FMeasure 0.03 0.85 -0.21 0.14 0.02 0.91 0.23 0.11 0.36 0.01 -0.20 0.16

* “-” = represents that the value of a particular MLQM corresponding to all the iterations in all the cycles is equal to zero

Table 36: Correlation analysis of MLQMs with AFVs corresponding to SBRM+
NSGA-II-C45, SBRM+

NSGA-III-C45,

SBRM+
NSGA-II-PART, and SBRM+

NSGA-III-PART for the Jitsi case study

Correlation analysis of MLQMs with AFVs for SBRM+
NSGA-II-C45

MLQMs
AFV-O1 AFV-O2 AFV-O3 OAFV HV

𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value

Accuracy 0.03 0.836 -0.69 <0.05 -0.69 <0.05 -0.63 <0.05 0.66 <0.05

MAE -0.04 0.804 0.69 <0.05 0.70 <0.05 0.63 <0.05 -0.66 <0.05

RMSE -0.04 0.760 0.68 <0.05 0.69 <0.05 0.62 <0.05 -0.66 <0.05

RAE -0.05 0.720 0.64 <0.05 0.64 <0.05 0.58 <0.05 -0.61 <0.05

RRSE -0.12 0.424 0.60 <0.05 0.60 <0.05 0.53 <0.05 -0.58 <0.05

FF-Precision 0.02 0.902 -0.72 <0.05 -0.72 <0.05 -0.64 <0.05 0.68 <0.05

FF-Recall 0.01 0.943 -0.67 <0.05 -0.66 <0.05 -0.61 <0.05 0.65 <0.05

FF-FMeasure 0 0.996 -0.72 <0.05 -0.71 <0.05 -0.65 <0.05 0.69 <0.05

Simula Research Laboratory, Technical Report 2018-05 May 2018

CC-Precision 0 0.980 -0.34 <0.05 -0.33 <0.05 -0.32 <0.05 0.32 <0.05

CC-Recall 0.09 0.522 -0.34 <0.05 -0.32 <0.05 -0.29 <0.05 0.30 <0.05

CC-FMeasure 0.07 0.609 -0.34 <0.05 -0.33 <0.05 -0.30 <0.05 0.31 <0.05

FC-Precision -0.01 0.948 0.07 0.634 0 0.982 0.04 0.81 -0.07 0.606

FC-Recall -0.01 0.930 0.07 0.649 0.01 0.951 0.05 0.74 -0.09 0.538

FC-FMeasure -0.01 0.932 0.07 0.605 0.02 0.902 0.05 0.71 -0.10 0.510

CF-Precision 0.08 0.585 -0.47 <0.05 -0.46 <0.05 -0.41 <0.05 0.44 <0.05

CF-Recall 0.01 0.932 -0.50 <0.05 -0.49 <0.05 -0.45 <0.05 0.47 <0.05

CF-FMeasure 0.04 0.784 -0.50 <0.05 -0.49 <0.05 -0.45 <0.05 0.47 <0.05

Correlation analysis of MLQMs with AFVs for SBRM+
NSGA-III-C45

MLQMs
AFV-O1 AFV-O2 AFV-O3 OAFV HV

𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value

Accuracy -0.23 0.11 -0.42 <0.05 -0.42 <0.05 -0.44 <0.05 0.37 <0.05

MAE 0.23 0.12 0.50 <0.05 0.51 <0.05 0.52 <0.05 -0.45 <0.05

RMSE 0.29 <0.05 0.46 <0.05 0.45 <0.05 0.49 <0.05 -0.40 <0.05

RAE 0.43 <0.05 0.49 <0.05 0.55 <0.05 0.58 <0.05 -0.47 <0.05

RRSE 0.54 <0.05 0.37 <0.05 0.43 <0.05 0.49 <0.05 -0.35 <0.05

FF-Precision -0.13 0.37 -0.40 <0.05 -0.40 <0.05 -0.40 <0.05 0.37 <0.05

FF-Recall -0.12 0.39 0.02 0.88 0.04 0.79 0.01 0.92 -0.07 0.63

FF-FMeasure -0.12 0.40 -0.23 0.10 -0.23 0.11 -0.23 0.11 0.19 0.18

CC-Precision -0.31 <0.05 -0.03 0.86 -0.11 0.43 -0.13 0.38 0.06 0.66

CC-Recall -0.27 0.05 -0.12 0.40 -0.22 0.12 -0.22 0.13 0.16 0.25

CC-FMeasure -0.30 <0.05 -0.09 0.54 -0.18 0.21 -0.19 0.18 0.13 0.37

FC-Precision -0.21 0.15 -0.33 <0.05 -0.39 <0.05 -0.40 <0.05 0.30 <0.05

FC-Recall -0.05 0.75 -0.33 <0.05 -0.36 <0.05 -0.34 <0.05 0.29 <0.05

FC-FMeasure -0.10 0.48 -0.34 <0.05 -0.38 <0.05 -0.37 <0.05 0.30 <0.05

CF-Precision -0.31 <0.05 -0.17 0.25 -0.25 0.09 -0.25 0.08 0.13 0.35

CF-Recall -0.31 <0.05 -0.25 0.08 -0.32 <0.05 -0.32 <0.05 0.24 0.10

CF-FMeasure -0.30 <0.05 -0.22 0.12 -0.30 <0.05 -0.29 <0.05 0.20 0.16

Correlation analysis of MLQMs with AFVs for SBRM+
NSGA-II-PART

MLQMs
AFV-O1 AFV-O2 AFV-O3 OAFV HV

𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value

Accuracy 0.29 <0.05 -0.65 <0.05 -0.65 -0.650 -0.62 <0.05 0.66 <0.05

MAE -0.30 <0.05 0.65 <0.05 0.65 <0.05 0.61 <0.05 -0.66 <0.05

RMSE -0.31 <0.05 0.67 <0.05 0.67 <0.05 0.62 <0.05 -0.66 <0.05

RAE -0.28 <0.05 0.59 <0.05 0.58 <0.05 0.57 <0.05 -0.60 <0.05

RRSE -0.29 <0.05 0.61 <0.05 0.61 <0.05 0.58 <0.05 -0.62 <0.05

FF-Precision 0.32 <0.05 -0.69 <0.05 -0.67 <0.05 -0.63 <0.05 0.66 <0.05

FF-Recall 0.26 0.073 -0.72 <0.05 -0.71 <0.05 -0.68 <0.05 0.72 <0.05

FF-FMeasure 0.26 0.066 -0.71 <0.05 -0.69 <0.05 -0.67 <0.05 0.71 <0.05

CC-Precision 0.14 0.350 -0.04 0.788 -0.05 0.750 -0.11 0.45 0.07 0.616

CC-Recall 0.14 0.336 0 0.985 -0.03 0.827 -0.09 0.53 0.06 0.687

CC-FMeasure 0.15 0.291 0 0.986 -0.02 0.870 -0.08 0.57 0.05 0.732

FC-Precision 0.30 <0.05 -0.36 <0.05 -0.39 <0.05 -0.36 <0.05 0.40 <0.05

FC-Recall 0.28 <0.05 -0.40 <0.05 -0.35 <0.05 -0.33 <0.05 0.37 <0.05

FC-FMeasure 0.34 <0.05 -0.42 <0.05 -0.40 <0.05 -0.34 <0.05 0.40 <0.05

CF-Precision 0.08 0.572 -0.15 0.306 -0.19 0.177 -0.18 0.22 0.23 0.109

CF-Recall 0.20 0.165 -0.06 0.678 -0.09 0.540 -0.09 0.54 0.13 0.362

CF-FMeasure 0.18 0.221 -0.11 0.462 -0.15 0.306 -0.13 0.36 0.18 0.207

Correlation analysis of MLQMs with AFVs for SBRM+
NSGA-III-PART

MLQMs
AFV-O1 AFV-O2 AFV-O3 OAFV HV

𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value

Accuracy 0.25 0.08 -0.33 <0.05 -0.40 <0.05 -0.27 0.06 0.43 <0.05

MAE -0.24 0.10 0.32 <0.05 0.39 <0.05 0.27 0.06 -0.43 <0.05

RMSE -0.24 0.10 0.32 <0.05 0.40 <0.05 0.28 <0.05 -0.44 <0.05

RAE -0.36 <0.05 0.46 <0.05 0.60 <0.05 0.47 <0.05 -0.57 <0.05

RRSE -0.37 <0.05 0.45 <0.05 0.61 <0.05 0.49 <0.05 -0.56 <0.05

FF-Precision 0.24 0.09 -0.34 <0.05 -0.42 <0.05 -0.34 <0.05 0.46 <0.05

FF-Recall 0.24 0.10 -0.33 <0.05 -0.40 <0.05 -0.31 <0.05 0.43 <0.05

FF-FMeasure 0.26 0.06 -0.36 <0.05 -0.44 <0.05 -0.34 <0.05 0.47 <0.05

Simula Research Laboratory, Technical Report 2018-05 May 2018

CC-Precision 0.13 0.38 -0.11 0.46 -0.28 0.05 -0.29 <0.05 0.16 0.28

CC-Recall 0.06 0.67 -0.02 0.89 -0.20 0.15 -0.23 0.11 0.08 0.56

CC-FMeasure 0.11 0.46 -0.08 0.59 -0.26 0.07 -0.27 0.06 0.13 0.35

FC-Precision 0.29 <0.05 -0.26 0.07 -0.22 0.13 -0.08 0.58 0.24 0.10

FC-Recall 0.22 0.12 -0.25 0.08 -0.23 0.11 -0.16 0.28 0.30 <0.05

FC-FMeasure 0.27 0.06 -0.27 0.06 -0.23 0.11 -0.12 0.40 0.29 <0.05

CF-Precision 0.01 0.96 -0.15 0.30 -0.11 0.46 -0.10 0.49 0.18 0.21

CF-Recall -0.01 0.95 -0.10 0.51 0.00 0.98 0.01 0.93 0.10 0.47

CF-FMeasure -0.01 0.97 -0.11 0.44 -0.03 0.83 -0.03 0.86 0.13 0.37

Table 37: Correlation analysis of MLQMs with six indicators corresponding to SBRM+
NSGA-II-C45, SBRM+

NSGA-III-

C45, SBRM+
NSGA-II-PART, and SBRM+

NSGA-III-PART for the Jitsi case study*

Correlation analysis of MLQMs with AFVs for SBRM+
NSGA-II-C45

MLQMs

HV IGD 𝛜 ED GD GS

𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌
p-

value

Accuracy 0.51 0.00 -0.64 0.00 -0.39 0.01 0.18 0.22 0.36 0.01 -0.42 0.00

MAE -0.50 0.00 0.64 0.00 0.38 0.01 -0.18 0.22 -0.35 0.01 0.43 0.00

RMSE -0.49 0.00 0.63 0.00 0.38 0.01 -0.18 0.21 -0.35 0.01 0.42 0.00

RAE -0.48 0.00 0.59 0.00 0.38 0.01 -0.22 0.12 -0.39 0.01 0.49 0.00

RRSE -0.42 0.00 0.54 0.00 0.32 0.02 -0.22 0.13 -0.38 0.01 0.47 0.00

FF-Precision 0.52 0.00 -0.67 0.00 -0.40 0.00 0.15 0.29 0.37 0.01 -0.38 0.01

FF-Recall 0.47 0.00 -0.63 0.00 -0.35 0.01 0.11 0.46 0.34 0.02 -0.30 0.03

FF-FMeasure 0.53 0.00 -0.68 0.00 -0.41 0.00 0.16 0.28 0.37 0.01 -0.38 0.01

CC-Precision 0.32 0.02 -0.31 0.03 -0.23 0.10 0.21 0.14 0.26 0.07 -0.24 0.09

CC-Recall 0.27 0.06 -0.29 0.04 -0.18 0.21 0.26 0.07 0.25 0.09 -0.25 0.08

CC-FMeasure 0.29 0.04 -0.30 0.03 -0.19 0.18 0.23 0.11 0.26 0.07 -0.24 0.09

FC-Precision -0.03 0.84 0.07 0.63 0.09 0.52 -0.16 0.26 -0.13 0.37 -0.15 0.30

FC-Recall -0.05 0.74 0.08 0.60 0.09 0.53 -0.26 0.07 -0.19 0.18 -0.08 0.59

FC-FMeasure -0.04 0.76 0.09 0.55 0.10 0.48 -0.22 0.13 -0.16 0.25 -0.13 0.38

CF-Precision 0.35 0.01 -0.42 0.00 -0.29 0.04 0.20 0.16 0.41 0.00 -0.51 0.00

CF-Recall 0.40 0.00 -0.46 0.00 -0.35 0.01 0.14 0.34 0.40 0.00 -0.51 0.00

CF-FMeasure 0.39 0.01 -0.45 0.00 -0.33 0.02 0.15 0.31 0.41 0.00 -0.50 0.00

Correlation analysis of MLQMs with AFVs for SBRM+
NSGA-III-C45

MLQMs

HV IGD 𝛜 ED GD GS

𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌
p-

value

Accuracy 0.40 0.00 -0.63 0.00 -0.08 0.58 0.07 0.61 0.31 0.03 -0.21 0.14

MAE -0.39 0.00 0.64 0.00 0.07 0.65 -0.08 0.58 -0.31 0.03 0.23 0.10

RMSE -0.40 0.00 0.65 0.00 0.06 0.66 -0.09 0.53 -0.29 0.04 0.23 0.11

RAE -0.39 0.01 0.59 0.00 0.10 0.51 -0.13 0.35 -0.39 0.01 0.24 0.10

RRSE -0.41 0.00 0.61 0.00 0.11 0.46 -0.16 0.27 -0.35 0.01 0.22 0.12

FF-Precision 0.38 0.01 -0.64 0.00 -0.06 0.70 0.05 0.74 0.29 0.04 -0.19 0.18

FF-Recall 0.43 0.00 -0.70 0.00 -0.09 0.52 0.00 0.99 0.26 0.07 -0.13 0.36

FF-FMeasure 0.43 0.00 -0.68 0.00 -0.10 0.48 0.00 0.97 0.28 0.05 -0.15 0.31

CC-Precision 0.09 0.52 -0.09 0.53 0.00 0.98 0.35 0.01 0.19 0.18 -0.10 0.48

CC-Recall 0.12 0.43 -0.07 0.62 -0.03 0.84 0.39 0.01 0.21 0.14 -0.16 0.27

CC-FMeasure 0.09 0.54 -0.06 0.66 0.00 1.00 0.39 0.00 0.22 0.12 -0.15 0.31

FC-Precision 0.26 0.07 -0.38 0.01 -0.05 0.72 0.15 0.30 0.36 0.01 -0.29 0.04

FC-Recall 0.26 0.07 -0.35 0.01 -0.07 0.63 0.08 0.56 0.35 0.01 -0.23 0.11

FC-FMeasure 0.26 0.07 -0.37 0.01 -0.04 0.79 0.13 0.37 0.38 0.01 -0.28 0.05

CF-Precision 0.12 0.40 -0.17 0.25 -0.08 0.58 0.03 0.86 0.35 0.01 0.01 0.96

CF-Recall 0.00 0.99 -0.06 0.68 0.04 0.77 0.18 0.21 0.44 0.00 -0.11 0.45

CF-FMeasure 0.05 0.75 -0.11 0.45 0.00 1.00 0.13 0.39 0.42 0.00 -0.07 0.62

Correlation analysis of MLQMs with AFVs for SBRM+
NSGA-II-PART

MLQMs

HV IGD 𝛜 ED GD GS HV

𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌
p-

value

Simula Research Laboratory, Technical Report 2018-05 May 2018

Accuracy 0.44 0.00 -0.44 0.00 -0.14 0.34 0.01 0.93 -0.38 0.01 -0.08 0.57

MAE -0.50 0.00 0.52 0.00 0.12 0.41 -0.01 0.97 0.46 0.00 0.04 0.81

RMSE -0.50 0.00 0.49 0.00 0.19 0.18 -0.02 0.92 0.39 0.00 -0.01 0.96

RAE -0.68 0.00 0.65 0.00 0.28 0.05 -0.28 0.05 0.49 0.00 0.04 0.79

RRSE -0.64 0.00 0.56 0.00 0.39 0.01 -0.35 0.01 0.33 0.02 0.09 0.53

FF-Precision 0.36 0.01 -0.37 0.01 -0.05 0.75 -0.02 0.91 -0.40 0.00 -0.04 0.77

FF-Recall 0.05 0.72 0.01 0.97 -0.12 0.41 -0.04 0.78 0.07 0.62 -0.28 0.05

FF-FMeasure 0.23 0.10 -0.22 0.13 -0.06 0.69 -0.01 0.92 -0.22 0.12 -0.17 0.24

CC-Precision 0.25 0.08 -0.22 0.12 -0.23 0.11 0.32 0.02 -0.06 0.69 -0.19 0.18

CC-Recall 0.33 0.02 -0.31 0.03 -0.20 0.17 0.32 0.02 -0.16 0.28 -0.19 0.19

CC-FMeasure 0.30 0.03 -0.28 0.05 -0.22 0.13 0.34 0.02 -0.12 0.40 -0.19 0.20

FC-Precision 0.45 0.00 -0.45 0.00 -0.14 0.32 0.21 0.14 -0.34 0.01 0.11 0.45

FC-Recall 0.33 0.02 -0.36 0.01 -0.01 0.96 0.18 0.21 -0.36 0.01 0.07 0.63

FC-FMeasure 0.39 0.01 -0.41 0.00 -0.05 0.71 0.18 0.20 -0.36 0.01 0.07 0.63

CF-Precision 0.46 0.00 -0.37 0.01 -0.29 0.04 0.37 0.01 -0.21 0.15 -0.13 0.38

CF-Recall 0.49 0.00 -0.41 0.00 -0.25 0.08 0.24 0.09 -0.29 0.04 -0.03 0.83

CF-FMeasure 0.47 0.00 -0.39 0.00 -0.25 0.08 0.29 0.04 -0.27 0.06 -0.06 0.69

Correlation analysis of MLQMs with AFVs for SBRM+
NSGA-III-PART

MLQMs

HV IGD 𝛜 ED GD GS

𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌
p-

value

Accuracy -0.02 0.89 -0.23 0.11 0.20 0.16 0.31 0.03 0.47 0.00 0.18 0.22

MAE 0.01 0.94 0.23 0.11 -0.19 0.18 -0.30 0.03 -0.46 0.00 -0.18 0.21

RMSE 0.00 0.98 0.24 0.09 -0.18 0.21 -0.31 0.03 -0.47 0.00 -0.19 0.19

RAE 0.02 0.87 0.49 0.00 -0.25 0.08 -0.10 0.50 -0.30 0.04 -0.38 0.01

RRSE 0.00 0.99 0.53 0.00 -0.23 0.11 -0.05 0.71 -0.26 0.06 -0.39 0.00

FF-Precision 0.05 0.75 -0.29 0.04 0.15 0.29 0.29 0.04 0.45 0.00 0.27 0.06

FF-Recall 0.02 0.86 -0.24 0.09 0.18 0.22 0.35 0.01 0.53 0.00 0.24 0.10

FF-FMeasure 0.03 0.86 -0.29 0.04 0.18 0.21 0.30 0.04 0.47 0.00 0.25 0.08

CC-Precision 0.17 0.24 -0.31 0.03 -0.01 0.92 -0.15 0.30 -0.05 0.71 0.40 0.00

CC-Recall 0.18 0.20 -0.24 0.09 -0.08 0.58 -0.16 0.26 -0.07 0.62 0.40 0.00

CC-FMeasure 0.17 0.23 -0.29 0.04 -0.04 0.80 -0.16 0.26 -0.07 0.63 0.41 0.00

FC-Precision -0.24 0.09 -0.15 0.29 0.29 0.04 -0.03 0.86 0.03 0.85 -0.11 0.46

FC-Recall -0.14 0.34 -0.17 0.23 0.20 0.15 -0.03 0.85 0.06 0.66 -0.08 0.58

FC-FMeasure -0.21 0.15 -0.17 0.25 0.25 0.08 -0.04 0.77 0.04 0.81 -0.10 0.47

CF-Precision -0.10 0.47 -0.02 0.90 0.10 0.48 0.16 0.26 0.21 0.14 -0.04 0.81

CF-Recall -0.15 0.30 0.07 0.64 0.09 0.52 0.12 0.42 0.11 0.45 -0.12 0.39

CF-FMeasure -0.13 0.36 0.04 0.77 0.10 0.50 0.15 0.31 0.15 0.30 -0.09 0.53

Detailed Results of RQ7

 (I) (II) (III)

Simula Research Laboratory, Technical Report 2018-05 May 2018

 (IV) (V)

Figure 16: Trend of Accuracy, MAE, RAE, RMSE, and RRSE across iteration for the Cisco case study

 (I) (II) (III)

 (IV) (V) (VI)

Figure 17: Trend of CC-Precision, CC-Recall, CC-FMeasure, FF-Precision, FF-Recall, and FF-FMeasure across

iterations for the Cisco case study

Simula Research Laboratory, Technical Report 2018-05 May 2018

 (I) (II) (III)

 (IV) (V) (VI)

Figure 18: Trend of CF-Precision, CF-Recall, CF-FMeasure, FC-Precision, FC-Recall, and FC-FMeasure across

iterations for the Cisco case study

 (I) (II) (III)

Simula Research Laboratory, Technical Report 2018-05 May 2018

 (IV) (V)

Figure 19: Trend of Accuracy, MAE, RAE, RMSE, and RRSE across iteration for the Jitsi case study

 (I) (II) (III)

 (IV) (V) (VI)

Figure 20: Trend of CC-Precision, CC-Recall, CC-FMeasure, FF-Precision, FF-Recall, and FF-FMeasure across

iterations for the Jitsi case study

Simula Research Laboratory, Technical Report 2018-05 May 2018

 (I) (II) (III)

 (IV) (V) (VI)

Figure 21: Trend of CF-Precision, CF-Recall, CF-FMeasure, FC-Precision, FC-Recall, and FC-FMeasure across

iterations for the Jitsi case study

	1. INTRODUCTION
	2. Background
	2.1 Multi-objective Search
	2.2 Machine Learning
	2.3 Branch Distance Calculation Heuristic

	3. OVERVIEW
	4. SEARCH-BASED CONFIGURATION GENERATION APPROACH
	4.1 Formalization of Configuration Generation Problem
	4.2 Clustering and Classification of CPL Rules
	4.3 Solution Encoding and Decoding
	4.4 Objectives and Effectiveness Measures
	4.5 Fitness Function

	5. Evaluation
	5.1 Experiment Design
	5.1.1 Research Questions
	5.1.2 Case Studies
	5.1.3 Evaluation Metrics
	5.1.4 Experimental Tasks and Parameter Settings
	5.1.5 Statistical Analyses

	5.2 Experiment Execution

	6. RESULTS AND ANALYSIS
	6.1 Effectiveness of Search (RQ1)
	6.2 Comparing SBRM+ with RBRM+ (RQ2)
	6.3 Average Relative Improvements in the Quality of Rules (RQ3)
	6.4 Comparing the Effectiveness of NSGA-II and NSGA-III (RQ4)
	6.5 Comparing the quality of rules for SBRM+ (RQ5)
	6.6 Correlation Analysis (RQ6)
	6.7 Trend Analysis of the Quality of Rules Across the Iterations (RQ7)
	6.8 Cost of Applying Search to Generate Configurations (RQ8)
	6.9 Discussion
	6.10 Threats to Validity
	6.10.1 Internal Validity
	6.10.2 Construct Validity
	6.10.3 Conclusion Validity
	6.10.4 External Validity

	7. RELATED WORK
	7.1 Dedicated Rule Mining Approaches
	7.2 Non-Dedicated Rule Mining Approaches
	7.3 Summary

	8. CONCLUSION AND FUTURE WORK
	Appendix A: Examples of Generated Rules Using SBRM+
	Appendix B: Descriptive Statistics and Detailed Results
	Detailed Results of RQ1
	Detailed Results of RQ2
	Detailed Results of RQ3
	Detailed Results of RQ4
	Detailed Results of RQ5
	Detailed Results of RQ6
	Detailed Results of RQ7

